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ABSTRACT

A finite element analysis of stationary and propagating nracks in
the presence of inertia forces is presented. An extension of the J-integral
approach is employed. To model a propagating crack, a conceptually simple yet
effective technique has been developed. The new crack propagation scheme
eliminates the difficulties associated with the use of moving singuiar

elements,

INTRODUCTION

It 1s generally accepted that a crack arrest methodology based on a
dynamic view of crack propagation and arrest is more fundamental than the
quasi-static aprroach to the problem [1]. Specific:lly, when inertia forces,
stress-wave reflections, and rate-dependent fractur. processes are dominant,
quasi-static assumptions will generally underestim: te the true crack driving
force. In many applications, such as nuclear pres:ture vessel design and
structures subjected to impact loading, dynamic ef’ects can be important. In
these cases analytical models based on the quasi-static assumption may lead to

erroneous conclusions.
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Inclusion of dynamic features in an analytical model undoubtedly
leads to complications. In recent years the finite element method has emerged
as an important tool that can be used to resolve at least somge of the mathe-
matical difficulties associated with the problem. Considerable progresélhaé
also been made toward understanding some of the basic concepts.

The purpose of the paper is to present the salient features of a
recently developed finite element dynamic crack propagation modeling tech=-
nique. Results of an elasto-dynamic analyses will be presented for both
stationary and running cracks. Comparisons will be made with available i
experimental results. Through the analyses of test specimens, it will be
demonstrated how this analytical model can be used to acquire a better

understanding of the dynamic crack propagation phenomenon.

Dynamic Analysis and Numerical Integration

The famil_.ar finite element discretized version of the equations of
motion are simply written in the following form:

M1 {x} + (] {X} + (K] {x} = {R} (n
where
[M] = mass matrix

[cl
(K]

damping matrix

stiffness matrix

——
-
T—
[ |

the external load vector

(x}, {x}, {x}

the displacement, velocity, and acceleration vectors
respectively.

There are several methods that could be used to perform the direct numerical
integrations of the equations. The method selected for this work was the

Newmark implicit scheme [2]. For this method, the following approximations
are used:
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X

Xewat ] At (2)

= Xt + [(1-8) Xt + 6Xt + At

X =X+ % At + [(1/2 = o) it +a X 1at? (3)

t + At t t + At

where o and 6 are parameters that can be varied for accuracy and stability
while At is the time step. From the above equations it is possible to write
the equations of equilibrium for time, t + At, in terms of displacements, ve-

locities, and accelerations at time, t.

([l + a [M] + al[C]] {Xp 4oaeh = AR 4 ach + M) (o (%} + az{it} + a3{§t})

+ [elta {x,.} + a,{x.} + a{x D (4)

where

a -—.-!'—oa -L a -__1._ a -_].'—_1

o aAtz 1 abt 2 oAt 3 2
§ t §

34-3'1’35.‘5‘(3-2)saﬁ-At(l"G) (3)

a, = sat .
Solving Equation (4) yields {xt + At} whereupon the accelerations and veloci-

ties at time, t + At, can be calculated using Equations (2) and (3).

Elasto-dynamic Analysis of Stationary Cracks

Consider the problem of determining the stress intensity factor for
a stationary crack in a structuve subjected to dynamic loadings. Several in-
vestigators have solved this problem by employing singular elements around the
crack tip [3-5]. While this approach has proved to be successful, it will
later require special considerations when the crack is prcpagating. An alter-
native to the singular element approach is to derive the stress intensity fac-

tors from a path independen:t J-integral [6]. After accounting for the inertia
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effects, the rate of energy release per unit of crack advance {n the direction

of the crack Xy 1s defined as:

aui . aui
J=f (wdx, - FPLY 3;; ds] + [, pui(g;I) A, (6)

I+l
]

where the first integral is the conventional J-integral over an arbitrary path
surrounding the crack tip and the second int2gral is an integral over the
area, A, enclosed by the path, T + T'gs see Figure l.

An application of this J-integral is shown in the following example
in which a centrally cracked plate in plane strain is impulsively loaded tv a
uniform stress; see Figures 2 and 3. The finite element model employed 309
nodes and 90 eight noded quadratic isoparametric elements; see Figure 4. The
material is linear elastic with a Young's modulus of 200 GPa, Poisson's ratio
of 0.3 and density of 5 g/cm3. Newmark's implicit time integration scheme was
used (a = 0.25 and § = 0.5) with a time step of 0.15 microseconds. A consis-~
tent mass formulation was used for this analysis.

The results of the present analysis are shown in Figure 5 along with
those of other investigators for comparison [7,8]. As the figure shows, the
present analysis is in excellent agreement with the other results. It should
be mentioned that the path independence: of this J-integral has been previously

demonstrated [7].

An Analysis of Running Cracks

A technique has been developed that allows for the analysis of run-
ning cracks without the need for mesh adjustments or iterations. This tech-
nique is based on earlier crack propagation investigations using a finite dif-
ference based analysis [9). It begins by subdividing the element immediately
ahead of the crack tip into what can be thought of as subelements, as shown in
Figure 6, (in this case, for a mesh composed of four noded linear elements).
During propagation, the crack tip will be, in theory, allowed to move in
discrete jumps along the crack plane through these subelements; e.g., the

crack tip will move from Point "1" to Point "2" in one jump and later move
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from Point "2" toc Point "3" and so on, as the analysis dictates, The stress
intensity factor at any crack location will be determined by a J-integral
evaluaticn, Equation (6).

Conslider the situation with the crack tip at Point "1". The crack
velocity, V, will be estimated by counting the number of time steps, n, which

3
F
E; are required until the stress intensity factor, K, is equal to the fracture
£ toughness and performing the simple calculation:
o 1x(2) = x(1)|
v Y (7)

T
s -

where At is the time step size. This algorithm is repeated as the crack tip
moves from Point "1" to "2", "2" to "3", and so on.

This algorithm has the advantage of allowing the calculation of
g . pseudo crack velocities after each time step., This pseudo velocity is equal
! to the actual crack velocity when the fracture criterion

: K = KD v, T)
is satisfied, where the fracture toughness can be a function of the crack

velocity, V, and material temperature, T. Since the crack velocity is calcu=-
lated first and then the fracture toughness, there are no problems with using

ﬁ; a velocity independent fracture toughness relation. This type of criterion
would cause problems if the crack was propagating, i.e., K = K,, and the
inverse of the Kp relation was used to determine the crack velocity as is done

in some codes.

It was then necessary to decide the number of subdivisions to make

in each element. This was accomplished by determining the maximum crack

ma
as the bar wave Speed,VE7 . Once V.. is set, the maximum distance the crack

can propagate per time step, Ax', is

Li velocity to be allowed in the analysis, Vmaxe In this study, V .. was taken
{

L .
Ax vmax At . (8)




v

The number of Ax' units in an element length, Ax, is, %ET' To make the number

of suhdivisions an integer value and to prevent the crack from traveling more

2o il

than one element length per time step, the number of subdivisions, N, is taken
to be

Ax

N-—A-;KT+1 (9)

ek i - [t

where N is a truncated integer value. Should the crack want to propagate at

one subdivision per time step, its propagation speed will be somewhat less

than the maximum velocity, V .., set previously due to the truncation. The

amount by which the actual maximum crack velocity differs from V. will :
‘ depend on the value of N. 3

LR s 2 i o bt

The last detail was to determine how the crack tip would be placed :
at the subdivision lines.
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This was conceptually performed by placing a force

on the element to which the crack tip is adjacent. For a four-noded element, ]

the force is placed on the one node on the crack plane behind the crack tip 3

and for an eight-noded element nodal, forces would be placed on the two nodes ;

as shown in Figure 7. The forces were postulated to be linearly related to

the cracl. tip location.by the following equation:

Fi a ;
Foo= I - ix (10)
Oi 3

where F; is the force at node "i", Foi is the nodal force at node "i" just

prior to the node release, as shown in Figure 7, "a" is the crack length in

= the element which the crack tip is in, and "Ax" is the length of that

element. In the present study, eight-noded quadratic isoparametric elements

were used. The midside node was released simultaneously with the trailing %

vertex node. The force history of each node followed the prescription given
in Equation (10).
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Both nodes were released simultaneocusly to avoid possible :
problems discovered in another investigation [10]. 1

A summary of the above algorithm for a quasi-statically initiated
event is given in Figure 8.

o In the algorithm just described, the location of the "crack tip" is

uvbviously not actually known when there are forces on the crack face. The
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FIGURE 7. PLACEMENT OF NODAL FORCES FOE (a) A FOUR-NODED
ELEMENT AND (b) AN EIGHT-NODZD ELEMENT,
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only time when the location of the crack tip is unambiguous is when there are E

no forces on the crack face. But in order to avoid regeneration of the mesh

(which would be necessary to place a node at the desired crack tip location)
the interpretation used in the above algorithm was adopted. A similar inter- é
pretation has also been used by others [10,11,12].

The applicability of this interpretation can be somewhat tested by

performing a constant velocity crack analysis. The problem chosen was a cen-

word s e St i -

TR TR

trally cracked square plate of 40 mm x 40 mm with an initial crack length of
0.2 a/w, where w is the panel width. The panel was initialiy loaded with a
uniform stress in the direction perpendicular to the crack. The properties of
the plate were E = 7716 kgf/mm?; v = 0,286; and p = 2.5 x 10-10 kgf ° s2/mm%.

Kl i

The crack was propagated at a velocity of 0.2 of the shear wave speed of the

material which was C; = 3.461 x 108 mm/sec. This problem is similar to that’

ot 48t | o et 1 b 1

addressed by Broberg [13], except that Broberg treated the crack as opening

T T T R TG T
At

( from a zero initial length. The mesh used for the problem is shown in Figure

9. The model employed 213 nodes and 60 eight-noded isoparametric elements.

it i, 410

The time integration employed a time step of 0.2887 microsecond with a = 0.25

RIS Sitalg0
’

POV

and § = 0.5 The results of the analysis is shown in Figure 10 ~long with the
Broberg solution and solutions of Atluri [14]. The figure shows that the two
computed solutions are very similar and they converge to the Broberg solution
after the initial transient conditions have past. Hence, very reasonable
estimates of the stress intensity factor with time can be obtained for the

problem of a crack with prescribed velocity.

et it A S L 2 s s e 200

The inverse of the problem performed above is perhaps of cven more

importance; i.e., a problem in which the dynamic fracture toughness is speci-

o ek atin

fied and the crack length time history is sought. The ability of the proposed
procedure to perform such an analysis was tested by comparing computed results 3

with experimental data for a quasi-statically initiated crack in a 4340 steel

three-point bend (dynamic tear) specimen; see Figure 11. The finite element
mesh used for the analysis used 314 nodes and 91 eight-noded isoparametric

elements; see Figure 12. A previously determined dynamic fracture toughness ,
relation given by Kip = 65 + 0.44 V was used [15]. - %

The results of the analysis given In Figure 13 show excellent agree-

ment with experimental resgults.
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FIGURE 11, SPECIMEN GEOMETRY FOR A QUASI-STATICALLY INITIATED
CRACK PROPAGATION TEST L = 181 mm, W = 38 mm,
B = 15.8 m’ W"ﬂ - 2805 mm.
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CONCLUSIONS

A simple yet effective technique has been developed to perform
dynamic crack propagation problems. The technique does not require using
singular eler nts or updating the finite element mesh during crack propaga-
tion. Also, the dynamic fracture criterion need not be velocity dependent.

Good agreement has been obtained between analytical results and experimental
data.
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