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ABSTRACT

Par]allel computer architecture complicates the already
difficult task of parallel programming in many ways, €.g., by
a rigid interconnection structure, addressing complexity,
and shape and size mismatches. The CHiP computer is ag'new
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PROGRAMMING PROCESSOR INTERCONNECTION
STRUCTURES*

Lawrance Snyder

Department of Computer Sciences
Purdue University
West Lafayette, IN
47907

Introduction

Although it is a difficult task to design a sequential computer archi-
tecture that efliciently hosts sequential algorithms, it is perhaps even
more challeng:. g to design a parallel architecture that efficiently hosts
parallel algorithms. The aspects of parallel computation that frustrate

the harmonious match between algorithm and architecture are many:

Rigid interconnection struciure. Parallel architectures tend to pro-
vide a fixed interconnection structure between processing elements
(PE's). For example, ILLIAC IV is mesh connected; the Massively
Parallel Processor [1] has a toroidal structur:. But recently
developed parallel aigorithms use a variety of PE interconnection
structures. For example, there are tree algorithms for everything
from sorting to graph coloring [2] as well as applicative language
expression evaluation {3], hexagonally connected pipelined algo-
*The rescarch described herein is part of the Blue CHiP Project. Funding is provided in part

by the Office of Naval Research under Contract N. N00014-80-K-0818 and Contract No.
N00014-81-K-0380, Special Research Opportunities Program, Task SR0-100.
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rithms for numeric problems [4], "double trees' for searching and
data base operations [6], and many nonstanderd interconnection
graphs. (See Figure 1.) The problem is that thic rigid interconnec-

tion structure biases the architecture towards a particular class of

algorithms and makes it difficult to use for any other class of algo-
rithms.
Problem shape and size mismatch: Parallel algorithms tend to

require a particular number of PE's in a particular shape that is

ool e i s 2L i, L s,

determined by the problem's input, but the architecture provides
only one fixed size and shape. For examnple, an algorithm requiring
an n/2 x 2n array of PE's does not "fit" on an nxn mesh connected

architecture even though there are enough processors.

Addressing complexity. Certain parallel architectures, e.g., the Ultra

Computer 8] and the Cube connected cycles (7], provide a "vniver- ;
sal” interconrnection structure in which a logical interconnection
structure is implemented on the physical structure by means of
packet routing operations. Time is wasted in unproductive packet

switching. More seriously, the programs stored in the PE’s are com-

plicated by the need to ccmpute target addresses.

Poucity of programming languages. Although languages such as APL .

and Concurrent Pascal have 'parallel semantics,” most parallel algo-
rithms are specified in an ad hoc manner. Thus there is little gui- 4
dance from the programming language as to what features {- optim-
ize for.

These and other complications explain in large measure why highly paral-

lel computers have been difficult Lo program.
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Figure 1. Interconnection patterns tor parallel algorithms (a) rmesh, (b) hexago-
nally connected mesh, (c) torus, (d) binary tree, (e) double tree.
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We report on a new family of architectures, the Configurable, Highly
Parallel (CHiP) computers, that respond to the demands of parallel algo-

rithms, especially the need for locslity and flexibilitly. The central con-

cept is this:

The processing elements are embedded into a programmable switch
lattice that permits not only the programming of the PE's but also

the direct programming of their interconnection structure.

This second kind of programming not only ameliorates the difficulties
mentioned above, it also permits the convenient composition of parallel
algorithms. It has even led to the development of entirely new parallei
algorithms [8]. In this paper we give a synopsis of the CHiP architacture
and then explore the consequencas of this new kind of progrumming,
interconnection structure programming. The main results are algo-

rithms of programming various interconnection structures.

Synopsis of the CHiP Computer
[Readers familiar with the CHiP Computer may wish to omit this sec-

tion.)

A CHiP Computer is composed of » set of homogeneous microproces-
sor elements connected at regular intervals to the switches of the switch
lattice. The lattice is ccmposed of programmable switches connected by
datu paths to each other or to the PE’s. Perimeter switches are al.ached
to exterrial storage devices. Figure 2 illustrales two examples of this

struclure.* flach PE has its own local program and data memeory and

*Notice that the pictures are not drawn to scale. The PE's are much larger than
the awi.ches.
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cach switch contains enough local memory to store several configuration

sattings.
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Figure 2. Two lattices. Circles represent switches; squares represent
processing elements; lines represent data paths.

A ~onfiguration setting is an instruction which, when invoked, causes
the switch to form a passive connection between any combination of its

incident data paths. Notice that this is circuit switching rather than

packet switching and that fan out is possible at the switches. Figure 3(a)
shows the configuration settings for a mesh pattern for the iattice of Fig-
ure 2(a); Figure 3(b) shows the same lattice ~onfigured as a binary tree.
To implement an interconnection pattern, the switches are loaded with
configuration settings by an external control processor via a "skeleton"
that is transparent to this discussion. This activity is usually performed

in parallel with the controller's loading of the PE programs.
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Figure 3. Two configurations of the lattice in Figure 2(a). 3

A parallel program is viewed as the composition of several parallel
algorithms each with its own processor interconnection patiern. Each of
these interconnection patterns and the associated PE code is called a
"phase.” The controller loads the PE's and switches with the instructions

for several phases. Processing begins with a broadcast command from

the controller to the switches to invoke a particular stored interconnec-

tion pattern. This also causes the PE's to begin synchronously executing
their local programs. The interconnection structure remains static
throughout the execution of the phasc. When the phase completes,

another broadcast command causes a different interconnection pattern




T

to be invoked and a new phase to be initiated. The action continues in
tiils manner from phase to phase.

Several points are worthy of special emphasis. First, to implement
an interconnection pattern requires that all configuration settings be
stored in the same location in all of the switches. This is so that the
broadcast command can take the simple form "invoke the setting in loca-
tion z,” thus making possible one step phase transitions. Second,
switches can provide the ability for data paths to "crossover” one
another, i.e.,, a setting can implement multiple data path interconnec-
tions. Third, the PE’'s need not know to whom they are connected; they
simply execute instructions of the form READ EAST, WRITE NORTHWEST,
etc. The interconnection pattern explicitly implements the routing.

Fourth, the data paths are bidirectional.

Fxample: Consider the problem of finding the solution to a system of
linear equations, Az=b, where 4 is an nxn band matrix of width p and
b is an n vector. To solve the problem we use the Kung-Leiserson LU
decomposition pipelined (systolic) algorithm [4] and their lower tri-
angular system (LTS) solver algorithm. The interconnection pattern
(lor p=4) is shown in Figure 4. The exact operation of the algorithms
is unimportant except to say that they are pipelined and the data
moves in the direction of the arrows. Phase 1 decomposes 4 into
lower and upper triangular matrices, A=LU, and al the same time
solves the lower triangular system, Ly=b. Figure 5§ shows the embed-
ding into the lattice of Figure 2(a) of these two algorithms -- the L
matrix is transferred directly from the decomposition processor to
the LTS solver. The z vector result can be formed by solving Uz =y,

which is done by rewriting U as a lower triangular matrix and using

=78
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FIGURE 4. Kung-Leiserson Systolic arrays [4]. (&) LU-Decomposition; (b)

Lower triangular systems solvcr.
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the LTS algorithm, but U must be completely generated before being

rewritten. Thus, phase 1 saves the U matrix and y vector values in

preparation for phase 2 by threading them through the lattice. (See

Figure 8.) In phase 2 the values are threaded back through the lat-

tice in the opposite direction, which effects the rewriting operation,

and they are input to another LTS solver. (See Figure 7.) The result

exits from the array at the left end of the LTS solver.

TR G0 0L D)
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S 20 o
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‘Figure 6. Threading the U matrix
and y vector values of
Phase 1. Switches not

shown.

B
J@ ] Hgf

Figure 7. Reverse threading of the

U and y values for
Phase 2 togelher with a
second LTS solver.

The example is specialized to a band matrix of width p=4. A general

procedure that solves this problem for arbitrary width bands would differ

only in the interconnection structure; the various PE programs required

for an arbitrary width solution are all represented in this p=4 case. Thus,

it is the programming of interconnection patterns that is of central

importance.
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Programming Interconnection Patterns

We will emphasize the specification of uniform rather than ad huc

interconnection patterns because they are of interest in their own right

R o e AR Bt i S e o

and they are often the building blocks that are used by the less regular

patterns. First, we must consider the lattice that is to host the intercon-

nection pattern.

As indicated in Figure 2, a variety of different lattices are possible,

although any particular architecture will use only one. Lattices differ in
complexity in several ways: corridor width, degree, and crossover capa-
bility. The corridor width, w, is the number of switches separating two
adjacent PE’s, e.g., the lattice of Figure 2(a) has w=1 and that of Figure
2(b) has w=2. Any lattice can embed an arbitrary graph, but to do so
may require leaving some PE's unused [9]. A wider corridor width uses
PE's more efTiciently when embedding complex graphs. The degree, d, of
a lattice is the number of data paths incident on a PE or a switch. (If

these two numbers are different, d is the minimum.) For example, Fig-

ure 2(a) has d=8 while Figure 2(b) has d=4. Finally, the amount of cross-
over capability ¢ is the number of distinct data paths that can intersect

at one switch. A crossover capability ¢ =2 permits a crossover while ¢ =1

b e BB e,

does not. In the interest of generality, we will assume the "simplest” lat-
tice suitable for an interconnection pattern.

Programmming an interconnection pattern requires that the
configuration setting of each relevant switch be defined. For the present
discussion it suffices that we give a logical specification of the setting

since the actual bit configurations are irrelevant. Accordingly, we will

172

code the compass points with single letters:
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N(orth; M(aine) i.e., Northeast

S(outh) F(lorida) i.e., Southeast
E(asl% A(rizona) i.e., Southwest
W(est O(regon) i.e., Northwest

and we will assign settings as pairs of these letters. For example, EW is a

horizontal connection while ME is a 45 ° angle. The lattice will always be ;
nxn where n is the number of processors on a side. We name the
switches and PE's with a two value index corresponding to its matrix posi- ;

tion. See Figure 8. We will name the lattice "L".

(2\ /1-3\ 1,4

d
é@————w 2,2 €> 2,4 —

=
e

R S T .

Figure 8. The two index coding scheme for a lattice. )

As an example of this specification method, we observe that the mesh

interconnection pattern (Figure 3(a)) can be defined* by the two condi-
tions: F

(i) 4 is odd and j is even implies L[i,j] = NS

I

(ii) 4 is evenand j is odd implies L[i,j] = EW

LN

——— ). 5
*In our presentation of interconnection patterns, we will use a simple declarative P~
specification. We are presently developing a configuration programming language, el J

but until it is completed, we prefer the neutral declarative approach.
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provided that the lattice is initially unconfigur:da. A hexagonally connect-
¢d Interconnection pattern requires the further condition
(iii) i is odd and j is odd implies L{i,j] = OF

and requires a lattice of degree d=86 or (for symmetry) d=8. Notice

that this specification is somewhat more general than that used in

Figure 5.

Torus Interconnection Patterns

Since the mxn torus interconnection pattern is simply an nxn
mesh with the top row and bottom row PE’s connected and the left

column and right column PE’s connected, (see Tigure 1), one might

expect a one corridor, degree 4, crossover capable (¢=2) lattice to

suffice to host this pattern. Surprisingly, it does not.

Theorem. let L be a w=1,d=4, c=2 nxn lattice. L cannot be set
to connect the PE's into an nxn torus.
The proof involves arguing that the perimeter corridors must be used
for two purposes - to support both the vertical and horizontal “wrap
around” and thus cannot lead to an edge disjoint graph embedding.
Direct Torus Representation. Even when d=8, embedding the torus
is nol trivial if we are to avoid multiple use of data paths.
Lattice. w=1, d=8, c=2.
Settings for Crassover Level 1.
First we connect the PE's in the rows. Then we run a data path from
the Northeast part of the first PE through the corridor above the row
and finally down into the Northeast part of the last PE in the row.

For example,

ke

i
1
]
4
3
3

i mbebard WA | Lo it

174
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> Lot oo trooil o
o Lo o
shows the construction for conditions (i) through (iii).

(i) [PE row connections] 1<i,j<2n+1 and i is even and j is odd
impl? Lt jl=EW.

(ii) [Northeast ports] i<2n+1 and 4 is odd imply L[i,3]=AF and
L{i.2n+1]=AW.

(iii) [Corridor above rows] i<2n+1 and i is odd and 3<j<2n+1

imply L{i,J]=EW.

Settings for Crossover Level 2. A similar strategy is used for the
columns.

(iv) {PE column connections] 1<i,j<2n+1 and i is odd and j is

even imply L[i.j]=NS.

(v) [Southwest ports] j<2n+1 and j is odd imply L[3.j]=MS and

L{2n+1,j]=NM.
(vi) [Corridor left of columns] §<2n+1 and 5 is odd and 3<i<2n+1
imply L{i.j]=NS.
Figure 9 illustrates the entire construction.

The difficulty with this interconnection pattern, of course, is that
it has long data paths that are subject to propagation delay. Some
algorithms can accept such a delay, but generally we would like to
reduce it. Accordingly, we prefer the following more intricate pat-
tern that interleaves the row and column processing elements so

that there is a fixed bound on the distance a signal must travel.

175
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Interieaved Torus Kepresentation

Lattice. w=1, d=8, c=R2.
Settings for Crossover Level 1.

First we connect alternate PE's in rows. For cxamgle,

The end connections are specified by
(i) [East port, en? PE's] i is even implies L[i,3]=E¥ and
Lii2n+1]=HO.
The westerly port connections of each i’ are given ty
(i) [West port] i is even and 3<;<2n+1 and j is odd imply
L[i.j]=0E.
The connections in the corridor above the row are given by
(iii) [Northeast port] i<2n+1 and i is odd and 3<j<2n+1 and j is
odd imply L[i.j]=AE.
(iv) i<2n+1 and i is odd and 3<j and j is even imply L[i,j]=WF.
Setlings for Crossover Level & The columns are connected in a
manner analogous to the rows.
(i) [South port, end PE's] §j is even implies L[3,j]=NS and
L{2n+1,5]=0N.
(ii) [Northport] j is even and 3<i<2n+1 and i is odd imply
L[i,j]=0S.
(iii) [Southwest port] j<2n+1 and j is odd and 3<i<2n+1 and < is

odd imply L[i,j]=SH.
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(iv) J<Pn+1 and j is odd and 3<t and 1 is even imply L[t.§ ]=NF.
The entire constructior ;s chown in Figure 10,

Clearly the maximum number of switches that any data item must
pass through is three. We have increasad the localily of the torus
embedding. [t is, therefore, more amenable VLSI implementation
and can be used in an arbitrarily large latlice with only a constant

delay.

Complete Binary Trees

Although an eflicient embedding of complete binary trees into
the plane is known [10], its direct application to interconnection pat-
tern programming is very wasteful. (See Figure 11.) In fact, since a
complete binary tree of depth m has 2™ -1 nodes, we can expect a
lattice with 2*x2* PE's to host a complete binary tree of depth 2k
with one unused node. Call this node a "spare."” We can expect that
the simplest lattice hosting this pattern will not require crossover
capability, since trees are planar, and will require only degree d=4,
since trees have at most degree 3 connections. (The lattice then is
given by w=1,d=4,¢c=1.) Bul if the reader attempts to develop an
interconnection with these conditions, he will find it to be unexpect-
edly difficult.

The overall strategy is to begin with small, complete binary trees
embedded in square regions of the lattice. To reduce propagation delay
the root will be placed in the center of the block. Each block will contain
a spare PE. We compose four such square blocks together to form a
larger binary tree in a larger square block. Three of the four spare PE's

will be used as nodes in the composed tree; the fourth spare will become

" T7
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Figure 11. Hyper-H tree (Figure 1(d)) embedding [10]. Filled PE's

are unused.

AP 0

the spare of the new block. The goal is to place the spares so that they

will be conveniently located for the compositon.

[
ey ant e L iy |

Define three types of tree embeddings:

Type A blocks have their spare PE midway along one side adjacent to

e SRR

the exiting edge from the block's root.

Type B blocks have their spare PE in the corner on the same side as ’

the cxiting edge from the block's root.

o T

Type C blocks have their spare PE in the corner on the opposite side
of the exiting edge from the root.
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Figure 12 illustrates the three types of blocks and demonstrates that

they can be inductively produced using blocks of these types.

e g1 —G——a o .

0 <R L [aR
s--H—— -a a—H——a — %—I
A cf A C a a
Type A Type BR Type CR

Figure 12. Schematic of blocks composed to form larger blocks. Solid
squares represent original roots; open squares represent
spares. Superscript "F" means reflect with respect to hor-
izontal axis (flip); superscript "R" means reflect with respect
Lo vertical axis (reverse).

Notice. thet as part of the inductive hypothesis, we must argue that
the perimeter svwitches are available for routing the new edges. This is
obviously true if they are aveilable in the basis blocks. The smallest
blocks trat we have been eble to find with this propcrty are 4x4 blocks

ambediiag 15 node binary trees. These are illustrated in Figure 13.

The coxnceptnal algorith.m is clear. Refer to Figure 14. Begin with an
objective block type, ¢ g., Type B, and a latlice of size 2*x2* PL's. Recur-
sively cinbed the four subirces in lultices of size 2%-'x2¢-! such that the
proper block types are selected. In the basis cases (22x2?%), use an explicit
embedding. Nolice that the results may require reflection. Connect the
threce spares by appropriate switch settings. This latter operation is
always possible based on an inductive argument that depends upon two

[acls:
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{. 1o 3
©c 000 E
L .. o0
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P ]
d Figure 13. Basis blocks for planar binary tree embedding. }
(a) After the basis connection, all spares have their origin as Type C
basis block elements, and
E : (b) None of the switches surrounding a Type C basis block spare is
o used and so there are three directions of access. :
; This guarantees that the three data paths can always be assigned. The
| detailed program is omitted.

Clearly, we have achieved our goal of complete PE usage of this sim-
ple lattice. If the available lattice were more complex, e.g., had degree 8
or mulliple corridors, then the same embedding would work and some

minor optimizations would be possible. Ly

Lacing a Corridor Jg
Although we could present many more of our embeddings - a broad-

cast trce, a double tree, leaves on a line trce, shuffle exchange, etc. - il is

perhaps more instructive to illustrate a technique that gives unexpected

ig0

power for programm-ng complex graphs. It is called "lacing a corridor"
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and it takes optimum advantage of a fixed architectural resource, the

curridor width.

Suppose one is embedding an interconneection pattern and must
t move a large numbyver of distinct data paths across a region of the lattice.
By definition, the corridor width, w, is the number of switches separating

adjacent PE's. Thus, if the degree d=4, then w distinct data paths can be

Uil ubds Lot s Ll

rouled between a pair of PE's. It would appear that for the degree d=8
laltice, w distinct data paths are still the maximum that can be routed
down a corridor. But we can do much better.

The idea behind lacing is to begin with straight data paths down a
corridor and then to add zig-zag paths that exploit the higher degree and

Lthe crossover capability of the swilches. or example, Figure 15 1

O 0O 0OQC O O 0O O
o[Jo oo of]o

o [Jo o o o{]o

O O O O O O O ©
Figure 15. Lacing ten distinct data paths through four switches.

shows a w=4, d=8, ¢=0 laltice in which ten distinel data palhs have been
squecezed through the four available switches! This is the maximum possi-
ble since the bisection width of this portion of the lattice is ten. (Bisec- —
tion width is a concept introduced by Thompson [11] referring to the

minimuin humber of wires cut by a line bisecting a VLSI layout.) If we

L. .
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expand our scope somewhat and inciude the switches that bound the cor-
ridor, then we can increase the number of distinct paths by two. (We will

ignore this optimization in the lacing definition below.)

Latliice, w>1, d=8, ¢ =3.

The construction is limited to a region bounded by four PE's. The upper

left hand corner PE is L{r.s].
Settings for crossover level 1. [Horizontal Path]
() |<i<w and Osjsw+1 imply Lir+i s+j]=EW.
Settings for ¢rossover level 2. [Dotted Path]
(ii) 1sisw-1and 0Osjsw+1 and j is even imply L{r+i,s+j]=AF.
(iii) 1=isw -1 and 0<j<w+1 and j is odd imply L{r+i+1,5+j]=0M.
Settings for crossover level 3. [Dashed Path]
(iv) 1<isw-1 and O<j<w+1 and j is even imply L{r+i+1,s+j]=0M.
(v) 1=isw-1 and Osj<w+1 and j is odd imply L{r+i.s+j]=AF.

Notice that if the swilches had even higher crossover capability c=4,
which is the maximum for degree 8 swilches, then we could even route

vertical wires across the laces if they were needed.

Conclusions

We have introduced the CHiP architecture and argued that its provi-
sion for interconnection pattern programming alleviates many of the
difliculties encountered in parallel program development. This
simplification is achieved in lwo ways. Tirst, the rigidity ol a fixed inter-
connection structure is no longer an obstacle when one wanls Lo program

an algorithm that uses a different interconneclion pattern. And

3
i
g
i

ol .

ot s i




T

A AW'N'WH

secondly, there is a clean separation between routing the data and pro-

gramming the activity of the PE's.

Additionally we have demonstrated that interconnection program-
ming is an interesting and challenging activity. We wave shown that local-
ity an be increased by éareful study of the torus. We have shown that it is
possible to embed the complete binary tree to achieve essentially com-
plete PE utilization. The result involves an interesting assighment of

spare Pfi's. And we have shon thalt there are general techniques (e.g.,

corridor lacing) to be found.

Ackncwledgments

It is a pleasure to thank Ching C. Hsiao for his original use of lacing
and Paul McNabb for developing the software to produce these embed-
dings and for stimulating discussions of the binary tree embedding.
Thanks are due to Paul Morrissett for programming the torus and lacing

flgures and to Julie Hanover for excellent manuscript preparation.

T ORI OROCEESEE]
[1 SN0 00O UC
”ﬂ{ s L 1[" i 1y 0o 1()

S RO {i J: i

)
NI oo WAL S0 )
i -uunn I RN B
;n |{ . ’l II A, lI !

0L H i n )1 e
A a7 e J e
SpelaastCectlons
O if SN NEEE o

F SO ORI A
O 0 e e 707

)
1
)
f)
|
)
1]
i)

]

Compound octagon-square lattice
Chengtu, Szechwan, 1825 A.D.

ik j‘JMMMﬁ&i s

e L

ot e s

22 A LG, ik,

- RN




T R T

-25a

 References

[t] P. A Gilmore, K. E. Batcher, M. H. Davis, R. W. Lott and J. T. Burkley

Massively Parallel Processor
Technical Report GEKR-16684, Goodyear Aerospace Corporation, 3
July 1979. 3

[2] Sally A. Browning
The Tree Machine: A Highly Concurrent Programming Environment
Ph.D. Thesis, California Institute of Technology, January, 1980

[3] Bart Locanthi 1
The Homogeneous Machine '
Ph.D. Thesis, California Institute of Technology, 1980

[4] H. T. Kung and C. E. Leiserson ;
Systolic Arrays (for VLSI) }
Technical Report CS-79-103, Carnegie-Mellon University, December 3

1979 (also in [10])

[6] Jon L. Bentley and H. T. Kung
A Tree Machine for Searching Problems
In Proceedings of the 8th International Conference on Parallel
Processing, IEEE, pp. 257-2668, 1979 -

[6] J. T. Schwartz
Uliracomputers
T'ransactions on Programming Languages and Systems, ACM, 1980

oateed . e

[?] F. P. Preparata and Jean Vuillemin
The Cube connected cycles: A Versatile Network for Parallel
Computation
In Proceedings of the 20th Annual Symposium on the Foundations
of Computer Science, IEEE October, 1979

L et

[8] D. B. Gannon and Lawrence Snyder P 3
Linear Recurrence Algorithms for VLSI: The Configurable, Highly F
Parallel Approach |

In Proceedings of the 10th International Conference on Parallel |
Processing, IEEE, 1981 !

[9] L. Snyder K
Overview of the CHiP Computer
In VLSI 81, Academic Press, 1981

[10] Carver Mead and Lynn Conway
Iniroduction to VLSI Systems
Addison Wesley, 1980

[11]C. D. Thompson
A Complexity Theory for VLSI
Ph.D. Thesis Carnegie-Mellon Uni'/2rsity, 1880

ol vt VN )L, e 2

. .
| MO iy 5 . a1




