TR T Y

~ v

T T

AMAIC918S3

V4

Natural Language Access

to Databases:

Interpreting Update Requests!

Jim Davidson and 8. Jerrold Kaplan
Computer Scictice Department
Stanford University
Stanford, California 94305

Abstract

For natural language databasc systems to operate cffectively in practical domains, they must have
the capabilities required by rcal applications. Onc such capability is understanding and
performing update requests. The processing of natural language updates raiscs problems not
eacountered in the processing of querics. These difficultics stem from the fact that the user will
naturally phrase requests with respect to his conception of the domain, which may be a

considerable simplification of the actual undcrlying databasc structurc. Updates which are .

meaningful and unambiguous from the user’s standpoint may not translatc into rcasonable
changes to the underlying database. Update requcsts may be inmpossible (cannot be performed in
any way), ambiguous (can be performed in scveral ways), or pathological (can be perfurined only
in ways which cause undesirable side effects).

Drawing on work in Linguistics and Philosophy of Language, we have developed a domain-
transparent approach to identifying and performing “reasonable” changes in response to a user’s
update request, using only knowledge sources typically present in cxisting database systems. A
simple notion of "user model” and explanation with respect to the user’s state of knowledge are
central to the design. This paper describes a system PIQUE (Program for Interpretation of

Query/Update in English), which implements this approach.

ELECTE
JAN4 1982

Avme

B
30 SEP7EMBER /9 8/

DTiC FILE copy

1'I‘his work is part of the Knowledge Base Management Systems project (DARPA contract” # N00039-80-G-0132), which is
investigating the application of artificial intelligence techniques to issucs in the field of database management. ‘The views and conclusions
contained in_this document are those of the authors and should not be interpreted as representative of the official policies, cither

expressed or implied, of DARPA or the U.S. Government,

DISTRIBUTION STATEMENT A | R

Approved for public releaset

/ / B

-

Distribution Unlimited

8 prdiin

81 11 12 o071

A e ] ARt 0 DA e Lt

P

™

bt e b S dalials L

e L sir a1 B L e R 0

b




T

1. Introduction

Natural language is a desirable access mechanisin for database systems because it frees the user from the task 3

of understanding the details of the database structure. A number of systems have provided natural language
query capabilitics (c.g., (Sacerdoti, 1977)); however, few of these allow the user to perform updates (changes)
to the databasc using natural language. (For an cxample of onc that docs allow simple updates, sec (Henisz-
Dostert & Thompson, 1974).)

The provision of update capabilitics introduces problems not seen in handling querics. These problems arise

because the user is phrasing his rcquests with respect to his view of the database, which may be a

simplification or transformation of the actual database structurec. While a well formed query expressed in
terms of the user's view of the databasc will always result in the same answer, regardless of how the query may
i be mapped into the actual database structure for exccution, this is not the case for an update expressed on a

view, , :

S R aaliiedl, ot catm B abio s o il sall

o

. Since updates request modification of the content of the database, different mappings of the update rcqﬁcst
into tl.» actual database structurc may result in different effects. Some of these effects méy be undesirable or
unanticipated. Specifically, the user may make requests that arc impossible (cannot be performed in anyn way,
due to hidden constraints on the databasc), ambiguous (can be performed in several ways), or pathological :
(can be performed only in ways which cause unanticipated side effects). While human speakers would ] !
intuitively reject these unusual readings, a computer program may be unable to distinguish them from more

appropriate ones.

For example, a simple request to "Change the tcacher of CS345 from Smith to Jones" might be carried out by

altering the number of a course that Jones alrcady teaches to be CS345, by changing Smith’s name to be

Jones, or by modifying a "tcaches” link in the database. While all of these may literally carry out the update, ]

they may implicitly causc unanticipated changes such as altering Jones’ salary to be Smith’s.

Our approach to this problem is to treat updates as requesting that the databasc be put into a self-consistent

state in which the request is satisficd; the problem is then to sclect the most desirable of (potentially) several

such states. The most desirable such state is considered to be the "ncarest” one to the current state (in thic

scnse that it involves the least disruption). A set of domain-independent heuristics is used to rank the

g gty e e P R O TR SO

. TR

potential changes along these dimensions.

'This process may be guided by various linguistic considerations, such as the difference between "transparent”

and "opaque” rcadings of the user’s tequest, the distinction between the "sense” and “reference” of referring

g T g

expressions, and the interpretation of counterfactual conditionals.




This paper describes a system PIQUIE which implements this approach by retaining a model of the user’s ,
view, and considering possible methods of pctforming the update in light of the model. Given an update 1
request, the system gencrates *he sct of possible changes to the underlying database that will literally fulfill the
request. These candidate changes arc then evaluated as to their effects on the user’s view, the underlying

database, and the database constraints. If possible, an appropriate one is sclected; otherwise an informative
- , message is presented to the user.
2. The Problem

As a hypothetical examplc of the problems which can arise during updates, consider a relational database of

employecs, salaries, departments, and managers, consisting of two relations: ;

. EMP SAL  DEPT DEPT MGR

‘ ———————————————————————————————

i Adams 30 Invntry Sales Jones
: White 35 Mkting Mkting Baker
i Brown 25 Sales Invntry Fisher

Smith 30 Sales
Pullum 25 Sales

and the following dialogue (comments are enclosed in [brackets]):

4 Q1l: List the employees and their managers. ' g

R1: EMP MGR :

-y - - -

Smith Jones
Pullum Jones

Q2: Change Brown's manager from Jones to Baker. 1

A A, i
RS Vet SHP LR P

b
3 R2: Done.
[ ; [The system has (apparently) fulfilled the user's requcst]
' Q3: What is the average salary paid to Jones' employees? ;
2 . i
: j R3: 30. Accsssion For

- ‘ Q4: List Jones's employees. ' NTIS GRASl E

DTIC TAB 0
‘ R4: NIL Unannounced (]

Jugtificgt
[From these responses, the user realizes that somethi «g has gone wrong.]

B
Q6: List the employees and their managers. VQI?_*;!#DU_’“OI!/

‘_'vl‘«»yailabiuty Codea

" |Avail and/or’
Dist Special

AL

T
LI L




i

Rb: EMP MGR

Adams Fisher
White Baker
Brown Baker
Smith Baker
Pullum Baker

[The user sces that the system has made two unanticipated changes--changing Smith’s and Pullum’s

managers--in addition to the one that was requested.]

From the user’s point of view, his request is mcaningful and unambiguous. He sces a set of values, and asks
to change one of them. (He might not even know that employces and managers are linked via their

departments.)

The problem lics in the fact that his update request can be performed in two ways:
(a) by making the manager of the Sales department be Baker.

(b) by moving Brown from the Sales department to the Marketing department;
Both of thesc literally fulfill the request. *The system, lacking any means for deciding between these, has
apparently chosen (a), making Baker the manager of the Sales department, with the unanticipated effect that

two other employecs have had their managers changed.

3. A More Formal Characterization

This problem can be explained somewhat more formally. Given a databasc structure, define the user’s view
Junction F as the transformation that is applicd to the database to yicld the conceptualization with which the
user works. For instance, in the example in scction (2), the view function, as defined by Ql, is a
transformation consisting of a join and a projection, which is applied to the original two files to yicld a single
new file with only two attributes. Define the user’s view as the result of applying the view function to a given

stzte of the database; in the example, this produccs a file with five entries, as shown in R1.

A user’s update request (call it u) is a request to update the view. In the example, the request is stated in Q2.
Since the view is only “virtual’ {(derived from the data), we cannot modify it dircctly, but must make changes
to the underlying database. Call the result of translating the update request to the database level, T(u). The
object is to find the change to the underlying database which comes closest to having the desired cffect on the
user’s view. That is, we want the translation 'T(u) which produces a reviscd database such that, when the view

function is applicd to that databasc, the result is the view requested by the user.

In graphical terms:

Anasblabiiiigy Siuci e Lt Lol

Lk ] et ot

J TR TR N N T OUPDI I SUPE




b ——— -

S T
0 e

B e

T

D represents the initial state of the database, D' the state that results after applying the translated
update T(u);

u ?
F(D) -==-==-- > u(F(D)) = F(D')
)

F

|
D —mmemmmmmmec—m—- >D' = }(u)(D)

In mathematical terms, the mapping I from the underlying database D to the user’s view F(D) induces a
homomorphism. Looscly defined, a homomorphism is a function that preserves the structure of its arguments
under given operations. In this case, the operations arc changes to the underlying database, and corresponding
changes to the user's view. The difficulties with updates expressed on the view (rather than the underlying

databasc) arise from the characteristics of the inverse of this homomorphism: clements in the user’s view

(states of the "conceptual™ database) map under F into a sct of states of the underlying database. This set

may be empty (if the view urdate cannot be accomplished in any way), or have many clements (in the case of
a request which is ambiguous wih respect to D). If the mapping F is invertible, i.e. 1L is also a function, then
an isomorphism is induced. In this case, cach requested update will have a single, unambiguous interpretation

in the underlying database, and the difficultics addessed here do not arisc. However, this is not in gencral the
case. ’

The ideal update translation will produce a state of the database which, when transformed by the user’s view
function, exactly yiclds the revised state that he requested. In actuality, our implementation will consider
changes to the databasc that literally fulfill the user’s request but may not yicld preciscly the intended view

w(F(D)). In the example, there were two translations of the user's request; update (b) yiclded the cxact view,
update (a) a different one,

. ..‘.;‘-,“;a*“?.'zr.g?,,-g.w;‘;wv_ o

St it

BV RTRRAR L PHP AC RSP e

b




4. Description of the PIQUE System

We have implemented a system (P7QUEF) that addresses this problem, by processing update requests in four 1
phases.

(1) decide what the user’s curvent view of the database is;

{ The system maintains an ongoing model of the user's conception of the database, derived from the dialogue.

(2) usc the view to gencratc a sct of candidate updates T(u), which perform the update;

A T

i st b L b L it i e

When an update comes in, it is assumed to be an update to the user’s view. That is, the user requests changes

T

with respect to his conceptualization of the databasc. The candidate translations are updates to the database,
cach of which literally accomplishes the user’s request,

i

PPV e N

(3) use a set of ordering heuristics to rank thesc candidates, in terms of how accurately they fulfill the user’s
request;

- T e Y 4
P

et

These candidates are evaluated according to the ordering heuristics, to measure how much impact they have i
on the user’s view. For example, a candidate that causes side cffects (unrequested changes to the user’s view)

is ranked lower than one that does not cause such side cffects. “"Pragmatic” information contained in the |
databasc schema is also used in making the decision,

. T

(4) take action, depending on the number of candidates and their ranking;

When the candidates have been ranked, action is taken. This might coasist of performing one of the

candidatcs, offering a choice to the user, or explaining why the update cannot be performed at all,

TR I SR WS To o DR

These phases are considered in turn,

4.1. Inferring the user’s view ;

The uscr of a natural language databasc system typically has a conception of the database which is a subset of
the relations, attributes, connections, and records actually present. In order to interpret updates correctly, the

system must take into account the uscr’s current conception of the database. Our approach is to build a user

que:ics and updates.

s ditattit (s LR D e e o ko (Sl . "
. e R . 1 ! N b Bria bl B

‘ model based on the concepts of which the user has indicated an awareness--thosc which have occurred in his
i
t

ARl




' 6 1]
This is implemented by making use of the connection graphs corresponding to the user’s inputs. A system
E which processes natural language inputs must find paths through the database, defined by operations suc' as
{ Joins, which connect the concepts mentioned in the input, (The LADDER system, for example provides this ;
L ‘ scrvice with the help of navigation information stored in a separate structural schema,) ‘This sct of paths is
:, called the connection graph, i
:
: The importance of this work is that the connection graph provides a good model for the structure of the user's A
1 view. That is, cach query implicitly induces a view of the database which the user holds, at least until the next ;

v

input. When an update is reccived, it can be checked for compatibility with the current view, to scc if it could

| TR

et
ar it Siada ot 1

be an attempt to update that view. This compatibility test basically checks to sce whether the concepts and
relationships mentioned in the update are completely contained in the view. (1The actual matching criterion is
morc complicated than simple inclusion, but this will scrve for explanatory purposcs.) If the update and view
arc compatible, the user is assumed to be continuing an interaction with that view,

L et Bite LS E B b La oy ol
[ OPy P .

Consider the example of section 2. The user poses a query, which mentions employces and their mzinagcrs. :

v ey

- He then makes an update requcest of a similar form. Because the update request is compatible with the view
— induced by the previous query, the uscr is assumed to be referring to that view, and to be asking to change it.
Note that, although departments arc nceded in the connection graph, they are not mentioned by the user,
therefore do not appear in the view.

b o a5

Quecrics necd not always define new views. Under certain circumstances, a query may be a refinement or
expansion of a previous view. Consider the sequence "List all the ships in the Mediterrancan.,” "Who are
their captains?”. The sccond query merely expands the view defined by the first, by introducing a new
attribute.

Vicws arc stacked as the dialoguc progresses, and updates can be checked for compatibility with all previous

ISVRPTRTORNRT W F Y TR

views (most recent first). This cnables the system to correctly handle a situation in which a user returns to a |
previous view for further work.

Note that an update also induces a connection graph, just as a query docs. [f an update request is not 3
compatible with any of the views defined previously, the conncction graph for the update itself can be used to
define the view. This occurs if the user is making an update unrelated to any of the information that he has
cxamined. (For example, if he has a hardcopy, or thinks he knows the contents of the database.) In this case,
the view must be inferred from the update alone. Thus, to return to the example of section 2, "Change

Brown's manager from Jones to Baker” might be meaningtul even if the user has not previously asked about

these things.




T T

ni P TR T T

"This strategy is conscrvative, in that the only concepts that will appear in views are those of which the user has
indicated at least some awarcness. As a result, the system will never assume a view that is more complex than
the one actually held by the user, and thus will never mislcad him by introducing a new concept during a
tresponse or explanation. The errors which occur will consist of undcerestimating the uscr's familiarity with the

database; the system will tend to be pedantic, rather than inysterious.

Only minimal cost is required to identify and record the user's view, since navigational work to build the
connection graph is required anyway. The testing of views and updates for compatibility is also a simple

opcration,

This strategy also provides a notion of focus: as the user discusses different parts of the database, the view
changes automatically. This is important, because the notion of side effect changes as the user’s focus changes.

Changes occurring to previous views are less important than changes occurring to the current view,

The concept of user modelling is well known in artificial intelligence (Mann ct al,, 1977). A common approach
is to rccord an explicit list of the things the user knows (Appelt, 1980; Cohen, 1978). Our modecl, however, is
much simpler. Given the role of the view information in the inferencing heuristics, this model is adequate for

Our purposes.

4.2. Generating Candidate Updates

Onc of the crucial steps of the algorithm described above is the generation of candidate updates that can then
be cvaluated for plausibility. In most cascs, an infinite number of changes to the database are possible that
would litcrally carry out the request (mainly by creating and inserting "dummy" values and links). Howcver,
this process can be simplified by gencrating only candidate updates that can be directly derived from the
uscr’s phrasing of the request. This limitation is justificd by obscrving that most rcasonable updates

correspond to different readings of expressions in referentially opaque contexts.

A referentially opaque context is onc in which two expressions that refer to the same real world concept
cannot 2 interchanged in the context without changing the meaning of the utterance {Quine, 1971]. Natural

language databasc updates often contain opaque contexts.

For example, consider that a particular individual (in a suitable database) may be referred to as "Dr. Smith”,
“the instructor of CS100", "the youngest assistant professor”, or "the occupant of Rm, 424", While cach of
these expressions may identify the same database record (i.c. they have the same extension), they suggest

different methods for locating that record (their intensions differ). In the context of a database query, where

bttt Yot o T, et

Siofate e ol i tanle ds fa

ottt

b s ik i il




Loyt n ol

il

e i

T A o T

the goal is to unambiguously specify the response sct (extension), the method by which they arc accessed (the
intcnsion) does not normally affect the response (for a counterexample, however, sce [Nash-Webber, 1976)).
Updates, on the other hand, arc often sensitive to the substitution of extensionally equivalent referring
cxpressions. "Change the instructor of CS100 to Dr. Jones." may not be equivalent to "Change the youngest
assistant professor to Dr, Jones.,” or "Change Dr. Smith to Dr. Jones.” Fach of these may imply different
updates to the underlying database,

For operating with an expression in an opaque context, thercfore, we must consider the sense of the
expression, in addition to its referent (Frege, 1952). In a databasc system, this sense is embodicd in the
procedure used to cvaluate the referring expression; the referent is the cntity obtained via this evaluation. A
request for a change to a referring expression is thus not specifically a request to perform a substitution on the
referent of the expression, but rather a request to change the database so that the sense of the expressionn 4
has a new rcferent. That is, after the update, evaluating the same procedure should yield the new (requested)

result.

For cxample, consider a databasc of ships, ports, and docks, where ships arc associated with docks, and docks

with ports. Assume that there is currently a ship named Totor in dock 12 in Naples (and no other ship in
Naples), and consider the folloving updates:
Change Totor to Pequod.

Change the ship in dock 12 to Pequod.
Change the ship in Naples to Pequod.

The referring cxpressions (italicized) have the same referent in all three cases, but the senscs differ. The
cxpression "Totor” is resolved via 1 lookup in the ships relation: "the ship in dock 12" requires a join between

the ships cad docks relations; "the ship in Naples" requires a join between all three relations,

Consider the ways of performing cach request, as indicated by the sensc of the referring expression, The first
version can be implemented only by making a direct substitution on the ships relation, corresponding to
renaming the ship. 'The second admits this possibility, but also the possibility of moving a new ship into the
dock (if there is already a ship named Pequod). The third allows the above two, plus the possibility of moving
a different dock into Naples (if there is a dock somewhere else with Pequod in it). (This will later be ruled out

for other reasons, as cxplained in the next scction, but cannot be excluded on purely linguistic grounds.)

Thus, the particular referring expression sclected by the user motivates a set of possible actions that may be

appropriately taken, but doces not directly indicate which is intended or preferred.

i

T




¥ T

T A ¥ T T AR A O e

e g T e T TR L ST Gl o

This characteristic of natural language updates suggests that the gencration of candidate updates can be
performed as a language driven inference [Kaplan, 1978] without scverely limiting the class of updates to be
examined. “Language driven inference” is a style of natural language processing in which the inferencing
process is driven (and hence limited) by the phrasing of the user's request.

In this instance, the candidate updates are gencrated by cxamining the referring expression presented in the
update request. The procedure implicd by this expression foliows an "access path” through the database
structure. The candidate updates computed by the program consist of changing links or pointers along that
path, or substituting valucs in the final record(s) identificd.

For example, consider the structure of the "ships" databasc:

--------- (8) -=mss-sos (b)  meemeoes

N L e - e - - - - e -

The candidate translations for the third request (changing "the ship in Naples™) correspond to the following
changes to the database:

(1) making a change to the SHIPS file (i.c., renaming the ship);
(2) changing link (b) (moving a new ship into the dock);
(3) changing link (a) (moving a ncw dock into the port).

If the expression "the ship in dock 12" were ased, only options 1 and 2 would be generated; similarly, if
"Totor" were used, only option 1 would be generated.

4.3. The selection of appropriate updates

At first examination, it would scem to be necessary to incorporate a semantic model of the domain to select an
appropriate update from the candidate updates. While this approach would surely be effective, the overhead
required to cncode, store, and process this knowledge for cach individual database may be prohibitive in
practical applications. In general, the required information might not be available. What is needed is a

general sct of heuristics that will select an appropriatc update in a rcasonable majority of cases, without
spccific knowledge of the domain,

The heuristics that are applicd to rank the candidate updates are based on the idea that the most appropriate
one is likely to cause the minimum disruption to the user’s conception of the database, This concept is
developed formally in the work of Tewis, presented in his book Counterfactuals {1.cwis, 1973). In this work,

Lewis cxamines the meaning and formal representation of such statements as "If kangaroos had no tails, they

o v et s s ol e i st il e

b Samtimiania e

o bt

PRI

ol o ik




S O .

BT

TR R T
o

QT

10

would topple over.” (P.8) He argues that to cvaluate the corrcctness of this statement (and similar
counterfactual conditionals) it is nccessary to construct in onc's mind the possible world minimally different
froan the real woild that could potentially contain the conditional (the "nearcst” consistent world), He points
out that this hypothetical world does not differ only in that kangaroos don't have tails, but also reflects other
changes required to make that world plausible. Thus he rejects the idea that in the hypothetical world
kangaroos might usc crutches (as not being minimally different), or that they might lcave the same tracks is
the sand (as being inconsistent).

The application of this work to processing natural language database updates is to regard cach transaction as
presenting a “counterfactual” state of the world, and request that the "nearest” rcasonable world in which the
ccunterfactual is true be brought about, For example, the request "Change the teacher of CS345 from Smith
to Joncs." might correspond to the counterfactual "If Jones taught CS345 instcad of Smith, how would the
database be different?” along with a speech act requesting that the database be put in this new state,

To seleet this nearest world, three sources of information arc used:

(a) the side effects entailed by the different candidates
(b) pragmatic information contained ir the database schema
(c) semantic constraints atiached to the database schema

(a) Side effects

As illustrated in the example of section 2, updates may have cffects on the user’s view and the databasc

beyond those literally requested. Using the rationale of "minimal disruption”, updates which do not have
side effects are preferable to those that do. For cach candidate, we consider the number and type of side
cffects caused, and rank the candidates accordingly. [n data processing terms, the update with the fewest side
cffects on the user’s data sub-model is sclected as the most appropriate.

Considering the example from section 2, note that the two condidates have different cffects on the user’s view.
The one which was actually performed--candidate (a), changing the name of the manager of the Sales
department--also changes two other valucs in the view. The other candidate--(b), moving Brown to the
Marketing department--docs not have these effects.  Therefore, the latter more cxactly fulfills the user’s
request, and would be preferred.

The side effects that actually occur for a particular candidate are in a sensc accidental, in that they depend on
the particular state of the database. For cxample, the number of side effects caused by changing the manager

of the Sales department depends upon how many other employees happen to work in that department. To

it o bl

© bk et e

JE R S P T PP PO

e ki sl s a e

st MO o o Ml S s ko

i MM s e e s 0012




P e I s

— s

11

avoid this artificial property of contingency, a more stable approach is to consider what side effects could
result from performing the given candidate in any state of the database. 'This sct of putential side cffects can
be determined by analyzing the restrictions in the database schema concerning the cardinality and
dependency of reiationships between entities.  The significance of this concept is that the constraints on
cardinality and dependency may be strong cnough to ensure that the sct of potential side ¢ffects (and hence
the sct of actual oncs) is empty--indicating that the given candidate docs not have any side effects in the
current state, and morce importantly, could not have side cffects in any state.

Consider once again the example of scction 2. Of the two updates, (a) causcs actual side effects, (b) doosn't. A
stronger rcason for preferring (b) is that it cannot cause side cffects, regardless of the state of the database. To
sce this, note that the cardinality of the relationship between employees and departments is typically N:1--
each cmployee works for only one department. Thus, an employee can have orly onc manager, and moving
the employee to a new departmieint cannot cause any changes to this aspect of the view beyond the one

requested. The potential side cffects of (a) consist of changes to the managers of employees other than

Brown; the two actual side effects are an cxamplie of this.

Simplec graph algorithms arc applied to the databasc schema to determine which candidates have no potential
side cffects, and for the others, what side cffects they may have. These can be computed more easily than the
actua' side cffects, which must be derived "extensionally™ by observing the cffects of candidates on the view.

In our ranking of candidates for appropriateness, only potential side effects are considered.  Explanations,
when needed, are phrascd with respect to actual side cffects, if any cxist, clse potential ones.

(b) Pragmatic Infonnation
There may be information in the databasc schema to help the sclection among candidate updaics.

For cxample, certain attributes and links in the schema may be designated at design time as satic, indicating
that they rarcly change, or dynamic, indicating that they frequently change. This information is used during

implementation, to sclect methods for accessing the information. It may also be of usec when ranking
candidatc updates.

Considering the last example from scction 4.2, we notc that one of the candidates changges the ship by moving
a new dock into Naples. This is consistent within the database, and fulfills the update request; but, the
databasc schema would indicate that such a change is unlikely, and this candidate’s desircability would be

downgraded. Similarly, there may be general rules that the names of things change less often than other

s

s

RDRT OV R GSESPRIR

el

B ot et

RPRPURWII VL P PU RV PRI FOR RIS P

it ien. | cmms un .




L .

S
pors

£

i

A 5T T ey Ty T
v 5 -
G A P U VL SO

12

attributes. -

Note that this information is merely heuristic; if the only candidate is onc that involves such a change, it will

be performed.
(¢) Semantic Constraints

The schema will often contain semantic constraints that restrict the aliowable states of the database. Examples
of these are fiunctional dependencies (e.g., "Two employees cannot have the same employce number."), range
constraints ("No employee can make more than $45K."), and existence constraints ("If an employee works in

a particular department, there must be a record for that department in the departments relation.”).

These figure in the process of update intcrpretation, to rule out candidates which are otherwise acceptable. In
the example of section 4.2, if there is already a ship named Pequod in the database, the renaming change

could cause a name conflict, resulting in the rejection of this candidate.

Whercas the pragmatic information discussed above was heuristic, the scmantic constraints are absolute.
Candidates which violate scmantic constraints will never be performed. However, it is still advantageous to
generate and consider these candidates, since it is often possible to formulate a meaningful explanai.on for the

user about the nonfulfillment of the request.

Our current ordering heuristics incorporate thesc sources of information. In increasing order of preference,

they are:
-updates which violate semantic constraints associaicd with the database;
-updates which violate pragmeatic guidelines;
-updates with side cffects on the user’s current view;

-updates with no side effects;

Whilc this approach can certainly fail in cascs where complex domain scmantics rule out the "simplest”
change, in the majority of cases it is sufficient to select a rcasonable update from among the various

possibilitics.

Consider again Lewis’ "Counierfactual” framework. We sce that the restrictions on candidate generation
discussed in scction 4.2 define the accessibility of different states of the world (databasc); the semantic

constraints define consistency, pragmatic constraints and side cffect information are measurcs of distance

it e

Py

kel

Al L b ot

paies hapeeit

PPyt e KITY e 3l

T




Sk

[ —— - .
RS ki e S
JNEDY SIS AP NS

T

between states of the database,

4.4, Action Taken

If one candidate is better than the others, it is performed. If there are a number of candidates whick cannot
be distinguished by the heuristic ranking, the user is told about them, and offered a choice. If no candidate is

admissible (because, for instance, all candidates violate semantic constraints on the database), the user is told
of this.

In a number of cases, circumstances must be explained to the user. For instance, if the candidate actually
performed has side éffects, the user must be notified of this. If a semantic constraint is violated, the user must
be told how.

Our approach to explanation assumcs that the uscr is familiar only with his own view of the da.abase, and so
all explanations must be phrased with respect to this understanding (following (McKeown, 1979)). Therefore,
options are presented in terms of their "cffects” on the user’s view (rather than the actual changes proposed),
and violations of semantic constraints are discussed with respect to attributes that the user has already seen. In

this way, we cnsure that explanations arc always comprehensible.

P A% N P . 1

e G et ol i

R

sl ot L b a2

ki L s

\ el

bl cs, bostiatd 31w




14

5. Examples of the system in operation

PIQUE runs in INTERLISP (Tcitelman, 1978), on the PDP-10 at SRI, as part of the KBMS system
(Wiederhold, 1980). The natural language parser is written in L/FER, a semantic grammar system designed
by Gary Hendrix (Hendrix, 1977). The database access is done using SODA, a relational calculus database
query language developed by Bob Moore (Moore, 1979). The SODA interpreter used was written by Bil
Lewis, and has been modified and extended by Jim Davidson to handle updates.

Note that some of the information printcd by the current system is presented rﬁcrcly for pedagogical
purposes, to show the intermediate stages of the computation. In the course of a "real'.' run, such information
(shown indented in the transcripts below) would be suppressed. Additional commentary is enclosed in
brackets("[]"). The user’s input is preceded by >. '

Assume a sample database containing the following information:

_ Individual employees, with salary, department, and cmployee number (cmployee number and name are

assumed to be unique):

EMP SAL DEPT EMP EMPNO
Adams 30 Invntry Adams 103
White 35 Mkting White 431
Brown 25 Sales Brown 654
Smith 30 Sales Smith 222
Pullum 25 Sales Pultum 181

Departments have managers and location, and are grouped into divisions (department names are assumed to
be unique):

DEPT MGR LOC DIV
Sales Jones SF I
Mkting Baker LA II
Invntry Fisher SD I
Advert Larkin NY II

Divisions are assigned vice presidents;

DIV vp

I Lasker
II Kline

II Hannan

III Burgess

kO i 1 Sl




SRR R

15

1. Example of an update performed using side cftect heuristics

Consider once again the cxample shown in section 1, this time with the real system:

>(LIST

- -

SMITH
PULLUM

THE EMPLOYEES AND THEIR MANAGERS)

FISHER
BAKER
JONES
JONES
JONES

[Next, the user enters a request to update his view.]

Enter

next command:

>(CHANGE BROWN'S MANAGER FROM JONES TO BAKER)

[The program now generates the candidate updates. As indicated, there are two of these.]

[Note that the update of changing the DEPT attribute of the tuple (MKTING BAKER) to Sales would make
Baker onc of the managers of Brown. But, it would also leave Jones as a manager of Brown, and thus does not

fulfill the user’s request, cven literally. For this rcason, it has not cven been considered by the system.]

[These candidates arc then cvaluated, in terms of the accuracy with whichA they fulfill the user’s request. In

the absence of any strong preference for cither ong, the decision is made on the basis of potential side cffects

The possible ways of performing the update:

1. In the relation DMLD change the MGR attr of the tuple
SALES  JONES SF I

to the value BAKER

2. In the relation ESD change the DEPT attr of the tuple
EMP SAL DEPT

P e L T T e

to the value MKTING

to the user’s view.]

These translations have the following effects:

1. Effects are:
In the view: potentially changing the MGR of other EMPS.

T SRR ARG CE T b en ealiTns o T TR o

R e Aasde ] et s

R W O P

kb e sl s

i M M e e dad




T R T T

TN TR g T e P e

[ERETSE T Y S

g

aah o i T e

16

2. Effects are:
None,

[The program concludes that update (2) is superior to (1), since (1) has the possibility of changing the manager
of other employecs. (In actuality, (1) would change the managets of both Smith and Pullum.)]

Desired translation is: 2,

Revised view is:

EMP MGR
ADAMS FISHER
WHITE BAKER
BROWN BAKER
SMITH JONES

PULLUM JONES

[The result accords with the user’s wishes; only the requested change has been made to his view.]
2. Examplc of an update performed using pragmatic information

Consider the same database, with a slightly differcnt dialogue:

>(WHAT ARE THE LOCATIONS OF THE EMPLOYEES)

EMP LOC
ADAMS SD
WHITE LA
BROWN SF
SMITH SF
PULLUM SF

Enter next command:
>(MOVE ADAMS FROM SD TO LA)

[The system in.crprets this as a request to change Adams’ location.]

The possible ways of performing the update:

1. In the relation DMLD change the LOC attr of the tuple

P L L T R Y

INVNTRY FISHER SD I
to the value LA

2, In the relation ESD change the DEPT attr of the tuple

ol

it 3t k1130

a1 by o b | e et

it kb

W kb b

e e}

PETPRTRR IR~ T "

bt onindall bl i




—~

17

- - - —— - " . . @ as e e

ADAMS 30 INVNTRY.
to the value MKTING

[Two candidates are identified, corresponding to (1) physically moving the department to a different location,
or (2) reassigning the employee.]

[Now, the candidates are evaluated.)

These translations have the following side effects on the view:

1. Effacts are:
Violation of pragmatic constraints,

2. Effects are:
None.

[The "location" attribute of the IDMDI. relation, representing the location of the department, is marked in the

database schema as "static", indicating that it rarely changes. Thus, update (1) is unlikely. The system detects

this. Note that update (1) also has potential side effects on the user’s view, but the violation of the pragmatic

constraint is a stronger rcason for rejection.]

Desired translation is: 2.

Revised view is:

EMP LOC
ADAMS LA
WHITE LA
BROWN SF
SMITH SF
PULLUM SF

[Once again, the uscr’s request has been fulfilled cxactly.}

3. Examplc of a requcst blocked by a semantic constraint:

Assume a semantic constraint--a functional dependency stating that cach employee number may be assigned

to only one employee.

>(LIST THE NAMES AND EMPLOYEE NUMBERS FOR ALL EMPLOYEES IN THE
SALES DEPARTMENT)

EMP EMPNO




18

Ei
L.

BROWN 554 J
SMITH 222 ,
PULLUM 181
%{“ >(CHANGE SMITH'S EMPLOYEE NUMBER TO 103) :
E - 3
% [The program generates the ways of performing the update. There is only onc of these.] i
The possible ways of performing the update: 7 3
1. In the relation EN change tha EMPNO attr of the tuple 3
EMP EMPNO i
SMITH 222 3
s to the value 103. i
P i
- [The effects engendcered by this candidate are now listed; the candidate would violate a semantic databasc i
¥ constraint.]
. | 1
’ § These translations have the following effects:
‘ 1. Effects are:
Violation of semantic constraints. %

i
t [The system now tells the user what has happened, cxplaining why the update couldn’t be performed, and i
i how the scmantic constraint would be violated.] j
N : 1
; i This update could nct be performed, because of semantic constraints: ]

The EMPNO value of 103 has already been assigned to the tuple
EmMpP EMPNO

- e e wmem = . e

which has the DEPT value of INVNTRY.
This update would violate the functional dependency EMPNO -> EMP.

enthe vl el o et A

[Note that, without the DE?1 value printed 6ut, the user may not rcalize why he cannot sec the (ADAMS
103) tuple. I'he cxplanation is thus phrased with respect to the user view.] !

4, Example of a genuincly ambiguous update.

Now, a dialogue concerning a different part of the database:

>(WHICH VP'S ARE IN CHARGE OF WHICH DEPARTMENTS?)

-y - .

LASKER SALES




Y ey

T T T

19

LASKER INVNTRY
KLINE  MKTING
KLINE  ADVERT
HANNAN MKTING
HANNAN  ADVERT

Enter next command:
>(REPLACE LASKER WITH KLINE AS VP IN CHARGE OF THE SALES DEPT)
[The system now gencrates the list of candidate updates. 'There are two of these.)

The possible ways cof performing the update:

1. In the relation DV change the VP attr of the tuple

R L L L L T T R

I LASKER

to the value KLINE
2. In the relation DMLD change the DIV attr of the tuple

DEPT MGR LOC DIv

SALES  JONES  SF I

to the value II
[Again, the cffects of cach on the user’s view arc computed.)

These translations have the following effects:

1. Effects are:
In the view: potentially changing the VP of other DEPTs,.

2. Effects are:
In the view: potentially inserting or deleting other VPs for this DEPT

[Thus, BOTH candidates have side effects on the view. Since we cannot decide a priori that one of these is
superior to the other, we cannot make a decision here. The only solution is to ask the user. Note that, since
the user is presumed to know nothing about the structure of the underlying database, the only meaningful

way to distinguish between the updates is to describe them in terms of their (actual) side effects on his view,

"This is another cxample of explanation phrased with respect to a view.]
There are 2 methods of performi~g this update,

Update (1) will have the side effect of
replacing the tuple (LASKER INVNTRY) with (KLINE INVNTRY)

Update (2) will have the side affect of
inserting the tuple ((HANNAN SALES))

et o L bl i i,

laiatithib o




’ - -
— N i B . T —- - - 1

20

Which would you prefer? ;
> . :

Gl

[If the user cannot make a choice, the update is abandoned.]

st a1 i

[Note that the actual side effects are in fact examples of the classes described by the potential ones.)

B N SPV KW RN KT\ o A

’
it 0 sk Bl o sl

e kAo ..

Ll wide e

it st e LB 3t 5, I e s o

RO

it i




R A

e, -

R e ———— e e e '

21

6. Conclusion

We have presented the salient features of PIQUE, a program that performs updates cxpressed in natural
language. Drawing on work in Linguistics and Philosophy of .anguage, the program implements a domain-
transparent approach to identifying and performing “rcasonable” changes in response to a user’s update
request, using cnly xnowledge sources typically present in cxisting database systems. A simple notion of "user
model" and cxplanation with respect to the user’s state of knowledge are central to the design.

The philosophy adopted in the design of PIQUE is somewhat different from that of typical Al systems.
Rather than try to capture, represent, and encode the domain- and world-knowledge required to perfdrm a
thorough scmantic analysis of the problem, we attempt to exploit whatever knowledge is alrcady implicitly or
explicitly present in the application (in this case, the content and structure of the database and the user's
phrasing of the update request). Consequently, the implementation is simplified and the techniques are more

casily transported to new domains.

Of course, the performance of the system suffers when limited information is present. In part because of its
generality, there is a definite risk dhat the systera will take inappropriate actions or fail to notice preferable
options. A more knowledge-based approach would likely yield more accurate and sophisticated results, The
process of responding appropriatcly to updates could be improved by taking advantage of domain specific
knowledge cxternal to the database, using partia! case-structurc semantics, or tracking dialog focus, to name a

few.

To mitigate thesu shortcomings, the system is engincered to fail "softly”, by presenting options to the user or
requesting ~larifications (by 2 re-phrasing of the request). As databases encode richer semantic knowledge, as
in the proposals ¢t (Wicderhold and El.-Masri, 1979; Hammer and McLcod, 1978), the ranking hcuristics can

be casily excended to take advantage of these additional knowledge sources.

7. Biblivgraphy

Appelt, Douglas E.: A Flanrer for Reasoning About Knowledge and action™; Proc First Nat't Conf. on Al,
1980, pp 131-133,

Cohen, Phip: “On Knowing What to Say: Planning Spcech Acts”: TR 4118, CS Dept, University of
Toronto, 1978,

Dayal, Umeshwar: "Schema-Mapping Preblems in Database Systems™; TR 11-79, Center for Rescarch in
Computing Technology, Harvard University, 1979.

Frege, Gottlob: "On Sense and Reference”; trans, Max Black, in Translations from the Philosophical

.

sttt o st ™

12 il et v Wbl anbett sl o Lo

s adda s




[ p——

LS L

22

© Writings of Gottlob Frege, P, Geach and M. Black, eds., Blackwell, Oxford, 1952

Hammer, Michacel, and Dennis McLeod: "The Semantic Data Model: A Modelling Mechanism for Data Base
Arplications”; ACM SIGMOD Conference Proceedings, 1978, pp. 26-36.

Hendrix, G.: "Human Enginecring for Applicd Natura: 1.anguage Processing”; Proc LJCALS, 1977, 183-191,

Henisz-Dosteit, Bozena, and Frederick B. Thompson: ™1'he REL System and REL English”; in Computation
and Mathematical Bnglish, A, Zampolli and N Caizolari, cds., Casa Editrice Olschki, Firenze, 1974,

Kaplan, S. Jerrold, and Jim Davidson: "Interpreting Natural Lansuage Database Updates”, in proceedings of
the 19th Annual Mecting, Association for Cenputational i ..oguistics, Stanford, CA, June, 1981,

Kaplan, S. Jerrold: -"Coopcrativc Responses from a Portable Natural Language Data Base Query System";
HPP-79-19, Computer Science Department, Stanford University, 1979,

Kaplan, S. Jerrold: "Indirect Responses to Loaded Questions”, Procecdings of the Sccond Workshop on
Theoretical Issucs in Natural Language Processing, Urbana-Champaign, 111, July, 1978.

Lewis, D.: "Counterfactuals”; Harvard University Press, Cambridge, Ma,, 1973,

Mann, William C., James A. Moore, and James A, Levin: "A Comprehension Model for Human Dialogue™;
Proc LCAIS, 1977, pp 77-87.

McKeown, Kathleen R.: "Paraphrasing Using Given and New Information in a Question-Answer System";
Proc. 17th Annual Mceting, Ass'n for Computation Linguistics, 1979, pp 67-72.

Mow  R.: "Handling Complex Querics in a Distributed Data Base”; TN-170, Al Center, SRI International,
October, 1979.

Nash-Wcbber, B.: "Scemantic [nterpretation Revisited”, BBN report #3335, Bolt, Baranck, and Newman,
Cambridge, Ma,, 1976.

Quine, W.V.O.: "Refercnce and Modality™; in Reference and Modality, Leonard Linsky, Ed., Oxford,
Oxford University Press, 1971,

Sacerdoti, Earl 1D.: "Language Access to Distributed Data with Error Recovery™; Proc HJCALS, 1977, 196-202,

Teitclman, W.: "Interlisp Reference Manual™; Xcrox PARC, Palo Alto, 1978,

Wicdeshold, G.and R, El-Masri:  “The Structural Model f‘or Database Design™; Proceedings of the
International Conference on Entity- Relationshi Approach to Systems Analysis and Design, North

Holland Press, Decomber 1979, pp 247-267.

Wiederhold, G., S.J. Kaplan, D. Sagalowicz: "Rescarch in Knowledge Basc Management Systems”; ACM
SIGMO.) Record, Vol. 11, No. 3, April, 1981,




RAERCLUALE S
s .. o

e

Table of Contents

1. Introduction

2. The Problem

3. A More Fonaal Characterization

4. Description of the PIQUE System
4.1. Inferring the user’s view
4.2. Generating Candidate Updates
4.3. 'The sclection of appropriate updates
4.4, Action Taken

5. Examples of the system in operation

6. Conciusion

7. Bibliography

1
2
3
5
5
7
9
13

14
21
21

i A ot L ik i




