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ABSTRACT

-•-J

We introducesa new random structure generalizing matroids. These

random independenc e setems allow us to develop general techniques for

solving hard combinatorial optimization problems with random inputs.
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1. Introduction

In a classic paper "On the Abstract Properties of Linear Dependence" j
of 1935, Whitney provided a set of axioms for a structure commonly called i

a matroid. Matroid theory (see (Tutte, 19711, [Lawler, 19761) has

applications to a wide class of combinatorial optimization problems:

where we wish to construct a maximal object (a maximum independent set)

satisfying a monotone property. Intersections of matroids, are calledj

independence systems (see [Korte, Hausmann, 19781) and have also wide

practical applications. The problem of constructing a maximum indepen-

dent set in an independence system is NP-complete for independence

systems which are intersections of three or more matroids. 4

We introduce in this work (Section 2) the random independence

m(RIS), which is applicable to a more general class with combina-

torial optimization problems with random inUpts. We define some natural

notions, such as "maximal with a given probability."

Section 3 sketches a general non•onstructizc proof technique for

determining the existence (with probability 1) of an independent set of

given cardinality in instances of an RIS. This encompasses various non-

constructive proofs of graph proporties in [Erdos and Spencer, 1947]

and uses the second moment method.* In Section 4 we define a weiahtaG

*In contrast, a companion paper [Reif, Spirakis, 1981], discussed the
construction of random independent sets by use of an extension-rotation
"algorithm.

iI
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RI$. We also provide a nonconstructive proof technique for determining

the existence of an independent set of given weight in a weighted RIS and

a result on the relation of the existence of maximum independent sets in

a AIS to the values of the weight* of maximum independent sets in a

weighted RIS. Section 6 discussed intersections of RIS and the

relationship of RIS to matroids.

2. Definitions of Random Independence Systems and Their Structure

2.1 Definitions of Random Independence Systems

Lot E be a got and let jh be a family of subsets of E. For

P-each element eF-E, lot the element's probability be a real number pe

defined on the interval (0,11. The triple M- (E,O,{p is a random

independence 8a8tem (RIS). If for some fixed p, p ap for all elements
e

eEE, then m is uniform and denoted (EJfp). We will frequently

write (E,•,0 ) as (EM4). M is a proper RIS if

(Al) 0 E •f

(A2) AE AA'CA A' E •

Intuitively, jf may be considered a property on subsets of E which is

triviaZZy 8atisfied (by axiom Al) and monotone decreasing (by axiom A2).

A pair (EJ) satisfying Al and A2 is called a (deterministic) inde-

pendence system (see [Korte, Hausmann, 78]). Let A3 be the axiom: for

any sets A,A' E, of cardinality h, h+l respectively, Be E'-A

such that AUie}Ej. If (E,#) satisfies the axioms Al, A2 and the

additional axiom A3, then it is conmmonly called a ma troid (see [Whitney,

1935]). (Note that an alternative axiom to A3 is "for any subset ScE,

"•" • . ..... ... ...." . .... • r t - -- I •i •' • •1 .- •-:| I



all maximal Independent subsets of S have the same cardinality").

2.2 Instances of Random Independence Systems

An instane, of a random independence system M -(Ej-'{pe}) is a

pair M0 = (E0 ,,fO) where

(i) E0 SE is derived by independently choosing each eCE

with probability p.

Note that the probability of M 0 is

e,,o ) (,:,o(-Pe))
0 0

Clearly, any instance M of a proper RIS satisfies axioms Al and A2

and thus it is a (deterministic) independence system.

A set AcE is independent in M if AE 0  and dependent

otherwise. An independent set IEJ0 is maximum in M0 . if there does

not exist any I' such that I'I > ii-. Let the rank of mo be

the cardinality of maximum independent set. I f0  is maximal in. m

if there does nnt exist any I' E0 such that I' =I. A minimal

dependent set of M (a c-rcuit) has no proper subset which is dependent

in M 0* For any A CE0 let the rank- of A in MO be the maximum

cardinality of any independent subset of A.

2.3 Examples of RIS

As an example of a RIS, let Q be a property on graphs and let

G be a random undirected graph. G has instances which are gralphsn,p n,p
with vertices V= {l,2,. . .,n} and each edge chosen independently with
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probability p from unordered pairs of distinct vertices in V. Let

KN (ES.p) be the uniform RIB with 2-{(u,vl/distinct u,vfV) and

(E q~ - / {W, Z_/l,' holds}. Then any Itnetarce .0, (so,0 of M4

corresponds to an instance (V,3S) of the random graph G and

contains precisely those edge sets Ic0 such that the property Q

holds for the subgraph (V.1). The graph property Q is triaZZyA

sati84ftd (Q holds for the graph with no edges) and deoereaeng mono- i
tone (i.e., Q(G)I-Q(G') for all subgraphs G' of G) iff M is a

proper IS.

(a) Given a graph G- (VE) a simpZe path is a path of edges in

E containing no cycles, and it is a RdniZtonian path if it contains

every vertex of V. The property of a "simple path" in a random graph

does not yield a proper RIS, since a simple path must be connected

(violating axiom A2). However, we can define a proper RIS such thatV~ I

any independent set of cardinality IVI- I is a Hamiltonian path. We

give both formulations here,

A

Formulatiot as a non-proper RIS: Let M- (E,op) be the RIS

where o is the set of all simple paths in the complete graph (V,E).

Fix an instance HO- (E0 ,jf 0 ) of M. Then (VEO) has the same

probability in random graph G as in M and A0 is the set of all
ni.p

simple paths in (V,E0 ),

Formulation as a proper RIS: Let Ma (E,/,p) be the RIS with E

as above and J-{IaE/(V,I) consists of a set of disjoint sample paths}.

Clearly M satisfies axioms Al, A2. Fix an instance M0= (Eo,10)

of M. Then (V,E ) has the same probability in G n,p as in M and
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'0 J has as elements al different set of disjoint simnple paths in 90.

In both formOlations, if M0 has an independent set I such
0 tr

that lI I lVI -1 then (V,1) in a Hamiltonian line in (V.1). -(b) An edge m1atohing of a graph is a not uf vortex dis:joint

edges and is perfeot if every vertex appears in some edge of the matching.

To formulate the "perfect matching" problem as an )RIS, we assume a

coupletse graph GO (V,I) with 2n vertices. Let Me (E,op) where

$-{I1E/Z is a matching). Let M40- N4r) be an instance of 1. MI

Then M 0 has a perfect matching if there is an ICO such that -I

III -n. The property of "matching" in a random graph G yields a A

proper RIS, since if I is a matching, then every I'C is a matching. A

A subgraph G' "(V',E') of a graph G I(V,E) is called a oZique if

El- {{uv)/uv distinct vertices of V'Q. The o4.que property in

random graphs G gives a proper RIS M" (v, fJp) where (I, CV/I

is the vertex set of a clique in G (V,E9. iI

(c) An r-cO•Orion of a graph G is a map htG-6{l,2,...,r}
Ssuch that for all edges e-{(u,v} of G, h(u)ythlv). The minimal r i

for which such an r-coloration exists is called the chormatic number of

G and denoted by X(G).

The r-aoZoration pro •p'o. in random graphs G gives a propcr
nip

RIS where

(I a { E/the subgrapl, of G induced by I is r-colorable).

(d) A comppete k-partite subgr•ph of the graph G ( (V, E) is

defined by a collection {Vi,...,Vk) of pairwise disjoint subsets of V

such that {u,v)EE for uEVg, vEV iff g#h. The complete k-
9h

partite subgraphs of instances of Gnip correspond to the independent

2$
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sets of instance* of thl following RIS: K- (E9,.p) where 1C$ if

there exists a partition piZ) -(VlV,.,vk) of Z (that is UhlVh I

and Vh r V9 -0 for lC9<h4k) that defines a complete k-partite ]
graph on Z. This A10 is proper t.oo.

(e) Let V ({I,...,n), V {n+l,...,2n) be dinsjoint vertex sets12

of equal cardinality and let Em{{u,v)/uCVlvEV 2 o). A bipartite grh..

3- (V2UV 2 ,EO) has vertex *et V1 U V2 and edge Aet X0 , Ii is-

oom00Zte if E-a E. A random bipartit• grarph B has instances which
0 n,p

are bipartite graphs (V1 U V2 E.) where each edge of R0 is chosen from

E with probability p.

An (edge) mat•ot•g of bipartite graph (V U V2,EO) is a set of

vertex disjoint edges ZICE and is perfeot if every vertex of V1 UV2

appears in some edge of I. The bipartite perfect maothing problem is

formulated as a prope RIS by assuming a complete bipartite graph I

B= (V UV2 ,E). Let M= (Mifp) where I c{I E/I is a (bipartite)

matching). Let M0 be an instance of M. M0  has a perfect matching

if there is an ICJ such that III-n.

(f) Let S be a finite set, IS- n, and let E-{S1 .. Sm} be A
a family of subsets of S. A subfamily IcL is a packing in S if

the sets in I are pairwise disjoint. Let M% (E.Xp) be the properz

uniform RIS whose 9= {I/I is a packing). An instance of M corres-

pond to an instance of a random hypergraph having vertex set S and

obtained by selecting each of Si,,.,,S with equal probability p

(independently). Maximal packings in the instances, covering all

"vertices" of S correspond to independent sets I C0 such that the

union of the elements of I gives S.

-|-- .
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(9) Suppose that there are n courses possible to be taken by a

student, and they have to be done one at a time, starting at time 0.

Each course iC f1,...,n) has a fixed uninterrupted duration time ti

4 ~and deadline di. Lot a rndom ooxate assignmenit A be the random

variable whose instances are subsets E f {l...,n} created by

choosing each i with equal probability p, independently. Let IcE0

be a proper assignment if all courses in I can be completed by their

deadlines. The property of proper assilnment gives a proper UnifoM RIS

(E, jp) with j'w{I/I_{C,...,n) and I is proper assignment).

(h) Consider a set V - {XIt...,XNNN) of literals. Let us

choose each of the elements of E- V x V x V independently with probability

p. The subset obtained can be viewed as a Boolean expression in

3-conjunctive normal form. The random variable whose instances are

described by the above experiment, is called a random Bool.ean E .presion,

DOOLNp. A subset I of an instance of a random boolean expression is

called atisflabZle if there is an assignment of exactly one of the values

{true, false} to each of the literals appearing in I (such that if

both Xi, Xj appear then value(X ) -,Ivalue(X ) and such that the

evaluation of I gives true as an answer. The proper uniforn RIS

M - (E, f,p) where •= {I _E/I satisfiable) has instances corresponding

(having the same probability) with the instances of BOOLN, An

instance of BOO is satisfiable iff the corresponding (E0 ,ft 0 ) of

M has an independent set of cardinality 1E01.
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2.4 tMaximiality irh Random Independence Systems

The definitions of maximum#,, maximal and minimal are all standard.

for monotone properties 'of deterministic Combinatorial structures. We -.

extend these notions to independence in RIS which is a ?.2nd-M property4

Let M-= (Eipeff ) be an RIS and let A EX. Let A be maximwrý'

V ~with probabiZitjj m in M if

M Prob{A is maximum in the same instance/]

A appears in an instance).A

(All probabilities are defined over the possible instances of M.)

Let A be maximal. with probability m in m4 ifU. 4

m -Prob{A maximal in the same ins tance/

A appears in an instanceL.

Similarly, let a set AE 2E- be minimal (a circuit) wit-h probabiZi.tyj

m in m4 if

m =ProbVA is a minimal dependent set of the same instance/

A appears in an instance).

Let rank (1) be the random variable giving the rank or instances of M4.

For all tnE [0,11, let 6 (m) be the minimal mWE i0,11 such that
14

VA EI: A maximal with probability m in M4 implies A is maximum

with probability <m' in M4. (It is obvious that m> m' and that

6(in) is increasing with p.)

T-'e fur ztion 6 C m) gives us a measure with which simple greedy-
14A

like alcjoriflims succeo~d in~ constructing maximum sets. A similar function

,..-. .. .6e.
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may be defined for the measure of success of rotation-extension

algorithms. (See (Reif, Spirakis, 19811). Note that for matroids

++:+ .... :6 6 (m) =m. +

A-.. 4

3. A General Nonconstructive Existence Theorem-
AN. -1•

Let M= (E,,p(t)) be a uniform RIS where k= IEI. Let -

{IE Y•/Ilh =h} for h> 1. Let the interdependence ratio for M be '

A

[ IRh = the mean of Prob{I independenti

for I, I1Eh.

For a fixed h>O, we are interested 'n a minimum p(t) (the
f4

critical p) such that as

Prob{rank(M) ) h} -- 1

or equivalently

Prob{3 independent set of size h in any instance of M} ÷ 1

as 9÷- .

The following is a generalization of a nonconstructive proof technique

due to Erdos and Renyi.

THEOREM 3.1. If for Z- -, Rh +O(l) then the Critical• p
h

lower bounded by

Lf. I-h/h for ° yh I > o
"h



10

-Proof. Let I range over the members of and let X be

the random variable being 1 if I is independent in an instance M0

and 0 else, for each instance M0  of M. Let Y-=X 1 , I ranges

over

-t is clear that Y>0 rank(M) > h.

SFrom the -Chebyshe v inequality

Prob(Y=O) Var (Y)
2

mean (Y)

[ The

mean(Y) - £ mean(Xx) = P .

The variance of Y is

2 2
Var(Y) = mean(Y ) - mean (Y)

2
= mean(Xi) - mean (Y).•~I ,J •i'Y

But

.meanXiXJ) Prob{XI Xj 1}

S=Prob{Xj = 1/X 1 1) .Prob{xI i

•' : 2
= IRh" mean (X )

h 2
=IR~ (p

Also,

2 (h)2.1 ~mean (Y) = 1112



2.

"I*- . . .......... .. I_
mean (Y) (TRh)- 1

Prob (Y ) 02
mean (Y)

or

Prob(Y-0) o(l) as £400

Since we also want mean(Y) •l we get p) I h"'/. -

In practice, the bound p• > hli-1b may not be sufficient to

guarantee IRh=l+o(1) as . To compute IRh, we introduce a new -1

random variable u= I nJI for randomly chosen IJ E~ h. Then -1

h-u h -u
= mean(p /ph ntean(p

h i
kaG

Thus we must choose p to satisfy also

h
p -prob{u=k} = 1+o(l) as 0- •

k-0

In fact, we want the probability of large intersections to be small.

This is formalized in the following theorem:

THEOREM 3.2. If

Prob{u=k} p p (-p) (+o(i))

then

zh = 1 +o(3')

and thus the critical p found in the previous theorem suffices.

I -°
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Proof. Since u is .an integer then A I and hence 3

AAlso (a)

Sza. - Prob{u- }
k-O 4-

h kO
I' - 2kp(1-p) (l+0 (l)
k-0

( (lp)(~o~l) * h+l

S(-p)1+o11• - < 1 + o(l) (b)
1-"P

By (a) and (b), IRh- I+o(l).

Let us consider RIS M- (Etp(M)) for various properties of

random graphs, of the model G with n vertices V and X . n(n-l)
n,p 2

possible edges E= {{u,v} lu,V• V1, each chosen with probability p. For i

clique of c vertices and h edes ) n2h

critical p is 1/2 for h 2 log n, derived directly from Theorem 3.1.

n n-h
For perf•te0 matrchirngs of h edges , H )hl and the critical

Lh I h h )Iadteciia

is ( ) for h-n/2 (n even). it is again derived directly

from Theorem 3.1. and the

For a Haniltonipan th of h edges = hI (h'1 and the

critical p is 0( log n for n=n-l. It was derived by Posa [1976]
n

by a constructive technique (generalized in (Reif, Spirakis, 1981]).

Theorem 3.1 does not seem applicable in this case. On the other hand,

there is no known efficient (polynomial time) algorithm for constructing

cliques of size 2 log n with probability- I when the edge density is

the critical p=1/2.



13

For m=,imaZ packinga in case of Is11-Is21- - Is," 3 we get

-1 ~ ~ VI - (n)(n-h(n.h) (-h )I

3/2.and the critical p is n '3/ (n) for h- n/3 and a (n)4e as '4

n40. (The same p gives perfect matchings in 3-regular hypergraphs.)

4. Weighted RIS A

We now extend our definition of RIS so that the elements are inde-

pendently, randomly weighted over given probability distributions. We

wish upper and lower bounds on the weight of the maximum independent set.

Lueker [19781 considers this problem for graphs with a normal distribution

of edge weights and we show hiz rcsults cxtcnd to weighted RIS with

arbitrary uniform distributions.

A weighted RIS M is a triple (E, f,{We}) where E is a set ofe

elements, c2 and for each eEE, W is some independent random
e

variable.

An instance of M is M04 (E,f,{We) where the W are instances
0e e

of the we for each eE E. M is uniform if the W have the same
e

distribution.

Let •max be the set of all maximum (in cardinality) elements of

J. Let hoc size of maximum elements of J. For all I Ef, let

W(I) - e W(e). Let W (M) be the random variableeEl max

max{W(I)/I 01max )

We immediately get
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PROPOSZTION 4.1. mean(Wmax(M))'(mean of W(Z) over4 atZ IC/max

and inat~anoes of xt such that w~(I) -w (m). For' excmipZe, if the

{W*) are aZZ normaZ with mean iA and varianoe a2, then

mean(W (M)) ICh 0  +a "#2h lg1 as 34 * 0
max 0 0 A

Let X= (E,$,W) be a uniform weighted RIS and lot In JEE. Let

F be the probability distribution of W and choose some pC (0,1). For *1
any instance M0  (E041 0 W) of M, let M;- ME14;) be derived from

M H0 by deleting each element e E with We< F (1-P) and let

•-- C- {ICo/IcE;}. We claim that instances of M- (EM/,p) have the

same probability as the corresponding M; instances. To see that, note

that an element e is chosen with probability

t1 Prob{W>- (1-p)

Thus,

PROPOSITION 4.2.

mearc(Wmax (M) eymax F (-p)

mean(W (M)/rank(M')<h0) o( ma HF- (1-p)
max 0 max

as L'~

Note that if the restriction of Proposition 4.2 is satisfied, we

have an algorithm which with high likelihood (as X-) constructs an

independent set with weight f t/max PF'l(1-p) in an instance of M.

This idea has been used by Walkup [19771 for discrete distributions of



w and by Lueker [19781 for W with normal distributions.

2
For example, assume W is normal with mean P and variance a

and let q-Prob{rank(M') -h. Then if

t -h0 log q- o(ho flg- )

then

mean(W (M)) ho ho + ho' C -q log p
max 0 0

5. Nonconstructive Existence Theorem for a Weighted RIS

Next we describe a nonconstructive existence proof technique for

weighted RIS. Let HM (E,•,W) be a weighted RIS where W is a

*• mapping from E to the positive reals and let £ - tEl. Let •max

be the sets of j of maximum cardinality and let for every IEJmaxe

kX be the random variable

I k 1 if W(I) > k

S0 else

Let

= X
Yk IC x, I

c9'max

and let the weight interdependence ratio be

WIRk = mean o

for I, JEf-x'
i:max
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Again, we can prove as in Section 2 that

n•ean(Y) 1 IuiaxlProb{IE4x has W(h)Ok)

and
2M

Var(Y) - mean (Y)(WIR- )Ik

by the Chebyshev 2nequality,

2k
mean (Y)

So. if

F 1I prob{i Efm. has W (1) 0k) ) 1

and

w Ir1l+0o(1) for

then

Prob (Yu040 as -. c
or

Prob{3I Eg with weight • k} 1 as cc

By the Central Limit Theorem, we get:

THEoR• 5.1. Suppose that ýi is uniform, so that the elemient

weights have uniform probability dXtribution with mean 'p and variansce

a, and cntains max2imum sets of rize and k 4,N- ICO 0.". V/h a nx

and also WIN m- + o(1) as k-w. Then

where N h a is the normal distribuntion inction of m2can h0U and

variance (h 0) 2
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6. Intersections of RIS and Pclation of RIS to Matroids

6.1 The Relation of RIS to Whitney'_s Matroids 
-

Let us define for RIS M and h;O

AN(h) - Pjb(M0  is a matroid of rank h

/MO is an instance of m)

It is easy to establish a rough lower bound for )M(h?, given Ma (E,,p)

is uniform,. Let fh" ({I/I I A I I{Ih).

PROPOSITION 6.1.

(,. h) Jf j P {,,h . , -P){ ' A

Proof . Note that for each E0 Eh, MH-{E0 ,1{I IC E0 1) is anI0
instancc of M of probability ph( 1 -P) tEl'h and M0 is a matroid.

6.2 Interse,-tioi.s c'ý RIS

Let MK 12 be RIS w.,.th
, 1  . (E,9',{(•(}) "2

and

We wish to ccxasider indapendent sets in both and ,/.

Let M fM be the struuýture
1 2

M ((1) (2)))M (E. e Ie

a .--. " - -~----- ~ . . .- I-
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It is not difficult to show (by definition of proper RhIS) thatt

PROPOSITION 6.2. M- 1NlM2 ia aproper RZ if M and m 2 are

proper RS.

There is no known result relating the covplexity of constructing

maximum independent sets in random instances of m1 n to the complexity

of coastructing a maximum independent set in random instances of M n m2 . A

Although in practice we often have that if the extension-rotation

algorithm succeeds with high probability on K1  and M2 separately then

it succeeds with high probability on M1 nA2 . (See [Reif, Spirakis,

1981]).

In contrast, matroida are not oZosed under intersection. The

problem of constructing a maximal independent set in the intersection of

k matroids has a polynomial time (in tEl) algorithm [Lawler, 197']

for k- 2, but it is known to be a NP-complete problem for any k 3.

7. Conclusion 'A

We have proposed here the RIS and the weighted RIS as a general

combinatorial structure for formulating probiems with random inputs. We I
found that our nonconstructive technique for testing the existence of

maximum independent sets is broadly applied to a large range of problems

with random inputs, which can be formulated as RIS.

A corp.znion paper, [Reif, Spirakis, 1981], considers a randomizod

algorithm, (the Extens ion-Rotation algorithm) for efficiently constructing

an independent set of size h in an iistance of a RIS. Given an

0
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independc.nt set I of site less than htWe attempt to extend I (by

adding a new random element a to I) or else attempt to r'otate I (by

deleting an element *I of I and adding the new element e). The use

of a rotation operation first appeared in Post's 119761 existence proof

for a HIamiltonian path in art undirected random graph of density

O(loq n/n). In [beift Spirakis, 19911 we provide exeso-oationealgorithm. o

-4
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