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DISCUSSION AND SUMMARY

The third meeting of the Coordinating Group on Modern Control Theory was
characterized by the broad range of subject imatter, including tank-hel{icopter
fire control and their microprocessor implementation, tactical missile guidance
and control, disturbance accommodation control, prediction-estimation design
and theory, Martin robustification of Kalman filters for heavy tailed non-
gaussian disturbances in monopulse radar tracking systems, credibility of
computer models, time-to-go algorithms for advanced guidance laws and stability
analysis for power systems.

Considerable interest was shown in the experience to date on the mic¢ro-
processor implementation of the fire control algorithms carried out by members
of the US Army Armament Research and Development Commard. The work of Professor
C. D. Johnson on disturbance accommodation control and applied by Dr. William
Keliy of the US Army Missile Command and Norman Coleman of US Army Armament
Research and Development Command clearly have broad applications to current
fire control activities in the Army. A very high degree of interest was
demonstrated by the concerns of Professor Naim Kheir of the University of
Alabama in Huntsville 1n his paper on credibility of computer models. The
Technical Committee on Model Credibility of the Society of Computer Simulation
have proposed adapting several measures to quantify how well a model matches
the performance of reality being modeled. The Theil inequality coefficient
(Tlcg was recommended for missile systems validation. Different measures of
credibility were proposed for a wide range of problems.

The work of Professor James Leathrum of Clemson University in developing
a design methodology for predictors in fire ccntrol sys®ms and the work of
Professor Nan Loh on generalized observers should prove to be significant
contributions to Army activities in improving weapon system effectiveness.
The results of ALPHATECH on disturbea recticle sight clearly demonstrate that
first order lead angle prediction is ineffective against manuevering targets
and that the disturbed rectile exhibited a significantly worse pointing
verformance than the stabilized sight.

Joe Craig of Adaptronics, Inc., provided promising resulis on trainable
adaptive learning network (ALN) guidance 1ines which are computationally
simple, uses only passive observables and can be realized using current
microprocessor capabilities. The paper by Captain Tom Riggs of the Air Force
Academy demonstrated that the time-to-go algorithm which uses range over range
rate for estimating time-to-go severely 1imited missile performance and that
the best performing algorithm is the simple closed form algorithm that forces
the command missile axial acceleraticn to be equal to the actual missile axial
acceleration.

The work done bty TASC and University of Pennsylvania on air defense fire
control (GLAADS) conrluded that Markov chains predictors offer noise immunity
over AR or ARIMA models and that modern control techniques in design cf AAA fire
control provided improvements in the performance and stabilization of the
weapon system.
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Work currently being pursued by the Naval Weapon Center at China Lake
on the application of robust statistics to monopulse radar trackers is
exciting and has the potential of significant improved performance in the
presence of heavy tailed non-gaussian notse.

Overall, the Chairman was pleased by the free exchange of information
and the strong fnteraction of participants. The Chairman at the close of
the meeting announced that the fourth meeting of the Coordinating Group on
Modern Control Theory wiil be held during the week of 25 October 1982 at
Oakland University. Rochester, Michfgan.

HERBERT E. COHEN
Chairman
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These proceedings have been produced in two parts to assure rapid
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Presented at the Third Meeting of the Coordinating Group on Modern
Control Theory, Huntsville, Alabama, October 1981

ANALYSIS OF TANK FIRE CONTROL SYSTEMS
BY OPTIMAL CONTROL THEORY*

By
Jonathan Korn
Scl W. Gully
David L. Kleinman
ALPHATECH, Inc.,
3 New England Executive Park
Burlington, Massachusetts 01803
and
Hal Burke
U.S. Army Materiel Systems Analysis Activity
Aberdeen Proving Ground, Maryland 21005

INTRODUCTION

The primary purpose of a fire control system (FCS) is to track and
control the firing at a moving (and possibly maneuvering) target.
Often, it is desired to include a gun leading mechanism in the FCS
in order to compensate for the fired projectile's time-of-flight
toward the moving target. Recently, a research effort in which
several fire control system designs were analyzed, was reported

in (1). The control designs, all of which include (first order)
lead-angle prediction capability, consisted of both disturbed
reticle (DR), and stabilized sight-director systems (SS). Two
major attributes distinguish a DR from a director-type SS system:
1. The lead predictor is included in the DR's visual loop, and

2. A gun-to-recticle crossfeed path exists in the DR system; thus,
coupling the gun dynamics into the visual loop. The director type
system, on the other hand, is disengaged from both predictor and
gun dynamics.

Since the human operator is an integral part of the FCS, it is
necessary that any performance analysis (tracking and gun-pointing
in particular) be approached with appropriate gunner modeling. In
this paper, the performance of two representative generic fire
control systems, a disturbed reticle and a stabilized sight-
director, is analyzed. The tool through which tlLese systems are
analyzed is the well known Optimal Control Model (OCM), (2)-(3).
The OCM is a nomative performance-oriented model of the human
operator engaged in a control task. In the case at hand, it is a
gunner performing a tracking task.

* This work was supported by Army Materiel Systems Analysis
Activity under Contract Number DAAK30-80-C-0075
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First, the dynamical properties of the two FC systems are dis-
cussed. A brief overview of the gunner's (optimal control) model
follows, and the performance measures employed in the analysis
are introduced. The frequency-and time-domain modeling approach,
and the ensuing modeling results are then discussed.

' DESCRIPTION GF THE FIRE CONTROL SYSTEMS

The modeling effort is iritiated by selecting representative

generic FC systems for the disturbed reticle and the stabilized

sight-director designs. In the following, the basic characteris-

tics of these systems are described. We begin with the disturbed
5 reticle design.

DISBURBED RETICLE (DR) SYSTEM

functions of tracking, target-coordinate estimation and predic-
tion, and gun pointing. In a disturbed reticle design, these
functions are intermixed in a complex dynamic interaction of the
gunner, sight, and gun turret. The idea of a disturbed reticle
fire control system is to automate the computation of the correct
lead for a constant velocity target.

;
f
i
E The purpose of a tank fire control system is to accomplish the
L

’ The physical behavior the the DR system is the following. The

] gunner, seated in the turret, rotates with the gun. He observes
* the target and reticle through his sight, and commands the rota-
tion of the gun with a hand control to keep the reticle on the 1
target. In constant velocity tracking, the rate of rotation of 1
the gun is proportional to the displacement of the hand controls.
Thus the hand control displacement should ideally be proportional
to the target angular rate, 6., if the gunner is successfully
keeping the reticle on the ta;get.

The mechanical hand control position is transferred to an elec-
trical output, u, which in turn acts as an input to the reticle
and turret subsystem. The turret servo_ should ideally cause the
gun to lead the target by an angle A _=Teo., where T is the pro-
jectile time-of-flight. This will ifisuré that it is possible to :
hit a target moving with a constant angular rate. In the ideal i
case of steady-state tracking of a constant angular velocity
target, the gunner does not perceive the lead but simply keeps the
reticle on the target.

i

The disturbed reticle design considered is mechanized with a turret
servo, a hand control filter, a reticle (sight) servo and a cross- :
feed. The hardware required to implement the disturbed reticle :
concept is shown in Fig. 1. The reticle is projected in the
gunner's line of sight by a movable beam splitter and mirror. 1In
addition, light from a light-emitting diode (LED) is reflected

Mkttt L




off this mirror into an optical sensor to provide a position
reference signal for the mirror servo. Since the lead screw
positi-ns the photosensor array, the (uncompensated) input to the
mirror servo is proportional to the lead screw angle, How-
ever, this input is modified by combining it with a sighﬁ; from
an electronic crossfeed. The resulting signal is used to command
the mirror servo which will null on the LED and position the
reticle n the gunner's line of sight. The lead screw tachometer
output and the command serve as inputs to simultaneously position
the gun at angle 0g-

The functional block diagrain representing this design (DR) is shown
. : in Fig. 2. The command u is applied to both the lead screw and
t gun turret servomechanisms. The lead screw servo is a position
L servo which deflects the optical sensor an amount Tu with respect
to the gun. The deflection is proportional to the rotation &
of the lead screw and is measured by a potentiometer. A tachb&eter
is used for stabilization and to develop a lead command to the gun

[ rate servo.

3 Fig. 1. Physical Fig. 2. Functional Diagram,
‘ Configuration, visturbed Reticle -
Disturbed Reticle Design (DR). ]
Design (DR). ;
The optical sensor picks up the deflected light angle and drives .

the mirror servo until the LED light is maximum. The mirror and
gun servos also respond to the crossfeed compensation. The gun
servo is rate compensated by gyro feedback. It is commanded by u
and the crossfeed network.
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The crossized network is central to the three individual servos in
two ways. First, it is an integral part of the gun servo compen-
sation network, and second, it provides crossfeeds to the mirror
servo loop to slow the mirror when the gun servo cannot keep up
with its command. This is seen by the following argument: when
the gun servo error is large, indicating gun lag, the crossfeed
signal is maximum and slows the mirror due to the negative sign.
This tends to diminxsh the nominal lead Tu. A simplified state
variable model (closed-loop) of the DR design is shown in Fig. 3.

o B

GUNNER e LLAD strvo/
FILTER PREDICIOR cF

TARGET
DRIVING
S IGNAL *

| A1 A 1;:‘:%4;]_.‘

1TuRKEY SERVO

e e i

Fig. 3. Disturbed Reticle Design, State Variable Model.

In this representation we include the gunner in the control loop.
Note that the (fast) optical sensor/mirror motor drive dynamics,
as well as the system's inherent nonlinearities (1), are neglegted
in the state space model and in the subsequent analysis. The
pertinent state variables are defined as rollows: 6, = target
commanded angle; eB = gunner's reticle (sight) angle; 6, =6 -8p =
tracking error; u = gunner's control signal; 6. = gun aﬁglz.

Some of the characteristics of this configuratgon are summarized

- ‘ be low.

e

1. The dynamics of the lead servomachanism are parameterized by

its time constant, 1; = .0l sec. The prediction time assumed is

T=2 sec. L ;
: 2. We explicitly include a lead servo tachometer gain K, for a

sensitivity analysis option as illustrated in the sequel. i

Nominally, K, = 1. ‘

- 3. The crosSfeed gain is taken as K_ = 1.1, following (1). i

4. We assume a second-order dynamic® for the gun turret as shown !

in Fig. 3. The turret servo gain is K.=10, resulting in a natural

frequency of w..=K,=10 rad/sec and a da$ping ratio of ¢=0.5.

5. The hand—cgnt;ol (lag-lead) filter is designed to resolve the

disparity between the fast sight dynamics and the slow gun turret

dynamics, and its function is to lower the lead-servo bandwidth.

-
-
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In the analysis that follows, the lag time-constant rI=1 secl,
and the lead time-constant ts=0.1 sec.¥

The gunner responding to the tracking error stimulus, generates
the control command u which drives the gun turret and the reticle.
Since the reticle angle 6_is subtracted from the target signal

the human, in effect,Rcontrols the system defined by the trans-

. Om,
P f&r function Tpr(s), viz.,
) eR(s)_ ass5+a43“+a3s3+a232+als+aos (1)
Tpr(8) = §Cey =
s(s3+KTs2+K 2s+KpKT2)('tIs+l)(th+l)

T

e e e B R

where the ay coefficients are function of the system

parameters ~(5). Substitution of the appropriate parameter values
: ' yields the poles locations at 0, -100, -1, -1.23, -4.4 + j8.4 and

4 zero locations at -.94, -1.39, -42.72, -3.6+ j7.1. A Bode plot of
T R(s) is given in Fig. 4 (the transfer function pertaining to the
Sg system, T S(s), is also shown, and will be discussed in the

subsequent séction).
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Fig. 4. Controlled Element Dynamics eR(s)/u(s).

It may be noted that the DR system has characteristics that close-
ly approximate a rate-system, throughout the entire frequency
range. This is not surprising, since the system's poles and zeros
(other than tbe pole at the origin) which lie within the gunner's
response ranfe, essentially cancel each other. We see, therefore,
that the direct effect of introducing the hand-control filter is
to reduce the bandwidth of the gunner-controlled element such that
it approximates a K/s-like system. Such a rate-system is a very
desirable (easy) system for mauual control. One must realize,

R

%This is an actual XM-1 Chrysler design (4). j
6 |




however, that tnis system represents only the visual-loop dynamics.
It will be shown in the sequel that the gun-pointing dynamics
result in a totally unsatisfactory point?ng performance.

STABILIZED-SIGHT DIRECTOR

The director type system structure is not as complex as the DR's,

S as the turret dynamics do not affect the gunner's visual loop.

1 The physical components of a generic stabilized sight-director
fire control system are illustrated in Fig. 5. Instead of the
three servos that comprise the disturbed reticle system the
stabilized sight employs two. The system uses a rate integrating
gyroscope on the sight to provide an inertial reference in the
azimuth axis. The azimuth sight gyro enables the effect of the
gun turret rotation to be removed from the dynamics of the sight.
This inertially stabilizes the sight so that it is independent of

{ turret motion. As a consequence, the performance of the sight

loop will be limited only by the ability of the human operator teo

track a target since the sight servo is several orders of magni-

] tude faster than the operator response. In the subsequent analysis,

the fast sight servo dynamics are neglected.

As indicated, the SS system consists of a two servo loops, one
driving the sight and the other driving the turret. These two
loops are each independently stabilized, both by rate integrating
gyros. The command from the sight servo loop to the gun servo
subsystem is used to pass target position information which is :
A used in computing the correct angle to point the gun. The coupling !
] from the gun servo to the sight servo loops locally references the ;
1 : sight servo to the gun and is due to the fact that the sight motor i
' moves relative to the turret. i

L
-

3 T g
; °'«QL"4 S [T BRI STy ™
- s Sqtent
NG
.1 - 8
:-l«;];Qu_\lgx, e, é;ﬁj— - SR . = :
R @ Jug] My e |
*. " oo 1 1 o]J'is] J 5 i
e oM i
; |
Fig.5. Physical Configurationm, Fig. 6. Block Diagrau,
Stabilized Sight. Stabilized Sight.
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A (linear) block diagram of the SS system is given in Fig. 6. As
shown in the figure the dynamic coupling of the turret motion to
the sight director is immediately removed by the gyro. The gunner
applies a signal to the gun sight servo. This signal is combined
with sight position and rate feedback and used to drive the sight
servo motor. In this figure 8p represents the inertial angle of
the reticle measured by a rate integrating gyro and 8. represents
? the inertial angle in which the gun is poiting. Note 'that there
b is no need to lead the reticle since the sight is independent of
tke gun angle; thus the sight angle and the reticle angle, Op»
are the same.

The lead angle computed by the system corresponds to Té, which
when added to 8, is the correct angle the gun should aift to hit

a constant velogity target. This signal is used to command the
%un servo lead. Angular position information from the rate
ntegrating gyros on the sight and gun are commanded as the

3 difference between the sign and gun angles. The lead command will
1 null itself when eF - eG = TeR.

T g e e e

Since we analyze in this paper the stabilized sight-director
concept, and not an existing system, we may choose arbitrary
dynamics for the visual loop. The appropriate choice is a rate
system, 1/s, so that any comparison between the SS and the DR
systems will be meaningful. A simplified block diagram of such
a system is shown in Fig. 7.

] P e JodE 5 T
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CONTROLLED e
ELEMENT PRED,
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TARGET L
i DRIVING | . c
S1GNAL (KT=)0) wT;lo r/s, ¢ = 0.% ;

Fig. 7. Stabilized Sight-Director System,
Here, the gunner's controlled element dynamics are simply.

Tgg(s) = & (2)

S i
1

(see Fig. 4), and the gun turret servo is represented by a second-
order underdamped system with characteristics similar to the DR's.

Thusfar, we have established the dynamics of the two generic i
FC systems, the performance of which we wish to analyze. 1In the '
following section we give a brief overview of the OCM, the main ;
analytical tool which is employed in the analysis. i
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OVERVIEW OF THE OCM

The Optimal Control Model (OCM) is well documented in the litera-
ture (2)-(3). A brief overview follows. Fig. 8 shows the structure
of the OCM. The sight dynamics, T,,(s) or T g(s), as well as any
other pertinent system states are ?gpresenteﬁ in state space form

x(t) = Ax(t)+bu(t)+Ew(t)+Fz(t) (3)
y(t) = Cx(t)+du(t)

where w(t) is a wnite-Gaussian disturbance with intensity W and
z(t) is a veterministic target trajectory. The displayed informa-
tion y(t) consists of tracking error e (t) and error-rate eE(t),
and may include other auxiliary variabfes and their rate of change.

DISTURBANCES
wit), sty

uit) SYSTEM DYNAMICS aln DISPLAY "
= Cavdy

e AxtbustusPy Y

T
_4

NFORMATION FI0CFSSOR
— . rstmr—

. A
! S wAcman] W e :
L Rl -—(P- L l<—- PREDICTOR|=1 g Teq 1 lneiav, 4—(:)-— ,-l-’

Iy b
]
ORSERVATION
NOlSE.v'(ﬂ

T

MOTOR
NOISE v (1)

I

L rJUMAN OPERATOR MODEL

Fig. 8. Optimal Control Model of Gunner Respouse.

The visual assumption in the OCM is that the human perceives a
delayed and noisy replica of y(t), viz.,
yp(t) = y(t-1) + vy(t-1) (4)

where the white-Gaussian observation noise vyi(t) of the i-th
indicator has covariance intensity

Vy; (8) = moy B{yice)) (5)
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In these equations t is the pilot's lumped time-delay, and Ovi is
the observation noise/signal ratio of yi(t). .

Given y_(t), the operator estimates the system state %(t-t) and
predictg the current state x(t). He then develops an optimal
control strategy by minimizing the quadratic cost functional

I = By (6)Qyy(6)+a 82 (e)} 6)

where Q_ = diag (q i) are the reiative weightings on the observa-
tions afd q. is th€'control-rate weighting*. Usually, the track-
ing error wEighting coefficient, qo, is non-zero, since the
objective is to minimize the obserged ervror. This strategy results
in the optimal control gains, L, arising from the pertinent steady-
state Riccati equation. With the inclusion of a motor noise,

v _(t), in the pilot's control, the optimal control, u(t), obeys

tHe equation

gt =Li+vu(t)=uc(t)+vu(t) (7

The parameter T, can be interpreted as a 'meuro-motor" time con-
stant. Usually, 1, is specified and q_ is adjusted accordingly,
as there is a one-to-one correspondencs betwefan the two.

The motor noise v, _(t) is assumed tu be white and Gausesian with
intensity thut ~cllles with the covariance of u(t),

V,(t) = mp cov {u(er] . (8)

Thie ccefficient p, represents the motor-noise/signal ratio.

Modeling efforts utilizing the OCM can be approached in either of
tv0 wavs:

1. s*teady-state mode, or

2. tiue-varying (nonstationary) mode,

In the steady-state mode z(t)=9, and the target input is modeled
by a stationary colored noise. The usual practice is to let the
disturbance w(t) be a white-Gaussian noise, and to augment the
system with the dynamics of a noise shapinyg filter that character-
izes the driving noise. The stationary approach is most suitable
for frequency domain analvsis of human response. The model equa-
tions are represented in the frequency domain, so that various
performance measures can be extracted. The model outputs include
any of several possible transfer functions associated with the
human, with the vehicle, or with the overall closed-luop system.
In addition, the performance scores (tracking error RMS values)
may be predicted.

—
It is assumed that the human seeks a control strategy that would
minimize control-rate rather than control.

10
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In the time-varying case, the target's profile is deterministic,
i.e., 2(t)#¥0 and w(t)=0. This modeling technique usually involves
a comparison of experimental data time-histories (first-and second-
order statistics) with the model-predicted ones. It is required,
therefore, to develop the process mean and covariance propagation
equations which arise from the non-random component z(t) that
drives the system. These equations, as well as the frequency

P domain equations, have been thoroughly documented in the litera-

E ture, e.g. (2)-(3). Next, we aralyze the control performance of

| the two gunner/FC systems. The analysis is performed in both

} frequency- and time-domain by employing the appropriate OCM

; techniques.

FREQUENCY-DOMAIN PERFORMANCE ANALYSIS

1 In this section we develop the frequency domain model for target
3 : tracking. First the statistical properties of the maneuvering

‘ target are determined. Next we obtain the overall system state
space epresentation, which includes the target, the sight, and
the gun dynamics. Finally we define frequency domain measures
(metrics) for the fire control system performance evaluation and
comparison.

TARGET EXCITATION SIGNAL

3 ' It is assumed that the target is an enemy tank that maneuvers

3 : towards the gunner in an avoidance path. It is also assumed that

2 the target range is large enough to be taken as constant. There- 1
: fore, the only target-related variable of interest is the target's

lateral displacement, or equivalently, the target's sight angle,

8.,,(t). We assume that the target angle, 6..(t), is a second-order

Markov process driven by white Gaussian Eoise, w(t), with an

intensity of W. This assumption is practical and sufficient for

| ' our modeling effort. The noise-coloring process is assumed to be

; a butterworth filter with bandwidth w_=0.5 rad/sec. We obtain,

3 _ therefore, the differential equation Por target motion,

8 (t) + 2gu do(t) + w2 0n(t) = w2 w(t) (9 ?
where ¢ = 1«[2_, and the resulting target signal power spectral
density is

wtW ‘
_n (10) !
dple) = Fuggr

The appropriate target signal power value is selected as i

= = 2
E{e%(t)} 0p2pms = 16 mrad (11)

n




i.e., 8 .o = 4 mrad. This selection dictates the power of
8 rms’ ah®%it can be shown that for a butterworth filter,

eT,rms = ”neT,rms (12)

Therefore, since w_ = 0.5 rad/sec, we obtain § r =2 mrad/sec.

: 1f we further assufle that the (~constant) rangz: RE2000 meters,

] we obtain an equivalent target RMS lateral displacement and
velocity (Re and Re@ rrespectively) of 8 meters and
4 meters/secgnﬁTSrespectrv£T§. These displacement, velocity, .
range, and bandwith values compare well with the Hardison tracking

: test simulations reported in (4). (Actually, any one of these

: four parameters is determined by the other three.)

MODEL DEVELOPMENT

The OCM structure requires a state-space form of the controlled
element/target dynamics. Table 1 defines the state variables
for the DR and SS systems.

TABLE 1. STATE VARIABLES FOR THE DR and SS SYSTEMS

X] Xy X X, Xg X x4 Xg
: DR op 6p Lead HC 9 6G Input Signal to op
3 Servo Filter Turret Servo LPF
1 ' Angle Signal
; : SS ey 6p 8p 0g 6y -~ -~ --

One may notice that x,=6, and X.=6. in the SS system are unobser-
vable status. They are gncludea sg that predictions can be made

of the gun motion.

The displayed information in all systems is, of course, the tracking

Ce error, 6.(t), but the gunner extracts rate information, (t), as
weli. THe observation set is, therefore, y‘=[eE 8 ThE state
equations for the two systems can now be easily derived, and are |
given elsewhere (5). The system parameter values are listed in i
a previous section. For the gunner we select the OCM nominal .
parameter values: p =-25db; p__=p 2=-20db; 1N=.15 sec; t=.2 sec. ;
The cost functional Used is yry !
J(w) = E{sZ(t) + q a2(e)} (13) "
where q, is uniquely determined by the neuromotor time constant,
™
{
12
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FREQUENCY DOMAIN MEASURES

Thelfoilowing frequency domain metrics are used in the performance
analysis.

1. Gunner Describing Function, H(s)(ma%nitude and phase) — This
transfer function conceivably can be calculated from field (or
simulation) data. It is defined, relative to the given input
disturbance, w(s)¥*, as the ratio of the transfer function between
input u and noise w to the transfer function between output O

and noise w. Thus, assuming negative feedback

H(s) =- gEss/sts : (14)

or conceptually,

'S
H(s) = - gE 2 (15)

2. (Circulatory Transfer Function, 0(s) (from 8, back to 8

signal) - This is a rather complex, but quite iﬁportant trgnsfer
function. For single indicator/display system it is equal to the
single-axis Y_Y (human-vehicle open-loop) found in the early man-
machine literBtfire (6). For multiloop systems it is equivalent to
an ''outer-loop'" describing function. It is defined as follows.

In the closed-loop system we open the loop at a given indicator
containing position information and rate information (BE,e in the
case at hand). The loop transfer function, starting at thE
indicator ¢, going through the human, the vehicle (slight/gun) and
ending at 6, is 0(s). Quantities such as gain and phase margins,
as well as Eoop bandwidth are obtained.

In the context of this stability metric, we investigate the
robustness of the disturbed reticle system to sight tachometer,
Ky, failures(in the stabilized sight-director the predictor sub-
s§stem is out of the visual loop, and, therefore, failures of the
tachometer have no effect on the loop stability). The underlying
assumption in this analysis is that the gunner cannot adapt
instantaneously to sudden failures in the sight tachometer. and
his describing function, H(s), remains tuned to the old system,
for which K,=1. We then compute O0(s) which is comprised now of
the "old" g&nner model and the 'mew'" (degraded) system.

3. RMS values (scores) of the tracking error, 6.(t) — This metri~
is a measure of the gunner's tracking performanc&€. We do not
analyze the pointing performance of the FC systems in the frequency

*®
"We recognize that w(t) does not strictly have Laplace transform.
This is not a problem since it '"falls out'" in the compution of

H(s).
) 13
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domain, since it involves signals at different times (the pointing
error is defined as 8,.(t+T)-6,(t), where T is the projectile's
time-of-fliyht; also gee subsgquent section), and the OCM steady-
state analysis can treat events at time t only. The pointing per-
formance is addressed in the subsequent time-domain analysis.

FREQUENCY DOMAIN MODELING RESULTS

The modeling results are summarized in Figures 9 through 1l1.
These results are discussed below.

1. Gunner Transfer Function — Figure 9 shows the magnitude and
phase of H(s) for the two FC systems. The difference between the
DR and the SS are relatively minor, as the visual loop dynamics
in the two systems are almost identical (see Fig. 4). What is
displayed in Fig. 9 is a typical human operator transfer function
controlling a rate-like system.

-

? :\\'4

Vet ey et

(A)  ACNDTUDE () P-asE

Fig. 9. Gunner Transfer Function, H(s).

2. Open-Loop Transfer Function — First we examine the loop
(circulatory) transfer function, 0(s), for the two FCs under
nominal conditions. It was found that both DR and SS systems
resulted in similar O(s) transfer functions in the nominal case.
For that reason, only the DR's circulatory transfer function is
shown in Fig. 10. The 0(s) function for the SS can be assumed to
be the same. The gain and phase margins are comparable ( 6-7 dB
and 40°, respectively). Next we assume that the sight tachometer
gain in the DR system is abruptly halved, i.e., K,=.5. The re-
sulting open-loop transfer function changes dramagically as
evidenced by Fig. 11. 1t is clear that if the gunner fails to
adapt to the new conditions (which is assumed to be the case
under normal circumstances) the closed-loop DR system becomes
unstable. 1In the stabilized sight-director, on the other hand,
such danger is nonexistent, since the lead prediction loop is
disengaged from the sight dynamics. The only effect of a

14
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tachometer failure in the SS system is a degraded pointing per-
‘ formance, while all stability margins are maintained at their
: ‘ original levels.
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3. RMS of Tracking Error (Scores) — The OCM predicted scores for
the DR and the SS systems, given the hypotesized target dynamics,
are 0.50 and 0.53 mrads, respectively.
same order as those reported in (4).

tracking performance between the two systems is insignificant.
This result could be expected since both systems have almost

identical visual loop dynamics.

These scores are of the
Thus, the difference in the

Next we analyze the FC system's performance in the time-domain,
where more significant differences are uncovered.

TIME-DOMAIN PERFORMANCE ANALYSIS

TARGET MANEUVER

In contrast to the frequencey domain analysis, the target tra-
¢ jectory now is assumed to be "deterministic'".
the differences between the two FCs and to evaluate their lead
prediction capabilities, it was required to design a target maneu-
. ver with appreciable acceleration levels.
which maneuvers toward the gunner at an approximate range of R=750

We assume a target

The maneuver begins at t=1 sec and ends at t=13 sec, at

which point the target continues its movement with a constant

The assumed trajectory is shown in Fig. 12.
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Following (1), we assume a generalized Poisson-like tangential and
radial target acceleraticns. Since the range assumed is effectively
"constant'", the gunner tracks only the target's lateral motion.
Therefore, the only relevant quantity for the modeling effort is
the target (resultant) lateral acceleration, z(t). This accelera-
tion is expressed in mrad/sec? and its profile is shown in Fig. 13.

. A more detailed description of this target intentional maneuver is
given in (5).
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3 Fig. 12. Representative Fig. 13. Resultant Lateral
Target Trajectory. Accelerationm.

MODEL DEVELOPMENT

The DR and the SS systems are of course unchanged, and we use the
states variables which were defined previously. The state equa-
tions are unchanged except for the target dynamics (first and
second state variables), which are now

= z(t) (16)

Xl = X2, x2

The z(t) component is modeled in the OCM's Kalman Filter (Fig. 8)
as a ''pseudo’ white-noise with the intensity

Wy(e) = ZTsz(t) , (17)

where 1. = 1 sec, and is interpreted as the correlation time of ‘
the z(ty process. All OCM parameters as well as the cost func- !
tional J(u) (13) remain unchanged. ;

TIME-DOMAIN MEASURES

Applying the target driving acceleration, z(t), the ensemble mean
and covariance equations of the closed-loop system are propagated.

16
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It is possible, then, to obtain time-histories (first and second
order ensemble statistics) of the various signals in the control
loop. In the present analysis we compare the following time-
histories, obtained for the two FC systems.
1. Tracking Error, (t) — Based upon the similarity of the

: tracking loop dynamlcg and the frequency -domain results, no
significant differences are expected 1n tracklng performance
2. "First-order' gun pointing error, rg 1(t) ~ This quantity is
defined as

T me e s  ae ee s

DR

eTGl(t) = op(t) + TéT(t) - 8g(t) . (18)

< P -

Usually, one is interested in the tracking error, (t), statis-

tics, as this is a fundamental measure in any track?ng performance

modeling effort. In the case at hand, we are also concerned with

the evaluation of the dynamic propertles of the two FC systems.

The quantity 6.,.!(t) is an excellent metric for such evaluation for

the following T€ason: 1If we replaced the turret-servo second-order

dynamics with a unity gain (i.e., +»), and if we assumed that the
. gunner tracks perfectly (1 e. (t; then, for constant velo-

3 city targets, (t) = e t)+Te (E 51mply because of the fact

: that a first—orger lead?t redchor is employed in each of the FC

{ systems Therefore, by evaluatlng the "first-order" pointing-

T T
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error, I(t), we ellmlnate the pointing errors which are intro-

duced by Ehe inability of the first-order predlctor to account for
maneuvering (accelerating) targets. The signal 8,.!(t) merely

reflects the effect of the tracking error on the ggn output, and, 1
more importantly it is a measure of the dynamic response of the 3
- FC systems at hand.

- 3. Total gun-pointing error, eTG(t) — This angle is defined as

0pg(t) = 8 (t+T) - 6.(t) (19)

and it reflects the total pointing error between the target at
T(=2 sec) ahead and the present gun pointing angle. This quantity
is a measure of the predictor's performance rather than the FC ,
system's. In this sense, the statistical analysis of e (t) is a i
prelude to any future research effort on improving lead- gngle pre-~
diction mechanisms.

MODELING RESULTS ]

The modeling results are summarized in Figs. 14 through 16.
1. Figure 14 shows the tracking error statistics for the two sys- 1
tems. Shown are (a) ensemble mean, 6.(t), and (b) ensemble standard ]
deviation, o.(t). As expected, large transients are evident in !
the vicinity 'of t~2 sec and t~8 sec, as the largest acceleration
peaks occur at these times. The error mean and variance values

are comparable to the results reported in (4). No significant

differences in tracking performance are detected between the SS

17




and the DR systems, because of the similarity of the visual-loop
dynamics. Any conclusions from these results, however, may be
misleading as now shown.

2. Figure 15 shows the "first order" pointing error results. It
is clear that the DR system (which represents the actual Chrysler
design) exhibits the largest pointing error mean, while its stan-
dard deviation ¢ G‘(t), is actually the smallest. The physical
interpretation o? this result is that the DR's gun response is

i sluggish and exhibits a remarably small variability by filtering
§ out high frequency variations. Since the tracking error (6;) for
f the DR is actually the smallest, it is clear that the DR's Ensatis-
factory pointing performance is due to its sluggish dynamics,
induced by the hand control filter. It is unfortunate that good
tracking performance has been achieved at the expense of poor
pointing performance.
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1 ) (1) siiaRb DLviation, % (t) (b} STANDARD DEVIATION, 'TG.‘:) = el

Fig. 14 Tracking Error Ensemble Fig. 15 "First-Order Gun Point-
Statistics ing Error Statistics

3. Figure 16 shows the ensemble statistics of the actual point-
ing angle eTg(t). The standard deviation, oTG(t), is not shown

since it is the same as in Fig. 15.
MRAD

.18
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w

L SEC i

Fig. 16 Total Pointing Error Ensemble Mean !
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Two observations are quite obvious:

1. The pointing error and covarisnce levels are extremely large
{nver 20. mrad at one point) and reflect the failure of the first-
order lead predictor to handle accelerating targets.

2. The DR exhibits a significantly worse pointing performance
than the SS. The larger and longer persisting errors i-: the DR
system are accorded to the sluggish gun response, whici: results
from the introduction of the hand-control filter.

T T s e L

CONCLUSIONS

7T R e,

: i This paper documents partial results. of a research effort to
i ' develop analytical techniques for evaluating tank fire control
: systems, and to apply the techniques to evaluate existing (dis-
: turbed reticle) and proposed (stabilized sight-director) fire
: control system mechanizations. The technique through which the
3 ’ two FC systems are analyzed is the Optimal Contrcl Model (OCM)
‘ : of human response. This modeling approach includes the gunner in
the closed-loop, i.e., it considers the gunner-operator as an
integral part of the FCS. The modeling results uncover some of
the weaknesses of the disturbed reticle system. 1In particular,
it is shown that under certain conditions the DR becomes dynamic-
ally unstable and, in general, its gun-pointing performance is
unsatisfactory. In addition, it is shown that first-order lead-
-, , angle prediction is inappropriate in engagements involving

N maneuvering targets. Thus, a higher order predictor is necessary.
: This, however, is a subject of future research efforts.
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1 : ABSTRACT

A class of general structured discrete-time deterministic observers 1is
developed. The one-step predicting or Luenberger observers and a class of
current-update observers may be obtained from this class of general structured
observers. Interesting relationships and important properties among various
full-order observers are established. Optimal discrete-time observers are
2 then developed, and it is shown that these optimal observers are structually
' and numerically equivalent to various forms of Kalman-Bucy filters.

T S
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1. INTRODUCTION

_ As 1is well known, the development and applications of filters and
‘ observers for stochastic and deterministic systems have dominated the
: literature for almost two decades, [1-20]. Among the most well-known
techniques for estimating the state of a system are the stochastic Kalman-Bucy
1 filters {1-4] and the deterministic Luenberger observers [5-8]. It is also
1 ' well known [10,13,14] that an equivalence between the one-step predicting
E' . Kalman-Bucy filter and the full-order Luenberger observer can be established
for a certain choice of observer gain. However, relationship between the
various forms of Kalman-Bucy filters and other possible forms of deterministic
observers which may provide additional insight into observer theory are
obscure.
The main purpose of this paper is two fold. The first objective is to
present a class of general structured discrete-time deterministic observers.
. The one-step predicting or Luenberger observers [5-8] and a class of
current-update observers may be obtained from this class of general structured
observers. Interesting properties among various forms of observers are
established and it 1is shown that the one-step predicting or Luenberger
observers and the current-update observers may be related via a set of
time-update and measurement-update equations. The second objective 1is to
develop a set of optimal gains for the class of general structured observers.
The optimal gains are then used to establish a useful relationship between the
optimal deterministic observers and the various forms of Kalman-Bucy filters.

A it e i 4 .
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The organization of the paper is as follows. Section 2 ot the paper
presents the development of the class of general structured aiscreta=cime
deterministic observers. Section 3 describes the relationship among various
forms of full-order discrete-time deterministic observers. Cptimal
deterministic observers are derived in Section 4 using the notion of gradient
matrices [21-24], In Section 5, a wuseful equivalence between optimal
full-order observers and the steady~state or time-invariant Kalman-Bucy
filters is established. Throughout the paper, the notation, z(i[j), will be

' used to denote the value of z of a dynamical equation at the discrete instant
of time i updated by utilizing the meesurements up to the instant of time j.

B T u——

2. DISCRETE-TIME DETERMINISTIC QBSERVERS

Consider a deterministic dynamical system described by

¥(k+1) = Ax(k) + Bu(k) , =x(0) = x,, (1a)

y(k) = cx(x), (1b)

] . where x(k)eRM, ulk) eRY, y(k)eR®, =x,eR" is arbitrary, and 4, B, C are
4 constant matrices cf compatible dimensions. With no loss of generality, it is 3

assumed that rank(C] ® m. In general, m<n so that the complete state x(k)
cannot be uniquely determined from the output relation (1b) alone. however,
subject to the observability or detectability of (1), an estimate of x(k) can
be genersted using an observer.

) In this section, the development of a general class of discrete—time ;
. ’ deterministic observers is investigated. Hence consider a general class of
‘ systems having the following structure: 3

2(k*+1[k*+1) = Fz(k|k) *+ Gy(k+l) + Gy(k) *+ Hulk), (2a)
z(0[0) = 2, (2b)
x(k|k) = Pz(x|k) + Vy(), (2¢)

where z(k|k) €R? with q being_the dimension to be determined, 1z, is an
arbitrary initial condition, F, G, G, H, P, and V are dimensionally compatible

constant matrices to be determined, rank(P] = q, and x(k|k)gR? is the output |

of (2). |
{
Definition 1: System (2) is said to be a general structurea observer for (1) ]
if ;
lim [x(k]k) - x()] = 0. (3) j

Ik == :
: |

Define estimation error vectors as
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e, (ki) 8 2(klK) - Txtk), )

ex(kk) ¢ x(k|k) = x(k), (4b)

where T €RAXD {g to be determined; and whereby

P lim ezlk|k) = 0, (Sa)
;' kv

§

; lin e (k|k) = 0, (5b)
z s

imply that z(k|k) estimates Tx(k) and x(k|k) estimates x(k).

From (1), (2) and (4), it is straightforward to show that

e, (k*1]k+1) = Fey(k|k) + (FT+GCA+GC-TA)x(k)+(H-TB+GCB)u(k), (6a)
ez(OIO) = z(0) - Tx(0), (6b)

e (k|k) = Pe (k|k) + (PT+VC-I )x(K). (oc) j

4 n 1

The following theorem gRoverns the existence of & general structured observer :
given by (2). i

1 Theorem 1: Suppose (1) is completely observable ana completely reachale. 1
' Then (2) is a general structured observer for (1) if anma only if the following ]

conditions are satisfied:

é (a) lli[Fl{<1, 1™ 1l,e0s, m, (n
. (b)  FI + GC + GCA = 1A, (8)
(¢) H=TB - GCB, €

(d) PT + VC = I, (10)

where 1;[*] denotes the i-th eigenvalue of [*].

e i bt bt il f
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Proof: See Appendix A.

Remgrk 1: If (1) is completely observable and stabilizsble but not completely
reachable, then (7)=(1C) in Theorem 1 are only a set of sufficient conditions
for the existence of observer (2). This conclusion follows fromw the proof of
Theorem 1 where condition (b) may not be always necessary when (1) is only
i ! stabilizable.
i A
In the sequel, two subclasses of the general structurea observers given by
(2) are described, nsmely, the gcurrent-update observer and the gone-step
predicting! or Luenberger observer [5-8]. A current-update observer takes
E : the form

2(k+1k+1) = Fz(k|k) + Gy(k+1) + Hu(k), (11a)
z(0[0) = 2, (11b)
‘ x(k|k) = Palk|k) + Vy(k), (1le)

3 where (11) stems from (2) with G = 0. The term "current update" is usea to
stress the fact that cthe most current measurement y(k+l) is utilized for
updating the stste 2(k |k) of the dynamical equation (lla). The tollowing
corollary follows from Theorem 1.

Corollary 1: Suppose (1) is completely observable and reachable. Then (1l)
is a current~update observer for (1) if and only if 1

i (a) IN(FII<, £= 1,000, m, (12) 3
(b) FT + GCA = TA, (13)
(e) H = 1B - GCB, (14) :
(d) PT + VC = L. (15) ]
A

On the other hand, setting G = 0 in (2) yields the ome-step predicting or ]
Luenberger observers, having the form [5-8],

2(k+1 k) = Fz(kl|k-1) + éy(k) + Hutk), (1le6a)
z(0[-1) = z,, (16b) 3
x(kik=1) = Pzlk|k=1) + Vy(k), (lec) i

L See Remark 3.
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where the notatiors z(k*llk) and x(k*l[k)are used to emphasis the fact that
(16) is updated by a one-step previous measurement or that (16a) is a one-step
prediction algorithm, and 2z, if an arbitrary initial condition. Simiiarly,
Theorem 1 reduces to the following well known result {5-8} when ¢ = C.

Corollary 2: Suppose (1) is completely observable and reachable. lhen (16)
' is a one-step predicting or Luenberger observer for (1) if and only if

e

g (a) A{{Fll<l, i = 1,000, n, 7
t ; (b) FT + GC = TA, (18)
fE . | (e) H=TB, (19)
1 (d) PT + VC = I.. (io)
) A

Remark 2: The matrices ¥ and G in (16a) may be shown to be given by

3 : F=TAP + U) - (LT + U0 [ T ¥

: , (21)

; ’ L ¢

i G-TAV+u2-(u1'r+u2c)rr'#

: , (22) 1
L ¢ ]

where U] €RAXM  and Lo e RAXD  are arbitrary constant matrices and [ » |¥#

denotes the psendo-inverse [25,26] of { *].

3. RELATIONSHIPS AMONG FULL-ORDER DI1SCRETR-1IME
DETERMINISTIC OBSERVERS

In Section 2, the general structured observer described by (2), the
current-update observer described by (11) and the one-step predicting or
Luenberger observer described by (16) are all of order q where q<n. In this
section, full-order general structured, current-update and one—~step predicting
or Luenberger observers with a®n will be considered. The objective is to
study the various interesting relationships and important properties of these
full-order observers. Furthermore, the relationship between the tull-order
observers developea in this section and the Kalman-Bucy filter will be
investigated in section 5, where it will be shown that s deterministic
full-order observer can become a Kalman-bucy filter wunder suitable
conditions. The general structured observer described by (2) is theretore of
fundamertal and practical importance.

oo o o L e 5 B S el e o

To proceed, let T = I, P = I, and V * O, then Theorem 1 yields a
full-order general structured observer of the form

25
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x(k*11k*1) = (A = GC ~ GCA)x(k|k) + Gy(k+l) + Gy(k)

+ (B ~ GCB)ulk)

= ax(k|k) + Bulk) *+ G{ylk+1) - Cax(k]k) = CBulk)]
S + Gly(k) = extilw)], (23a)
x(0]0) = z4. (23b)
7 : Setting G = 0 in (23) establishes a full-order curgent-updgte obseyxver (see
' * 8--9])
3 also (1 ]
w(ktlk+1) = (A = GCA)x(k [k) + Gy(k+1) + (B = GUB)ulk)

= Ax(k|k) + Bu(k) + G[y(k+l) = CAx(kl|k) = CBulk)], (24a)

x(0{0) = 24 ; (24b)

while setting G = 0 in (23) results in & full-order one-step predicting or
Luenberger observer [5-7]

A x(k+1/ k) = (& - GC)x(k|k=1) + Gy(k) *+ Bu(k)
] = Ax(k[k=1) + Bu(k) + G[y(k) - Cxlk|x=-1)], (25a)

x(0]-1) = %, (25b)

where the notation x(k+l|k) is used to emphasize that (25) is a one-step
prediction algorithm.

Remark 3: Equation (24) has the form of a Kalman-Bucy true filter while (25)
has the form of a Kalman-Bucy one-step predicting filter, (1-4]; hence, th:2
Luenberger observer described by (25) has also been referred to as a one-ste
predicting observer in this paper. Algo, it is observed that (24) and (25
can respectively be obtained from Corollsries 1 and 2 with 1=I,, P=l; and
V=0. Furthermore, (25) can be derived from Remark 1 with Uy=-Uju.

Now the estimation errors sssociated with (23), (24) and (25) may be shown
to be given by, respectively,

[OESERRTEY NRO . SN

exlk+l [k*1) = (4 = GC = GCA)ey(k |k)
= A ={{G!G] [ c] te (k k), (26a)

CA
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, 0,00[0) = xg=zg ; (26b)
e (k*1k*l) = (A = GCA)ey(k k), (27a)
3 ex(0|0) ® Xo=Zg} (27%)
E ex(k*1]k) = (A = GC)ey(k|k-1), (28a)

ex(0]-1) = x5 7, (28b)

Since it is desired that the estimation errors gzven by (26), (27) and (28) be
made to approach the origin asymptotically, the gain matrices G and G must be
chosen such that (A - GC - GCA), (A - GCA), and (A - GC) are asymptotically
stable, It follows that the stab111:xea of the three matrices are closely
related. The concept of observability and detectability [27-29] is useful and
3 the following lemmea is cf importance.

Lemms [:

(a=1) The pair [A, C] is completely observable if and only if the pair
[A, (C'iA'C")'] is completely observable. Furthermore, if the
observability index of [A, C] is ng, then the observability
index of [a, (C'{A'C')'] is ng-l.

had ek e
g

(a=2) The pexr (A, C] is completely detectable if and only if j
{A, (C'!A'C')'] is completely detectatle.

(b=1) If A is nonsingular, then [A, C] is completely observable it and
only if [A, CA] is completely observable.

(b=2) If A is singular and the pair (A, C] is completely observable,
then the pair [A, CA] is completely detectable.

(b=3) 1f the pair [A,C] is completely detectable, then the pair [A,CA]
is completely detectable. A

Hence it is clear from Lemma 1 that depending .on the observability or ;
detectability of the pair [A,C], constant matrices G and G can be found such i
chat | A;(A-Gc-GCA) <1, [A;(A-GCA)[<1  and [Aja<do)l<1,  for  all @
i‘l,Z,...,n.

: A further wuseful vrelatiounship between the full=order current=—update
observer (24) and the one-step predicting or Luenberger observer (25) may be
establigshed via a pair of well knowrn time-update and measur=ment-update
equations [23]. Usinr the dynamics of system (1), a time-update or predictiom
algorithm may be defined as

20 & Al + Butw), (29a)
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x(0]0) = z,, (29b)

where x(k+l|k) is a one-step predicted estimate. With this defimition, the
current ~update observer (24) can be written as

: x(k+1 [k*1) = x(k+1k) + Gly(k+l) - cx(k+llk)], (30a)
f %(0|-1) = Z_, (30b)
|
1 vhere (30) is a measurement-update equation (3]. Substituting (30) into (29)
] yields
x(k+1 k) = AX(k|k=1) + Bu(k) + AG[y(k) - Cx(k|k=1)1, (3la)
x(0]-1) = Eo , (31b)

3 where (31) has the structure of the one-step predicting or Luenberger observer i
(25). It is clear that if the gain G of (25) is chosen as A

G = AG, (32)
then (25) and (31) describe the same estimate, i.e.,
x(k [k=1) = x(k|k~1). (33)

3 : Maintaining G ® AG, it can be shown that?

(A -GCal = A (A - GCl, i®1,¢ex, mne (34)

It then follows that the stabilities and the convergence properties of the .
estimation errors of the full-order current~update and oune-step predicting or f
Luenberger <(bservers are equivalent. It is further remarked that the ;
relationship G ®* AG also turns out to be a natural consequence of a set ot ;

~ :
-

optimal gains for G and G as will be pointed out in Section 5.

2Observe that Xi[MN} = \i[NM], where M and N are square matrices.
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4. OPTIMAL DETERMINISTIC DISCRETE-TIME OBSERVERS

Constructions of optimal observer gains for the various full-order
observers is given in this section. These optimal gains will be used in the
next section to obtain a set of .ptimal deterministic observers which is
structurally and numerically equival ‘nt to a corresponding set of Kalman-Bucy
filters. To achieve these objectives, an appropiate performance measure will

be chosen.

S —

. Consider the estimation error equation given by (26) for the general
h structured observer, and consider the performance mear :re

? e;(klk)Wex(klk)
k=0

{4
n

o ~ 1] -~
= I e'(0lo)(a - Gc - 6cA) *w(a - G - cea)¥e (010)
k=0 X X

ne

) e)'((OlO)Xex(OIO), (35)

where W is an nxr symmetric positive-definite weighting matrix, and X is an
rXn symmetric matrix given by

(A - GC - GCA)'kW(A - Gu - GLA). (26)
0

X =

n 18

k

It follows from Lemma 1 that if [A, C] is completely observable ar completely
detectable, then [A,(C'iA'C')'] 1is completely_ observable or completely
detectable, vespectively, so that there exist G and C matrices such that
(A - GC ~ GCA) is asymptotically stable. The asymptotic stability ot
(A - GC ~ GCA) ensures that X given by (36) exists and therefore J; is
finite for finite ex(0|0)' Furthermore, since W is positive~definite, it |
follows that X is positive-definite as way be seen from

X=Ww+ I (A-GC- GCA)'kKWw(A - GC - GCAYK, (37)
k=1

Also it can easily be shown that X satisfies

X =(A - GC - GCA)'"X(A ~ GC - GUA) + W, (38)

Now since J) given by (35) is explicitly dependent on the generally
unknown initial estimation error ex(0r0), minimization of J; will give
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rise to optimal geins which are dependent on the unknown initial condition
e (0]C). This difficulty may be alleviated by assuming that ex(OIO) is a

random vector with arbitrary constant covariance given by
E[ex(olo)e;(olo)J =Y, (39)

where Y is an unxn positive-semidefinite matrix. An alternate performauce
measure is then given by

Ve e a e e

Jp = trlXY], (40)

! where tr{°‘] deuotes the trace of [(°*]. To accomplish the developwent of
' general struciured observers which are structurally and numerically equivalent
to tbe Kalman-Bucy filters, let the arbitrary coveriance matrix Y be taken as

Y=Q+ 6R16' + zec' -Z;Ni -Nlé'-GNé-N2G| N (41)

T A A ] G TR R g e T [
. ;!

where Q@ is an nxn positive-semidefinite matrix, K; &nd Ky are mxm
positive~definite meatrices and N; and Ny are nxm matrices, to be assigned
such that QuQ) & Q=M RTIN'}-NsR3INY is positive-semidefinite.

The constrained optimizetion problem posed by (3€) and .(402 may be
reformulsted as an unconstrained optimization problem by minimizing, with

respect to é, G, X and I, the Lagrangian

| J = er{XY+(A - GC - GCA)'X(A - GC - GCA) + W - X] £} (42)

where L is an nxn Lagrange mulciplier matrix. :

S Using the notion of gradient matrices [21-24], the necessary conditions
‘ for an extremum are given by

et ke

aJ: aJs aJ- 5 -a_“l- it :I

;E> 0 , Fg=0 o Y~ 0 s&end 3IF=0 . (43) ?

:

The following lemma will be used to evaluate the gradient with respect tc 4

a symmetric matrix and the associated extremum conditions in (43).

Lemma 2: Consider

£ = ¢tr(az] , (44)

B
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where A is an nxn arbitrary matrix and & is an nxn symmetric matrix. Then [24]
3f ! .
g " AtA -diag (4] (45)

where diag [A] = diag { a1}, 822y s+, apg} s, with ajj being the diagonal

, ]
elements of A. Furthermore, if A is also symmetric, then 3% = (0 if

and only if A=0. .

Agsuming that X and 2 are symmetric, evaluation of the gradient matrices
in (43) yields

0 = 2X[G(CIC'+R)) =~ AIC' + GCAIC'-N,] (46)
0 = 2X[G(CAZA'C+Ry) —- AZA'C' + GCIA'C'-N,] (47)
0= Y + (A-GC~GCA)B(£=GC-GCA)' -L, (48)
0 = (A-GC-GCA) 'X(A-GC-GCA) + W-X, (49)
where Lemma 2 has been applied to obtain (48) and (49).
It is noted that in the literature, such as [16, 17, 21}, little

Remark &4:
attempt hss been made to explain the evaluation of gradients with respect to

symmetric matrices, although, in general, correct results are given. A

The above results mway be summarizea in the form ot a theorem (see also
Lemma 1) as follows:

Theorem 2: Suppose (1) is completely observable or completely detectable.
Let Q, Ry, R, N and Ny be the weighting wmatrices satisfying the
conditions specified for (41). Then the optimal full-order gemeral structurea
observer for (1) in the sense of minimizing the pertormance measure

- ot '--‘.'- ~_ v o '
J = tr(X(Q + GR,G" + GR,G Gy - NG - GNy - NG )] (50)
subject to the algebraic constraint
X = (A -GC - GCA)' X (A - GC - GCA) + W, (51)
is given by
x(k+1lk*1) = (A-GFC-G*CA) x(klk) + G¥y(k+1) + Cky(k) + (B-G*CB)ulk), (52a)
(52b)

x(0]0) = z,

where W is asymmetric positive-definite weighting mastrix, and

k)|

—y ——— e e e,
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[G* | G*] = (ATC'+¥ fATA'C'HY) | [eu(ct fate) + [Ry 0 -1
CA 0w, (53)

with . being the symmetric positive-definite solution of the algebraic
Riccati equation

; = AZA' + Q - (AZC'+N, | ATA'C'N,) [(‘:\]z(c' tA'T) + [R, O] TCazc'+ny)’
E : c 0 Ry | J(AzA'C'+N,)"

(54)

T

Furthermore, the asymptotic stability of [A - b*g - G¥CA] is guaranteea by the
: complete observability or detectability of the pair [A, (C' ! A'C')'] and the ]
i complete reachability of the pair (A, Qol. A :

. The optimal gains for the current-update observer (24) and the one-step
] predicting or Luenberger observer (25) cam be obtained in a similar procedure
3 by setting either G=0 or G=0. The results are summarized below.

Corollary 3: Suppose system (1) is completely observable or completely ]
detectable. Let Q = Q, Ny, and Ry be as specified for (41) and let G=0 4

in (41). Then the optimal full~order current-update observer for (1), in the
sense of minimizing the performance measure

J = er(X(Qy* GR,G' = GN& - NyGY) ], (55)

subject to the algebraic constraint

X = (A-GCA)' X (A-GCA) + W, (56)

is given by !

x(k+1 1k+1) = (A-G*CA)x(k|k) + (B-G*CB)ulk) + G*ylk+l),

= Ax{kik) + Bu(k) + G*[y{k+1) - CAx(k|k) = CBu(k)] , (57s) :
x(0[0) = z_, (57b)
where W 1is a symmetric positive-definite weighting matrix, and i
G* = (AzA'C'+N2>(CAzA'c'+R,‘)'1, (58)
1
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with I being the symmetric positive-definite solution of the algebraic
Riccati equation

I = ATA' - (AZA'C'+N,) (CATA'C'+R3)“L(ATA'C' + Np)'+ Q). (59)

Furthermore, the asymptotic stability of (A-G*CA) is guaranteed by the complete
observability or detectability of the pair (A,CA] and the complete

reachsbility of the pair [A,Qyl. A

Corollary 4: Suppose (1) is completely observable or completely detectable.
Let Q = Q), Nj and- Ry be as specified for (41) and let G=¢ in (4l1).

Then the optimal full-order omne=-step predicting or Luenberger .Ubserver for
(1), in the sense of minimizing the performance measure,

T

i o

3= er[X(Qq+ GRiG ~ GM = N6, , (60)
3 subject to the algebraic comstraint
X = (A-GC)' X (A=GC) + W, (61) :

\ is given by

x(k+1 1K) = (A-G*C)x(k|k=1) + Bulk) + G¥y(k),

= A x(k'%=1) + Bulk) + &*[y(k) - cxlklk-1)] | (62a)
x(0[-1) = z_, (62b)

where W 1s a symmetric positive-definite weighting matrix, and

o« = (aZc'+Np)(cIc' + k)7L, (63) :

!

. with I being the symmetric positive-definite solution of the algebraic Riccati é
equation ;

) L o= AfA' - (AZcteNp(Cle R TIAIC 8" v g (64) j]
Furthermore, the asymptotic stability of [A-C*C] is guaranteed by the complete }
observability or detectability of the pair [A,C] and the complete rveachability ;

of the pair [A,Qg]. A &
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t The optimal observer gains basically depends on the solutions of the
Riccati equations (54), (59) and (64). DMNumerous techniques tfor solving such

- equations are well known [30-33].

5. 'RELATIONSHIPS AMONG THE OPTIMAL FULL-ORDER OBSERVERS AND ThE KALMAN-BULY
FILTERS '

The objective of this section is to establish useful relations'.ips among
the optimal full-order observers developed in Section 4 and the various

Kalman=-Bucy filters.
Consider the system

g

x(k+1) = Ax(k) + Bu(k) + w(k) , %(0) = X, s (65a)

¢

with noigy measurements given by

y(k) = Cx(k) + v(k) , (65b)

T T BT I €T T O e 3 Y5 <,

where x(k), u(k), y(k), &, B and C are as given in (1), &and w(k) ard v(k) are
independent zero-mean Gaussian white-noise vectors with covariances {, and

R, respectively.
A get of steady-state or time-invariant kalman-Bucy filters are given by
(3] : .

i True filter:

2t lrr1) = Ax(klk) + Butky + L{y(k+l) - CAR(klK) = Cbulk)] , (66a)

%0l 0)=z, . L6cn)
One-Step predicting filter: ]
1
#k+1l1) = Ax(klk=1) + Bulk) + K(y(k) - Ci(klk~1)] , (67a) ;
o
x(0[-1) = 2z, (67b) 5
where §
L = FC'(cTg'+ Ry)"L L68) j
34
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K = aF¢' (cfet+r,)L, (69)
; : f = aTa' - Afc'(ufc'+nv)‘1c5A'+ Q> (70)

where I is the steady-state error covariance associated with the one-step
predicting filter (67). Furthermore, the above filters (66) and (&7) are
related by the following equations [3]:

RORNPEAYL o

Maagurement update:

? " i 2t xr1) = x(k+1]K) + L [y(erl) - cx(k+l|k)], x(0|-1)=% , (71)
| I = T - Tc'(cTC'+Ry)~LeT - (72)

g % Time-update:

E

i ; | x(et1]k) = Ax(k[k) + Bulk), x(cl0)=z, (73) ]
| I = ATA' + Q » (74)

where I is the steady-state error ccvariance associated with the true tilter
(66).

It remains to be verified that the above gset of Kalman~Bucy filters can be
derived from the regults of Section 4. More specifically, the aim is to show
that Corollaries 3 and 4 for the optimal deterministic observers can be
equivalent to the steady—-state true filter and one-step predicting £filter. !
The measurement-update and time-update relationships for the filters and i
observers will aslso be established. It is easy to see that Corollary 4 gives ;
rise to the one-step predicting filter if the weighting matrices NMN=0,

1 ®Q, and Ry™R, are chosen for the performance measure (60), tor then
(63) and (64) reduce to, respectively,

G* = AZC' (CIC' +R,) "1 (75)

T T S U Y

= afa - afc'(cic+ry)leia + q,, (76)

[

which are strygturally and numerically equivalent to (69) and (70), respectively,
that is, G =K and ¢ *T. On the other hand, if the weighting matrices
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Q2™ Q = Q. No = QuC' and Ry = CQC' + R, are chosen for
the performance measure (55) in Corollary 3, then (58) and (59) yield

G* = (AIA' + G,)C'[C(AZA' + Q)C' +Ry]7L, (77)

T = (ALA' + Q) = (AZA', +0)C' [C(AZA' + Q)L' + Ry]7lL(AZA' + gV (78)

Denoting, with Q1 ™ Qy»

~

L = AZA' + Qu» (79)

equations (77) and (78) become, respectively,

o* = Z¢'(cic' + k)7L, (60)

T =L - Ic(cle + Rv)‘lci . (81
Substituting (81) into (79) results in

£ = afa' - AZc'(cEct + RyITICEA" + q, \52)

: ' where it is seen from (70), (76) and (82) that £ =% = T. It tollows from
\ (68) and (80) that G* = L. Furthermore, since (79) and (8l) are identical to
’ (74) and (72), respectively, it can be concluded that ZI=T. With G* = L, the
measurement-update equation (71) and the time-update equation (73) for the
Kalman-Bucy filters are equivalent to the corresponding optimal
- measurement-update equation (30) with G = G*, and the time-update equation
o (29). A complete equivalence between the optimal deterministic observers and |
the time-invariant Kalman-Bucy filters is thus establishea. Finally _, it
is interesting to note that the use of Corollary 4 and the relationship L = AG
in (32) can also be wused to obtain the true filter (66) from the

\ current-update observer (24).

e
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CONCLUSIONS

The development of a class of determiniatic general structured observers has
been considered. From this class of general structured observers, the current-
update observers and the one-step predicting or Luenberger observers can be
derived. Interesting properties relating the full-order observers are pointed
out., Optimal gains for these full-order observers are derived using an

' appropiate performance measure. It is shown that these optimal deterministic
obgservers can be equivalent to, and hence may be ag effective as, the steady-
state or time-invariant Kalman-Bucy filters. The results of this paper have
been exteuded to include reduced-order observers and time-optimal properties
of the observers. The details will be given elsewhere.
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APPENDIX A: Proof of Theorem 1: ({see also [34])]

For sufficiency, it is clear that if (7)<(10) hold, then (6) reduces to

ez (k*1]k+1) = Fey(klk), €,(0) = e,q,

exlklk) » PeglklK),

s0 that e,(k|k) approaches the origin asymptotically; since P is of full
rank, ex(kf also approaches the origin asymptotically.

Conversely, suppose ez(k|k) = z(k|k) = Tx(k) > 0 and eylk|k) + 0 as
k = for all 2z(0), x(0) and u(k), k = 0, 1,¢¢s » Then setting x(0) = 0 and
u{k) = 0 establishes the necessity for condition (a) in (6sa). On the other
hand, condition (c) must hold, for otherwise a u(k) would aslways exist to
drive ez(klk) avay from the origin. Likewise, unless condition (b) is
: satisfied, the reachability of (1) ensures that there would always exist a

i x(k), driven by u(k), which makes e,(k[k) # 0 in (6a). |Lastly, e lk [€) »
0 snd exk [k) > 0 as k*>® yield ey(k[k) = [PT + V¢ = I Jx(k) + 0
for arbitrary x(k), thus establishing the necessity for condition (d). N

o
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ON THE DESIGN OF PREDICTORS FOR"FIRE CONTROL SYSTEMS

James E. Leathrum
US Army Materiel Systems Analysls Activity
Aberdeen Proving Ground, Maryland 21005

BACKGROUND

' The design of fire control systems has been characterized by a
continuing controversy regarding the extent of estimation and
prediction which should he mechanized. One extreme argues that
the critical process is the tracking process which with current
technology produces such large errors that a fire control system
should not attempt to lead a maneuvering target. The other ex-
treme argues that the methodology is at hand to deal with large
observation errors and model identification. Thus, arbltrarily
high order estimators and predictors should be implemented to pro-
duce a lead for engaging maneuvering targets. \

e g g

I e —— e o

Without taking an a priori position on the above 1lssue, this re-
port attempts to formalize some of the processes which may resolve
the design problem. The problem is viewed as a trade-off between
the errors incurred in propagating incorrect estimates through a

) predictor versus the errors incurred in fallure to utilize an

3 avallable estimate of a target state variable. The problem is

! ' similar to one which arises in numerical analysls wherein some

situations "cancellation errors" may be larger than a computed

result. .

1 The design of predictors will be considered in the situation where
: the predictor exists in tandem with a Kalman estimator. This
introduces no loss of generallty, and yet, it is an acknowledge-~

] ment of the current state ~of-the-art. Thls structure does

3 L permit a presumptlion that state estimates and thelr variances

‘ are avallable for this analysis. The Kalman estimator would i
employ models of the form. E

; : Target Model

X+l = ¢pXi+ByUk

Observatlion Mcdel

Y = HpXg+Vi

The Kalman estimator would produce a sequence of estimates, iﬁ, i
and varlances of the estimatlion errors, Pkx. If, at some time,
it is necessary to predict ahead N steps without observations,
the best, linear, unbiased estimator is i
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A

N-1
fk+1) Lk

o
Ak+N {a0

which would be approximated Ly
A A
» = N
Sean = (907 Xy

The variance of the estimation error at k+N 1s obtalned from the
recusslon

B —

1]
Preal = 0Pt BBy

| where Q, = E(ULUK'). Extrapolating this to k+N gilves

'

g B
; e 2o w

N-1
o N ¥ j ' :
Pren ™ O Py (o) +JZU°kJ Bre g%+ 3B x+j%

TN T T o

which will be viewed as composed of

Propagated varilance) Error varlance
f + induced by

subsequent tar-
get motion

Pir+n =
) of the estimates

2 . So far, this dlscussion geems to indicate chat the design and analy-
_ sls of the predictor of Xp,y 1s a closed issue and that the vari-

i ances are left as a take-it-or-leave-it result. However, there

i1s a choice to be made 1f one recognizes that the model is only

one of a number of possible models. Furthermore, even if the

1 models are correct, there may bec a better, bhiased predictor. To

3 : formalize this notion, a predictor is defined as

§ o= et 8

TS T VP

whepre ¢* 1s not n-:cessarily ¢ N,
i1s the norm of the prediction error

The loss function of interest

1ERN =“?k+n-xk+m=
and the risk (which 1s to be minimized) will be
R(e*) = ELVE V]
¢*, which mini-

that 1s, we will scek that predictor algorithu,
mizes the expected norm of predictor error.

Although the problem just formulated is of interest in itself,
there 1s an equally interesting dual. That is, glven a maximum
allowable risk, what predlctor algorithn will lead to the best

. -
-l wn b & Ee e s
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overall estimator-~predictor performance? Here, performance 1s
viewed in terms of constraints placed upon sight technology and
target aglillity. The least constraining design will be viewed as

the best design.
FIRE CONTROL SYSTEMS AS A SPECIAL CASE

The problem definition stated in th~ previous section leaves a
, large number of parameters to be considered in the general case.
' To 1llustrate the utility of the approach, the subsequent discus-
sion will be limited to situations which arise in the design of
fire control systems. The followling limltations wlll be presumed:

T e g e e w5 13, 10
L
J

; . Only the positional component of the predictor error will be in-
] cluded in the loss function.

The model to be employed in the estimator is of the form

parameters.

[~ 2 “1 .
1 At At /2. . . L] .
1 A t . . o ; Bk = :
¢ = 9 1 L] *
' g ) 8t3/6 4
- ¢ At /2 3
] At 4
] - - - -
1 Hk = (100. .. 0]
|
: f ]
3 : The prediction algorithm will be of the form i
e s =
(o¥] posttion = (1 Yybp Ypte?/p o v v 0] i
where te = NAot, and the yy,vYp, etc., are the optimization §
f

The case of ygreatest Interest in current applications is the one
with a 3~dimensional state vector

1 At At/ j

2 ]

Atg/s i

o = 0 1 At . B = At/ !
0 0 1 j

H = (1 0 0] ?

Here, the state vector is the position, velocity, and acceleration
along a single axls of the target 1
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The prediction problem along each axls of the target can be treat-
ed independently for design purposes. In real-time, however,

one would expect inherent coupling of the state equations along
the respective axes. In other words, we will be generating up

to three designs to be coupled together in a real-time implementa-

tion.

Concentrating upon a single coordinate axis, the loss function
may be defined as

2 = (%X - 2
ep (x x) KN

Here 1e#2 is used as a loss function for conciseness. In
turn, the risk 1s

R(s™) = E(e;?)
Using the definitions of %X and x as well as the notation
C o= l 3 N
T =01ty t:8/5) = [V qit10n
*_ 2 - #
T°= [1 vytp vpte“/2) = [¢ Jposition
the risk condenses to
E(ep2) = *p, 0" +7%2, (T*-T)'
+ (r*-mz', o
+ (P-mEXX ) (2t
+ E (€2TI)
A
where Z, = E[(Xk-Xk)x'k]
and E(€2T1) = Varlance of the tarzet induced error
Thus, the risk is composed of terms which are interpreted as

E(ep2) = Varliance propagated from the estimation errors

+ {Correlations between estimation errors and states
(2 terms)

+ {Mean squared magnitudes of the target states after
propagation
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+ Lrror variances 1nduced by subsequent target motlon

Since the last term 1s not a function of the optimization parame-
ters, 1t will be treated as a constant. The optimization involves
a trade-off between the other terms. Thus, a new risk is formu-
lated as the residual risk, E(eﬁz), due to the choice of

the predliction algorithm.
2) = 2y - 2
E(ege) E(ep ) - E(eCqpp)

U e g, e

In the first three terms of the risk equation, the filter parame-
ters, Py, Zyx, may be determined as ratlos Pyx/q and Zx/q at steady
state. These ratios, as well as r/q, are functions of a single
bandwidth parameter for the target veloclty. (Note

that q3 E(U2); r= EB(V Y) After dividing the risk equation

by q, and gathering terms, the dual optimization problem becomes

i one of maximizing.

T T KT > e e 1+

K(wy)N(S,tr,Yy,Ya)
P/E(E R?) =
D(wV,tf,YV9YA)
S = E(xx')/E(eR2)

y = - y [ & 2
N(S,bpaY s Y,) = 1=0853(820/5)2 y245,,(£0)2.x
+ 2S23!(tf3/2)0xy]
D(wy,tp,vys¥y) = T (B/@)T = L(P33/ ). (£02/5)2y2
+ (P22/q)(tr)2-K2+2(P23/q)(tr3/2)-Xy]

where x = l-yy and y=l-yp

3 K(wv) = r'/q

I WP T

t
- At the steady state design condition, the cross correlations, Z/q,
are preclsely the negative of the varianoe ratlos, i.e.,

Z/q = -P/q

Given the target characteristics, specified in rough terms by S
and wy, and the maximum allowable risk, the designer must choose
Yyv and yp to maximize r. Maxlimizing r, 1n turn, maximizes

q since q/r is a constant. Thus, the estimator-predictor combina-

tion 1s least constraining in respect to the sight technology
and target agility.

e b i Ak il sy

The final form of the performance criterion 1s a rational function
in x and y. Further direct analysls of the extrema of this
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function 1s possible, but some preliminary insights may be possi-
tle by taking cross-sectlions of the contours with respect to
coordinate planes. This corresponds to examining single varliable
perturbations about the standard first and second order predictors.

SOME SPECIAL PREDICTOR DESIGNS

F »
§ , Two interesting special cases offer some insight into the dual
; optimization of the predictor design. In each, one of the design
| parameters will be set to its natural value (i.e., ;=1).
- 2y2
K(w,)[1~5,, (£,)2%2]

. !
. 2
i [’/E(C )l =
R Ty=0 T (P/q)éT-(Pzz/Q)(tf)er

RAUESREREREE ae: LU A Snceso BN

| K(w,)[1-853(£,2/,)2y2)

:; 4 2
. r/E(e g°)|
Fx=0 T (/)T —(Pyy,) (85%75)22

Both of those functions are of the same general form, and both
are symmetrical about the origin of the free variable (i.e.,

symmetrical about y=1). The general form is

[1-a(ts,S)%?]

C/E(eg?) = Cluy).

[1-b(tp,w,)x2]

whiere 3

1 r/q 3
3 C(wv) = — . i
1 T (P/q)T

alty 8) = Syy. [tpd-17¢4 44,02

b(tg,0y) = [Py /)/(TR/QT) I 2717y 1y, 12

This function 1s a ratio of parabolas whose shape 1s determined
by the relative values of a(tg S) and b(te,wy). Threec shapes
can occur as shown in Figure 1. The numerical values are taken c
from the next section. Thus, the offset, x, represents a typical ‘
velocity correctlion and y represents a typical acceleration

collection.
ANALYSIS OF A NOMINAL CASE

As an example of the desiyn process developed in the previous
section, consider the case of a target described by %

wy = 0.15 hz (veloeity bandwidth) ]
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tp = 1.5 sec (time of flight)

Refaerring to the estimator design procedure in Reference 1, the
variance ratlos are

(P/q)

"
"

.106103
.056289
015796
014217

" .0U4333

" .008765
(r/q) = ,028993

which,.in turn, specifies

r/q
Clw,) = o= 0.0563

v T(P/q)T'

The optimization is done with respect to a maxlimum allowable risk
which will be taken to be

E(eg?) = (1.15)2m2
target state varlables will be nominally assessed

oW WW
WK n

[y Vg ey SY

v v w v v e

The levels of the
at

2 m/sec

\[?Rv2)
\/E(AE)

Utilizing the definitions in the previous sectlons
8,,(ts2) = 6.80 %
833(tf2/2)2 = ,153
(Ppp/y) (£p2)/T(P/Q)T' = 199
(P33/)(t02/)2/T(R/ )T = . 261

The dimensionless optimal designs are characterized in each case
by

0.4 m/sec?

a(tr,s)

b(tf)“V)

a(te,wy) > b(t,wy) for y=0
a(te,wy) < b(t,wy) for x=0

Thus, the hest value of yy 1s 1.0 while the worse value of yp
is 1.0. One pcssible predictor is

™ =11 tp] (i.e., first order)
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That is, let vy=1.0 and vp=0. The performance 1s character-
lzed by

c/E(eg?) = 0646
versus
: r/E(e g2) = C(w,) = .0563
for the natural case of
L ™ = [1 tp tp2/,]

? It must be noted that this is only one of a myriad of such results.
4 ‘ This one 1is not surprising in light of the low level of accelera-

tion involved (1.e.,'v E(A2) = 0.4 m/sec?). TIllustrating the
rest of the design, note that

Vv = 1/0.0646 . E(eﬂe) =  .292 meters

V—C_!-=V(r'/q)'1.r' = 1.71 m/sec3

These are the maximum tolerable levels of observation error and
target agllity for the desired miss variance, E(e 2). Thus,

not only is the optimal predictor al%orithm found, but technolog-
ical constraints are also available from the design.

] ; UNRFALIZARLE DESIGNS

{ ' It 1s evident from the general analysis of the optimal predictor

3 i designs, that some of the parameter values lead to negative values
3 : of r/E(e,2). One could argue that these are never cases of in-

- terest bgnce they do not occur in the neighborhood of the natural
1 ? parameters when a<b, and when a>b, the natural value is clearly

’ optimal. Nonetheless, an interpretation of the results of when
r/E(e ,2) is negative is called for since the parameter values

are realigable.

Since the desired 513k E(e 2), 1is asserted a priori, the case

of negative r/E(ep©) corvesponds to situations where that risk

is not achievable by any r,q comblination. Thls may arise because
either the magnitudes of the states are too large, the risk 1s
too small, the time of flight is too large, or the variance of
the estimation errors 1s too large. Of all of these conditions,
the time of flight 1s the most pervasive since it effects both
the pole and zero placement. Thus, the whole structure of the
optimal design as determined by the relative magnitude of a(tg,S)
and b(ts,wy) may be significantly altered by the time of flight
(i.e., the distance to the target).
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PREDICTING COORDINATED TURNS

As an alternate approach to the analysi.. of propagated errors,
the deslign of a predictor may be preii.ated upon some particular
maneuver type. The maneuver type would then supplant the polyno-
mial form which emerges from the Cartesian estimator. One very
natural model for the subsequent motlion of the target 1s the
"steady turn" whereln the acceleratlion vector remalns fixed

with respect to the target, but it may, of course, rotate in an
inertial frame. The predictor model 1s formulated as

i 1 i 0 0 cos8 0 0 0 1 ] X R
0 0 sine 0 0 0
v 0 0 0 1 0 0 Vv
Ap 0 0 0 0 0 2 A
] 0 0 0 0 0 — 8
v
_.AQ_ B 0 0 0 0 0 i | ALJ

where X and y are the target coordinates in an inertial frame, V
is the total speed of the target, Ap and Aj, are the lomgitudinal
and lateral acceleration respectively, and 9 is the orientation
of the target motion (i.e., Vx = Vcose).

Glven fixed Ap and Ap,, the V and © components may be integrated
over the time of flight.

V(t+te) = V(t) + Aqtyp
AL

0(t+tp) = 0(t) + — log (V(t+t)/V(E))
AT

The positional 1Integrals are approximated by "stepping" 8 and V.

N-1 1 N-1
x(t+tp) = x(£) + § (cos0,V,) At at2 J [cosey (21+1) )4,
1=0 1=0
N-1 1 N-1
y(trep) = y(e) + ] (cose,Vy)aets at2 | [sine, (21+1) JAq
1=0 1=0
where . Vi = V(L) + Apat
AL
8, = 8(t) + — log (Vy/V(t))
1 ar 1
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N = tg/at

This formula for x(t+tf) and y(t+ts) 1s a closed form predictor
as 1t stands. (Given the time, and computer resources, this
could be the basls for a "steacdy turn" predictor.

; A more efficlent version of the predictor may be discerned by
b . forcing the model to be circular in form (i.e., Ap = 0). This
: is the "coordinated turn." From this aproximation we get

- V(t+tp) = V(t) =V
: | AL
;‘ 9(t+tf) = e(t) + —; tr = e(t) + mtf
% 1 N-1
] x{(t+t = + - o,Vt
; ( £) x(t) 5 z cos8, Vt s
F i=0
1 N-1
(t+to) = y(t) + — sing, VvVt
y f y N 120 1ver

81 = 6(t)+iwAt

. Not only 1s this a simpler and more readily lmplemented predictor, ;
3 ’ but it 1s also beglinning to show some of the same form as the }
"optimal" polynomial predictors.

In order to illustrate the similarity between the circular predic- ]
tor and the polynomlal predlctors, the trigonometric terms will
be expanded about the starting angle, 8,=6(t).

cos8y = cos€ycos(iwat)-sinéysin (lwat)

sindycos(qwAt)+cosbysin(iwat)

5in0y

(Lwat)2
then cos(iuwt) w~1- + o[ (Lwat)l]
2

N (1 ) 1 (1NAt)3 ( 5 !
At) = At - + iwat
sin(iw w — o [(Lwat)5]

If the first two terms of the expansions are used, the prediction

error due to truncation will be bounded by R

lel & [(uty)h/20]ve,
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; ' Assuming that this bound 1s acceptable, the predicted position
» 1s further approximated by.

! ' x(tttp) = x(t) + vV, to - YAsineoAL.trz/a

y(t+tg) = y(£) + v Vyte + vycos0 A te/,

L [ w?te?  (2N-1)(N-1) ]
E - where Y, *| 1 -
] v 12 N2

N-1 u2tf2 N-1
i Y A = 1l -
i N 12 N

which for larye enough N 1s

¢ 2
wet

f
vy L]

wlt .2
£

Yo *[1e —— ]
A 12

TN AP

Thus, 1in the final analysls, the coordinated turn provides another
rationale for the cholce of y, and vp. Together with the pre-
vious sections, it 1s now posslible to compute the propagated
errors for the circular predictor and compare them with the
"optimal" forms. ;

OPTIMIZING SEVERAL PREDICTOR PARAMNETERS.

The analysis of the previous sectlon ralses the immediate question
of what pertformance can be achleved when several parameters are
varlied simultaneously. To illustrate that some interesting

shifts In the points of optimabllity may occur, consider the
situation where the velocitles and accelerations are uncorrelated.

S23
V533 y VSEE
Thls 1s perhaps an extreme condition, but it is not too far froum
the conditlion observed in moving vehicles. Using the typlcal

case discussed in Section U, the covariance of the estimation
errors 1is

n
c

N i

Po3/q = 0.0563
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which substantiates the analysis of a two dimensional, joint opti-
mization. The performance contours, in this case, show a slight
deyree of assymetry. The performance function is

r/q ) 1.-6.8x2-.153y2
T(P/q)T'/ 1-.199x2-2(0.184)xy-.261y2

In the vicinity of x=0, y=1 (the bes? single parameter variants)
the multi-parameter optimization involves a balancing of the

v /E(TR?) = (

6.8x2 in the numerator
and 2(0.184)x 1in the denominator

3 The value of x must be on the order of 10-3 in order to show an
. improvement in performance, and even then the improvement 1is
: infinitesimal.

Although the example being pursued here is only one of a number

of cases of interest, this type of effect of P23 has been found

to be quite characteristic. The numerator terms usually dominate
the performance contour in the vicinity of the optimum. The

1 extreme sensitivity of the performance in this reglon should be

i noted. The effect is even more accentuated at higher velocitles
and accelerations, and at longer times-of-flight. The phenomenon
tends to suggest the need for over-design of the sighting mechanism
] ' to overcome these sensitivities.

For purposes of illustration, the coordinated turn, if used with
the nominal conditions of Section 4, would lead to i

‘/E(Aﬁ)
= = ,2 radlan

5 V@RVET- |

wty = 0.3 radian

. When used as a rationale for the selection of offset parameters,
v the vy and v, become

Yy = 0.985
ya = 0.9925 .

which leads to performances that are barely distinguishable from
the nominal second order case

c/E(eg?) = 0.0563
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USING THE COORDINATED TURN MODEL TO REDUCE DESIGN SENSITIVITIES.
Given the results of the analysis for the nominal case in the pre-
vious section, the question of a strategy for reducing sensitivi-

ties arises. In order to illustrate an alternate approach to
design, consider the nominal case

wy = 0.05hz (a lower frequency target)
tr = 3 sec

and suppose that the veloclty and acceleration are orthogonal
(1.e., circular motion) with magnitudes

V = 120 m/sec
A = 40 m/sec?

the required accuracy will be taken to be

akdas e o e i

E(epz) = 25 me,

Suppose prediction is to be done along the veloclty vector. The
first order predlictor performance would be characterized by

1-5184x2
r/E(eR2) = (.401) ___
1-.246x2

The undesirable sensitivity is evident in this case, and, thus,
x must be kept very precisely at zero. The required sighting

] accuracy would be

r = 3.7 meters.

If', however, the circular motion is taken to be the nominal behav-

ior, then
i (1- Jte
¢ = 6
0 1
where w = A/V
The predictor would be designed by selecting deviations from the

nominal case, i.e.,

mztpz

#
—=) tev,l 1
6 flv |

T =[1 (1-
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Where vy 1s the offset parameter with respect to the coordinated
turn

In this case, the performance is characterized by

1-3600x2
r/E(e R2) = (0. U44T7)¢ ——
1-.156x2

Not only is the sensitivity reduced, but the nominal performance
is improved since

E

g ' Py 1 PAY AN w 2t2

% T(P/q)T' = Pll/q+ 2(P12/q)(1- - __)tr
i ~ w 2¢2

L + (F,./q) (1~ )2t .2
i 22 6 1y

’ The sighting accuracy can now be relaxed to

r =V0.M38 .VE(eRZ) = 3.31 meters

: The corresponding result for prediction alonyg the acceleration
' vector are

1-1296x2
e/E(e @) = (0.401) . ;

for the nominally parabollic model, and
1-1089x2

3 ' r/E(eRQ) = (0o.414) _ _
1-0.125x2

for the coordinated turn model.

In the concext of thls work, the gross difference between the co-
ordinated turn and the parabollic motion would be considered to
be target Induced error, epr. It should be noted in passing,

however, that sucnh errors may be significant, il.e. .

epy = 60 meters alony the velocity vector;

1% meters along the acceleration vector, due
to the inappropriate choice of predictor model
for the current nominal case.
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CONCLUSIONS AND RECOMMENDATIONS.

The results of the previous sections should be viewed as indica-
tive of the potential screening power of a design methodology
based upon propagated errors. Critical choices in predictor
parameters are possible and performance characteristics are
discernible,

i Given the pervaslve influence of the time of flight, tg, on the
results obtained herein, one must conjecture at this point
about the real time features of the methodology. One could feed
forward smoothed estimates V and A and compute the optimal vy

; and vyp during an engagement. The potential gain from such

! X a scheme 1s so great that it deserves sowme testing using a fire
control simulator.

It is apparent that the major predictor design issues may vary
greatly with the intensity of the target motion. For larger
leads, the 1lmportance of the correct modeled nominal motion
cannot be overemphasized. From one model to the next there may
be significant differences in sensitivity and propagated error

as well. In any case, for large leads, there 1s seldom an oppor-
tunity to use other than the natural values of yy and v,.

b

On the other hand, for less intense motion, situations may arise
where propagated error completely dominates a correction. Whole
terms may drop out of the predictor as a result. Here, however,
] : the differences between nominal models 1s not so significant.
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MICROPROCESSOR IMPLEMENTATION OF AN ADAPTIVE SECOND ORDER
TRACKING/PREDICTION ALGORITHM FOR TANK FIRE CONTROL

P. T. Yip
US ARMY ARMAMENTS RESEARCH & DEVELOPMENT COMMAND
FIRE CONTROL & SMALL CALIBER WEAPONS SYSTEMS LABORATORY
' Dover, NJ 07801

? ABSTRACT

This study is to investigate the feasibility and performance of
; , an adaptive fire control filter-predictor system in the micro-
é processor environment. The filter model used is our previous
Lo design which includes a Kalman estimator for tank target state
estimation and an UD-factorization scheme to propagate the state
error covariance matrix. This method provides excellent computation
stability and accuracy. In addition, the parallel structure of
filters in this model is particularly suitable for microprocessor
implementation. Three Intel 86/12A single board computers are used
to process the narallel filters simultaneously. The computation
accuracy of the target state estimates and the processing time are
examined.

INTRODUCTION

3 This study is to investigate the feasibility of implementing and
' the performance of an advanced adaptive fire control filter-nre- i
3 dictor system in real time and in the microprocessor environment.
The filter model used is our previous desien which includes a !
Kalman estimator for tank target state estimation and an UD-fac- '
torization scheme, tc pronagate the state error covariance matrix.
This method provides excellent computation stabilitv and accuracy.
In addition, the narallel structure of filters in this model is
inherently suitable for microprocessor imnlementation.

We start our exercise with the UD-factorization of the state error k
covariance matrix. The system configuration is ccnsidered next. 1
Then the interface of microprocessors is described. The require-
ments of implementation are stated. Lastlv, the results and con-
clusions are addressed. i

UD-FACTORIZATION OF THE STATE ERROR COVARTANCE MATRIX

Tn the conventional Kalman filter algorithm, the error information
propagates through updating the state error covariance matrix.
They are
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Fk/k-l = %% k-1 Pk-1 %k, k-1 * GQk-1G (1)
T
% Pe/i-1 B Prsiear B ¥ 07 (2)
P TPk Kl By (3

where P is the a posteriori state error covariance matrix, P,

the a priori state error covariance matrix, ¢, the state transition
: matrix, H, the measurement matrix, G, the distribution matrix,

: : K, the Kalman gain matrix, Q, the plant noise covariance matrix,
and r, the measurement noise variance.

T e e e sy s

The P matrix is required to be positive semi-definite in order
that the system is stable. As we may see in Equation (3) that the
4 difference of two semi-definite matrices can produce a negative
3 definite P especially when the accumulated round-off error becomes

! significant. Hence, the UD-factorization method is adopted for its
! inherent stability and enhanced accuracy.
3 The recursive formula of the UD-algorithm for updating the state
3 error covariance matrix in each measurement cycle are
| wwl = oDB0TeT + GoaT (4)
UD0T = whwT (5)
« = HIUBUTH + r (6)
K = 0D0TH/« )]
G307 = O[5 - 1 (BUTw) (DU T 0" (8)
FV —~ A
where D = D @] is Nby N and
- P
9.Q
= ntN,, W = [¢UiG] n by N, :
) d
G = 1\- ¢ n by N , i
\\ d
2 -1
]
;
!
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,
‘

LTS T R Un |
U= S~ - n by n,
S~ Un-ln
9 !
| = -

T HT = (hy--- hp)
D, n by n diagonal matrix and

@, zero elements.

4 : L

with b= ﬁTH, x =D ﬁTH and initial conditions
al - al Y'/Gl, (11 =T+Vib1, and
T
] ks = G0 --- 0)
] where Ujj and Kjj are the ith element of the column vector Uy
and Kj rgspectivgly.

] Then, the elements of d, U, and K are computed recursively as 1
the following:

For j=2, ---,n (Equations 9 through 13)

% - 4
] Gj (!j_l +V'jbj (9) 1
" d, =d 0

3= 945 og-1/e; a0
i s = =D& = 2

XJ bJ/(!J_l (--1)

For i=1, ---,n (Equations 12 through 13) i
+ 2,K.. 2
3 (12)

e

~ _
U1y 7 P

]
K.. +v. TU.. (13

K, . , = K.
i,ji-1 ij h| ij

The Kalman gain K of this measurement cycle is given by

K = K.+1/’- 1

Since Y is 1lwavs positive, the vpositive definite condition of
D is assured by Fquation (10). As cancellation type errors that i
may happen in Equation (3) are avoided in Equation (10), the

accuracy of comouta:-ion is enhanced.
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SYSTEM CONFIGURATION

In our previous estimator-predictor design, three types of target
models have been incorporated. Type 1 is a constant velocity medel.
Type 2 is a first order Markov acceleration model and type 3 is

a second order acceleration model with one zero and two noles.

The parareters of these models have been identified with real

test data to account for various target manzuvering levels. Noised
corrupted data of range and azimuth angle of target are measurement
inputs to the three parallel extended Kalman filters modified with
the UD-factorization scheme. The adantive prediction comes in
when one of the filters with the largest likelihood function is
selected to provide estimates for gun lead prediction.

Three micronrocessors are used and each processes one filter. The
one with the constant velocity model is the master board which also
processes the filter selection and gun lead predictions by virtue
of its smaller load of computational burden. The communication
control and data transfer between the master board and the other
two microprocessor boards will be described in the next section.

MICROPROCESSNRS AND THEIR INTERFACE

Three Intel 86/12A single board computers (SBC) are used to process
the parallel filters simultaneously. Each has 32K bytes of random
access memory (RAM) and 8K bytes of electronic programmable read
only memory (EPROM) which can be extended to 32K bytes. If more
memory is needed, extra RAM and EPROM boards can be attached. The
memory in own board is accessed by the central processing unit
(CPU) of the board through the local bus. Additional memory up

to one megabyte can be planned and accessed through the system bus.

The communication between the keyboard or the microprocessor develop-
ment system and the master board is established through a serial
interface cable. Two out of the three programmable peripheral
interface input/output ports are used to take care of the communi-
cation traffic control between the master board and the other two

boards.

The data transfer uses the multibus interface which requires only
one bus clock of 9.22 MHz for synchronized communication among the
SBC. The local CPU must reside in that part of its own memory which
has not been assigned as dual port RAM inside the megabyte addres-
sing plan when another CPU actually accesses the dual port RAM

area.

The 86/12A single board computer which has twelve 16-bit registers
performs floating point comnutations with the heln of a floating
point mathematics library simulating 32-bit omeration. The test
chip of 8087 conrocessor was made available for development on
August 1981. This coprocessor which can be attached to the 86/12A
computer board easilv has eight 80-bit registers capable of per-
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forming 32- and 64-bit floating point multiplication with very
high speed such as tens of microseconds.

IMPLEMENTATION

After the proper interfacing of the microprocessors, some real
target paths of various noise statistics are selected. The function
‘ of the entire set-up, the prediction estimates and the processing
: time of the second order algorithm in this system are investigated.

a. A rather linear portion of a target path is used to verify the
proper functioning of the entire microprocessor set-up. A similar
program is run on an IBM 360 computer to obtain results for com-
parison.

T R g ey

b. A segment of real target path data with an average maneuvering
noise level 1.176 meters per second and an average sveed 13 miles

, , per hour is corrupted with random Gaussian noise of 3 meters in

1 range measurement and 0.3 milliradians in angle measurement. These
b corrupted data is sampled at 10 s/s as input to the system and the
prediction estimates are compared with the results from previous
study using a conventional extended Xalman filter without modifi-
cation.

c. With the same data the system performance is evaluated for pro-
cessing the data at 5 s/s instead of 10 s/s.

d. The orocessing times for the floating point multinlicatiom,
division and square root operation with the 86/12A CPU are compared
to that with the 8087 numerical coprocessor.

e. The actual processing time of the second order algorithm with
a 8087 coprocessor test unit is examined. The number of measure-
ments processed in 10 seconds is noted.

I

RESULTS AND CONCLUSIONS

Under the implementation conditions in the previous section, results
are summarized as follows:

a. Results from IBM 360 and Intel 86/12A SBC show a 1.2 nercent

or less difference in lead angle estimates and much less in impact
range estimaces. The vroper functioning of the multi-microprocessor
set-up is verified.

b. From previous study for the given target path in implementation
b and averaging over seventeen points, the estimated prediction

errors in milliradians are 1.29, 1.72 and 0.91 for constant velocityv,
first order acceleration and second order acceleration filter tynes :
respectively. From the multi-microprocessors under the same con-
ditions, the estimated prediction errors in milliradians are 1.2,
1.49 and 0.88 for constant velocity, first order acceleration and
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second order acceleration filter types respectively.

The accuracy of the estimates from this algorithm are highly com-
petitive or better than that from the conventional extended Kalman
filter algorithm.

c. With a sampling rate of 5 s/s the extimated prediction errors
; in milliradians are 1.16, 1.54 and 0.9 for constant velocity, first
i . order acceleration and second order acceieration filter types, res-
pectively. The change in performance is about 3 percent.

e ————

d. Averaging over ten thousand iterations, the floating point
operation of the command group LOAD, MUL, STORE and WAIT takes &4
miliiseconds with the 86/12A CPU while the same takes 63.6 micro-
seconds with the 8087 coprocessor. It is a 63 times faster in
multiplication with the latter.

For the command group LOAD, DIV, STORE and WAIT, the floating point
: operation takss 5.5 milliseconds with the 86/12A CPU and 85.6
: microseconds with the 8087 conrocessor. It is 64.times faster

in division with the latter.

: For the command group LOAD, SORT, STORE and WAIT, the 86/12A CPU

; takes 40 milliseconds to process a square root procedure while the
z ~ 8087 coprocessor with its micro program for SORT takes 77.6 micro-
~l : seconds. It is 515 times faster with the latter.

e. With a test unit of 8087 coprocessor planted in the 86/12A

board, the second order algorithm is processed for 10 seconds.

Only 88 sets of measurements are processed. This indicates that a 1
, 12 percent improvement in speed is needed to do 10 samples per

] second real time processing. Fine tuning the program code or

] changing the trogramming language to assembler type may help elim-

inate this time lag.

In all, the impressive numerical characteristics of the UD-factor-
ization deserves our attention. It has been encouraging to know
: that microprocessor technology has caught up in speed and flexi-
- bility to process advanced parallel algorithms with heavy load
‘ of computation. We see that great many apolications of micropro-
cessor to multiple input, multiple outvut and parallel processing
are forthcoming.
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ON THE CREDIBILITY OF MODELS

Naim A. Kheir
School of Science and Engineering
The University of Alabama in Huntsville, Huntaville, AL 35899

Model Credibility is becoming increasingly important in today's
world of complex systems. One reason is due to the awareness and
discretion being exercised on spending on simulations; a second
reason might be the fact that more and more models and simulation
results are being used in decision-making. Models, whether repre-
senting the broad spectrum of engineering applications (energy,
power, aerospace, military systems, etc.) or, say, biological
systems such as that of blood circulation would require the same
attention in terms of model credibility. More recently, reliance
on valid models has become a necessity in areas such as energy
forecasting,(7) (energy models and their integrity have been the
subject of many congressional hearings since 1975). Thus, the
ultimate use of a model is for decision-making and its final eval-
vation is in terms of the decisions being made.

Three major areas appear to be the focus of progress, or lack of
it, in arriving at a higher level of agreement among simulationists
on model credibili+ty and what it is all about. These areas are
related to:

(1) Terminclogy
(i1) Issues
(iii) Qualifying Mcasures

The question of Terminology has been the subject of many previous
efforts by the Technical Committee on Model Credibility (TCMC) of
the Society of Computer Simulation. Ref., (1) summarizes a complete
set of definitions beginning with the understanding and distinction
between Reality, Conceptual Model, and Computerized Model, and
proceeding to introduce the important concepts of Model Verification
and Model Validation. The document also introduced statements on
model qualification, domain of .upplicability, certification and
documentation. The definitions adopted by the TCMC on verification
and validation are; "Model Verification: The substantiation that

. Computerized Model represents a .Conceptual Model within specified
limits of accuracy. Model Validation: The substantiation that a
Computerized Model within its domain of applicability possesses a
satisfactory range of accuracy consistent with the intended appli-
cation of the model." However, all too frequently in process
modeling the concepts of verification and validation are reduced,
respectively, to simply the tasks of debugging and input-output
comparison of model and system data. One should note that this
terminology was arrived at with the intent that it could be
employed in all types of simulation applications. Thus, adherence
to the terminology 1is highly recommended to facilitate communica-
tion between simulation developers, users and decision-makers.
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For example, it is simple to recognize the difficulty in communi-
cation between a mathematically-oriented modeler and a linguisti-
cally-oriented public policy-maker.

A work of caution is in order, even 1f one adheres to the above
terminology and arrives at a validated model, one may be tempted
to make an obvious and gimple change in the model. Since it is
easy to err, revalidation of the model, for the same reasons that
validation was required in the first place, is necessary whenever
any modification, even an apparently minor one, is made. Thus,
once having demonstrated the model validity, it should be con-
sldered INVIOLABLE, ®%

In order to be able to judge the adequacy of a model for its in-
tended purposes, the TCMC is engaged in a discussion of an under-
standing of important Issues including these:

(a) The real purpose of a credibility measure - is it to make
a decision to use a "more-credible model" at perhaps greater cost
versus a "legs-credible model" at a lower cost? 1Is it to estab-
lish a confidence or reliability factor for the mcdel, i.e., XX
reliable for YX confidence?

(b) In modeling reality in terms of ultimate simplicity (a
more detailed model is not necessarily a better model), an issue
is that of "simple" versus '"complex" models and cost considerations.
Simple models have the added merit of closing communication gaps
between "non-technical" decision-makers and modelers.

(c) Should a credibility measure be "absolute" defining the
agreement of dynamic computer simulation model (Computerized Model)
with actual system (Reality), or "relative" (model versus model)?

(d) How to keep simulations under configuration control so
that credible ones remain credible.

(e) The absence of an effective grasp of how to achieve par-
simony in modeling makes it virtually impossible to develop an
efficient, understandabie, credible model of a large-scalc system.

Next we focus on the real question of which Qualifying Measure(s)
one may adapt to express the credibility of a mode . Basically,
the objective from using a measure is to quantify how well a model
matches the performance of reality being modeled. Comparison of
time trajectories from the model and the instrumented system is
often used (data collected from an actual system may be rare and/
or expensive to get while simulation results may be abundant).

A summary of measures used in previous studies follows:

(a) Theil Inequality Coefficient (Tlcg was recommended in
regards with missile systems validation (2),

** Personal discussion with Dr. Lester H. Fink, of Systems Engi-
neering for Power, Oakton, Virginia.
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(b) A mod}fied TIC was applied to validation study with sparse
random data (6),

(¢c) In addition to TIC, correlation coefficient and a simi-
larity coefficient were recommended in Ref. (3),

(d) In a recent atudy(5). crosg-correlation coefficient and
Bayesian updating were suggested in a credibility investigation
! of an RF environmental wmodel,

(e) Use of FFT (Fast Fourrier Transform) to obtain frequency
domain error measure of a trajectory was introduced in a boiler-
turbine-generator system study ’

: : (f) Also in Ref. (4), digital filtering technique was employed
L to extract frequency bands of an error signal; the band-limited
measures of signals could be further analyzed.

(g) Error trajectory could be qualified in terms of measures
_ such as the integral of its square and/or the largest absolute
P value.
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A LINEAR NONLINEAR CONTROL PROBLEM

Leon Kotin
Center for Tactical Computer Systems
US Army Communications-Electronics Command, Fort Monmouth, NJ 07703

INTRODUCTION

Many, perhaps most, of the ordinary differential equations of

; applied mathematics are second-order linear equations

é . ' dzx/dtz-ka(t)dx/dt + b(t)x = 0 or their nonhomogeneous variants.

j Their importance is indicated by the famous names given to such

5 equations: Bessel, Legendre, Hill, Hermite, Airy and Laguerre, to
3 name just a few. By an elementary transformation, such equations ﬁ
i can be put into the form of the following system

dx/dt = p(t)y, y' = dy/dt = q(t)x. (1)

i

3 x

We shall consider this system where the control vector (p,q) belongs
to the class of piecewise continuous vector functions of t with

bounded norm, say
p2 + q2 s 1. (2)

We shall determine that control for which a nontrivial integral
curve or trajectory initially on the x-axis reaches the y-axis in
_ least possible time. We shall also determine this shortest time
" and the corresponding geodesic (x(t), y(t)).

We remark that by changing the time scale, we can see that no
generality was lost by setting the bound of the norm of (p,q)

equal to unity.

This paper is a detailed exposition of results which were obtained i
in collaboration with G. Birkhoff in the broader context of
elliptic autonomous families of differential systems; these

appear in concise form in [2].
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The title of this paper derives from the fact that although (1) is
a system of linear differential equations in x and y and is linear
in the control variables p and q, it is not linear jointly in
(x,y) and (p,q).

THE MINTMUM TIME
Froma (1) and (2), we see that for any trajectory,
pP+qf = x Pyt ay i i (3)
or

1/y% + (dy/dx)%/x? & (dt/dx)2. %)

Consequantly, the time t required for a trajectory initially at the
point (xo,yo) to go to (x,y) satisfies

c 2 j§o<1/y2 + (dy/dx)2/x®y%ax. (5)

To evaliaate this integral, we introduce the modified polar
coordinates ¢ and A detined by

=x“+y°, A =y/x (6)
whence
x = et/ (and, vy = aet/andH (7)

We note tt ¢ =nd A are related to the standard polar coodinates
r and 3 by 2 equations ¢ = log r and » = arctan 6.

-In order to compute the int ‘gral in (5) we first obtain, by the

chain rule,

dx

e"’(1+x2)'3/2 [(1+x2)d¢-xd\],

-3/2 (8)

e¢(1+x2) [x(l+x2)d¢+dxj.

dy
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Then

2
< MAR )’ 41, Voo
dy/dx an) e ¢’ = de¢/da. (9)

Furthermore, from (6) and (7)

dy = (xdy -y dx)/x2
= e t122)3/21 (142 %ye" -27172 dx. (10)

After replacing these in (5), the integral in terms of ¢ and )
becomes SJF(r,4')dr, where

é oo 1
P F(x,e") = ;?;7117[(A2+1)2(A4+1)¢'2 + 2081 4222k, (11)

é The bracketed quadratic expression in ¢' is a minimum when
l o' = -2 (12-1)7 241y (0 41y (12)

Substituting this into the integrand F(1,¢') and integrating
from » = 0 to =, we obtain the minimum time T in going from

the x-axis to the y-axis. This is found to be, through the use
of the beta function,

T =f5 d/0? +1)% = r2(%) /42 = 1.85407. .. (13)

([11, p- 258; (41, pp. 254,524). We shall show later that this
value is actually attained. We state this as Theorem 1: 3

The smallest t-interval between a zero of y and zero of x for a
: nontrivial solution (x,y) of (1) - (2) is given by T in (13).

F THE GEODESICS AND CONTROLS

By definition, the geodesics are the solution of (1) - (2) which
yield the minimum time T in (13). This time T is realized by the
trajectories of (1)-(2) which satisfy the differential equation
(12). Although this equation is separable, solving it in its
present form involves some complicated computation. It is easier
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to rewrite (12) in térms of x and y alone. Using (6), (9) and
(12), after some simple algebra we obtain dy/dx = -x3/y3 from
(12); this integrates to the implicit form of the solution

xa + ya = const. ‘ - ‘ (14)

By linearity, we may take const. = 1, getting

xt eyt =1, : ) (15)

To obtain the explicit form of the soluvtion (15), we first invoke
the bang-bang property; i.e., the minimizing solution will corre-
spond to a control (p,q) which is on the boundary of the control
region in the (p,q ) -plaﬁe. Then the inequality (2) becomes the

equation

2442 -1, (16)

Differentiating (14) with respect to t, we get x3x' + y3

or, using (1), px2 + qy2 = 0. But from (14) and (16), this yields

y' =0

p2 = ya (17)

whence x' = py = j(l-x4)3/4.

We shall consider the trajectory (i5) which is moving clockwise
and which is initially on the line y = x and, with no loss in
generality, in the first quadrant, so that x = x(0) = 27%.  Then

4y3/4 (18)

x' = -(l-x
whence
-t = fX (a-xt3 4y, (19)
0

To evaluate this integral in closed form, we introduce a series
of substitutions which telescope to

X =L - (1-wdy'. (20)
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Then (19) becomes
2732 j}w (w(l-w)) Xdu. (21)

In terms of Legendre's canonical form [3, p. 59]

F(¢) = F(¢,2-%) = fg (1 - 8sin2v)-kdv, (22)

by (3, pp. 78, 163] (20) becomes
) L2 -k
2273120 2 M(F(s) -F(n/2)) = 2*.[«/2(1 - Ysin“v) dv  (23)

where
w= (1- cosz¢)/(1 + cosz¢)

= (1 - cn?F(4))/(1 + cn?F(s)) (24)

{3, pp. 59, 163]) in terms of the Jacobian elliptic function en F =
en (F,2°%. From (23), F(¢) = -2t + F(n/2). Letting K = F(r/2),
by the addition formula [4, p. 4971 for cn(u-v) in terms of the
other Jacobian elliptic functions sn and dn, and by the values sn K
=1, cnK =0 and dn K = 27k (4, p. 499], we can show from (24)

that

w = cn?(2t). (25)

Applying this to (20) gives us
x? = 5l1-(1-cen® 2607, (26)

Then y4 by (14) becomes

y4 = 4114+(1-en® 261y, (27)

The trajectory given by these two equations is initially on the
line y = x in the positive quadrant and reaches the y-axis when t

n
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is the smallest positive zero of cn(2t,2-%)-this is &T = Fz(%)Ika
(4, p. 524) (cf. eq. (13) above). To determine the entire tra-
jectory in the first quadrant, we simply reflect this trajectory
through the line y = x. Therefore, because cn(2t) is an even
function, for -T < t < 0, xa and ya are given by the right-hand
side in (27) and (26) respectively.

The corresponding control variables p and q can now be cbtained
immediately. From (17), p = fy%, but the negative sign is chosen

by (18); similarly, q = xk when y > x > 0.

This is all summarized in the following result, which incorporates
Theorem 1. ‘

Theorem 2. The smallest t-interval between a zero of x and a

zero of y for a nontrivial solution of (1)-(2) is FZ(%)IAW% =

1.85407 ... . The corresponding geodesic, normalized by (15),
and control functions are given by
x2 = q= D41 - [l-en®(2t)1%)1"

2 o p = D40l + [1-en®26)19)1™

~<
]

v

when y Zx 2o.
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APPLICATION OF MODERN ESTIMATION AND
CONTROL TECHNIQUES TO THE GLAADS TEST VEHICLE

D.P. Glasson
The Analytic Sciences Corporation
Reading, Massachusetts 01867

B.L. Shulman
U.S. Army ARRADCOM
Dover, New Jersey 07801

ABSTRACT

Application of modern estimation and control techniques to the
tracking, stabilization, and pointing functions of a mobile air
defense system is addressed in this paper. A multiple-model
estimator structure is applied to tracking tactical missile
targets. Modeling, design, and performance evaluation of an
instrument platform stabilization system to reject terrain-
induced errors dre outlined. An optimal predictor for ballis-
tic lead angle compensation is formulated; its prediction error
characteristics and propagation of these errors through the gun
pointing controller are derived. Future areas of development
and field test validation for the concepts investigated are
described.

INTRODUCTION
BACKGROUND

Performance requirements of modern mobile air defense systems
have placed stringent specifications on the tracking, stabili-
zation and pointing performance of these systems. The tracking
subsystem must accurately estimate the position and velocity

of a highly-maneuvering target without explicit knowledge of
the target's maneuvering capabilities or intended trajectory.
The stabilization system must reject vibration disturbances to
the tracking sensor assembly and gun pointing system due to gun
recoil and vehicle travel over a wide range of terrain. The
gun pointing system is limited by the extrapolation accuracy

of a target trajectory predictor and by the dynamic capabili-

. ties of the gun gimbal actuation system. These demanding sys-
tem requirements call for correspondingly powerful design and
analysis tools.

Modern control methodologies offer a systematic framework of
synthesis and analysis techniques for air defense fire-control
system design. Modern estimation/control techniques were de-
veloped specifically for multiple input-output systems which
potentially are stochastic, nonlinear, and uncertain (i.e.,

19
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the dynamics of the system and disturbances are not known pre-
cisely); all of these considerations are present in an air
defense fire-control system.

The goal of the study described here was to assess the poten-
tial benefit of using modern control techniques in designing a
fire-control system for a representative air defense system.
Using mathematical models of the Gun Low Altitude Air Defense
System (GLAADS), a number of modern estimation and control con-
cepts were developed and analyzed. The concepts investigated
and a summary of results are described in the following section.

SYSTEM OVERVIEW

Figure 1 is a block diagram of the air defense fire-control
system concept developed in the present study. For purposes

of demonstrating new estimation and control concepts the system
is restricted to planar engagements, i.e., only range and ele-
vation pointing and tracking are considered.

The integrated system is comprised of tracking, pointing, and
stabilization subsystems. The tracking subsystem generates

estimates of the target range (R), elevation (Ot) and elevation

LEL1} 1]

D'STURBANCE
PLATFORM JV
SLAVING PLATFORM NSTRUMENT
COMMANDS INSTRUMENT PLATFORM MOTION
X, PLATFORM >
DYNAMICS
e EEDBACK STABILIZATION
FEEDFORWARD
ConTROLS avno ‘
k, |e KALMAN FILTER | MEASUREMENTS ,‘(:”:::.’. -
{STABILIZATION) wOTION "m:j
L ELEVATION 4
TRAJECTORY -
STATE ESTIMATES TRACKING | MEASUREMENTS| . LN VR LE B
FILTER DYNAMICS
TRACKING
PREDICTED
ELEVATION
RATE ,:E
MOYOR/ GEAR
LEAD
L] PREDICTOR | PREDICTED INERTIA 20X oun —_————
ELEVATION, . ' ELEVATION
—> 1 > / >
/ POINTING
Figure 1 Integrated Fire-Control System
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rate (ét) from noisy range and elevation measurements. The

estimates generated by the tracking subsystem are routed to
the pointing system where these quantities are extrapolated
through the estimated projectile time-of-flight (T.) by a pre-
diction algorithm (i.e., the ballistic lead angle fs computed).
The extrapolated elevation and elevation rate are then used by
a feedforward controller to command the gun pointing angle and
slew rate; the dynamic response of the gun itself is regulated
by a feedback controller. The instrument platform stabiliza-
tion system serves the dual function of slaving the instrument
platform attitude to the current target elevation (via feed-
forward control) and rejecting terrain induced disturbances
(via a feedforward-feedback controller).

Modern control concepts applied to the three subsystems and
evaluated in the present study include:

° A tracking filter based on multiple
model estimator structure

° Statistical linearization of the non-
linear target tracking dynamics

° An optimal one-step prediction algo-
rithm for extrapolating target motion
estimates over the projectile time-

of-flight

® Command-generator-tracker (CGT)/opximal
regulator control of the gun pointing
dynamics

° A robust (i.e., insensitive to varia-

ticns of terrain type) instrument plat-
form stabilization system designed by
noptimal estimation/control techniques.

Applications of these concepts to the GLAADS vehicle and per-
formance benefits derived from them are discussed in the fol-
lowing sections.

TRACKING FILTER SUBSYSTEM

Through application of multiple-model structuring and statisti-
cal liinearization, an accurate and robust tracking filter is
designed. This filter produces unbiased estimates of the tar-
get motion with range and elevation errors substantially lower
than the noise levels of the range and elevation sensors. It
is shown that the multiple model tilter obviates the need for
precise knowledge of the target maneuver model; i.e., the fil-
ter performs weli given only knowledge of the expected range of

target maneuver dynamics. The formulation and performance of
the tracking filter is described in the following subsections.
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TRAJECTORY AND SENSOR MODELS

The variables used to describe the target trajectory and meas-
uremencs are shown in Fig. 2. The target position is defined
by the target altitude (y) and horizontal distance from the

gun (Xx). The instantaneous target velocity vector (v) is char-
acterized by the target airspeed (V) and flight path angle

(y). The maneuver characteristics of the target are described
by the flight path angle rate (6 = w). Measuremeats of two
polar components of target position, range (r) and elevation
(6), are available to the fire control system.

R-64315%

THREAT

\é‘jTRAJECTORY

POSITION
~ Y
ol
- X >
Figure 2 Engagement Geometry

The dynai-ic equations of the target trajectory and the equa-
tions relating the target state to the tracking instrument
measurements are listed in Table 1. The notation, N(m,v),
denotes white noise of mean, m, and variance, v.

The maneuver characteristics of the target vehicle are embodied
in the flight-path-angle-rate (w) equation; as discussed in

Ref. 1, the flight path angle rate is directly related to the
normal acceleration of the vehicle which is the usual command
variable for maneuvering manned aircraft and tactical missiles.
The parameters that govern the dynamics of flight path angle
rate, 1t and q, are never precisely known in any real engagement;
hence, the dynamics shown in Table 1 are both stochastic and
uncertain.
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TABLE 1
SUMMARY OF TRAJECTORY AND MEASUREMENT EQUATIONS
TRAJECTORY DYMAMICS
X =V cos y = il
y =V sin y = &2
V=-gsiny - fDV2 = i3
Yy = w = ga
w=-Lu+w = x
T 5
w ~ N(0,q)
RANGE MEASUREMENT
- o2 2 . . 2
r, = ? + y© o+ Ve i Ve N(0,4 m™)
ELEVATION MEASUREMENT
- -1 . - 2
Gm = tan (y/x) + Vg 3 Vg N(0,0.25 mrad®)

The thrust/drag balance of the vehicle is quantified by the
parameter fD; for example, in an unpowered segment of a tac-

tical missile trajectory fD relates the drag of the vehicle to
the vehicle airspeed. The drag parameter, fDJ is usually un-

known in a real engagement, but its range of values can be
estimated; hence fD is an uncertain but bounded parameter.

The range and elevation measurements are related to the tra-
jectory states by nonlinear equations. The rms levels of sen-
sor noise listed were taken from Ref. 2 and represent the per-
formance of state-of-the-art instrumentation.

FILTER FORMULATION

The target trajectory dynamics and measurement models listed
in Table 1 are stochastic, nonlinear, and uncertain (i.e., the
model parameters are not precisely known). Due to the non-
linear and uncertain properties of the trajectory and measure-
ment models the standard linear optimal estimator (Kalman fil-
ter) cannot be directly applied; in the present study, two
modifications of the standard Kalman filter structure were
employed to accommodate nonlinearity and uncertainty:

° A statistically-linearized formulation
of the Kalman filter to accommodate
nonlinearities

83




o T s g

® A multiple model estimator structure
to accommodate the uncertainty of the
model parameters.

The structure of a statistically-linearized filter is shown in
Fig. 3. The structure is substantially similar to the linear

Kalman filter; it consists of a state estimator that generates
estimates of the trajectory state, 3k, using a model of the

dynamics (x=f(x)), the measurement model (z=h(x)) and the
tracker measurements, Zyo and a error covariance (P) propagator.

The major differences between the statistically-linearized
filter and an extended Kalman filter are that expected values

of the state derivative (f(x)) and measurement (h(x)) are used
rather than direct functions of the estimates (i.e., f(X) and
h(X)) and statistical describing functions (Ref. 3) for the
Tinearized dynamics (N) and measurements (M) are used rather
than Taylor series approximations (the mathematical derivations
of the expected values and describing functions are detailed
in Ref. 1). At the expense of some additional calculations,
the statistically-linearized filter will yield unbiased esti-
mates of the nonlinear dynamics and avoid filter divergence
problems typically encountered in applications of extended
Kalman filters.

RSN
fi 0
-0 P .
f —l
+ STATE ESTIMATOR
A 4
A
fix)
v A )
DESCRIBING
FUNCTION ————————
COMPUTATION
. nl"
it [
COMPUTATIONS Ts [ Pw
" >—e J ERROR COVARIANCE
+ PROPAGATION
N
P=NP+PNT +Q
Figure 3 Statistically-Linearized Kalman Filter
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Uncertainty of the dynamic model parameters is accommodated
through a multiple-model estimator structure. Figure 4 is a
functional diagram of a two-model estimator structure, as it
would be applied to an air defense tracking system. Here the
range and elevation measurements (z) are procesced by two fil-
ters. The choice of the parameters N and Qi (correlation

3 time and process noise level of the flight path angle rate

: dynamics) are chosen to represent likely target maneuver char-
acteristics in the individual filters. For example, a choice
of large 5] and small Q1 (long correlation time, low normal

acceleration rms) would represent a level-flight trajectory in
filter 1; small T, and moderate Q2 in filter 2 would represent

= a vertical plane "jinking" maneuver. The dynamic models used
in the two filters would "bracket" the expected range of target
maneuvers while the averaging algorithm would combine the esti-
1 mates of the two filters to tune the estimator structure to

the current target maneuver level. An alternative application
to the dual filter structure for tracking an anti-radar missile
having uncertain but bounded drag is described in the following
section. Mathematical details of the dual-filter structure in
air defense system applications are covered in Ref. 1.

E R—-64300 ﬁ
. FILTER 1
F‘_-:>' T=T1,, Q=Q,

il

AVERAGING | 4
ALGORITHM f——» R.P

‘ FILTER 2
——:) 7-12,0-02

Figure 4 Multiple Model Estimator Structure
FILTER PERFORMANCE 1

The perfcrmance of the dual statistically-linearized filter in
tracking the unpowered midcourse trajectory of anti-radar mis-
sile is described here. A segment of the example trajectory

(o4

is shown in Fig. 5: the segment shows a planar, unpowered, i
non-maneuvering gravity-turn through the atmosphere.

The parameters used in the dual tilter structure were chosen i
to provide an adaptation of the estimator to the unknown drag
characteristics of the target vehicle. The maneuver parameters,
1 and o, are identical for the two filters with values appro-

priate to a low maneuver level gravity turn. The drag param-

eter, fD’ is set to zero in one filter and to a value ZfD in
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the other filter. where fD is an estimate of the vehicle drag

parameter derived from intelligence data (Ref. 4). The two
values of fD "bracket" the range of variation of fD; the dual-

filter averaging algorithm then combines the estimates of the
two filters to "tune" to the current value of fD. 1

! The performance of the dual-filter in tracking the example

trajectory is shown in Fig. 6. Unbiased errors in range and

‘ elevation estimates are obtained. Substantial improvement of

;. ' rms range and elevation error over the measurement accuracies

] ‘ is achieved; range error is reduced to 1 meter rms as opposed

' to 2 meters rms measurement error and elevation is reduced to

A 0.25 mrad rms as opposed to 0.5 mrad rms measurement error.

ﬁ There is good agreement between the true estimation error vari-
ance and the error variance ccuputed by the dual filter, thereby

validating the use of statistical linecarization, the choice of

parameters in the present upplication. and the viability of s ]

dual filter structure in adapting to unknown drag characteris- T

tics of the target. ’

STABILLIZATION SYSTEM j
An instrument plattoim stabilization system design based on a

Kalman filter/optimal teedtorward-feedbac'' control structure
is described in this section. Using this ovptimal structure,

86




B R M R

-

e e

Ll

RANGE ERROR (m)

FELEVATION ERROR HISTORY

R—$4308 R—e4307

RANGE ERROR HISTORY

-~

(-]
°
-

4
>

ELEVATION ERROR {(mrad)

ELEVATION ERROR RMS

(NEGATED)
~-08
-3.04 -08 .1 T
(Y 3 8 P » © ") ) ) ) »
TIME (sec) TIME (sac)
Figure 6 , Anti-Radar Missile Tracking Performance

point designs for various levels of terrain-induced vibration
were performed and analyzed. Suboptimal systems were then
designed and their performance compared with that of the opti-
mal designs; by this means, major simplifications of the system
structure were shown to be possible with little degradation of
stabilization performance. The most significant of these sim-
plifications is that the stabilization system can be decentral-
ized from the tracking system.

SYSTEM DESIGN

The structure of the stabilization system is shown in Fig. 7.

Using the platform rate integrating gyro and hull mounted rate
gyro measurements, a full-order Kalman filter (i.e., a filter

designed using the coupled dynamics of the platform, rate in-

tegrating gyro, and terrain-induced disturbance) generates

estimates of the gyro output angle (Bg), the platform eleva-
tion angle and elevation rate (9e and ée), and the disturbance
state (gh). The estimates are then multiplied by a control
gain matrix, KC, to compute the platform torquer and gyro com-

mands (ug and ug).

The optimal control gain matrix, KC, is partitioned into gains

that multiply the gyro and platform states and gains that mul-
tiply the disturbance states, i.e.,:

Kc - [Kp : Kd]
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Stabilization System

With this partitioning, the control system can be described in
terms of feedback and feedforward control functions. Desirable
platform dynamic response is achieved by proper values of the K
gains; optimum disturbance rejection is accomplished by the Kd P
gains.

The terrain disturbance model used in the present study was
derived from data presented in Ref. 5 and is described in
Ref. 1. This model represents travel over road and country
terrain at speeds from 5 to 25 km/hr.

Th noise characteristics of the rate integrating gyro and the
hull rate gyro are given in Table 2. These noise charactcris-
tics are typical of tactical aircraft quality instruments.

PERFORMANCE AND SENSITIVITY ANALYSIS

The method used to analyze the stabilization system performance
was steady-state covariance anaiysis. The covariance matrix

of the stabilization system is derived from the steady-state
covariance equation:
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g TABLE 2
[ ~ MEASUREMENT NOISE LEVELS

§ o INSTRUMENT | RMS NOISE | BANDWIDTH
é | RIG 0.3 urad 600 Hz

? C Hull Rate Gyro | 2.9 mrad/sec 600 Hz

{ R+ 3T +q=0 ’ (1)

1

, Here X is the covariance matrix of the system which consists

of subsets related to the covariances of the platform states,
the disturbance states and the state estimator errors. The
matrices ¥ and Q are the dynamics and process noise matrices,
respectively, for the coupled platform, disturbance, controller

and state estimator error dynamics.

; f The performance metric chosen in the present case is the steady-
b : state variance of the platform elevation angle; performance -
- : sensitivity analyses yielded the following significant results:

T I AR Y

‘ ® Stabilization of the instrument plat-
i , form to 3.3 prad rms over the entire

, range of terrain and vehicle speed
using fixed gains (computed for worst
case design point)

ol A, i et (i

: ° Elimination of the feedforward branch
3 of the controller providing a major
3 simplification of conurol structure

, with negligible degradation of

ot A0 s e mtom i

g performance
° Stabilization error rms increases by ;
a factor of 4 with hull rate gyro !
removed !
° Platform residual stabilization error |

is sufficiently low (i.e., two orders
of magnitude lower than the tracking
elevation sensor) that the stabiliza-
tion and tracking functions can be
decentralized.

GUN POINTING

The pointing system desi_n is based ¢ a recently-developed
type of feedforward controller, the command generator tracker
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E (CGT). This controller causes the plant output (gun pointing

i i angle) to track exactly the output of a specified deterministic
oL linear system; in tracking stochastic processes (such as a

f ’ maneuvering target) the CGT has shown performance superior to
that of optimal feedforward controllers.

SYSTEM DESIGN

The structure of the predictor/gun pointing system developed
in this chapter is shown ir Fig. 8. The model of the gun ele-
vation dynamics is comprised of a gain, K& to represent the

1 ' hydraulic motor command response and inertia; the dynamics of

i the hydraulic motor valve are very high frequency and were

' therefore neglected in the present design. The rotation rate
of the hydraulic motor is geared-down by a factor of 1l/n in
the gear box; the gun elevation, eGUN’ is the integral of the
gun rotation rate.
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Figure 8 Predictor/Gun Pointing System Structure

Elevation and elevation-rate estimates from the tracking filter
are extrapolated forward in time through a computeg projectile

time-of-flight. The extrapolated eievation rate (ée(t+tf)) is
multiplied by a feedfocrward control gain (n/KH) to 4rive the

gun elevation rate to match the target elevation rate. The

error between the extrapolated target elevation (Be(t+tf)) and -
the gun elevation is driven to zero by a regulator gain, Kr;

the magnitude of this gain determines the control bandwidth of
the closed-loop gun dynamice. )
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PREDICTOR/POINTING SYSTEM ERROR ANALYSIS

The mathematical relationship between gun pointing error sand
the trajectory state prediction errors is summarized in this
section. First, the predictor elevation and el~vation r-te i
errors are derived in terms of the er1 rs in the extrapolated ;
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i trajectory state. The gun pointing error is then derived rrom
the predictor errors and the dynamics of the gun/controller

: system. Figure 9 shows the geometrical relationships used to

! derive the elevation and elevation rate errors.

R87539
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GUN POSITION

é- Figure 9 Geometrical Relationships for Prediction
3 X Error Analysis ’

f After analyzing the differential geometry of Fig. 9 (Ref. 1)
' one obtains the following expressions for the predictor errors:

3 _ 1 ~ -
é | ey = Ez (- e +% ey) (2)
| e5 = ) [e,/V - ep/R + cot(e-if)(ey-ee)] (3)

YR

where the notation e, denotes the prediction error for variable

a, and B denotes the predicted value of variable B. Equations
2 and 3 relate the elevation and elevation rate errors (ee and

eé), which corrupt the conirol commards to the gun, to the
predicted trajectory states (X, ¥, V, ¥) and predictor errors
_ (ex, ey, e, ey, €q > and eR).

By expressing the true target elevation and elevation rate
(which, if commanded to the gun pointing system would yield
exact target tracking) in terms of their predicted values and

prediction errors; i.e.,

e il e

6. = 0., + e (4) ?
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= éT + e (5)

T 0

the following equation is derived (Ref. 1) for the gun pointing

errors:

E’ ! ' ¢ = - l l -
? : €gun = T T ®gun T T o t ey (6)
i where ®gun 1S the gun pointing error and t(=n/(KmKr)) is the

time-constant of the closed-loop gun regulator dynamics. Equa-
tion 6 defines the dynamics of the gun pointing error in re-
sponse to errors of the extrapolated elevation and elevation
rate, As indicated by Eq. 6, the gun pointing errors are fre-
quency limited by the bandwidth (1/t) of the gun regulator.

The static gain of elevation error to gun error is unity; the
static gain of elevation rate error to gun error is t.

T T sTeem -

Equations 2, 3 and 6 could be used in a Monte-Carlo simulation
to decermine the time-history and statistics of the gun point-
; ing error in a particular air-defense scenario. The predictor
l .errors would be computed as the difference between the predicted
l - elevation and elevation rate and the elevation and elevation
rate of the truth model trajectory. A linear combination of
the computed predictor errors (i.e., (1l/t) eq + eé) would be

the input to a first-order linear filter with time constant, t; 3
the output of the filter would be the gun pointing error.

TG T O AR e s e
-

] ‘ CONCLUSIONS

In this paper, modern estimation and control design techniques
were applied to the GLAADS air defense system. Specific con-

; cepts considered in this study include: application of statis- i
* tical linearization to the nonlinear trajectory dynamics and L
‘ tracking sensor measurements, multiple-model estimator struc- ]
turing of the tracking filter to accommodate modeling uncer- :
tainty, stabilization system design by optimal estimation and :
control techniqu:s, optimal prediction algorithm design, and .
command-generator-tracker/optimal regulator control of gun
pointing. The performance benefits obtained through applica-
tions of these concepts were demonstrated through subsystem
examples.

Further developments of these concepts should include:

° Extension and evaluation of the design
formulations for non-planar engagement
scenarios

[P T P
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) Development of practical implementa-
tion structures for eventual field
testing

° Global performance evaluation of a
mobile air defense system (i.e., error
budget structure) to identify high-
payoff areas for subsystem improvement
and development.
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ON DESIGNING ROBUST PREDICTORS USING FINITE STATE
MARKOV CHAINS

o BE. B. Pate & M. Mintz W. Dziwak & S. A. Goodman
’ Dept. of Systems Eng. US Army Armament Research
; ' Univ. of Pennsylvania and Development Command
: Phila., PA 19104 Dover, NJ 07801
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ABSTRACT

Traditionally, control systems oriented studies of uncertain
dynamic processes with continuous state descriptions have
relied primarily on the identification and estimation of
models based on ordinary differential 7juations, partial
differential equations, or related difterence equations.
Recently, the authors have explored the use of finite markov
chains to approximate processes with continuous state
descriptions. Our applications of these techniques have
focused on the determination of robust models of evasive
targets in the context of AAA fire control.

I TP T Ty

We have developed a practical technique for estimating
robust finite state markov chain models. This technique is 4
based on game theory and provides a minimax method for :
determining robust approximations of markov chain state
1 - transition matrices, which are used to construct target
: ‘ motion predictors. The importance of this new approach lies
in its ability to provide easily implemented predictors
? which can outperform traditional autoregressive models in a
noisy environment.

: This paper outlines this new methodology and provides
examples of fire control applications based on flight test
data.

INTRODUCT ION

The present study is an outgrowth of an earlier study (1)
which characterized, identified, and validated robust
mathematical models for the motion of an attack aircraft
during its weapon delivery pass against a defended target.
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These new maneuver models provided the.basis for enhanced
filtering and prediction algorithms for AAA fire control
systems. The development of these models and algorithms was
based on a synthesis of univariate time series methods and
game theoretic analysis. This synthesis lead to (i) the
development and validation of a practical design procedure
for high performance target state estimators in the presence
of moderate to large parameter uncertainty, and (ii) a
technique for designing a class of "worst case" maneuver
processes to blunt the effectiveness of AAA systenms.

L T BT NPT I T A

A central aspect of the research reported in (1) was the use
of authentic flight test data, which consisted of eleven
sample flight profiles an aircraft might perform while
attacking a defended ground target. The actual data was
gathered during flight tests with an A7-E aircraft at the
NWTC, China Lake, Californjia. These attack profiles, which
also constitute the flight test data base for this present
study, are described in detail in Chapter II of reference
(1) This kinematic data base describes the aircraft motion
in a cartesian coordinate system, where the origin of this
coordinate system is the aircraft®s intended target, as well
as the assumed location of the AAA weapon system. The
Kinematic data describing the eleven flight profiles in the
XY2 coordinate system includes consistent position,
velocity, acceleration, and acceleration~dot data in each
coordinate with a time increment of 0.1 sec. The primary
models developed in (l) characterize the aircraft motion in
terms of "“decoupled" autoregressive (AR) models for the
individual acceleration-dot time series in X, ¥, and 2. We
summarize the salient results of this earlier study with the

following remarks:

(i) Although the eleven flight paths appear significantly
different to the "naked eye," the thirty-three
acceleration~-dot time series in the data base -~ eleven
flight paths times three directions -- are shown to be
accurately modeled by a single robust fifth-order
autoregressive model. The eleven flight paths in this data
base include three dive toss maneuvers, five dive maneuvers,
and three pop-up maneuvers. The acceleration-dot processes
were incorporated in the model development since the
acceleration, velocity, and position time series are all

sigaificantly nonstationary.

(ii) Substantial improvements in overall prediction
capability are achievable by using robust, high-order
filter-predictor algorithms based on a fifth-order AR model
of acceleration-dot instead of the "usual" (benchmark)
third-order algorithms based on a first-order AR model of

acceleration.

(iii) Typical improvements in average hit probability
achieved by the new models developed in (1) versus the
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standard benchmark model based on a first-order AR model of
acceleration, ranged from 25 to 35 per cent. The specific
enhancement in average hit probability associated with these
new filter-predictor algorithms depended on the specific
flight path, and the noise levels in the unfiltered
obgservations. The unfiltered observations were modeled by
target range, azimuth, elevation, and the respective rates.

ALTERNATIVE MODELS

T I e e e

Motivation

[ ‘ The consideration of dynamic stochastic models for target

| motion based on alternatives to the AR models described in 1
’ this Introduction and detailed ia (1) is motivated by the ]

observation that predictors, designed on the basis of

nominal fifth-order AR models for acceleration-dot, showed :

extreme sensitivity to observation noise. Here, a nominal

AR model refers to a model obtained by a standard least

squares identification procedure in conjurn:tion with the

3 usual goodness of fit tests. This extreme sensitivity to

observation noise was eliminated in (1) by the following

ad hoc approach: the nominal fifth-order AR model used in

the predictor was replaced by a modified fifth-order model

with greater damping and reduced bandwidth. The overall

filter/predictor system was characterized by three decoupled

channels for the X, ¥, and Z coordinates. The individual :

Kalman filters were implemented based on the nominal values ‘

: of the X triple-dot AR coefficients for Pass 10. The 1

- . performance of this simplified filter structure with these :

: specific coefficients was studied extensively through

simulation experiments. The results of this study indicated

that this simplifed fiiter provided good performance against i

all of the observed flight profiles. A worst case analysis 4

based on game theoretic¢c techniques revealed that this i

eimplified nominal filter should be replaced by a

structurally identical filter with different AR parameter

values to counter plausable worst case maneuver proresses

which were not part of the flight test data base. We refer

the reader to (1) for a complete description of this worst

case analysis and filter design technique. The coefficients

for the individual X, Y, and 2 coordinate predictors were

obtained by adjusting the overall bandwidth ard damping to

achieve good predi.:tion performance based on the filtered

observations. A common choice of modified AR coefficients :

was implemented for each of the three predictors. This i

adjustment of predictor bandwidth and damping necessitated |

some empirical analysis via simulation studies. It is worth

emphasizing that these "decoupled" eighth-orderc

I AT A e

nominal filter/modified predictors provided 25 - 35 per cent g
improvement in average hit protability compared with the i
usual "decoupled" third-order benchmark algorithm. We note i

that although the nominal predictors based on fifth-order AR
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models of acceleration-dot showed extreme sensitivity to
observation noise, which necessitated modifying the
predictor’s frequency response, a nominal predictor bLased on
the Pass 10 X triple-dot AR coefficients provided excellent
prediction capability against each of the elev-n flight
paths in a2 noiselass environment. This substantial
gsensitivity to observation noise is of more than academic

C interest. It suggests that the underlying process (truth

i - model) which actually characterizes the aircraft motion may

exhibit structural details which are not embraced by AR or
more generally by autoregressive integrated moving average
; : (ARIMA) approximations. This last statement is not intended
‘ : to imply that ARIMA models are unsuited for maneuver process
1 modeling, but rather that, in the set of all possible L
maneuver process models, there may be alternative classes of i
P models which provide better explainaticns of the underlying
: process. One recognizes, in applications oriented model
building, that there is a delicate balance which must be
sought between process explaination (complexity) and
implementation approximations (simplicity). The choice of
pivot point for this balance is strongly influenced by the
model”’s intended application.

- -

TR R Ve - e e T .

: We began our consideration of alternative models for evasive
attack aircraft motion by examining an overall model
structure which was delineated in terms of aerodynamic
varjiables and aircraft aspect. This new model was based on
an integration of finite markov chain models for aircraft
normal acceleration with ARIMA models for aircraft

; tangential acceleration and bank angle. The consideration
3 ; of dynamic stochastic models for target motion bagsed on
target aspect (bank angle) as well as aerodynamic variables
(normal and tangential acceleration) was motivated by an
] earlier investigation reported in (2). These earlier
- _ results indicated that enhanced prediction capability might
' be achievable based on prediction algorithms defined in
terms of target aspect, airspeed, and normal acceleration,
particularly over extended prediction intervals (e.g. 3 - 5
sec.). We remark that other investigators working in the
air-to-air fire control environment have recently considered
state estimation algorithms based on target aspect and .
normal acceleration. However, these collateral works, which
are reported in (3 - 5), do not make use of any flight test
data. .

The factors which suggest modeling target motion in terms of
bank angle, normal acceleration, and tangential accele¢ration
are:

(i) A desire to describe target motion in terms of decision
variables under the control of the pilot.
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({1) The recognition, bused on theoretical considerations as
well as empirical studies, that the stochastic dynamic
behavior of the individual X, ¥, & 2 acceleration-dot time
series for a given flight profile are gtrongly coupled in a
noncausal fashion.

b (1ii) The recognition that alternative models for target
motion based on aspect and aerodynamic variables could allow
the exploitation of partially redundant dynamic data in the
context of seeking enhanced prediction capability through
multisensor integration.

AT Y g 4 1

S
E | Preliminary Results
i

| (1) The first phase of the present study focused on the

: identification and estimation of univariate time series
models for target bank angle (BA), normal acceleration (NA),
and tangential acceleration (TA). These results indicate
that the eleven BA, NA, & TA time series can be adequately
mcdeled by three separate ARIMA models. By the phrase

] *adequately modeled," we mean that based on noiseless data

3 there is inadequate evidence to support the rejection of the

null hypothesis. The phrase “adequately modeled" is not

intended to imply that these models necessarily have good

sensitivity properties. The prediction capabilities of

these models in a noisy environment will be described

subseguently.

g : (ii) A single input single output (SISO) transfer function §
" analysis indicates that while there are weak causal

‘ relations between BA and NA, and between NA and TA, it is
adequate to treat the individual BA, NA, & TA time series
for a given flight path as independent series.

E‘ i

3 (1ii) The NA time series for each flight path exhibits

3 significant piecewise linear behavior. This suggests that
the rate of change of normal acceleration can be modeled
approximately as a finite state markov chain. Detailed
analysis indicates that this finite state markov chain model !
is quite competitive with the previnusly described ARIMA :
model for NA as judged by the relative prediction capability J
of each model in a noiseless environment.

(iv) A comparative analysis of predictor performance for the
. case of noiseless data indicates that:

(a) The hybrid predictor (based on a nominal markov

chain model for NA-dot, and nominal ARIMA models for TA &

BA) performs comparably to the predictor comprised of

nominal ARIMA models for WA. TA, & BA. :
(b) The performance of both of these new predictors is ?

comparable to that of the robust predictor based on j

acceleration-dot obtained in (1). :
(c) The nominal fifth-order AR models based on f

acceleration-dot obtained in (l) performs noticeabliy better
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than each of the other predictors cited in (iv-a) and
(iv=b) . The high performance capability of these nominal
fifth-order AR molels in a noiseless environment is not
practically useful because of the severe noise sensitivity
of these models as noted previoualy.

S (v) A comparative analysis of predictor performance for the
] , case of noisy data indicates that:

(a) The nominal ARIMA models of NA, TA, & BA exhibit
the same extreme sensitivity to observation noise as was
found for the nominal fifth-order AR models of

; acceleration-dot obtained in (l).
! (b) The nominal finite state markov chain model for
NA-dot showed gubstantial noise immunity.

T aeaal” MIPLISERYI

Preliminary Conclusions

We draw the following conclusions from these preliminary §
regsults: 1

(i) The nominal firite state markov chain model has
substantially better noise immunity than its nominal ARIMA
counterpart.,

(ii) Logical directions fur further research include:
(a) A study of the Lbehavior of finite state markov
chain approximations to the TA & BA processges. j
(b) A study of the behavior of finite state markov ]
chain approximations to the X, ¥, & 2 acceleration-dot
processes resolved in a cartesian coordinate system.

We decided to direct our phase-two efforts towards a
: datailed study of finite state markov chain approximations
. ; of the acceleration-dot processes resolved in a cartesian
1 ; coordinate system. We chose this direction over the finite ;
' sta -~ markov chain study of NA, TA, & BA, since current 1
' sens - capabilities do not suggest the immediate '
availability of direct or indirect aircraft bank angle data %
with a suitable S/N ratio. i

MARKOV CHAIN MODELS of A-DOT

In this section we describe the determination and validation ‘ o
of nominal finjite state markov chain approximations to the
individual X, ¥, & Z acceleration-dot processes for the
flight paths in our data base. The following approach is
justified if we assume that the underlying A-dot data is
generated by a (possibly) infinite state wide-sense
stationary markov process with sample paths that exhibit
piecewise ~onstant behavior over intervals of random
¥ duration. We refer the reader to reference (6) for a more
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rigoroas probabilistic description of the class of
underlying procesgses for which our approximation algorithm
is theoretically valid. In the following discussion we
focus our attention on a generic sample path, for example.
the X triple~dot realization for Pass 1.

An Approzimation Algorithm
Our approximation algorithm has the following steps:

Step 1 ~ Dynamic Range: Determine the dynamic range (maximum
& minimum values) of the time series data.

Step 2 ~ State Assignment: Determine a finite set of
“states" for the time series data. .

Step 3 - Traincition Matrix Estimation: Egtimate the
probab:ilities in %tlie one-step state transition matriix --
based oin the state assignmenis made in Step Z.

S*ep 4 - Repeat Steps 1 - 3 for the remaining time series
data seis.

Step & - Hypothesis Testing: Perform the appropriate
statistical tests to evaluate the walidity of the hypothesis
that the derived finite state markov chains have a common
underlying distribution. (We refer the reader to reference
(7) for an excellent treatment of hypothesis tests for
finite state markov chains. )

Some Comments on the Algorithm

Step 2: There is no canonical method to resolve the state
assignment question. We have explored two methods in this
preliminary analysis. These methods are: (a) the method of
uniform dynamic range, and (b) the method of uniform
duration. The method of uniform dynamic range breaks the
dynamic range of the time series into M equal intervals.
(In this analysis we chose M = 5. ) The center point of
each interval was defined to be the value of the associated
state. The methed of uvuniform duration selects the M "state
intervals" such that the number of "occupancies®™ in each
interval are identical (or approximately identical). Here
again, the value of M was chosen to equal 5, and the center
point of each interval was used to designate the state
value., The selection of M = 5, as well as the state
aseignment procedure represents judgmental calls on the part
of the investigatcrs. Further research on these issuecs is
currently being pyrsued.

Ste» 3: The underlying one-step state transition matrices
were estimated using the method of maximum likelihood (7).
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Structural and Statistical Results

T TR R I

Although the flight paths all look very different to the
"naked eye," the estimated one-step state transition
matrices showed remarkable similarity between the X, Y, & 2
directions for a given flight path, and between all of the
flight paths. This result corresponds to the related

- behavior of the acceleration-dot spectra reported in (1).

' Use of the uniform dynamic range rule for state assignment
led to one-step transition matrices which exhibit a
pronounced birth-death behavior.

RERRE o
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Prediction Using Markov Chains

RPRTC T P

Prediction based on a MMSE criterion is easily carried out

; for a finite state markov chain model. The propagation of

. the conditional expectation of the state n steps into the J
future is obtained by raising the one-step state transition ;
] 1 matrix to the nth power and then multiplying the resulting
F ; matrix by a column vector of state values. The desired

: ' value of the conditional expectation is merely a weighted

' sum of n-step state transition matrix entries.

T T S

Numerical Results

In this section we present the results of a series of i
simulation experiments which were carried out to test the ‘
validity of this finite state markov chain approximation 3
concept. These results represent two separate classes of
finite state markov chain approximations. The first model i
denotes a finite state markov chain approximaticn to X, Y, & ]
Z triple-dot. The predictions are based on a "multiple
. integration" of the predicted values of acceleration-dot,
acceleration, and velocity in each coordinate. A standard
E ‘ Taylor series model defines the overall predictor structure. [
2 . The second model, which we introduce very briefly, denotes a
- : finite state markov chain approximation to the individual ;
3 ; components of the derivative of the aircraft®s angular H
ﬁ : velocity vector (Omega-dot). Detailed motivation for this ;
choice of state variable description of the aircraft motion '
appears in (6). Our purpose in presenting these additional !
results here is to illustrate that the choice of state ‘
variable description cr model coordinatization is not 3
uniquely or canonically determined. Both classes of models :
have been exercised against the benchmark predictor. Since :
sensitivity to observation noise is a critical issue, .
predictor performance with and without noise has been
investigated. The signal to noise ratios used in these
experiments correspond roughly to the low level noise figure ‘
experiments performed in (1). In the current experiments, ‘
uncorrelated observation noise was added to the data prior 1
to the prediction calculations. No filtering was carried 1
out on these data prior to the prediction calculations.
Since Kalman filters were employed in the experiments

s a e
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reported in (1), a complete correspondence between these
preliminary experiments and the results reported in (1),
cannot be made. The results of the present experiments
should be viewed as preliminary, since the markov chain
predictors which were implemented in each case were based
, solely on the Pass 1 time series data. This choice
represents a first cut, and illustrates the excellent
performance of the markov chain approximations, which did
not require any tuning. The results of the prediction
! experiments are contained in Table 1. We remark that both
: _ classes of markov chain models performed well against the
i benchmark model, and both exhibited significant noise
imrunity. The performance of the nominal (non robust)
fifth-order AR models for acceleration-dot yielad
corresponding average hit probabilities significantly less
than 0.1 at this noise figure. PFurther results relating to
the robustization of these preliminary markov chain
approximations are reported in (6, & 8). Reference (6)
includes a worst case analysis of the markov chain
approximation process, as well as the saddle-point theory
which justifies the worst case analysis.
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CONCLUSIONS

This study has oresented substantial evidence to support the

assertion that finite state markov chain approximations can

be used in place of AR (and ARIMA) models as the basis for

predictors in a realistic AAA fire control application. The

3 value of the markov chain approximations lie in their

3 substantial immunity to observation noise. It has been _
shown previously in (1) that high order AR models can ]

provide a substantial enhancement in prediction performance
in vomparison with the usual decoupled third-order benchmark

model. However, the application of these high order AR '

models requires that the nominal parameter values be j

adjusted to reduce the bandwidth and increase the damping of E
the given predictor. This adjustment procedure requires a

degree of numerical experimentation to obtain a suitable

design. Whereas, the markov cnain approximations need

essentially no tuning to obtain a design with excellent

observation noise immunity, and therefore these models can

be vsed "directly off the shelf".
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3 ; ROBUST KALMAN FILTERING

Dr. G. A. Hewer
RF Anti-Air Branch
Weapons Synthesis Division
Naval Weapons Center
. China Lake, California 93555
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ABSTRACT

4 . This is a preliminary report on the current research on the appli-
X i cability of robust Kalman filtering in monopuise radar tracking

. systems. (An estimation procedure is robust if small perturbations
; in the noise model from the assumed (Gaussian) noise model result
: in only small chang2s in the mean-squared-error of estimate.)

(o B e i

INTRODUCTION

Optimal guidance laws for accelerating targets depend on adequate

‘ , estimates of key states such as line-of-sight rate and target

1 . normal accelerations. When optimum state estimates of these para-

5 ‘ meters are available, superior missile performance can be demon-

P | strated. These estimates are usually provided by some Kalman

: filter algorithm. 1In the classical Kalman filter, noise sources

e are characterized by uncorrelated Gaussian statistics. Unfortu-

nately, as the research of Masrvliez and Martin [l1] demonstrates,

, : the hehavior of Kalman filter algorithms can be severely degraded

! when the actual noise disturbancas are non-Gaussian, particularly

' when the non-Gaussian behavior is heavy tailed. The latter behav-
ior is characterized by outliers. In monopulse radars this heavy 3
tailed non-Gaussian behavior is present in the angle tracking sig- ;
nals because of target glint. A monopulse tracker will turn until
the central axis of the receiver antenna is aligned with the
normal of the incoming (scattered) wavefront. For a point target
the scattered wavefront is spherical, and thus the gradient is
always along a radial vector directed from the receiver aerial to ‘
the target. A complex target is composed of a number of spatially i
separated scatterers and thus the spherical wavelets from the :
individual "point" scatterers will interfere. As a result of this !
interference the phase of the received signal will not, in general, :
be independent of the target aspect. The component of the phase !
gradient vector orthogonal to the radial direction is directly re- ;

- lated to tracking error. It is this type of error that constitutes i
glint. Since the phase of a complex target varies as a function
of target aspect and mction, the statistics for the Kalman filter
are non-stationary. Thus the Kalman filter must adapt to the non-
stationary glint statistics. Moreover, the pulse repetition rate
of the radar is generally much higher than the requisite tracking i

rate. For this reason the Kalman filter generally processes a set
of statistics based on a fixed number of sampled radar measure- 1
ments. If these statistics are the mean and variance of the
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angular glint based on a sequence of radar pulses, then they will
be sensitive to intrinsic signal outliers (i.e., large glint
spikes). For this reason robust statistical alternatives to the
mean and variance are considered. Informaily, a robust estimate
is cne whose performance remains quite good when the true distri-
bution of the data deviates from the assumed distributicn. The
mean and variance are sensitive to large changes in a small frac-

{ tion of data points. Robust estimates are more resistant to

; outliers. The purpose of this research is to clarify the role of

robust estimates in angle tracking.

. In this paper the basic angle tracking loop simulation is outlined

] } and some preliminary results are presented. In addition, the role
of robust estimates in the tracking loop are identified and some
comparisons: of the mean and variance with robust estimates are
preserted using some simulated glint data,

T s TR ————

1 T sy e

TRACKING LOOP MODEL

The basic angle tracking loop is defined in Figure 1. The track-
ing loop and Kalman filter equations are derived and discussed in
the paper by Pearson and Stear [2]. In this section the Kalman

E : filter equations, the controller and the antenna stabiliization

1 ‘ loop denoted by G(S) are defined.

3 R —

3 .
3
’ - - ey - v e —

: f ANGLE [ i
3 . "';’X'E'."-'.“ ~i3 '} " ) o l':‘c'\'“:‘" LM '}',‘",“,’:," ‘—.lcu_nmoum g e ;:“.
{ 4r |
L | |
3 i I [1] I
‘ RAUAR PULSE RATE i 8 {
' ' TRACKING RATE '
wg = L0S RATE € — ANGLE POIN.ING ERROR
wp - ANTENNA RATE €m - MEASURED POINTING ERROR *

wag ~ CCMMANDED
ANTENNA RATE

FIGURE 1. Pointing Error Control System. 1

For this simulation a planar engagement is assumed and for the ini-
tial studies the radar is fixed and the target is executing a con-
stant g turn. Also, it is assumed that line of sight and antenna
gimbal coordinate frames are almost coincident. Let € denote point-
ing error, which is the integrated difference between the line~of-

sight rate W g and antenna rate Wy - Let an and ar denote the
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: target and interceptor accelerations. The Kalman filter state
e equations are

;= - 1
3, =~ Tan +4q

with observation eguation

y = ke + r,

T s g e

where k is the angle error receiver slope and r and q denote addi-
tive noises. This formulation of the Kalman filter in line-of-
sight coordinates is appealing because the filter is linear and the
second state equation reduces to the formula tor the transverse .
acceleration of a particle moving in a plane. The constants R, R
and t are respectively range. range rate and target acceleration

1 time constant.. The estimates of R and R are provided by the radar.

(R Lt

v

~

The estimates ¢ and W g produced by the Kalman filter are combined ]
i linearly to produce z2i1 antenna rate command of the form

TRy

~ ~

Wae = Gyupg + Gae ;

T

where G1 is usually unity and Gz is proportional to the tracking :
loop rate.

3 The antenna stabilization loop is modeled as a third order system
, whose states are antenna postion, rate and acceleration, which are
' denoted by x;, x, and x,. Let [ denote the damping ratic and w

the undamped natural frequency. Finally, let u(t) denote a contin-
uous real valued input function. The state equations can be writ-

ten as
. 1
X, = X5 j
Xy = 2cwx3 wox, + wa(t) i

xl -xzo
|
|
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EXACT SOLUTIONS OF THE STATE TRANSITICN MATRICES

In this section the state transition matrices for the Kalman
filter and the antenna stabilization loop are derived. First,
the transition matrix for the Kalman filter is derived. Next,
the transition matrix that is used to represent the antenna sta-
bilizatiou loop and integrator in the pointing error control
system using Kalman estimates is derived. Finally, the transition
matrix is used to obtain the sampled-data time domain representa-
tion of the stabilization loop integrator with a hold circuit.
Both of these transition matrices are derived using spectral
operator theory. These techniques for finite dimensional opera-
tors are discussed in Lancester [3] and zadeh and Desoer [4].

Before deriving the exact solutions of these systems, the concepts
and formulas that are essential in the Jdevelopment of spectral
operator theory for functions of matrices are presented. Assume
the following state variable formulation

; = Ax + Bu (1)
Yy = Cx (2)

where A, B anc C are respectively n x n, n x 1 and 1 x n constant
matrices and x, y and u are real valued state vectors of compati-
ble dimensions. To simplify the discussion it is assumed through-
out this section that the eigeunvalues of A are distinct. Let

xl « o e An denote the eigenvalues of A. The basic strategy of

this secticn is to solve the linear :¢-stem (1) by first deriving
an exact expressicn for exp(At) and then solving the forced sys-
tem by integrating the general solution. The spectral operator
theory develops an exact expression for elementary functions with
matrix arguments. For example, the theory justifies the gubsti-
tution of a matrix A for the real variable £ in the power series
expansion of the elementary functions such as exp(2) and sin(l).
ilowever, computing the matrix exp (AL) by the infinite power ser-
ies can be difficult except in very special cases or for small
values of t. A finite power series expansion can be obtained by
using the following fundamental formula for the function of a
matrix. Given any real valued function £, which is analytic at
the eigenvalues of A

n
f(a) = T £(2)2 (3)
kel X K
where Al « o o 4 kq are the distinct eigenvaluea of the n x n
matrix A and the matrices zk have constant elements and depend
exclusively on A. The n X n matrices zk are called the components

of A. The component matrices are linearly independent nonzero
matrices that commute with A and satisfy the following identities
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n
(a) r 2z, =1I,
k=1 K

b (b) Zy 2y = 7y for each k

(c) zkzj = 0 for k ¥ j

Where I and 0 are respectively the n x n identity and null matrix.

: ' Property (a) follows from the fundamental formula (3) by letting

A o . £(A) = 1, Matrices that satisfy properties (b) and (c) are called
- respectively idempotent and orthogonal. Since the eigenvalues of

A are assumed to be distinct, the zk can be computed by the

i formula

s g T ¢ T e - e

T e s

b n / n

h : 2, = I (A - X, I)/ 1 (AL = Ay)

: k el 3 j=1 k 3
irk ¥k

. where 1 is the product sym! ol. An alternative method for com-
: ‘ puting the comnponenc matrices is given in Lancaster and Zadeh.
1 » When £(A) = eX or £()\) = A there results

n

exp(At) = T exp()\kt)zk
k=1
: : n ;
g ‘ A= L A%
k=1 k~k
] ; The spectral theory of an operator can be very useful in computing \
1 : some fundamental properties of exp(At). By property (a) for t = 0 ,
9 | p
. |
exp {(At) = i Zy = L ]
k=1 3

which is one of the basic properties of the state transition
matrix. To show that exp(At) when computed by the fundamental
formula (3) is a solution of (1) with zero-input (i.e., the input
vector u is zero for all time) first form the product

L et 1 i

n n
A exp(At) = L A2 LI exp(A, t)2Z
k=1 k%k k=1 k™%

and then apply the idempotent and orthogonality properties of the
component matrices to the product to obtain

[ESRTF TN S TV T Y

IQ:

Ay

n
Dx T exp()\kt)zk

k=1

(M l=}

exp(xkt)zk = 3t
k

m

[ / e e g et i s e e e~y map ——y.
T it e b e e B Y e EY - = a. i i, R el = ahiad i
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which proves that exp(At) is a solution of (1) with zero-input
response.

? These techniques are now used to solve for the state transition
! matrix in the Kalman filter. The 3 x 3 A matrix ia

; v (Or 1,

0
§ 2R
0, - S -

Al

- Ji \00 0, - ’

where R, ﬁ and T are respectively range, range rate and the tar-

5 . get acceleration time constant. Since A is an upper triangular
3 i matrix the eigenvalues of A are the diagonal entries. These are
2 denoted by A, = 0, A, = = 28 and A, = - 1. Using the product for-

mula, the formal expressions for the correstponding component
matrices become

(a2 _ 4y
Zl = (A (Aztka)A + A2A3I) /Azka

B 2
b Z, (A -x3a)/x2(x2-xa) 7‘

= -a2 -

where A2 denotes the product of a matrix.
compuiations these expressions become

2

After some tedious

o R T
b ) 1' - - - |
< 2R R
Zl = 0, 0, 0 j
. 0, 0, ] |
RT T
0, - = —————
2R 2R (R-2RT) :
zz = 0' 1, "1_1’_ j
2RT-R ]

0, 0, 0

|
{
|

e

: i
3 i .. [
3 N s -
V m ’
- : A T Ty < g AT - e 5 = ~n SRR
i L X - e e e e
s e T e R . . .
s . 4 B A Ay .
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g,

0, 0, 1

; Using the fundamental formulu the exact finite sexies expansion
‘ for exp(At) can he written as

2 T AR e e e

3 This solution clearly exhibits the dependence of exp(At) on the
: eigenvalues of A; thus, the transient response of the gzero-input
response system can be readily analyzed. ]

Eaaicocalnn

If t<<l so that exp(At) can be approximated by the first two terms
in its series expansion, then the transition matrix becomes the

aum of two matrices, which are

T = e e

10 0; 0 0, lp 0
* i
. 01 11 0 + 0, -‘2_§v - % t. ’
]
I 1 3
0' 0' 1 0' 0' - ‘i_‘ j
i

T Y

This expression is equivalent toc integrating the linear system
with zero~input response by Euler's method.

Consider the 3 x 3 A matrix

e e il ) it an ek

0, 1, 0
-m2' "'2:0)' 0 ]
1, 0, 0
]

which is the A matrix in the state space representation of the
antenna stabilization loop and of the integrator in the pointing
error block diagram. In this matrix w is the undamped natural
frequency and 7 is the damping ratio. The eigenvalues of A are

13




r i —————

Ay =0y Ay = =u jw'Vl - cz and A, = Tz. where lambda bar de-
S———————_

notes complex conjugate and jJ u'V -l. Let wy = wVl - cz denote

the damped frequency and ¢ = Zw denote the reciprocal of the time
constant of the antenna stabilization loop. For a matrix with
: one real eigenvalue and two complex conjugate eigenvalues the
Pt transition matrix exp(At) can be decomposed into the following
1 _ useful expression that is given in Zadeh and Descer (page 6l1).

Laltild s LaTobe LI ,—-1"»—.]
!
!
]
i
)
i
x‘
i
<
‘1
}

T

axp (At) = exp(kt)zl + exp(-ot)( R cos(mdt) + X sin(wdtd)

where 22 = R - jX.

T B T i o

: i Again the spectral decomposiuion of the matrix A clearly exhibits
1 : the dependency of the transition matrix on ¢ and the damping fre-
i gquency w,. By utilizing the product formula for the component
3 matrices and some tedious algebra the following expressions for
i the component matrices can be obtained
E
] Zl = 0; 0. 0
é 2, o1
] " i
1, 0, 0
’ R = 0, 1, 0
-2 -1
£5 ' 0
- w' ?
;
Luw, 1, 0 3
1 2 |
X = — -w , -LW, 0
md .
1-2¢3, %, 0

In the digital simulation of the error tracking loop the antenna
response and the integrator are computed as a state variable
sampled data system. The general solution of the linear system
(1) with initial conditions given at t = 0 and x(0) is

I
1 na
!
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t
x(t) = exp(At)x(0) + S exp(A(t-T))Bu(r)d .
o

Suppose the input is sampled with period T and between sampling
times the input is a hold circuit

Bu(t) = Bu(NT) for NT 2 t < (N+1)T.

é : Therefore at sample time t = NT
x((N+1)T) = exp (AT)x (NT) + h(T)u(NT)

\ . where

T
: h(T) = [ exp(AL)BdL.
% o

3 l The only task left in computing this expression is the evaluation !
: of h(T), since for our applications exp(AT) is solved exactly. 3
If A is nonsingular, then formally :

T T
/ exp(A2)BA% = / (A"1)A exp(AR)Bds = A—l(eAT - 1)3,
(o}

ju! S e

o

This expression for h(T) is a direct gerneralization of the calcu-
lus for one dimensional real variables.

In our application one of the eigenwalues of A is zero and so the
, integral must be evaluated directly. Since the constant matrices
, , conmute with the real valued exponertial and trigonometric func-
3 tions in the expansion of exp(AT), the integral h(T) is evaluated'
by integrating the following real valued functions

’

T
I exp(-ul) cos (wdz)dz and
o

T
/ exp(-o%) sin (mdz)dz.
o

Now the soluticn of the first integral is
-oT

fl(o,wd) = ;%:;Z [(wd sin (wdT) - o cos (wdT)) + o]

and the solution of the second integral is

e-nT

fz(o.wd) = —5:—5 [(—c sin (wdT) - wg cos (de)) + md]
a”+ug

’
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Thus, the exact solution of h(T) is

h(T) ZlT + fl(G,wc)R + fz(a,md)x.

For our application the 3 x 1 input matrix is

0
B = K

0

where K is a constant gain matrix. The exact value of K depends
on the requirements of the sampled data system in the error '
tracking loop.

" EXPONENTIALLY CORRELATED TARGET NOISE

In this section a brief discussion of first order exponentially
correlated noise or colored noic is presented. A more complete
discussion is found in Jazwinski .5]. A formal mathematical des-
cription of such a process is

da _ _
ac = ca + Jaw 0

nA

t (4)

where o and ¢ > 0 are fixed constants and w is zero mean, white
Gaussian noise with correlation function

E[w(t)w(‘r)] =5 (t - 1).

As usual § (t) is the Dirac delta function and E is the expecta-
tion operator. Formally, the solution of this equation is

t
a(t) = e *a(0) + ac S e (t"5) (5)as.

. o
The constant o is the variance of the target acceleration and o
is the reciprocal of the maneuver (acceleration) time constant.
Singer [6] proposed the exponentially correlaced noise process as
a model for maneuvering targets. By using this process with the
appropriate Kalman filter, he proposed a tracking algorithm for
piloted threats. In his paper, Singer proposes the following
density model for the target acceleration variance. For complete-
ness, a derivation of his model is included.

Let Amax denote the maximum target acceleration rate. Let X be

the random variable that denotes the target acceleration state.

According to Singer,X is a random variable with the following
assigned probabilities
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F P (X

hd Amax) = Pmax

0) =P

P (X 0

and otherwise the target accelerates between the limits -Aan and
o Amax according to the appropriate uniform distribution. In order

to insure that X is a bona fide random variable (i.e., P(=«® < X < =)
= 1), the probability of the mutually exclusive events
(“Ppax <X <0, (0 <X <A ) mstbel- (2P +Py). This

implies that the uniform density function for these events is
‘ 1 _ (2p + Pgy)

S e W
M I TN S gy v v, e "
P

§ £(X) = 2gax . The variance ¢ of target acceleration
i Anax
; § is calculated by finding the variance of the random variable X.
3 : The expectaticn of X is zero and so the variance of X is given by _
- é;
02 = E(xz) = 1 (2F max + P , 2Amax + ZAm
| Amax ax max
! 2
' ' = _max -
3 (1 + 4Pmax Po).

é This completes the derivation of the Singer target acceleration
i model.
When the exponentially correlated noise model is used with a
sensor having a constant data rate with sampling period T, then

; (4) can be converted to discrete form. By sampling the solution
! of (4), starting with t = 0, the recursive form becomes at the

sampling instances jT

PR T T TR e

boshan e M

s g 3j41 = May + oy ;
: where ?

‘ aj = a(JT) 1}

: M = exp(~-aT) ;

; (3+1)T 5

, wy =cn S exp (~a(3+1)T ~ 1) w()aA. ‘

jT ;

The statistics of w, are formally %

J
E . =
(w]) 0

n7

N . e

4
|
|
|
/
|
|
|
1
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E(iji) = 0 j# i

E(mg) = .5a(1 - M%)o?.

. The latter equation shows how the sampled noise variance is related
to its continuous time noise variance. Since wj is a Gaussian

process, these statistics specify its density.

e ey

POINTING ERROR CONTROL SYSTEM SIMULATION EXAMPLE

j In this section the pointing error control system simulation is .

E briefly discussed. After listing the initial conditions and para- 3
ET meter values, some preliminary plots of the simulation output are .
L presented. The primary purpose of these plots is to verify the ’
] simulation and to illustrate the effect of outliers. The requisite

i initial conditions and parameters to implement the sampled data

E Kalman filter algorithm, sampled data antenna stabilization loop

i arnd controller gains are now defined.

3 Tracking Period : At = .03 sec ;
E Observation Variance R = .0001 (radz) : j
; { ' Target Acceleration Variance Q= 1. (metersz/sec4) t
E Antenna Damping Factor T = .4 ;
g Antenna Undamped Natural Frequency w = 100 (rad/sec) :
3

3 Controller Gains G, = 1, G, = 1./At

X

3 Target Acceleration Time Constant T = 2,

The Kalman filter 3 x 3 initial covariance matrix was initialized

by setting all diagonal elements equal to unity and the off

diagonal elements equal to zero. For this example, the point

target executed a full 360 degree constant 6 g turn with target

velocity of 250 meters/sec. The outlier noise was added to

angular position of the target with respect to the radar antenna. .
The outlier noise model was generated as contaminated distribution

as discussed in Tukey [7]. The contaminated model was generated

as the mixture of two normal distributions, each with zero .
mean and one with variance equal to observation variance and one

with ten times the first variance. Let us denote these distribu-

tions as N(0,R) and N(0, 10R), respectively. The mixture of the

two distributions defined as

F(x) = pN(O,R) + (1 - p)N(0, 10R) 0 <p<xl

18
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generates the contaminated normal distribution. The random vari-
able X with this distribution can be generated by first taking a
uniform deviate U; if U < p, X is generated by independent samples
from N(0, R) and otherwise choose N(0, 1l0R).

As noted by Maybeck [8] and Bierman [9], the usual Kalman filter
algorithm is subject to numerical difficulties. To overcome these
difficulties the UDUT estimate-covariance updating algorithm and
the modified Gram-Schmidt algorithm for the time update algorithm
of Bierman were employed in this simulation. These algorithms
solve the Kalman gain

K = PHT[HPHT + R]‘l
the error covariance matrix

A

~ 1,/\
P=p- KHpP
and the covariance time update

P = 9POT + GOGT

where the subscripts have been omitted for notational simplicity.
In these equations ¢ is the Kalman filter state transition matrix,
which is derived in the previous section, H is the observation

row matrix (H = (1,0,0)) and Q is the process noise column matrix
(6 = (0,0,1)T), P is the covariance matrix, K is Kalman gain matrix
and Q and R are defined in the parameter list.

A few selected plots from the simulation are illustrated in
Figures 2, 3, 4 and 5. PFigure 2 is a comparison of the estimated
target position with actual position. Figure 3 is a comparison

of the estimated line of sight rate with the actual line of sight
rate. Figure 4 is a plot of the contaminated normal noise added
to the target position. The outliers are clearly evident in the
plot. Figure 5 is a plot of the tracking loop innovations, which
is the difference between the true measurement and the best pre~
diction of it before sampling. Note that even with the nonoptimum
iritial estimates and sampling period, the loop maintains track.
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ROBUSTIFYING THE KALMAN FILTER

A statistical procedure is resistant [10] if the value of esti-
mate is insensitive te a small change in all of the data values
or 'to large changes in a few of the data values. 2ccording to
Huber [11] this is a working definition that can be used to define
robustness. Figure 6 is a plot of linear glint, which clearly
exhibits the presence of outliers (glint spikes) that are intrin-
sic in the glint signature. Figure 6 is a sample of glint gener-
atad for a complex target using a radar target model developud by
- Mumford []12]. Mumford's model computes the backscatter from a
1 ‘ complex target by uecomposing the complex target into simple
9 component shapes for which scattering solutions have been derived.
3 . This modeling technique is known informally as "N-shape" modeling.
L Angular glint is defined as the linear displacement of the center
] of radar reflection from the defined physical center of the target
1 measured along a line in the plane passing through the target
center, at right angles to the sightline, to the physical center.
Iis magnitude is equal to the tangent of the angle between the
true and apparent directions of the target times the range.
Linear glint is simple range independen: angular glint. Thus,
the strategy of robustifying the Kalman filter is based on making
_ it resistant to glint spikes. There are at least two ways to im-
) plement this strategy. The first way is to preprocess the mono-
- pulse radar pulses in a robust manner using summary statistics as
inputs to the pointing error control system flowcharted in Figure
1. This is a natural approach in tracking radars, since the radar ;
pulse rate is much higher than the requisite tracking rate. The 3
second way is based on the robustified Kalman filter developed by 4
Martin [13]. Both of these techniques are outlined in this E
section. :

M

{ Generally, for a complex target, the resulting glint signaturae
: is non-stationary time series. Thus, both robust techniques
: _ rely on adaptive noise estimates of the input noise statistics.
3 . For the moment we ignore the interaction of target maneuver and
- ; the glint signature. The two summary statistics of the input

L noise that are required are an estimate of location and scale.

‘ For a symmetric distribution estimate of location is the center :
of the distribution, while an estimate of scale is the spread of j
the distribution. For a Gaussian distribution the optimum esti- :
mate of location is the mean and optimum estimate of scale is the i
variance (standard deviation). For the moment in this discussion, )
the correlation structure in the glint signature is also ignored.
As amply demonstrated by Tukey [7] for non-Gaussian heavy tailed
symmetric distributions these classical estimates are unsafe.

Following Martin [14] the following definitions are introduced
for completeness. Let Yl' e o« o Yn denote a univariate data

bbb L e e e e e ot

sample. A statistic is simple a function of the data
T(Y) = T(Yl' .« o« s g Yn). An estimator is a statistic whose value

is supposed to precvide an indication of a parameter in a para-
metric statistical model for the data. A real scalar-valued esti-
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3 , mate 3 translation invariant if for any real number C and the ° ;
4 ' const .nt n-dimensional unit vector 1

-
T(Y + Cl) = T(Y);

translation equivariant if

T(Y + C1) = T(Y) + C;

scale invariant if for any real constant c>0

T(CY) = T(Y);

Y

and scale equivariant if

T(CY) = CT(Y).

The sample mean d

2

T(Y) = & Y

N

[ ]

=1

is translation and scale equivariant. The sample standarxd
gaviation '
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Vidr 2 :
S(Y) = mnzl (Y, = T(¥))

is translation invariant and scale equivariant. The robust esti-
' mate of scale CMADM = Median Absolute Deviation from the Median
= median |Y, - median (¥)|/.6745 is translation invariant and

scale equivariant. The divisor .6745 makes CMADM a consistent
_ estimate of the standard deviation if the sample is drawn from a
o normal population. A robust estimate of location can be achieved
T by Winsorizing (see Huber, p. 18) the data. To metrically Winsor-
o ize the data, the observations Yy, « « ., Y are replaced by

pseudo-observations. In this study the pseudo-observations were
obtained by setting all observations beyond 3S(Y) equal to S(Y)
and then recomputing the samvle mean. This procedure is transla-

TR < U T T e

E tion invariant and scale equivariant. Another robust-estimate is 3
; Tukey's biweight {7, p. 353], which is defined as - ﬂ
: L. W, Y, 3
T(Y) = —at
T Wi
4 ; where 2 2

0 otherwise

and S = CMADM. The constant C is callled the cutoff parameter,
in this study C = 6. Biweight is translation and scale equivari-
: ant. Associated with each of these estimates is an influence

- function, which in exploratory data analysis governs the effect :
of the value of one data point on the estimate. Some influence ;
fuactions are graphed in Figure 7. The linear influence curve in
Figure 7(i) is the influence curve for the sample mean and shows
that the sample mean is directly affected by a change in one data
point. The influence curve labeled (ii) is Huber's monotone func-
tion and the influence curve (iii) is Hampel's two-part redescend-
ing function. The role of these influence functions in robust i
statistics is discussed in Huber [11l]. Both of the latter influ- .
ence functions ignore changes in measurement outside of a band
and respond within the band; thus, outliers outside the acceptance

band are rejected.

e

Martin's robustified Kalman filter modifies the state correction
equation and the conditional error covariance matrix equation
with a suitable scaled influence function. Two excellent candi-
dates for an influence function in the Martin filter are the Huber
and Hampel functions in Figure 7. The details of his filter arve
beyond the scope of this paper and the interested reader should
consult Martin [13].
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Figures 6 and 8 illuatrate the different estimates of location
and scale as provided by the different statistics. The data in
Figure 6 represents the glint signature of a complex target
sampled every .001 degree of target aspect in a 10 degree secto:r.
Each of the statistics in Figures 6 and 8 are derived from suc-
cessive non-overlapping .02 degree intervals containing 20 sam-
ples. In Figure 6 the points labeled by octagons are sample
means, the triangular labels are the Winsorized estimates, the X
labels are sample medians and the pluses are center or Tukey's

biweight,

The resistence of median and biweight are clearly indicated in the
44 to 45 degree interval. In Figure 8, square labels represent
standard deviation, the octagons represent the Winsorized esti-
mates, and the triangles represent CMADM. Again, the resistance
of CMADM versus the standard deviation is clearly illustrated.

CONCLUSION

Preliminary results indicate that the classical Kalman filter will
be a suboptimal design in the presence of heavy tailed non-
Gaussian distributions. The theory of robust statistics and
robust Kalman filters offers an important set of tools that can be
used to opt.imize the design. Future research will be directed

towards this goal.
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A CASE STUDY OF MODERN DIRECT DIGITAL AUTOPILOT DESIGN

George B, Doane TI1I, Sherman M, Seltzer, and H. Eugene Worley
Control Dynamics Company, Huntsville, Alabama 35801

ABSTRACT

' This paper describes, by means cf a missile autopilot design case
study, a technique currently in us: for determining the stability
and dynamin characteristics of a digital control system in terms

‘ of several selected system parameters. The method requires that

; the system characteristic equation be available in the complex z-

: domain. It is the ability to handle more than one free system
parameter, which need not be (but often is) a controller gain
which makes this method more powerful than most design techniques.
The paper also demonstrates the 3eneration of the system equations ]
by the Systematic Analysis Method. This method, an alternative
to, for instance signal graph methods, is applicable to both sim-

B | T T ——

ple and complex systems. The final design was evaluated by the %
method of Digital Control System Response by Cross-Multiplication. i
INTRODUCTION

This paper is expository in nature concerning the design of digi-
tal control systems. The c~se study presented in this paper is
that of the design of a missile digital autopilot. The methods
used in the design are those currently in use to produce such de-
signs which are coming about with ever greater frequency sin<ce the
3 . advent of the ubiguitous microprocessor, The paper traces through
3 : the formulation of the equations of motion, the rationale for

3 ' autopilot transfer function selection, the application of the

; Parameter Plane Method of autopilot parameter selection and ends

with a simulation to evaluate the missile response, at the sampl- 3
ing instants, to a test input. References are included so that |
readers may pursue in greater depth if they desire the details of !
the various procedures used. !

ST TN T A W W
s —

PROBLEM FORMULATION AND AUTOPILOT DESIGN i

The case study selected for this paper is that of an autopilot
design of a tactical US Army missile. To formulate the study
mathematically, the equations of motion of a missile were derived
assuming planar motion. Thus two differential equations are re-
quired, one describing translation of the missile's center of mass
in the plane, the other describing rotation of the wissile air-
frame about the center of mass. With reference to Figure 1 the
following quantities are defined:

et e

F A engine thrust force i
A A aerodynamic axial force
N 4 aerodynamic normal force (note: N defined a

positive quantity in the negative 3b directioh)
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M A aerodynamic pitching moment about the center of mass

Lo A distance from vehliczle center of mass to moment
reference point

I 4 polar moment of inertia of missile about an axis

normal to the plane and directed through the
center of mass
m A the mass of the missile
L g 1 the acceleration due to gravity
1n, 2n, 3n 4 designate unit vectors in the n-coord-
inate frame according to the usual
g%ght hand rule fi.e., 1i x 2fi =
; Rm 4 the vector relating the origin of the r-coord-
! inate system to the origin of the b-coordinate
. system (thus relating the missile's center of
: mass in the b-coordinates to the assumed iner-
' tial space coordinates i.e. the r-coordinate
system
8 A the angle between the missile's longitudinal
(roll) axis and the local horizontal (thus an
inertial coordinate under the non-rotating
earth assumption)
the missile's velocity vector
the angle between V and the missiles longitu-
dinal axis
“ A aerodynamic fin deflection

B A ARG sl e Lo 1 SRR

o |
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N Center of
Mass £
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Figure 1
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The equatiocns of motion are found by applying o Alembert's Princi-
ple to obtain the translational and rotational differential equa-

tions
m Rm = (F-4) 16 - N 3b + mg 37 (1)
T6 =M- 20N A (2)

The vector notation has been omitted from equation (2) because of
the assumed one degree of rotationai freedom.

Typically there is only weak interaction or coupling between the
translational equation (1) and the rotational equation (2). Thuxr
this interaction will be, for the purposes of this paper, ignored.
It is further assumed that the missile is in nominally level flight.
Therefore the variable 6, usually denoted by .

6 = 6o + 6(t) (3)

- becomes merely 6(t). Linearizing the aerodynamics leads then to

a transfer funcrion between vehicle pitch rate and fin deflection
of the form !

6(s) b (s + d)
§”(s) = s? + 2Zwns -+ wn?

(4)

For a particular missile in level flight this transfer function
becomes

8(s)  (-216.6) (s + 0.693)

8~ (s? + 1.963 + 60.196) ° (5)

With negligible loss in modeling fidelity this may be approxi-
mated to ‘

6(s) (-216.6) (s)

5- ~ (s% + 60.196) (6)

This then is the pitch plane rotational transfer function with
which the autopilot is to work such that the actual missile angu-
lar rate, 6, controlled by §“(the fin angle) corresponds to a com-~
manded angular rate 6c, furnished by the missile guidance system.
For the sake of simplicity in early analyses it is assumed that
the vehicle's angular rate, 6, is sensed perfectly and that the
fin deflection, §°, follows perfectly its input command. 1If itis
postulated that the missile rate, 6, should follow a ster command
of rate, 6c, with negligible error then the use of some form of
integration process between the system error, 6c-8, and the fin
deflection, 67, is suggested. Recognizing that the damping of
rotational motion of the missile is virtually non-existent and,
indeed, is modeled as zero, suggests the usée of some form of mis-
sile airframe rate feedback to fin deflection, 6, to stabilize
the airframe rotation. The most efficacious autopilot algorithms
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for final, eventual flight use are the subject of further study.

However, the methodology expostulated above allows one to arrive

quickly at workable first designs which could be evaluated in

three or six degree of freedom simulations and ''tuned up" as the

results of such simulations, as well as more informatiomn, v.g.

rate sensor and actuator models, becomes available. Based on

these considerations one possible block diagram for the autopilot

loop is given in Figure 2. .
* s’ u

& 30t Tv—é— Ca :' Ds h——-?o—-s-—i G OL& e

_'c_,_}..\._..n. o |
T T

Figure 2

Starring denotes a sampled quantity and

Di denotes a digital compensator transfer function

Gho denotes the transfer function of a zerc order or
"box car" hold

Gp denotes the trgnsfer function between missile
angular rate, 6(s), and the fin deflection, §°(s).

T denotes sampling period of the synchronous
samplers

A number of methods? are available with which to develop the trans-
fer function between 6 and 6c¢, which is necessary to study stabil-
ity and performance. The method used here, called the Systematic
Analysis Method or SAM, is a general, easily applied technique
applicable to both simple and complex systems. First one selects
the variables at the inputs to the samplers as the unknowns. Then
the original equations are written and tabulated in Table 1. 1If
any of these equations contain the product of an unsampled system
variable and an unsampled transfer function they are modified by
substitution to eliminate unstarred (or unsampled) variables and
tabulated in Table 1. Finally, a columm in the table is con-
structed in which the equations from the first or second steps,as
appropriate, are transformed into the sampled domain according to

the relationships
(RG) % = EG*
(RG*) = R¥G*
(R )% = R*
Application to the problem at hand yields for the first columm

Original Equations

€(8) = 6o(s) - 8(s)
§°(s8) = D8(s)Cs, €(8) - D5(8)Cy {Dd(s)b*(s)}*
8(8) = On(8)Gpy(8)6°*(s)
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and for the second column
Pulsed Equations
EX(g) = ég(s) - &% (s)
§°%(s) = D%(8)C28%(s) - D§(s)CsDY(s)d*(s)
§*(8) = Cp(8)Gpo (8)* 6% (s)
Table 1

Lastly the desired input output relationship is found by substi-
tution to be .
7

P o%(s) _ C28pBho ™ (8) D ()

Ec(e) zI""CzDgiBs Eocp’issxus ISG“ZBSD:!ZSSWO (855

or, expressed in the z-domain,

5 (2) _ C, T3lho(2) Ds(z) (8) i
5e(2) | (19C;D5(2) Fralolz) + C:Ds(z) Da(2)Trghaka))

Based upon the design goals and approaches expressed above Dg ;
ghould perform an integration operation whereas D4 should be se- ;
lected such that missile rate propagates to fin deflection. These
considerations suggest lettine

B o L R R R R e T
|‘=
)
i
4
%

T TR AT A | e

T, e e ¢

Ds(z)Dg(z) = 1 (9)
and D§(z) =22z @ao0) 1
(z-1) .

where it is recognized that equation ten corresponds to the inte- 3
gra-.ion operation by means of a rectangular rule. The plant ]
transfer function, Gp(s), has already been tabulated as equation
(6). The first ordeg hold transfer function, Gho(s), is known ]

TR T Oy

% to be

3 co-T8

E Gho(s) = Lz : (11) g

- i
Thus j

_.-Ts _.~Ts ' i
Gp(8)Gho(s) = 1b2+;n7) & 2 ) - %ééxﬁﬁfyl + (12) %

This becomes, in the z-domain,

TnoCp(2) = _ _b(sim wn®) (z-1 . (13) !

wn(z-2(cos unl)z+ 1)

Substituting equations (9), (10), and (13) into (8) yields the de- |
sired overall transfer function i
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g where L(z) is the polynominal wn_ z? + (TbC,sin wnT - 2un cos unT +

' C,b sin unT)z + (wn - bCs sin wnT) and where C» and Cs are cun-
stants yet to be selected. The equation will be examined first to
see how the missile responds to a unit step input. Applying a

v unit step of command and using the final value theorem (assuming &

final value exists) produces

1im 6(nT) = 1lim =z (z-1) 8(z
nT+ » z+1 (z-1) * = c(2 (15)

Eo ! which when evaluated yields

- E 2¢o) = - I C2b sin un T .
' 6 (=) T C2,b sin wnT + 2 wn(l-cos wnl) (16)

b : To continue, T was selected to be 0.10 second on reasonableness

4 ' grounds, and b and wn are missile parameter previously stated
viz. -216.6 and 7.76 sec”’. Substituting yields an expression for
the limit in terms of the free parameter C, as follows

T 0 = b @

Defining the error as the amount by which the output fails to
attain a value of unity allows the construction of Table 2

T TN

% %_error C2
! i 21.7 -1
3 = 5.24 -5
] ' 2.7 -10
] ; 0.5 - 50
? _ Table 2 :
E d } T..as to keep the error indicated by this particular measure of

performance below a few percent a value of C: less than -10 is
indicated (note that, as will be shown below, C. must be negative

to insure a stable system).

What remains to be done in this quick look design procedure is to
select the free parameters, C; and C;. This is done in such a
way as to bound the static error as indicated in Table 2 and to
meet stability requirements. Noting that there are two free para- <
meters to select it is necessary to decide upon a particular tech- g
nique. By freezing C;, one might, for example, apply root locus
or frequency response techniques in the z and w domains respec-
tively. However, there is no need to specify either parameter in-
dependently of the other if one utilizes the Parameter Space

Method® of design.

it e s e e i e
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The method is based upon analysis and synthesis methods described
in Siljak's monograph Y as extended. Briefly put, the method
allows one to map the location of the roots of the system's char-
acteristic equation into a plane whose coordinates are the system's
free parameters and which is readily divided into regions identi-
fied with system stability and instability. It is noted that the
free parameters need not be gains but could just as well be some
other system parameter. In addition to the characteristic root
locations, such things as contours of constant relative damping
factors and specified exponential time constants may be transform-
ed as contours into the parameter plane. Thus in a manner somewhat
reminiscent of the classical root locus a portrait may be presented
of all pertinant aspects of the system's transient response with,
however, the cogent difference that they may be presented as func-
tions of several parameters rather than the simple parameter open
loop gain. The method will be exemplified by application to the
problem at hand viz. that described by equation (14).

As detailed in reference three, this design technique deals direct-
ly with the system's characteristic equation. As shown in the
reference, the coefficients of the characteristic equation are

cast if possible into the iinear form

RRCH R e (18)

J=

for systematic generation of the computer program input data. If
this linear combination is anot possible, the method can still be
used but becomes more tedious. In this form the K,, K; variables
are the parameters to be selected i.e. they are the coordinates of
the parameter plane. It is convenient to fill out a table where
columns are dj, fs, 83 The transpose of these columns provide

the input to ghe %omphter program used. Noting that the denomin-
ator of (14) corresponds to this problem's characteristic equation,

allows the construction of Table 3 below.

— 3 dj ) £5 , £3
0 ~b sin wnT= +2,1632 0 -9 1.0
1 b sin wnT=-2,1632 {Tb sinwnT=-2.1632x10 -2 cosunT=~1,994
2 0 W 0 1.0
Table 3

In the particular computer program used the transpose of the dj
" column becomes the A matrix, the transpose of the fj columm the B
matrix and the transpose of the i column the F matrix. The pro-
gram was run with the result exh gited as Figure 3.

By applying the appropriate '"shading rules" (or factoring the CF
for a number of test points) it can be established that the inte-
rior of the triangle in the C,, C; plane corresponds to system sta-
bility i.e. a condition wherein all roots of the CE lie within the
unit circle in the z-plane. Also plotted are contours of constant
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relative damping factor, zeta, for two values i.e. 0.5 and 0.707.

Cs

Figure 3

4 ; Although no system parameter sensitivity studies were performed on
1 ; this example it seems prudent to stay some distance from the sta-
bility boundaries at this point in the design. Thus a set of val-
ues for C, and C; of C,= -50 and C3= -0.4 was chosen. One notes
this point lies between the 0.5 and 0.707 zeta contours in the C;-
Cs plane and at some distance from the various stability boundar-
ies. In addition, the choice of C,= 50 will insure a small error
in response to a unit step, as previously discussed.

SIMULATION RESULTS

An evaluation of the response of the system at the sampling in-
stants is presented as Figure 4. It was evaluated by means of a
computer program implementing the ''Determination of Digital Control
System Response by Cross-Multiplication' as presented by Seltzer in
reference five. The input to this program consists merely of the
coefficients of the numerator and denominator polynomials of the
overall transfer function (equation 14) and for plotting purposes
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Figure 4 i
i i From the Figure and the associated printout it is seen that the
- { maximum percent overshoot occuring at the sampling instants is
i 1
‘ ]
) o - 1.126-1.000 = ;
o % 0.8. 106 x 100 = 12.6% :
5 D which occurs at the third (nT = 0.02 sec) sampling instant. This ;
2 compares favorably with Franklin and Powell's ® approximation re- }
] ; lating percent overshoot to relative damping factor for a second :

order system with no finite zeros :
which is 3
: _Lo.s. ‘
. T X (0.6) (1 100 )

here then

12.6y _
z £ (0.6)(1 - —1'6-6-) = 0.52

The degree of correlation can be judged when it is recalled that
the C,, C; values were chosen such that their set of values lay
between the ¢ = 0.5 and ¢ = 0.707 loci.

,
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CONCLUSION

Presented in this paper, by means of the case study of a digital
autopilot design, is a modern method of designing digital control
systems without regard to continuous system considerations. The
Parameter Space Method of generating free system parameter values
is employed to ensure stability in both the absolute and relative
sense. Sufficient detail has been included such that, given the
availability of Parameter Space and Response Cross-Multiplication
computer programs, one may rapidly and methodically design digital
<ontrol systems and keep them updated as plant characteristics
change. This capability is especially useful during the initial
design phases of a system. The methods presented are currently
being used in the design of US Army missile autopilots, space vehicles
control systems and have been used to design aircraft control sys-
tems. It is of course understood that when final configurations
become available the total system design would be validated by
appropriate simulation. Such simulation would include time vary-
ing, non-linear and certainly more detailed descriptions of the
system and its components v.g. the missile fin actuation sub-
system. In fact such additional simulations have been performed

in various instances and confirmed the efficacy of the design
method. Additional work needs to be done in such areas as map-

ping points on the real axis of the z-plane into the parameter

plane in order to control further the system response time.
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ROBUST MISSILE GUIDANCE
D. O. Molnar
The Boeing Aerospace Company,
Guidance and Navigation Technology Group,
P. O. Box 3999,
Seattle, Washington 98124

GENERAL INTRODUCTION

INTRODUCTION

A new guidance law is derived for tactical missiles that undergo significant acceleration and drag. Past
guidance laws based on constant velocity missile dynamic engagement models result in sub-optimal
trajectories when applied to missiles used most often in tactical engagements. Recall that in most
tactical engagements the missile accelerates (booster burn, or “boost to mach") and coasts to
intercept. The new guidance law is based on a more complete dynamic engagement model that
contains the missile expected axial accelerations and the control direction constraint normal to the
missile velocity vector. The non-linear two point boundary value problem {1] is solved by separating the
missile axial velocity dyramics from the control dynamics to obtain a time varying linear dynamic
constraint model. The recults are verified by simulation, and indicated significant performance
improvement in a crossing taryet surface to air engagement.

The history of short range missile guidance is very rich, for an excellent summary the reader is referred
to an article by Pastrick et. al. [2]. We assume, as before, that a well designed missile autopilot is
implemented: so that for guidance law derivation we can assume a simple relationship between
commanded accelerations and missile response [1-6.8,9). We also assume that the intercept time is
know or approximately known by estimation, [2.3,9]. Under benign conditions any monotonic function of
predicted miss can serve as the yuidance law. However the mcre optimal use of hardwaro resources is
made possible by implementation of more nearly optimal guidance laws which will translate into more
robust guidance, or wider engagement envelope. The optimal guidance law derived here can be
reformulated as a biased PNG guidance law. Hence the bhias values can be computed at a reduced
rate for computer implementation economy. The traditional approximations are: Two-dimensional
motion, Point-mass, Instantaneous Control response, linear dynamic model, and constant speed [8). Non
linearities are traditionally ignored to tacilitate the use ot linear optimization methods to obtain the
desired feedback control law. In this note we retain the Point-mass approximation, and use a slightly
more accurate dynamic model, and incidentally provide a new explanation of three dimensional PNG.*

PAST RESULTS

The Proportional Navigation Guidance (PNG) was shown to be optimal by Bryson [1] if neither missile or
target are accelerating. Three dimensional guidance including the efiects of accelerating target and
new methods of estimating the time ot intercept have been presented [4.3]. Recall that ‘optimal' has
only meaning relative to the cost function minimized and the dynamic constraint model used. The
relative completeness of the dynamic constraint model is the issue of this note. Expected missile
acceleration have in the past been includad in the {ime-t0-gq to intercept calculation, but not included
in the dynamic constraint model used in the optimal guidance law calculation. Because of past use of
inconsistent dynamic constraint models [1,3-5], the resulting guidance laws generated unusable control
commands along the missile velocity axis.

in this paper we also show that the same constant missile and target dynamic models are used in
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deriving both PNG {1] and the 'optimal' three dimensional control law of Riggs {3]. And hence tha
improved guidance performance reporied in [3] is the result of using better time-to-intercept
calculations than is implicit in PNG.

The problem of target tracking in the presence of noise is not considered here. However the improved
guidance law presented here leaves more control authority for countering unexpected target
) maneuvers. Also the target is assumed to be non acceierating, control moditications to account tor
b random target accelerations might be included as in [4]. We next summarize the result of Reference
[3), for use as the starting point for the developments of this note.

A LINEAR OPTIMAL GUIDANCE PROBLEM SOLUTION

Consider the dynamic rodel. Equation (1), of the missile engagement relative to the target, with no
l targst acceleration, as used in References [3.5). The optimal guidance problem (or the two point

boundary value problem) is to minimize the cost function (2) subject to dynamic constraints (1), with
, time of intercept given. '

dR/dt = V )
dv/dt =-u ' W)
where : ‘

R = relative position vector of missile trom target in inertial
coordinates

V. = V<V, = relative velocity vector of missile from target
u = missile control acceieration vector (not constrained in .
direction or magnitude) 3

The cost function "J' is given by (2):

Y
J = R(t)" Ritp)/2 +ja u(t) * u(t)y/2 ot (2
t _ 3

(i.e. terminal miss plus integrated cost of control weighted by B ).
Recali from references [143] that the solution to the optimal guidance problem is:

' us=-At R+Vtg]/(38+tg3) (3"

ol
where: tg = (t - t) = estimated time-to-go to intercept is given
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OPTIMAL VERSUS PROPORTIONAL GUIDANCE

it is well to note that the dynainic model Equation (1) contains no provision for the expected missile
boost acceleration and drag. Aiso note that the acceleration ccntrol vector 'u’ is in the plane spanned

by (R.V) vectors. Since the missile velocity vector 'V,,' is not necessarily in the (R,V)-plane, the control
vector 'u’ may have a component along 'V,'. In other words axial acceleration is commanded which is

typically not usable.

In appendix A it is show that Equation (3) reduces to the familiar Proportional Navigation Guidance
(PNG) law Eq. (4), if (a) 'tg' is estimated by range/range rate, and (b) use of control effort is not

penalized, (B = 0).

us-/\(’rﬁp @)

where

0 = angular rotation rate of the line-ot-sight
vector in inertiai space (**)

R = missile closing rate on target

A = guidance gain factor equal to 3;
used as a design parameter with value 3 0 6

p = unit normal to line of sight vector in the (R,V) plane

See Bryson [1, pp287; Eq. 9.4.27] The equivalence is apparent if the energy coefficients are
equated as follows: (':p =1, and Cg =0, with A =3,

(**) This concept of coordinate tree vector rotation in three-space is the key to generalized
Proportional Navigation concept. To appreciate the simplification achieved by this concept

compare the resuits developed hare with (7).
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Ih other words, the improved guidance performance of Eq. (3) is the result of including the effect of
axpected missile axial acceleration in the time-to-go estimation; since both guidance laws (3) and (4)
are based on dynamic constraint models that do not include anticipated missile accelerations. Next we
develop the more accurate dynami¢ constraint mode! that includes the expected missile acceleration.
which together with the cost function results in the improved guidance law, i

NEW OPTIMAL CONTROL LAW FOR ACCELERATING MISSILES

The new optimal control law is based on the two point boundary value mathematics [1] as above, but
using a more complete dynamic constraint mode! as derived next. Consider the inertial acceleration
equation (1), with the missile inertial acceleration expressed as orthogonal components relative to the
missile velocity vector as follows:

dV/dt = Oxvy, & Vi | ®)

{_ boost/drag acceleration of
missile, not controllable

countrol acceleration 'u’ normal to Vi, in the
plane spanned by (Rq,V ;) where the R

vector is from the missile to predicted
intercept point.

Equation (5) constitutes the modifications to (1) which results in the new more accurate dynamic
constraint mode! (6) summarized below.

MISSILE TARGET DYNAMIC MODEL THAT INCI.UDES EXPECTED MISSILE ACCELERATIONS

The new uynamic missile-targetl engagement model is given by Eq.(6).

dR/dt = V

dv/dt = -ay -u
a for iy, missile axial >

ay = accqleration (6)
-ap for B, boost and drag

é = W/Vpy = inertial turning rate of missile

velocity vector /
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a,ap = missile expected boost & drag acceleration
along Vi,
o Vi = missile velocity vector in inertia! coordinates
E - v = control acceleration applied in the piane
normal to the missile velocity axis.
(the direction is defined later by the control law)
} Y = missile boost burn out time
g l
;
E As noted above, this model is more complete than past dynamic constraint models used tor guidance
law derivation. Selected variablas are illustrated in Figure 1. below.
: TARGET Vt PREDICTED INTERCEPT
o N Ven= (Vg mon s = misgi le flight path
: = ,! to Intercept
, (based on zero control
! ‘ K effort)
/ f
4 3
/
7/ k-
4 ’ ‘
- J 1
3 , ’ E
3 bl /
e i
) i
Vin U = control acceleration !
normal to Vm ;
MISSILE !

;
Gov -y - ~ |

= Vt - Vh = relative velocity

Figure 1. Illustration of missile-target parameter; where Rs= missile estimated
path length to intercept.
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NEW OPTIMAL CONTROL LAW SOLUTION

The non linear dynamic constraints are changed 1o a linear time varying constraint by use of the
; assumed separability ot the missile axial dynamics irom the control dynamics, see Eq. (8). it is
convenient to formulate the '2ero etfort predicted mias function’ normal to the missile velocity vector (*).
The other inertial coordinate system axis is alang the missile velocity vector; for which the time history
of the missile is specitied by the expected accelerations, (see time-to-go calculation in Appendix E). In
actual implementation of the guidance law the missile target data may be avaiiable in arbitrary
coordinate system which we anticipate by our use of coordinate free vector notation.

Consider Eq. (6) with the inertial axis orientad along the missile velocity axis so that © is small. In this

R L T e ——

‘ case the component of predicted zero etfort final miss orthogonal to the missile velocity axis is:
: t
E 2 = Vm dt + lo + 0 Rs n (7)
k-
3 t
where:
1 - Vin = (Vy'n)n = component of target velocity
] ‘ ‘ normal to missile velocity axis
{ .
E : n = unhit normal to V, in the (Rs.vm) plane
z, (R n)n
component of range vector (-R)
normal to missile velocity axis

3 = 0 = current attitude ot V, in the inertial reference frame

Figure 1 is a summary of the above illustrating the variables of interest for this guidance law derivation.

Ditferentiating Eq. (7) and substituting from Eq. (6) yields the terminal miss dynamic equation (8) in )
terms of the control vector: "

* Past guidance law predicted miss formulations are normal to the line of sight vector, [1,2,4,5]; which
is also implicit in [3) because of the equivalence to PNG presented above.

el e,

ettt
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1
E
; z = uRg/Vqy ®)
: where
- Rg = Vp(6)é - £2a/2 + (a + ap) (€ -T,)Uglé Ty )/2 )
v' = the predicted path length traveled by the missileto intercept in terms of time-tc-go #63
Tx =  the time between target intercept
: and missile boost burn out time (= t-t,,)
- j L
!g i Ug = the unit step function
E i ¢ = variable of integration equal to g’
L
E\ -Using the familiar methods ot optimal control [1]; we obtain the control in terms of fingl predicted miss i
(zp) : 3
;
u = =(z/B)Rg/Vy) (10)
E ' ]
Equation (10) is substituted into (8) to obtain the terminal miss differential Equation:
] : i = -(z/B)Rg/Vpy)? ' (11)
o With some effort Equation (11) is solved and is substituted into Eq. (10) to give the desired optimal i
RO guidance law Eq. (12): 3
o i
i
|
,: X U = Rgz/[Vp{B+1,%3+D) (12) !
b
]
l
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Where :
D = ( F(amvvchvuvb)° F(am.Vc.Bv.Vm)

+ { F(ﬂm .V'.V' ,Vm) . F(ﬂm.V',Vf.V')}Us“'tb’

The tunction 'D’ is expressed in terms of the urnit step tunction ‘Us(.)‘ and tunction 'F’ which is defined

as follows:
Fa\V.B,.V) =

{ V374 4+ v V2 (V2 4 B2V - (B,/2)2 /v )78

where:

BV = Vc - (a + aD)a TX

Vy = estimated final velocity of the missile ;

3
Vp = estimated missile velocity at burn out ;
Vo = Vg + (a + ap)T,

It is well to note that the above guidance law reduces to the familiar Proportiona! Navigation Guidance
law if the missile axial velocity remains constant and if the missile axis is aligned with the line-of-sight to ,
the target. The scalar function 'D' becomes zero for constant missile velocity. The factor (Rs/vm)

denotes expected missile path length to target divided by missile velocity becomes ’tg'. the time-t0-go.
And the remaining zero effort miss distance ‘z' becomes equal 10 the product of Range, angular line of
sightrate,and 't,' .z = (6 R tg).
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SIMULATION RESULTS

To illustrate the guidance laws, we simulate a Surface-to-Air (SAM) engagement scenario. For this
; guidance law performance evaluation, we represent the “real world" missile by Eq. (1) ogether with a
A first order lag imposed on the control acceleration of 0.3 sec; and a maximum limit on control of 3g.

ne——y ey

THE ENGAGEMENT GEOMETRY AND RESULTS

The target travels at a constant velocity of 500 ft/sec, and is crossing initially, at which time the missile

: velocity is 50 ft/sec; see Figure 1. The missile accelerates for 2 sec at 20g . Figure 2 indicates the

! benefit of the more complete guidance law, Eq. (12), note the reduced miss distance. Figure 3
indicates the control accelerations associated with the trajectories indicated in Figure (2); note that the
new guidance law uses less control effort to intercept the target than the other guidance laws (3) and
(4), leaving more control authority 10 counier unexpected target maneuvers, Recall that the missile
axial velocity is assumed ngt controllable, hence a component of the commanded acceleration due to
Eq. (4) or (5) along the missile velocity vector is not used.

R e e

Recall that the true time of intercept (t;) is unknown, hence various algorithms have been proposed to
estimate tg = (t-t). the remaining time to intercept [2,3,6].
Further guidance law refinement are possible if we inciude the effect of missile auto pilot dynamic delay

: : into Eq. (6). Ancther improvement is the inclusion of control norma! to the body axis rather than normal
f ; to the velocity vector as assumed above. .

Of potentially greater performance benefit would be the combining of the target tracking and missile
guidance problems,

T e s e

CONCLUSION

T -

We have derived a new guidance ‘law for missiles experiencing significant axial acceleration. This
guidance law is demonstrated to give superior intercept performance compared to PNG and another
"optimal” guidance law in a surtace-to-air intercept scenario. This guidance law is obtained through the i
use of modern control methodology applied t0 a more complete kinematic misgsile target engagement
- model. The kinematic constraint model used includes the missile axial accelerations and the constraint
_ on the direction of the missile control effort normal to the velocity vector. The resultant non-linear
4 dynamic model is solved by first solving the axial dynamic equation, which results in a time varying
, linear dynamic constraint model. Recent "optimal” guidance laws have used missile acceleration
1 estimates in the estimation of the "time-to-go" to iniercept, however have not included acceleration in

. the missile-target dynamics as in this note.

The constructive comments of Prof. J. Bossi is appreciated. And the help of Mr. B. Isham in obtaining
the results of Appendix A and the extensive computer simulations is greatfully acknowledged. Finally |
am indebted to Mr. A. J. Witsmeer for providing the support that made this study possible.
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Figure 2. |
Relatiye Trajectory of Missile to Target Illustrating Sensitivity to control laws;
Equations (3), (4) and (12), resulting in terminal miss distances of 18.5 t, 288 :
ft, and 1.4 ft respectively. With time-to-go estimated by Eq. (13). i
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Figure 3.
Control acceleration normal to missile velocity axis; note that less

control authority is used with new guidance law, leaving more for
countering target maneuvers. Maximum control effort is limited to 3

g's.
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APPENDIX A "OPTIMAL" VS. PROPORTIONAL GUIDANCE
: ‘
£ The optimal guidance law of Riggs et. al. [3] is shown to be equivalent to PNG under less restrictive
conditions. The conditions tor the equivalence ot equations (3) to equation (4) are: (a) the time to go
: 'tg' intercept is range divided by range rate, and (b) the optimal guidance cost function assign 2ero
penalty to contro! effort; see the cost function Equation (2).
Consider tigure A1, where we indicate the orthogonal coordinate system with one axis along the line of
» '. sight vector 'R’, and the normal 'p’ to 'R’ in the (R,V)-plane.
]
{
. l Ve
L
. i
, o= 'Vp /R ;
S
-
L |
b
VeV R=(VR)R/H = Rr |
Vo=V (VR R/R = V,p
Figure A1 Vector and Scalar quantities for three dimensional PNG §
|
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Consider the orthogona! unit basis vectors (r,p) along the line of sight vector and normal in the (R,V)-plane
as indicated in Figure A1.

it is convenient to define the foilowing :

s R = Rr = the line of sight vector
E ‘ vV = ﬁ r+ vp p = reiative velocity ( \It . Vm) (A1)
E ‘g = -R/R time-to-go to intgrcept

Substituting definitions A1 into Eq. (3) with B= 0. gives:

u = -Atg[n+(ﬁr+ Vpp)tg]/t93 (A2)
u = AB2[Rr+ R(-RA) T+ vV, (RA PV R (A3) f
. u = -Avp(ﬁ/n)p = <AR&p (A4)

Where the concept line of sight vector rotation ri te in inertial space is represented by &. Note that Equation
A4 is the familiar PNG guidance law with the ga’a factor A = 3, typically A is made to take on values
between 3 and 6.in order to more quickly head the missile to the predicted intercept point. Various time-to-
go 't,' elgorithms have been developed [2.3). itis noted that the use of smaller than true 'tg‘ improves
performance, and is equivalent to varying A. This observation is indicative of the inconsistency ot using the
above control laws (3,4) in a situation where the actual missile dynamics does nat have axial velocity
control, and moreover experiences uncontrolled boost acceleration to ‘mach’ and drag.

151




paciisl L aold

The estimation of the time of target intercept is motivated by the subsequent great simplification of the
general (free tinal time) two point boundary value problem [1].

Cossider Equation (6), and note that for zero control effort, the missile velocity and path length is uniquely
apecified by (a) the initial velocity, (b) the expected axial acceleration, and (c) the time-to-go to intercept.
Both the missile velocity and the remaining path length are expressed in terms ot 't;', hence the indicated

stlution (B1) is obtained.

tg = [-Cy-Sart(C2-2apCy) 1V ap - (81)
where during missile boost; or t(t,, and ;> t,

Co = R- (a-ap) ty- 1272

Cy = dR/dt + (a-ap Nty t)

and for after burn out we use; ( to Y > tp)

i 2,

Co=R : and Cq = dR/dt
where:

tb = missile boost burn out time.

For convenience we repeat a time-to-go estimation algorithm used in Reference [3]; and provide a
comparitive illustration in Figure B1.
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Comparison of time-t0-go to intercept algorithms in a tail chase scenario; tg,
is implicit in PNG, tg, is trom. Reference [3). and tg,is a simplitied form of
Equation (B1) for the case where drag acceleration is much smaller than the
boost acceleration. 153
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A NEW CLASS OF GUIDANCE LAWS FOR AIR-TO-AIR MISSILES¥*
Joseph N. Craig, Roger L. Barron, and Francis J. Cook

Adaptroniecs, Inc.
b McLean, Virginia 22102

ABSTRACT

T T AT TR S S S e e 8 ey

; Adaptive Learning Network synthesis has been used to develop a
‘ . new class of guicdance laws for short-range air-to-air missiles.
ALN guidance laws are trained to estimate target range, range
rate, time-to-go, and other trajectory parameters not explicitly
observable by passive sensors but required to implement advanced
quidance laws. This development permits economical implementa-
tion of modern optimal guidance laws in passive systems, yielding
considerable performance improvements over other passively real- 3

izable guidance laws.

R

i Lb o

e e

INTRODUCTION

s il i

'l ‘ Research and development activities directed toward improved

guidance laws for tactical air-to-air missiles have been vigor-
, : ously pursued over the last thirty or more years [1]. The most
E impressive improvements have come from guidance laws developed
: : using optimal control theory [2,3,5]. Unfortunately, the best i
performing of the modern guidance laws require knowledge of the ]
relative missile~target position, velocity, and acceleration.
Typically, air-to-air missiles are equipped only with passive
3 : sensor systems (infrared seekers) so straightforward implementa-
3 ' tion of modern guidance laws is not possible. Additionally, most
f optimal guidance laws also require an estimate of time-to-go.

Al

3 .

L - The traditional solution to the problem of implementing modern
3 . guidance laws when faced with limited information has made use of
Kalman filters to estimate the unknown states [4]. This approach
requires that the missile be equipped with fairly sophisticated )
data processors, and does not solve the problem of estimating i

time-to-go.

L e e eies

Recently, a new approach to implementing modern guidance laws in
passive systems has been developed using Adaptive Learning Net-
works (ALNs) to estimate the unknown combinations of data ([6].
In this approach, ALNs are “"trained" to mimic the modern guidance ;

S L e o m

*Work supported by the Department of the Air Force, Armament
Division, Eglin Air Force Base, Florida, under Contract F08635-

79-C-0220.
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] ' law, using only passively available information. Because the
ALNs are trained from a library of simulated engagements, it is
now possible to implement a wide variety of guidance laws that
are not amenable to Kalman filter approaches. For instance, non=-
deterministic or iterative solutions can be implemented once the
appropriate training data base is obtained.

b The use of trainable ALN guidance laws also has a considerable
impact on hardware implementation requirements. The trained ALN
algorithms are a computationally simple set of algebraic expres-

: signs. They can be realized using simple microprocessor cir-

3 g cuitry. ‘

/

3 { .
§~“_ ‘ ADAPTIVE LEARNING NETWORK SYNTHESIS METHODOLOGY

The classical approach in the design of signal processing func-

tions has been to determine explicitly all of the relevant char-

acteristics, deterministic and/or statistical, of the process

being observed and to use these measurements with simplifying

assumptions in the design synthesis, Often the mathematical

structure of the processor is assumed and its design consists of

calculating the values of the coefficients in this structure. In

many applications, however, little is known about the character-

- istics of the structure and the best or even an acceptable struc-
‘ ture for the process cannot be determined a priori. In these j
' cases, it is desirable to determine the model structure as well '
as the model coefficients from a representative data base. The ;

Adaptive Learning Network (ALN) methodology (7,8,9] provides a '

realization of this goal. Many useful references are found in 3

i ; Reference 10. ]

T I 1 ey T

¢ . To explain the ALN approach, let us assume that we observe a
' scalar variable y, called the output, and N other variables, xy,
X9s eeer X which are called inputs (in the present case, tﬁe
desired output is a command to a missile control system; the
independent variables are data available from the sensor sys-
tem). The inputs are also referred to as the observables or
independent variables and the output as the dependent variable. 3
Here, "independent” means independently observed; the input ]
variables need not be statistically independent. We seek a
relationship between the inderendent and dependent variables
that, in general, is a nonlinear function: .

~

y = f(xl, Xar seer Xgi Cry Cor ooy cL) (1)

Here and elsewhure, the caret is used to denote the calculated
value £ the indicated variable. If f is known, then egstimates
of the L coefficients (cj3» ¢3» +«sy cp), may be obtained by
minimizing M differences between the calculated and observed
dependent variables in the least-squares sense,

ekt e it
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g 7474

]2
(2)

°1'°2""'°L]2 = minimum

In many applications,. however, the function £ is not known and
simplified analytical models fail to reflect the complexity of
the observcd data. 1In/ these cases, the ALN methodology provides
an empirical solution to the structure of £ based on a network
interconnection of basic elements whose individual structures, as
well as the interconnections, are learned from a representative
data base, '

Under fairly general conditions, a function of N variables (x;,
X9r «sor XN) May be expressed as a power series,

- N - N N
y=a + T a; x, + U L a,,x, X, ¢
°© " jar 1T jay gey 137173
(3)
N N N
b i T B ., X, KX, + coo
i=j j=1 k=1 1IKTLTIK

This polynomial expression in many variables iy referred to as a
multinomial expression or a Kolmogorov-Gabor polynomial [11]. It
is extremely difficult to evaluate the coefficients of Koclmo-
gorov-Gabor polynomials when there are more than several vari-
ables. The evaluation is considerably easier when the variables
are -introduced successively, which can be done in pairs using
second-order partial polynomials, also called basic elements:

yjk = W, + wlxj * WX, + w3xjxk + w4x§ + wsxi (4)

Here y X is used to denote the output of the basic element to in-
puts xg and %, and the w; s (i=0,1, ..., 5) are the coefficients
of the” basic element whose values are determined by the least-
squares error criterion.

Training of the ALN (ALN synthesis) consists of building up,
layer by layer, a structure that synthesizes the Kolmogorov-Gabor
polynomial by using basic elements ys;p. In the first layer of
the network, N(N-1)/2 basic elements “are constructed from the N
inputs. Some of the best performing input variables are also
used to form triplets and third-order partial polynomials. Only
basic elements producing acceptable model errors are allowed to
pass their outputs to the second layer. The outputs of each
surviving basic element as well as the original features are used
as inputs to the second layer of basic elements. This process
can be repeated with succeeding 1layers until overfitting is
detected.
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physical, and engineéring'processes [{10]. Application of the ALN
methodology has been successful where conventional and/or theo-
retical modeling techniques have produced poor results.

'APPLICATION TO GUIDANCE LAW SYNTHESIS

‘o synthesize an ALN guidance law, the ALN is trained on example
guidance commands for a variety cf typical engagements. This is
accomplished by building a training data base: an advanced guid-
ance law (usually a law requiring complete, explicit observabili-
ty of the target's trajectory) is used in conjunction with a
computer program  that simulates air-to-air engagements, and the
analyst compiles a library of typical simulated engagements. The

“library ideally encompasses the range of launch conditions over

which the resulting guidance law is expected to perform. For ex-
ample, launch range, initial aiming error (off-boresight angle),
and the target aspect angle are important launch parameters. At
each time . step of each simulated engagement, outputs available
from the target seeker and other sensors in the missile are  tabu-
lated along with the actual acceleration commands generated by
the. advanced guidance law. The target seeker and other sensors
in the missile will, in general, deny explicit observability of
some quantities used in computing the advanced guidance law com-
mands, but the latter is computed using all denied information

. when generating the training data base. The time histories of

the available sensor observables are used as input variables in
the ALN synthesis process, while the commands are the dependent
variables. In this way, the sensor data are used to estimate the
information not explicitly observed and to generate the appropri-
ate guidance commands as if that information were available. The
resulting ALNs embody an economical realization of the advanced
guidance law.

ILLUSTRATIVE EXAMPLE

As an exam;le of ALN implementation of a guidance law, let us
consider implementation of proportional navigation (PNG). In
this example, as in many tactical missile applications, the pri-
mary (and perhaps only) explicitly observable external quantity
is the line-of-sight angle (A) or its rate of change (A). (Note
that although we are limiting this illustrative example¢ to a two-
dimensional engagement for which there is only one li.e-of-sight
angle, the extension to three dimensions is straightforward.)
Other variables and/or constants of the engagement kinematics are
usually unknown, althcugh explicit .identification of some of them
is sometimes possible through the application of techniques of
modern control theory.

The limited information in this situation largely accounts for
the popularity of PNG, wherein the rate of change of A is mea-
sured and the commanded missile normal acceleration (amn! is set
proportional to this rate:
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Avoidance of overfitting is a key aspect in the training of ALNs

{12,9]. The network must be taught to generalize properly on its

experience in fitting the training observations so that error

rates for new, but statistically similar data, will also be low.

( Overfitting is detected by cross-validation and by employing an

Do information theoretical criterion [13). When cross-validation is

used to detect overfitting, the known data base is divided into

L two independent but statistically similar suhsets called training

and selection subsets. The training subset is used to determine

the coefficients of the elements. The selection subset is used

to reject the poorly performing basic elements and to detect

overfitting. While the error rate on the training subset is

; continuously decreased by incorporating additional layers, the

i error rate on the selection subset increases when overfitting
occurs. :

4 When the number of observations in the data base is too small to
: form the two independent subsets, the growth of the model, i.e.,
the increase in the number of coefficients, is controlled by the ]
use of Akaike's information criterion (AIC) [14]. The AIC :
measures the poorness of the model and conseguently needs to be
minimized: '

; : AIC = =2in(maximum likelihood) _ (5) 4
' +2(number of coefficients) = minimum ‘ 3

The AIC can be considered as an adaptive F test where the risk
level changes with the number of observations and the number of 1
model coefficients in the two models to be compared [15]. Also, ;
; : the AIC is asymptotically equivalent to the maximum likelihood
: _ model {13]; i.e., the model selected by the independent selection
subset based on the least-squares error criterion approaches the
model selected by the AIC as the number of obhsexrvations ap-
proaches infinity.

If the size of the data base permits, an independent e¢valuation 1
subset is used to estimate the overall performance. Since the ’

. evaluation subset is not used for network synthesis, tre perform-~
ance of this subset is an accurate estimate of the abiiity of the
network to generalize to new, previously unseen data.

In summary, the ALN method is an empirical technique to obtain
the structure of a process and requires no a priori knowledge
and/or assumptions about the process itself. The relevant fea-~
tures are selected by the learning algorithm from the candidate
feature list and are introduced into the learning network in the
optimum order. Features discovered by the learaing algorithm to
be of little or no use are discarded automatically. The learning
algorithm permits the structure of the network to grow, i.e., to
approximate the general Kolmogorov-Gabor polynomial, but only to
the extent required by the data base. As a general modeling tool,
the ALN methodology is applicable to detection, classification,
prediction, and control of a wide range of complex biological,

A e i
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physical, and engineering processes [10). Application of the ALN
methodology has been successful where conventional and/or thec-
retical modeling techniques have produced poor results.
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APPLICATION TO GUIDANCE LAW SYNTHESIS

To synthesize an ALN guidance law, the ALN is trained on example
guidance commands for a variety of typical engagements. This is
accomplished by building a training data base: an advanced guid-
ance law (usually a law requiring complete, explicit observabili-
ty of the target®s trajectory) is used in conjunction with a
computer program that simulates air-to—air engagements, and the
analyst compiles a library of typical simulated engagements. The
library ideally encompasses the range of launch conditions over
which the resulting guidance law is expected to perform. For ex-
ample, launch range, initial aiming error (off-boresight angle),
and the target aspect angle are important launch parameters. At
4 each time step of each simulated engagement, outputs available
E ‘ from the target seeker and other sensors in the missile are tabu-
& " lated along with the actual acceleration commands generated by
4 the advanced guidance law. The target seeker and other seasors
3 in the missile will, in general, deny explicit observability of
some quantities used in computing the advanced guidance law com-
i mands, but the latter is computed using all denied information
3 ﬁ when generating the training data base. The time histories of 3

the available sensor observables are used as input variables in 4

the ALN synthesis process, while the commands are the dependent 5
variables. In this way, the sensor data are used to estimate the
, information not explicitly observed and to generate the appropri-~
g ate guidance commands as if that information were available. The.
resulting ALNs embody an economical realization of the advanced
guidance law.

© I g
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L ILLUSTRATIVE EXAMPLE

As an example of ALN implementation of a guidance law, let us
* consider implementation of proportional =-avigation (PNG). In
' this example, as in many tactical missile applications, the pri-
mary (and perhaps only) explicitly observable external dquantity
is the line-of-sight angle (A) or its rate of change (X). (Note
that although we are limiting this illustrative example to a two-
dimensional engagement for which there is only one line-of-sight _
angle, the extension to three dimensions 1is straightforward.) i
Other variables and/or constants of the engagement kinematics are i
usually unknown, although explicit identification of some of them
is sometimes possible through the application of techniques of
modern control theory.

The limited information in this situation largely accounts for
the popularity of PNG, wherein the rate of change of A is mea-
sured and the commanded missile normal acceleration (ap,) is set
proportional to this rate:

oAt ka1 s ¢
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an = VmNX (6)

where V_ is missile velocity and N is the so-called navigation

cons tang‘

In the simplified example at hand, the analyst could postulate a
family of intercept engagements, the family being characterized
by a given value of the navigation constant, N = N°’. Each
member of this family would have its unique combination of values
for the initial conditions and constants. Literally, thousands
of engagements could be "run off" on the computer, and the
results could be put into a data base, shown schematically in

Figure 1.

Y = amn Xl = t XZ = i
Y X1 X21
¥2 X312 X22
M XMl XM2

M = number of observed points in data base.
FIGURE 1l: EXAMPLE DATA BASE

The ALN training procedure could be used to synthesize a small
network in which the oytput (Y) would be a ., and the inputs (X,
and X5) would be t and A, At the conclusion of this training, one
would undoubtedly find that the ALN is one wvhich generates a
close approximation to the original guidance 1law, Equation (6).
Examination would show that the output of the ALN and an from
Equation (6) agree fairly closely for all values of t ad%

‘the data base, In this case, the ALN methodology has ”discov-
ered" the value of N” used to generate the family of solutions.
More importantly, the methodology has "discovered" a way to infer
the unknown V, (unknown because it was assumed to be explicitly
unobservable within the missile system). Even though V, varied
with time and was different -- in general -~ for each solution in
the data base, and not an explicit input to the ALN, the proce-
dure for ALN synthesis created an approximate relationship for

its identification.
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Perhaps, after creating the above ALN function, it would be found

that the ALN solution is not a sufficiently close approximation

to Eduation (6). In this case, a more complete record of the

histories of A and a might be used to provide addditional input

information during Ak training. The results of the engagement

' simulations could be put into data base records, each record
Yy being of the form: -

TGN P g

Yi(t)' yi(t‘At)r cesy Yi(o)'

x21(t), XZi(t-At)' oo o p x21(0)' t

R A AR TE T R

i "where At is a constant sampling interval. In other  words,

B samples of and A would be kept from the time of missile
Eoa launch until e time of "present" calculation, t.

We do rot know, a priori, how far back in time the guidance law
might best go in Eetchfng inputs from such data files as have
just been described. But, no matter. The ALN methodology will
find this for us, using only the most relevant samples in gener-
E - ating the desired approximation. From a practical standpoint, we
: may wish to enforce a limit on the amount of memory available for
the guidance system, in which case, the data records could be
constructed in the form: ]

yi(t)r Yi(t-At): ceey yi(:-kAt)l

O S T
- ————

where k is an integer (say 5 or 10). At the beginning of the
intercept mission, the observed values of y;(0) and x,;(0) could
be loaded intc appropriate memory locations within the missile
guidance unit, and after collecting k consecutive samples, the
ALN solution would be fully "initialized.*”

i i i okl
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i " ALN SYNTHESIS FOR AN OPTIMAL GUIDANCE LAW

The basic principles of guidance law symthesis usimg ALN training
outlined for the illustrative example have been applied to a
guidance law (MG) derived using mown aptimal control theory [(2].
The optimal guidance command is:

» 3 " %
3 =—=24 (R+t_ R (7)
tgo 90

where 3 is the optimal wissile acceleration measured in an
inertial reference frame, is wbe missile-target line-of-sight
(LOS) vector, is the time rate of change of the LOS vector,
and t,, is the remain.ng time to go until intercept. 1In terms
of thg relative range, R, range rate, R and the line-of-sight !
angles AE and AA depicted im Figure 2, the vectors are: !

l 164

B Tt e M e



s
r
5
5
@
¥

iR aas S P IR

THRRAL g € -

B R

i e

Ry, = R cos A, cos AA (8a)

E
Ry = R cos AE sin AA (8b)
R, = R sin Ag (8¢)
R, = R cos XE cos AA - R RE sin XE cOoS XA (84d)
- R RA cos AE sin AA
Ry = R cos AE sin AA - R RE sin AE sin *A (8e)
+ R RA cos XE cos AA
R, = R sin \p + R iE cos Ap (8f)

If the subject missile is equipped with a gimballed, inertially
stabilized IR seeker, the inertial LOS angles and LOS rates are
readily available. Then acceleration commands given by Egquation
(7) and (8a-f) can be calculated in the (inertial) seeker refer-
ence frame. Control of the missile requires that acceleration
commands be specified relative to a coordinate system fixed to
the migsile body axes. This is easily accomplished if the orien-
tation of the seeker is known. In practice, the longitudinal
acceleration of the missile is often uncontrollable due to the
type of propulsion system that is used. In these instances, a

is unrealized and ay, and ay, are calculated using Equations (9§
and (8a-f). These equations express the acceleration in terms of
the LOS angles and LOS rates typically encountered in PNG appli-

cations.

FIGURE 2: MISSILE-TARGET LINE-OF-SIGHT GEOMETRY
IN INERTIAL COORDINATES
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The missile acceleration commands in the seeker inertial refer-
ence frame can be written [6]:

Asx = nclcosoqcosor - Kz(orcosaq51nor + oq31noqcosor) (9a)
sy = xlcosquJ.nor + xz(orcosoqsmor - oqsinoqcosor) (9b)
ASz = nlsxnoq - Kzoqcosoq (9¢)
where:
_ 3R 1 R\
Ky = 5t (t + y (10a)
go go
Ky = 3R/gtg° (10b)

and ¢_ and o_ are the pitch and yaw LOS .angles in the seeker
referénce frme.

The orientation of the seeker, relative to the missile body axes,
is specified by two angles, ¢ _ and 6_. The transformation be-
tween the missile body coordinftes and secker coordinates may be
written as:

LI cosqagcoseg -s1nq;gcc»sr.eg smeg\
XM = ayy | = sinwg coswg 0 KS (11)
-ay, -coswgsineg sinwgsineg coseg

where and A are measured in the body and seeker frames,
respectively.

For the gimballed, initially stabilized, IR seeker, the passively
unknown data are completely contained in the optimum gain
terms, k, and «,. Thus, if estimates of these values can be
obtained™ from E%e passively observable data, a passive implemen-
tation of the modern guidance law can be obtained.

Several approaches to estimating t o exist. An iterative, non-
deterministic approach to the estiﬂation of tyo is particularly
suited to generating training acceleration cé%mands in an off-
line mode. The procedure is:

(a) Simulate the engagement using the complete MG equations
with a typical calculation of tg, [21.

(b) Save the duration of the engagement, tg.

(c) Simulate the engagement again as in (a), except use t
= tg-t, where t is the elapsed time past launch.

go

(d) Save the corrected duration of the engagement, tg.
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(e) Repeat (¢) and (d) until tg converges, whence tgd is
known exactly throughout the engagement, ,

Engagements produced by this procedure are more nearly optimal
than those that make use of estimates of tgo'

The ALN training approach to synthesizing the modern guidance law
for the inertially stabilized gimballed IR seeker congists of the

following: o L

(a) Acquire time histories of the passive observables.

(b) Use the data from (a) to estimate the optiﬁumfgains,
3% and Kys ‘ ST _

(c) Use the estimates of «x, and « togethér with Equations * '

(9) and (11) to calculate vtﬁ% required accelerations
relative to the missile body coordinate system. ' -

Note that, although R, R, and tgo are required to implement MG,
only two combinations of these
optimal gains, «x, and k, are required. Thus, the ALNs can be
trained to estimate th%

estimate the three separate values,

Training Data Base

To demonstrate the application of this method, a training data
base for the modern guidance law was obtained by simulating air-
to-air engagements using a six-degree-of-freedom (6DOF) simula-—
tion program provided by the Air Force Armament Laboratory. The
6DOF program implemented MG for a realistic model of a highly
measurable, short-range, bank-to-turn missile. aAn evasive target
maneuver is also included in the simulation program.

Simulated engagements were run for a variety of initial engage-
ment conditions., For each set of launch conditions, the simula-
tion was iterated to achieve the best estimate of tg . For the
final iteration, values for each of the passive éﬁservables,
together with the optimal guidance commands and x, and «,, were
saved in a training data file. The training &ata base was
limited in this example to the following launch conditions:

- Missile and target were co-speed, £flying straight and
level at missile launch (0.9 mach).

- Missile and target were co-altitude at launch (10,000
feet).

- 1Initial aspect angle (angle between target velocity

vector and LOS vector) varied from 0 to 180 in 45
increments. (Zerc-degree aspect angle is tail-on.)
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- 1Initial off-boresight angle (angle between missile
velocity vector and LOS vector) was either 25° leading

or lagging or 0°.

- The target flew straight and level until missile range
was less than 6000 feet, at which time the target per-
formed a 9-g, dual-plane maneuver into the attack.

ALN Training

; - e e e e e e e - S} e T ¢ o x-

Approximately 1500 time points from a total of 200 training en-
gagements were used to train ALNs to estimate the optimal values
of x, and x, from the passively available data. Candidate ALN

iﬁpuls incl@ded:
O Missile-Target LOS angles in Missile Body Coordinates:

ET,AT
0 Seeker Gimbal Orientation angles: wg'eg
o Missile Target LOS rates determined by the Seeker: éq,
o
r

o Time s.nce launch: ¢t, 1/t (t » 0)

For each of the angle variables, the current and fcur previous
samples of each variable were saved for training (At =0.05 sec).

The structure of the trained ALN that estimates the optimal
gains, x, and «x,, is shown in Figure 3, Each element of the
ALN calculates Up to a cubic polynomial of its inputs. The ALN
estimator 1is a complicated function of the candidate input
variables, but not all of the candidate inputs are used. Those
inputs that provided redundant or unnecessarv data were discarded

by the ALN training routine.

ALN Guidance Performance

The performance of the ALN guidance law was determined by using
it to guide the hypothetical missile in simulated engagements.
The engagement launch conditions were generally different from
those used in training the AILN. Two comparisons of the ALN

guidance law have been carried out:

o comparison of passive ALN guidance with the full modern
guidance law (assuming observability of all states), and

o comparison of ALN guidance with PNG. This comparison
shows the level of performance improvement that can be

obtained over current systems.

Initial evaluation of the passive ALN guidance laws was carried
out by comparing ALN guidance with the active modern guidance law
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- ' for the same launch conditions included in the training data
. base. Defining a hit as an engagement for which the terminal
4 miss distance was less than 10 feet, the ALN guidance law scored
L hits for 82% of the engagements hit by active modern guidance.
ALN guidance was generally inferior tc¢ MG for longer-range
launches that generally terminate in a tail chase, A linear
combination of PNG with ALN quidance diagrammed in Figure 4, was
therefore used to slowly turn off ALN guidance. ALN-PNG guidance
was successful for 91% of the engagements hit using MG . Addi-
tionally, 20% of the engagements not hit using MG were hit by the
combined AUN-PNG guidance law.

T

: A complete comparison of the ALN-PNG guidance law with MG and

1 with PNG was obtained for 266 engagement conditions, including
off-boresight angles up to +45 . Note that the training data
included only off-boresight angles to 25 . The detailed
comparison is presented in Reference 6; the important trends
noted are summarized here,

> PRI

First, the ALN-PNG guidance law generally achieved intercept with ]
smaller terminal-miss distances, slightly shorter flight times, |
and less total guidance impulse than did PNG. Most importantly,
; the ALN-PNG guidance law produced successful intercepts more
5 often than PNG., This was especially true for launches with lar-
3 ger aspect angles ( > 90°) and larger off-boresight angles (»20 ,
especially noticeable for OBA = t 45 ), While providing a real-
| izable implementation of modern guidance, the ALN-PNG guidance
1 : laws also produced successful intercepts over a considerably
wider range of launch parameters than PNG.

Summary performance matrices are presented in Figures 5 and 6.
The performance evaluation was carried out for the ALN-PNG
guidance law. It can be readily ascertained that the passive
combined ALN-PNG guidance law was greatly superior to PNG. It
had 19% more hits when the initial OBA was 0 and %15 , 35% more
: hits when the initial OBA was 25 , and 61% more hits when the
- initial OBA was %45 .

On comparing the passive (ALN-F“G) guidarnce law with the active
modern guidance law, Figure 6, there were a number of engagements
, (13) hit by the ALN-PNG law that were missed by MG, while only j
E. one engagement missed by the ALN~-PNG law was hit by the MG. This
' shows again that the ALN-PNG guidance law was an excellent repre- ¢
sentation of MPN over the envelope of tested launch conditions. !
Further, the engagements in which the ALN guidance hit and the

MPN missed were engagements near the outer-launch body of the L
missile. This indicated that the phasing in of PNG in the ALN :
provided a guidance law that was, in some respects, better than :
MG. Additional independent testing of the ALN-PNG guidance law :
showed that dramatic increases are obtained in the outer launch i
boundaries over those available using either PNG or MG.

Additional testing has compared the ALN~PNG gg dance law with an
extended Kalman filter implementation of MG[ . In both cases,
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realistic noise models were used to degrade the sensor noise.
These tests showed that ALN-PNG produced better inner-launch
boundaries than PMG. MG produced better inner-launch boundaries
than either ALN-PNG or PNG, but ALN-~PNG produces the bast outer~
launch boundaries. In the presence of noisy sensor data, the
performance of ALN-PNG was not greatly degraded.

W

CONCLUDING REMARKS

The ALN guidance law synthesis approach permits the use of ad-
vanced, "active" gquidance laws with seeker hardware of the type
normally used to implement classical, passive proportional navi-
gation, In their explicit deterministic forms, the advanced
guidance laws require knowledge of range, range rate, and time-
to-go, in addition to the usual LOS angular rates. By estimating
gain factecrs involving range, range rate, and time-to-to, the
ALNs permit implementation of the advanced laws using only pas-

sive observables.

The computations zequired by ALN guidance laws could be implemen-
ted by adding a small microprocessor-based subsystem to the
passively-quided nissile. The microprocessor would be supplied
the time histories of the passively-observable data and calcu-
lates the ALN outputc. The capabilities required by the ALN are
well within the capsbilities of current micrcprocessors using
ROM:-based software and a small amount of RAM for temporary

storage.

Previously, advanced guidance laws have not been generally uti-
lized in air-to-air missiles because much of the data necessary
for their implementation has been denied by operational missile
sensor systems, Now, through the use of ALN techniques, this
missing information can be largely r2covered in an efticient and
nnise-insensitive manner from the time histories of the @&a*a
available from the sensors. 'This opens iap a new world of possi-
bilities for missile guidance applications.
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ESTIMATING TIME-TO-GO FOR USE IN ADVANCED GUIDANCE LAWS

Tom L. Riggs, Jr., Capt, USAF
Department of Astronautics and Computer Science
United States Air Force Academy, Colorado 80840

INTRODUCTION

The modern air-to-air missile engagement scenario dictates the
need for high performance terminal guidance laws that are capable
of steering missiles towards successful intercepts against highly
maneuverable and intelligent targets. Numerous studies ([1,2,3]
over the past few years have shown that linear optimal control
theory can yield extremely effective guidance algorithms that are
capable of meeting and exceeding this demanding mission objec-
tive. However, these guidance laws require more information than
is directly available from existing hardware, such as relative
range, relative velocity, possibly target acceleration, and
time-to-go. To meet the information needs of these advanced gui-
dance laws research into developing estimation algorithms has
been pursued nearly as enthusiastically as in the guidance area.
Most notably is the work in estimation performed for the U.S. Air
Force Armament Laboratory by the University of Texas.[4] In this
effort, it was shown that by using optimal estimation techniques
important state information including the relative range vector,
relative velocity vector and target acceleration vector can be
accurately estimated from very restricted and noisy passive (in-
frared) seeker measurements and on-board body-fixed missile ac-
celeration and angular-rate measurements. Vergez and Riggs [5]
showed that by combining those state estimation techniques with
even the most simple linear feedback guidance law, drastic mis-
sile performance improvements could be realized over conventional
guidance methods (proportional navigation) if and only if those
laws were mechanized with an accurate estimate of time-to-go. As
in any practical problem, the desire for high performance is
weighted and often limited by the issue of complexity. This is
the basis of the research on time-to-go estimation. That is,
what is the most accurate method for estimeting time-to-go given
the restriction that it must be implementable in a microprocessor
based missile guidance computer?

THEORETICAL DEVELOPMENT

~ Background

The need for an accurate weasure of time-to-go (the amount of
time remaining to intercept) arises from the theory that is used
in deriving the gquidance laws. The parameter time-to-go appears
naturally in the solution of optimal control problems where time
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is the independent variable and final time is assumed to be
fixed. Of all the optimal control formulations that have been
developed over the last twenty years, the one that most often
yields practical solutions is the linear regulator formulation.
The missile intercept problem can be, and has been, mathematical-
ly described such that it lends itself to a special case of the
linear regulator formulation. The advantage of this approach is
that the resulting solution is a set of algebraic equations in
feedback form. Thus the solution is concise, relatively simple,
and to some degree self-correcting. The drawback to this ap-
proach is the need for complete state information and knowledge
of final time. As noted earlier, the state information problem
has been addressed with successful results. Because of this, for
this effort it will be assumed that complete state information is
available. The final time issue is the subject of this research.

The missile intercept problem is in reality a free final time
problem within certain physical constraints. To wit, there is a
set of final times at which the missile can intercept the target
within the lethal range of the warhead. This set is bounded and
determined by the degree of controllability of the missile and
the chosen trajectory of the target. Obviously if the missile
has complete control of its acceleration vector both in magnitude
and direction, the set of final times becomes the positive real
number set. However, the missile only has partial and finite
control of its acceleration vector through the use of lateral
aerodynamic control. This controllability restriction greatly
limits the size of the final set. Further, this set shrinks as
the engagement proceeds, ultimately resulting in one possible
time, the time at which the point of closest approach is reached.
Realizing these physical constraints, one might ask why not
derive the guidance law assuming partial acceleration control and
allowing final time to be free. The answer is simple. If the
problem is formulated in that manner then the solution is not in
closed form nor can it be easily implemented on-board the mis-
sile.

These practical constraints along with the desire to obtain a
practical good performing but not necessarily optimal guidance
algorithm makes it attractive to solve the problem using the op-
timal 1linear regulator formulation. Given this approach the
mechanization of the resultant guidance law requires the estima~-
tion of final time (and subsequently time-to-go) in order %o
satisfy the original fixed final time assumption.
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Guidance Law

The gquidance law that waé used for this study is given by equa-
ticn (1). )

) {
7 = 3 t 3 | - . :
Ay [tgozz - 3x,r1] S (1)
VR
Ap

where

X (T80 4+ etgo -1) /(ttgo) 2

T=

3 x 3 Identity Matrix

Commanded Missile Acceleration Vector

&

§R = Relative (Target/Missile) Range Vector
VR = Relative (Target/Missile) Velocity Vector
XT = Target Acceleration Vector

The complete derivation of the guidance law is given in Section
I1 of Reference [5]. This law is based on a linear kinematic
engagement model and a linear first-order target dynamic model
and is designed to minimize final range. The term ¢ in the gain
K. is a constant and is a function of the time constant of the
tgrget model. All of the vectors are made up of three orthogonal
components with respect to some arbitrary cartesian coordinate
system, The predominance oi time-to-go, denoted by tgo is clear

in the equations.

Time-to-go Assuming Constant Closing Velocity

The most commonly used method for estimating time-to-go is given
by equation (2). This method is based on the assumption that the
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acceleration along the line-of-sight is zero for all time.
tgo = -R/R (2)
Estimating Time-to-go Numerically

The problem of estimating time-to-go involves the prediction of
the 1line-of-sight acceleration for all future time. This is
indeed a formidable task since this acceleration is the dot pro-
duct of the target/missile relative acceleration vector (a func-
tion of time) with a unit vector that lies along the line-of-
sight (also a function of time). Obviously this cannot be deter-
mined in general because of the uncertainty of future target
maneuvers. However, the acceleration along the line-of-sight can
be approximated by assuming that the target acceleration is zero
and the missile”s axial acceleration is the dominant contributor
to the line-of-sight acceleration. Once this assumption is made
the problem reduces to the construction of a time dependent func-
tion that represents the missile’s axial acceleration. This was
done with a very simple function (given by equation 3) in [6]
regulting in a time-to-go algorithm that not only was accurate
under many launch conditions but greatly increased the missile’s
performance over conventional time-to-go mechanizations. Unfor-
tunately those results did have limitations, especially on the
long range launches. This was due to the function used to model
the missile’s axial acceleration.

A time < time of engine burnout

9
Ayx = max (3)
Amin,time > time of engine burnout
where and are constants determined from missile
thrust/drag gﬁ*&acter?@é?c

An improved approach was suggested by York (7] in that actual
missile axial acceleration data is used to curve-fit an approxi-
mate function of exponential form during thrust off and of linear
form during thrusting. This is the basis of the following numer-

ical algorithm.
Algorithm Development

Based on an assumed model of the line of sight acceleration, the
algorithm is constructed to determine the time at which the range
will be minimized given the present range and range rate. To do
this, the following assumptions will be made.
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1. Assume non-maneuvering target

] 2. Assume acceleration along line-of-sight can be modeled as
5 . k , 0<t<tbo
E Alos = R(t) =
4 bt
ae t>tbo

note - ty, is time of burnout

R g s,
-

Rt = f#ae |
R(t) =f1idt=ffiidt 1

Since R(t) is a piecewise continuous function with one discon-
tinuity there will be three possible solutions for R(t) and R(t).

Those solutions are

Definitions

TR R T Y o T g

to - present time

m T ey

tf - final time

Ro - present range

w.

o present range rate

T e e

Case _]; - t0<tb0 s tf<tb0 i
e N = - ®
R(t; =k(t to) + RO

R(t) = k(t-t&2+ Ry {t-t,) + R,

el Fo st s coalin it s et et

Case 2 - to > tho v te > o ‘
R(t) = 2 &Pt - 2 gPto 4 g (4)
R(t) = —Z-zebtoeb(t—t(’)*(ﬁo‘%eb%) (t~to)+Ro—32ebto (5) _

b
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Case 3 - t, <t  ,te> &

This case is a combination of Case 1 and 2.

Use eqns for Case 1 and solve for ﬁ(tbo) and R(tbo) and
substitute those quantities into the equations for Case 2.

Therefore
L] bt [ ]
R(t) =2 Pt -2 POy R(t, ) (6)
a _bto b(t-tpg) . a Ptho
R(t) = 2 e b0l + (R(t, )-pe ) (=t )
bt
bo
+ R(t, ) =2 e (7)
bo b2
where
. k -+ 12 4 R -
Ritpo) = 2ltpo=ty) ™ + Ryl -t)) + Ry (9)

Mechanization of the Algorithm

The mechanization of the algorithm requires logic to first deter-
mine in which case (1, 2, or 3) the missile is operating. This
will be a function of present time, range, range-rate, and the
near future acceleration profile. Once the case is deternined,
the appropriate equations are solved by the following methods:

l. For Case 1 time-to-go can be calculated in closed form
by
2Ro (10)
-R + V(Ro)2 + 2kRy

tgo =
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2. For Case 2. A Newton iteration technigue is used to
determine the time at which R(t) = 0 in equation (5).*

3. For Case 3. A Newton iteration technique is used to
determine the time at which R(t) = 0 in equation (7)* using th«
values of R(tbo) and R(tbo) determined by equations (8) and (9).

*NOTE: Prior to solving equation (5) or (7), a check must be
made to determine if R(t) = 0 is a valid solution. This is done
by determining the time at which the range rate will go to zero.
To do this equation (4) or (6), as appropriate, is set to zero
and solved for t. That t is then substituted into equation (5)
or (7), appropriately, and R(t) is calculated. If R(t) is nega-
tive the algorithm proceeds. 1If not, then the time at which
R(t) = 0 is used as the final time.

This process, although involved, is solvable with a digital com-
puter. The algorithm is intended to be solved every At as the
missile flys toward the target. If sample time causes throughput
bottlenecks the appropriate modifications could be made, such as
solving for new tf‘s, every two or three guidance computations,

as required.
Closed-Form Method

Recall that the reason for needing time-to-go in the guidance law
stems from the original assumptions made in deriving the law;
that is, that final time is fixed and the missile has complete
control of its acceleration vector. The following time-to-go
algorithm attempts to rectify these deviate assumptions.

Consider a rewritten form of the guidance law given in equation
(1), and referenced to the missile body coordinate frame.

Ayg = 3 (Spye/tgo’ + Vo, /tgo + Kpho) (11a)
Ay = 3 (SRY/tgoz + Vg /tg0 + KpAn) (11b)
Ayy = 3 (SRz/tgoz + Vpa/tgo + KpAn,) (11¢)

Given knowledge of the vector quantities 5., Vp, and A (recall
this information will be suppliea by the %taté estimagor) then
the unknowns in equation (11) are pr' AMY' AMZ and tgo. The
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quantity is the missile”’s axial acceleration command. This
quantity not controllable and would normally not be of
interest. However, if the commanded axial acceleration were
forced to be the actual measured axial acceleration then there
would be only one unknown in equation 1lla, tgo. This is the
basis for this time-to-go algorithm. That is, pick a tgo that
forces the commanded axial acceleration to equal the present mis-
sile axial acceleration measurement. The value of tgo is then
used to solve equations 11lb and 1llc for v and A! + With this
logic and the use of the Quadratic Formula the fo iowing closed
form solution for time-to-go results.

28
(12)

RX
tgo = >
-VRX+ \/(VRX) + 4SRXARX/ 3

where

Apx = Pux — 3KpAqyx

T

tO—At
Mechanization of the Algorithm

To mechanize the algorithm all the vector components must be
known with respect to the missile body coordinate system. The
terms S_,., sny' and A,,, are obtained from the state estimator and
Agx is §§e measured aXlal acceleration from an onboard accelerom-
eter. The term K., is an approximation of the proper value of K.
Recall that K,, is"a function of time-to-go. This creates a prog-
lem in mechanizing equation (12) directly since we are solving
for time-to-go. Fortunately, K, varies slowly as a function of
time-to-go. Using this fact, eguation (12) can be solved using a
value of K, calculated from the most recent past estimate of
time-to-go, "hence the notation Ki.

Exact Non-realizable Method
In order to evaluate any method for estimating time-to-go an
exact truth model must be established. This is more complicated

than flying the missile and post priori determining final time,
The reason for this is simple. The time-to-go estimate used at
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each guidance command interval will cause a different accelera-
tion command, hence a different trajectory and hence a different
final time. To determine the exact trajoctory the missile will
fly with the exact knowledge of time-to-go requires an impracti-
cal iterative method comprised of multiple f£flyouta. Although
such a method is non-realizable for real world applications, it
is useful as an evaluation tcol, Such a method was developed to
determine the missile”s performance using exact knowledge. of
time~-to~go. The results are surprising as will be seen later.

The algorithm is a straight forward recursive iteration scheme
often used to solve transcendental egquations and is depicted in
Figure 1. It has one check in it to insure stability and is
exited wpen the change in twe subseque:.it flight times is less

than 10°° seconds.

MISSILE 1S FLOWN WITH
CLOSED-FORM
ALGORITHM

DETERMINE
teo

e
MISSILE IS FLOWN WITH t, © PRESENT TINE
o = tegot t, = FINAL TIME

DETERMINE

FIGURE 1 FLOW DIAGRAM FOR
RECURSIVE ALGORITHM
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ANALYSIS

Approach

The most economical and effective method to evaluate any time-
to-go algorithm is to implement it in a detailed simulation of a
missile system and perform simulated missile fly-outs against
realistic target maneuvers. This was accomplished in the ana-
lyses of the techniques presented in this paper.

The simulation consists of a six-degree-of-freedom (6-DOF) mis-
sile model of a conceptual high performance bank-to-turn short
range air-to-air missile. The simulation contains detailed non-
linear math models of the major missile subsystems including the
seeker, autopilot, and propulsion; detailed aerodynamic models of
the missile airframe characteristics supported by wind tunnel
generated aero data; and the models that describe the missile’s
equatiras of motion. Additionally, the simulation contains a
three-degree-of-freedom target model which incorporates a nine
"g" out-of-plane evasive maneuver algorithm.

To perform the analysis the guidance law given by equation (1)
was implemented with each time-to-go algorithm into the simula-
tion and provided all required information assuming zero errors.
Although this method of evaluation deviates from the "real"
world, it does provide a common method for at least comparing one
time-to-go technique to another. To be sure, if a particular
technique does not perform well under these ideal conditions, it
certainly won“t perform well under more realistic and restrictive
conditions. Therefore, this analysis provides an intermediate
step in Jdetermining the comparative performance of the candidate
algorithms.

Comparison of Algorithm”s Accuracy

For reference purposes the four algorithms presented in this pa-
per will be indexed by the following shorthand names:

TG0L - -R/R (Equation 2)
TG02 - Numerical Method (Equations 4-10)
TGO03 - Closed-form Method (Equation 12)
TG04 - Recursive Method (Figure 1)
Figure 2 is a plot of the time-to-go estimates versus time for

the four algorithms. As can be seen, TG02 and TGO3 and of course
TG04 (recall it is forced to be accurate) accurately estimate
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time-to~go whereas TGOl has considerable error. However, all
techniques resulted in a small final miss distance (less than 2

ft) in this rather mundane engagement.

Figure 3 shows the time~to-go estimate versus time from TGOl dur-
ing a difficult forward hemisphere off-boresight shot. Note that
the algorithm over estimates time-~to-go early in the flight dur-
ing thrusting and then underestimates time-~to-go for the remain-
ing flight (coasting phase begins at 2.6 seconds). This happens
in all cases for TGOl due to the fact that the algorithm assumes
constant closing velocity although the missile sustains high ac-
celeration levels due to thrust and drag. For this case, the
missile attained a final miss distance of 15.6 feet.

Figure 4 plots the time-to-go estimates for TG02, TG03, and TGO04
made during the same initial engagement as in Figure 3. Each
time-to-go algorithm caused a different final time, hence the
three different asymtotes., In this case, TG03 performs the worst
in terms of estimation accuracy, however; unexpectedly, the most
accurate time-to-go method, TG04, results in an extremely poor
miss distance. Other similar shots were tried to determine if
this was an isolated case or a general problem. It was found
that the same problem occurs in many other large off-boresight
forward hemisphere launches. To help determine the reason for
this deviation from expected performance consider the differences
in TG03 and TGO4. TGO3 underestimated time-to-go during the
thrusting phase and then tracked true time~to-go nearly exactly
from burnout to intercept. The only significant difference in
TG03“s accuracy as compared to TGO04 was during the thrusting
phase. Now consider how this affected the missile”s acceleration
commands over the subsequent flights. Figure 5 plots the com-
manded normal acceleration profiles associated with TG03 and
TG04. First consider the profile due to TG03. It is clear that
the missile commanded an extremely hard initial turm and then
from about two to five seconds it commanded a low g level turn.
The peak that occurs at 5.1 seconds is in reaction to a last
ditch target maneuver which is activated at approximately 1
second before intercept. Intercept occurs at 6.1 seconds. Now
consider the profile associated with TG04. For the first five
seconds it is nearly a constant 26 g turn. At 5.7 seconds the
missile reacts to the target maneuver. During the 1last half
second the steering errors are large and the missile is command-
ing large acceleration. Unfortunately the misasile dynamics can’t
process these commands instantaneously resulting in a large miss.
It appears that the major difference in the commanded accelera-
tion profiles is the hard initial cturn. This turn occurs during
the same time frame that TG03 is underestimating time-to-go.
Since this occurs early in the launch, the geometry of the en-
gagement is virtually the same indicating that the different ac-
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celeration profiles are directly attributable to the time-to-go
algorithm.

To help verify this claim the mechanization of TG04 was modified
such that a value of .75 of the true time-to-go was used for gui-
dance during the thrusting phase. After burnout, the true time-
to-go was used as in the original TGO4. The missile was then re-
flown with the modified TG04 resulting in a miss distance of .49
feet. More importantly the acceleration profile for the modified
algorithm was examined to see if it exhibited the same charac-
teristics as TG03. Not surprisingly it did. 1In fact, the pro-
files were nearly the same. Figure 6 shows the commanded ac-
celeration profile due to the modified TGO4. This is a very sig-
nificant result. It suggests that in terms of missile perfor-
mance one does not always want to predict time~to-go accurately
for mechanizing linear feedback laws. However, this raises the
question how and when should the time-to-go estimate be inaccu-
rate? To help answer this question further analyses were per-
formed.

MOD TGO4
*.75 *.50

30.8
.55 |

TABLE 1. Comparison of Miss Distances
fcr TG03, TG04, & Modified TGO04
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Experience with TGOl clearly establishes that time-to~go should
not be overestimated. Doing so makes the missile wait until the
steering errors become excessively large, forcing drastic end-
game maneuver raquirements, possibly exceeding the missiles capa-
bility. This means that if there is to be error in the time-to-go
parameter then it should be such that the estimate is less than
the true value. To help determine when and by how much time-to-
go should be underestimated, the modified TG04 was used with
values of .75 and .5 true time-to-go during thrusting to evaluate
the missile“s performance in various engagements. The results of
this study are givean in Table 1. The results chow that knowledge
of true time-to-go can result in large miss distances. Howaver,
this only happens in initial large off-boresight launches and not
when the missile is launched on a near intercept trajectory.
Further, the results show that underestimating time-~to-gc by a
factor of .% during thrusting can cause the missile’s performance
for on-boresight launches to significantly decrease. The combi-
nation of these resultz indicates that time-tc-go should only be
underescimated in large off-boresight launches in order to null
out tihe large steering errors as soon as possible. ©poing this
forces the missile to attain a collision course early in flight
minimizing the chances of late evasion due (o drastic target
rarieuvers. A further benefit of the resulting trajectory is that
the missile performs its hard turning at lower velocities prior
to realizing the total effects of thrusting, thus minimizing in-
duced drag effects and increasing the missile”s energy. This
will naturally resuvlt in exterded range capabilities.

Compensating For Lacge Of £--Boresight Frrorcs

To be sure,there are a number of ad hoc approaches to compensat-
ing for large off-boresight errors. For instance, a direct ap-
proach ccula he to add a bias term to the guidance law that would
be directly proportional to off-boresight angle. This is cer-
tainly a feasible but possibly very involved approach. A more
subtle method involves mechanizing the time-to~go algorithm in
missgile body coordinates. Recall that TG03 does this. To under-
stand the rationale behind this approach consider Figure 7. Fig-
ure 7 depicts the relative position geometry for a planar engage-
ment. The line-of-sight vector has a magnitude egual to the re-
lative range and lies along the target/missile sight line. The
vecto:8 R_ and R_ are orthcgonal vectors aligned in the missile’s
axial ané” normal! directions respactively, The mizsile guidance
problem is simply to drive and maintain the magnitude of the vec-
tor R to zero prior to the time that the magnitude of the vector
R_goks to zero. 1Ideally, at final time R_ and R will both go
t8 zero simultaneously. The optimal guidanée law Xt?empts to do
this. Most approaches to estimating time-to--go are concerned with
determining the time at which the magnitude of the line-of-sight

191

o it e

M e —
e, ki it o



vector will be minimized but not necessarily zero. This is an
important yet subtle peint. The only scenario in which the
line-of-sight vector goes to zero is in the special case of a
direct hit. However, for any given control logic there will be a
time at which the line-of-sight is minimized hence a valid final
time for use in calculating_ time-to-go. Now consider the

' scenarios in which the vector R_ goes to zero. To wit, the vec-
tor R, goes to zero in every cdbe that the missile can overtake
the t§rget. In other words, if the misgile has a velocity advan-
tage over the target, the magnitude of R_ will go to zero. This
includes all cases in which an intercept”can occur. By calculat-
ing the time at which this vector goes to zero, that time can na-
turally be used by the guidance to command normal accelerations
such that the magnitude of Ry will go to zero before or at that
final time.

T RTIETR T YT ey g R s

The way in which the use of the body referenced range vectors for
time-to-go calculations relates to off-boresight angle is simple.
The ratio of R, and is a direct function of the off-boresight
P angle. The 1a¥ger thé angle, the smaller the magnitude of R{ and

hence for a given thrust profile the smaller the value for time-
; to-go. Since the guidance gains are inversely proportional to
3 the value of time~to-go, larger normal -ccelerations will be com- i
' manded to drive the magnitude of ﬁy to zero. ]

\ A further benefit of calculating time-to-go using missile body
: referenced information is that the acceleration in the missile
axial direction is well defined reducing to sources of error to

essentially the uncertainty in target acceleration. This is in

contrast to the uncertainty in line-of-sight acceleration which

is a function of the missile”s axial acceleration, normal ac-

1 celeration and target acceleration. i

Missile Performance

The ultimate performance criteria for any guidance technique is

its ability to hit the target under all possible initial engage-

ment conditions. One commonly used method for measuring how well

a missile meets the periormance criterja is through a determina-

tion of the missile”s inner and outer launch boundaries. This

was done to evaluate the time-to-go algorithms” effect on the
missile”s performance. Each of the three realizeable time-to-3o ’
algorithms (TGOl, TGO02, and TG03) was interfaced with the gui- |
dance law and mechanized in che 6-DOF simulation. Using a binary
search algorithm the inner and outer launch boundaries were com-
puted for each time-to-go/guidance configuration. (This was not
accomplished for TG04 because of the extremely large number of
runs that would be required).
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The inner launch boundary defines the minimum range from which
the missile can be launched and achieve a hit. (A hit is scored
any time the point of closest approach is within ten feet of the
target). The outer launch boundary defines the maximum range
from which the missile can be launched and achieve a hit. Obvi-
ously, there is an infinite number of launch conditions that can
be selected for evaluation. In order to limit the evaluation
process a set of initial launch conditions is selected. The
selection of these conditions should be done such that the
evaluation will provide a good sampling of the weapon®s perfor-
mance over all expected initial conditicns. To this end the fol-
lowing conditions were selected.

] 1. Missile and target are co-speed and flying straight
P and level at launch. (.9 Mach).

2. Missile and target are co-altitude at launch
(10,000 ft).

] 3. The initial aspect angle (angle between the
targec”s velocity vector and the 1line-of-sight) is
varied from 2zero to 180 degrees in 30 degree incre-
ments. Zero degrees aspect angle is a tail-on shot
whereas 180 degrees is a head~on shot.

4. The initial off-boresight angle (angle between the

. missile’s velocity vector and the 1line-of-sight) is

either zero degrees or 40 degrees lagging. Zero

_ degrees off-boresight angle means the missile is 3

! launched directly at the target. Forty degrees lagging

off-boresight angle means the missile is fired such

that the missile’s velocity vector 1is pointed 40
degrees behind the target.

The first two conditions (speed and altitude) were selected to be
3 representative of dogfight conditions. The aspect angle can in
: reality vary from zero to 360 degrees, however, it was limited at
180 degrees because these angles represent a worst case due *O
the nature of the target maneuver. The two off-boresight angles
were sSelected to evaluate the missile under a favorable off-
boresight (zero degrees) and at an extremely difficult off-
boresight condition (40 degrees lagging). The initial engagement
geometry is depicted in Figure 8.

Table 2 gives the inner launch houndaries for the three algo-
rithms while Table 3 gives the outer launch boundaries. The o
inner boundaries are accurate to within 125 feet whereas the f;
outer boundaries have a 250 foot accuracy. Note that for the ‘
forty degree off-boresight launches the missile failed to hit the
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o° 30° 60° 99° 120° 15¢° 180°
r—r——?‘_"'__""-_ﬂ—'ﬁ_'ﬁ_-

0 T601 1000 1000 | 1375 | 1675 3125 3125 1875 |

g TG02 1000 1000 | 1000 | 1125 2625 2625 18,5

A 7603 1000 1000 | 1000 | 1000 2625 2875 1875
M

40° TGOl * * * * 3625 4375 4125

g T602 1000 1375 | 1875 | 212§ 2325 3625 3875

A TG03 1000 1000 | 1000 | 1375 212 2875 3875

3 | *Designates a No-Hit Condition. The Missile Failed to Intercept

From Any Launch Range.

TABLE 2. INNER LAUNCH BOUNDARIES IN FEET FOR

Te0l, TG02, and TGO3

o ma
(1 TGOl
0
8
- A
4 TGOl * * *
g TG02 5250 5750 6750 | 9750 13750 19750 20250
A TGO3 8250 8750 10250 | 13250 17250 23750 264750

*Designates a No-Hit Condition

TABLE 3. CUTER LAUNCH BOUNDARIES IN FEET FOR

1601, TGN2, and TGO3
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0 1602
0 BODY

TG02 1000 | 1000 | 1000 | 1000 | 2625 2875 1875
B.
A
40°] TGO2 1000 | 1375 1875 | 2125 | 2325 3625 3875
0 BODY
8 TG02 1000 | 1000 | 1000 | 1375 | 2125 2875 3875
A TGO3 1000 | 1000 | 1000 | 1375 | 2125 2875 3875

TABLE 4. INNER LAUNCH BOUNDARIES IN FEET FOR TGO2, TGO3, &

TGO2 COMPUTED IN BODY COORDINATES
0° 30° 60° 90° 120° 150° 180°

o°® T6G02 7250 | 7750 | 9250 | 12250 | 17250 20750 23750
0 BODY
8 TGO2 9750 | 10250 [ 11750 | 15250 | 19750 24750 26750
A 1603 9250 | 10250 | 12250 | 15250 | 20250 25250 26750
40°) Te02 52650 | 5750 | 6750 | 9750 | 13750 19750 20250
0 BODY
8 TG02 7250 | 7750 | 8750 | 12250 | 16250 22750 22750
A TGO3 8250 | 8750 | 10250 | 13250 | 17250 23750 24750

TABLE 5. '

QUTER LAUNCH BOUNDARIES IN FEET FOR TGO2, TGO3, & o
TGO2 COMPUTED IN BODY COORDINATES Co
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target from any launch range when the guidance employed TGOl.

This was due tc TG0l“s overestimation of time-to-go which caused

the missile to wait too long hefore adequate steering, thus fly-

ing itself into a non~recoverable situation. TG02 performed much

better than TG01l, however, its performance fell far short of that

obtained by the closed form algorithm, TG03, especially in the

large off~boresight scenarios. This is due to a violation in the

' original assumptions used in deriving TG02, namely the assumption

that the missile”s axial acceleration is closely aligned to the

line~of-sight wvector. Based on this, it 1is reasonable to

hypothesize that TG02”s performance would increase if it was

mechanized with missile body reference information as is done

with TG03. To see if this was true, TG02 was remechanized using

body reference information and re-evaluated. Tables 4 and 5 give

. the results from this study. As can be séen, the performance of

( the missile greatly increased. The body mechanized TG02 obtained

E the same inner boundaries as TGO03 but the outer boundaries,

although considerably better than TG02, fall short of the perfor-

mance obtained by TG03. This is probably due tc the fact that

E 772 assumes zero target acceleration whereas TG03 does not make

’ that assumption. Other studies have shown that target accelera-
tion information improves outer launch boundary performance. [5]

Complexity of Solution

One of the fundamental issues involved in the selgction of any
A time-to~go algorithm is the issue of complexity. §1nce the algo-~
rithm will be implemented in a small dedicated guldancg compu;er
it is mandatory that the algorithm be as simple as possible while
maintaining a high level of expected missile performance.

\ Table 6 summarizes the complexity requirements versus the com-
E parative performance results based on the launch_boundary deter-
minations for TGOl, TG02, and TG03. The table gives the number
of Fortran lines of code used to mechanize the algorithms in the
gimulation and the special functions needed to solve the algo-
rithms. As can be seen TG03 performed the best and was relative-

- ly simple to mechanize.

Special Relative
Functions Performance

0

Square Root ' %
Exponential

Square Root
Exponential

N TABLE 6. SUMMARY OF COMPLEXITY REQUIREMENTS AND RELATIVE PERFORMANCE
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SUMMARY AND CONCLUSIONS

Four time-to-go algorithms were developed and evaluated to deter-
mine both the accuracy of the algorithms and the effect of the
algorithms on missile performance. The following results were
found.

1. The commonly used method for estimating time-to=-go,
range over range-rate, severely limits the missile’s
performance capability.

i 5 2. If the guidance law is suboptimal as is the one
used in this study, use of perfect knowledge of time-
to-go can cause substandard missile performance in high
dynamic engagements. In these cases, underestimation
of time-to-go during the thrust phase will compensate
] for the suboptimality of this guidance law by nulling
- large initial steering errors early in the engagement.

3. Time-to~go calculations should be accomplished in
missile body reference coordinates.

. 4. Iterative techniques for estimating time-to-go are
! very sensitive to modeling errors making it imperative
that the algorithms contain complex equations. These
methods, although solvable, tend to be very compli-
cated.

5. The best performing yet simplistic algorithm is the
closed-form algorithm that forces the commanded missile
axial acceleration to be equal to the actual missile
axial acceleration.
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ABSTRACT

e

The design and implementation of microprocessor-based discrete-time op*timal
] controllers for the XM-97 helicopter gun-turret control system is considered.

Nonfiring and firing test results are oresented. Further testings end the
design and implementaion of disturbance cancellating turret controllers are

currently underway.

1. INTRODUCTION

) The design of & hiah precision helicopter pointing control system using modern
contrel and observer theory bas been investigated by Uoleman, Lch, 2t al in
[1). The pointing control system investigated was the XM-97 helicopter
pun—-turret control ceystem. The continuous-time optimal controllers and
observers developed in [1] were implemented by using standard analog
3 electronic components. The resulting performance improvement of the optimal
! turret control system, in terms of round dispersion, turret overshoot, turret
settling time, etc., ranged from a factor of 2 to 1 to a factor 10 to 1 when
compared with the performance of the original system.

Recently, tbe continuing design efforts on helicopter turret control systems
have been directed towaras the development cf high precision turrets employing
microprocessor-based optiwal controllers. Results presented 1n 12}
demonstrated that it is indeed feasible %o implement such an optimal
controller in & resl time enviromment by using state of the art
microprocessors. Furtherwore, numerical processor chips such as the €087 are
sufficiently fast enough to permit implementirg sowe forms of adaptive comtrol
laws which mey further enhance control system performance.

The purpose of this paper is to present some preliminary results on the
performance of the XM-97 helicopter turret investipated in (1] employing
microprocessor-hased optimwal contrellers. The microprocessor sofeware was
developed by using a basic Intel 220 development system expanded to 64K bytes
RAM and 1.25 megabytes disc.

The organization of the paper is as follows. Section 2 gives a brief descrip-
tion of the existing XM-97 helicopter gun-turret control system and its step

-
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responses. Section 3 presents 8 simplified mathematical model of the original

system. The formulation and design of discrete-time optimal controllers for

both the azimuth and elevation channels of the gun-turret based on the

: simplied model developed in Section 3 1is presented in Section 4. The

: microprocessor-based implementation of discrete-time optimal turret

controllers 1is discussed in Section 5. Section 6 presents preliminary

, nonfiring and firiog test resvlts. TFurther performance evaluations of the

microprocessor~based XM=-97 heliccpter gun—turret control system and the design

of microprocessor-based disturbance cancellating controllers are currently
underway; the results will be reported elsewlere.

2. DESCRIPTION OF THE EXISTING XM-97 HELICOPTER
GUN-TURRET CONTROL SYSTEM

Tkz XM--97 helicopter gun-turret system consists of a three-barrel 20mm
automatic cannon system and a turret drive system wounted under the nose
section of a Cobra helicopter. For test purposes, the gun-turret and
helicopter airframe sre suspended from a six~degree-of-freedom simulator as
shown in Fig. 1. The gun—turret control system is essentially an inertial
load driven by a pulse width modulated split series DC motor through a
compliant gear box. The transfer functions of the system arz as shown in Fig.
2. The system consists of two controllers: one controller positions the gum
turret in azimutb and the other elevates and depresses the gun cradle and the
gur. The two controllers are functionally similar and iudependent. As shown
‘ in Fig. 2, the only difference between the two controllers is the gear ratio N 3
. which is N = 620 for the azimuth chamnel and N = 810 for the elevation channel.

e e S e SR e g epe + <

The existiny gun—turret control svstem essentially employs angulsr position
feedback anc¢ angular velocity feedback. With the stat= variables chosen as
_ ' shown in Fig. 2, the turret dynamics 1is described by the following
3 . 8-dimensional vector differential equation (for both azimuth and elevation :

channels),

fai oo n g S R

E ’ %(t) = Ax(0) + Bu(t), x(0) = x,, 1)
é N where
: x(t) = [x'1{) n'2(t) x3(t) x4(t) x5(t) xglt) x7(t) xg(e)1T, ‘
x'1(t) = gun turret =ugular position relative to the hull (radians?, ;
%4(t) = gup~turret angular velocity relative to the hull (radians/second), ‘

x'9(t) = motor angular velocity relative to the hull (radians/second),
x3(t) = motor tnrque (foot-pounds),
x5(t) = power amplifier output (volts),

xg(t) = low level electronics output (volts),

x7(t) = geared-down shaft &npular position relative to the hull (radians),
202
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Fig. 1 XM-97 HELICOPTER GUN-TURRET SUSPENDED FROM SIMULATOR
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S

xg(t) = output of tachometer feedback loop (volts),
! xpit) = gunner command input (radisns),
u(t) = control input (volts) = x.(t) - x';(¢t)

ard A and B are, respectively, 8x8 and 8xl constant matrices given by

-

T

;
K 0 0 1 0 0 0 0
PY ! sl 0 e’ 0 0 2mxi0?® o
0 -9.60, sx10° 0 sao’p, 0 0 )
5
-5.08810° 0 0 -3.188a0° o 0 .aesx10® 0
| Ae] 0 0 0 0 -sx10? 3.750x10° 0 -3.750m10%|
4
9.0050* o 0 0 0 0 002 0
0 N 0 0 0 0 0 0
10
2ma10'%, 0 iy, o 0 0 -2m10'%, -p,
b J 1
- Fa .
F .
£ o i
E A
o z
E a
3 o 3
3 4
; =10 .
4
9.095x10
o r
0

Typical step resporses of the existing turret control system described by (1)
for x,.(t) = 175 milliradiens (10°) are as shown in Fig. 3. The responses
vere oscillatory. For the azimuth channel, there was a 6041 overshoot in the
gun argular position xf(t) and the settlirg time t_ for xi(t) wae more than

te = 1 second.
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z & x(t) » 10° (Step Command)
o x
2
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: -
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? =05
]
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na 07 14 2! 23 ;
TINE [N SECONOS X 1Q¢l
E (a) Azimuth Angular Position Error

B |

x(t) » 10° (Step Command) {

D
o
I
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NILLIRADIANS X 10+0
-
[=)
I

(=
o

-40 — /

l l i I §
00 20 40 80 80

TINE [N SECONDS X L0+2
TKK 9A DEMOGULATED ELEVATION ERROR ~ FILTER=100HZ
TEST 132. LONARBQ. ATC /7 XnNisg? T

(b) Elevaticn Angular Position Error

Fig. 3 STEP RESPONSES OF ORIGINAL XM-97
HELICOPTER TURRET CONTROL SYSTEM
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3. GUN-TURRET MODEL SIMPLIFICATION

The first step irnvolved in the design of suitable optimal controllers for the
XM-97 helicopter turret control system was to obtain suitable open~loop models
for the turret system. Hence the positior and velocity feedback paths ir the
existing system indicated by the dotteda lines in Fig. 2 were first removed; a
7th order open—loop turret control system resulted for each of the azimuth and
elevation channels. The next step was to simplify the 7th order mathematical
model. It was decided to ignore stable poles of magnitudes larger than 150
corresponding to a time comnstant of T = 1/150 = 6.67 milliseconds. Hence
G3(s), Gs(s) and Gg(s) in Fig. 2 become, respectively,

Gy(s) =p,,
Gs(s) = 7.5,
Gg(s) = 535.

Furthermore, it is found that the effect of the shaft compliance K; on the
response of the helicopter gun-turret drive could be ignored. The parameter
K. was therefore eliminated by setting it to an arbitrary large value in
Fig. 2. The elimination of K. in Tig. 2 has also resulted in the
elimination of the geared-down shaft_ anguler position x37(t) which is not
accessible for on-line measurement.}! With all the simplifications as
discussed above, it can be shown tha: the helicopter gun-turret system shown
in Fig., 2 reduces to the open-loop system shown in Fig. 4 when the position
and velocity feedback paths are removed,
a
Tte dynmaice of the simplified gun-turret of Fip. &4 can be shown to be

described by

I-,z-m 1 g x' (t) 0
1 _ 1
3 u(t), (2)
.y - 3.84’(10 » 80.25
*,(t) 0 = x,(t) 3
where x'j(t) and x'2(t) are the same as in (1), J = 3x107% for the

azimuth channel and J = 2.7x10"% for the elevation channel.

1Had x9(t) not been eliminated, a suitable filter or observer would be
required to generate an estimate of x7(t) in the implementation of an
optimal controller.
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Fig. 4 SIMPLIFIED OPEN-LOOP XM-97 HELICOPTER TURRET CONTROL SYSTEMS
WITH J=3x10‘“(Az) AND J-2.7x10-4(EL)

1 Xa \ xi
0.02 -y — f——
Js Ns
0.0192 je-

535 p—e17.5

G

0.02

| 0.0192

Fig. 5 SIMPLIFIED OPEN-LJOP XM-97 HELICOPTER TURRFT CONTROL SYSTEMS
USED FOR DESIGN OF OPTIMAL TURRETS WITH J-3x10-4(AZ) AND J-2.7x10-4(EL)
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4, DESIGN OF DISCRETE-TIME OPTIMAL TURRET CONTROLLER

The deeign of continuous~time optimal controllers for the XM-%7 helicopter
gun-turret control system has been investigated in (1] and {3]. 1In {1] wna
{3], the design problem was formulsted as shown in Fip. 5, with the dynamics
of the open—-loop syatem described by, for both the azimuth and elevation

channels,

x{t) = Ax(t) + Bu(t) + Fyv,, x(0) = x4, (3)

%
3
~—~
~
~
| ]

fx3{t) xa(t)},
x1(t) = x,.(t) = x'3(¢)

= error between *the position common iovput x, (radians) and the
actual gun~turret angular position x](t) (radians),

x2(t) = Nv, = x'o(¢)

= error between thte velocity command v, {radisns/second) and the
actusl motor angulay velocity x5(t) (radians/second),

xp(t) = xp + vyt
= step~plus-r.mp position command input (radians),
u(t) = control input (volts),

and A, B and F are constant matrices given by

1 [ i
0 = 0 a
A= N e la
- 4
3.84x107 _
c 3 ] _O a5,
r— — puin
B:n A 0 F = 0 é o
-80.25 | |, 3.£4x1077N c
L J 1gJ J 12

To design wsuitable microprocessor~tased optimal contrellers for the helicopter
gun-turret control syster, equation (3) is first discretized by using a
sampling interval T seconds as follows:
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x(k+1) = Agx(k) + Bqu(k) + Fgvp, x(0) = x,, (4a)
P where x(1) & x(kT), u(k) & u(kD),
' A AT 1 ]
. N aiz|
d 0 8
. d22
P A T At b
g_ Bys  fe Bar = A (4c)
: o d12
B -
; A T At f
. fe maes | SO (4d)
o | d12 |

and the components in the Ay, By and Fy matrices can be computed easily
for each of the azimuth and elevation channels.

TI P ATHII T © | rr—" e gy ¢ eyt~

The design objective is to drive x(k) to the zero state and in the same time
minimizing a quadratic performance measure. To achieve the objective, the
control u(k) is first split into two parts as

u(k) = ugp(k) + ugelk), (5)

. where ufp(k) is the feedback component responsible for driving the state
x(k) to the zero state, snd ugg(k) is the feedforward component responsible

for accummodating the velocity :ommand v, i.e.,

wr

Bdef(k) + Fave = 0. (6) E
4

Using (3), (4) and (6), it is not difficult to show that
fl
1

~

ugg(k) = v - 4.785N%10" v, 2 Kevpe @)

o
~

Substituting (5) and (7) into (4) yields

x(k+1) = Agx(k) + Bgugp(k), x(0) = x,. (8)

Equation (8) may be written as, by adding and substracting the same term i
-1 ’

d S:I(k) on the right-hand side of the equation2 (4],

~BdR

2The resson for using (9) is to provide an alternate method for solving tke
optimal control problem. See (12)-(13) and (23)-(26).
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Dx + B, lug, (6 + R8T (0]

x(k+1) = (& = BR]'S
A ) ), x(0) = (%)
Aeq x(k) + Bdueq k), x X, S

where Ry and Sy are constant matrices, and

A Sa-nils
eq dd

a -3

s _ (10)
4 =1.T
ueq(k) ugp (k) + RS x (k). (11)
Ccnsider the performance measure

s . = T T T .
3y T :z_jo[x (1)Q (k) + 28" (KIS ug (K) + ue (KR ()] (12)

which may be written as [4], by completing the square for the terms inside the
brackets,

= (T T
Jog = E,Olﬁ ()Q, x (k) + u_ (Egu, (O], (13)

where Jq ¥ Jaq, and

A T
Cea = Q4 = S4R434» (14)

while ueq(k) is as defined ir (11). 1Ir (12) and (13), Q¢ is an nxn (n=2
for the presert problem) symmetrie positive-semidefinite weighting matrix,
Rg ie ar rxr (r=] for the present problem) symmetric positive-definite
weighting matrix, and S3 is an nxr (o=2, r=]) weighting matrix. 1lp the
design of an optimal control system, the rumerical values of the elements of
the weighting matrices Qg, Rg and S35 are often chosen in a trisl ang
errc~ besis, guided by, perhaps, the (hysics of the problem and design
experience. HRowvever, it is iapcrtant thst these weighting matrices be chosen
such that [&4) - [5],

, ¢ SO VR S , ,

(i) lAeq’ Dd]' vhere D D, = Q, = S, R;S,, is compietely observable, i.e.,
T ,T T (,2T,T (n=DT, T,

rank[Ddl Aol |Aqud|...| Aeq Dyl =, (15)

(ii) [Aeqs B4l is completely contrellable, i.e.,

2 n=-1 -
g | Aqudl eoo | A B, =n. (16)

The resultant optimal closed-loop control system will then be asynptically
stable if (condition (i)) and only if (condition (ii)) conditions (i) and (ii)

rank[Bdl A, oB

rARl

B
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are satisfied.

Given (8) and (12), or equivalently (9) and (13), we wish to find the optimal
control which winimizes the performance messure Jgq, or equivalently Jgqe
It is well known that the optimsl control problem posed ty (8) amd (12), or
equivalently (9) and (13), is & discrete~time versior of the following
continuous-time optimal control problem:

Given the continuous~time cystem,

S x(t) = Ax(t) + Bu(t), x(0) = x, (17)

| find the optimal control which minimizes the performance measure

—

'. 3= f:[g(t)ql(:) + uT(£)Ru(E) Jat, (18)

vhere ) and R are, respectively, symmetric positive~semidefinite and symmetric
positive-definite weighting matrices. The continuous-time system described by
(17) may be discretized as shown in (4). The corresponding discrete-time
version of (18) is then given by (12) with the following substitutions [6]:

T ,T 3

<At At .
Qd J;e Qe "dt, (19)
3
. T T
E '_ R, =J;[R + Bd(t)QBd(t)]dt, (20)
| |
T .T
: 54 'feA to(t)de, (21)
: o
: tI"
3 B(t) = fe‘ BdO (22)
[o]

We observe that although there is no cross-product term of the form
KT(t)Sg(t) used in (18), the cross-product term due to Sy in (12) is
generally non-zero, unless Q = 0 as may be seen from (21). We remark also
that the cross-product term in (12) may be dropped if one is not interested in
establishing the corresponding relationships between the continuous—time and -
the associasted discrete-time optimal control problems.

Now, the optimal control which winimizes the performance measure Jg riven by

(12) subject to (8) is given by [5] -
T -1, T. 1 :

ugp (k) = =(Ry + ByK B,) "(ByK Ay + S )x(k) (23a)

= klxl(k) + kzxz(k) (23b)
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=k [x (6 = x (O] + kyliv_ = x,(K)], (23¢)

where k] ond k7 are constants, and Ky is the symmetric positive-definite
solution of the algebreic matrix Riccati equation

T
Ky = AR Ay + Qy

d ddd
_¢aT T T T -1,,.T T
(BdeAd + sd) (Rd + Bdkdnd) (BdeAd + sd) (242)
a AL
AqudAd * Qeq
T T -1.T
Aeqxdnd(kd + ndxdnd) BdeAeq. (24b)

Equation (24b) follows from (24a) by simple algebraic manipulations.

Similarly, the optimal control which minimizes Jeq given by (13) subject to
(9) is given by

T

-1.7
deBd) BGK

W’ (k) = =(R, + B A x(k), (25)
eq d eq—

d

where Kq is the symmetric positive-definite solution of (24). As expected,
substitution of (25) into (11) yieids (23).

Combing (7) and (23), the total contrecl is given by

T -1,.T T
u(k) = ~(Ry + B,k .B.) "(BKA, + Sg02(k) + k v (26a)
= kyxy(k) + koxa(k) + kevee (26b)

Substituting (26) into (4a) yields the optimal helicopter gun—-turret control
system
T

KB TIBIK AL+ SPIx(K), x(0) = x . (2)

T

x(k+1) = [A; = B (R, + B,

A block diagram for a microprocessor-based implementation ot the optimal
controller given by (26) is as shown in Fig. 6.
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5. IMPLEMINTATION OF DISCRETE-TIME OPTIMAL CONTROLLER

The hardware used to execute the discrete-time optimal controllers for both
the ezimuth and elevation channels devuloped for the XM-97 helicopter itu.. .
control system developed in Section 3 is as shown in Fig. 7. It consists of
two SBC 310 high speed mathematics boards, an SBC 86/12 (16 bits, 8086 besed)
single bosrd computer and a SBC 732 combination A/D and D/A board (12 bits).
A TI Silent 700 provides the capability for quick parameter adjustment of the
controller algorithms during nonfiring and firing tests. We remark that only
one SBC 310 high speed msthematics board is needed to executa the control
algorithms. The second SIC 310 mathematics board is used as a back-up and
also to provide additional computation capability for follow—on development.
To implement the controllers without disturbance cancellatisn, only the SBC
86/12 single board computer is needed. One complet: iteration of the algorithm
requires 0.8 milliseconds when implemented using fixed ;oint sssembly language
code. This rapid execution time makes it possible to test and compare
discrete-time optimal coutrollers for sample intervals of T=l1 millisecond and
T=10 milliseconds. The nonfiring and firing test results will be presented in
the next section.

The electronic hardware is housed in a 9" x 15" x 16" aluminium case and
weighs approximately 30 pounds. One of the design requirements for the system
is that it be fully transportable. This has been made necessary by the fact
that the software development facility is located at the Dover, New Jersey
site and the nonfiring and firing testing facility is located in Rock Island,
I1linois.

On power up of the XM-97 digital turret control system, an initialization
routine INIT initializes &ll programmable devices and transfers all programs
from PROM toc RAM memory. The desired progrem is then called by executing an
appropriate interrupt.

A flow disgram of the digital optimal controller software is as shown in Fig.
8. The subroutine INPAZ brings in and scales the azimuth position error,
turret rate and sight rate signals and compute rate error x3(k). The
subroutine INPEL performs 8 similar function for the elevation channel. The
subroutine DAOT outputs the calculated control signals u(k) for both the
aszimuth and elevation chanrels to the D/A converters. Before the signal u(k)
is sent to the D/A converter, however, it is converted to fixed point and
clipped at 12 bits (+10 volts) to prevent scturation of the D/a. In order to
provide meximum flexibility in software development and implementation,
extensive use is made of three macro routines COMP, GET and FIN. The MACRO
COMP(WT, DATAl, DATA2, OPCODE, TMP) functions as follows. If WT is other than
null, the program checks to determine if the high speed mathematics board has

. completed its computation before continuving. DATAl and DATA2 are the address

rountine for the 4-byte operator and operand, respectively; if either is a
nvll, the old velues is used. OPUOODE is a hexidecimal number from @ to F
indicating the type of operation to be performed. If this value is a null,
then no operation takes place. If TMP is a null, the MACRO is terminated
after th> high speed mathematics board is started., Otherwise the program
waits until the operation is completed. The 4-byte result is then stored in
the address poirted to by TMP, The MACROS GET(WT, TMP) and FIN(WT) are
actually subsets of tiie MACRO COMP(WT, DATAl, DATA2, OPCODE, TWP). A complete
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INIT
Initialize All Variables to Zero
|

| _DUAZ = ClAZWFRAZ + C2AZ#RTAZ |
AERAZ

|[WAZ = ZAZ + C3AZ*ERAZ + CA4AZ#*RTAZ

DUAZ = DUAZ + CSAZAWAZ |

|ZAZ = CGAZ*ZAZ + CTAZAERAZ + CBAZXRTAZ + C9YAZADUAZ |

INPEL

| DUEL = C1ELAEREL + C2ELARTEL |
| B

DUEL = DUEL + CSELAWEL|

|ZEL = C6EL#ZEL -+ C7EL*EREL + CBEL#RTEL + C9ELDUEL|

,/”/’/L‘\\\\\\\kYES

<{IMER INTERKUP

NO

Fig. 8 XM-97 OPTIMAL CONTROLLER FLOW CHART
(INCLUDING DISTURBANCF. CANCELLATING CONTROL)

Mmool
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listing of the software program is available upon request.

The microprocessor development system used to debug the optimal controller
algorithms is as shown in Fig. 9. The facility is located at the Army
Armament Research and Development Command laboratory in Dover, New Jersey.
The entire system consists of & basic INTEL 220 development system expanded to
64K bytes RAM and 1.25 mepabvtes disc. In addition, there is a high speed
line printer, an 8-channel 12-bit A/D, a &4-channel 12-bit D/A and a PROM
progranmer for the 2708, 2716 and 2732 PROMS (8, 16 and 32 bits per unit,
respectively). Since the 8080 requires 1.2 ms to perform a 32K bit floating
point multiplicstion, a means of speeding up computation is required for real
time execution of algorithms. Therefore, a SBC 310 high-speed msthematics
board is added which does the same multiplication in 85 micreseconds.
However, this board must communicate with the CPU via the system bus in order
to store and then load the required four byte data words. This process
requires approximately 90 microseconds. To minimize this excess overhead
time, another SBC 310 high-speed mathematics board was added which permits one
board to compute while the other is storing data.

PRINTER
(3) DUAL . ’ PRON
DENSITY OIsK TR 2708,2716,2732
CRIVES ns 220 PROGRANMER
DEVELOPHENT
SYSTER
(64K MEMDRY)
scR (D1F) NICH SPRED
A/D MATH SOARD 1
N
acn KIGH SPEED
D/A MATH BOAND 2

Fig. 9 MICROPROCESSOR DEVELOPMENT SYSTEM
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6. TEST RESULTS

Firing and nonfiring tests of the microprocessor controlled XM-97 helicopter .
turret control system were conducted using the following values of Q and R in

(18), b

The corresponding Q,, R, and S, were computed according to (19), (20) and (21),
- respectively. The above choice of Q implied that only x (t) = xr(t) - xi(t)
| was weighted so that large amplitudes of x34(t) were discouraged.
x The optimal control used wss given by

u(k) = kyx(k) + koxa(k) + kyve.

The following cases were investigated:

AT RTINS N ST 8 T

] using a sampling intervals of T=1 millisecond and 71=10 wmilliseconds. It was
found that the case of 94 =5 and a sampling interval of T=1 millisecond gave
the best results for both ghe firing and nomf.ring tests.

(a) Nonfiring Tests

F k For nonfiring tests, the step responses of the azimuth channel of the original
turret and the optimal digital turret are as shown in Fig. 1J(a) - (L) and i
Fig. 11(a) - (b). The step inputs used were:

(i) Original Turret

Xr(t) = 20, 3
' Xr(t) = 500

(ii) Optimal Digital Turret

xpe(t) = 20,

et

The statistics of the step responses shown in Figs. 10 - 11 are summerized in
Table 1. The step responses of the original turret exhibited an average
overshoot of 50% while there was no overshoot for the optimal digital turret. 1
The settling time of the original turret was about 4.4 times longer than that %
of the optimal turret.
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5 . TARLE 1: STEP RESPONSES OF ORIGINAL AND OPTIMAL
[ 1 TURRETS-AZIMUTH CHANNEL
E,
i t
3 .
f :
E TURRET SETTLING % OVERSHOOT COMMENTS
[ TIME (SEC)
:
2 Original Average of
5 20 Step 0.50 49% left & right
-: 50 Step 0.74 51% excursions
% . Optimal Smooth
3 q1}=5 , 0.14 Nome response
; T=] ms
; Optimal Slight )
v . q11=5, C.14 None chattering
A 3 T=10 ms response
; i
]
i
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(b) STEP RESPONSE ~ AZIMUTH CHANNEL

Fig. 10 STEP RESPONSES OF ORIGINAL XM-97 GUN-TURRET
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20~ -
Sampling Interval = 10 ms
_}

TIME IN SECONDS X 10¢1
AZ OEMOD ERROR ~ OYC FILT=100HZ X 10+
TEST @3 . OTC. S uLSI

(b) STEP RESPONSE ~ AZIMUTH CHANNEL

Pig. 11 STEP RESPONSES OF OPTIMAL XM-97 GUN-TURRET
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(b) Firing Tests

The firing tests were conducted using 20 rounds burst fire. The firing rate
was 600 rounds per winute. In order to ignore the transient resjponse of the
turret, the statistics of the first 6 rounds, corresponding to approximstely
0.6 second of firing time3, were neglected. The performaacz: of ...
original turret and the optimal digital turret in terms of the standard
' deviations of their rounds dispersion are summarized in Table 2. A
performance improvement of approcimately 2 to 1 was obtained. Further tests
uging different values for q)]; and using disturbance cancellating optimal
digital controllers are currently underway. The results will be reported

. elsevhere.
: |
f TABLE 2: STANDAR" DEVIATIONS FOR RANGE OF 85 FEET
%
; TEST NO. OVERALL BARREL 1 BARREL 2 BARREL 3
; AZIMUTH (INCH) | AZIMUTH (INCH) | AZIMUTH (INCH) | AZIMUTH (INCK)
‘ D 30 1.25 0.70 1.15 1.76
k 1
3 D 31 1.78 1.17 0.80 2,42 ;
E 0 33 2,11 1.35 2.23 0.99 ‘
k
: D 36 1.57 1.47 1.46 1.53
D 37 1.87 1.70 1.14 1.38
0 38 2,26 2,28 1.93 1.80

D = Optimal Digital Turret

O = Original Turret

Ithe average settling time of the original turret for nonfiring tests was
about 0.62 seconds; see Table 1. !
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DISCRETE-TIME DISTURBANCE-ACCOMMODATING CONTROL THEORY;
THE DISTURBANCE-UTILIZATION MODE

C. D. Johnson
Professor of Electrical Engineering
o Electrical Engineering Department
{ The University of Alabama in Huatsville
4 Huntsville, Alcbama 35899

INTRODUCTION

In a recent paper [1], the theory of Disturbance-Accommodating Control (DAC)
was extended to include the case of discrete-time, sampled-data control prob-
; Tems. The results presented in [1] covered the disturbance absorption (can-
] cellation, rejection, counteraction) and disturbance-minimization modes of

, - control, but did not consider the disturbance-utilization mode of control.

3 ‘ In the present paper, we complete the development begun in [1] by deriving

- a rather general theory for the disturbance-utilization mode of digital DAC
for the case of 1inear plants with a quadratic performance index.

The mot{vations for a theory of digital DAC, and the detailed derivation of
the basic discrete-time models for the plant and disturbances are well-
documented in [1] and therefore will not be repeated here.

‘ ’ SUMMARY OF DISCRETE-TIME MODELS FOR LINEAR PLANTS,
’ DISTURBANCES AND COMMANDS

The class of plants and disturbances considered here are assumed to be such
that their discrete-fime response can be modeled by the following linear
difference equations (see [1] for the derivation of these difference

i : equations from their continuous-time counterparts)
k - Exmh)= A@T)x(nT) +Brlumn) + Eﬁ(n'r)z )+ YT) (1a)
y(nT) =Cl)x(nl) (1b)
(1)

’W(HT): external disturbance vector =H(HT)Z(YIT)

E 20)=Dil) 26T) + 54T)

(1d)

*Some possible generalizations of Eqs. (1b) and (1c,d) are described in [1].

[
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where E(*) denotes the forward shift operator: Ex(nT) = x((n+1)T) etc.,
x = (xy, ..., Xp) is the plant state-vector, y = (y}, .. ) is the
plant output vector, u = (uy, ..., u,) is the plant contro1 Tnp

W= (W, ooos Wp) is the plant dtsturbante input, and 2 =

notes the "state-vector' for the disturbance process (1c), (]d) In the
case of plants and/or disturbance processes which are governed by under-
1ying linear continuous-time differential equations of the form

% = Ab)x +BBu+ Fit) wi) (2a)
- y =Cz (2b)

w = Ht)z (2¢)
% =Di)z + o) (20

where g = (o » +s«+s Op) denotes an unknown, sparse sequence of randomly
arriving (once-in a-wﬁi]e),random intensity m*p]ses having a specified
minimal adjacent spacing p > 0, the matrices etc. in Eq. (1) are
related to their counterparts in Eq. (2) as follows (see [1])

:&W “?(m(nﬂ)Tt;nT) $ = state-transition mateix for (3a)
B(nT) [ %MTr)B(r)q’r (30
| ' PYie </ , sz}f(ﬁHr)qB (s tor) (3¢)
| 1'("T fg%ﬂnf)Tr)ﬁr)//(r) g(r §)o(E)ds e (3d)

D(nT') égﬁ(m)ﬂmv (3e)
) j/ f(fﬂﬁ T Eo(¢)d¥ (3f)

o where &p denotes’ the state transition matrix for D(t). Note that the dis- 3
: turbance-1ike terms ¥, § 1in Eq. (1) [called "residuals" in [1])] account 3

forr the action of the o(t) impulses which arrive between adjacent sampling i

times ty + nT, ty + (n+1)T. Since the arrival times and intensities of the

sparse c(t 1mpu?ses are completely unknown, (no probabilistic stucture) the !

terms ¥, G are also completely unknown. "

e—

The primary objective of control is assumed to be expressible as the set-
point regulation of, or servo-tracking by. certain specified plant variables
(77, vees ym) where in general the y; can be related to the plant state-
variab es (x], NN xn) by the linear expression

*

Note that the argument symbol nT appearing on the left side of Eq. (3)

actually denotes the time t = t, + nT. This shorthand notation will be !
used consistently in this paper. ?
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y =Clt) y=(%.""" ¥s) )

In many cases, the objective is to control the plant output y(t) in Eq. (1b),

in which case one would choose T = C in Eq. (4). On the other hand, the

%gsireito con?zgl the entire plant state x(t) would be indicated by .h.osi. g
= I in Eq. .

In accordance with standard procedures in DAC design [2], the desired
(commanded) behavior of y(t) is expressed in continuous-time by the "set-
point/servo-command" dynamical model

) =gb=Gie (50)

destire -
¢ =E®)c+ - A(E) (5b)

? where {G(t), E(t)} are determined a priori by appropriate “"command modeling"
procedures; see [2; p. 642]; and where ¢ = (cy, ..., ¢;) represents the
"state" of the command model” Eq. (5). The vector y = "(43, ..., yy) repre-
sents a sequence of totally unknown impulses which are sparse; sim¥lar in
nature to the o(t) impulses in Eq. (2d$. It s assumed that the set-point/
servo-command vector y. = (Yt1a ey y@m) might not be known a priori, but
can be directly and accurately measured on-line, in real-time.

e T e sy Ce s

; In the case of set-noint regulation problems the command yc(t) is essentially
. . constant, or piecewise constant, in which case E(t) = 0 in Eq. (5b) and one
L can then set G(t) = I in Eq. (5a), assuming the y; in Eq. (4) are independent.
} In the case of servo-tracking problems, the command yc(t) is allowed to con-
tinuously vary with time and E(t) is chosen accordingly; see [2; p. 642].

For purposes of designing discrete-time controllers, it is necessary to have {
] - a discrete-time version of the set-point/servo-command model Eq. (5).

’ ' Following the same p;Jcedure used for Eq. (1), the discrete-time model of
Eq. (5) is obtained as

%) =GUMee);  cleal=EMMeele e @

s,

where

E(nT)=§E<f:(nﬂ)1;t+nT)= transition matrix for E(t) (7a)

~ r
JiT) = = & o e 2

" The information embodied in the real-time command-state c(nT) enables the
DAC controller to "accommodate" uncertain servo-command behavior Yé(nT) i
similar to the way disturbances are accommodated.

*The symbols ¢, E in Eq. (5b) correspond to the symbols Xes R used in
[V; Eq.(43)].

ot bl ik 3t e o
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DESIGN FOR THE DISTURBANCE-UTILIZATION MODE

The two modes of disturbance accommodation considered in [1] ware designed
to cope with disturbances by gounteracting (absorbing) or minimizing their
, effects. This design attitude reflects the traditional view of disturbances

£ as causing only unwanted, disruptive effects on the plant behavior. However,
1 there are realistic situations in which disturbances are capable of pro-
i ducing desirable effects on the plant behavior. In particular, it is possible
; that at Teast some of the action of disturbances can be constructively used
\ to assist the controller in accomplishing the primary control task. The
, ; trick, of course, is to know just how to manipulate the control u{nT), in
3 real-time, so as to harness and exploit any useful effects inherent in the
o (uncertain) disturbance actions.

Gl T

The systemmatic design of continuous-time controllers to optimally utilize
the action of uncertain disturbances was first introduced fn [3], and has

3 since been refined and appiied in [2], [4]), [5], [6], [7]. In this paper,

[ we will derive discrete~time versions of "disturbance-utilizing" controller
design procedures which parallel the results in [2], [4], and [6].

k THE CHOICE OF A PERFORMANCE INDEX J IN DISTURBANCE-UTILIZING CONTROL PROBLEMS

; The objective of disturbance-utilizing control is to make maximum (optimal)
. ‘ use of the disturbance w(t) as an aid in accomplishing the primary control

) task. For instance, 1f the primary control task is to achieve set-point

: ' regulation or servo-tracking with minimal expediture of control resources

' (fuel, energy, etc.), it is conceivable that the action of disturbances w(t)
might be able to reduce the drain on control energy and/or achieve "better"
set-point regulation or servo-tracking --- if u(nT) is manipulated properI{.
On the other hand, if the disturbance actions are such that they are totally
counter-productive to the primary control task, the use of an optimal dis-
turbance-utilizing controller will serve to minimize the inevitable loss of
performance contributed by the disturbance.

The optimal utilization of disturbances is achieved by application of optimal
control theory, where the performance-index functional J is structured such

that the minimization of J by u(nT) achfeves the primary control task while 3
simultaneously making maximum "use" of w{t%. In the continuous-time version i
of disturbance-utilizing control theory [4] the most common choice of per- :

formance index J for set-point and servo-tracking problems is the classical
error/control quadratic functignal

T-4dpSem) +2t!fe*(’c)Q(ﬂeé0+uT(£)R(8ufﬂ]d% 0

where e(t) denotes the instahtaneous "control error'; i.e. the error between

desired response ¥, and actual response y(t); and S, Q, R are positive

definite symmetric matrices chosen by the designer. The design of u(t) to

minimize Eq. (8) automatically achieves the primary control task of ;
l}e(Tf)|| = "small” [and ||e(t)]| = "smal1"], while simultaneously letting i
w(t) "“assist" in that task and/or in (possibly) Feducing control resource

consumption as measured by the time-integral of u'(t)R(t)u(t). If the dis-

turbance w(t) is such that it cannot "assist" in reducing J in Eq. (8), the
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control u(t) which minimizes Eq. (8) will then automatically minimize any per-
formance deterioration (increase in J) which w(t) contribues.

In discrete-time optimal control theory, the most common discrete-time
version of Eq. (8) is expressed as
]

' T =3 anSet+L, e iRl oo

: where the interval of control [t,, Tf] is divided into N equal segments

; ' th = tyT; n =0, 1,2, ... N. "Actually, if one evaluates the continuous-

time performance index Eq. (8) over each segment to+nT g t g t, + (n+i)T,

: i using the known solution expression for £qs. (2), (6), it can be“shown (8]

1 . that Eq. (8) may finally be expressed in the form” of Eq. (9) with the ex-

N ception that there is an additional term 2 uT(nT)M(nT)e(nT) in the summation

on the right side of Eq. (9). In that case, the matrices G, N, R are re-
lated to Q, R, B, A in Eqs. (8), (2) through some rather involved integrals.
In practical applications of discrete-time optimal control it is generally
preferable to adopt the format Eq. (9) as the starting point for structuring
the performance index J and then design the weighting matrices S, Q, R in
Eq. (9) to attach proper emphasis on the minimization of (nT), u(nT);
n=0,1,2, ..., N. For this reason we hereafter adopt Eq. (9) as the
basic performance index J for the design of discrete-time disturbance-
utilizing controllers for set-pc! * and servo-tracking problems.

FORMULATION OF A GENERAL CLASS OF DISCRETE-TIME DISTURBANCE-UTILIZING
CONTROL PROBLEMS

The systemmatic design of disturbance-utilizing controllers can he achieved
by formulating the problem as a conventional (undisturbed) linear-quadratic
discrete-time control problem for which solution algorithms are known. For ]
this purpose, the discrete-time models Egs. (1), (6?, (7) are consolidated

into one composite "plant" model and written as

Exel)| [A|Q|EH {x(nT) B Juih [ |
" EcD)| =|OLE [O]lctl) Oj +HE |
E 2(T) OOﬁ—J\;(n)) |

2 (10a)
y(nT} = [C("T)'O|O] ) (10b) i
cfl) 5
Zi)
*Note that the arguments NT, nT in Eq. (9) actually represent the times

t = to#NT, t = to+nT. This shorthand notation is consistent with that used
in Egs. (1), (6), (7) etc.; see footnote associated with Eq. (3). ]

YT

' 229




i a0

SEETVRIES VT A, meer

TEIOTTIle: WS sy
.

For simplicity, the model Eq. (10a) is written in the more compact form

~ N ~ ES - T
Ex =AWTEET) +BeMuil) +80T) 5 %={lclz) ()
where the mearings of K} E, E. are clear from examination of Eq. (10a).

The instantaneous control error e(t) in Eq. (8) is the difference between
the desired response and the actual response. Since y.(t) and y(t) represent
those two responses, we write e(t) as

ett) = y.¢)-ytt) (12)

or, in terms of discrete-time t = tO + nT

o= 4T)-7#0) 13

Using Eqs. (4), (6), expression (13) may be expressed in terms of X as

- A A -
e-[Clalok=Cx ; C=ECllO] (12)
Now, the quadratic forms in the discrete-time performance-index J in Eq. (9)
may be expressed as
TA A ATo A

T NTAT~AN ~ ~

€Se=2C3Cx¥=%x5%; S=CSC (15a)
~ TATNAN ~TA~ A AT~A

eQe =iCQRCY =3Q% ; Q=CQC (15b)

Using Eq. (15), J in Eq. (9) may finally be expressed in terms of the com-
posite state X as follows n=(N-1)

F-45wnSam) FiodaneinRen] oo

The optimal disturbance-utilizing control problem for discrete-time set-point
regulation and servo-tracking may now be expressed precisely as follows.

Find the control sequence u(nT) = u®°{nT), n =0, 1, 2, ..., (N-1), which
minimizes the performance index Eq. (16) subject to the difference equation
constraint Eqs. {10), (11) and for arbitrary initial conditions {x(0), c(0),
2(0)} = X(0). Since the o(t), uc(t) impulses which create the terms ¥, {i.,
in Eq. (10a) are completely unknown and sparse, we will follow standard
procedure in DAC theory and disregard the presence of those terms in Eq.
(10a); see remarks in [2; p. 639].

SOLUTION OF THE DISCRETE-TIME DISTURBANCE-UTILIZING CONTROL PROBLEM

The minimization of (16) subject to Eqs. (10), (11) has the form of the
conventional (undisturbed) discretc- +ime linear quadratic regulatcr problem
which has already been solved; see for instance EB] That known solution,
when applied to the specific plant Eqs. (10), (11) and performance index
Eq. (16? leads to the following expressions for the optimal disciete-time
disturbance-utilizing control u®(nT), n =0, 1, ..., (N-1). Assuming X(nT)
can be directly measured, the optimal control u®°(nT) is given by
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where the matrix P(-) is symmetric, positive definite, and governed by the
Riccati differerce equation

T . - A T T _ =1
Sy AT P AT U BPeBEU s e
with the boundary condition UQB(HT)P«MT)AH)

POm=5 e

Note that the Riccati difference equation Eq. (18) is automatically set-up
for backward-time solution, nstarting" at t = Tf = ty + NT and progressing
backward: t = te + (N-1)T, t = tg + (N-2)T, ..., t = Lo ¥ T, t =ty. In
other words, one successively sets n = (N-1), (N-2), (N=3)..., 1, Oin

Eq. (18a). The resulting sequence of values 2(nT) is then stored for future
playback in the forward-time control law expressign Eq. 1]7), In particular,
at each time t = tq + nT the "current" values of R(nT), B(nT), K(nT) are sub-
stituted into Eq. ?17), together with the "one-step-ahead" vabzf of
P((n+1)T), to compute the overall state-feedback gain matrix (nT,(n+¥1)T)

defined by . 4 .
R BePeTB BRG] oo

and uo(nT) is then computed as

ufl)= H{(nT,(MI)T) ) (19b)

In practical applications, the composite state term X = (x|clz) ig Eq. (19b)
cannot be directly measured and therefore must be implemented as x = (%1€12)
where %, €, Z are estimates of x, ¢, Z generated on-line, in real time by a
discrete-time state observer such as described in [1; Eqs. (18)-(25) and end
of Section ¥-D]. Note that the computation of K (nT) can be done off-1ine
(it doesn't depend on knowledge of X(nT)) and therefore the time required
for accurate calculation of does not impact on the real-time performance
ot the controller.

The form of Egs. (17), (18), (19) does not yield much insight into the fine
structure of the optimal disturbance-utilizing control u°(nT). To see that
fine structure, it is necessary to decompose P(:) into smaller blocks cor-
responding to the block sturcture of K in Egs. (10), (11). For that purpose,

we set
i ]
I L A T .
) _ c X
P E&Kc K| 3
LK; K:; K | K= 9x¥; Kc; vx(”Kz:()x()
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and substitute Eq. (20), together with the expressions for ﬁ. B, A, 6 and §,
into Eqs. (17), (18), (19) to obtain the optimal control u®(nT) expressed
equivalently as -

6= TR B o TBT] Bl oA X K BT+
+(K, (o) FRGT) + wmm))zm] 2

where the six block matrices comprising Eq. (20) obey the following set of
P coupled matric difference equations

K= BRI BEN o BT B BT RGO,
KN =COmSCOM | (220)

lg,gnn=[m-é<n7)[§oan+‘ﬁh)&(wvﬁmiﬁlnwﬂ)ﬁwﬂkgwmﬁﬂrdmam;

| Km=-COMSGNT . (225) :
'~ ~ v 'i,vT ~ ~
; KA BRI TN BTN o B BT AT K TR o PR ;
i K ANT)’O (22c) 'J

(K GBI EATIBI o I AGRTIGHD,
KNM=GINISGAT). (220

~ T ~ ~ T ~ T v AT
K- o DK i BEDIRAD B BB i)

C. g+ KB
Kpm=0. (@)
Cc
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| C:[E(mﬂ)?’H@T}fggmmﬂﬁm[ﬁm%wwn)T)B@T)] B@T)[K‘((nﬂzrb
CrtnkemmBor] Kim=0 .

(22f)

Thus, to implement the disturbance-utilizing control u°(nT) in Eq. (21) one
must first solve for Kx(nT), K__(nT), K _(nT) by solving Eqs. (22a,b,c) in
backward time n = (N-1), (N-2)XS.., 2, ¥2 0, using the indicated "initial
conditions" at t = t, + NT. As already mentioned, this step can be carried-
out off-1ine (ahead of time) and the computed values stored for future use.
Note that at each time t = t, + nT, the real-time _disturbance-utilizing con=
i trol Eq. (21) depends on the values of R, B, A, £, FH, D, and x, c, 2

] ‘ evaluated at t = t5 + nT and the values of Ky, Kyc, Kyz evaluated at the "one- 1
s ' step-ahead" time t = t, + (n+1)T. '

THE NOTIONS OF FIXED COST, ASSISTANCE, BURDEN, AND UTILITY IN DISTURBANCE-
UTILIZING CONTROL PROBLEMS

e T L e

AN T e e

; The optimal disturbance-utilizing control u°(nT) in Eq. (21) achieves the

. : minimum possible value of J in Eq. (9). That minimum value of J will be de-
' noted by the scalar function V=V(x(nT), c(nT), z(nT), (n+1)T) where x(nT),

c(nT), z(nT) denote arbitrary "initial conditions" in (x, c, z)-spuce.

] ‘ It can be shown [8] that the function V(x,c,z,(n+1)T) for the disturbance- ]
' utilization problem Eqs. (9)-(11) has the explicit form 1
. I T
- K [ Ko [ Ke | [ 2 ]
| V=43Pl = S xlcl) K K. (K. ||
L ~SAPUTAR = 3elek) e[ Keell o |
e . T
- | Xz Kcz KEJ z

which can be expanded to yield, (Note: all X-expressions in Eqs. (23), (24)
are evaluated at t = (n+1)T, whereas x,c,z are evaluated at t = nT).

& =Fixed Cost - =-Assistance  B=Burden

V=3(TKx+Ke 127K o)+ WK 2K Yz + 37K
FAURAY ¢ “ xe xe Cea/Z T ZERE

(o d
The role of the disturbance w(t) in reducing the minimum possible value of J
can now, be clearly seen in Eq. (24). Namely, the impact of w(t) on V =
min, J is reflected in the z-related terms in Eq. (24). If the collection

(24)

i
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of terms labeled a ("assistance") is greater than the "burden" term 19 ,
then, and only then, will min. J be further reduced by the action of w(t).
Thus, following the ideas in [6] we define the "utility" of the dis-

turbance w(t) as
= H J—— T ....5.-.. y 5]
‘U —A55t5+ance —Bunclen = (X, K( ;C Kc)f. 32 Kzi‘ (25)

' The condition U>O indicateg that the current behavior of w(t) 1s such that
it can help in reducing min. J. On the other hand, the cendition U <O
indicates that the current behavior of w(t) is such that w(t) can only aggra-
vate (increase) the value of min. J. The collection of terms in Eq. (24
which do not involve z is referred to as the "fixed-cost" ¢# because that
contribution to V = min. J. is invariant with respect to the behavior of

! disturbances w(t).

T W T ST g e e s i e v+ e =

' The disturbance utility function U defined by Eq. (25) can be studied in
the (x,c,z,t)-space to identify the domains of positive and negative utility;
the details are outilined in [6] and some specific examples, from continuous-
time disturbance-utilizing DAC theory, are presented in [7] and [9]. Note
zhat as time progresses, n = 0,1,2,..., the sign of can change back and

orth.

THE EFFECTIVENESS & OF OPTIMAL DISTURBANCE-UTILIZING CONTROL

Rt e B e P ————

imerp

T

YT

The linear-quadratic regulator theory is widely used to design feedback con-
trol laws of the form u(-) = K () x(+). Traditionally, such applications
have ignored the presence of persistent disturbances w(t) and therefore,
when confrc ted with actual real-life disturbances in the field, such con-
trol laws d. not yield "optimal" performance. Thus, it is interesting to

- study howmuch better the disturbance-utilizing control law performs, com- i

. pared to the conventional linear-quadratic control Taw, when the two closed- 3

l loop systems are subjected to the same typical realistic disturbances w(t).

‘ To quantify such a comparison, K:1ly [7] has proposed the concept of "effect

: jveness" defined for the discrete-time case as

o o, \ i

L = e 1009,

Lo
where 31 is the value of Eq. (9) obtained by using the conventional (undis-
turbed) Qiscrete-time Tinear-quadratic control law, and Jpy =V is the R
value Eq. (24) of Eg. (9) obtained by using the optimal d?sgurbance-utilizing
control law Eq. (21) --- in both cases the plant Eq. (la,b) is subjected to
the same disturbance w(t) [as generated by the assumed disturbance model
Eq. {Tc.d]. Thus, if .he disturbance-utilizing controller Eq. (21) is a <
better performer (as it should be) one should find that 3bU is less than Jjq :
and therefore € 1is positive. The maximum possible value of & s 100%
which would correspond to the (unlikely) case that Jpyc = 0. Thus, the h
closer £ is to 100% the greater is the effectiveness of Eq. (21) compared to ]
the conventional linear-quadratic control law.

(26)
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It is interesting to note that the conventional linear-quadratic control

law used in such comparisons can be obtained directly from Eq. (21) by

simply setting z(nT) = 0, %n, (and also c(nT) = 0,%n, if ¥.(t) = 0 is the
desired response). This observation shows that the disturbance ut11121ng con-
trol law Eg. (21) automatically reduces to the conventional linear-quadratic
control law whenever the disturbance w(t) vanishes. In other words, the
matrix Kx(:) in Eq. (21) and Eq. (22a) is precisely the same matrix used in
the conventional (undisturbed) linear-quadratic regulator control law.

EXAMPLE DESIGN OF A DISCRETE-TIME DISTURBANCE-UTILIZING CONTROLLER

To demonstrate application of the controller design algorithm for discrete-
time disturbance-utilization, we will consider a rather general version of
a first-order plant with first-order disturbance. The plant discrete-time
mode} Egs. {ia, b) and disturbance discrete-time model Eqs. (1c,d) are

expressed as

)= Ty o i)+ M) + 5l (27a)
y(nT cinx) (27b)
E Z(nT)=a'01T)Z(nT) +0(nl) (27¢)

where x = scalar, u = scalar, z = scalar. We will assume that the desired
behavior is set- point regulation to x{nT) = 0 ¥'n; therefore ¥ = x in Eq.
(4) and ¥ = O in Eq. (5). Thus, we may set G(t) = 0 in Eq. (5). The para-
meters 3, D, fh, d may be time-varying.

The discrete-time performance index J in Eq. (9) is expressed as

¥ 4 T A fN-D T v T ma S ;‘)
J= zx(NszND*'zZ:[x(nT)zmeﬁu(nT)Ru(nT)] ; 4 >g (28)

where, in this example, 3, q, R are arbitrary positive scalars and ¢ = -x.

The optimal disturbance-utilizing control Eq. (21) for this example has the
specific form ~

W)= [m%;w—)]-[&k’gmﬂ)ﬂv Fiemdole| o,

where we have set ky. = 0 because G(t) = C (set-point y. is zero). The
time-varying gains ke (+), kyz(:) associated with the cofitrol Eq. (29) are
computed from the diéference equations Eqs. (22a,c) which for this example

reduce to

NMZXWHW) ~ c=1 (30a)

k)= : -
g &+ Bk (ol "t kp=so
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One can now compute the successive values of k for n = {N-1), (N-2),
L (N-3), ..., 2, 1, O using Eq. (30) and the 1nd¥cated "starting" conditions
i ' at t =t_+ nTThose computed values are then stored and used later in the

real-time computation of Eq. (29).
CONSIDERATION OF THE TIME-INVARIANT CASE OF THE EXAMPLE

| If one assumes that the plant and disturbance models Eq. (27) came from a
time-invariant continuous-time plant and disturbance model, the preceeding

results Eqs. (29), (30) can be expressed in more axplicit form. In parti-
cular, if Eqs. (27) are assumed to derive from the continuous-time models

| 1=ax +bu+fw (31a)
- g=dz+aft) ;  wehz (315)

where a, b, f, h, d are constant sca]ars then

“ g 6?, Bf"”%d‘t”ﬁ(e‘i) (bT /fa-o)
i *§=f§ ek A{L)E ), (e i ad) oo

i | Using Eq. (32) in Egqs. (29), (30) leads to the following expiicit expressions
: (shown for the case a qb 0, d 7= a). The control law Eq. (29) becomes

S

S k. L ol At i

% uhl)= [_—(54@—))-‘_81—"'5” Igon)x{ég—)é )@»)T)b (33)

and Eqs. (30) for the gain matrices become xﬁhﬂmﬂi

~ zaT

kpﬂ)z _ Oﬂfr)

ol -3(6“1) e SR WL .
, S NNEST Y 1Y

RESULTS OF A SIMULATION STUDY OF THE EXAMPLE

The time-invariant case, Eqs. (31) - (34), of the example was studied by digital
simulation techniques using the specific parameter values
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+1; d = 0; w(0) = w(t) = 1

&
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t =0; T.=10; T=1.0 (N =10); x(0) = 4 (35)

Note that the open-loop plant is unstable, with open-loop pole at +1, and
the disturbance w is constant with o(t) = 0. For this study, the following
three sets of values of the weighting parameters 5, §, ¥ in the performance
index Eq. (268) were investigated

Case 1: § =120 §=1 &=
Case 2: § =1} G=10 R=1 .

~ - . (36)
Case 3: § =1 q:] R:]c \ J

The resulting behavior of the optimal disturbance-utilizing control u®(t)
and the plant state x(t) are shown 'n Figure 1. The optimal trade-offs in
the performance of x(T¢), x(t), and u(nT), (corresponding to the relative
magnitudes of the weigﬁting parameters &, §, ® in Cases 1, 2, 3) are clearly
evident in Figure 1.
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DISCRETE CONTROLLER DESIGN FOR GAUSSIAN AND
WAVEFORM TYPE DISTURBANCES

Jerry Bosley
Computer Sciences Corporation

Dr. William C. Kelly
US Army Missile Laboratory
US Army Missile Command

ABSTRACT

This paper describes an application of newly-developed control
theory relating to the design of discrete controllers which ac-
commodate gaussian disturbances in addition to disturbances that
possess "“waveform structure". Previous work in this area applied
linear-guadratic-gaussian theory to terminal homing missile prob-
lems with gaussian noise and, more recently, disturbance-utilizing
control theory to terminal homing missile problems with "waveform-
type" disturbances. This paper describes a new application which
combines features of both approaches in terminal homing problems
, ' where both classes of disturbances may be present. The under-

; lying theory of this combined approach is discussed and the op-~
eration of the discrete controller in a planar missile inter-
ceptor engagement model is illustrated with a numerical example. 4

T PR T A MG e S TR 3 T st o e o

— T
P

INTRODUCTION ;

Algorithms for synthesizing disturbance-utilizing controllers were
developed and applied by Johnson {1, 2, 3] several years ago to

] analog-type control problems where the uncertain external influ-

] ences on the plant werc "waveiorm type" disturbances. Just a

4 year ago Johnson (4] reported the development and application of

. a design algorithm for synthesizing discrete-time disturbance-

_ utilizing controllers. And now Johnson [5] has extended the
discrete-time Disturbance-Utilizing Control (DUC) theory to in- ;
clude plan\ and sensor disturbances of the gaussian noise type
with known mean and covariance.

OB

okt

A i o il oy

The DUC theory is based on the fact that disturbances may some-

times produce effects which aie beneficial to the primary control
objectives. For instance, certain forms of wind gusts may actu-

'ally help to steer a missile toward a specific target. Maximum

utilization of a disturbance having waveform structure can be

achieved by employing optimal control theory to design the con-

troller. The key to obtaining maximum utilization of distur-

bances is to choose a performance index J so that, when J is }
minimized with respect to the control u(t), the primary control !
objective is accomplished and maximum use of the disturbance is ]

achieved.

‘, 2 4
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Uncontrolled inputs to control systems may be classified as

: either noise-type disturbances or disturbances with "waveform

f , structure", Thermal noise in a radar receiver is an example of
a noise-type disturbance, while gravity, wind gusts and elec-
tronic instrument drift are examples of waveform-type distur-
bances. While noise-type disturbances are characterized by their
statistical properties (e.g., variance and mean), waveform-type

' disturbances can be modeled by determining a differential equa-
tion that the disturbances are known to satisfy.

If the uncertain external influences on the controlled process
are waveform-type rather than noise-type disturbances, the well
; known stochastic control techniques (6,7] do not result in the
! most effective controller. On the other hand, if the uncertain
external influences are noise-type rather than waveform-type
disturbances, then Johnson's DUC theory is inadequate; the DUC
controller does regulate the set point, however it uses large
amounts of control energy trying to utilize the random noise.

In 3jome practical spplications, the disturbances acting on the
plant consist Of a combination of waveform-type disturbances
and noise-type disturbances. Moreover, the sensor measurements
are usually corrupted by additive noise which tends to obscure
the output behavior information. Thus, Johnson extended the

{ ' discrete- time DUC theory to include those cases where the plant

may be subject to noise-type disturbances and where the plant

output sampled measurements may be corrupted by additive noise.
This extended theory is referred to as discrete-time Noisy DUC
theory. 3

The discrete-time Noisy DUC theory is applied in this paper to i
the problem of utilizing disturbances in a homing missile gui- '
dance problem. While the conventional approach to handling dis-
turbance effects is to attempt to eliminate them, the approach

taken here is to formulate the optimal controller that accounts
for the waveform properties of the disturbance. Numerical re-

sults are given to show the comparison between the performance |
of the noisy disturbance-utilizing controller and a conventional !
linear-quadratic-gaussian controller in the presence of both ;
noise-type and waveform-type disturbances. 3

£
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BACKGROUND i

The Noisy DUC theory in [5] is developed for plants which can be
modeled as linear dynamical systems, with respect to an appro- .
priate operating point or regime. Specifically the plant is i
modeled by:

%
]

A(t)x + B(t)u + Fd(t)wd + Fnl(t)wnl (1-a)

C(t)x + Vi (1=-b)

(%]
L]
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where x = (X)¢ ooey X)) i8 the plant state vector; y = (Yye oo
ym) is the measurement vector; u is the control input; P is the
vector of waveform-type disturbances; LN is the vector of noise-
type disturbances and Vh is the vector of measurement noise which
corrupts the data C(t)x in the output measurement y(t).

The vector noise terms Wpit Vn in (1) are assumed to be white

noise random processes with known means and covariances. Mathe-
matical models for the gaussian random processes {wnl}. {vn} are

AR AR | ey e s

EIwnl] = 03 E[vn] = (
. coviwgy (B), woy(T)] = Q1 (B)6(E ~ 1)
: | cov{v (t), vo(T)] = R (t)8(t = 1)

cov[wnl(t), vn(r)] = 0

where €[*] denotes the expectation (mean value) operator, covis,*]
denotes the covariance operator, and in(t), Rn(t) are, respec-

tively, non-negative definite and positive definite symmetric

matrices.
The vector of waveform-type disturbances wd(t) in (1) is modeled
by
E
- . - 1
] wg = H(t)z {2-a) %

where z = (zl, ce ey zp) is the disturbance state vector and Wno

denotes a vector white noise process with known mean and covari-
- ance. The mathematical model for {wn2} is !

E[wnzl =0

coviwp, (8) 4 wio ()] = Qo (E)6(t = 17 Quy 2 0

coviwyy (t), wpa(t)] = 07 coviwy,(t), v (t)] =0

s e s i

The term g(t) denotes a sparse sequence of totally unknown im-
pulses (unknown arrival times and unknown intensities).

The mathematical models (1), (2) are continuous~time models de-
fined for all time t. However, to design a discrete~time digital
controller it is convenient to have discrete~time versions of the
models of (1), (2) which describe the behavior of x(t) and wd(t)
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at discrete points in time t = tor o F Ty £ty *+ nT, where T is the

sampling period associated wir* the digital controller. The pro-
cedures for developing discrete-time versions of the mathematical
models (1), (2) are described in detail in [8]. Application of
those procedures to (1) and (2) leads to the following discrete-
time models

Ex (nT) = A(nT)x (nT) + B(nT)u(nT) + E;ﬁ(nw)x(nr)
+ ¥ (D)@, (nT) + 3 (nT) | (3-a)
Ez(nT) = D(nT)z(nT) + G(nT) + F ,(nT)#_,(nT) (3-b)
y(nT) = C(nT)x(nT) + Gn(nT) (3~-c)

-~ ~ ~
where the matrices A, B, FdH, etc. are related to A, B, Fd' H,
Fnl’ D in (1), (2) by expressions given in {8] and E is the delay
operator, Ex(nT) = x((n+l)T). The terms wnl(nT), Vn(nT), ﬁnz(nT)

in (3) represent discrete-time noise processes which are modeled
as sequences of zero-mean, independent gaussian random variables
with known covariances

cov([¥,(nT), ¥,(3T)] = R &(n = 3)

cov[inz(nT), an(jT)] = Q,8(n - j) for all n, jJ

where Q ., > 0, R, > 0, Q.5 2 0 may vary with time.

The discrete-time models are consolidated into one composite model
written as

EX = (g%) = A(nT)% (nT) + B(nT)u(nT)

+ ?(nT)Gn(nT) + §(nT) (4-a)

y (nT) = TX(nT) + ¥ (nT) (4-b)
where

[R F u] ~ F.1 0
- a B = "al
A= = ; B = ['6] ; F = '““% (4=c)

0 D 0 Fn2
_ _ w1 - [% (4-d)
C» [ClO]: W = T | 5§ = %
_"nz
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Since the plant motions x(t) governed by (1) are random in nature
(due to the presence of wd) the expected value of the performance

index J is to be minimized. Thus, when e[J] is minimized with
respect to the control u(nT), the primary ccnurol abjectlve is
accomplished and maximum use of the disturbance P is achieved.

€[J] is given in [5] in terms of X as

~ . an n=(N-1) _ -
e[g] =€ {%—xT(NT) SX (NT) +§ ):rJ [XT(nT)Qx (nT)
n=(
+ uT(nT)ﬁu(nT)]} (5)
where
§ = ET‘éEr 6 = ETaa

and the time interval of problem definition (to, Tf) has been
divided into N equal segments of length T. The weighting matrices

~

S, Q, R are symmetric with § > 0, 0 > 0, R>0, and § +Q > O.

The discrete-time Noisy DUC problem may be precisely described as
follows. Given the composite plant model (4) find the control
u°(nT) which minimizes (5) for all independent random initial
conditions {x(t)), z(t,)} satisfying

mean x(t ) ?(to); cov[x(to)]

Rxo

RZO

mean z(t ) E(to); cov[z(to)]

where x, z, Rxo and R are given. As is customary in the DUC

theory, the sparsc terms in § in (4) are neglected in der1V1ng

the control since they are completely unknown. This problem is

of the form known as the "discrete-time linear-quadratic-gaussian
optimal control problem" which has been extensively studied in

the literature and its solution is described in [9]. When that
known solution is 8pl1ed the optimal, discrete-time disturbance-
utilizing control (nT) is given by

-[ﬁ(nT) + 'ET(nT)'ﬁ((n

u®(nT)
+ 1)1)8(m] BT (nm B ((n
+ 1)7)&(nm)] X (nT) (6-a)

where B = B? obeys
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B(nT) = AT(nT)P ((n+1)T)K(nT) + Q
- [B"(m ® ((n+1) )R inm)] T[R

+ 85D B ((n+1) 7)B(nm)] " [BT (@D B ((n

~
~

+1)1)K(nm)] ; B(NT) = B (6-b)

j where x (nT) denotes the estimate of x (nT) obtained f:rom a discrete-
1 , time Kalman filter. The essential difference between the ngisy and

i non-noisy solutions for the optimal control is in the term x (nT) .
In the non-noisy case, X is generated by an obgerver with rather

arbitrary observer gains. 1In the noisy case, X (nT) is generated by
a precisely described Kalman filter with specific time-varying
gains. The Kalman filter is given by

A

EX = A(nT)X (nT) + B(nT)u(nT) + K¢ (nT) [y(nT)

WL L T T

Ralh L Lt ]

-

- E(n'r)i(n'r)]
1 X(0) = X(ty) = (R(t )|Z(ty)) = x(ty) )
The Kalman gain matrix Kf is specified by
K (nT) = X(nfr)ﬁf(nfr)ET(nT)[E(nT)if(nT)ET(n'r)
+ Rn(n'r)] -1 (8-a)

where the symmetric matrix §f is governed by the discrete-time
Riccati matrix equation

P, ((n+1)T) = B(nD) By (nT) A (nT) ' i

A(nT) B, (nT) T (nT) [T (nT) P, (nT) €T (nT)

+ R_(nT)] "1 (1) B (nT) AT (nT) g
+ F(nT)Qn(nT)fT(nT) (8-b) ;
with initial condition .f
Pf(o) = cov[x(to)] = [ X0 gzo] (8-c) %
and where ;
2435
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Q = {in 0 ]
n |0 Q2 ) (8-d)

It is useful to examine the detailed structure of the individual
equations associated with expressions (6) (7) (8). Set

c ! _ K K
,E P = X XZ (9)
| KX, | K
{ . b z
f Substitution of (9), (4-c) and (4-d) into (6-a) leads to the fol-
: lowing
3
u®(n?) = -[R(nm) + BT(nT)Rx (tn
: - 1~
| +1)1)B(nm)] " BT (a1 [K, ((n
EV ~ -~
E +1)T)A(AT)x (nT) + (K ((n
£ P ~ ~
| +1)T)FH(nT) + K, ((n+1)T)B(nT)) 2 (nT) ] (10)
r A set of three coupled matric difference equations which govern
1 , the matrices Kx(nT), sz(nT), Kz(nT) is obtained by substituting
(4-c), (4-d) and (9) into (6-b). That set of equations, which is

lengthy, is documented in [4] and therefore will not be repeated

here. Note that if E(nT) in (10) were set to zero the optimal
disturbance-utilizing~control would become the conventional LQG

control.

{ Detailed expressions for the Kalman filter are obtained by sub-
stituting (4-c) and (4-d) into (7) to obtain

~ A ~~ n ~ — -~ A~ -
EX A + Fqz + Bu + K¢ (v - Cx); x(t,) = x(to) (ll~-a)

Bz + K, (y - CX); Z(t ) = Z(t ) (11-b)

K
[.__f_X] (12)
Kfz i

Detailed expressions for the Kalmain gain matrices in (1l1l) are
obtained by substituting (4-c), (4-d), (12) and the expression

Ez

where

el
n
"

N
()

n
1
N | x’dl
E] *®

1{ ol
NN
N L]

=3
|
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into (8-a} to obtain

K.. = (AB._ + F.uP.__)cTrch. cT + r (13-a)
fx XX a " zx xX n

Y -1

Kg, = DP,,CTICE, cT + R (13-b)

In a like manner, the_set of matric difference equations governing
the blocks P ., P, ., P,  are obtained from (8-b) as
EP,_ = (AP.. + F.ap. )AT + (aBT 4+ Fugp. ) (Fm) T
XX (APyx de:'zx)A (Asz + FgHP,,) (FgH)

- tal [€B,cT + R 1" al T

- ~ P = .
+ FraQniFp1 7 Py (0) = Ryg (14-a)
EP__ = D[P..AT + B._(F.H)T)
ZX zZX zz'"d
- 1811cP,c" + R1 " Mals B,y (0) = 0 (14-b)
s _ &= =T _ o~ .= T -1~ 7T
EP,, = DP,,D (81 [CP,,C" + R,) (gl
F F T' P = -
+ Fn2°n2Fn2 ' Pzz(o) Rzo (14-c)
where
-~ ~__ T ~—~ T
lal = AP, C" + F4HP,.C
(8) = bP,cT

The matric equations (14) can be integrated in forward time since
the initial values Pxx(o). sz(o), Pzz(o) are explicitly known. On

the other hand, the matrices Kx(nT), sz(nT), Kz(nT) must be

obtained by backward-time integration of (6-b) since only the
terminal values (t = NT) are known.

APPLICATION TO HOMING MISSILE GUIDANCE

MATHEMATICAL MODEL

As an illustration of the Noisy DUC theory the controller design
algorithms developed by Johnson [5] are applied to a homing inter-
cept problem. The missile is to be controlled during the final
phase of its flight so that its position coincides with that of a
target at a specified terminal time, even in the face of distur-
bances which may, or may not, be detrimental to the control
objective.
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The planar geometry for this problem is shown in Figure 1, where
the origin is located at the moving target position and the posi-
tion of the missile is defined by the coordinates (xM, yM),

where Xy is horizontal and Yy is vertical.

mw(t) *YM

X4

mu
MISSILE

Ty

3 Figure 1. Relative intercept geometry.

It is convenient to consider a reference line-of-sight (REF LOS)
passing through the target and oriented at a known angle oy rela-

tive to the horizontal line X,. The REF LOS is established a

priori, and may correspond to a desired orientation of the line-of-
sight. A coordinate x, is established normal to the REF LOS (Fig-

] ‘ ure 1) and it is assumed that the missile begins the homing phase
- of the problem with a certain displacement xl(o) and velocity

xz(o) (where X,y = xl) nocrmal to the REF LOS. It is assumed that a ]

previous "midcourse" guidance phase has delivered the missile to
the beginning of the homing phase at t = t_; thus, non-zero values
of xl(o) and xz(o) characterize the extent to which the midcourse

phase has fail~d to enable the missile to start the homing phase
under ideal conditions. The initial range to the target and the
closing velocity are assumed given. The problem at hand uses the
"small LOS" assumptions as in {10] and considers that the distur-
bance forces of primary interest are those acting normal to REF
LOS. Errors in estimating time-to-go to intercept are not con-
sidered here.

The equations describing the motion of the missile normal to the
REF LOS are

X) =X, + wnl(t)

249

ol T T T e e e e
- il L e ‘ . a e Nea, i o 4 il iy - aua

e e fiea b




T T A P £ e e mra < e+ 5o
T E——pnT—— -

»
N
1]

u + wd(t) + wnl(t)

<
n

Xy + vn(t)

These equations may be written in the form

g X = A+ Bu + Fgwg + Fyw . (15-a)
f o Yy = Cx +vn . (15-b)
E i where

AR 0 1 0 0 1

oo () (e ():

| i c= (10 (15-¢)

It is assumed in the example to follow that the waveform-type
disturbance consists of a linear combination of constant sequences

b ; and linear ramps:

[ j walt) = C; + Cyot

4 f where Cy and C, are unknown constants. The disturbance process is
wzitten in state-variable form as

21 T ¥q

z, z, + ol(t) + wnz(t)

0 + oz(t) + wnz(t)

or in the form

s s e i el s skl

z =Dz +0(t) + F . w - (16-a)
wq = Hz {le-b)
where i
0 1 1
D =[0 0] ;3 H= [1 0; F, =<1) (16-c) j
and o (t) = [ol, 02] a sparse vector-impulse sequence occurring 2

at unknown instants.
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The corresponding discrete-time models are

;l

Ex (nT) (nT) + Bu(nT) + E;ﬁz(nT) + Fw ) (nT)
+ j(nT)

" y(nT) = Cx(nT) + ¥_(nT)

e e m b en

Ez (nT) = Dz(nT) + g(nT) + F ,w ,(nT)
wd(nT) = H(nT) z (nT)
where

; F.H

b- 21
(]
—
o [
=
| E——
~
o B
n
N
3
[N
=N\
N
N——
~
Q,
]

T 722
. T + T2/2 . <T + T2/2> . [1 T] i
3 F . = i F o= ; D =
nl T ' n2 T ’ 0 1
1 ( ‘ The waveform~-type disturbances considered in this problem are

gravity, wind and target maneuver [10)}. The gravity component
acting normal to the REF LOS is -32.2 cos ap . The acceleration

] ' disturbance due to wind is modeled by the acceleration waveform

of Figure 2, acting in a direction normal to the REF LOS. The
target maneuver acting normal to the REF LOS has the waveform
described in Figure 3 with a peak acceleration value of 128 ft/sec”.

WINDM ?

3221

(ft/soc®)

-
ot

- T ! 1
o1 16 17 26 258 3:’
(sech

o 1 A e kbl @ bl ek o b ol an d il i e A ]

Figure 2. Actual wind disturbance (WINDM) input.
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Figure 3. Actual maneuver disturbance (TMAN) input.

The gaussian noise disturbances considered in this problem are
Wnp1r Wnov v in (15) (16). They are assumed to have zero means

and known covariances Q.i/ Qpo7 R, respectively.

CONTROL OBJECTIVE

The primary control objective is to drive the displacement of the
missile (normal to the REF LOS) to zero at a specified terminal
time Tf; that is, to regulate the state x, to zero at t = Tf.

The value of 31 at t = Tf is defined as miss distance. The sec-
ondary cbjective is to achieve the primary objective while effec-

tively utilizing the "free" energy of the disturbances. The
control objectives are to be achieved by minimizing the expected

value of the performance index

~ R T : n=N-l T 7 :
e[d) = E‘%x‘(nT)Sx(nT) + T/2 L [x T (nT) 0% (nT)
n=

+ uT(nT)iu(nT)ﬂ

subject to the plant equations (15) and the waveform dis&urbance
process equations (16). The resulting optimal control u" (nT) is
given by (10). The control energy consumption (CEC) is computed
for analyses as follows:

n=N-1 - -
CEC = T/2 20 iu (nr)Ru(nT)]
n=

"~y
n
(AN
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DISCUSSION OF RESULTS
The homing intercept problem is solved by applying the Noisy

~

DUC theory. First the composite state vector x, the composite
system (4), and the expected value of the performance index (5)
are established. Then the optimal control is computed by (10)
after the gains Kx(nT), sz(nT) are computed. The problem is

solved on a CDC-6600 computer, using backward-time integration
to find the initial conditions for K,» K,,» and K,, although

closed-form algorithms would typically be used to compute the
gains K, and K,z in applications. Estimates of the states, x

| : and z are obtained from the discrete-time Kalman filter (1ll1).

i e e

A Mcnte Carlo approach was developed to generate the expected
value of the performance index. This approach consists of
executing a specified number of runs where normally-distributed
random variables are generated each run for the initial conditions
; of the plant state and the REF LOS orientation angle. The re-

3 sulting miss distance, performance index and control energy con-~
sumption from each run are used in the computation of means and
standard deviations.

: : A sensitivity study was conducted using both deterministic and
[ stochastic simulations to determine "best" values for S and an.
3 The following parameters were fixed for the study:
1
il(o) = 300 ft; ?2(0) = 0.0 £t/sec
3
7, (0) = -32.2 ft/sec?; Z,(0) = 0.0 ft/sec’
] ‘ 225 0] 1000 0
: Reo = i Ryo = .
S 0 4_ 0 100
) ) 0 0 §11 0 ;
R = 1; Q = ; S = i
i
| 0 0 0 0 §
in = 1; R, = 1 §

T = 0.05 sec; ay = 30 deg

Integration stepsize = 0.01; Te = 4.5 sec. The missile closing

velocity is 2000 ft/sec and at to' the missile distance from the
target is 9000 ft.

253

. My "m] ST T ’ - T T s T e e e oy
. © M e was 2 ainl a




For the first phase of the study, only deterministic runs were
made to determine sensitivities. 1In this analysis of performance

variation with S, all the waveform~-type disturbances were simulated
and the disturbance states were corrupted by the noise {"nz} which
had the characteristics

e[wnzl = 0; cov[wnzl = an = ]

} and

The variances of the simulated noise terms {w .}, {w -]

{vn}, computed each run, were always nearly l.

The results of varying S are plotted in Figure 4 for both the
conventional linear-quadratic-gaussian (LQG) controller and the noisy
disturbance-utilizing controller (NDUC). Since ETSE = sll' Sll

will be referred to as S.

1,800,000 -
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NOISE COVARIAKCES
Re®?
Q=?

e
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WIND GURT
GRAVITY
TARGET MANEUVER

CONTROL ENERGY CONSUMPTION

MMSES DISTANCE (R}
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As S increases the miss distance approaches a bias value rather
than zero (later shown to be due to target maneuver). Figure 5
shows the missile altitude versus ground range for the LQG with

S set to 100. The missile hits in front of the target for all
values of S less than 100,000 for the LQG and for all values of
S less than 5000 for the NDUC.

5089 SR,T INITIAL POSITION

1 1. 1)

4000 RN

., MIsBILE
N Jrascror v
3000 B \
aer Lo — 0

1.1.4 4

ALTITUDE (R}
12 liany

1000

1111

TERMINAL POSITION l""}

| 11!

-1000

v Ll T 1
6008 4000 2099 °
GROUND RANGE {t)

]
© —
o
®

Figure 5. Missile trajectory with terminal weighting S=100.

An S value which results in an acceptable miss distance can be
picked for the LQG controller, however, the control energy con-

sumption for the NDUC with the same S is much lower.

The waveform-type disturbance states (continuous) and estimates

(sampled) are plotted on Figure 6. Estimates of the wind and the
target maneuver lag the actual disturbances because the weighting
Qn2 on the new values input to the Kalman filter is low. However

an can be increased to improve the estimate of the waveform-type
disturbance. A value of 100 was chosen for S and an was varied.

The results, plotted on Figure 7, show that the minimum performance
index is obtained for a value of Q,2 equal to 10,000. The lag in

the target maneuver estimate is reduced as an is increased (see
Figure 8). However, the increased an weighting causes the wave-

form estimate to fluctuate more which increases the control energy
consumption. The performance improvement due to "better" estimates
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is eventually offset by the control energy consumption so that a
minimum performance index is obtained. It should be noted that
the actual noise term {wnz} is simulated as random white noise

with a measured variance of approximately 1.0.

: . .
é j : Qg1
i o * ot . s he g v Pyea ., Tei00
i B b
.f -s. t
i - '1 ESTIMATE OF
L 4 .¥omwnumt
f ; ~ ’ .
t x 'g - '
E -100 =y
= § . i,
E T i j .
i - 4 L
E 3 -15¢ — -
; g i \ *
{ 5 ] DISTURBANCE *,
é : -a0e :
. o e N
: I
_p_' . -
. -25¢ LIS B B § =TT N T T T T LI |
° 1 2 3 4 5 §
TIME tooe) ;
] ~
Figure 6. Disturbance estimate with S=100 and Q n2 = 1 (an chosen too low).

gl

With the value of Q , set at 10,000, variation of S is reexamined
and the results are presented in Figure 9. Minimum performance

5 index occurs for an S value of 100. Further jinvestigation of S
variation was conducted using a Monte Carlo simulation.

- . The Monte Carlo error sources were taken to be the initial con-
ditions for the plant states and the REF LOS orientation angle.
Normally distributed error source values are picked from the com-
puter system library random number generator based on the specifi-
cations given in Table 1. o3

TABLE 1. MONTE CARLO PARAMETERS AND VALUES

VARIABLE MEAN STANDARD DEVIATION J
X, (0) 300.0 15.0
X5 (0) 0.0 2.0 ”
o 30.0 5.0 _
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Figure 7. Noisy DUC performance versus choice of Qg (5 =100).
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Figure 8. Effect of choice of an on lag in disturbance estimate (S=100).

The controller performance zs a function of S for Monte Carlo
25-run sets is shown in Figure 10. Aithough the "best" mean

values for miss distance and performance index occur for 8 equal

to 100, the miss distance approaches an offset value when S is
equal to 200 or 250.

Selecting S as 250 and 6n2 as 10,000 the disturbances were adjusted

as shown in Table 2 to determine if the miss distance offset is
caused by the noise or one or more of the waveform-type distur-
bances. As magnitude of the target maneuver increases from 0 to

128 ftz/sec, the miss distance increases indicating that the tar-
get maneuver causes the offset. Note that the no gravity case has
the highest values which clearly indicates the utilization of
gravity to reduce control energy requirements.

Further Monte Carlo analysis of the miss distance offset as a

function of S was performed for the no-target-maneuver case. The
results (see Figure 1ll) indicate that 250 is an appropriate value

for S. The data (shown on Figure 10) generated for the noise and
waveform-type disturbances also indicates that 250 is a "best"

value for S.
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A final comparison is made between the LQG and NDUC controllers

: for various cases. The 25~run set Monte Carlo results are listed
: in Table 3. This table shows the effects of deleting individual
: disturbance inputs. 1In general, the NDUC achieves lower misses

' when waveform-type disturbances (or waveform-type disturbances

plus gaussian noise) are present.

NOISY DUC MISS DISTANCE OFFSET FOR VARIOUS DISTURBANCE

S TABLE 2.
3 CONDITIONS
; PERFORMANCE MISS CONTROL ENERGY
: CONDITION INDEX DISTANCE CONSUMPTION
: MEAN/STANDARD MEAN/STANDARD MEAN,/STANDARD
{ DEVIATION DEVIATION DEVIATION
i NO GRAVITY 31854/1884 6.7/1.1 26092/1471
é NO WIND 28950/121 6.4/0.1 238257200
b NO TARGET
: MANEUVER 2323/512 -0.3/1.1 2178/528
f QUARTER OF NORMAL
1 TARGET MANEUVER 4287/655 1.3/1.1 3942/686
1 HALF OF NORMAL
1 TARGET MANEUVER 9843/963 2.9/1.1 8685,929
F ALL NOISE AND
WAVEFORM DISTUR-
BANCES 3173271710 6.0/1.1 27106/1500
NO NOISE 31025/,103 6.0/0.1 26477/178
NO WAVEFORM-
: TYPE DISTUR-
( BANCE 3119/160 0.9/0.1 3028/151
;
3 TABLE 3. PERFORMANCE OF NOISY NDUC VERSUS LQG FOR VARIOUS 3
] DISTURBANCE CONDITIONS
3 PERFORMANCE MISS CONTROL
INDEX DISTANCE ENERGY
CONDITION MEAN/STANDARD MEAN/STANDARD MEAN/STANDARD
] DEVIATION DEVIATION DEVIATION !
. LQG NDUC LQG NDUC LOG NDUC 3
‘ NO NOISE 430841/10258 | 31025,103 | -55.8/0.7 | 6.0/0.1 | 41307/1090 16477/178 j
NO GRAVITY 261412,413 | 318541884 | -43.5,0.1 | 6.7/1.1 2439624 26092/1471 !
NO WIND 440596,10397 | 28950/121 | -56.4,0.7 | 6.4,0.1 | 42797,1132 | 23825,200
NO TARGET i
MANEUVER 15729/1881 2323/512 | -10.5/0.7 | -0.371.1 | 1997,203 2178/528 i
NO WAVEFORM- i
TYPE DISTURMANCE®* 1691/161 16917161 0.9,0.1 0.9/0.1 1583 /151 1581/151 ;
|
i
i

.THE INITIAL CONDITION ON ilp WHICH 1S USED IN THE DUC CONTROL LAW, IS SET TO ZERO FUR ThlS

CASE ONLY.
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: Figure 11. Monte Carlo performance bounds for noisy DUC non-maneuver case.

CONCLUS IONS g

The results of this investigation show that the Noisy DUC controller :
provides improved performance, when compared with an LQG controller, "
in those cases in which both “"waveform-type® disturbances and

gaussian noise are present. Although the problem considered here ;
is relatively simple, it demonstrates the potential of the Noisy N
DUC approach. In a following investigation this technique will be :
used to design a control law which will be implemented in a six
degree-of-freedom air defense simulation.

262




v s

Ty T e v

4

10.

REFERENCES

Johnson, C.D., "Accommodation of External Disturbances in
Linear Regulator and Servomechanism Problems,"” IEEE Trans.
on Automatic Control, Vol. AC-16, No. 6, pp. 635-644,
December 1971.

Johnson, C.D., "Accommodation of Disturbances in Optimal
Control Problems,” International Journal of Control, Vol. 15,
No. 2, pp. 209-231, 1972.

Johnson, C.D. and Skelton, R.E., "Optimal Desaturacion of
Momentum Exchange Control Systems," AIAA Journal, Vol. 9,
NO. l' Pp. 12-22' 197]..

Johnson, C.D., "Design of Discrete-Time Disturbance-
Accommodating Controllers for the Disturbance-Utilization
Mode," Dynamic Systems Research and Training Corporation
Report, June 1980.

Johnson, C.D., "Design of Disturbance-Utilizing Controllers
for Plants with Noisy Measurements and Disturbances,"
Dynamic Systems Research and Training Corporation Report,
January 198l1.

Meditch, J.S., Stochastic Optimal Linear Estimation and
Control, McGraw-Hill Book Ccmpany, Inc., 1969.

Astrom, K.J., Introdsction to Stochastic Control Theory,
Academic Press, Inc., 1970.

Gambill, R.T., et. al., "Advanced Analysis for Future Mis-
siles,” U.S. Army Missile Command, Redstone Arsenal,
Alabama, Tech. Repor:, Bo. RG80-8, November 1979.

Sage; A.P. and White, C.C., Optimum Systems Control,
Prentice-Hall, Imc. Englewood Cliffs, New Jersey, 1977.

Kelly, W.C., "Theory of Disturbance-Utilizing Control with
Application to Missile Intercept Problems," Tech. Report
RG-80-~11, U.S. Amy Missile Command, Redstone Arsenal,
Alabama, 12 December 1979.

263 Next page {is blank.




T e w4 e e s sy L

e d

MO A a2 SO R

STABILITY CONTROL OF LARGE INERTIA, DYNAMICAL,
NONLINEAR SYSTEMS IN THE PRESENCE OF UNSTABILIZING
DISTURBANCES '

John E. Bennett and Haren Almaula
Electrical and Computer Engineering Department
Clemson University
Clemson, South Carolina 29631

ABSTRACT

This paper presents a generic study showing stability control of
a large inertia, dynamical, nonlinear system such as a power
system. The techniques of this study could be applied to a
number of applications including both Slewing and Position of
Fire Control Systems, and the stability of electrical generators
in the presence of disturbances.

The stabilizing control is obtained by a generating, a priori, a
sequence of stabilizing trajectories, which converges to a de-
sired or "best" stabilizing trajectory. The initial control is
chosen as an optimal one for the approximate linear case, and
then an iterative procedure yields a sequence of trajectories and
control schemes for the nonlinear system. The final controller
is shown to be robust, and it stabilizes certain disturbances
that in the uncontrolled case lead to unstable system behavior.

An example of stabilizing a faulted, 1000 MW, generator is shown,
Unlike prior studies, a nonlinear model of the generator includ-
ing magnetic saturation was used, and the results showed enhanced
transient stability over previous techniques.
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INTRODUCTION

Presently, large megawatt synchronous generators are disconnected
from a power system when a major fault is detected at its termi-
nals, and it could take several hours to reconnect the generator
to the system. However, if the generator was disconnected from
the system and the fault was allowed to clear, then the generator
would accelerate for the time-period it has no load. When, after
clearing the fault, the generator is reconnected to the system,
the question now is whether the generator remains in synchronism
or not. Posed in terms of control theory language, the question
is whether or not a stable equilibrium state car He reached after
the occurrence of a fault?

This paper presents the results of a generic study [1)] using
statefeedback in a suboptimal scheme for the stability control of
a synchronous generator. The control action proposed from this
study can be determined prior to a fault and is shown to
stabilize disturbances that in the uncontrolled case lead to
instability. Since the synchronous generator is a large inertia
dynamical, nonlinear system it is felt that results of this study
can be applied to similar problems in slewing and position of
fire control systems.

PROBLEM DESCRIPTION

It is well recognized that the optimal control of nonlinear
systems will often have to be obtained from an iterative scheme
[{2,3]. The closed-for: analytical solution, while most
desirable, is not known for nonlinear systems except for a few
special cases. The transient stability problem of a power system
is a nonlinear problem which is concerned with the development of
a stabilizing control law for a large inertia, dynamical system
where the system is subjected to a major disturbance and must be
returned to an equilibrium state, the exact nature of which is
not known a priori. Thus the structure of the problem is of the
form: Given the dynamical system

X = £(x,u,t) (1)

determine a control u*, that transfers the system from the
present state to an equilibrium state in a finite time interval,
while minimizing a suitable performance index.

To solve this stabilization problem some researchers have devised
'optimal-aiming' strategies that attempt to aim the system at
each point of its trajectory to a stable solution [4,5,6]. The
trouble with such 'pointwise' control strategies is that stabili-
zation of the nonlinear system is not guaranteed and in fact
there exist controllable linear systems which will be destabil-
ized by such strategies [7]! Clearly such a strategy is a poor
choice for the problem at hand. Other researchers [8,9,10] have
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suggested open-loop schemes for the iLransient stability control
of the synchronous generator. But open-loop schemes do not take
into account any changes in the system that could occur in the
post-disturbance period. Rather the attempt is to return the
system to exactly its pre-fault status, irrespective of whether
this is an equilibrium state or not for the post-fault period.
Such strategies can, in some c¢ircumstances, push the system into
unstable regions and not aid transient stability at all. A feed-
back control strategy that continually obtains information on the
! , states avoids this pitfall. In this study the control is applied
; : as a state-dependent feedback control that attempts to force the

: system to a closer target trajectory leading to an equilibrium
state. The problem is essentially the tracking problem described
by Athans and Falb [1l] except that the system is nonlinear and
that a desired target set is not known exactly but must be speci-
fied by exercising engineering judgement.

AT ST e

In the study, the model of the synchronous generator used is not
] the conventional d-q-0 axis model, but a direct-phase reference
3 - model. The details of the direct-phase model are given in [12].
' ' It will suffice to state here that compared to the conventional
model, this model gives system states that are conceptually r.ore
meaningful and physically measurable. After rearranging
Kirchhoff's mesh equation and Newton's equation of motion for
rotating bodies the nonlinear state vector equation is obtained as ]

i

—

X(t) = ACX,t)X(t) + B(X,t)U(t) + V(t) (2)

where

TIomre

|><

is the state vector composed of the rotor-angle and
currents of the generator,

is the control vector consisting of the excitation
voltage, and prime-mover torque,

is the vector that accounts for bus-~voltage
effects.

=

and

J=<s

3 ; It is important to note that the matrices A and B have elements
L . that are not only time-varying but also non-linear in the state
: X. Further, it should be noted that since the system trajectory

covers a wide range of states, linearization about a nominal
steady-state will not yield meaningful results. For example, it
makes little sense to linearize the synchrcnous generator
parameters at a nominal excitation when excitation voltage i=s
chosen as one of the control variaklies and is to be varied over
its full range.

SUBCPTIMAL SYNTHESIS OF THE CONTROLLER

Stability of the synchronous generator is most easily depicted as i
the rotor angle behavior following a system fault. Figure 1 is ‘
an example of both s-able and unstable behavior. In the unstable

case, the rotor angle grows large without bound, while in the

stable case, the response following a disturbance decays. The
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The aim of a controller would be to make a system that has the
unaugmented response of the unstable case to follow the response
of that in the stable case, namely damped oscillations. Thus a
damped oscillation of the rotor angle in the post disturbance
interval is to be chosen as part of the target trajectory.
Following the outline for the tracking problem [11], a suitable
quadratic performance index in terms of the error from the target
' set is formulated as

I e e e e

J = <e(tg), F e(te)>

. t
a + 3 rEce(t),Q(t)el(t)>+<U(t) ,R(L)U(L)>dt (3)
1 t
where £
<, = an inner product,
4 {tostel = the time interval for control action,
] = a symmetric weighting matrix,
F Q(t) = a semipositive definite weirhting matrix,
R(t) = a positive definite weighting matrix,
: e(t) = [2(t) = Y(t)]
b = [2(t) - C(t)X(t)] is the error,
: with Z(t) a target vector and Y(t) = C(t)X(t) the
E { : observation vector.
: The optimal control for the linear control problem is known to
] be
F
i ‘ U%*(t) = R=1(t) BT(t) [G(t) - K(t) X(t)] and (4)
where K(t) is the solution of the matrix differential equaton

K(t) = = K(£)A(t) - AT(t)K(t)
K(£)B(£)R-T(£)BT(£)K(¢t)

cT(e)Qticce) (5)

+

with boundary condition
K(te) = CT(te) F Clty) (6)

the vector G(t) is the solution of the linear vector differential
equation

G(t) = K(t)B(t)R-1(t) - AT(t) G(t)
+ K()V(t) - cT(e)aierz(e) (7)
with boundary condition
G(te) = cT(te) F 2(tp) .
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Since the backward-time solutions of Equations (5) aad (7)
require knowledge of the system trajectory a 'seed' case must
first te obtained. The procedure for starting the iterative
scheme is then to obtain a system trajectory with no applied
control. This is shown in Figure 2 where the system was faulted
for six cycles before the fault was cleared. With this 6 cycle
fault, the system is stable in the sense that rotor swings do not
' increase in amplitude. That the swings do not decay either is
due to the fact that sufficient damping was not included in the
; synchronous generator model, making the results of the study
i somewhat conservative, Whereas in the practical =ystem, there is
; viscous damping of the rotor that would enhance decay and
; : therefore the system would stabilize faster. The 'seed'
L ! trajectory, X° (tz is used to obtain solutions of Equations (5)
and (7) namely K (t) and G1(t) These matrices gan now be
used to construct the control of Equation (4), U'(t). Since the
; system is nonlinear U'(t) may, in_general, not be the optimal
‘ control and another trajectory X'(t) is obtained. Equgtions
£ 3) and (7) are solved_once again to obtain solutions K<(t) and
G4(t), and a control U(t) can now be constructed. The
{terative scheme is obvious and a sequence of controllers,
Un(t) is constructed until a satisfactory system trajectory
X(t) is obtained.

Y

Figure 3 shows that a satisfactory trajectory is obtained in just
two iterations, while Figure 4 shows the associated control.

Note that a disturbance of 15 cycle duration has been stabilized
in Figure 3. This disturbance destabilizes the trajectory shown
in Figure 2. The magnitude of either control variable in Figure
4, is not unacceptably large. The 60Hz component in the excita-
tion voltage is really a reflection of the imbalance in the
stator currents, not a control effort, and this component is seen
to be decaying.

—— g

To check for the robustness of the controller, it was used to
stabilize the system starting from a different initial condition
than that was used in constructing the original controller. The
results are shown in Figure 5, and it can be seen that successful
control action is obtained.

The important difference between this control scheme and other
ones reported by researchers earlier [6,8,9,10] is that this .
control action is applied after the clearing of the fault anc not ‘
immediately upon the detection of the fault. The advantage being

that control action can be applied only to disturbances for which ;
it is known that stabilizing action will be successful. This .
selective application is crucial, for in a power system, often ?
there are disturbances where it is better to sacrifice system

integrity and maintain system security (load shedding), than to

attempt to maintain system integrity and lose system security :
(black-out). It is the state-dependent nature of the control ]
action that permits this selectivity and the feedback application

results in enhanced transient stability margins. Compared to

268

—ema . mm—
B
R v B e s —_———ene = - - -
_ o _ M _ RN

e ot ot aan e, Y




open~loop strategies, the advantage of the feedback scheme is
that action can be applied only to those disturbances for which
the system cdoes not have inherent stability. Open-loop schemes
apply control effort indiscriminately to every disturbance
whether the system possesses inherent stability or not. For a
power system where the effect of frequent stresses must be
considered on the life cycle of very expensive equipment this is
an important consideration in selecting a control strategy.

CONCLUSION

The applicability of the methods of linear optimal control to a
nonlinear system has been demonstrated. The control scheme is
obtained by an iterative procedure and is shown to both improve
stability margin and stabilize major disturbances. A synthesis
of the power systems and control systems approaches to the tran-
sient stability problem was achieved by allowing the generator
and the external power system to have a common set of state vari-
ables. As mentioned previously, it might be possible to apply
these same techniques to enhance the control of both slewing and
position control of five control systems.
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