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\ INTRODUCT ION # ?

Fatigue crack growth arising from the cyclic pressurization of thick cylinders can ;
produce a regular array of up to 50 equal-length radial cracks emanating from the .
bore.l A knowledge of the crack tip stress intensity factor K is necessary to predict
the fatigue growth rate and critical length of such cracks.

! Several solutions for the case of a cracked, pressurized-thick cylinder are avail-
able. 16 1¢ is likely that the most accurate of these solutions are those derived by 3
use of the modified mapping collocation (MMC) method. These include the solution in

Reference 5 for up to four internal or external radial cracks, and that in Reference 6
for up to forty internal radial cracks. The errors associated with the MMC technique

! are generally estimated as being less than 1%.

¢ To inhibit fatigue growth of internal cracks it is common practice to produce a
’ ' more advantageous stress distribution involving residual compressive hoop stresses near
the bore, by autofrettage treatment of the cylinder prior to use.

et e s Bl

e

K solutions exist for a multiply-cracked, fully autofrettaged (100% overstrain)¥*
tube.6:8 Reference 6 is an MMC solution.

T P

ook cattlid b antisa it 4

Note: It has been demonstrated that the stress distribution
arising from full autofrettage is essentially equivalent to
that arising from steady-state thermal loading of the tube,?
and that K values for one of these loadings may be obtained
from the other by a simple scaling operation.

e e | AP e

However, the optimum autofrettage condition may not be 100% overstrain’ since
fatigue cracks may develop at the outside radius as a result of the relatively high
tensile residual stress. Clearly, the choice of the optimum overstrain condition will
involve a consideration of the rates at which external cracks will grow radially inward,
and the rates at which internal cracks will grow outward. In each case, prediction of
crack growth rate, critical crack length, and residual strength will depend on a know-
ledge of the crack-tip stress intensity factor.

:
4
i
s

] : *Overstrain is the proportion of the cylinder wall thickness that is subjected to plastic strain during the autofrettage process.

* 1. GOLDTHROPE, B. D, Fatigue and Fracture of Thick-Walled Cylinders and Gun Barrels in Case Studies in Fracture Mechanics, Army
' Materials and Mechanics Research Center, AMMRC MS 77-5, June 1977, p. 3.8.1-3.8.15.

2. PU, S. L., and HUSSAIN, M. A. Stress Intensity Fectors for a Circular Ring with Uniform Array of Radial Cracks Using Cubic

! Isoparametric Singular Elements. Trans. 24th Conference of Army Mathematicians, Army Research Office, Report 79-1, 1979.

i 3. TWEED, 1, and ROOKE, D. P. The Stress Intensity Factor for a Crack in a Symmetric Array Originating from e Circular Hole in an
Infinite Solid. International Journal of Engineering Science, v, 13, 1975, p. 653662,

4. RARATTA, F. 1. Stress Intensity Factors for Internal Multiple Cracks in Thick-Walled Cyiinders Stressed by Internal Pressure Using Load
Relief Factors. FEngineering Fracture Mechanics, v. 10, 1978, p. 691-697; also Army Materials and Mechanics Research Center,
AMMRC TN 77-3, July 1977.

5. TRACY, P. G. Elastic Analysis of Radial Cracks Emanating from the Outer and Inner Surfaces of a Circular Ring, Engineering Fracture
Mechanics, v. 11, 1979, p. 291.300.

6. PARKER, A. P., and ANDRASIC, C. P. Stress Intensity Prediction for a Multiply-Cracked, Pressurised Gun Tube with Residual and

E Thermal Stresses in Army Symposium on Solid Mechanics, 1980 - Designing for Extremes: Envirnonment, Loading, and Structural Behavior,

Army Materials and Mechanics Research Center, AMMRC MS 80-5, 1980, p. 35-39,

7. KAPP, 1. A., and EISENSTADT, R. Crack Crowth in Externally Flawed, Autofrettaged Thick-Walled Cylinders and Rings in Fracture
Mechanics - A Symposium, ASTM STP 6§77, C. W, Smith, ed., 1979, p. 746-756.

8. PARKER, A. P, and FARROW, J. R. Stress Intensity Factors for Multiple Radial Cracks Emanating from the Bore of an Autofrettaged
or Thermally Stressed Thick Cyvlinder. Engineering Fracture Mechanics, v. 14, 1981, p. 237-241.

9. PARKER, A. P., and FARROW, J. R. On the Equivalence of Axi-Symmetric Bending, Thermal and Autofrettage Residual Stress Flelds.

Journal of Strain Analysis, v. IS, no. 1, 1980, p. 51-52.
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The designer requires accurate stress intensity factors for both ianternally
and externally cracked tubes with internal pressure, and any amount of autofrettage

from zero to 100X overstrain (full autofrettage). In this report it is
that many solutions for the apparently more complicated problems of

accuracy, by a straightforward superposition of existing solutions.

BASIC EQUATIONS FOR PRESSURIZED, AUTOFRETTAGED TUBES

Consider a tube, internal radius a, external radius b, which is subjected to an
The distribution of hoop (0g) stress in this case is

internal pressure p, Figure 1,
given by Lame's equation as:

2 2
2P _|,.,b
8 b2 2 2

-a r

where r is the radius at which the stress is defined, and the superscript B indicates

pressure in the bore.

Figure 1. Pressurized, elastic thick cylinder,

Assuming elustic-perfectly plastic material properties and plane strain conditions,
and we employ Tresca's yield criterion, but omit the analysis, the pressure p* to cause

yielding of the tube out to a radius r = ¢ (Figure 2) is given by:

2

* Y 2
p =Y ¢n(c/a) + — {(b® - %)
Zh

where Y is the uniaxial yield stress for the material.
pressure for initial yielding at the bore:
* 2

Y 2
p: = — (b - a’)
i 2b2

and the pressure for complete yielding of the tube:

p; = Y 2n(b/a)

internally and
externally cracked, partially autofrettaged tubes may be obtained, without any loss of

This will give directly the

cracked

demonatrated

i,

V)

bt o A e e e e n

(2)

ok et 0

(3)

(4) :
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Figure 2. Pressurized, partially plastic thick cylinder.

If the cylinder is subjected to a pressure p¥*, [pi*<p*<py*], there will be partial
yielding of the tube out to a radius ¢, Figure 2. The hoop strerses produced by this

pressurization are:

*
Gy = -p* + Y[{1 + an(xr/a)] , a<r<c (5)
2 [ 2
*
0p = 5, |1+ 2], cereh (6)
2b T

If the pressure p* is subsequently removed completely, assuming that the unloading
is entirely elastic, with no reversed yielding (valid provided b/a<2.22), the residual

hoop stress distribution 0% is given by:

op = -p + Y[l an(r/a)] - p a2/ % - a1+ %], acrec )
op = [(¥e2/26%) - "2/ a®NIN + B2, cered (8)

Clearly, a repressurization of the tube to a pressure p<p* will produce a stress
distribution which may be calculated by the addition of (7) and (1). for r<c, and (8)

and (1) for r>c.

SUPERPOSITION METHOD

The superposition principle applies to any linearly elastic body subjected to a
statically determinate loading system. By use of this principle it is a straight-
forward procedure to demonstrate that the stress intensity factor for a crack in a body
subjected to external stress is identical to that caused by stresses acting on the sur-
face of the crack equal but opposite to those which wculd be present in the uncracked
body under external load. The implications of this result for the particular cases to

be considered are presented.
A. Internal Cracking, Pressure in Bore and Cracks, Autofrettage Stresses (Figure 3)

The appropriate crack-line loading - "11 comprise:

(i) A normal loading on the crack surface, equal and opposite to that
predicted by Lame's Equation 1

(ii) A constant pressure p which has infiltrated the cracks from the bore.

10. HILL, R. The Mathematical Theory of Plasticity. Oxford University Press, Oxford, England, 1967.
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Figure 3. internally cracked, autofrettaged thick cylinder -
pressure in bore and cracks.

é ; [The total effect of (i) and (ii) above is an equal and opposite stress given by: .
k
3 2 2
1 BC a b
o, =pfll+ 1+ = (9
i, ? ( b-a? [ rz] )
% where the superscript BC indicates pressure in bore and cracks.) ]
é (iii) A residual distribution equal and opposite to that predicted by (7) and (8). ]
5 B. External Cracking, Pressure in Bore, Residual Autofrettage Stresses (Figure 4) ]
E In this case the necessary crack-line loading will comprise: E
é (i) A normal loading equal and opposite to that predictad by (1).
§ (11) A residual distribution equal and opposite to that predicted by (7) and (8).
g rigure 4, Externally cracked, autofrettaged thick cylinder -
g pressure in bore.
"E -
] : EXTRNALLY CRACKED, PARTIALLY AUTOFRETTAGED TUBE
If a partially autofrettaged, externally cracked tube is repressurized to a pres-~
{ sure p<p*, then the total stress distribution ax is given by the addition of (1) and
] (7), and (1) and (8), thus:
T _ B, R
E Og = Og * Ty (10)
L or:
i 2 2 * 2 2
o T a Yc p.a Il b ] i
g, = + —, - 1 + = s, ¢<r<h
! 0 béfz Y b2 a2 22 an 34
" |
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Apart from a multiplying constant, the above expression is identical to Equation 1.
Thus, if stress intensity factors have been derived for a cylinder with radial edge
crack(s) of length £, [Z<(b-c)], it is only necegssary to scale these results by S,

where:
2 2 * 2 2 2
S = %'EQ . XEQ . 232_5] b_%é* . (12)
b“-a 2b b“-a® a“p
in ovder to predict K for the externally cracked, pressurized, partially autofrettaged

tube.

Example I

A thick cylinder has an external radius twice that of its internal radius. It is
subjected to 50% overstrain in the autofrettage process. The cylinder is subsequently
repressurized to p = Y/N (<p*), where N is any suitable number. What is the scaling
factor S to be applied to K results for the externally cracked, nonautofrettaged, pres-
surized “ube in order to solve for the partially autofrettaged case? |[The solution is

to be limited to L<(b-¢).]

Solution

From (2), the autofrettage pressure p* is given by

* Y 2 2
p = Y in(c/a) =+ = (b~-c) (13)
2b
in the example ¢ = 1.5a, b = 2a; hence:
p* = 0.624 Y (14)
Substitute from (14) into (12), noting that Y = Np, to obtain:
(15)

S=1+0.2196 N.

Typical value would be N = 3, giving § = 1.659, hence:

K50% overstrain + pressure © 1.659 Kzero overstrain + pressure:

Note: The solution is valid only provided L<(b-c).

A set oi results for external cracks with internal pressure and 50% overstrain, based
on the results of Reference 5 and the superposition outlined in this section, is pre-

sented graphically in Figure 5.
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Figure 5. Stress intensity factors for externally cracked, partially autofrettaged thick cylinder, i
L i
f
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INTERNALLY CRACKED, PARTIALLY AUTOFRETTAGED TUBE

, First consider the case of full autofrettage (100X overstrain). The autofrettage
- pressure required to achieve this is given by Equation 4. Substitute from (4) into (7)
to obtain the residual stress field with full autofrettage, namely:

4 R a2 b2
] 94 = =Y wn(b/a) {1+ —=—, |1+ | }* Y{l + &n(r/a)] (16)
full b%-a “
autofrettage
!
6
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Now, returning to the case uof partial autofrettage, the required crack-line stress
system is given by the superposition of (9) and (7), thus:

Loate L LRl ]

R BC
o: = 0, * Oy (17)
\r. '4
e T * ‘az b2 ]
] Gp = -p * Y[1 + &n(r/a)] - g——} 1+ ~2 3
b“-a r (18) b
£ . 2 2
i : a b )
| +p 1 + 1+ < )
- ( b"‘?l r2] |
{ Substituting into (18) from (2) we obtain: %
ﬁ T Y .2 2 a2 b2
: . o, = [p - Y #n(c/a) - =, (b"-c”) + Y an(b/a)] ( 1 + — 1+ —
§ , 8 2b2 b2_82 r2 (19)
a2 bz :
- Y &n(b/a) <1 Y=y 1+ =1 ) Y[1 + an(r/a)] ;
b“-a T i

T o £ o e

On inspecting the above equation we note that the first term is merely a scaling ;
of the stress field for pressure in bore and cracks, Equation 9, while the second and 3

i . ane ; .
E third terms represent the stress field arising from full autofrettage, Equation 16. :
| ' Making the substitution Y = Np and writing in terms of superposition of K solutions, we 5
obtain the expression: i

K N 2n(b N w2c®)k

partial = [1+ n(b/ec) - ,;? U pressure (20) :

autofrettage < 5

i + pressure ]
; + K j
. full autofrettage :
] Example I1 |

The tube described in Example I has internal cracking. What is the stress inten-
sity factor in terms of that for full autofrettage without internal pressure, and that
for internal pressure without autofrettage? [The solution is to be limited to £<(c-a).]

Solution :
Substituting ¢ = 1.5a, b = 2a into (19) gives:

= (1+0.0689 N) K oooire * Keun (21)

Kpartial autofrettage
autofrettage

+ pressure

Thus if N = 3: Kpartial autofrettage + pressure (1.2067) Kpressure * Kfull autofrettage.
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Note: The solution is valid only provided £<(c-a).

A set of results for interral cracks with internal pressure and 50% over: :rain,
based on the results of Reference 6 and the superposition described in this section, is
presented graphically in Figure 6,

149 / 1419
12 4 121
K Non-Autotrettaged (Ref. 6)

1.0 / }m overstrain 1.0 1
- /////////

L/ 5 08 4 u }sm Overstrain

Non-Autofrettaged (Ref. &)

2 061
2 =T
N=20
Ke -;57;‘94;2 2
) 04 X gt
b
-u 20
2 o b,
02{ N30 b.20
& Cracks
10 Cracks
v Y T ~T 1 0 T T - T T —
03 04 05 06 o7 ¢ ol 02 03 o4 05 08 O
- £
14 i -

Non-Autotrettaged (Rel. 6

Figure 6. Stress intensity factors for internally cracked, partially autofrettaged thick cylinder, ] :

IMPLICATIONS FOR FATIGUE LIFE PREDICTION OF GUN TUBES

The fatigue growth rate of cracks subjected to cyclic loading may be expressed in
terms of Paris' Law,!! namely:
de m
a = cleK) (22)

11. PARIS, P. C,, and ERDOGAN, F. A Critical Analvsis of Crack Propagation Laws. Trans. ASME, Journal of Basic Engineering, v. 85,
1963, p. 528-534,

Seract, - N N i i,
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where df/dN is the fatigue crack growth per loading cycle, C and m are empirical con-
stants, and AK is the range of stress intensity defined by:

3 8K = Kmax = Kmin (Kpin 2 0)

S AR = Knax (Kpin < 0) ;
L. and Kp.. and Kpi, are the maximum and minumum values of stress intensity during the ;
. 9 loading cycle. (Note, the possibility of "overlapping'" of the crack surfaces at some -

point on the crack line remote from the crack tip is not considered in this report.) i

During the lifetime of a perticular cracked tube the crack will propagate from

, gsome initial length £; to some final, critical length £, at which K;,, approaches the :
3 ] fracture toughness of the material. In order to predict the fatigue life, (21) is ;
3 ‘ rearranged to give: :
E : % ;
: de
£ —— = N_-N, _
k | 3
g ' L, :
; 1 :
% ; where (N, - N;) is ihe number of cycles to propagate from initial to critical crack é
i i length. i

The implications of the results presented herein for the safe-life design of gun
tubes may be summarized as follows.

A. Externally Cracked Tubes

San
AT ra 2wt

ST e

All loading contributions in the case of external cracking tend to produce posi-
‘ tive contributions to K, thus crack closure is not a possibility, and the only contri-
: but.on to the stress intensity range (AK) is the cycli: pressurization term. The stress
intensity arising from residual stressing will simplv serve to increase Kp,y, while not
affecting AK. In the case of steels this generalls causes a relatively small increase
in crack growth ratel2. 1In addition, the increase in Kpax Will cause the critical
crack length £, to be reduced in comparison with the nonautofrettaged case, hence total

[T T e s

“ lifetime may also be reduced somewhat. This reduction in lifetime may not be signifi-
cant, since relatively little of the component's lifetime is expended at longer crack
lengths.13 i

PP TN T AR T

B. Internally Cracked Tubes

r R0 )

; In this case autofrettage will produce a negative K contribution. Positive K
values, and the possibility of crack growth, cannot occur until the bore pressure has
been raised to produce a positive K contribution which exceeds the autofrettage effect.
Hence autofrettage tends to reduce the value of AK for internal cracks, and thus also
reduces the crack growth rate in comparison with the nonautofrettaged tube. Further-
more, since Kpax s a'so reduced, the critical crack length will increase and thus tend
to increase compor. n. .ifetime.

oweia e bacs

.2. POOK, L. P. Analysis and Application of Fatigue Crack Growth Data. Journal of Strain Analysis, v. 10, 1975, p. 242-250.
13. DAVIDSON, T. E., and THROOP, ). ¥. Practical Fracture Mechanics Applications to the Design of High Pressure Vessels in Application
of Fracture Mechanics to Design, J. J. Burke and V. Weiss, ed., Plenum Press, New York, 1979.
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C. Stability of Crack Growth Patterns

Stable arrays of 40 to 50 near-equal length, internal radisi cracks have been
observed in rifled, nonautofrettaged gun tubes, Life estimates based on this number of
cracks appear to be borne out in practice. Goldthorpe1 has suggested that the case of
multiple (say 40) crack growth is the stable configuration for the nonautofrettaged
This stability derives from the strong negative slope of the K versus £
curve at short crack lengths. However, this feature is abscnt in the case of auto-
frettaged tubes. Initial results from other work'% indicate that life estimates for
internally-cracked, fully autofrettaged tubes should be based on the assumption of six :

H

1 b aintn s S
Dl dod «.A‘I' ag 2

N U 1

cylinder.

LR -
i

cracks propagating.
In view of the significant effect on K arising from the assumption of a particular
number of cracks, it is clearly important that future work should fully investigate the

stability of crack growth patterns in nonautofrettaged, partially autofrettaged, and
This work should also address the question of the effect of 3
Only then will it be possible to establish a proper 3

e ot
o PRl et b NG b e,

fully autofrettaged tubes.
rifling on crack pattern stability.

fracture mechanics design procedure. //)

D. Characterization of Autofrettage Stresses

There is some evidence to suggest that the residual stress field arising from the
autofrettage process may not attain the magnitudes predicted by an elastic/ggrfectly

plastic analysis which ignores strain hardening and Bauschinger effects.l0> The

effect of this reduction in residual stress has been included as a simple multiplying
Nevertheless, in order to ;

RET,

2 madethd el

factor in the determination of stress intensity factors.
have confidence in the fracture mechanics design procedure, it will be necessary to

investigate the true nature of the autofrettage stress field, and the effect of this

field on stress intensity calculations.
-

et b L '

E. Effects of Crack Shape

Another important feature of the crack growth pattern and rates in gun tubes is
crack shape, and the change in shape (and hence growth rate and relative interaction)
of thumbnail or semielliptical cracks during the fatigue life.

An understanding of crack-pattern stability, residual stresses, three-dimensional
effects and (possibly) crack closure will also be of importance in the fracture me-
chanics design of other types of structural elements in general use, such as welded

R P

components.

Sk a1 e 0,

SUMMARY OF AVAILABLE EXPERIMENTAL WORK

Experimental work relating to the fracture mechanics of autofrettaged tubes is
Work has commenced in the United Kingdom* and in Australiat on the determination

"

scarce.

*AUSTIN, B. A, Private discussion, 1979.

1DeMORTON, M. E., Private discussion, 1979.
14, TABONE, M. V., BURNS, 1. W,, and GIBSON, A. F. A Review of Fatigue Life Prediction for In-Service Ordnance. Army Staff Course,

Division Il Project Study, Royal Military College of Science, Shrivenham, Swindon, England, 1980.
15. UNDERWOOD, J. H., and THROOP, J. F. Residual Stress Effects on Fatigue Cracking of Pressurized Cylinders and Notched Bending

Specimens. Prescnted at SESA Spring Mecting, Boston, Massachusetts, May 1980,
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of K calibrations. Other work is not currently accessible.* However, some open litera-
ture crack-growth rate measurement is available.’»>15 In Reference 7 the fatigue growth
rate of a single external crack was determined, using the test specimen configuration
illusvrated in Figure 7. The ring specimens tested had zero or 50% or 100X overstrain.
Crack growth rates for 50% and 100% overstrain are generally within 25% of one another,
this difference being easily explained on the basis of scatter and the relative values
of Kpax. However, the nonautofrettaged ring produced suprisingly low crack growth rates,
bearing in mind that it was subjected to the same stress intensity range.

T
W

a1

s

S ol i

T T

AF

.- Figure 7. Configuration used in crack growth rate
¥ determination for autofrettaged ring (Ref. 7). ) :
e

TR T 4T T T

crack

/\

E Reference 15 contains experimentally determined fatigue crack growth rate data for
{ ; a single, internal, elliptical crack propagating in an autofrettaged barrel with vary-
ing degrees of autofrettage from 0% to 60%Z. The cyclic loading in this case was pro-
duced by internal pressure. The crack growth rates show general agreement with those
predicted from a simple, two-dimensional, linearly-varying stress analysis modified by
appropriate correction factors,

i
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*JOHANSSON, 8., Private discussion, 1980.
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