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An essential component of a Fully Distributed Processing System (FDPS)
ias the distributed and decentralized control. This component unifies
the management of the resources of the FDPS and provides syatem
transparency to the user, In a previous study, the problems of
distributed and decentralized control were analyzed resulting in the
specification of several control models. This study continues that work

by further specifying the control models defined in the first report and

comparing the performance of these models in various environments. This

performance analysis is accomplished by means of simulation experiments.
The results of the experiments indicate that the control message traffic
generated by the distributed and decentralized control is much less than
expected and probably does not present a barrier to the implementation
of FDPSs. Comparison of the results of the simulation of a uniprocessor
and that of an FDPS indicate that little or no loss of performanize is
experienced by the FDPS. An important limitation of these initial per-

formance studies 1is the fact that user traffic is not included in this

series of tests.
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Section 1 INTRODUCTION Page 1

SECTION 1
INTRODUCTION

Distributed Prozessing Systems are currently receiving a very large
amount of attention. This is due in part to the claims that these systems
will provide a number of advantages over contemporary systems (see Table 1).
Some of the more important potential advantages being publicized are the fol-
] lowing: increased performance (with respect to both throughput and response
time), ability to share resources, ease of system expansion, and the ability

to provide fault-tolerance.

Table 1. "Benefits"™ Provided by Distributed Processing Systems

A Representative List Assembled from Claims Made in
Actual Sales Literature

High Availability and Reliability
Raduced Network Costs
High System Performance

Fast Response Time

High Throughput
Graceful Dagradation, Fail-soft

Ease of Modular and Incremental Growth

Configuration Flexibility

Automatic Load and Resource Sharing

Easily Adaptatle to Changes in Workload
Inoremental Replacement and/or Upgrade
Easy Expansion in Cupacity and/or Function

Good Response to Teamporary Overloads

This report is concerned with a particular class of distributed proces~

i
|
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sing systems, "Fully Distributed Processing Systems (FDPS)," which are the
focus of a major research program at the Georgia Institute of Technology. For
a system to be classified as an “FDPS," it muat poasess all five of the fol-

lowing characteristics:

1. Multiplicity of reasouross: an FDPS is composed of a mul-
tiplicity of 9"general-purpose™ resources that can ba freely
assigned on a short-term basis to various system tusks as
required (e.g., hardware and software processors, shared data
bases, etc.).

2. Component interconneaction: the active components in the FDPS
are physically connected by a communication network(s) utiliz-

ing two-party, cooperative protocols to control the physicel
transfer of data (i.e., loose physical and logical coupling).

3. Unity of control: the executive control of an FDPS must define
and support a unifiesd set of policies governing the operation
and utilization of all physical and logical resources.

4, Sy=tem Ltrapnspararyy: users must be able to request services by
generic names without being aware of their physical location or
even the fact that multiple copies of the resources may exist,
(System transparency is designed to aid rather than inhibit
and, therefore, can be overridden. A wuser who 13 concerned
about the performance of a particular application can provide
system-specific information to aid in the formulation of
management control deciaions.)

5. Component autonomy: both the logical and physical components
of an FDPS should interact in a manner described as
"cooperative autonomy® [Ensl78]. This means that the com-
ponents operate in an autonomous fashion requiring cooperation
among processes for the exchange of information as well as for
the provision of services, In a cooperatively autonomous
control environment, the components are afforded the ability to
refuse requests for service, regardless of whether the service
request involves execution of a proceas or the use of a flle.
This could result in anarchy except for the fact that all com-
ponents adhere to a common set of system utilization and
management policies expressed by the philosophy of the
executive control.

A more detailed explanation of these characteristics is found in Section 2 of
this report.

An essential com .ient of an FDPS is the distributed and decentralized
control. This componer .nifies the management of the resources of the FDPS
and provides aystem transparency to the user., A previous study (see [Ensl81])
examined the characteristics of various models of distributed and
decentralized control that met ¢this criteria and identified a number of

Georgia Institute of Technology Evaluation of FDPS Control Models
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variations posaible in specific features of the different models. That
research helped to define more clearly the exast nature of the operation of an
FDPS, the probiems inherent in distributed and decentralized control, and pos-

sibls solutions to these problems.

The acope and goal of the present work is to both (ualitatively and
quantitatively evaluate the effect of these features on thne performance of the
various models of control. The qualitative evaluation is intended to
demonstrate how a particular model performs in a specific environment, In
this phase, the validity of a model is established. Tke quantitative
evaluztion, on the other hand, is intended to examine in general the relative
merits of decentralized control and provide data to support conclusiona about

the relative performance of the various models.
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SECTIOE 2
BACKGROURD

2.1 THE DEPINITION QF AR FDPS

Fully Distributed Processing Systems (FDPS) were first defined by Enslow
in 1976 (Ensl78] although the designation "fully" was not added until 1978
when it became necessary to clearly distinguish this specific class of systems
from the many others being presented as "distributed processing systems." As
discussed in Section 1, an FDPS is distinguished by the following charac-
teristios:

1. Multiplicity of resources.
2. Component interconnection,
3. Unity of control.

4, System transparency.

5. Component autonomy.

It is impertant to note that in order for a system to qualify as being

Lully distributed it must poasess all five of the criteria preasented in this
definition.

2.1.1 Multiple Reaouraes and Their Utilization

The requirement for rescurce multiplicity concerns the aasignable
resources that a system provides., Therefore, the type of resources requiring
replication depends on the purpose of a system. For example, a distributed
system designed to perform real-time computing for air traffic control
requires a multiplicity of special-purpose air traffic control processors and
display terminals. It is not required that replicated resources be exactly
homogeneous; instead, they must be capable of providing the same services.

In addition to the requirement for multiplicity, the system resources
must Le dynamically reconfigurable to respond to component failures as well as
changes in the work load presented to the system. This reconfiguration must
occur within a "short® period of time so as to maintain the functional
capabilities of the overall system without affecting the operation of com-
ponents not directly involved, Under normal operation, the system must be
able to dynamically assign its tasks to components distributed throughout the

system.

Evaluation of FDPS Control Models
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The extent to which resources are replicated can range from those
systems where none are raplicated (gut a fully distributed system) to systems
with all assignable resouroces replicated. In addition, the number of copies
of a particular resource can vary depending on the asystem and type of
rescurce, In general, the greater the degree of replication, particularly of
resources in high demand, the greater the potential for attaining benefits
such as increased performance (response time and throughput), availability,

reliability, and flexibility [Ensl78].

2.1.2 Compopent. Interconnection and Communication
The extent of physical distribution of resources in distributed systems

can range from the length of a connection between components on a single
integrated chip to the distance between two computers communicating through an
international network. In addition, interconnection subsystem organizations
can vary from a single time-shared bus to a complex, mesh interconnection
network., Since a component in a distributed system communicates with other
components through its own logical process, all physical and logical resources
can be thought of as processes, and interactions between resources can be
referred to as interprocess communication [Davi79]. For example, application
program interaction with data files is accomplished through communication

between logical processes, the application process and the file process.

In an FDPS, both the physical and logical coupling of the system com-
ponents are characterized as "extremely loose.™ "“Gated"™ or "master-slave"
control of physical transfers is not allowed. Communication (i.e., the
physical transfer of messages) is accomplished through the active cooperation
and participation of both the sender and addressees. The primary requirement
of the interconnection subsystem is that it support such a two-party
cooperative protocol. This is essential to enable the system's resources to

exist with "cooperative autonomy"™ at the physiocal level.

The advantages of using a message-based (loosely-coupled) communicat:ion
system with a two-party cooperative protocol 1include reliability,
availability, and extensibility. The disadvantage is the additional overhead
of message processing incurred to support this method of communication. Thers
are a variety of interconnection organizations and communication techniques
that can be used to support a message-based asystem with a two~-party
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cooperative protocol.

2.1.3 Unity of Control
In a fully distributed data processing system, individual processors

will control local resources with their own local operating systems, which nay
or may not be unique. As a result, control is distributed throughout the
system to control system components that operate autonomously. However, to
gain the benefits of distributed procesaing, it is required that the
autonomous components of the system cooperate with each other to achieve the
overall cbjectives of the system. To insure this, the concept of a high-level
operating system was created to integrate and unify, at least conceptually,
the decentralized control of the syatem.

A high-level operating aystem is essential to the successful implementa-
tion of a distributed processing system. The high-level operating system 3is
rot a centralized block of code exercising strong hierarchical control over
the system; instead, it is a well-defined set of policies governing the
integrated operation of the system as a whole. To insure reliable and
flexibl. nperation of the system, these policies should be implemenied witih
mininil ba. '~g to any of the system's components [Ensl78].

What policies are required and how they should be implemented depends
greatly on the system. For example, if it is a general-purpose system sup-
porting interactive wusers, then a command interpreter and a user control
langu- - 4is required tc make Lhe system's components compatible and

transpa. -t to the user,

2.1.4 Iranaparenqy of Svatem Control

The high-level operating system also provides the user with an interface
to the distributed system. As a result, the user is accessing the system as a
whole rather than just a single computer in the network.

In order to increase the effectiveness of the distributed system, the
actual system organization is made transparent, The user is presented with a
virtual machine and a command language to access it. Using this command
language, the user requests servicss by name and does not need to specify the
specific server to be used, Clearly, multiple requests for the same service
might be assigned to different servers depending on the state of the total
system when the request is made. However, to make the system truly effective
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Page 8 BACKC:ROUND Section 2
for all users, knowledgeable individuals must be able to interact with the
system more directly, requesting specific servera or developing service
routines to increase the efficiency or effectivenesn of the system [Ensl78].

2.1.5 Coorarative Autonomy

Cooperative autonomy has already been described at the physical inter-
connection level., It is also required that all resources be autonomous at the
logical control level, A resource must have complete control in determining
which requests it will service and what future operations it will perform.
However, a resource must also cooperate with other resources by cperating
according to the policies of the highelavel operating system. Cooperative
autonomy 1s an essential prerequisite for systems to have fault tolerance and
high degrees of extensibility [Ensl7€]. It is perhaps the most important and
most distinguishing characteristic of a fully distributed processing system.

2.2 CHARACTERIZATION OF DISTRIBUTED ANU DECENTRALIZED CONIROL
2.2.1 General Natire of FDPS Executive Control

The executive control is responsible for managing the resources of the
FDPS. Its charter is to perform the management function in such a manner that
the resources of the FDPS are unified and users nf the FDPS are shislded from
the physical realities of distribution. In other words, the executive control

provides system transparel.y for tne user,

The executive control oi an FDPS can be implemented in many different
vays. It can consist of identical modules replicated on all nodes of the
system. Alterner*ively, it can consist of several unique modules distributed
in some manner about the systea. The essential point i= that the term
"executive control™ does not necessarily mean a particular module at a
particular node, but rather the enQ{ge collection of modules that are
distributed somehow throughout the system and are working together to manage

the system's resources,

2.2.2 Control Problems Reaulting from tbe FDES Environment

Several characteristics of an FDPS are found to directly impact the
design and implementation of the executive control. These include system
transparency to the user, extremely loose physical and logical ocoupling, and
cooperative autonomy as the basic mode of compunent interaction. System
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tranaparency means that the FDPS wuppears to a user as a large uniprocassor
which has available a variety of services, It must be poasible for the user
to obtain these services by naming them without specifying any information
concer ing the details of their physical location. The task of locating all
appropriate instances (copies) of a particular resource and choosing the
instance to be utilized is left to the executive control, ;

"Cooperative autonomy®™ is another charucteriatic of an FDPS that has a %
large effect on the design of the executive control. The ®lower-level" 4
control functions of both the logiocal and physical resource components of an
FDPS are designed to operste in a "“cooperatively autonomous"™ fashion. Thus,
the executive control must be designed such that any rescurce is able to
{ refuse a request even though it may have physically accepted the message
containing that request. Degeneration into total anarchy is prevented by the
establishment of a common set of criteria to be followed by all resources in
determining whether a request i1s accepted and serviced as originally
presented, accepted only after bidding or negotiation, or rejected, '

ey S

Another important FDPS characteristic that definitely affects the design
of its executive control is the ixtremely loose coupling of both physical and |
i~gicel resources. The components of an FDPS are connected by communication
peths of relatively low tandwidth. The direct sharing of primary memory
between groceasors is not acceptable. Even though the logical coupling could J
still be loode with this physical interconnection mechanism, the presence of a ;
single critical hardware element, the shared memory, would create fault-
tolerance lima.tations. Therefore, all communication takes place over "stan-
dard® inpus/output paths. The actual data rates that can be supported are
prinarily a function of the interconnections between the processors and the
capability of their input/output paths. The available transfer rates are much
leas than memory tranafer rates. This implies that the sharing of control :é
information among components on different processors 1s greatly restricted. ;4
System control is forced to work with information that is "out-of-date™ and, -

as a result, perhaps "inaccurate."

The control of an FDPS requires the participation and cooperation of
compcaents at all layers of the system. This implies that there are elements
of FDPs control present in the lowest levels of the hardware and software com-
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ponents, This study is primarily interested in the software componentrs of the
FDPS control which are typically referred to as "the executive control." Low-
level aspects of FDPS control will not be directly examined.

E The executive control is responaible for managing the physical and
F logical resources of a system. It accepts user requests and obtains and :
schedules the resources necessary to satisfy a user's needs. The manner in '
which these tasks are accomplished is designed to unify the distributed com-

atilin

ponents of the system into a whole and provide system transparency to the

user.,

2.2,3 ¥hy Not Centralized Control?

Why is a centralized method of control not appropriate? In systens
utilizing a centralized executive coutrol, all of the control processes share

a single, coherent, and accurate view of the entire system state. An FDPS,
though, contains only loosely-coupled components, the communication between
which is limited and subject to variable time delays. This means that one
cannot guarantee that all control processes will have the same view of the
system state [Jens78]. In fact, it is a significant characteristic of an FDPS
that all control processes will probably not have a consistent view.

A centralized executive control weakens the fault-tolerance of the
overall system due to the existence of a single critical element, the :
executive ocontrol component itself, This obstacle, though, is not
insurmountable, Strategies do exist for providing fault-tolerance in
centralized applications. Garcia-Molina [Garc79], for example, has described
& scheme for providing fault-tolerance in a distributed data base management
system with a centralized control. Approaches of this type typically assume ]
that failures are extremely rare eventz and that the system can tolerate the }

dedication of a relatively long interval of time to reconfiguration. These
restrictions may be unacceptable in an FDPS environment in which it is »
important to provide fault-tolerance with a minimum of diaruption to the ser- i€
vices being supported.

Also, the extremely important isaue of overall system performance must
be considered. A distributed processing system is expected to utilize a large @

quantity and a wide variety of resources. If a completely centralized
executive ocontrol is implemented, there is a high probability that a
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bottleneck will be created in the node executing the control functions. A
distributed and decentralized approach to control attempts to remove this bot-
tleneck by dispersing the ocontrol decisions among multiple compornents on

different nodea,

2.2.4 Diatributed va. Decentralized

The discussion above supports the reqguirement that the executive ocontrol
of an FDPS must be both "distributed" and "decentralized," and it should be
noted that there is a clear distinction between the terms “distributed
control® and "decentralized control®™ as they are used in the context of this
project, "Distributed contrel™ is characterized by having its axecuting
somponents physically located on different nodes. This means theve are
multiplc Jlool of control agtivity. In "decentralized gonirol," on the other
hand, gontrol decisions are made independeptly by aeparate gompopents. In
other words, there are puyltiple loal of gontrol deaiaion making. Thus,
distributed and decentralized ocontrol has active components 1located on
different nodes, and those ocomponents are capable of making independent

control decisions.

2.2.5 Rationale Behind Diatributed and Decentralized Control

The reasons for distributing and decentralizing control result from two
basic goals of an FDPS, to improve performance and to provide a more fault-
tolerant system. With decentralized decision making, a system can potentially
provide responses to requests in a shorter amount of time due to the increased
utilization of resources which is achieved through the concurrent execution of
the decentralized decision makers.

By physically distributing components, one 1is assured that a system
retains the potential to keep running even though some parts have been lost.
The ability to function independently of the lost components is provided by
decentralized decision making. Thus, by distributing ocomponents and
decentralizing decision making, the potential for fault-tolerant operation is
provided.

2.3 EVALUATION RPLAN
The steps performed in the evaluation of the models of control are as

follows:

Georgia Institute of Technology Evaluation of FDPS Control Models
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1. Prepsre detalled definitioas of the models of control.
2. Construct an FDPS simulator.

3. Perfora the aimulation experiments.

4, Validate the control models.

5. Compare the relative performance data for the different control
models,

2.3.1 Dafinition af Contral Modela

The first step in the evaluation process is to define in greater detail
the models of control originally described in [Ensl81]. One of the goals of
the present research is to validate the control models in order to examine
their performance in certain environments. By looking at the finer details of
the models, significant control problems nave been discovered which were not
= epparent from earlier high level studies.

ik

To accomplish this detailed study, the models are translated into a high
level programming language, Pascal. The resulting code is presented in Appen-
dix 1 in the form of pseudo code. The pseudo code 1s derived from the actual 'i

Pascal code and is presented in place of the actual code in order to conserve

sSpace.

2,3.2 Conatruction of an FDES Simulator

In order to perform both validation and performance analysis it is
necessary to oconstruct an FDPS simulator. The models of control are 4
translated into Pascal, and the resvliting code is incorporated into the
simulator, Validation is accomplished by construoting various test cases
which are designed to exercise the particular executive control functions
being tested. A detailed transaction log is maintained in order to follow the
actions of the simulator, and, thus, verify the correct or incorrect per-
formance of each portion of the execut;ve control.

The simulator also collects various performance measurements. These are
processed at the termination of the experiment in order to gsnerate per-
formance statistics. The interval during which measurements ares collected is i
user controllable. This allows one to measure steady state values as well as '

performance during startup.
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2.3.3 Simuiatiop Exparimepta

Simulation experiments are conducted in two phases. The first phase is
designed to validate the various models of control, In these experiments,
there is no need to collect performance measurements; instead, a detailed log
of the simulator's actions is maintained, This is then analyzed in order to
observe the behavior of the control model under test.

In the seoond phase of experiments, performance measurements are collec-
ted, but no transaction 1log is maintained. These experiments ere used to
obtain data concerning the relative performance of the various models of
control. In order to obtain steady state data. measurements are not collected
until some time after startup. Several simulations are performed on each
model of control., Each simulation provides the control with a different
environment, To obtain different environments, the interconnection topology
and the bandwidths of the communication links are varied,

The load for the simulator is generated in the following manner. The
user specified configuration determines the number of nodes, the connectivity
of these nodes, the number of terminals attached to each node, and the initial
state of the file system. The file system includes data files, command files,
and object files. Each object file specifies a script of actions to be
simulated in order to simulate the execution of a user process. The user of
the simulator provides a series of commands that can originate from a
terminal. These commands form a population of commands from which the load
generator randomly selects commands for arrival from specific terminals. The
time of command arrival is determined by generating a random number from a
particular interval marked by a minimum and a maximum time delay between sub-

mission of commands.,

2.3.4 Yalidation of Control Models
Validation of the models of control is achieved by constructing input

scripts designed to excercise the particular cxecoutive control being tested.
The resulting transaction log is analyzed tc irsure the correct performance of

the executive control.

2.3.5 Compariaon of ihe Relative Parformance of iha Models
After each test, the data reduction portion of the simulator utilizes

the performance me~ .rements gathered during the specifiled interval of time to.
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compute the following statistics:

1. The average service time for a user session, for a work
request, and for a process., (This is computed for all nodes
and also averaged over all nodes.)

2, The average response time for a user session, for a work
request, and for a process. (This is computed for all nodes

and also averaged over all nodes.)

3. The throughput for user sessions, for work requests, and for
processes, (This is computed for all nodes and also averaged
over all nodes.)

4, For the READY QUEUE on each node, the MESSAGE BLOCKED QUEUE on :
each node, each DISK WAITING QUEUE on each node, and each LINK
QUEUE on each node tue following statistics are compiled:

a. The minimum time spent by a process in the

queue,

b. The maximum time spent by a process in the
queue.

C. The average time spent by a process in the
queue,

d. The minimum queue length observed by a process
entering the queue.
€. The maximum queue length observed by a process Y
entering the queue, :
f. The average queue length observed by a process
entering the queue.

5. The number of user messages, control messages, and the total
number of messages sent from each node to every other node.

6. The number of user messages, control messages, and the total
number of messages sent on each link.

Utilizing these statistics, conclusions concerning the relative merits

of each of the models of control are made,

2.4 PROJECT SCOPE AND ORGANIZATION OF IHIS REPORT

Following these first two sections of introductory remarks, this paper
examines in finer detail the models initially presented in [Ensl181]. Section
3 contains a description of the more important features of the control models
under examination. A pseudo code description of these models is provided in

Appendix 1.

The simulator used 1in the evaluation of the models is the topic of
discuasion in Section 4. In this section, the goals of the simulation
experiments, requirements for the simulator, and the structure of the

simulator are discussed.

|
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In Section 5, the results of the simulation experiments are examined.
This 1includes discussions of both the validity of the models in certain
environments and the relative performance of the various models of control.

Conclusions about the results o“ the evaluation studies are presented in
Section 6. The results of these experiments are summarized and placed into
proper perspective and further questions that this study stimulated but failed i

to answer are identified.

St ¥ e et o st
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SECTIOR 3
MODELS OF CONTROL

This research considers six different models of control. These mecdels
are described in general terms in this section, and pseudo code for the models
is provided in Agpendix 1. The models are similar in many respects differing
usually only in some particular aspect of control. Therefore, only the first
model is presented completely. The others ares described by indicating how
they differ from the firat model.

3.1 IHE XFDPS.1 CONTROL MODEL

The XFDPS.1 control model was first defined in [Sapo80] and further
refined in [Ensl8i]. With the aid of a simulation environment, this model has
been even more completely defined. The XFDPS.1 model is composed of six types
of components: TASK SET MANAGERs, FILE SYSTEM MANAGERs, FILE SET MANAGERs,
PROCESSOR UTILIZATION MANAGERs, PROCESSOR UTILIZATION MONIUCRs, and PROCESS
MANAGERs. (See Figure 1,) The basic strategy of this model of control is to
partition the system's resources and assign separate components to manage each

partition.

3.1.1 Iask Set Mapager
A TASK SET MANAGER is assigned to each user terminal as well as to each

executing command file. The name TASK SET MANAGER results from the nature of
user work requests which originate from user terminals and command files. The
work requests specify one or more executable files called tasks (these contain
either object code or commands) and any input or output files used by the
tasks, It is possible for the tasks of a work request to communicate, and
this communication (task connectivity) is also described by the work request.
Therefore, each work request specifies a set of tasks, and it is the Jjob of
the TASK SET MANAGER to control the execution of that set of tasks.

When a work request arrives, the TASK SET MANAGER parses the work
request and initiates construction of the task graph for this work request.
In X'DPS.1, only a single copy of the task graph is maintained. This copy is
stored 1t the node where the TASK SET MANAGER for the work request resides.
At this stage of work request processing, the task graph contains the initial
resource requirements for the work request.

Georgia Institute of Technology Evaluation of FDPS Control Models
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Bt

PROCESS MANAGER -~ 1 per node

Figure 1, The XFDPS.1 Model of Control

In the next step, a message is sent to the FILE SYSTEM MANAGER residing
on the same node as the TASK SET MANAGER requesting file availability informa-
tion concerning the files needed by the work request. A message is also sent
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to the PROCESSOR UTILIZATION MANAGER residing on the same node as the TASK SET
MANAGER requesting processor utilization information, This includes the
latest utilization information that this partiocular node has obtained from all

other nodes,

When the file availability information and processor utilization
information arrive, a work distribution and resource allocation decision is
made by the TASK SET MANAGER, At this point, specific files are chosen from
the list of files found available and specific processors are chosen as sites
for the execution of the various tasks of the work request's task set., 1In
this study no attempt is made to investigate different strategies for

distributing work; instead, a single strategy is used for all experiments,
(Other work in progress in the FDPS Research Program at Georgia Tech 1is
examining the complete area of work distribution and resource allocation.) 1In

this strategy, a process 1is assigned to execute on the same node that its
object code resides. Data files are not moved but accessed from the node on

which they originally resided. ‘{
i

Once the allocation decision is r .de, a request for the locking of the
chosen files is sent by the TASK SET MANAGER to the FILE SYSTEM MANAGER resid-
ing on the same node as the TASK SET MANAGER. The desired type of access
(READ or WRITE) is also passed along with the lock request. Multiple readers
are permitted, but readers are denied access to files already 1locked for
writing, and writers are denied ac:ess to files locked for reading or writing.
If the FILE SYSTEM MANAGER informs the TASK SET MANAGER that all the desired
files have been successfully locked, execution of the work request can be
initiated. If the 1locking operation is not successful, the work request is

A i i

aborted, and the necessary cleanup operations are performed. The next step

after successful file allocation is to send a series of messages to the

PROCESS MANAGERs on the various nodes that have been chosen to execute the :
tasks of the task set informing them that they are to execute a specific sub- ié

set of tasks, i

When a task terminates, its PROCESS MANAGER reports back to the TASK SET
MANAGER and indicates the reason for the termination (normal or abnormal),’
When an indication of an abpormal termination is received, the remaining
active tasks of the task set are terminated.
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After all tasks of a task set have terminated, one of three possibl .
actions oocours, If the source of commands is a user terminal, the user is
prompted for a new command., If the source is a command file, the next command
is obtained. Finally, if the source is a command file and all the commands
have been executed, the TASK SET MANAGER is deactivated and the PROCESS
MANAGER on the node where the command file was being executed is informed of

the termination of the command file.

3.1.2 Elle Syaten Manager 3
Replicated on each node of the system is a component called the FILE

SYSTEM MANAGER. This module handles the file system requests from all of the
TASK SET MANAGERs including requests for file availability information and
requests to lock or release files. FILE SYSTEM MANAGERs do not posseas any
directory information. Therefore, to locate a file, it is necessary that all
nodes are queried as to the avallability of the file.

The FILE SYSTEM MANAGER satisfies the requests by consulting with the
FILE SET MANAGERs (see Section 3.1.3) located on each node of the system. For t
example, when the FILE SYSTEM MANAGER receives a request for file availability
information, messages are prepared and sent to all FILE SET MANAGERs. The 7
FILE SYSTEM MANAGER collects the responses, and when responses from all FILE ;
SET MANAGERs have been obtained, it reports the results to the TASK SET
MANAGER which made the request. Requests for the 1locking or releasing cf
files are handled in a similar manner.

3.1.3 Eile 3at Manager

The files residing on each node of the aystem are managed separately
from the files on other nodes by a FILE SET MANAGER that i1is dedicated to
managing that set of files. The duties of the FILE SET MANAGER include
providing file availability information to inquiring FILE SYSTEM MANAGERs and
reserving, locking, and releasing files as requested by FILE SYSTEM MANAGERs.
It should be noted that a side effect of gathering file availability informa-
tion is the placement of a reservation on a file that is found to be

available,

3.1.4 Proceas Utilization Manager

Also present on each node is another component of the executive control, :;
the PROCESSOR UTILIZATION MANAGER. This module is assigned the task of col-
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lacting and storing processor utilization information which is obtained from
the PROCESSOR UTILIZATION MONITORs (see Section 3.1.5) residing on each of the
nodes. When a TASK SET MANAGER asks the PROCESSOR UTILIZATION MANAGER for
utilization information, the PROCESSOR UTILIZATION MANAGER responds with the
data available at the time ot the query.

3.1.5 Procaasor Utilixation Monitor
Each node of the syatem also has a PROCESSOR UTILIZATION MONITOR that is

responsible for collecting various measurements needed to arrive at a value
describing the current utilization of the processor on which the PROCESSOR
UTILIZATION MONITOR resides. The processor utilization value is periodically
transmitted to the PROCESSOR UTILIZATION MANAGERs on all nodes,

3.1.6 Proceas Mapager
Residing on each node of the system is a PROCESS MANAGER whose function

is to supervise the execution of processes executing on the node on which it
resides. The PROCESS MANAGER is responsible for activating and deactivating
processes. If the execution file for a process is an object file, the PROCESS
MANAGER will load the object file into memory. This file may reside either
locally or on a distant node. If the execution file is a command file, the
PROCESS MANAGER sees that a TASK SET MANAGER is activated to respond to the
comaands of that command file. The PROCESS MANAGER is also responsible for
handling process termination, This involves releasing local resources held by
the process and informing the TASK SET MANAGER that requested the ~xecution of
the process as to the termination of the process.

3.1.7 Elle Procean

In order to provide file access in a manner that is uniform with the
operation of the rest of the system, another type of control process is
utilized, the FILE PROCESS., For each access to a file, an instance of a FILE
PROCESS is created. Therefore, if proc ss "A"™ is accessing file "X" and
process "B" is also accessing file "X*, there will be two instances of a FILE
PROCESS, each responsible for a particular access to file "X". Communication
between FILE PROCESSes and user processes (file reads and writes) or between
FILE PROCESSes and PROCESS MANAGERs (loading of object programs) is handled in
the same manner as communication between user processes.

Georgla Institute of Technology Evaluation of FDPS Control Models
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3.2 THE XFRPS.2 CONTRQL MOQDEL

The XFDPS.2 model of control differs from the XFDPS.1 model in the man-
ner in which file management is conducted. In this model a sentralized direc-
tory is maintained. In Appendix 1 the component named FILE SYSTEM MANAGER
maintains this directory. This component resides on only one node, the node
where the file system directory is maintained. TASK SET MANAGERs communicate
directly with this component in order to gain availability information, lock

files, or release filea.

When a file 1s locked it is necessary to create a FILE PROCESS in order
to provide access to the file, To accomplish this task, the FILE SYSTEM
MANAGER sends a message to the node where the file resides requesting activa-
tion of a FILE PROCESS providing access to the file, Once this proceas is
created, the FILE SYSTEM MANAGER is given the name of the FILE PROCESS which
it then returns to the TASK SET MANAGER that requested the file lock.

3.3 IHE XFDRS.3 CONTROL MQDEL

In the XFDPS.1 model of control a search for file availability informa-
tion encompassing all nodes is conducted for each work request, Obtaining
this global information is important when one is attempting to obtain optimal
resource allocations. In those instances where this is not important a slight
variation on the search strategy may be utilized, This atrategy 1is the
distinguishing feature of the XFDPS.3 model of control.

Instead of immediately embarking on a global search, a search of local
resources (i.e., resources that reside on the same node where the. work request
originated) is conducted. If all of the required resources are located, no
further searches are conducted, and the operationa of locking files, activat-
ing process, etc., described for model XFDPS.1 are executed, If on the other
hand all required resources could not be found, the atrategy of model XFDPS.1

is utilized.

3.4 IHR XFDPS.3 CONTROL MODEL

The XFDPS.4 model of control utilizes a file management strategy similar
to that of the ARAMIS Distributed Computer System [Caba79a,b] in which mul-
tiple redundant file syatem directories are maintained on all nodes of the
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system. However, since detailed information about the system described in
[Caba79a,b] is not available, mcdel XFDPS.4 ocannot be claimed to be an
accurate model of that system,

To preserve the ccnsistency of the redundant copies of the file system
directory and to provide mutually exclusive access to resources, the following
steps are taken, A control message, the control vector (CV), is passed from
node to node according %o a predetermined ordering of the nodes. The holder
of the CV can either release, reserve, or lock files. Therefore, each node
collects file system requests and waits for the CV to arrive., Once in posses-
sion of the CV, a node can perform the actions necessary to fulfill the

requests it has collected.

The modifications to the file system directory are then placed into a
message called the update vector (UPV) which is passed to all nodes in order
f to bring all copies of the file system directory into a consistent state.
When the UPV returns to the node holding the CV, all updates have been recor-
ded, and the CV can be sent on to the next node, ¢

3.5 IHE XFDPS.5 CONTROL MODEL

in the XFDPS.5 model, files are not reserved when the initial
availability request is made, and they are locked only after the work
distribution and resource allocation decision has been made. This strategy ]
leads to the possibility of generating an allocation plan that is impossible
to carry out if a file chosen for allocation has been given to another process
during the interval in which the resource allocation decision is made. In the
previous models, the executive control 1is assured of an allocation being

L i rcat

accepted, assuming no component fails.

3.6 IHE XFDPS.6 CONTROJ, MODEL

In the XFDPS.1 model, the task graph for a particular work request is
maintained as a single unit and stored on only one node, the node at which the
work request originates. The XFDPS.6 model of control utilizes a slightly
different atrategy. The task graph is constructed on a single node, but once
a work distribution and resource allocation decision has been made, portions
of the task graph are sent to various nodes. Specifically, those nodes chosen
to execute the various tasks of the task graph are given that portion of the
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h task graph for which they are responsible. Each node, then, must activate the
tasks aasigned to it and ocollect termination information concerning those

tasks, When all tasks asaigned to a particular node have terminated, the node

vhere the work request originally arrived is informed of their termination.

One can view this atrategy as a two-level hierarchy.

g
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SECTION A
THE SIMULATOR

In order to obtain quantitative information concerning the relative per-
formance of the various models of control, simulation experiments are conduc-
ted. The goals of these experiments are to validate the models of control
described in Section 3 and gather data on their relative performance, 1In
order to be able to express the differences between the various models, it 1is
necessary that the simulator provide for the specification of relatively low
level features of the control models,

4.1 REQUIREMENIS FOR IHE SIMULATOR

The goals described above necessitate the establishment of several
requirements for the simulator. In order to handle low level control problems
and document solutions to these problems, the control models must be defined
in a language capable of clearly expressing the level of detail required at
this stage of design. Because & number of models are to be tested, it is
important that the coding effort for these models be minimized.

It is expected that the architecture of the network as well as that of
individual nodes 1in the network will affect the relative performance of
various control models. Therefore, one must be able to easily modify various
architectural attributes, This includes network connectivity, network link
capacities, and the capacities and processing speeds of the individual nodes
of the network.

Validation of control models is one of the primary goals of the simula-
tion studies. To achieve this goal the simulator must provide the ability to
establish specific system states. In other words, specific detailed instances
of work requests need to be constructed along with the establishment of
specific resource states (e.g., one must be able to set up a series of files
in specific locations), These capabilities allow one to exercise specific
features of the control models.

The simulation studies also provide performance information. The
simulator must utilize a technique for generating work requests reflecting
specific distributions. It also needs to collect a variety of performance

Georgia Institute of Technology Evaluation of FDPS Control Models
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Page 26 THE SIMULATOR Section 4

measurements and generate appropriate statistical results,

4.2 IHE STROCTURE OF IHE SIMULATOR

The simulator is event based and programmed in Pascal. It simulates the
hardware components of an FDPS, functions typically provided by local operat-
ing systems, functions provided by a distributed and decentralized control,
and the load placed upon the system by users attached to the system through

terminals.

§.2.1 Arghitecture Simulated
The hardware organization that is simulated is depicted in Figure 2.

The complete system consists of a number of nodes connected by half-duplex
communication links. Each node contains a CPU, a ocommunications controller,
and perhaps a number of disks. Connected to each node are a number of user
terminals. The disk simulation is such that no actual information is stored;
only the delays experienced in performing disk input/output are considered.
User interprocess communication (IPC) is simulated with time delays but no
exchange of real data takes place. However, IPC betwsen components of the
executive control involves both simulation of the time delays involved in mes-
sage transfer and the actual transfer of oontrol information to another

simulated node,

%.2.2 Local Qperating Svatem

Components typically found in local operating aystems are also
simulated. These include the dispatcher and the device drivers, The 1local
operating systems are multitasking systems with each node capable of utilizing
a different time slice. User processes are serviced in a first come first
served manner and can be interrupted for any of the following reasons: 1) a
control process needs to execute (uger process is delayed until the control
process releases the processor), 2) the user process exhausts its time slice
(user process is placed at the end of the READY QUEUE), 3) the user process
attempts to send or receive a message (user process is placed on the MESSAGE
BLOCKED QUEUE), or 4) the user process terminates.

The processes serviced by the simulator are capable of performing the
following actions: compute, send a message, receive a mesaage, or terminate,
A process can access a file by communicating with a FILE PROCESS which is
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Figure 2. The Architecture Supported by the Simulator for Each Node

activated for the specific purpose of providing access to the file for this
process, FILE PROCESSes are the only proceases that initiate any disk
activity. As far as a user proceas is concerned, a file access is =cimply a
communication with another process.

The following process queues are maintained: READY QUEUE, DISK WAITING
QUEUE, and MESSAGE BLOCKED QUEUE. (See Figure 3.) A newly activated process
is placed in the READY QUEUE, The DISPATCHER aelects a process from the READY
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QUEUE to run on the CPU, If the running process exhausts its time slice, it
is returned to the READY QUEUE, If it either attempts to send or receive a
message, it is placed in the MESSAGE BLOCKED QUEUE where it remains until
either the message is placed in the proper link queue (send operation) or a
message 1s received (receive operation). After leaving the MESSAGE BLOCKED
QUEUE, a process returns to the READY QUEUE.

The only processes capable of performing disk input/output on the
simulator are FILE PROCESSes. These are executive control processes that are
assigned to provide access to the files of the file system. When a file
process attempts a disk access, it is blocked and placed jin the DISK WAITING
QUEUE for processes walting to access that same disk. As the disk requests
are satisfied, these processes are returned to the READY QUEUE,

4.2.3 Mensage Syatem

The communication system consists of a series of half-duplex connections
between pairs of nodes. Messages are transmitted using a store-and-forward
method. Messages received at intermediate nodes in a path are stored and for-
warded to the next node at a time dictated by the communication policy being
utilized. For example, the policy may require that the new message be placed
at the end of the queue of all messages to be transmitted on a particular
link, (This is the policy utilized in all experiments.)

The message queues avallable on each node are depicted in Figure 4. If
a newly created message is an intranode message, it is placed in the MESSAGE
QUEUE; otherwise, it is placed in the LINK QUEUE that corresponds to the com-
munication link over which the message is to be transmitted. Messages are
removed from the LINK QUEUEs and transmitted as the communication links become

avallable,

Messages in the MESSAGE QUEUE originate either from processes sending
intranode messages or from the communication 1links connected to the node.
Messages destined for processss on the same node as the MESSAGE QUEUE are
placed in the appropriate PORT QUEUE of the process to which they are addres-
sed, Messages that have not yet reached their destination are placed in the
LINK QUEUE corresponding to the communication link over which the message 1is

to be transmitted.
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3.2.4 Joput for the Simulator
The simulator requires the following six types of input:

1. Control model

2. Network configuration (i.e., nodes and their connectivity)
3. Work requests

4, Command files

5. Object files

6. Data files

The nature of these inputs and how they are provided to the simulator is

described below,

4.2.4.1 Control Model

There arae two possible approaches for representing the control model in
the simuiator: 1) data to be interpreted by the simulator and 2) code that is
actually part of the simulator, The firast technique requires that the
simulator contain or include a rather sophisticated interpreter in order to
provide a convenient language with which one can express a control model that
addresses the control problems to a sufficiently low level cf detail. The
second technique requires the careful construction of the simulator such that
those portions of the simulator that express the control model are easily
identified and can be removed and modified with minimal effort. The second
technique also requires a recompilation of the simulator code each time a
control medel modification is performed.

The problems involved in constructing a sophisticaced interpreter are
much greater than those faced in organizing the simulator so that the portions
of code expressing the control model are easily isolated. Therefore, in this
simulator, the control models are expressed in Pascal and are actually part of
the simulator rather than being separate input to the simulator.

§.,2.4.2 Network Configuration

The attributes provided as input to the simulator which are concerned
with the physical configuration of the FDPS are provided in Table 2., Figure 5
describes the syntax of the statements used to enter the FDPS configuration
information. Two types of input can be provided, node configuration informa-
tion and communication linkage information. Each statement beginning with the
letter 'n' describes the configuration of the node which is identifisd by the
digit following the 'n'. This statement describes certain characteristics
concerning the processor at the node (memory capacity, processing speed, and
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the length of a user time slice) and the peripheral devices (user temiiis:s
anJ disks) attached to the processor. FEach statement beginning with the 1let-
ter '1' describes a half-duplex communication link between two nodes. It
identifics the source and destination nodes by their identification number
(the digit following the 1letter 'n' on statements describing nodes) and
indicates the effective bandwidth of the communication link. It is assumed
that all messages are transmitted at this speed, and no attempt is made to
simulate errors in transmission and the resulting retransmissions.

Table 2. Physical Configuration Input to the Simulator

Hode Information

Memory Capacity (bytes)

Processing Speed (Instructions/sec)
Size of a Time Slice (microseconds)
Number of Attached User Terminals
Number of Attached Disks

Disk Transfer Speed (bytes/second)
Average Disk Latency (microseconds)

«dnk Information

Identities of the Source and Destination Nodes
Bandwidth (bytea/second)

4.2.4.3 Work Requesats
Work requests are assumed to originate from two sources: 1) directly

from a wuser, or 2) through command files. The syntax of a work request is
given in Figure 6. This syntax is a subset of the command language available
through the Advanced Command Interpreter of the Georgia Tech Software Tools

System [Akin80]. |

A work request is basically a specification of a logical network of
tasks. The nodes of the 1logical network represent tasks and the links
represent communication paths between the tasks. A node specification
includes the following: an optional label to identify the node, a command
name (this may name either an object file or a command file), and any I/O
redirection. A node can be identified either by its label, if it possesses
one, or by its position on the command line. For example, 1in the command
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<entry> ::= <link> | <node>
<link> ::= 1 <{from> <to> <bandwidth> (all links are half-duplex)

§§ <node> ::= n <node id> <memory> <speed> <{timeslice> <{terminals>
o <disk> <disk speed> <disk latency>

{from> ::= <node id>

B

<to> ::= <node id>

;; <node id> ::= <integer>

: 2 <bandwidth> ::= <{integer (link bandwidth in bytes per second)>

<memory> ::= <integer (main memory in bytes)>

<speed> ::= <{integer (average speed of the CPU in instructions per second)>
<timeslice> ::= <integer (microseconds)>

<terminals> ::= <integer (number of attached user terminals)>

<disk> ::= <integer (number of attached disks)>

<disk speed> ::= <integer (transfer speed of disk in bytes/sec)>

<disk latency> ::= <{integer (average disk latency in microseconds)>

<integer> ::= <digit> { <digit> }

Examples:

n 1 256000 5000000 1000 50 3 500000 100
(Node #1 has 250K bytes of memory, processes at the rate of
5 MIPS, has a time slice of 1000 microseconds, has 50 user
terminals attached to it, has 3 disks attached to it, ,
each disk can transfer at the rate of 500 000 bytes/sec, ]
and each disk has an average latency of 1u0 maicroseconds.) ‘

1 5 6 4000000 .
(This link connects node 5 to node 6 with a half-duplex ]
communication path that can transmit at the rate of g

4 million bytes/sec,)

Figure 5. Syntax of FDPS Configuration Input for the Simulator i
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<work request)> :i= <{logical net)>

<logical net> ::= <logical node> { <node separator>
{ <node separator> } <logical node> }

<node separator> ::= , | <pipe connection>

<pipe connection> ::= [ <port> ] '{' [ <logical node number> ]
[ .<port> ] i

<port> ::= <integer>
<logical node number> ::= <integer> | $ | <label>
<logical node> ::= [ :<label> ] <simple node>

<simple node> ::= { <i/o0 redirector> } <command name>
{ <i/0 redirector> }

<i/o redirector> ::= <file name> '>' [ <port> ] | ,
[ <port> ] '>' <file name> | i

[ <port> ] '>>' <file name)> | ]

1> [ <port> ]

<command name) ::= <command file name> | <object file name>

<labeld ::= <{identifier>

{file name) ::= <data file name>

1
]
i
|
;
E
i
i

<identifier) ::= <letter> { <letter> | <digitd> }

<integer> ::= <digit> { <digit> }

Examples:

pent | pem2 1la 2lb :a pgm3 | pgm4 le.1 :b pgm5 | pgmé |.2 :c pgmT

(For an explanation of this example see Figure T.) ;

Figure 6, Work Request Syntax
(Based on [AKIN8O])

. I
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below, the second node has the label 'a' and the command name 'cmnd2',

omnd1 | :a cmnd2
This node ocan be identified either by the label 'a' or its position '2' but
not by its name, ‘omnd2°'.

I/0 redirection is used *o connect ports of task to files in the file
system. (The default for I/0 is "standard input/output,® i.e,, the user's
terminal.) In the example below, input port number three is connected to file
'in' and output port number one is connected to file 'cut'.

in>3 cmnd 1>out
The specification of the port number in the I/0 redirector is optional. If it
is omitted, the next unused port number is assumed. Therefore, in the example
below, output port number one is connected to file 'outi', output port number
two 1is connected to file 'out2', and output port number three is connected to
file 'out3'.

cond >outi 2>out2 “out3

Nodes are separated by node separators which can be either the comma
symbol or the vertical bar symbol. The comma symbol is used to separate a
node that does not have any output ports connected to any other nodes, The
vertical bar symbol or pipe symbol is used to identify the connection of an
output port of the node immediately preceding the pipe symbol and the input
port of another node. The port numbers and logical node number of the pipe
specification may be omitted and default values assumed. If a port number is
omitted, the next unused port number for the node possessing the port 1s used.
The logical node number of the pipe specification identifies a node of the
lowical network. It may either be an integer identifying the position of the

: on the command line, the symbol '$' which identifies the last node on the
command line, or a node label. If no other node is specified, the node
impediately following the pipe symbol is assumed to be the destination of the
ou:put of the pipe.

An example of a work request utilizing this syntax is shown in Figure .
This command consists of seven logical nodes connected in the manner depicted
in the figure, It demonstrates several forms of pipe specifications including
the use of labels in identifying nodes.

Georgia Institute of Technology Evaluation of FDPS Control Models
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Work Request:

penl | pgm2 1]la 2(b :a pgm3 | pegm# {c.1 :b pgmS | pgmé |.2 :c pgmT
(o) (1) (2) (3) (%) (5) (6) n (8) (9)

(0) Output port 1 of pgml is connected to input port 1 of pgm2.

(1) Output port 1 of pgm2 is connected to input port 1 of the
logical node labeled "a," pgm3.

(2) Output port 2 of pgm2 is connected to input port 1 of the
logical node labeled "b," pgm5.

(3) Label for the logical node containing pgm3 as its execution
module,

(4) Output port 1 of pgm3 is connected to input port 1 of pgmli.

(5) Output port 1 of pgmi is connected to input port 1 of the
logical node labeled "c,™ pgm7.

(6) Label for the logical node containing pgm5 as its execution
module.

(7) Output port 1 of pgm5 is connected to input port 1 of pgmé.

(8) Output port 1 of pgmwé is connected to input port 2 of pgnmT.

(9) Label for the logical node containing pgm7 as its execution
module,

Data Flow Graph of the Work Request:

paml

T
| N T

©

§<——§<——l

i::::

Figure 7. Example of a Work Request
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In order to simulate the load generated by users entering work requests
from user terminals, a population of work requests is created. The form of
the input for creating the work request population is provided in Figure 8,
Each .l1ine of input contains a series of node identifiers followed by a colon
which is followed by a work request. The node 1identifiers indicate which
nodes are to contain the given work request as a member of the node's popula-
tion of work requests. Therefore, the result of this input is the construc-
tion of a population of work requests for each node. In a subsequent
paragraph, the nature of the load generator is discussed and indicates how
this information is utilized.

<work request population> ::= <work request entry>

<{work re&uest entry>
<work request entry> ::= { <node identifier> } : <work request>
<node identifier> ::= <{integer>
<work request> ::= (see Figure 6)

<iateger)> ::= <digit> { <digitd> }

Examples:
12345 : pgml | pgm? { the work request 'pgmi | pgm2!
is available on nodes 1, 2, 3,
4, and 5 }
1 3 : pgmi { the work request 'pgmi' is

avajilable on nodes 1 and 3 }

Figure 8, Syntax of Work Request Population Input to the Simulator

§.,2,4.4 Command Files
Command files are constructed for the simulator using the syntax

deacribed in Figure 9. This input specifies a unique name for the file, the
simulated node at which the file resides, and the commands contained in the
file. These commands conform to the syntax of work requests presented in

Georgia Institute of Technology Evaluation of FDPS Control Models
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Figure 6. These statensnts provide one with the ability of construoting com-
mand files on particular nodes which are referenced either by commands
originating from user terminals or other command files,

{command file> ::= C <node id> <command file name>)>
{ <work request> }
ENDC

<node id> ::= <integer>

{command file name> ::= <up to 8 characters)>

<{work request> ::=z (see Figure 6)

<integer> ::=z <digit> { <digitd> }

Examples:

C 1 cfilet
pem1 | pam2 1{a 2|/b :a pgm3 | pgmit {c.1 :b pgmS | pgmé |.2 :c pgm7

pem1 | pgms
ENDC

Figure 9. Syntax of Command File Input to the Simulator

4.2.4.5 Objeat Files

Figure 10 depicts the ayntax used to express object files in the
simulator, The input specifies a unique name for the file, the simulated node
at which the file resides, the length of the file in bytes, and the simulation
seript. The script contains a series of statements that describe the process
actions that are to be simulated. There are five actions which can be
simulated: 1) compute, 2) receive a message, 3) send a message, 4) loop back
to a previous command a specific number of times, and 5) terminate the process
simulation. By appropriately combining these commands, one can construct a
sceript which simulates the activities of a given user process.

h.2.4.6 Data Files
Data files, depicted in Figure 11, are the finzl type of file which can
be presented to the simulator. The data file input contains an identifying

Evaluation of FDPS Control Models
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<object file> ::= O <node 1d> <object file name> <object file length>
{ <action> }
ENDO

<node 1d> ::= <{integer>

<object file name> ::= <up to 8 characters>

<objeot file length> ::= <integer>

<action> ::= <comp> | <loop> | <rov> | <send> | <term>
<comp> ::= ¢ <# of instructions>
<loop> ::= 1 <instruction #> <count>

<rov> ::= r <{port>

L <send> ::= s <port> <size (bytes)>

{term> :i= t

<# of instructions>, <instruction #>, <count>, <port>,
{size> ::= <{integer>

<integer> ::= <digit> { <digit> }

Examples:
0 1 objectt 1000 (object file is 1000 bytes long)
¢ 25 (simulate 25 computation instructions)
1110 (loop back to the first instruction 10 times)
r2 (read a message from port 2)
s 4 100 (send a message of 100 bytes in length to port i)
t (terminate the execution of this process)
ENDO

Figure 10. Syntax of Object File Input to the Simulator

name, a node identification indicating the file's simulated location, and a
specification of the file size. Data is not actually stored by the simulator.

4,2.5 The Simulator Deaign

The ' simulator is 2omposed of several modules. In each module, closely

related data structures and the procedures that modify these data structures
are defined, The only access to the data structure is through these

Georgia Institute of Technology Evaluation of FDPS Control Models
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<data file> ::= D <node id> <data file name)> <{size>
<node id> ::= <integer>

{data file name> ::= <up to 8 characters>

<{size> ::= <{integer (bytes)>

<integer)> ::= <digit> { <digit> }

Examples:

D 3 testfile 100000 (defines a data file named 'testfile'
which will reside on node 3 and will
contain 100,000 bytes of information)

Figure 11. Syntax of Data File Input to the Saimulator

procedures, This design allows one to isolatc the portion of the simulator
that represents the model of oontrol and conduct experiments with various
perturbations of the control model. Without this type of design, each pertur-
bation could easily require significant changes to the entire simulator. Tre
ma jor modules of the simulator are described below.

4,2.5.1 Node Module

The NODE MODULE simulates the hardware activities of each node (e.g.,
the processor and attached disks)., This includes the simulation of user
activities as specified by process scripts and the simulation of disk traftfic.
In addition, this module provides the local operating system functions of
dispatching, blocking processes for message transmission or reception, and

unblocking processes,

4,2.5.2 Message Systea .

All activities dealing with messages are handled by the MESSAGE SYSTEM.
Among the services provided by this module are the following: 1) routing of
messages, 2) placement of messages in LINK QUEUEs, 3) transmission of messages
across a link, 4) transmission of acknowledgement signals to the source end of
a link, and 5) placement of messages in PORT QUEUEs.

Evaluation of FDPS Control Models
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4,2,5.3 FPile System

The FILE SYSTEM stores the various types of files, which include object,
command, and data files, It stores the scripts for object files and provides
access to the scripts, Similarly for command files, it otores the work
requests for each command file and controls access to the file. It maintains
directories that provide location information and access control information.
All executive control actions pertaining to the file system are contained in
this module.

§.2.5.4 Command Interpreter
The COMMAND INTERPRETER parses work requests and constructs the task

graph describing the initial resource requirements for a work request.

4.2.5.5 Task Set and Process Manager

The TASK SET AND PROCESS MANAGER performs all control activities
required to manage all phases of execution of a work request, This includes
activating the COMMAND INTERPRETER; communicating with the FILE SYSTEM in
order to gather information, allocate files, or deallocate files; perform work

distribution and resource allocation; and manage active processes.

4,2.5.6 Load Generator

Work request traffic originating from the wuser terminals attached to
each node 1s created by the LOAD GENERATOR. A series of work requests
provided by a user at a terminal is called a user session. To simulate a user
session, the LOAD GENERATOR randomly chooses a session length from a user
specified interval. A session starting time (measured in seconds) is also
chosen at random from a user specified interval. Each work request for the
user session 1s chosen at random from the population of work requests
originally created for each node via the input statements described above (see
Figure 8). The LOAD GENERATOR also simulates the "think time" between work
requests by randomly ochoosing a time (measured in seconds) from a user

specified interval,
4.2,6 Parformance Measuremants

Performance measurements are made concerning three types of data: 1)
the quantity of message traffic, 2) the magnitudes of various queue lengths
and their associated waiting times, and 3) the tize of 4average work request

response times and throughput.

Georgia Institute of Technology Evaluation of FDPS Control Models
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To identify the impact of the executive control on the communication
system, various communication meéasurements are obtained. A cumulative total
of the number of user messages and control messages over the entire system is
maintained. This allows one to compare the number of control messages to the
number of wuser messages and thus ldentify how the communication aystem is

being utilized. In addition, a count, again categorized by user messages and
control messages, 1s maintained in matrix form to ideniify the total number of
messages originating at a particular node and destined for every other node.
Traffic counts on each communication link are also recorded according to their
classification as user messages or control messages. Finally, activity in the ]
LINK QUEUEs, where messages wait to be transmitted over each 1link, 1s
maintained. These measurements include minimum queue length, maximum queue
length, average queue length, minimum waiting time in the queue, maximum wait-

ing time, and average waiting time,

In addition to measurements concerned with the LINX QUEUEs, a similar %
analysis of process queues i1s performed. The queues on each node that are t
analyzed are the READY QUEUE (processes waiting for access to the CPU), MES-

SAGE BLOCKED QUEUE (processes that are either waiting to place a message in a
LINK QUEUE o» processes walting to receive a message), and DISK WAITING QUEUEs

oy

(processes waiting for access to a particular disk). The types of
measurements obtained are identical to those for the LINK QUEUEs,

To identify the effectiveness of the control strategy, measurements are
obtained that identify how effectively user processing is accomplished. For
each node and cumulatively for all nodes, the following measurements are

obtained for user sessions, work requests, and processes:

1. The total number of user sessions, work requests, and proces-
ses. . i

2. The average service time for each user session, work request, g
and process.

3. The average response time for each user session, work request,
and process,

y, The throughput for user sessions, work requests, and processes,

Georgia Institute of Technology Evaluation of FDPS Control Models
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SECTION 5
THE SIMULATIOR EXPERIMENTS

In the second phase of experimentation two groups of simulation
experiments designed to measure the performance of the various models in an
FDPS environment are conducted. In addition, a number of experiments are con-
ducted with a single node network. In the first group of FDPS experiments,
only one work request i1s processed by the entire network. The intent of this

set of experiments is to determine the minimum delay experienced by a work
request with each model of control. In the second group of experiments, a
load is placed on all nodes. These studies are designed to examine the
behavior of the various models of decentralized control operating in a produc-
tion mode with various physical interconnection topologies. The single node
experiments provide a means of comparing the performance of an FDPS to that of

isolated uniprocessors.

5.1 THE SIMULATION ENVIRONMENTS 1

The environment in all FDPS axperiments consists of a network of five
nodes interconnected in various ways providing five different interconnection
topologies: 1) a unidirectional ring, 2) a bidirectional ring, 3) a star, 4)
a fully connected network, and 5) a tree. (See Figure 12.) The nodes of each
network (see Figure 2) are all homogeneous, and each consists of a processor §

capable of executing one million instructions per second. Connected to each
node are ten user terminals and three disk drives. The disks are assumed
identical, each with an average latency of 100 microseconds and a transfer

rate of 500,000 bytes per second.

5.1.1 Environmental Yariables
In addition to different topologies, the bandwidth of the communication

links and the model of control are also varied for the experiments. Table 3
provides a brief comparison of the various models. Only the first four models
of control (XFDPS.1, XFDPS.2, XFDPS.3, and XFDPS.4) are utilized in these
initial experiments. Models XFDPS.5 and XFDPS.6 differ from model XFDPS.1 in
details that are not examined in these experiments. Therefore, they are not
considered in these experiments because their observable results will be
identical to those of XFDPS.1. It is instructive, though, to note that not

Georgia Institute of Technology Evaluation of FDPS Control Mocels




THE SIMULATION EXPERIMENTS Section 5

Bidirectional Ring

Unidirectional Ring

Star Fully Connected

Tree

Figure 12. Network Interoconnection Topologies
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all model variations result in performance differences., [lnaily, it should be
noted that the central directory of model XFIPS.2 i1s maintained on node 1 in

all experiments.

5.1.2 Environmental Constants

Several environmental features remain constant for all experiments. In
all cases, it 1s assumed that all control messages are 50 bytes long. All
control models utilize the same policy for distributing work and allocating
resources, This policy simply requires all processes to execute on the node
where the object code for that process resides. There is only one copy of the
object code for each process in the network for these initial experiments.
The work distribution and resource allocation policy utilized for tiese tests
requires that data files be accessed at the location where they originally
reside and not be moved prior to execution. In_every experiment, all files

are unique thus leaving the control with only one resource allocation alter~
native.

The work requests arriving at all nodes are of the type 'in> cmnd'. The
data file 'in' provides input to the process resulting from the loading of the
object file 'cmnd'. This provides an environment in which files are accessed
only by means of reads thus eliminating the possibility that certain work
requests are elther delayed or aborted due to insufficient resources.
Therefore, it is guaranteed that all control activity resuits in the success-

ful completion of a work request,

In all cases, the object file 'cmnd' and data file 'in' are located on
the same node. This means that all file accesses are local file accesses and
thus control message traffic is free of competition by user messages for com-
munication resources. This provides an environment in which the effects of
the control models can be more directly observed without the influence of an

unpredictable collection of user messages.

The object files in each case specify the execution of the same script
which 1is depicted in Figure 13. This script describes a process that alter-
nately computes and reads from a data file for 501 iterations, Given the
speed of the processors utilized in the experiments, this results in a CPU
utilization of approximately 5 seconds for each process.

Evaluation of FDPS Control Models
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Table 3. Comparison of the Control Models

! | Technique for| Time ]
| | Gathering | When Files | How 1s the
| File System | Availability | are Reserved | Task Graph

Georgia Institute of Technology

Evaluation of

FDPS Control Models

1 | partitioned | query all ! before | single ‘
| and | nodes | resource | structure i
| distributed | | allocation | on node
! H | and worik | where work ]
! | | distribution | request ]
! | | decisien | arrived |
| ] | | ;
| ! | | :

2 | single | query the | before ! single [
| centralized + central node | resource | structure ;
! copy | | allocation | on node
] | | and work | where work
! ! | distribution | request
! ! | decision | arrived
| | ! !
| ! | |

3 | partitioned | first query | before | single
! and | locally and | resource | structure \
| distributed | then query | allocation | on node i
! | globally if | and work | where work :
| | necessary | distribution | request i
i | | decision | arrived :

ol ! | |
! ! | |

4 | identical | all queries | before | single
! copies | are delayed | resource | structure
| replicated ! until the | allocation ! on node ;
|  on all | eontrol | and work | where work 3
! nodes | vector | distribution | request ]
| | arrives | decision | arrived i
| ! | ! '
! ] | | ;

5 | partitioned | query all | after | single T
| and | nodes | resource | structure .
| distributed | | allocation | on node L
! | | and work | where work P
| ! | distribution | request %

! | | decision | arrived ;
| ] | ! i
| | | ! :

6 | partitioned | query all | before | multiple ‘a
! and | nodes | resource | subgraphs |
! distributed | | allocation | on the nodes :
] | | and work | involved in ]
| ! | distribution | the execution F
| | | decision | of the tasks
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© emant

10,000 compute instructions }

{
{ read from por: 1 }

1 500 { loop back to instruction one 500 times }
{ terminate the proocess }

10000

-0

Figure 13. The Script Utilized By All Processes

s 5.2 GROUP 1 EXPERIMENTS
5.2.1 The Enviropment

The first group of experiments is designed to demonstrate the minimum

delay experienced by a single work request as a result of utilizing each model
; of control. In this set of experiments, all topologies are investigated in :
8 addition to various bandwidths ranging from 1200 to 500,000 bytes per second.
These experiments examine situations in which work requests arrive at both
nodes 1 and 2. In addition, the location of the object-data file pairs named

in the work request are varied over all five nodes. ‘%

Each of these tests requires the simulator to process only one work
request, thus eliminating competition for resources by other work requests.
The work request response times for each environment (model, topology, band-
width, and location of cbject-data file pair) are provided in Appendix 2.1.

5.2.2 Qbservations 1

A comparison of the results of this set of experiments can be seen in :
Figures 14 and 15, In Figure 14, the results of work requests arriving at
node 1 can be seen, Node 1 is chosen in order to demonstrate how XFDPS.2 (the
model with a centralized file system directory located on node 1) can benefit
from the location of a work request. In all cases, model XFDPS,2 provides the

smallest response times, When the work request arrives at another node (e.g.,
node 2) XFDPS.2 no longer provides the minimum response time in all cases.

The sensitivity of XFDPS.2 to the location of the work request can be
attributed to the location of the central file system directory on node 1. If i
a work request arrives at node 1, all resource allocation can be performed
without requiring the transmission of any control messages, The only control ;
messages needed are those necessary to activate the file processes for each
file named in the work request. These messages are transmitted once the files

Georgia Inatitute of Technology Evaluation of FDPS Control Models
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UNIDIRECTIONAL RING
Bandwidth Object and Data File Object and Data File
{bytes/sec) at_Node 1 —at Nede 3
1200 4>1>2=13 y >1=3>2
50,000 b >1>2=3 4 >1=3>2
100,000 4 >1>2=13 4 >1=3>2 :
500,000 4y >1=2=3 4 >1=2=13 '
BIDIRECTLiCHWAL RING i
? Bandwidth Object and Data File Object and Data File 5
{bytes/sec) at Node 1 at Node 3 .
1200 4>1>2=13 4 >1=3>»2
50,000 4 >1>2=3 b>1=3>2
100,000 4>1>2=3 4>1=22=3
! 500,000 y>1=2=3 4 >1=2=3
‘ STAR 3
Bandwidth Object and Data File Object and Data File 5
{bytes/sec) —at Node 1 —at Node 3
1200 y>1>2=3 4 >1=3>2
50,000 4 >1=22=3 4 >1=2=13
100,000 4 >1=2=3 4 >1=2=13
500,000 b >1=22=13 4 >1=2=3
FULLY CONNECTED NETWORK i
% Bandwidth Object and Data File Object and Data File ;
{bytes/sec) —at Node 1 _at Node 3 ;
‘ 1200 4>1>2=3 y>1=3>2 f
! 50,000 4y >1=2=73 4>1=22=13 §
-% 100,000 4 >1=2=3 b >1=2=13 ]
1 500,000 y >1=2=3 4>1=2z3
! TREE
% Bandwidth Object and Data File Object and Data Fi. e
i {bytes/sec) at Node 1 at Node 3
i 1200 y>1>2=3 y>1=3>2 i
50,000 4>1>2=3 y>1=3>2 g
100,000 4y >1>2=3 4>1=3>2 '
500,000 y>1=z22=13 y>1=2=23 !

Notation: 1 > J means response time using model i is greater than that using J
i = } means response time using model 1 is similar to that using J

Figure 14, Comparison of the Response Times for Models 1, 2, 3, and 4 :
that Were Obtained from the Group 1 Experiments in Which :
Work Requests Arrived at Node 1 L
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UNIDIRECTIONAL RING

Bandwidth Object and Data File Object and Data File
—at Node 1 —at Node 3
1200 2>4>1>3 2>1=3>14
50,000 >2>1>3 4 >1=22=213
100,000 4 >1=2>3 4 >1=2=3
500,000 4 >1=2=3 4 >1=22=3
BIDIRECTIONAL RING
Bandwidth Object and Data File Object and Data File
{bytes/sec) _at Node 1 —at Node3
1200 4 >2>1>3 4>1=3>2
50,000 4y >1=22>3 4 >1=2=3
100,000 4 >1=22=13 4 >1=22=13
500,000 4 >1=2=13 y>1=2=3
3 STAR
s
: Bandwidth Object and Data File Object and Data File )
; {bytes/gec) at Node 1 _—at Node 3
» 1200 y >1=22>3 4 >1=3>2
50,000 F>1=22>3 4 5>1=23>2
100,000 y >1=z22-=13 4 51=2=13
500,000 4y >1=:2=3 4 >1=22=3 i
FULLY CONNECTED NETWORK
]
Bandwidth Object and Data File Object and Data File i
{bytes/sec) _at Node at Node 3 ;
1200 45>2>1>3 4y >2>1=3
50,000 y >2=1>3 4y >1=22=3 :
100,000 4>1:=2=3 4}>1=2=3 ]
500,000 4 >1=22=13 4 >1=2=3 g
TREE !
Bandwidth ObJect and Data File Object and Data File :
at Node 1 at Node 3 ‘
1200 4>2>1>3 4 >25>1=3
50,000 4 >1=22>3 4 >2>1=3
100,000 4 >1=2=3 § >1=22=3
500,000 4>1=22-=13 y >1=2 =3
Notation: i > j means response time using model i is greater than that using J ;?
1 = J means response time using model i is similar to that using j L

Figure 15, Comparison of the Response Times for Models 1, 2, 3, and 4§
that Were Obtained from the Group 1 Experiments in Which
Work Requests Arrived at Node 2
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have been allocated. If the work request arrives at node 2, a message must be
sent to node 1 in order to allocate the resources. Once the resources have
been allocated, the messages to activate file processes can be sent,
Therefore a two stage operation with two sets of messages results from this

scenario.

XFDI'S.1 and XFDPS.3 provide an alternate strategy which explains their
superior performance to XFDPS.2 when the work requeat arrives at node 2, In
these models, file allocation and file process activation are accomplished
with one message becauyse the directory for a file and the file itself reside
on the same node. Therefore, once a file has been allocated, the file process
can be activated with an intranode operation.

In all but two cases, XFDPS.U4 results in the largest response time of
all the models. Only when the work request arrives at node 2 in a network
consisting of a unidirectional ring with a bandwidth of 1200 bytes per second
does this model perform better than the other models. This particular
topology provides the longest paths between nodes thus making it quite suscep-
table to communication problems., Model XFDPS.4 performs better at low band-
widths than the other models for this particular topology because only one
message 1s present on the communication net once a work request 1is being
processed. During the resource allocation phase, the update vector (UPV) cir-
culates about the ring; and, after this step, the control vector (CV) is
present on the ring. In all other models, multiple messages are utilized to
process a work request; thus, at low bandwidths, message throughput becomes a

problem.

Finally, the outstanding performence of XFDPS.3 when the object and data
files named in a work request reside on the same node as the work request
should be noted. This is a clear demonstration of the savings possible with
this policy. One should also note that the performance of XFDPS.1 and XFDPS.3
are identical when the named files are on a node different than the one

recelving the work request.

5.3 GROUP 2 EXPERIMENIS

The first set of experiments demonstrates fundamental differences in the
performance of the models when handling individual work requests, but this

Georgia Institute of Technology Evaluation of FDPS Cortrol Models
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type of experiment can often be deceiving. When multiple work requests are
processed concurrently, the simultaneous demands on resources can result in
unexpected delays which cannot be anticipated with the data obtained from the
first set of experiments.,

5.3.1 Ihe Environment

The goal of this set of experiments is to simulate and examine a produc-
tion environment. It would be desirable to establish identical loads for all
experiments, but the nature of the problem makes this impossible. The basic
environment consists of a network of five nodes with ten user terminals
attached to each node. To provide an identical load, one would have to
guarantee that the work requests will be presented to the simulator in the
same order for each experiment. The control models, though, are composed of
autonomous components and by their design will process work requests on each
node at different rates as demonstrated by the results of the group 1
experiments. This implies that even if the work requests at zach node are
presented in the same order, the 1load provided to the simulator will be
different because the timing of work request arrivals may vary.

To clarify this point, consider the following example., Assume the loads
provided to nodes 1 and 2 are as shown in Figure 16. This figure depicts the
order in which the work requests arrive at each node, Because the control
models process work requests at different rates, different processing
sequences are obtained for the control models. Figure 17 depicts the sequence
for model 1 and Figure 18 depicts that for model 2, Thus, although the loads
at each node are controlled, it is impossible to control the sequence of work

requests on all nodes collectively.

Load at Node 1 Load at Node 2
WR1 WR5
WR2 WR6
WR3 WRT
WRY WR8

Figure 16. Example of Loads Presented to Two Nodes

Georgia Institute of Techrnology Evaluation or FDPS Control Models
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Node 1 WR1 WR2 WR3 WRAY
Node 2 WR5 WR6  WRT WR8
Time >

Figure 17. Sequence of Work Request Arrivals When Using Model 1

Node 1 WR1 WR2  WR3 WRY
Node 2 WRS WR6  WR?T WR8
Time >

Figure 18, Sequence of Work Request Arrivals When Using Model 2

Since identical loads cannot be provided, we attempt to construct an
unbiased load. Each terminal lssues its first work request at a time measured
in secords corresponding to an integral value chosen at random from the inter-
val [1, 15]. After a work raquest has completed, the arrival time (measured
in seconds) of the next work request from the terminal is again chosen by
selecting a random value in the interval [1, 15] as the delay from the
termination of the previous work request. The work requests are chosen at
random from a common pool of work requests. Each work request in the pool is
of the type described earlier in section 5.1.2 naming object-data file pairs
in which both the object file Jata file reside on the same node. There is
an equal number of object-data file pairs on each node. Therefore, the
pﬁobability that a newly arrived work request names an object-data file pair
residing on node 1 is 1/5 for 1 = 1, 5. .

In order to obtain steady state data, the taking of measurements is
delayed until a simulation time of 30 seconds after the start of the test.
This insures that all terminals are active and are into their normal
activities. Measurements are then taken until 330 seconds into the simulation
thus providing a measurement interval of 5 minutes. This provides observation
of the processing of over 200 work requests, Longer simulation intervals,
though desirable, are not practical due to the extensive computation necessary
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to simulate the level of detail providad by the control models being examined.
It has been observed for most runs that over three hours of computing time on
a Prime 550 are required. (The performance of the Prime 550 is approximately
80% of that of an IBM 370/158 and 35% of that of a VAX 11/780 [Henk81].) Over
160 simulation runs have been made during the process of this ressarch,

In this set of experiments, the following three factors are varied: 1)
control model, 2) topology, and 3) bandwidth. Experiments utilizing all pos-
sible combinations of these factors are run., The results of these experiments

are provided in Appendix 2.2,

5.3.2 Qbaervations
The most distinguishing feature of the results of these tests is the

lack of significant variation in average response time for experiments utiliz-
ing all models and topologies with bandwidths 1200 bytes per second or larger.
In all cases, the LINK QUEUEs have an average length of between one and two
messages, implying that the communication system does not prove to be a bott-

leneck.

To demonstrate that the values for average response tiume could be
explained by delays due to the intranode multitasking of processes,
experiments utilizing the extremely high bandwidth of 2.5 million bytes per
second are conducted. The results are very similar to those obtained with
much lower transmission rates. In addition, a simulation of a single node
network is conducted. This also results in an average response time not
significantly different. (The results of the single node simulation are
provided in Appendix 2.3.)

In most cases when the bandwidth is lowered to values below 600 bytes
per second, a statistically significant increase in response timen is obser-
ved., In most cases, either XFDPS.2 or XFDPS.4 provided the smallest average
response time values. It is necessary, though, to reduce the bandwidth to
extremely low values Iin order to observe these differences, thus leading us to
conclude that as far as constrasting the various models is concerned, the data

1s rather inconclusive,

Finally, the results of the experiments with model XFDPS.2 provide one
further observation. Recall that in this model a single centralized file
system directory is maintained. All fiie system requests are handled by the
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node housing this directory. Therefore, one would expect the performance of
this node to be somewhat degraded due to the control activity required to
satisfy the file system requests, The results, though, show that this is not
the ocase. The average response times for work requests arriving at the node
where the central directory is maintainad (node 1) do not differ significantly
from those on other nodes, This result implies that the amount of file system
management work is rather negligible, thus, it does not lead to any per-

formance degradation.

5.4 SINGLE NODE NETWORK EXPERIMENTS
5.4.1 The Enviropment

This set of experiments is considered separately from those described
above because its purpose is not to analyze the relative performance of the
control models. These experiments are designed to provide a standard upon
which the other results can be compared in order to determine the impact of

distributed processing on average response time for work requests.

The configuration of the single node comprising the network in this set
of experiments is identical to that for each node in the other experime~ts.
The work requests name object-data file pairs and the script for the o ject
file is the same as that employed in the first two groups of experiments.
Since there is no internode communication, the choice of the control model is
of no consequence, and therefore XFDPS.1 is arbitrarily selected.

5.4.2 Obaervations

Five simulations are conducted and the results of those runs are
presented in Appendix 2.3. The values for average response time from these
experiments are similar to those found in the first group of experiments when

bandwidths greater than 600 bytes/sec are used.

Georgia Institute of Technology Evaluation of FDPS Control Models

e et ae s s Wi




| ;__Jm&:::ixw;%r“ st . Grmevernny St o - . .. . [P
"

Section 6 CONCLUSIONS Page 55

SECTION 6
CONCLUSIONS

@ 6.1 QUALITATIVE ASPECTS OF IEE MODELS

The evaluation of the control models would be incomplete if considera-
tion were given only to the quantitative results provided by the simulation
experiments. It 1s also important to examine certain qualitative aspects of
the models which were not quantitatively evaluated. These aspects include the
ability to provide fault-tolerant operation (e.g., graceful degradation and
restoration), the ability for the system to expand gracefully, and the ability

to balance the system load.

6.1.1 XFDPS.1
The XFDPS.1 model is a truly distributed and decentralized model of

control., In this model, resources are partitioned along node boundaries and 3

managed by components residing on the same node as the resource, This design

enables the system to remain in operation in the presence of a failure, In .%
such a situation, those nodes not available are simply not contacted when
queries concerning resources are made, The failed nodes are also not
considered as locations for the execution of tasks during the formulation of
the work distribution and resource allocation decision.

This model of control requires some activity on the part of all nodes in
order to satisfy each work request. There is no single node that is by design
supposed to receive any more activity than any other node; instead, the work
is spread across all nodes. In addition, global information for the work i
distribution and resource allocation decision is obtained for eacl. work
request as it is processed. This global data enables the control to better

balance the load across the network.

This control model is not without its problems. The global searches for
resources that occur for every work request may be unnecessary (e.g., in those
instances in which only local resources are required). Short local jobs
therefore suffer at the expense of the longer Jjobs utilizing non-local resour-

ces.

Georgia Institute of Technology Evaluation of FDPS Control Models




Page 56 CONCLUSIONS Section 6

6.1.2 XEDPS.2
XFDPS.2 wutilizes a single centralized file system directory. On the

suriace, this model appears to be simple to implement. A central directory is
maintained, and all file system queries are sent to the node housing that
directory. However, problems result when fault-tolerant operation is desired.
No longer can a single central diractory be maintained because the loss of the
node housing the directory would be catastrophic. Alternative strategies
which provide for fault-tolerant operation (see for example Garcia~Molina's
technique deacribed in [Gare79] for providing fault tolerance in a centralized
locking distributed data base system) significantly complicate the design of
the control as well as require a significant expenditure of resources in order
to recover from a failure, It should be noted that the simulation of XFDPS.2
does not account for the overhead required to provide fault-tolerant

operation. Therefore, the average work request response times observed in the
experiments are lower than would be expected if the necessary control features

for providing fault-tolerart operation were present,

Model XFPDS.2 also has problems with growth. When a new node 1is
introduced into the system, a large amount of work is required to update the
central directory to add the resources of the new node. This ~factor can be

quantified and will be the subject of future experiments.

6.1.3 XFDPS.3
The XFDPS.3 model is similar to XFDPS.i1. It differs in its policy for

obtaining file availability information. First a local search is made. If
all resources are found, they are utilized; otherwise, a global search for
resourcés is conducted, As described in Section 5, this model provides faster
response to work requests utilizing only local resources as expected. Due to
its information gathering policy, the potential for utilizing distant resour-
ces in order to balance the load is sacrificed because resource availability

on other nodes may never be cornsidered.

6.1.4 XFDPS.4
XFDPS.4 utilizes redundant copies of the file system directory on all

nodes. Access to the directory is restricted to the node possessing the
control vector that 4is passed among the nodes of the network. This model
tends to work somewhat like a batch system by delaying file system requests
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until the control vector (CV) is received and processing these requests as a

batch.,

The presence of the replicated file directory implies that there is both
duplication of information storage and duplication of effort as consistency is
maintained across the replicated copies. Since file system requests are
delayed until the CV arrives, jobs with very short service times may
experience unusually large response times, Finally, as with XFDPS.2, the
introduction of a new node requires a large amount of work in order to update

the replicated directories,

6.1.5 XFDES.5
XFDPS.5 is nearly identical to XFDPS.1, differing only in its policy of

not locking or in any way reserving resources prior to the formulation of a
work distribution and resource allocation decision. With this policy, resour-
ces are not expected tc be needlessly tied up in most cases. A problem does
exist if ine chosen resources cannot be locked once selected for allocation.
In this case, a new resource allocation decision must be wmade and already

allocated and locked resources may need to be released,

6.1.6 XFDPS.6
XFDPS.6 differs from XFDPS.1 in the manner in which the task graph and

task activation are handled. In this model, the tasks of a work request that
are chosen to execute on the same node are presented to the PROCESS MANAGER of
the selected node collectively. A task graph identifying this collection of
tasks is constructed and task activation and termination are handled by the
PROCESS MANAGER. Thus, the TASK SET MANAGER need send only one message to
each of the nodes utilized by the work regquest in order to activate all tasks.
In addition, only one terminacion message is received from each node. Further
savings are provided because the PROCESS MANAGER on the node where the tasks
are executing can immediately release the resources utilized by the tasks as

each task terminates.

6.2 CONCLUSIONS

One must remember when analyzing the results in Appendix 2 that only
control message traffic i3 present during these simulation experiments. The
simulation experiments may be inconclusive in establishing the relative merits
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of the various models. They do, though, demonstrate the utility of the fully ;
: distributed processing concept. Even networks with communication links pos- §
? sessing low bandwidths appear to be feasible candidates for fully distributed i
processing if the message traffic 1is held mainly to control messages. In 3
particular, the experiment with the single node network leads one to expect
that there will be little or no performance loss experienced with an FDPS.

One of the most important results of this research is the production of
a simulator for the analysis of fully distributed processing systems, The
experience gained from the simulator has been the bazis for the proposal of
several interesting experiments to be conducted in the future.

.. ..

N b i i
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SECTION 7
FUTURE EXPERIMENTS

This work has suggested several future experiments. First, networks of
increasing numbers of nodes, possibly 10, 15, and 20 node networks, will be
investigated to determine at what point the utility of the various models is
lost. In wuddition, experiments with both user message traffic and control
message traffic will be investigated in order to observe the sensitivity of
the various models in the presence of a busy communication system. Different
resource allocation and work distribution algo: "thms will be instrumented into
the simulator in order to determine under what 2¢aiaitions each algorithm is

appropriate,

The issue of the dynamic addition and deletion of resources will also be
examined. This will demonstrate how gracefully the various models can adapt
to a growing system. These experiments will also examine the fault-tolerant

capabilities of the various models.
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APPERDIIX 1

CONTROL. MODEL PSEUDO CODE

1.1 RSEURO CODE FOR IHE XFDPS.1 CONTROL MODEL
1.1.1 Syatem initiator
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brogess system initiator;
{ Every node possesses one of these processes, This process

initiates a node in the network by assigning 'task_set_manager'
processes to each connected user terainal, activating the
'file_system manager'! process, and activating the
'processor_utilization manager' process. }

begin

for every attached user terminal 1 do
task_set_manager (TERMINAL, 1);
endfor;

file_system manager;
processor_utilization_manager;

end system initiator;
-2 Jask Set Manager

Drocessg task set_manager (case input_origin: inp orig of

TERMINAL: (tern: terminal address);
CMNDFILE: (fd: filedescriptor)

end);

{ Every terminal and every executing command file are assigned

a 'task set manager' process. When a process of this type
is activated, one of two sets of parameters is passed to it
depending upon the source of input to the process. If the
process is assigned to handle input from a terminal, the
address of the terminal is provided. If the process is
assigned to handle input from a command file, the file

descriptor for the command file is provided. }

yar

tg: task_graph pointer;
command_line: string;
msg: message pointer;

begin

¥hile <either the terminal is attached or the end

of the file has not been reached> do

{get the next work request and store it in command_line>;

new (tg);

parse (command_line, tg);

<send a message of type M1 (file availability request) to
the file system_manager on this node that contains the
names of files need for this work request);

Page 63
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28: <send a message of type M2 (processcr utilization request)
29: to the processor_utilization manager on this node>;
30: <wait for a message from processor_utilization_manager>;
31: <{store processor utilization information in tg”>;
32: <walt for a message from file_ system_manager>;
33: <{store file availability information in tg">;
34 Af work distributor_and_resource_allocator (tg) = ERR then
35: { work distribution and resource allocation
36: decision could not be made }
37: <{report error>;
38: Jf input_origin = CMNDFILE then
39: exit { leave the loop }
4o: else
41 next { next iteration of loop }
ha: endif;
43: endif;
4y <{send a message of type M3 (file lock and release request)
45: to the file_system manager on this noded;
46: {wait for a message from file system manager>;
E b7 if <all locks could not be applied> then
48: <report errord>;
4g: <{send a message of type Mi (file release request)
501 to the file system manager on this node>;
51: Aif input_origin = CMNNDFILE thepn
52: exit { leave the loop }
53: else
54%: next { next iteration of loop }
553 endif’;
56: endif;
57: for <all files chosen to be copied before execution> do
58: <{send a message of type M5 (file copy request) to the
59: file system_marager on this node>;
60: if <files need copying> then
61: <wait for a message from the file system manager>;
62: endif;
63: for <each node i chosen to execute parts of the
64: work request> do
65: <{send a message of type M6 (process activation request)
66: to the process_manager on node i>;
7 sndfor;
68: repeat
69: <walt for a termination message from a process_manager
T0: or a request to terminate the command file from
T1: the process_manager that activated this
T2: task_set_manager>;
73: if <this is a termination message from a
T4: process_manager> then
75: <mark the terminated task as completed in tg">;
T6: <send a message of type M4 (file release request)
TT7: to the file_system _manager on this node>;
Georgia Institute of Technology Evaluation of FDPS Control Models
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78: if <the termination status indicated that the
79: process terminated due to an error> then
» 80: Lor <each node i still running parts of this
| 81: work request> do
i 82: <send a message of type M7 (process kill request)
83: to the process_manager on node i>;
84: endfor;
85: endif;
86: else
87: for <every task of the work request> do
1 88: if <the task has not completed> then
3 89: <send a message of type M7 (process kill request)
90: to the process_manager responsible for
91: the task>;
92: endif;
93: endfor;
94 break; { exit the loop }
95: endif;
96: until <all tasks have terminated>;
97: endwhile;
98: end task _set_manager;
1.1.3 Eile Svatem Mapnager

1: brocess file system manager;
2: { Every node possesses one of these processes. This process

H satisfies various requests concerning the file system.

'H This is accomplished by communicating with the file_set_managers

5: on all nodes, }

6:

T: yar

8: msg: message_pointer;

9 favptr: file_availability rec_pointer;

10: flrprt: file lock_and_release_rec_pointer;

11:

12:  hegin r
13: doop

14 <wait for a message ¢f any type (let msg point to

15: the message)>;

16: gase msg”.message _type of

17: M1: { file availability information request }

18: begin

19: new (favptr); -
20: <{insert the record favptr points to into the s
21: list of fav_recs>; L
22: <record the names of the files identified in msg">; .
23: for <each node i> do :
24: <send a message of type M8 (file availability '
25: request) to the file_set manager on node 1

26: that contains the names of all files>;

27: endfor; :
28: end; P

1
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29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
ho:
b1
42
43;
by
45
46:
47
48:
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50:
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52:
53:
54
55:
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57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
T0:
T1:
T2:
73:
T4:
75:
76
T7:
78:
79:
80:
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M3: { file lock and release request }

new (flrptr);
{insert the record flrptr points to into the
list of flr_recs);
for <each node i> do
<send a message of type Mg (file lock and
release request) to the file_set_marager
on node i that contains the names of all
files from msg” that are fdentified
as being Located at node i>; !

endfor;
end;
Mi: { file release request }
begin
for <each node i> do
<send a message of type M10 (file release
request) to the file_set_manager on
node i that contains the names of all
files from msg” that are identified as
being located at node i>;
endfor;
end; i
M5: { file copy request } .

new (fmvptr);
<insert the record fmvptr points to into the list
of fmv_recs>;
for <each file named in msg"> do
<insert the file name into fmvptr”>;
<send a message of type M11 (create file request)
to the file_set_manager on the node where
the file is to be copied>;
endfor;
end;
M12: { file availability info from file_set_manager }

Biant ol i e ikl comi 1t il

kil

<let favptr point to the fav_rec that msg"
is a response to>;
<f111 in the availability information in favptr”>;
Af <responses from all file_set_managers
have been received> then
<send a message of type M16 (file availability
information) to the task_set manager
identified by a field of favptr”™>;
endif;
end;
M13: { file lock and release results from file set_manager }

<let flrptr point to the flr_rec that msg"
is a response tond;
<fill in the lock and release results in flrptr”>;
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81: if <responses from all file_set_managers ‘
82: that were contacted have been received> then 5
83: <send a message of type M17 (results of file ]
84: lock and release request) to the task_set_manager
85: identified by a field of flrptr”>; :
86: endif; ?
87: end;
88: Mi4: { result of file creation request from fileo_set_manager }
89:
90: { This message is part of a series of messages :
91: used to copy a file from one node to another. i
92: At this point, file processes have been activated !
93: at both the sending and receiving nodes. The ;
94 : next step 1s to send a signal to the sending i
95: process to begin transmission. } §
96: <send a message of type M18 (signal to begin copy) !
97: to the sending file process in the copy |
98: operation>;
99: end;
100: M15: { copy completion signal from a file process }
101: begin
102: <let fumvptr point to the fmv_rec that msg”
103: is a response to>; ;
104: <record in fmvptr” that the copy operation j
105: indicated in msg” has been completed>; t:
106: 1f <all copy operations have been completed> then i
107: <send a message of type M19 (results of file
108: copy request) to the task_set_manager
109: identified by a field of fmvptr®);
110: endif;
111: end;
112: andcase;
: 113: £ndloop;
' 114: end file system manager;
1.1.4 Progessor Utilization Manager
1: bDrogess processor_utilization manager;
2: { Every node possesses one of these processes. This process
3: records the latest proca2ssor utilization information received
y; from each node's processor utilization monitor; it provides
5: task_set_managers with this information on demand; and
6: if it does not hear from a processor_utilization_monitor
3 T within a particular interval of time, it records the processor
8: as down and attempts to contact that processor ulilization_monitor. }
9:
10: yar
112 msg: mesasage pointer;
12: pcutil: array [NODES OF THE NET] of pc_utilization;
13:
i
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14:  begin

152 doop

16: <walt for a message of any type (let msg point to

17 the message)>;

182 Qase msg”.message_type of

19: M2: { pc utilization information request }

20: begin

21: <send a message of type M20 (pc utilization

22: information) to the task set_manager that

23: sent the message and is identified in msg™>;

24 end;

25: M3: { pe utilization information from monitor }

26: begin

27: <record information in msg” in pcutil [msg”.nodel>;

28: <{reset deadman timer for information arriving

29: from node msg”.noded; 5
30: end; i
31: M22: { deadman timer signal - this indicates that a

32: processor_utilization monitor has not reported

33: within the required time }

34: begin

{ 35: pcutil [msg”.node] := NOT_AVAILABLE;

i 36: <send a message of type M23 ("are you alive?" ;
37: query) to the processor_utilization_monitor ‘~
38: on node msg”.noded;

39: end;
40: endcase;
41: endloop;

42: end processor_utilization_manager;
1.1.5 Erogessor Utilization Monitor

ot e e M e Lo st e i o sl

1: brocess processor_utilization monitor;

2: { Every node possesses one of these processes. This process

3: records various performance measurements and computes a i
L: processor utilization value that is periodically transmitted ‘
5: to all processor_utilization managers. }

6:

7: Dhegin

8: 190D

9: <{gather performance measurements>;

10: {compute processor utilization value>;

11: for <each node 1> do !
12: <send a message of type M21 (processor utilization o
13: information) to the processor_utilization_manager '
14 on node id>;

15: endfor;

16: <sleep until it is time to gather more measurements>;

178 <wait until it is time to gather more measurements

18: or a message from a processor_utilization manager

19: arrives>;

20: andloop;

21: end processor_utilization monitor; 5:
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1.1.6 Progeas Manager

1: brogcess process_manager;

23 { Every node possessss one of these processes, This process

3 manages the processes that are executing on its node, }

4

5: yar

6: pcbptr: process_control_block_ _pointer;

T: process_name_table: process name_to_pcbptr_map;

8: msg: message_pointer;

9:

10:  Dbegin

11: leop

12; <wait for the arrival cf a message (let msg point

13: to the message)>;

14; cagse msg”.message_type of

15: M6: { process activation request }

16: hegin

17: Af <process type is an object file> then

18: new (pebptr);

19: <record process identifying information
20: and pcbptr in process_name_tabled;
21: <fill in the necessary information in pcbptr®>; ]
22: <initiate the loading of the process>; '#
23: _e_].ﬁg_ }
24; task_set_manager (CMNDFILE, msg”.file_ descriptor); 3
25: <record process identifying information
26: and task_set_manager identification in
27: process_name_tabled>;

28: endif;
29: end;
30: M7: { process kill request }

31: begin
32: <find the process in process_name_table); 1
33: Aif <the process is an object file> then 1
34: <terminate the process>;
35: <unload the processd;
36: {dispose of the process control block>;

37: <send a message of type M24 (process 1
38: termination message) to the task set_manager

39: that activated the process>;

40 else { the process is a command file }

41 <send a message of type M25 (request to terminate

42; the execution of a command file) to the

43: task_set_manager executing this command file);
by endif';
45: end;

46 endcagse;

bt endloop;
48: end process_manager;

Georgia Institute of Technology Evaluation of FDPS Control Models ‘;
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1.1.7 File Set Manager

1: process file_set_manager;

21 { Every node possesses one of these processes. This process
3: manages the riles located on its node. }

4.

5: yar

6: msg: message_pointer;

T: file_directory: file_location_information;

8:

9: legin

10: loop

11: <wait for the arrival of a message (let msg point

AR to tne message)>;

13: case meg”.message_type of

14 M8: { file availability request }

15: begln

16: Lor <each file named in msg”> do

173 <{search for the fiie);

18: if <the file was found> thep

19: Af <the file 1s free> theu
20 <{reserve the file>;
21: <{record the desired access to the filed;
22 {note that the file is available>;
23: £lse
24; if <the desired access to the file
as: is READ> gnd <the access already
726 granted to the file is READ> then
2% <note that the file is available>;
28 else
29: <note that the file is not availabled;
30: endif;
31: €Ddif;
32: glse
33: <{ncte that the file is not available>;
34: endif;
3c: eadfor;
36: {send a message of type M12 (file availability
37: information) to the file system manager
38: on node msg”.noded>;
39: end;
40: M9: { file lock and release reguest }

b1 begin

u2: for <each file in vsg”» do

43:; <{search for the filad>;
4y, Af <the file was found> ithen

4s5: <lock or releasc the file as requested>;
46: elue
ur: <note that the reguest could not be satisfied>;
4oz endif;

49: endfor;

Georgia Institute of Technology Evaluation of FDPS Control Models
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50:
51:
52:
53:
54:
55
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:

CONTROL MODEL PSEUDO CODE Page 71

<send a message of type Mi3 (results of file lock
and release request) to the file_system manager
on node msg”.node>;

end;
M10: { file release request }
begin
Lor <each file in msg”> do
<search for the file and release the lock on 1it)>;
endfor;
end;
M11: { file creation request }
begin
<{create an entry for a new file in file directory>;
<activate a file process for the filed;
<{send a message of type Mi4 (results of file
creation) to the file system manager on
node msg”.node>;

end;

endcase;

69: £ndloop;
70: end file set_manager;

1.2 PSEUDO CODE FOR IHE XFDPS.2 CONTROL MODEL
1.2.1 Syatem Joitdator
Same as XFDPS.1,

1-2.2 Iask Set Manager

XFDPS.1 with the following changes:

25: <send a message of type M2 (file availability request) to
26: the file_system manager on node 1 that contains the
27: names of files needed for this work request>;

4y. <send a message of type M3 (file lock and release request)
45, to the rile_system manager on node 1>;

76: <send a message of type M4 (file release request)
T7: to the file system manager on node 1>;

1.2.3 Flle System Manager

brocess file system manager;
{ This process resides on node 1 and satisfies varicus requests

concerning the file system. This process maintains the
centralized file system directory. }

yar

msg: message_pointer;

Georgia Institute of Te. hnology
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begin

loop
<wait for a message of any type (let mag peint to

the message)>;
case msg”.message type of
Mi1: { file availability information request }
begin
for <each file named in msg”> do
<{search for the file>;
1f <the file was found> then
for <each node i> do
if <the file is free on node i> then
<reserve the filed>;
<{record the desired access to the file>;
<note that the file is available on

node 1i>;
else
if <the desired access to the file

is READ> and <the access already

granted to the file is READ> then

<note that the file is available on
node 1>;

else
<note that the file is not available i

on node 1i5>;

<{note that the file is not available on
any node>;
endif;
endfor;
<send a message of type M12 (file availability
information) to the task_set_manager requesting
the information>;

end;
M3: { file lock and release request } )
begin ,
for <each file in msg"> do
<search for the file>;
if <the file was fourid and is present
on the node specified> then
{lock or release the file as requested>;

else
<note tnat the request could not be satisfied);
endif';
endfor;
<send a message of type Mi13 (results of file lock
and release request) to the task _set manager
that made the request>;

£nd;

Georgla Institute of Technology Evaluation of FDPS Control Models i
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Mi: { file release request }

begin

Lor <each file in msg”> do
<search for the file and release the lock on it>;

endfor;

end;

endease;
endloop;
end file system_ manager;

1.2.4 Proceas Utilization Manager
Same as XFDPS.1.

1.2.5 Progeasor Utilization Monitor

Same as XFDPS.1.

1.2.6 Progess Manager
Same as XFDPS.1.

1.3 RSEUDO CODE FOR IHE XFDPS.3 CONIROL MODEL
1.3.1 Syaten Initiator

Same as XFDPS.1.

1.3.2 Iaak Set Manager

Same as XFDPS.1.

1.3.3 Eile Syatem Manager
XFDPS.1 with the following changes:

23: <send a message of type M8 (file availability

24 request) to the file set_manager on the same node
25 as this file system manager>;

26:

27:

69: 1f <this response is from this node> and

T0: <all files have not been found available> then
T1: for <every other node 1i> dog

72: <send a message of type M8 (file availability
73: request) to the file set_manager on node i>;
Th: endfor;

Tha: else

Tlb: if <responses from all file_ set_managers have been
The: received or all files have been found locally> then

Georgia Institute of Technology

Page 73
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Thd: <send a message of type M16 (file availability

The: information) to the task_set_manager identified

TA4f: by a field of favptr®);

Tlg: endif;

Thh: endif;

1.3.4 Progeas Utilizaticn Manager
Same as XFDPS.1.

1.3.5 Progessor Utilization Monitor
Same as XFDPS.1,

1.3.6 Process Manager
Same as XFDPS.1,

1.6.7 File Set Manager
Same as XFDPS.1.

1.4 PSEUDO CODE FOR THE XFDPS.3 CONTROL MODEL
1.4.1 Syatem Initlator

Same as XFDPS.1.

1.4.2 Task Set Mapager

Same as XFDPS.1.

1.4.3 Flle Syatem Manager

Drocess file system manager;

{ Every node possesses one of these processes. This process
satisfies various requests concerning the file system and
helps maintain the redundant ocopies of the file system
directory. }

yar
msg: message_pointer;

beein

1oop
<wait for a message of any type (let msg point to

the message)>;
cagse msg” .message_type of
M1, M3, M4: { availability, lock, and release requests }
begin

<place the message on the queue of file system
requests arriving at this node>;

&nd;
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Ccv: { control vector }
hegin
¥hile <the file system request queue is
not empty> do
{ <remove a message from the queue (let msg point
to the message)>;
cage msg”.message_type of
M1: { file availability information request }
‘ begin
] for <each file named in msg"> do
<{search for the file>;
1f <the file was found> then
for <each node i> do
Af <the fil)e is free on node i> then
<{reserve the file>;
{record the desired access to the file>;
<{note that the file is available on
node 1>;
slse
if <the desired access to the file
is READ> and <the access already
granted to the file is READ> then
<note that the file is available on
node 1i>;

else
<note that the file is not available

on node 1>;

<note that the file is not available on
any node>;
endif;
endfor;
<send a message of type M12 (file availability
information) to the task_set_manager requesting
the information>;
end; :
M3: { file lock and release request } :
begin
for <each file in msg"> do
<{search for the fileb; :
if <the fille was found and is present D
on the node specified> then f
{lock or release the file as requested>;

<note that the request could not be satisfied>;
endif;
endfor;
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<{send a message of type M13 (results of file lock
and release request) to the task_set_manager
that made the request>;
end;
Mi: { file release request }
begin
for <each file in msg”> do
<search for the file and release the lock on it>;
endfor;
end;
endecase;
endwhile;
<send a message of type UPV (update vector) to the
next node (according to the predetermined
ordering of nodes) containing the changes just
made to the file system directory>;
end;
UPV: { update vector }

1f <this UPV was origi. .ced by this node> then
<send e message of type CV (control vector) to
the next node (according to the predetermined
ordering of nodes)>;
2lse
<update the file system directory>;
¢send the message of type UPV (update vector)
to the next node (according to the predetermined
ordering of nodes)>;
endif;
end;
endcase;
endloop;
end file system manager;

1.4.4 Progess Utilization Mapager
Same as XFDPS.1.
1.4.5 Progessor Utilization Monitor

Same as XFDPS.1.

1.4.6 Process Mapager

Same as XFDPS.1.

1.5 PSEUDO CODE FOR THE XFDPS.5 CONTROL MODEL
1.5.1 Syatem Initiator

Same as XFDPS.1.

Georgia Institute of Technology Evaluatiou of FDPS Control Models
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1.5.2 Jank Set Manager
Same as XFDPS.t.

1.5.3 File Syatem Manager
Same as XFDPS.1,

1.5.4 Process Utilization Manager
Same as XFDPS.1.

1.5.5 Processor Utilization Monjtor
Same as XFDPS.1.

1.5.6 Process Manuger

Same as XFDPS.1.

1.5.7 Elle Jet Magager

XFDPS.1 with the following changes:

20; <note that the file is available>;
21:
22:

1.6 RSEURO CODPE FOR ITHE XFDPS.6 CONTROL MODEL
1.6.1 Syaten Initlator

Same as XFDPS.1.

1.6.2 Task Set Manager

XFDPS.1 with the following changes:

75: for <each task in the message> do

T6: <mark the task as completed in tg">;

77:  enafor;

87: for <every node i still executing parts of the work .

88: request> do ;

89: <{send a message of type M7 (process kill request)

90: to the process manager on node i>;

91:  endfor;

92:

32
B
)3
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1.6.3 File Syatem Manager
Same as XFDPS.1.

1.6.4 Proceas Utilization Manager

Same as XFDPS.1.
1.6.5 Progeasor Utilization Mopitor

Same as XFDPS.1.

1.6.6 Proceas Manager

progcess process manager;
{ Every node possesses one of these processes. This process

manages the processes that are executing on its node. }

yar
pebptr: process_control block _pointer;

process name_table: process_name_ to_pcbptr_map;
subtg: task _graph pointer;
msg: message pointer;

begin
Aoop

<yait for the arrival or a message (let msg point
to the message)>;

case mag”.message_type of
M6: { process activation request }

new (subtg);
for <each task i im msg”™> do
<record task i in subtg”>;
if <task i names an object file> then
new (pcbptr);
<record process identifying information ]
and pcbptr in process_name_table>;
<f111 in the necessary information in pcbptr”™>;
<initiate the loading of the process>;
else
task_set_manager (CMNDFILE, msg”.file descriptor);
<record process identifying information
and task_set _manager identification in
process_name_table>;
endif;
endfor;
<link subtg”™ onto the list of subtaskgraphs executing
on this node>;

end;

Evaluation of FDPS Control Models
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M7: { process kill request }

<{find the subtaskgraph in the list of
subtaskgraphs executing on this node (let
subtg point to the subtaskgraph)>;
for <each task i in subtg™> do
Aif <task i has not completed> then
if <task i names an object file> then
{terminate the process>;
<unload the process>;
<dispose of the process ccntrol block>;
{mark task 1 as terminated>;
else { the process is a command file }
<send a message of type M25 (request to terminate
the execution of a command file) to the
task_set_manager executing this command file>;

endfor;
Af <all the tasks in subtg” have completed> then
<send a message of type M24 (subtaskgraph
termination message) to the task_set_manager
that activated the subtaskgraph>;
<remove subtg” from the list of subgraphs
executing on this node>;
dispose (subtg);
endif;
end;
endecage;
endloop;
end process_manager;

Georgia Institute of Technology Evaluation of FDPS Control Models
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APPENDIX 2
1

SIMULATION RESULTS
2

SIMULATION RESULTS

UNIDIRECTIONAL RING
Node Where Object and Data Files Reside

1

1

¢) |

RESPORSE TIME (sec) FOR A SINGLE WORK REQUEST ARRIVING AT NODE 1
Bandwidth

2.1 RESULIS OF GRQUP 1 EXPERIMENIS
2.1.1 XFDPS.1
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! Appendix 2 SIMULATION RESULTS Page 83
TREE
| Bandwidth | Node Where Object and Data Files Reside !
i | (bytes/sec) | h 2 1 3 ] Y & 1
! { ' { ! ! '
| 1200 } 6.743 | 6.506 | 6.911 | 6.743 | 6,743 |
i 50,000 | 6.307 | 6.302 | 6.313 | 6.307 { 6.307 |
| 100,000 | 6.303 | 6.299 | 6.306 | 6.303 ] 6.303 |
' 500,000 | 6.299 | 6.298 | 6.301 | 6.299 | 6.299 |
2.1.2 XEDES.2

RESPONSE TIME (sec) FOR A SINGLE WORK REQUEST ARRIVING AT NODE 1

UNIDIRECTIONAL RING

! Bandwidth | Node Where Object and Data Files Reside !
1 (bytes/sec) | 1 1 2 | 3 1 Yy 1 s 1
! I ! ! ! ! !
! 1200 | 6.295 | 6.784 | 6.784 | 6.784 | 6.784 |
| 50,000 | 6.295 | 6.308 | 6,308 | 6.309 | 6.309 |
| 100,000 | 6.295 | 6.303 | 6.303 | 6.303 | 6.303 |
! 500,000 | 6.295 | 6.299 | 6.299 | 6.299 | 6.299 |
BIDIRECTIONAL RIFNG

| Bandwidth | Node Where Object and Data Files Reside !
4 _(bytes/see) | o S| 2 | 3 4 H 5 1
! ! ! ! ! ! !
| 1200 | 6.295 | 6.532 | 6.700 | 6.700 | 6.532 |
! 50,000 | 6.295 | 6.301 | 6,306 | 6.306 | 6.301 |
{ 100,000 | 6.295 | 6.298 | 6,301 | 6.301 | 6.298 |
! 500,000 | 6.295 | 6.29¢ | 6.298 | 6.298 | 6.296 |

STAR ]
! Bandwidth | Node Where Object and Data Files Reside |
1 (bytes/sec) 1 1 ] 2. ! 3 4 | L !
! ! I I ! | ' j
! 1200 |} 6.295 | 6.532 | 6.532 | 6.%32 | 6.532
! 50,000 | 6.295 | 6.301 | 6.301 | 6.301 | 6.301 |
! 100,000 | 6.295 | 6.298 | 6.298 | 6,298 | 6.298 |
! 500,000 ! 6.295 | 6.296 | 6.296 | h.296 | 6.296 |

FULLY CONNECTED NETWORK
| Bandwidth | Node Where Object and Data Files Reside ] é
1 _(bytes/sec) | 1 | 2 1 3 | 4 1 9 |
! | } ! | !
| 1206 | 6.295 | 6.532 | 6.532 | 6.532 | 6.532 |
J 50,000 | 6.295 | 6.301 | 6.301 | 6.301 | 6.301 |
I 100,000 | 6.295 | 6,298 | 6.298 | 6.298 | 6.298 |
! 500,000 |} 6.295 | 6,296 | 6.296 | 6,296 | 6.266 |
g
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2.3 RESULYS QF A SINGLE NODE SIMULATION

Average Work Request Response Time for
a Single Ncde Network

Average Response Time
Run (sec)
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Mean: MU4.1 seconds
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Standard Deviation: 0.38
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