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ABSTRACT

We introducesa new random gtructure generalizing matroids. These

random independence systems allow us to develop general techniques for
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solving hard combinatorial optimization problems with random inputs.
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1. Introduction

In a classic paper "On the Abstract Properties of Linear Dependence"

of 1935, whitney provided a set of axioms for a structure commonly called
a matrotd. Matroid theory (see (Tutte, 1971), [Lawler, 1976]) has
applications to a wide class of combinatorial optimization problems:
where we wish to construct a maximal object (a maximum independent set)
satisfying a monotone property. Intersections of matroids, are called
independence systems (see [Korte, Hausmann, 1978)) and have also wide
practical applications. The problem of constructing a maximum indepen-
deqt set in an independence system is NP-complete for independence
systems which are intersections of three or more matroids.

We introduce in this work (Section 2) the random tndependence
system (RIS), which is applicable to a more general class with combina-
torial optimization problems with random itnputs. We define some natural
notions, such as "maximal with a given probability."

Section 3 sketches a general nonconstruciive proof technique for
determining the existence (with probability 1) of an independent set of
given cardinality in instances of an RIS. This encompasses various non-
constructive proofs of graph properties in [Erdos and Spencer, 1947)

and uses the second moment method.* 1In Section 4 we define a weighted

*In contrast, a companion paper [Reif, Spirakis, 198l), discussed the
construction of random independent sets by use of an extension-rotation

algorithm,

.'I‘-EMUL.L.‘.‘I“ T I T T s P

3z
£
1
1

|

H PRI

Lt

PRCTIN.. . N R RTITR

il et b b . 10088, 0 1

1
i
4
3
i

RES I HINS




RSP ORI e e e

RIS. We also provide a nonconstructive préof technigque for determining
the existence of an independent set of given weight in a weighted RIS and
a4 result on the relation of the existence of maximum independent sets in
a RIS to the values of the weights of maximum independent sets in a

weighted RIS. Section 6 discussed intersections of RIS and the

relationship of RIS to matroids.

2. Definitions of Random Independence Systems and Their Structure

2.1 Definitions of Random Inde¢pendence Systems

Let E be a set and let 4 be a family of subsets of E. For
each element e€E, let the element's probability be a real number P,
defined on the interval [0,1]. The triple M= (E, g,{pe}) is a random
independence system (RIS). If for some fixed p, P =P for all elements
e€E, then M is untform and denoted (E. Z.,p). We will frequently

write (E, Z,1) as (E, g). M is a proper RIS if

() geg

(a2) A€EZ An'cama'€ed .
Intuitively, ] may be considered a property on subsets of E which is
trivially sattsfied (by axiom Al) and monotone decreasing (by axiom A2).
A pair (E,J) satisfying Al and A2 is called a (deterministic) inde-
pendence system (see [Korte, Hausmann, 78]). Let A3 be the axiom: for
any sets A,A'€ 4 of cardinality h, h+l respectively, 3Je€a'-A
such that AU {e} GJ. If -(E,,]) satisfies the axioms Al, A2 and the
additional axiom A3, then it is commonly called a matroid (see [Whitney,

1935]). (Note that an alternative axiom to A3 is "for any subset SCE,
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all maximal independent subsets of S have the same cardinality").

2.2 Instances of Random Independence Systems

An instance of a random independencn. system M= (E.J .(p.}) ig a
pair My = (Eo. Jo) where
(1) E,CE is derived by independently choosing each e€E
with probability p,
) f ={reg/rce}.

Note that the probability of MO is

n p n (1-p ) .
(eGEO e) (eﬁE—Eo e)

Clearly, any instance M_ of a proper RIS satisfies axioms Al and A2

0

and thus it is a (deterministic) independence system.

A set ACE, is independent in M_ if AE,}O and dependsnt

0 0

otherwise. An independent set 16]0 is maximum in M_. if there does

0

not exist any I' EJO such that |I'|>|I|. Let the rank of M, be

0

the cardinality of maximum independent set. IEJO is maximal ir My
if there does not exist any 1I' €,}° such that I'D3i. A minimal

dependent set of M, (a circuit) has no proper subset which is dependent

0

in M,. For any ACE, let tiie rank oy A in M

cardinality of any independent subset of A.

0 be the maximum

2.3 Examples of RIS

As an example of a RIS, let Q be a property on graphs and let

Gn P be a random undirected graph. Gn e has instances which are graphs
14 +F

with vertices V=1{1,2,...,n} and each edge chosen independently with
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probability p from unordered puu‘ of distinct vertices in V. Let
M= (E, J,p) be the uniform RIS with Ee= {{u,v}/distinct u,v€V} and
& ={8'SE/Q(V,E') holds}. Then any instarce M. =(E,, 2.) of M
corresponds to an instance (V.so) of the randem graph Gn.p and 4’0
contains precisely those edge sets sto such that the property Q
holds for the subgraph (V,I). The graph property Q is trivially
satisfied (Q holds for the graph with no c&qes) and decreasing méno-
tone (i.e., Q(G)=Q(G') for all subgraphs G' of G) iff M is a
proper RIS.

(a) Given a graph G= (V,E) a simple path is a path of edges in
E containing no cycles, and it is a Hamiltonian path if it contains
every vertex of V, The property of a "simple path" in a random graph
does not yield a proper RIS, since a simple path must be connected
{violating axiom A2). However, we can define a proper RIS such that
any independent set of cardinality |v| ~1l is a Hamiltonian path. We

give both formulations here:

Formulation as a non-proper RIS: Let M= (E, ,p) be the RIS
where J is the set of all simple paths in the complete graph (V,E).
Fix an instance MO- (Eo.]o) of M. Then (V.EO) has the same

probability in random graph Gn p as in M and Jo is the set of all

’

simple paths in (V.EO) .

Formulation as a proper RIS: Let M= (E,#,p) be the RIS with E

as above and J={ICE/(V,I) consists of a set of disjcint sample paths}.

Clearly M satisfies axioms Al, A2. Fix an instance Mo= (Eo.]D)

of M. Then (V.Eo) has the same probability in Gn P as in M and

e m =
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’0 has as elements all different set of disjoint simple paths in Eo.

In both formulations, if Ho has an independent zet IEJO such

2] = |v] =1 then (V,I) 4is a Hamiltonian line in (V,B).
(b) An edge matching of a graph is a set of vertex disjoint
edges and is perfect if every vertex appears in some edge of the matching.
To formulate the "perfect matching" problam as an RIS, we assume a

complete graph G= (V,E) with 2n vertices. lat M= (E,J,p) where

d = {ISE/T is a matching}. Let M = (E., 4 ) bLe an instance of M,
- o} 0 0

Then M, has a perfect matching if there is an IEJO such that

|1] =n. The property of "matching” in a random graph San,p vields a
*

proper RIS, since if I is a matching, then every I'C1l is a matching.

A subgraph G'= (V',E') of a graph G= (V,E) is called a clique it

E'={{u,v}/u,v distinct vertices of V'}. The cltqué property in

random graphs Gn P gives a proper RIS M= (v, 4,p) where j— {1 <Vv/1
?

is the vertex set of a clique in G= (V,E)}.
(c) An r-noloration of a graph G is a map h:G=+{1,2,...,r}

such that for all edges e={u,v} of G, h(u) ¥h(v). The minimal r

for which such an r-coloration exists is called the chormatic number of

G and denoted by X(G).
The r-coloration properiy in random graphs G o gives a proper
?

RIS where

J = {1cE/the subgraph of G induced by I is r-colorablel.

{d) A complete k-partite subgraph of the graph G= (V,E) is

defined by a collection {vl""'vk} of pairwise disjoint subsets of V

such that {u,vlI€E for uEVg. v€vh iff gy h. The complete k-

correspond to the independent

partite subgraphs of instances of Gn p
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sets of instances of tha following RIS: M= (E, &f,p) where 1€4 if

there exists a partition p(I) -{vl.....vk) of I (that is u:'l vh- 1

and Vi d vq =g for 1€g<h€k) that defines a complete k-partite

graph on I. This RIS is proper %co.
(e) et Vv, = {1,....n}, Vo= {ntl,...,2n} be disjoint vartex sets

of equal cardinality and let E={{u,v}/u€v,,vEv,}. A bipartite grash

A= wluva.:o) has vertex set V, UV, and edge set E,SE. B is

ocomplete if E,=E. A random bipartite graph B, p has instances which
L4

are bipartite graphs “’1 Uvz.so) where sach edge of no

E with probability p.
An (edge) matching of bipartite graph (V, UV,0Bg)  is a set of

vertex disjoint edges IC EO and is perfect if every vertex of ‘\l'1 UV2

appears in some edge of 1. The bipartite parfect matching problem is

formulated as a proper RIS by assuming a complete bipartite graph

B= (V,UV,,E). Let M= (E, g,p) where J={ICE/I is a (bipartite)

M. has a perfect matching

matching}. Let M, be an instance of M. M,

if there is an IGJO such that |I| =n.
(f) Let S be a finite set, [S|=n, and let E={S;,....5} be
A subfamily Ict is a packing in S if

Let M= (E, 4,p) be the proper

a family of subsets of S.

the sets in 1 are pairwise disjoint,

untform RIS whose J ={1/I is a packing}. An instance of M corres-

pond to an instance of a random hypergraph having vertex set § and

obtained by selecting each of Sl""'sm with egual probability p

Maximal packings in the instances, covering all

IE]O such that the

{independently) .

“vertices" of S correspond to independent sets

union of the elements of I gives 5.
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(g) Suppose that there are n courhsen possible to be taken by a
student, and they have to be done one at a time, starting at time O.
Each course i€ {1,...,n} has a fixed uninterrupted duration time ti
and deadline di. Let a random course asstgnment A, p D¢ the rantom

variable whose instances are subsets E, of {l,...,n} created by

0
choosing each i with equal probability p, independently. Let IC Eo
be a proper assignment if all courses in I can be completed by their

deadlines. The property of proper assignment gives a proper uniform RIS

(E, L.p) with g={1/1c{l,...,n} and I is proper assignment}.

(h) Consider a set V= {xl’il"”'xN')-(N} of literals. Let us
choose each of the elements of E=VXxVXV jindependently with probability
p. The subset cbtained can be viecwed as a Boolean expression in
3-conjunctive normal form. The random variable whose instances are
described by the above experiment, is called a random Boolean Expreéssion,
BOOLN'p. A subset I of an instance of a random boolean expression is
called satisfiable if there is an assignment of exactly one of the values
{true, falsel} to each of the literals appearing in I (such that if
both X,, }-(j

evaluation of I gives true as an answer. The proper uniform RIS

cppear then value (xj) = qvalue (X j)) and such that the

M= (E, 7,p) where J = {ICE/I satisfiable} has instances corresponding

(having the same probability) with the instances of BOOL An

N,p'
instance of BOOI..N'p is satisfiable iff the corresponding (EO.JO) of

M has an independent set of cardinality |E
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2.4 Maximality An Random' Independence Systems

The definitions of mi#iﬁum;;quimal and minimal are all standard
for monotone properties of deterministic combinatorial structures. We
extend these notions to indepegdénce'iﬁ RIS‘whiéhjié a fanaﬁﬁ'ﬁroperty. """
Let M= (,J.{p,}) be an RIS and’ let Aé.ﬂ° Let A be mammum

with probability m in M if

m = Prob{A is maximum in the same instance/

A appears in an instancel.

(All probabilities are defined over the possible instances of M.)

Let A be maximal with probability m in M if

m = Prob{A maximal in the same instance/

A appears in an instancel.

Similarly, let a set A€2°-¢4 be minimal (a eircuit) with probability
m in M if

m = Prob/A is a minimal dependent set of the same instance/

A appears in an instancel}.

Let rank(l1) be the random variable giving the rank <f instances of M,

For all m€ [0,1], let GM(m) be the minimal m'€ [0,1) such that

VAE7: A maximal with probability m in M implies A is maximum

with probability €m' in M. (It is obvious that m2m' and that

GM(m) is increasing with p.)

T-e fur sticon GM (m) gives us a measure with which simple greedy-

A similar functien

like alqoritums succead in constructing maximum sets.

© i WAl 4t
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' ‘'may be defined for the measure of success of rotation-extension

algorithms. (See [Reif, Spirakis, 1981)). Note that for matroids

R 'GM(m) =m.

3. A General Nonconstructive Existence Theorem

Let M= (E, Z,p(L)) be a uniform RIS where &= |E| Let

,Zh= {x eg/|:| =h} for h21. Let the interdependence ratio for M be

Prob{I indevendent/I' independent}
IR, = the mean of Prob{I independent}

for 1, I’ Gjh.

For a fixed h>0, we are interested ‘n a minimum p(%) (the

critical p) such that as £+
Prob{rank(M) 2 h} =+ 1
or equivalently

Prob{3 independent set of size h in any instance of M} -+ 1
as fL+=

The following is a generalization of a nonconstructive proof technigue

due to Erdos and Renyi.

THEOREM 3.1. If for i-=e, IRh=1+o(l) then the eritical p “s

lower bounded by

A A R VA B
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Proof. Let 1 range over the members of J, and let X  be
the random variable being 1 if I is independent in an instance M,
and O else, for each instance Mo of M. Let Y=ZXI. I ranges

over ’Zh'
v+ is clear that Y> 0 = rank(M) 2 h.

* From the Chebyshev inequality — -

Prob (Y=0) & Nar(¥) .
mean” (Y)

mean(Y) = 2 mean(xI) = phlfhl.

I€Jh

The variance of Y is

Var(Yy) = mean(Yz) - meanz(Y)

= 2 mean(xli) - mean2 (Y) .
I,J 6(;(h
I#J

But
= l}

Prob{xI =

mean (xIxJ) XJ

= Prob{XJ= /% = 1}-prob{x1= 1}
= I 'meanz(x )
R 1
h,2
= IRh s (p)
Also,

meanz(Y) = (ph)z‘lryhlz .

G :L'MM.LLV(’;l‘l!lilL‘:'lfd&f&HM‘h sl halsia S s i il e - el

1

M&Li*%u&ihml‘ndlkmd .nLo . ,;

b il ar s et o s o | M bt bbb

N Sl L et i LY
o TShod 6 ek o] 00 3 0 a0 1 T RLETI S

i

R TARAee b -t




Hence

mean2 (Y) (IRh - 1)

Prob(¥Y=0) € >
: mean (Y)

or

Prob(Y¥Y=0) = o(l) as o>,

Since we also want mean(Y) #1 we get p# thl-l/h. o

In practice, the bound p# Whl‘l/h may not be sufficiént to

guarantee IRh= l+0(l) as £+, To compute IRh, we introduce a new

i) nilﬁwmiﬁﬁlhl sl il

|
vl

random variable u= II nal for randomly chosen 1I,J €jh. Then

il

u/ph) = nean(p

i bt

IRh = mean (ph_ Y

it 1 .ihw..iw..:: i b

hox
= 3, p cProb{u=k} .
k=G L
Thus we must choose p to satisfy also %
R, 3
E p +Prob{u=k} = 1+0(1) as L= D4
k=0

In fact, we want the probability of large intersections to be small.

This is formalized in the following theorem:

THEOREM 3.2, IT
Prob{u=k} € p2k(1-p) (1+o0(1))

then

frcn 1AM e il

IRh = l+o0o(l)

and thus the eritical p found in the previous theorem suffices.
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Proof. Since u is an integer then p "1 and hence

IR, 1. (a)
Also
h -k
IR, = Y p = Prob{u=k}
k=0
B ox 2k
€ 2 p P (1-p) (1+0(1))
k=0
1- h+l
< (1-p) (1+0(1)) “iE—'IS_ <1+ o0(l) (b)
By (a) and (b), IR =1l+o(l). o
Let us consider RIS M= (E,g.p(z)) £or various properties of
random graphs, of the model Gn P with n vertices V and £ = 3-!%'-];)-
14

possible edges E= {{u,v}|u,vEV}, each chosen with probability p. For

elique of ¢ vertices and h = E%i edges, Whl = (2) and the

critical p 1is 1/2 for h=21logn, derived directly from Theorem 3.l.
For perfect matchings of h edges, |f,| = ()(";™hl and the critical

p 1is e(l—"ﬁ—’l) for h=n/2 (n even). It is again derived directly

from Theorem 3.1.

For a Hamiltonian path of h edges thl = h! (h':l) and the
critical p is 9(39-:{-‘1) for n=n-l. It was derived by Posa (1976)
by a constructive technique (generalized in [Reif, Spirakis, 1981)).
Theorem 3.1 does not seem applicable in this case. On the other hand,
there is no known efficient (polynomial time) algorithm for constructing

cliques of size 2logn with probability -+ 1 when the edge density is

the critical p=1/2,
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For maximal packings in case of 'Isll s = eem lsml =3 we get

g = (3)() () o

and the critical p 1is n-3/2°atn) for h=n/3 and a(n)+% as

n+®, (The same p gives perfect matchings in 3-regular hypergraphs.)

4. Weighted RIS

We now extend our definition of RIS so that the elements are inde-
pendently, randomly weighted over given probability distributions. We
wish upper and lowér bounds on the weight of the maximum independent set.
Lueker [1978]) considers this problem for graphs with a normal distribution
of cdge weights and we show his reosults coxtend to weighted RIS with
arbitrary uniform distributions. |

A weighted RIS M is a triple (E.j,{we}) where E is a set of
elements, ] _C_ZE and for each e€E, we is some independent random
variable.

An instance of M is M, = (E,J,{we}) where the W_ are instances
of the We for each e€E. M 1is uniform if the we have the same
distribution.

Let Jymax be the set of all maximum (in cardinality) elements of

J. Let h =size of maximum elements of J. For all I€J, let

W(I) = X 1 W(e). Let wmaxm) be the random variable

e€
max{w(I)/1 Efmax} .

We immediately get

:
'
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PROPOSITION 4.1. mean(Ww _ (M))Smean of W(I) overall 1€7

and instances of M such that (1) =W (M) For example, if the

{w} are all rormal with mean u and variance a2, then

mean (W (M) € noum\fzho 1oqumul as |g] +=, 0O

Let M= (E, 4,W) be a uniform weighted RIS and let L= |E[. Let

F be the probability distribution of W and choose some p€ (0,1). For

any instance MO- (EO,JO,W) of M, let M(')- (Ec‘,,gc‘)) be derived from

Mo by deleting each element e€E with we<P'1(1-p) and let

Fo™ {1 EJO/ISE(S}- We claim that instances of M'= (E, 4,p) have the

same probability as the corresponding M6 instances. To see that, note

that an element e is chosen with probability

p' = Prob{we>P—l(l-p)} - 1-F(FIa-p) = p.

Thus,

PROPOSITION 4.2.

-1
mean(W . (M) 2 | Z  |F " (1-p)

-1
mean(wmax(M) /rank(M*') < ho) = o(lﬂmaxl *F " (1-p))

as L+,

Note that if the restriction of Proposition 4.2 is satisfied, we

have an algorithm which with high likelihood (as £ =+%) constructs an

independent set with weight 2 Ijmml'P-l(l-p) in an instance of M.

This idea has been used by Walkup [1977] for discrete distributions of
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W and by Lueker [1978) for W with normal distributions.

For example, assume W is normal with mean W and variance 02

and let g=Prob{rank(M') -hol. Then if

then

mean(wmx(m) » hy'H + ho°0"-2 log p .

5. Nonconstructive Existence Theorem for a Weighted RIS

Next we describe a nonconstructive existence proof technique for
weighted RIS, Let M= (E,f,W) be a weighted RIS where W is a
mapping from E to the positive reals and let & = |E| Let Jmax

be the sets of J of maximum cardinality and let for every Ieﬂmax'

xli be the random variable
k .
X, = 1 if W(I) 2 k
= 0 else .
Let

b= T A

k
€S nax

and let the weight interdependence ratio be

prob{wm>k/w(a)>k})
WIR, = mean ( Prob(W(I) & kJ

for I, JEJ -

K]
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Again, we can prove as in Section 2 that

mean(Y) = Ijm‘xl'Prob{IEme has W(I)?k}

and

Var(y) = meanz(Y) (wmk-l) .

By the Chebyshev Inequality,

probly =0} < —axid) WIR -1 .
mean (Y)
So, if
lgmxl-prob{l €4 . has WD >k} 21
and
WIRk-*1+o(l) for L4+
then
Prob{y=0} + 0 as g+eo
or
prob{3T€¢  with weight 3 k}+1 as  L*® .

By the Central Limit Theorem, we get:

THEOREM 5.1. Suppose that M is uniform, so that the element
weights have unijorm prebability diatribution with mean u and variance
-1 -1
L] d - . - .< r/ -
o, and g, contains maximen sets of eizé h and )‘\Nhou.hocumax‘ 1)

and also WIP;R‘) =1+0(l) a8 R+, Then

probi3r €, . with W(I) #k}=+*1 as R+

where N ig the normal distribution function of mean hjl and
hou.hoc

vartance (hoo) 2 .
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6. Intersections of RIS and Relation of RIS to Matroids

6.1 The Relation of RIS to Whitney's Matroids

Let us define for RIS M and h#0

Au(h) - Pxob{MO is a matroid of rank h

/My is an instance of M.

It is easy to establish a rough lower bound for )\M(h) » given M= (E.J 'P)

is uniform. Let Jh- {1/1€ 7 A |1] =nl.
PROPOSITION 6.1.

h Sl=
A > gl e-p B

Proof. Note that for each E €f , M ={E,,{1€ 1cE}} is an

instance of M of probability ph(l-p)‘nl_h and Mo is a matroid.

6.2 Interse-tiols of RIS

Let M., M, be RIS with

1 2

M= (E, ,]].{pél)})
and

M2 = (E,(ﬂ}.{péw)})

We wish to ccnsider independent sets in both #.  and Jﬂ,

Let Ml ﬂMz be the structure

Moo= w07 6 P

hbo i
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It is not difficult to show (by definition of proper RIS) that:

PROPOSITION 6.2. M=M, AN, i8 a proper RIS if M, and M, are
proper RIS,

‘There is no known result relating the complexity of constructing
maximum independent sets in random instances of er\uz to the complexity
of coastructing a maximum independent set in random instances of “1"":‘
Although in practice we often have that if the extension-rotation
algorithm succeeds with high probability on Ml and Mz separately then
it succeeds with high probability on leiuz. (See [Reif, Spirakis,

1981]).

In contrast, matroids are not closed under intersection. The
problem of constructing a maximal independent set in the intersection of
k matroids has a polynomial time (in |E|) algorithm [Lawler, 1977)

for k=2, but it is known to be a NP-complete problem for any k# 3,

7. Conclusion

We have proposed here the RIS and the weighted RIS as a general
combinatorial structure for formulating probiems with random inputs. We
found that our nonconstructive technique for testing the existence of
maximum independent sets is broadly applied to a large range of problems
with random inputs, which can be formulated as RIS.

A cormpunion paper, [Reif, Spirakis, 1981], considers a randomized

algorithm, (the Extension-Rotagtior algorithm) for efficiently constructing

an independent set of size ho in an iistance of a RIS. .Given an
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independunt set I of size less than hye We attempt to extend I (by

adding a now random element @ to I) or elae attempt to rotate 1 (by ;;

deleting an element e' of I and adding the new element e). The use
of a rotation operation first appeared in Posa's [1976) existence proof
for a Hamiltonian path in an undirected random graph of density

O(log n/n). In [Reif, Spirakis, 1981) we provide a general method of

analysis of the performance of the extension-rotation algoxrithm,
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