Dynamics of Coastal Conditions

Final Report

by

Hsiang Wang and Robert A. Dalrymple

Technical Report No. 9
Contract No. N0014-76-C-0342
with the Office of NAVAL RESEARCH GEOGRAPHY PROGRAMS

Department of Civil Engineering
University of Delaware
Newark, Delaware
Dynamics of Coastal Conditions

Final Report

A Summary of Research Undertaken for The Office of Naval Research, Geography Branch

Under Contract No. N0014-76-C-0342

by

Hsiang Wang
Robert Dalrymple

Department of Civil Engineering
University of Delaware
Newark, Delaware 19711

December 1981
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Project Summary</td>
<td>2</td>
</tr>
<tr>
<td>III. Publications and Presentations</td>
<td>5</td>
</tr>
<tr>
<td>IV. Distribution List</td>
<td>8</td>
</tr>
</tbody>
</table>
I. Introduction

This report summarizes the accomplishments of the research project, "Dynamics of Coastal Conditions", under Contract No. N0014-76-C-0342, supported by the Geography Program of the Office of Naval Research. The project covered the period from September 1, 1976 to August 31, 1980.

The research objectives were oriented toward developing predictive tools tailored to the Navy's needs. Specifically, the efforts were concentrated in three major tasks aimed at predicting coastal conditions:

1. Developing a nearshore circulation model,
2. Developing an onshore-offshore sediment transport model, and
3. Developing a shallow water wave transformation model.

During the course of research, various research tools including numerical modeling, laboratory studies and in-situ and remote-sensing field observations were employed.

Hsiang Wang and R. A. Dalrymple served as the principal investigators with the former as the project leader. Investigators at other academic and research institutions were also involved from time to time. Notably, a cooperative program was established between the Technical University of Braunschweig, Germany, and the University of Delaware. Dr. H. H. Dette and professor Alfred Puhoboter have contributed to the project in organizing the German's research team who ably conducted the field experiments in 1976, 1978 and 1979. Dr. Tsuguo Sanumura then at Tokyo University (presently with the University of Tsukuba) participated in the laboratory experiments of onshore/offshore transport modeling as well as measurement of nearshore drift velocity.
Dr. Philip L. F. Liu of Cornell University worked with Dr. Dalrymple in developing nearshore circulation modeling.

II. Project Summary

1. Nearshore Circulation Modeling

Currents in the nearshore zone are induced by winds and breaking waves. Two numerical models have been developed under ONR funding to predict the flow near the coastline due to these forcing phenomena. The first, Birkemeier and Dalrymple (1976) was a linear model, not including the nonlinear convective acceleration terms, yet it provided a reasonably good estimate of flows caused by waves breaking over an irregular topography as determined by field experiments conducted by Argonne National Laboratory (Allender, Ditmars, Harrison and Paddock, 1978, Proc. 16th Coastal Engineering Conference, 1978). A more sophisticated model was developed by Ebersole and Dalrymple (1979) which included the convective acceleration as well as eddy viscosity/mixing terms. Results (Ebersole and Dalrymple, 1980) indicate that more realistic results are given by this model in regions where mixing or convection accelerations are important, such as in the vicinity of rip currents or longshore bars.

Kirby and Dalrymple (1982) have compared the results of both models to the field data obtained by the Nearshore Sediment Transport Study and have found that the models predict the natural flows reasonably well. The model (Ebersole and Dalrymple) will be undergoing a rigorous review in 1982 by the U.S. Army Coastal Engineering Research Center using data obtained from the Duck, N.C. Field Research Facility.
2. On/Offshore Sediment Transport Modeling and Breaking Wave Mechanics

The effort for this task spanned a four-year period. During this period, a number of topics, both of fundamental and practical importance, were researched with the ultimate goal of developing a user oriented on-offshore sediment transport model for the prediction of beach profile change under short but intense environmental events such as storms and hurricanes. More specifically, the research was carried out in the following order, although overlapping among subtasks were common:

A. Laboratory measurements were conducted to determine the fundamental mechanics of suspended sediment inside the surf zone as well as the flow characteristics inside the surf zone. Based upon the laboratory results, semi-empirical equations were proposed to describe the sediment and flow field conditions inside the surf zone.

B. A numerical model was developed on the basis of the results obtained in subtask A.

C. Laboratory and field measurements were then conducted to calibrate the numerical model.

The end product of this task includes a documented computer program and a series of reports and articles dealing with both the application of the model as well as various fundamental aspects of suspended sediment in surf zone and surf zone dynamics. These reports and articles are listed in Section III: Publications and Presentations.
3. Shallow Water Wave Environment

In this task, a numerical model was developed to predict wave spectral transformation from deepwater to shallow water. It is a finite difference model rather than the usual wave ray method. The finite difference model offers the advantage that it will provide the spatial distribution of shallow water spectra rather than a single point information provided by the wave ray method. The lateral energy spreading is more accurately handled as the finite difference method considers the balance over the complete region rather than between two wave rays that ignore the topographic effect outside the wave ray. More importantly, the effect of current on wave can be easily handled with the finite difference method. The model so far developed takes the following factors into consideration: (1) wave shoaling and refraction, (2) wave energy dissipation due to bottom friction, and (3) effects of current. A second generation model is now being developed which, in addition to the above factors, accounts for wave generation and unsteady state boundary conditions.

To verify and calibrate the model, field work was conducted at the Island of Sylt, Germany, in 1976, 1978 and 1979. In addition to measuring shallow water wave characteristics, other surf zone properties, such as suspended sediment transport, nearshore current and wave set ups, were also measured.

The product of this task includes a number of documented computer programs and reports and articles listed in Section III.
III. Publications and Presentations

(A) ONR Reports

(8) Publications

Wang, H., "Modeling of Short-Term Beach Processes", TR-77-1, Coastal Research Center, Tokyo University, Tokyo, Japan, April, 1977.

V. Distribution

Office of Naval Research
Coastal Science Program
Code 42205
Arlington, VA 22217

Office of Naval Research
Operational Applications Division
Code 200
Arlington, VA 22217

Defense Documentation Center
Cameron Station
Alexandria, VA 22314

Office of Naval Research
Scientific Liaison Officer
Scripps Institution of Oceanography
La Jolla, CA 92093

Director, Naval Research Lab
ATTN: Technical Information Officer
Washington, D.C. 20375

Director Naval Research Laboratory
ATTN: Library, Code 2628
Washington, D.C. 20375

Director
Office of Naval Research Branch Office
1030 East Green Street
Pasadena, CA 91101

ONR Scientific Liaison Group
American Embassy - Room A-407
APO San Francisco 96503

Director
Office of Naval Research Branch Office
536 South Clark Street
Chicago, IL 60605

Commander
Naval Oceanographic Office
ATTN: Library, Code 1600
Washington, D.C. 20374

Director
Office of Naval Research Branch Office
495 Summer Street
Boston, MA 02210

Naval Oceanographic Office
Code 3001
Washington, D.C. 20374

Commanding Officer
Office of Naval Research Branch Office
Box 39
FPO New York 09510

Chief of Naval Operations
OP 907Pi
Department of the Navy
Washington, D.C. 20350

Chief of Naval Research
Code 100M
Office of Naval Research
Arlington, VA 22217

Oceanographer of the Navy
Hoffman II Building
200 Stovall Street
Alexandria, VA 22322

NORDA
Code 400
National Space Technology Laboratories
Bay St. Louis, MS 39520

Naval Academy Library
U.S. Naval Academy
Annapolis, MD 21402
Commanding Officer
Naval Coastal Systems Laboratory
Panama City, FL 32401

Librarian, Naval Intelligence Support Center
4301 Suitland Road
Washington, D.C. 20390

Director
Coastal Engineering Research Ctr.
U.S. Army Corps of Engineers
Kingman Building
Fort Belvoir, VA 22060

Commanding Officer
Naval Civil Engineering Laboratory
Port Hueneme, CA 93041

Officer in Charge
Environmental Research Product Fcty.
Naval Postgraduate School
Monterey, CA 93940

Chief, Wave Dynamics Division
USAE-WES
P. O. Box 631
Vicksburg, MS 39180

Dr. Warren C. Thompson
Dept. of Meteorology & Oceanography
Naval Postgraduate School
Monterey, CA 93940

Commandant
U.S. Coast Guard
ATTN: GECV/61
Washington, D.C. 20591

Director
Amphibious Warfare Board
U.S. Atlantic Fleet
Naval Amphibious Base
Norfolk, Little Creek, VA 23520

Office of Research and Development
%DS/62
U.S. Coast Guard
Washington, D.C. 20591

Commander, Amphibious Force
U.S. Pacific Fleet
Force Meteorologist
Comphibpac Code 25 S
San Diego, CA 92155

National Oceanographic Data Center %D764
Environmental Data Services
NOAA
Washington, D.C. 20235

Commanding General
Marine Corps Development and Educational Command
Quantico, VA 22134

Central Intelligence Agency
ATTN: OCR/DD-Publications
Washington, D.C. 20505

Defense Intelligence Agency
Central Reference Division
Code RDS-3
Washington, D.C. 20301

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
Code MC-RD-1
Washington, D.C. 20380

Mr. Tage Strarup
Defense Research Establishment
Osterbrogades Kaserne
DK-2100 Kobenhavn O, Denmark
Prof. Dr. Fuehrboeter
Lehrstuhl F. Hydromechanik U. Kuestenw
Technische Hochschule Braunschweig
Beethovenstrasse 51A
D-3300 Braunschweig, West Germany

Dr. Bruce Hayden
Dept. of Environmental Sciences
University of Virginia
Charlottesville, VA 22903

Prof. Dr. Walter Hansen
Direktor D. Instituts F. Meereskunde
Universitaet Hamburg
Heimhuderstrasse 71
D-2000 Hamburg 13, West Germany

Prof. Dr. Klaus Hasselmann
Institut F. Geophysik
Universitaet Hamburg
Schluterstrasse 22
D-2000 Hamburg 13, West Germany

Dr. Benno M. Brenninkmeyer, SJ
Dept. of Geology and Geophysics
Boston College
Chestnut Hill, MA 02167

Coastal Studies Institute
Louisiana State University
Baton Rouge, LA 70803

Dr. Bernard Leechau
Tetra Tech., Inc.
630 North Rosemead Blvd.
Pasadena, CA 91107

Dr. Edward Thornton
Department of Oceanography
Naval Postgraduate School
Monterey, CA 93940

Dr. Douglas I. Inman
University of California A-009
Shore Processes Laboratory
La Jolla, CA 92039
<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>ONR TR No. 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. GOVT ACCESSION NO.</td>
<td>1D-I1C Y4/63</td>
</tr>
<tr>
<td>3. RECIPENT'S CATALOG NUMBER</td>
<td></td>
</tr>
<tr>
<td>4. TITLE (and Subtitle)</td>
<td>Dynamics of Coastal Conditions - Final Report</td>
</tr>
<tr>
<td>5. TYPE OF REPORT & PERIOD COVERED</td>
<td>Final 09/01/76-08/31/80</td>
</tr>
<tr>
<td>6. PERFORMING ORG. REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td>7. AUTHOR(s)</td>
<td>Hsiang Wang and Robert A. Dalrymple</td>
</tr>
<tr>
<td>8. CONTRACT OR GRANT NUMBER(s)</td>
<td></td>
</tr>
<tr>
<td>9. PERFORMING ORGANIZATION NAME AND ADDRESS</td>
<td>Department of Civil Engineering University of Delaware, Newark, DE 19711</td>
</tr>
<tr>
<td>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</td>
<td></td>
</tr>
<tr>
<td>11. CONTROLLING OFFICE NAME AND ADDRESS</td>
<td></td>
</tr>
<tr>
<td>12. REPORT DATE</td>
<td></td>
</tr>
<tr>
<td>13. NUMBER OF PAGES</td>
<td>10</td>
</tr>
<tr>
<td>14. MONITORING AGENCY NAME & ADDRESS</td>
<td></td>
</tr>
<tr>
<td>15. DISTRIBUTION STATEMENT (of this Report)</td>
<td>This report has been approved for public release and sale; its distribution is unlimited.</td>
</tr>
<tr>
<td>16. SECURITY CLASS. (of this report)</td>
<td></td>
</tr>
<tr>
<td>16a. DECLASSIFICATION/DOWNGRADING SCHEDULE</td>
<td></td>
</tr>
<tr>
<td>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 19, if different from Report)</td>
<td></td>
</tr>
<tr>
<td>18. SUPPLEMENTARY NOTES</td>
<td></td>
</tr>
<tr>
<td>19. KEY WORDS (Continue on reverse side if necessary and identify by block number)</td>
<td>Coastal waves, wave spectra, nearshore circulation, sediment transport, nearshore modeling, coastal dynamics</td>
</tr>
<tr>
<td>20. ABSTRACT (Continue on reverse side if necessary and identify by block number)</td>
<td>This report summarizes the accomplishment of the research project, "Dynamics of Coastal Conditions" for the period from September 1, 1976 to August 31, 1980. The efforts were concentrated in developing predictive models for: (1) nearshore circulation, (2) on/offshore sediment transport and (3) shallow water wave transformation. These numerical models were documented in respective reports listed.</td>
</tr>
</tbody>
</table>