
4.X-

Natural Language Accesm

to Databases:

Interpreting Update Requests1

Jim Davidson and S. Jerrold Kaplan
Computer Science Department

Stanford University
Stanford, California 94305

Abstract

For natural language database systems to operate effectively in practical domains, they must have
the capabilities required by real applications. One such capability is understanding and
periforming update requests. The processing of natural language updates raises problems not
encountered in the processing of queries. These difficulties stem from the fact that the user will
naturally phrase requests with respect to his conception of the domain, which may be a
considerable simplification of the actual underlying database structure. Updates which are
meaningfful and unambiguous from the user's standpoint may not translate into reasonable
changes to the underlying database. Update requests may be impossible (cannot be performed in
any way), ambiguous (can be performed in several ways), or pathological (can be performned only
in ways which cause undesirable side effects).

Drawing on work in Linguistics and Philosophy of Language, we have developed a domain-
transparent approach to identifying and performing "reasonable" changes in response to a user's
update request, using only knowledge sources typically present in existing database systems. A
simple notion of "user model" and explanation with respect to the user's state of knowledge are
central to the design. This paper describes a system PIQUE (Program for Interpretation Q1"
Query/Update in English), which implements this approach.

DTIC
ELECTE>-C

L. JAN 4 1982

.7,B30,B

"1This work is part or the Knowledge Base Management Systems project (I)ARPA contract #NN00039-80-G-0132), which is
investigating the application of artificial intelligence techniques to issucs in the field of database management. The views and conclusions
contained in this document are those or the authors and should not be interpreted as representative of the official policies, either
expressed or implied, of DARPA or the U.S. Government.

!it 8712 071

.2<

1. Introduction

Natural language is a desirable access mechanism for database systems because it frces the user from the task

of understanding the details of the database structure. A number of systems have provided natural language

query capabilities (e.g., (Sacerdoti, 1977)): however, few of these allow the user to perform updates (changes)

to the database using natural language. (For an example of one that does allow simp!e updates, see (Henisz-

Dostert & Thompson, 1974).)

The provision of update capabilities introduces problems not seen in handling queries. These problems arise

because the user is phrasing his requests with respect to his view of the database, which may be a

simplification or transformation of the actual database structure. While a well formed query expressed in

terms of the user's view of the database will always result in the same answer, regardless of how the query may

be mapped into the actual database structure for execution, this is not the case for an update expressed on a

view.

Since updates request modification of the content of the database, different mappings of the update request

into tl., actual database structure may result in different effects. Some of these effects may be undesirable or

unanticipated. Specifically, the user may make requests that are impossible (cannot be performed in any way,

due to hidden constraints on the database), ambiguous (can be performed in several ways), or pathological
(can be performed only in ways which cause unanticipated side effects). While human speakers -wouldintuitively reject these unusual readings, a computer program may be unable to distinguish them from more

appropriate ones.

For example, a simple request to "Change the teacher of CS345 froom Smith to Jones" might be carried out by

altering the number of a course that Jones already teaches to be CS345, by changing Smith's name to be

Jones, or by modifying a "teaches" link in the database. While all of these may literally Carry out the update,

they may implicitly cause unanticipated changes such as altering Jones' salary to be Smith's.

Our approach to this problem is to treat updates as requesting that the database be put into a self-consistent

state in which the request is satisfied; the problem is then to select the most desirable of (potentially) several

such states. The most desirable such state is considered to be the "nearest" one to the current state (in the

sense that it involves the least disruption). A set of domain-independent heuristics is used to rank the

potential changes along these dimensions.

This process may be guided by various linguistic considerations, such as the difference between "transparent"

and "opaque" readings of the user's request, the distinction between tie "sense" and "reference" of referring

expressions, and the interpretation of counterfactual conditionals.

w,• • i , • , ..-. ,___.... .. __ _

2

This paper describes a system PIQUE which implements this approach by retaining a model of the user's

view, and considering possible methods of pcrforming the update in light of the model. Given an update
request, the system generates #he set of possible changes to the underlying database that will literally fulfill the

request. These candidate changes are then evaluated as to their effects on tie user's view, the underlying

database, and the database constraints. If possible, an appropriate one is selected; otherwise an informative

message is presented to the user.

2. The Problem

As a hypothetical example of the problems which can arise during updates, consider a relational database of

employees, salaries, departments, and managers, consisting of two relations:

EMP SAL DEPT DEPT MGR

Adams 30 Invntry Sales Jones
White 35 Mkting Mkting Baker
Brown 25 Sales Invntry Fisher
Smith 30 Sales
Pullum 25 Sales

and the following dialogue (comments are enclosed in [brackets]):

Q1: List the employees and their managers.

R1 : EMP MGR ,

Adams Fisher
White Baker
Brown Jones
Smith Jones
Pullum Jones

Q2: Change Brown's manager from Jones to Baker.

R2: Done.

[The system has (apparently) fulfilled the user's request]

03: What is the average salary paid to Jones' employees?

R3: $0. Aocsgon

04: List Jones's employees. Nii GR-&-DTIC ?AD C

R4: NIL Urminounoed

[From these responses, the user realizes that somethi",g has gone wrong.]

Q6: List the employees and their managers. BDistryb- tio/

Availability Code@S.....Avatl 1and/or' "

-. Dist Special

.3 71
R5: EMP MGR

Adams Fisher
White Baker
Brown Baker
Smith Baker
Pullum Baker j

[The user sees that the system has made two unanticipated changes--changing Smith's and Pullum's

managers-in addition to the one that was requested.]

From the user's point of view, his request is mcaningful and unambiguous. Ile sees a set of values, and asks

to change one of them. (He might not even know that employees and managers are linked via their
departments.)

The problem lies in the fact that his update request can be performed in two ways:
(a) by making the manager of the Sales department be Baker.

(b) by moving Brown from the Sales department to the Marketing department;

Both of these literally fulfill the request. ýThe system, lacking any means for deciding between these, has

apparently chosen (a), making Baker the manager of the Sales department, with the unanticipated effect that

two other employees have had their managers changed.

3. A More Formal Characterization

This problem can be explained somewhat more formally. Given a database structure, define the user's view

function F as the transformation that is applied to the database to yield the conceptualization with which the

user works. For instance, in the example in section (2), the view function, as defined by Q1, is a

transformation consisting of a join and a projection, which is applied to the original two files to yield a single

new file with only two attributes. Define the user's view as the result of applying the view function to a given

stzte of the database: in the example, this produces a file with five entries, as shown in R1.

A user's update request (call it u) is a request to update the view. In the example, the request is stated in Q2.

Since the view is only 'virtual' (derived from the data), we cannot modify it directly, but must make changes

to the underlying database. Call the result of translating the update request to the database level, T(u). The

object is to find the change to the underlying database which comes closest to having the desired effect on the

user's view. That is, we want the translation T(u) which produces a revised database such that, when the view

function is applied to that database, the result is the view requested by the user.

In graphical terms:

4

D represents the initial state of tie database, 1)' the state that results after applying the translated

update T(u);

u ?

F(D) -------- > u(F(D)) = F(D')
t

F IFF I I F

D ---------------- > 0' = T(u)(D)
T(u)

In mathematical terms, the mapping F from the underlying database D to the user's view F(I)) induces a

homomorphism. Loosely defined, a homomorphism is a function that preserves the structure of its arguments

under given operations. In this case, the operations arc changes to the underlying database, and corresponding

changes to the user's view. The difficulties with updates expressed on the view (rather than the underlying

database) arise from the characteristics of the inverse of this homomorphism: elements in the user's view

(states of the "conceptual" database) map under F.1 into a set of states of the underlying database. This set

may be empty (if the view urdate cannot be accomplished in any way), or have many elements (in the case of

a request which is ambiguous wih respect to D). If the mapping F is invertible, i.e. F". is also a function, then

an isomorphism is induced. In this case, each requested update will have a single, unambiguous interpretation

in the underlying database, and the difficulties addessed here do not arise. However, this is not in general the

case.

The ideal update translation will produce a state of the database which, when transfornred by the user's view

function, exactly yields the revised state that he requested. In actuality, our implementation will consider

changes to the database that literally fulfill the user's request but may not yield precisely the intended view

u(F(I))). In the example, there were two translations of the user's request; update (b) yielded the exact view,

update (a) a different one.

FA

aL7

--

5

4. Description of the PIQUE System

We have implemented a system (PIQUIi) that addresses this problem, by procesing update requests in four

phases.

(1) decide what the user's current view of the database is;

The system maintains an ongoing model of the user's conception of the database, dcrived from the dialogue.

(2) use the view to generate a set of candidate updates T(u), which perform the update,

When an update comes in, it is assumed to be an update to the user's view. That is, the user requcsts changes

with respect to his conceptualization of the database. The candidate translations are updates to the database,

each of which literally accomplishes the user's request.

(3) use a set of ordering heuristics to rank these candidates, in terms of how accurately they fulfill the user's

request;

These candidates are evaluated according to the ordering heuristics, to measure how much impact they have

on the user's view. For example, a candidate that causes side effects (unrequested changes to the user's view)

is ranked lower than one that does not cause such side effects. "Pragmatic" information contained in the

database schema is also used in making the decision.

2 (4) take action, depending on the number of candidates and their ranking;

When the candidates have been ranked, action is taken. This might consist of performing one of the

candidates, offering a choice to the user, or explaining why the update cannot be performed at all.

These phases are considered in turn.

4.1. Inferring the user's view

The user of a natural language database system typically has a conception of the database which is a subset of

the relations, attributes, connections, and records actually present. In order to interpret updates correctly, the

system must take into account the user's current conception of the database. Our approach is to build a user

model based on the concepts of which the user has indicated an awareness--those which have occurred in his

qu: ics and updates.

-• . = - - .. - - .-.- - -1

6

This is implemented by making use of the connection graphs corresponding to the user's inputs. A system

which processes natural language inputs must find paths through the database, defined by operations suc' as

joins, which connect the concepts mentioned in the input. (The IADDER system, for example provides this

service with the help of navigation information stored in a separate structural schema.) This set of paths is
called the connection graph.

The importance of this work is that the connection graph provides a good model for tde structure of the user's

view. That is, each query implicitly induces a view of the database which the user holds, at least until the next

input. When an update is received, it can be checked for compatibility with the current view, to see if it could

be an attempt to update that view. This compatibility test basically checks to see whether the concepts and

relationships mentioned in the update are completely contained in dte view. (The actual matching criterion is

more complicated than simple inclusion, but this will serve for explanatory purposes.) If the update and view

are compatible, the user is assumed to be continuing an interaction with that view.

Consider the example of section 2. The user poses a query, which mentions employees and their managers.

He then makes an update request of a similar form. Because the update request is compatible with the view

induced by the previous query, the user is assumed to be referring to that view, and to be asking to change it.

Note that, although departments are needed in the connection graph, they are not mentioned by the user,

therefore do not appear in the view.

Queries need not always define new views. Under certain circumstances, a query may be a refinement or

expansion of a previous view. Consider the sequence "List all die ships in the Mediterranean." "Who are

their captains?". The second query merely expands the view defined by the first, by introducing a new

attribute.

Views are stacked as die dialogue progresses, and updates can be checked for compatibility with all previous

views (most recent first). This enables the system to correctly handle a situation in which a user returns to a

previous view for further work.

Note that an update also induces a connection graph, just as a query does. If an update request is not

compatible with any of the views defined previously, the connection graph for the update itself can be used to

define the view. This occurs if the user is making an update unrelated to any of the information that he has

examined. (For example, if he has a hardcopy, or thinks he knows die contents of die database.) In this case,

the view must be inferred from the update alone. 'Tlus, to return to the example of section 2, "Change

l-Brown's manager from Jones to Baker" might be meaningful even ift the user has not previously asked about

these things.

7

'l1is strategy is conservative, in that the only concepts that will appear in views are those of which the user has

indicated at least some awareness. As a result, the system will never assume a view that is more complex than

the one actually held by the user, and thus will never mislead him by introducing a new concept during a
response or explanation. Tlhe errors which occur will consist of underestimating the user's familiarity with the
database: the system will tend to be pedantic, rather than mysterious.

Only minimal cost is required to identify and record the user's view, since navigational work to build the

connection graph is required anyway. The testing of views and updates for compatibility is also a simple

operation.

This strategy also provides a notion of focus: as the user discusses different parts of the database, the view

changes automatically. '[his is important, because the notion of side ejfrct changes as the user's focus changes.

Changes occurring to previous views are less important than changes occurring to the current view.

The concept of user modelling is well known in artificial intelligence (Mann et al., 1977). A common approach

:s to record an explicit list of the things the user knows (Appelt, 1980; Cohen, 1978). Our model, however, is

much simpler. Given the role of the view information in the inferencing heuristics, this model is adequate for

our purposes.

4.2. Generating Candidate Updates

One of the crucial steps of the algorithm described above is the generation of candidate updates that can then

be evaluated for plausibility. In most cases, an infinite number of changes to the database are possible that

would literally carry out the request (mainly by creating and inserting "dummy" values and links). However,

this process can be simplified by generating only candidate updates that can be directly derived from the

user's phrasing of the request. This limitation is justified by observing that most reasonable updates

correspond to different readings of expressions in referentially opaque contexts.

A referentially opaque context is one in which two expressions that refer to the same real world concept

cannot , interchanged in the context without changing the meaning of the utterance [Quine, 19711. Natural

language database updates often contain opaque contexts.

For example, consider that a particular individual (in a suitable database) may be referred to as "Dr. Smith",

"the instructor of CS100", "the youngest assistant professor", or "the occupant of Rin. 424". While each of

these expressions may identify the same database record (i.e. they have the same extension), they suggest

different methods •or locating that record (their intensions differ). In the context of a database query, where

the goal is to unambiguously specify the response set (extension), the method by which they are accessed (the

intcnsion) does not normally affect the response (for a counterexampic, however, see [Nash-Webber, 19761).

Updates, on the other hand, are often sensitive to the substitution of extensionally equivalent referring

expressions. "Change the instructor of CS100 to D)r. Jones." may not be equivalent to "Change the youngest

assistant professor to Dr. Jones." or "Change Dr. Smith to Dr. Jones." Fach of these may imply different

updates to the underlying database.

For operating with an expression in an opaque context, therefore, we must consider the sense of the

expression, in addition to its referent (Frege, 1952). In a database system, this sense is embodied in the

procedure used to evaluate the referring expression- the referent is the entity obtained via this evaluation. A

request for a change to a referrirg expression is thus not specifically a request to perform a substitution on the

referent of the expression, but rather a request to change the database so that the sense of the expression ni

has a new referent. 'T'hat is, after the update, evaluating the same procedure should yield the new (requested)

result.

For example, consider a database of ships, ports, and docks, where ships are associated with docks, and docks

with ports. Assume that there is currently a ship named Totor in dock 12 in Naples (and no other ship in

Naples), and consider the following updates:

Change Totor to Pequod.
Change the ship in dock 12 to Pequod.
Change ihe ship in Naples to Pequod.

The referring expressions (italicized) have the same referent in all three cases, but the senses differ. The

expression "Totor" is resolved via ai lookup in the ships relation: "the ship in dock 12" requires a join between

the ships Lad docks relations; "the ship in Naples" requires a join between all three relations.

Consider the ways of performing each request, as indicated by the sense of the referring expression. The first

version can be implemented only by making a direct substitution on the ships relation, corresponding to

renaming the ship. The second admits this possibility, but also the possibility of moving a new ship into the

dock (if there is already a ship named Pequod). The third allows the above two, plus the possibility of moving

a different dock into Naples (if there is a dock somewhere else with Pequod in it). (This will later be ruled out

for other reasons, as explained in the next section, but cannot be excluded on purely linguistic grounds.)

Thus, the particular referring expression selected by the user motivates a set of possible actions that may be

appropriately taken, but does not directly indicate which is intended or preferred.

! ,

'This characteristic of natural language updates suggests that the generation of candidate updates can be

performed as a language driven inference [Kaplan. 19781 without severely limiting the class of updates to be

examined. "Language driven infem'ence" is a style of natural language processing in which the inferencing

procesi is driven (and hence limited) by the phrasing of the user's request.

In this instance, the candidate updates are generated by examining the referring expression presented in the

update request. The procedure implied by this expression rolows an "access path" through the database

structure. The candidate updates computed by the program consist of changing linki or pointers along that

path, or substituting values in the final record(s) identified.

For example, consider the structure of the "ships" database:
(a) --------- (b) -- - - -

JPORTS I-...> I DOCKSI-...> ISHIPS I

The candidate translations for the third request (changing "the ship in Naples") correspond to the following

changes to the database:

(1) making a change to the SHIPS file (i.e., renaming the ship);
(2) changing link (b) (moving a new ship into the dock);
(3) changing link (a) (moving a new dock into the port).

If the expression "the ship in dock 12" were aised, only options 1 and 2 would be generated, similarly, if

"Totor" were used, only option 1 would be generated.

4.3. The selection of appropriate updates

At first examination, it would seem to be necessary to incorporate a semantic model of the domain to select an

appropriate update from the candidate updates. While this approach would surely be effective, the ovcrhead

required to encode, store, and process this knowledge for each individual database may be prohibitive in

practical applications. In general, the required information might not be available. What is needed is a

general set of heuristics that will select an appropriate update in a reasonable majority of cases, without
specific knowledge of the domain.

The heuristics that are applied to rank the candidate updates are based on the idea that the most appropriate

one is likely to cause the minimum disruption to the user's conception of the database. This concept is

developed formally in the work of Lewis, presented in his book Counterfacluals [Lewis, 1973]. In this work,

L Lewis examines the meaning and formal representation of such statements as "If kangaroos had no tails, they

ty

*10

would topple over." (P.8) ie argues that to evaluate the correctness or this statement (and similar

counterfactual conditionals) it is necessary to construct in one's mind the possible world minimally different

from the real woild that could potentially contain the conditional (the "nearest" consistent world). lie points

out that this hypothetical world does not differ only in that kangaroos don't have tails, but also reflects other

changes required to make that world plausible. 'l'hus he rejects the idea that in the hypothetical world

kangaroos might use crutches (as not being minimally different), or that they might leave the same tracks is

the sand (as being inconsistent).

The application of this work to processing natural language database updates is to regard each transaction as

presenting a "counterfactual" state of the world, and request that the "nearest" reasonable world in which the

ceunterfactual is true be brought about. For example, the request "Change the teacher of CS345 from Smith

to Jones." might correspond to the counterfactual "If Jones taught CS345 instead of Smith, how would the

database be different?" along with a speech act requesting that the database be put in this new state.

To select this nearest world, three sources of information are used:

(a) the side effects entailed by the different candidates
(b) pragmatic in formation contained in the database schema
(c) semantic constrinis atiached to the database schema

(a) Side effects

As illustrated in the example of section 2, updates may have effects on the user's view and the database

beyond those literally requested. Using the rationale of "minimal disruption", updates which do not have

side effects are preferable to those that do. For each candidate, we consider the number and type of side

effects caused, and rank the candidates accordingly. In data processing terms, the update with the fewest side

effects on the user's data sub-model is selected as the most appropriate.

Considering the example from section 2, note that the two cmndidates have different effects on the user's view.

The one which was actually performed--candidate (a), changing the name of the manager of the Sales

department--also changes two other values in the view. The other candidate--(b), moving Brown to the

Marketing department--does not have these effects. Therefore, the latter more exactly fulfills the user's

request, and would be preferred.

The side effects that actually occur for a particular candidate are in a sense accidental, in that they depend on

the particular state of the database. For example, the number of side effects caused by changing the manager

of the Sales department depends upon how many other employees happen to work in that department. To

. ._._. ._._. ._._... .

avoid this artificial property of contingency, a more stable approach is to consider what side effects could

result from performing the given candidate in any state of the database. This set of dotential side effects can

be determined by analyzing the restrictions in the database schema concerning the cardinality and

dependency of reiationshlps between entities. The significance of this concept is that the constraints on

cardinality and depcndcncy may be strong enough to ensure that the set of potential side effects (and hence

the set of actual ones) is empty--indicating that the given candidate does not have any side effects in the

current state, and more importantly, could not have side effects in any state.

Consider once again the example of section 2. Of the two updates, (a) causes actual side cff'cts, (b) doesn't. A

stronger reason for preferring (b) is that it cannot cause side effects. regardless of the state of the database. To

see this, note that the cardinality of the relationship between employees and departments is typically N:1--

each employee works for only one department. Thus, an employee can have only one manager, and moving

the employee to a new depa:tmeit cannot cause any changes to this aspect of the view beyond the one

requested. The potential side effects of (a) consist of changes to the managers of employees other than

Brown; the two actual side effects are an example of this.

Simple graph algorithms are applied to the database schema to determine which candidates have no potential

side effects, and for the others, what side effects they may have. These can be computed more easily than the

actual side effects, which must be derived "extensionally" by observing the effects of candidates on the view,

In our ranking of candidates for appropriateness, only potential side effects are considered. Explanations,

when needed, are phrased with respect to actual side effects, if any exist, else potential ones.

(b) Pragmalic hifonnalion

There may be information in the database schema to help the selection among candidate updates.

For example, certain attributes and links in the schema may be designated at design time as static, indicating

that they rarely change, or dynamic, indicating that they frequently change. This information is used during

implementation, to select methods for accessing the information. It may also be of use when ranking

candidate updates.]

Considering the last example from section 4.2, we note that one of the candidates ch.nges the ship by moving

a new dock into Naples. This is consistent within the database, and fulfills the update request; but, the

database schema would indicate that such a change is unlikely, and this candidate's desireability would be

downgraded. Similarly, there may be general rules that the names of things change less often than other

12

attributes.

Note that this information is merely heuristic; if the only candidate is one that involves such a change, it will

be performed.

(c) Semantic Constraints

The schema will often contain semantic constraints that restrict the aliowable states of the database. Examples

of these are functional dependencies (e.g., "Two employees cannot have the same employee number."), range

constraints ("No employee can make more than $45K."), and existence constraints ("If an employee works in

a particular department, there must be a record for that department in the departments relation.").

These figure in the process of update interpretation, to rule out candidates which are otherwise acceptable. In

the example of section 4.2, if there is already a ship named Pcquod in the database, the renaming change

could cause a name conflict, resulting in the rejection of this candidate.

Whereas the pragmatic information discussed above was heuristic, the semantic constraints are absolute.

Candidates which violate semantic constraints will never be performed. However, it is still advantageous to

generate and consider these candidates, since it is often possible to formulate a meaningful explana,,on for the

user about the nonfulfillment of the request.

Our current ordering heuristics incorporate these sources of infonnation. In increasing order of preference,

they are:

-updates which violate semantic constraints associated with the database;

-updates which violate pragmatic guidelines;

-updates with side effects on the user's current view;

-updates with no side effects;

While this approach can certainly fail in cases where complex domain semantics rule out the "simplest"

change, in the majority of cases it is sufficient to select a reasonable update from among the various

possibilities.

Consider again Lewis' "Counterfactual" framework. We see that the restrictions on candidate generation

discussed in section 4.2 define the accessibility of different states of the world (database); the semantic

constraints define consistency; pragmatic constraints and side effect information are measures of distance

....-.................................... - • _..

13

between states of the database.

a-d

4.4. Action Taken

If one candidate is better than the others, it is performed. If there are a number of candidates which cannot

be distinguished by the heuristic ranking, the user is told about them, and offered a choice. If no candidate is

admissible (because, for instance, all candidates violate semantic constraints on thc database), the user is told

of this.

In a number of cases, circumstances must be explained to the user. For instance, if the candidate actually

performed has side effects, the user must be notified of this. If a semantic constraint is violated, the user must

. 'b e t o l d h o w .

I Our approach to explanation assumes that the user is familiar only with his own view of the JiaLabase, and so

all explanations must be phrased with respect to this understanding (following (McKeown, 0979)). Therefore,

options are presented in terms of their "effects" on the user's view (rather than the actual changes proposed),

and violations of semantic constraints are discussed with respect to attributes that the user has already seen. In

this way, we ensure that explanations are always comprehensible.

N1

I]]

14

5. Examples of the system in operation

PIQUE runs in INTERLISP (Tcitelman, 1978), on the PDP-10 at SRI, as part of the KBMS system

(Wiederhold, 1980). The natural language parser is written in LIFER, a semantic grammar system designed

by Gary Hendrix (Hendrix, 1977). The database access is done using SODA, a relational calculus database

query language developed by Bob Moore (Moore, 1979). The SODA interpreter used was written by Bil

Lewis, and has been modified and extended by Jim Davidson to handle updates.I-!
Note that some of the information printed by the current system is presented merely for pedagogical

FT purposes, to show the intermediate stages of the computation. In the course of a "real" run, such information

(shown indented in the transcripts below) would be suppressed. Additional commentary is enclosed in

brackets("D"). The user's input is preceded by >.

Assume a sample database containing the following information:

Individual employees, with salary, department, and employee number (employee number and name are

assumed to be unique):

EMP SAL DEPT EMP EMPNO

Adams 30 Invntry Adams 103
White 35 Mkting White 431
Brown 25 Sales Brown 554Smith 30 Sales Smith 222

Pullum 25 Sales Pullum 181

jt Departments have managers and location, and are grouped into divisions (department names are assumed to

"be unique):

F DEPT MGR LOC DIV

*1 Sales Jones SF I
Mkting Baker LA II
Invntry Fisher SD I

A Advert Larkin NY II

Divisions are assigned vice presidents:

DIV VP

I Lasker
II Kline
II Hannan
III Burgess

15

1. Example of an update performed using side cfTect heuristics

Consider once again the example shown in section 1, this time wih the real system:

>(LIST THE EMPLOYEES AND THEIR MANAGERS)

EMP MGR

ADAMS FISHER
WHITE BAKER
BROWN JONES
SMITH JONES
PULLUM JONES

[Next, the user enters a request to update his view.)

Enter next command:

>(CHANGE BROWN'S MANAGER FROM JONES TO BAKER)

[rhe program now generates dte candidate updates. As indicated, there are two of these.]

The possible ways of performing the update:

1. In the relation DMLD change the MGR attr of the tuple

DEPT MGR LOC DIV

SALES JONES SF I

to the value BAKER

2. In the relation ESD change the DEPT attr of the tuple

EMP SAL DEPT

BROWN 25 SALES

to the value MKTING

[Note that the update of changing the I)EPT attribute of tie tuple (MKT I NG BAKE R) to Sales would make

Baker one of the managers of Brown. But, it would also leave Jones as a manager of Brown, and thus does not

fiufill the user's request, even literally. For this reason, it has not even been considered by tie system.]

['hese candidates are then evaluated, in terms of the accuracy with which they rulfill the user's request. In

die absence of any strong preference for either one, the decision is made on the basis of potential side effects

to the user's view.]

These translations have the following effects:

1. Effects are:
In the view: potentially changing the MGR of other EMPS.

".16

2. Effects are:
None.

[The program concludes that update (2) is superior to (1), since (1) has the possibility of changing the manager

of other employees. (In actuality, (1) would change the managcrs of both Smith and Pullum.)]

Desired translation is: 2.

Revised view is:

EMP MGR

ADAMS FISHER
WHITE BAKER
BROWN BAKER
SMITH JONES
PULLUM JONES

[The result accords with the user's wishes; only the requested change has been made to his view.]

2. Example of an update performed using pragmatic information

Consider the same database, with a slightly different dialogue:

>(WHAT ARE THE LOCATIONS OF THE EMPLOYEES) 4
p

EMP LOC

ADAMS SD
WHITE LA
BROWN SF
SMITH SF
PULLUM SF

Enter next command:

>(MOVE ADAMS FROM SD TO LA)

rrhe system inmerprets this as a request to change Adams' location.]

The possible ways of performing the update:

1. In the relation DMLD change the LOC attr of the tuple

DEPT MGR LOC DIV

INVNTRY FISHER SO I

to the value LA

2. In the relation ESD change the DEPT attr of the tuple

A /•I T I _ _,= -_. . _n__ I I I

17

EMP SAL DE PT

ADAMS 30 INVNTRY.

to the value MKTING

[rwo candidates are identified, corresponding to (1) physically moving the department to a different location,

or (2) reassigning the employee.]

[Now, the candidates are evaluated.]

These translations have the following side effects on the view:

1. Effects are:
Violation of pragmatic constraints.

2. Effects are:
None.

[The "location" attribute of the I)MDI. relation, representing the location of the department, is marked in the

database schema as "static", indicating that it rarely changes. 'T'hus, update (1) is unlikely. The system detects

this. Note that update (1) also has potential side effects on the user's view, but the violation of the pragmatic

constraint is a stronger reason for rejection.]

Desired translation is: 2.

Revised view is:

EMP LOC

ADAMS LA
WHITE LA
BROWN SF
SMITH SF
PULLUM SF

[Once again, the user's request has been fulfilled exactly.]

3. Example of a request blocked by a semantic constraint:

Assume a semantic coslraint--a functional dependency stating that each employee number may be assigned

to only one employee.

>(LIST THE NAMES AND EMPLOYEE NUMBERS FOR ALL EMPLOYEES IN THE
SALES DEPARTMENT)

EMP EMPNO

- - -

18
"F."

BROWN 6564
SMITH 222
PULLUM 181

>(CHANGE SMITH'S EMPLOYEE NUMBER TO 103)

[The program generates the ways of performing the update. There is only one of these.]

The possible ways of performing the update:

1. In the relation EN change the EMPNO attr of the tuple

EMP EMPNO

SMITH 222

to the value 103.

[The effects engendered by this candidate are now listed; the candidate would violate a semantic database

constraint.]

These translations have the following effects:

1. Effects are:
Violation of semantic constraints.

[The system now tells the user what has happened, explaining why the update couldn't be performed, and

how the semantic constraint would be violated.]

This update could nct be performed, because of semantic constraints:

The EMPNO value of 103 has already been assigned to the tuple

EMP EMPNO

ADAMS 103

which has the DEPT value of INVNTRY.
This update would violate the functional dependency EMPNO -> EMP.

[Note that, without the I)WT' value printed out, the user may not realize why he cannot see the (ADAMS

103) tuple. 'lie explanation is thus phrased with respect to the user view.]

4. Example of a genuinely ambiguous update.

Now, a dialogue concerning a different part of the database:

>(WHICH VP'S ARE IN CHARGE OF WHICH DEPARTMENTS?)

VP DEPT

LASKER SALES

.19

LASKER INVNTRY
KLINE MKTING
KLINE ADVERT
HANNAN MKTING

I 'HANNAN ADVERT

Enter next command:

>(REPLACE LASKER WITH KLINE AS VP IN CHARGE OF THE SALES DEPT)

jr'he system now generates the list of candidate updates. 'here are two of thcse.)

The possible ways of performing the update:

1. In the relation DV change the VP attr of the tuple
FI

DIV VP

I LASKER

to the value KLINE

2. In the relation DMLD change the DIV attr of the tuple

DEPT MGR LOC DiV

SALES JONES SF I

to the value II

[Again, the effects of each on the user's view arc computed.]

These translations have the following effects:

1. Effects are:
In the view: potentially changing the VP of other DEPTs.

2. Effects are:

In the view: potentially inserting or deleting other VPs for this DEPT

[Thus, BOTH candidates have side effects on the view. Since we cannot decide a priori that one of these is

superior to the other, we cannot make a decision here. The only solution is to ask the user. Note that, since

the user is presumed to know nothing about the structure of the underlying database, the only meaningful

way to distinguish between the updates is to deccribe them in terms of their (actual) side effects on his view.

Tlhis is another example of explanation phrased with respect to a view.]

There are 2 methods of performi,,g this update.

Update (1) will have the side effect of
replacing the tuple (LASKER INVNTRY) with (KLINE INVNTRY)

Update (2) will have the side effect of
inserting the tuple ((HANNAN SALES))

J 20

Which would you prefer?

[If the user cannot make a choice, the update is abandoned.I I
[Note that the actual side effects are in fact examples of the classes described by the potential ones.)

l- -•"' ".T •• = .e .L- . .•___ __ __ __ __,__ __ __"__ __ _

21

6. Conclusion

We have presented the salient features of PIQU.', a program that performs updates expressed in natural

language. Drawing on work in linguistics and Philosophy of Languagc, the program impleiments a domain-

transparent approach to identifying and performing "reasonablc" changes in response to a user's update

request, using only knowlcdge sources typically present in cxisting database systems. A simple notion of"user

model" and explanation with respect to the user's state of knowlcdge are central to the design.

The philosophy adopted in the design of PIQUE is somewhat different from that of typical Al systems.

Rather than try to capture, represent, and encode the domain- and world-knowledge required to perform a

thorough semantic analysis of the problem, we attempt to exploit whatever knowledge is already implicitly or

explicitly present in the application (in this case, the content and structure of the database and the uscer's

phrasing of the update request). Consequently, the implementation is simplified and the techniques are more

easily transported to new domains.

Of course, the performance of the system suffers when limited information is present. In part bccause of its

generality, there is a definite risk dhat the systerm will take inappropriate actions or fail to notice preferable

options. A more knowledge-based approach would likely yield more accurate and sophisticated results. The
process of responding appropriattly to updates could be improved by taking advantage of domain specific

knowledge external to the database, using partia! case-structure semantics, or tracking dialog focus, to name a

few.

To mitigate thest, shortcomings, the system is engineered to fail "softly", by presenting options to the user or

requesting .larificationh (by a re-phrasing of the request). As dautbases encode richer semantic knowledge, as

in the proposals ck (Wiederhold and El.-Masri, 1979; Hammer and t,1cLcod, 1978), the ranking heuristics can

be easily exended to take advantage of these additional knowledge sources.

7. Bibliugraphy
L

Appelt, Dougla3 E.: "A Planner for Reasoning About Knowledge and ,\ction"; Proc First Nat'l Conf. on Al,
1980, pp 131-133.

Cohen, Phip: "On Knowing What to Say: Planning Speech Acts"; TR k118, CS Dept, University of
Toronto, 1978.

Dayal, Umcshwar: "Schema-Mapping Problems in Database Systems"; TR 11-79, Center for Research in
Cjtnputing Technology, Harvard University, 1979.

Frege, Gottlob: "On Sense and Reference": trans. Max Black, in Translations from the Philosophical

V _

22

Writinge of Gottlob Frege, P. Geach and M1. Black, eds., Bltackwell, Oxford, 1952

Hammer, Michael, and Dennis McLeod: "The Semantic l)ata Model: A Modelling Mechanism for Data Base

An .)lications"; ACM SIG MOD Conference Proceedings, 1978, pp. 26-36.

Hendrix, G.: "Human Engineering for Applied Natura, Language Processing"; Proc IJCAIS, 1977, 183-191.

Henisz-Dostert, Bozena, and Frederick B. 'lhompson: "The REI. System and RI".I. English"; in Computation
and Mathematical 'english, A. Zampolli and N Caizolari, cds., Casa lditrice Olschki, Firenze, 1974.

Kaplan, S. Jerrold, and Jim Davidson: "Interpreting Natural Lannuagc Database Updates", in proceedings of
the 19th Annual Meeting, Association for Cvunputational .L.nguistics, Stanford, CA, June, 1981.

Kaplan, S. Jerrold: "Cooperative Responses from a Portable Natural Language Data Base Query System";
HPP-79-19, Computer Science Department, Stanford University, 1979,

Kaplan, S. Jerrold: "Indirect Responses to Loaded Questions", Procecdings of the Second Workshop on
Theoretical Issues in Natural Language Processing, Urbana-Champaign, Ill., July, 1978.

Lewis, D.: "Counterfactuals"; Harvard University Press, Cambridge, Ma,, 1973.

Mann, William C., James A. Moore, and James A, Levin: "A Comprehension Model for Human Dialogue";
Proc IJCA15, 1977, pp 77-87.

McKeown, Kathleen R.: "Paraphrasing Using Given and New Information in a Question-Answer System";
Proc. 17th Annual Meeting, Ass'n for Computation Linguistics. 1979, pp 67-72.

Mo% R.: "Handling Complex Queries in a Distributed Data Base"; TN-170, Al Center, SRI International,,
October, 1979.

Nash-Webber, B.: "Semantic Interpretation Revisited", BBN report #3335, Bolt, Baranek, and Newman,
Cambridge, Ma., 1976.

Quine, .W.V.O.: "Reference and Modality"; in Reference and Modality, Leonard Linsky, Ed., Oxford,
, •Oxford University Press, 1971.

Sacerdoti, Earl D.: "Language Access to Distributed Data with Error Recovery", Proc IJCAIS, 1977, 196-202.

Teitelman, W.: "lntcrlisp Reference Manual"; Xerox PARC, Palo Alto, 1978,

Wiede.hold, G. and R. EI-Masri: "The Structural Model for Database Design"; Proceedings of the
International Conference on Entity- Relationship Approach to Systems Analysis and Design, North
Holland Press, December 1979, pp 247-267.

Wiederhold, G., S. J. Kaplan, D. Sagalowicz: "Research in Knowledge Base Management Systems"; ACM

SIGMO.) Record, Vol. 11, No. 3, April, 1981.

j-

Table of Contents

1. lr.toduction
2

2. The Problem
2

3. A More Fontnal Characterization
3

4. Description of the PIQUE System 5

4.1. Infcrrlng the user's view 5

4.2. Generating Candidate Updates 7

4.3. 'the selection of appropriate updates 9

4.4. Action Takcn
13

5, Examples of the system in operation 14

6. Conciusion
21

7. Bibliography
21

= I

