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1.  INTRODUCTION

Why do we need another paper on the estimation of point and mean
free-air gravity anomalies based on point gravity measurements? Isn't
this subject settled once and for all? We do have the omnipotent tool
called least-squares collocation, even with parameters.

These and others are typical questions and arguments of the seven-
ties, when the geodetic community became aware of and excited about the
existence of collocation. Som2 enthusiastic proponents (not its de-
signers, mind you) advertised it as the unique robot, which is capable
of making even the impossible come true; but unfortunately it doesn't.
Meanwhile the enthusiasm has been replaced by an "unbiased" recognition
of this sound and powerful tool; practical experience has shown what
could have been anticipated: a smooth and reliable output requires a
smooth, detailed and accurate input - the system's response is data -
specific.

One of the many applications of least-squares collocation is the
prediction of point and mean gravity anomalies based dn point gravity
anomalies - hardly any problem, as long as the terrain is flat within
the area of consideration. Free-air anomalies can be processed directly,
no data reduction seems to be necessary. If we approach the foothills
or even mountainous areas, the picture changes dramatically; suddenly
data reduction becomes indispensable, collocation results based on un-
reduced quantities become practically useless.

This report aims at an optimal estimaticon.of point and mean anoma-
lies taking into account the coﬁcept of a linear correlation between

terrain-corrected free-air anomalies and topographic height. Different
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estimatioﬁ procedures are compared; particular emphasis is put on the
best possible estimation of the Bouguer-factor and the subsequent estima-
tion of Bouguer as well as free-air point and mean anomalies. Least-
squares collocation with parameters precents itself as a very attractive
and powerful tool for the estimation of both regression parameters and
point and/or mean anomalies. An explanation for the regional variation
of the regression parameters, based on a simplified concept of isostatic
compensation is presented in chapter 4.

Particularly in mountainous areas the free-air anomalies used to
be reduced for the effect of the terrain, which can easily attain values
of 10-20 mgals and even more, If an empirical covariance function is
estimated from unreduced free-air anomalies, the terrain effect causes
the variance to be too high and the correlation length to be too short.
Since the variance functions as a scale factor for the prediction error,
we see that the quality of anomaly prediction is worsened if unreduced
free-air anomalies are used. In addition, the correlation length controls
the quality of interpolation; a short correlation length causes a large
prediction (interpolaticn) error; therefore, the prediction accuracy suf-
fers also from thniy indirect effect (cf. Siinkel, 1981). The estimation
of the terrcin effect is a very laborious task. It is shown in chapters
5 and € Lo depend linear'y on the terrain variance and to be inverse
preportional with respect to wavelength and correlation length, respec-
tively. The total variance depends on the power spectrum; if the high
frequency part of the spectrum has much power, a high terrain sampling
rate (= detailed terrain rodel) is required in order to estimate the
variance with sufficient accuracy. The terrain correlation Jength plays

a fundamental role in the estimation of the mean terrain effect; a short
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correlation length requires a high sampling rate. As a matter of fact,
these statistical quantities depend strongly on the terrain in consider-

ation; consequently, a globally valid sampling rate cannot be given; in-

dividual circumstances con‘rol its choice.
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2. MEAN FREE-AIR GRAVITY ANOMALIES

A free-air gravity anomaly is defined by
Agp = gp - YQ » (2'1)
with 9p denoting the actual gravity at the point P located on the sur-
face of the earth, and Yq denoting the reference gravity at a correspond-
ing point Q located on the telluroid (Heiskanen & Moritz, 1967. p. 293).

By Ag we denote a mean value of the free-air gravity anomaly,

j]'AgP, dop” 3 (2.2)
bap

= . 1
89 = %p

do stands for the element of s501id angle, & is the averaging area in
consideration.

Point free-air anomalies are known to oscillate around a zero aver-
age with oscillation frequencies depending strongly on the topographical
features, they comprise regional and local gravity field information;
therefore, a point anomaly is in gene~al not representative for a large
area; because of its local character and its strong dependence on topo-
graphy, it can only se poorly predicted if the topography is ignored
(this is particuiarly true for mountainuus areas).

Averaging free-air anomalies in order to obtain mean anomalies means
essentially averaging the local features of free-air anomalies; mean
snomalies are representative for the averaging area in consicderation;
they offer themselves for the evaluaticn of various integral formulas.

ApcT;ing the averaging process (2.2) we have to keep in mind trat

the tree-air anomalies refer to ground level,

83p = 89 (¢psrpsh (8p22p) (2.3)

e st st o




(h(¢,A) denotes the topography.) A straight mean like (2.2) is taken
with respect to the horizontal position (¢,A); to which height does A§P
refer? Does it refer to a mean height?

In order to answer this question we introduce a m.an height h by

hy = -
hp AOP ff hp.adcpo . (2.4)
Adp

Let us introduce a mean anomaly AG*, which refers to the mean height
h; Ag* is a mean of point anomalies Ag*, which refer to the level h = h

and are obtained by an anlytical continuation of the ground level anoma-

lies,
. 34 -
ag* = a9 - S (h - h), (2.5)
% = 1.
8= 5 [[Ag;, dop. - (2.5b)
Aoy,

Denoting the average (2.2) by M{ -}, the mean anomaly referred to the

mean height becomes
e =5+ hM )20 ang |
Ag* = Ag + h M } 3 | -M %aélt‘{ . (2.6)
It is instructive to consider two special cases:

a) the trivial case of a flat topography within the area of averaging,
h = h; it is obvious that the last two terms of (2.6) cancel each

other, and
A§ = A§*
follows. The straigt mean of free-air anomalies refers to the mean
height.
b) the vertical gradient 349/3h is constant within the area of averag-
ing, 34g/dh = M {3ag/ah} . Again, the last two terms of (2.6) can-
cel each other, and

Ag = Ag*
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follows. The straight mean refers to the mean height.
The last case is of particular importance because it assumes a linear
relation (= exact functional dependence) between 4a and h. In reality,
local density anomalies, non-constant Rouguer-anomalies (in the averaging
area), nearby topographic' irregularities, and other phenomena account
for the disturbance of an exact functional dependence; however, in gen-
eral we observe a linear correlation (approximate linear relation) be-
tween Ag and h, which becomes even more ponounced if Ag is "cieaned" from
topographical irregularities., We have hardly ever a sufficiently dense
gravity material which would allow a determination of the vertical gra-
dient cf gravit,; vherefore, we simply have to assume that

M%%—Aﬁ (h - h)

is zero, in other words, the straight mean of point anomalies Ag 1s inter-

preted as AQ* and consequently, the reference height becomes the mean

height. 1In areas with flat topography the equality holds exactly.
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3. PREDICTION OF ANOMALIES BY TREND REMOVAL

Adopting the concept of linear correlation between free-air anomaly
and topographic height, the anomaly can be represented by
Agp = @ + bhy + 5, , (3.1)

where a denotes a regional constant and S a residual anomaly; s comprise;
all the effects which make Ag locally violate the linear functional re-
lations; the average of s is assumed to be zero,
M{s}=0. (3.2)
Then the average of the mean value reduced anomalies Agr.
Ag; = Agp - M {ag}
=b(hP-M{h})+sP, (3.3)

vanishes, M {ag"} = 0 ,
Introducing a reduced height h",
r
ho = hp - M{n} , (3.4)

the reduced anomaly is representad as

ro_ ot .
Agp = bhp + s . (3.3)

If s is to be independent of elevation, it follows that the covariances
cov (Ag", h") and cov (h", h") are proportional to each other for all
arguments with b being the factor of proportionality (Heiskanen & Moritz,

1967, p. 283 ¢f.) ,

b = cov (ég:’ r%l ‘ . (3-5)
cov (h", h)

Having selected a best-fitting b, the signal s can be predicted at any

other point by well-established least-squares prediction methods. A
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free air anomaiy at a specific point Q at an elevation hQ is obtained
by
dgq =M{sg} +b(ng-Min}) +sg (3.6)

or shortly

AgQ =3+ bhQ + sq (3.6a)"

with a determined through

a=M{ag} -bM{n} . (3.6b)"
At this point it should be stressed that the average M{ -} is always
derived from a finite sample of data (free-air anomalies, topographic
heights); this fact will not cause any proilems as long as the terrain
is sufficiently flat; (the average over a perfectly flat terrain is ob-
tained by a single data.) However, in mountainous areas the situation
is quite different: gravity measurements are usually performed along
main leveling lines which, in turn, almost exclusively coincide with main
roads running through valleys rather than on the top of the mcuntains.
Therefore, the estimate M{h} will tend to be too low, and since the
free-air anomalies are linearly correlated with height, the estimate
M{ag} tends to be ruo Tow as well. The direct effect on the point
anomaly prediction would be negligible provided the gravity gradient b is
sufficiently well determined. Howaver, the estimation of b is poor if i
the height range of the data is narrow. Therefore, sampling gravity and

corresponding height in vaileys only will make point predictions very

inaccurate. A homogeneous sampling is therefore strongly recommended.
A m-an anomaly AJ can be derived immediately from (3.6),

85 =M{ag} +b (h-Min}), (3.7)

MU




provided the average of the signal s vanishes. Again we observe that

the uncertainty of b enters directly in the uncertainty of the mean value.
Practical results (Uotila, 1967 a,b; Slinkel und Malits, 1981) indicate

: that b can be estimated with an error ranging from #107° to 1072 mgal/m;
therefore, a difference ah = h - M{h} of a couple of hundred meters

(a case quite likely in mountainous areas) can contribute to the error

budget of Ag by a couple of mgals.

As far as the estimation of a and b is concerned, either a c¢lassical

least-squares fit (Uotila, 196, a,b) or a more demanding least-squares
£ collocation solution can be envisioned. The least-squares estimation
of the parameters a and b (trend model parameters) is performed by con-
sidering s as random noise. Denoting the parameter vector by X and the

design matrix by A,
. . 1,1, ..., 1
X = (ag b) ’ A = hl:hzo-003 hn

the best estimate of X is obtained by

P T T B

X = (ATA) AT Ag; (3.8)

T R

its elements can easily be shown to equail

b=— ,a=M{ag} -bM{n"} . (3.8)"

The least-squares collocation solution differs from the simple least-
squares solution insofar as it also takes into account the statistical
behavior of the signal s (which is for sure not simply random noise),
expressed in terms of its covariance function. The best estimate of the

parameter vector X is now given by




(3.9)

There-

/ R = (/:\‘c“A)_1 ATc ™ ag

where C denotes the covariance matrix of the vector of signals.
sianite are cor-

fore, the two solutions will differ, if the individus?

reIated-(C has non-vanishing off-diagonal elements.) It need not to
be mentioned that the collocation solution (3.9) is by far more expen-

sive than the least-squares solution (3.8), because it requires a) an

B :‘“‘W-‘\l KT
fiat

estimation of an empirical covariance function of the signal <. b) the
fit of an appropriate model to the empirical covariance function, c) the
calculation of [n (n-1)] /2 covariances, and d) the inversion of the co-

This is the price we have to pay for an optimal esti-

B A T R R T

variance matrix,
mate obtainable from the available data set.

nitely too high if the correlation between the signals is very weak

The price will be defi-

(almost diagonal covariance matrix), it will be a good investment if

the correlations are strong: practical studies nhave shown (Sinkel and 3

Malits, 1981) that the variance of the signal can be quite considerable

T R P 1 vy g

(easily reach 100 mgal and more); this variance enters unreduced into

the error estimate of the point anomaly if the simple least-squares con-

in the least-squares coliocation method the predicted

PP 1 e R

3 cept is applied.
signal is obtained from the centered da.2 by the well-known relation

et o i At s b

8 = CI €7 (ag - AR); (3.10)

o e e S

the error covariance matrix Egg of the predicted signal vectcr s is given

v e e 3 el g,

by

o

Ess = Csg = C5C™ [I - A(A'C-IA)‘lA'C'I] Cs (3.11)

ot ing - i 8

the error covariance matrix of the predicted parameter vector by
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Eyy = (ATCTA)™ (3.12)

(Moritz, 1900, p. 128). Equation (3.11) can be split up into three

terms,

Eeg = Cgg - CsCT'Co + (RTCTICJE,, (ATC7C,) 5
the first term renresents the a priori error (covariance matrix) of the
estimated signal vactor, the second term represents the accuracy gain
due to data, and the tiird term the contribution of the parameter inac-
curacies to the error of the estimated signal. .As a general rule it
can be said that a strong signal variance, a small correlation length
compared to the mean mutual distance between data, and a vague linear
correlation between Ag and h wili be responsible for poor signal ac-
curacies; a low variance, long correlation length, and a strong linear
correlation will keep the prediction error low.

Any other free-air point gravity anomaly can be estimated through

8§, = AKX + 8, (3.13)

where A denotes the design vector corresponding to the prediction

point Q,
T
Ag = (1, h°) .
The mean square estimation error is obtained by

T T
ngq = AgEyxAa * AgExs * EygAq + Egg
with the error cross covariance matrix

Exs = -(A'CTIA)TTATCT

alob

A g daks ML # b 4
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Equation (3,13) enables us to estimate the mean free-air anomaly through

A

2 Roﬁ + Sq » (3.16)

>

A

where ﬂo denotes the mean of all vectors (3.14) which is obviously

Ry = (1, h) .

The estimated mean anomaly refers to the mean height; if the mean of

the signal vanishes, we obtain
Ag=4+Dbh (3.17)

as best linear unbiased estimate of the mean gravity anomaly. (Note
that it makes no dif”erence if we take the mean of the surface anoma-
lies or the mean of the anomalies at mean height; this is because the
signal was supposed to be uncorrelated with height.) Formally (3.17)
is valid for both, the adjustment sclution and the least-squares col-
Tocation solution; however, the way the estimates ¢ and b are obtained
is different.

The collocation soiution is based on the covariance function of the
signal s; therefore, it would be quite interesting to know which kind
of information is contained in s. According to its definition (3.1),
s is a kind of mean value reduced Bouguer anomaly with the parameter a
as the (constant) mean Bouguer ancmaly in the area of consideration and
b the Bouguer factor which can be related to the mean density p by b =
2nGp (G is the gravitational constant). Since no terrain correction has
teen taken into account in our model, the signal s will comprise es-

sentially 3 kinds of information:
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a) the variation of the Bouguer anomaly within the area of con-
sideration,
b) the terrain effect,

c¢) the effect of local and regional density anomalies.

Terrain corrected Bouguer anomaiies Ag, are known tu be very smooth and

correlated to a "mean" height % such that in average
Agy = - 100 - ¥ [km] mgal (3.18)

(Heiskanen & Moritz, 1967, p. 328); the definition of "mean" is strongly
Tinked to the concept of isostasy which will be discussed in the next
chapter, If the terrain is rough, the behavior of the terrain correc-
tion will be similarly rough and high-frequent. Since no terrain cor-
rection has been applied, the signal s will have a long-wavelength Bouguer
anomaly characteristic superimposed by a short-wavelength terrain effect
characteristic; density anomalies will probably cover the whole spectrum
as far as its effect on the signal is concerned however, its power is
considered to be rather small compared to the Bouguer and terrain effect.
In moderately rough areas the torrain effect will be small and the
signal is essentially a Bouguer anomaly. It is true that Bouguer anoma-
lies are smooth (c4. (3.18)), but still they are hardly ever constant
in an area of say 1° x 1°; its variation enters fully into the signal s.
What is the impact of the relation (3.18) on a determination of the para-
meter b by least-squares adjustment? Very simple, the value of b will
tend to decrease with increasing area of consideration. Why? As we
saw earlier, s is essentially a Bouguer anomaly which behaves accord-

ing to (3.18),
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V)
s= Ag, + consi, =-0.1'h [m] + const.,
and consequently, the free-air anomaly is approximately given by

A .
Ag".“. bh' - Oolh' + COTSt.,

and with homogenous density p = 2.67 g cm™ >,

(3.19)

n
Ag,x 0.1{h - h), + const. .

Consider a region of 19 x 1°, subdivide it into 9 subregions of size
20' x 20', and assume that the mean height [ is constant within each
subregion, but changes from region to regiun {a sufficiently justified
assumption as shown in the next chapter); assume furthermore that dens2

gravity material is available in the whole region. Under these assump-

tions we plot the free-air anomalies versus height for each sub-region
and should expect a correlation behavior which shows a parallel shift

from one sub-region to the next as illustrated in Figure 3.1 below.

Ag

&

Fig. 3.1 Correlation model between free-air
anomaly and topographic height.
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(note that the parallel shift is due to the different mean heights.) If
we perform a least-squares adjustment solution for the estimation of the
parameter b for the whole region, we will get a too small value B which
is indicated by the direction of the boldface arrow in Fig. 3.1, The

reasoning is very simple: the parallel shift is essentially the signal

s; in the adjustment procedure this signal is treated as random noise;
with other words, the adjustment soluticn is blind with respect to hori-
zontal position, it simply makes a mishmash of Ag with respect to h and
not of its gradient as it should. |

In contrast to the adjustment solution, the least-squares colloca-
tion solution takes care of the siynal very carefully; it uses all the
information contained in s, provided in terms of covariances, in order

to estimate a) a common gradient b and b) the signal field as such (equ.

(3.9), (3.10)). Therefore, a regional collocation solution will signi-
ficantly improve the estimation of b as compared to a regional adjustment
solution whenever a) the region is large, and b) the terrain is not flat.
It should be mentioned that Uotila (1967a,b) performed extensive
numerical studies in order o find an optimal procedure for the estima-
tion of a regionally valid parameter b. He finally came to the conclu-
sion that a resonable estimate can, in general, only be achieved if the
region is subdivided into smaller subblocks; for each subblock a local
parameter b should be estimated by least-squares adjustment, the regional
value is obtained as an appropriate average of all local b - values.
His conclusions are in favorable agreement with ours; here a simple
explanation of this phenomenon has been provided. A m:trnematically sound

reasoning will be attempted in chapter 4.
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Let us turn back to the signal and its statistical behavior. The
collocation estimation of the parameter vector (3.9) requires the know-
ledge of the signal's covariance function which we do nct necessarily have
at hand; however, if a sufficiently large numoer of data is avaiiabie
within the considered region, we can proceed iteratively: we chose the
standard value b = 0.112 as starting parameter, obtain the signal at

the data points by
s, = Ag, - M]ag} - be (hy - M{h}), (3.20)

calculate an empirical covariance function. and fit an appropriate model
covariance function which is used in the estimation of the parameter
vector. If necessary (hardly ever it is) we can determine better esti-
mates of the signal and so forth. By far the most expensive part in the
least-squares collocation solution remains the calculation of the indivi-
dual covariances and the inversion of the covariance matrix.

The least-squares collocation solution presented here was based on
the very essential and restricting assumption that free-air anomalies
and elavations are linearly correlated; in other words, we have assumed
that the covariance functions cov(ag', hr) and cov(h', hr) are piopor-
tional for all arguments, a condition which was imposed in order to render
the signal s independent of elevation. However, if this condition is
intdolerably violatec, a more general approach has to be aimed at. In a
very early paper Moritz (1963) has laid down the basic formulas which
express the optimally predicted centered free-air anomaly in terms of
a lincar combination of centered free-air anomalies and centered eleva-

tions, The predicted quantity is given by the familiar expression

agf = c,ct . (3.21)

U kb ekt i 2 i,
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In this context 2 denotes the vector

24‘ = (Agrl‘ [ Ag: 3 veny Ag: 1 h:‘ H ] h: 9 w0y h: ] h:);

note that the elevation h) of the prediction point is an element of the
"data" vector. This peculiar case deserves some attention: the free-
air anomaly is a function of horizontal and vertical position; its re-
striction to the surface of the earth is characterized by (2.3). A

linear predictor has to represent 4g in terms of
agf = ol ag" + 8in" + v, hy (3.22)

with coefficients of, B} and Y, independent of elevation. Since n" s
correlated with Agr, the minimization of the prediction error leads to

a linear system which consists of covariances between data (usual case)
and covariances between the elevation at the prediction peint and all
data. Therefore, we obtain a covariance matrix which can be partitioned
into 4 blocks,

ey o

|_c2' c

with the prediction-point-independent (data, data) - covariance matrix C,

C =

and the variance of centured h2ights C;, and the piediction-point-dependent
block C, which is a vector of covariances between the height at the pre-
diction point and all data. When we are talking about "data", we have

the set
r
(Ag;"Ag:’ LA ] Ag" ;hr’h:’ DR ) h:)

in mind.

- Sum——




E Here we see already the drawback of this general and optimal pre-
diction method:
: A) We need to know

F a) the autocovariance function of free-air anomalies COV(Agr,Agr),

b) the autocovariance function of the topography cov (h',h"),

c) the crosscovariance function of free-air anomaly and topography;

B) Each prediction requires the calculation and inversion of a co-
variance matrix which, in contrast to usual least-squares predic-
tion problems, changes with the horizontal position of the predic-
tion point; (the covariance matrix is invariant with respect to the

vertical position of the prediction point only, but not with respect

]
;
E

to its horizontal position.)

il

As a matter of fact, this peculiar property of the covariance matrix

TR

makes predictions more expensive, however, not as much as one would expect
from a first glance, for the following reason: the block C, is invariant 3
with respect to the location of the prediction point and, therefore, C,

has to be inverted only once and for a11. The remaining parts of the

inverse covariance matrix can be obtained by a simple block-partitioning

(c§. Faddeeva, 1955, § 14):

i Gy Czl-i B B2
¢! = l | =

C: Cii LB By z
g with By = 1/{Cs - CICTYC,) ™!
Bz B CI’C;B;

By = C1'+ B,B;/B;s
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Assuming n data given (1 data consists =f Agr and the corresponding hr).
C,; has dimension 2n x 2n, C, has dimension 2n x 1, and Cy is a constant.
Observing (3.23) we conclude that on the order of 8n? basic operations
(multiplication + addition) are required for the calculation of the full
inverse covariance matrix provided that CI1 is alrezdy available. In
viow of the fact that the calculation of C;' requires on the order of 8n?
basic operations, we conclude that the prediction of n anomalies is just
twice as expensive as the calculation of CI‘ (which is approximately equal
to the prediction of a single point anomaly), Therefore, the dependence
of the covariance matrix on the horizontal location of the prediction
point will not blow up the computation time too much and cannot be con-
sidered a severe limitation. There are much stronger arguments which do

not speak in favor of this "optimal” solution.
Let us compare the collocation solution, which assumes linear cor-

relation between Ag and h, with the collocation solution based uin &
rather 2:bitrary correlation behavior. The solution (3.10) requires
the estimation of a single covariance function, its fit by an appropriate
model, the calculation of about n2/2 covariances, and the inversion of a
n x n symmetric and positive definite matrix if n gravity anomalies are
processed. The general method requires the estimation of 3 times more
covariance functions, their fit by appropriate models, the calculation
of about 4 times more covariances and 8 times more basic operations for
the calculation of the inverse covariance matrix. Therefore, it seems
to be on the order of 5 times more expensive than the collocation
solution based on the linear correlation model. Particularly trouble-

some seems to be the estimation of cov(Agr.hr) and cov(hr.hr) because
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of the generally lacking data density, particularly in mountainous areas,
where there would be a real need for. For these reasons, it is rather
questionable if the optiral solution for the general case differs sfgni-
ficantly from the linear correlation solution (if a linear correlation
exists, both solutions are identical), and if a small improvement of the
solution justifies the very high price to be paid.

The following Table summarizes rms - prediction errors of mean free-
air anomalies, depending on the data density and the correlation length
£ of the covariance function; a variance of 100 mgal? has been used. The
data are assumed to he regularly distributed error-free point gravity
anomalies. A data density of N means N data/blocks.

The figures in Table 3.1 do not include the error introduced by the
inaccuracies of the trend model parameters a and b; they can contribute
to the total error budget up to 2 - 3 mgal (Siinkel and Malits, 1981);

a typical error estimate of a is £ 1.5 mgal, a typical error estimate
of b is +0.002 mgal/m. Note that the variance of 100 mgal? has been

chosen rather arbitarily; the figures can easily be scaled by the proper

variance.
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correlation length £ (km)

N 20 30 40 50
1 0'5 0.3 0.2 0.10
3 0.1
1 1.6 0.9 0.5 0.4 0.3
107 x zu°
4 0.3 0.2 0.1
1 2.6 1.6 1.1 0.7 0.5
4 0.5 0.3 0.2 0.2 0.1 } 15* x 15°
9 0.1
J
—\
1 3.8 3.2 2.6 2.0 1.6
4 1.4 0.8 0.5 0.3 0.3 $
9 0.5 0.2 0.1 30% x 30°
16 0.2 0.1
/
'\
1 3.6 3.9 3.8 3.6 3.2
4 2.4 1.9 1.4 1.0 0.8
9 1.3 0.8 0.5 0.3 0.2 1% x 1°
16 0.7 0.3 0.2 0.1 0.1
25 0.4 0.2 0.1
_J

Table 3.1 Mean free-air anomaly rms - prediction errors (
ing on the data density N (= number of data/block
100 mgal2,

correlation length £; common variance:

al), depend-

and on the

ki s Al p i

e 4o
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F The results summarized in Table 3.1 are graphically represented in Fig.
3.2 a-e. The contours are lines of constant mean free-air anomaly predic-
tion error dependent upon the correlation length £ (horizontal axis) and
the data density (verticai axis). Note that these estimates refer to the

ideal situation of regularly distributed and error-free data having a

variance of 100 mgal?;

data density
S

; 1 (a) 5 x b “:
3 4
correlation lenath (km) 1
f %
%
9 ;
ey
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Fig. 3.2 a~e Lines of constani rms mean anomaly prediction
error, depending on the correlation length and
the data density; variance: 100 mgal?

RV

As a matter of fact the estimates obtained here have to be scaled accord-

RS L it

ing to the individual variance. The variance can considerably differ

between various areas; this is why, as a kind of normalizing factor, a

T Y TR T

common 100 mgal? variance has been assumed. E.g. the mean residual var-

iance for a 1% x 1% area is of the order of 900 mgal? (total variance

minus variance of 1° X 1° mean anomalies); therefore, the values of Fig.

3.2e should (in average) be multipiied by a factor 3. All values refer

! to the covariance modei of Hirvonen C(s) = Co/[1+(s/€)*]; for the

2o2
Gaussian covariance model C(s) = Coe as we obtained estimates which

are about 50% lower for 5° x 5° mean values and 15% lower for 1° x 10;

e M i s oL L 1. i 314

these lower estimates arc dus to the stronger correlation of the

e

i Gaussian model, compared to the Hirvonen model, for small distances; the

sl

covariance function's behavior for small distances is controlled by its

curvature parameter at the origin; therefore, highly reliable prediction
and pre.ciction error estimates should be based on a covariance model which %
resembles all three essential parareters, the variance, the correlation

b ierngth and the variance of horizontal gradients.
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4, The b = const, - PROBLEM and ISOSTASY

In chapter 3 basically three methods for the pradiction of free-
air anomalies have been presented. Two of them assumed a 1inear cor-
relation between free-air anomalies and elevations, rapresented by the
correlation coefficient b. In least-squares adjustment determinations
of b (equ. (3.8)") , it has been observed (Uotila, 1967 a,b) that |b|
tends to decrease if the area, for which it is considered constant,
increases. A simple explanation of this phenomenon has been provided;
it was based on the assumption that the value of the Bouguer anomaly is
approximately proportional to a "mean" height. It has been anticipated
that the way of takirg the mean of the topography is closely linked to
the concept of isostasy. In this chapter we make the attempt to obtain
a mathematical relation between the area size (of b considered constant),
statistical characteristics of the topography, and the error to be ex-
pected in b due to the b = const. assumption.

Moritz (1969) has shown by means ¢f a simplified model of isostasy,
that the linear correlation between free-air anomalies and topographic
elevations can be explaired in a very simple way. Reprasenting the
compensated masses by a surface layer at the depth D below sea level,
he finally arrives, after some minor neglections, at a relation which
expresses the free-air anomaly in terms of the corresponding point

height, the corresponding mean haight, and the topographic correction,

ag, = 2nGo (hy - Bp) - Co , (4.1)

P
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elevation of the point

-

mean elevation corresponding to P,

(2 I~ ' 4
-

topographical correction,
o ... density,

G ... gray.tational constant,

(Note that for this model the Bougiuer anomalies are given by ~2nGpﬁ;,
the isostatic anomalies vanish.)
The mean height W, is represented in terms of the output of a linear

system witn input h,

R(P) = %;—DJ[/ M) 9 (@ (4.2)
g

with &, denoting the distance between the point P, (located at sea level,
orthogonal projection of the surface point P) and Q (located on the
compensation surface at depth D below sea level}; R denotes the mean
radius of the earth. In the spectral domain the mean height spectrum

K. is related to the point height spectrum h,. through

}\‘lam = Nullam (4'3)

where «, is the n“th degree eigenvalue of the integral kernel K of (4.2),

K(P.Q): = 5 T - (4.4)

according to the Funck-Hecke formula (Muller, 1966, p. 20),
1

Ko = T fK(t)P. (t)dt; (4.5)

-1
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(P. is the Legendre polynomial of degree n.) Introducing (4.4) in (4.5),

Ke is expressed by
1
= 2 P t »
Ka RD[-EE-&}dt. (4.5)
=1

%, as the distance between P, and Q is given by
%
2, = [R2 + (R-D)2 - 2R (R-D) cosw] R

and 1/¢2 by

1 = 1 + 2 2 - %
TR (1 + 0% «2at) _ (4.6a)
with a =1-%,t: = cosy . (4.6b)

The expression (4.6a) can be represented in terms of a series of Legendre

polynomials (Heiskanen & Moritz, 1967, p. 35),

E Ry Y (20 + 1)a” P (cosy) (4.7)
a=(
Now it is fairly easy to derive the eigenvalues «,; observing the ortho-

gonality relation of Legendre polynomials expressed through

1
J’D. (t) Pu (t) dt = 227 6,0

-1

(6. denotes the Kronecker symbol), we obtain with (4.5) and (4.7)

2a."

Keg = m‘r 5 (4.8)
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expressing o by (4.6b) we obtain

18" )
‘. = {-1—_5#) . (4.8)

In order to better understand the impact of these eigenvalues, let us

consider two extreme cases:

a) D =0 (compensation level coincides with sea level): 1in this case
both the isostatic and the Bouguer anomalies should be identically
zero according to our model (4.1). In other words, R=h-no
smoothing is envolved. In terms of the spectrum this means that
k,, = h,..» therefore all k, must be identically 1. This condition
is obviously fulfilled by the eigenvalues (4.8)°.

b) D = R (compensation "level" coincides with the center of the sphere):
in this case the isostatic compensation degenerates, such that the
mean height becomes independent on point position and, therefore,

a constant. As a consequence only the zero degree eigenvalue has

to be equal to one (it passes the operator undisturbed) , all other
eigenvaiues must be zero (annihilation of all frequencies higher
than zero). This condition is also fulfilled by the eigenvalues
(4.8)".

In other words, (a) represents an extreme case of a high-pass filter, (b)

an extreme case of 2 ‘ow-pass filter. OQur isostatic model as well as the

actual isostatic compensation will be located somewhere in between (a)

ang (b). The following graph presents the behavior of the eigenvalues

~, for th ce generally discussed and used compensation depths, D = 24,

32, and 40 km.
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Fig. 4.1 Eigenvalues «, of topography - smoothing
operator,
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Let now the topography be given in terms of a series of normalized

harmonics ¢

(P) = D Nam Sum (7). (4.9a)

then the corresponding smoothed topography is obtained through

% R(P) = D kahyu 0un(P) (4.9b)

? [ A

; and the residual topography Ah = h - [ 3
' an(r) = 3 (10w Gun (1) (4.9¢)

- The corresponding autocovariance functions of h, H, and ah are given by

cov(h,h) = 2. h, P, (cosp) (4.10a) 1
4 a>0,m 3
1 )
3 cov(f,B) = 2. 2 h.R (cosy) (4.10b) :
: a>0,m™m ;!
cov(Ah,Ah) = Z (1-k,)%h,P, (cosy) (4.10¢)
a0, m

with the degree variance: h, = :E: N2 ame

N a—pn

The behavior of {1-.,)% for three compensation depths is shown in Fig.

B i L

AT R T

4.2. The energy in the lTow frequency part is dampened because the low

frequency content of h and K is almost the same. The energy in the high §

DL St

frequencies, however, is hardly reduced since R has hardly any power in 3

the high frequencies. The deeper the compensation level, the more energy

remains from the high frequent part.
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Fig. 4.2 Energy dampening factor for residual height.

what we are primarily concerned about, is the b = const. - problem.

Considering again the ideal case of homogeneous density and terrain-
corrected free-air anomalies, we conclude from the model (4.1) that b

is constant if the mean height, as defined by (4 2), is used. However,

in practical determinations of b, valid for a specific area, a constant

mean height is used. In gneral, N as defined by (4.2) is not constant
over a 1imited area such as 1% x 1°. The error which we commit by us-

ing a constant mean height instead of a variable mean height N enters
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fully in the determination of b, Denoting the constant height of a speci-
fic region by h and 2nGp by by, the factor b, as determined by a least-
squares adjustment (equ. (3.8)"), is obtained by

I Y Lt BT T il ot AT 2

A el [ 4
b = h_4g9 , (4.11)
- hrl’ hv

where h’ and Ag" denote the vectors of residual elevation and (terrain

?, corrected) free-air anomalies,
;5‘ h": = (hl“ﬁ.,hz-.ﬁ.’ “"hn.m' §
; Ag': = (Agx-ﬁ:ﬁgz'@s LI AgI'A—é)- j
E According to our assumption, the mean anomaly Ag is given by
Ag = bo (R - N) (4.12)
§ and therzfore, the reduced anomalies can be represented by
8g" = bo(h - §) - belh - h) ~
- = bo(h « B - bo(’P\l’ - ?{)
= Dy N - bgh . (4_13) g
i

Introducing this relation intu (4.11), the error &b : = b - be is given

by
. I"'\J' "
; So = bohrh ’
| h" h' :
3 3
3
1 3
] and, »’th the triangle inequality |a bj<|a||b|, we obtain an estimate . :
B ' h'
: |8b]< ba h.{ . (4.14)
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From (4.13) it is obvious that the error &b vanishes if the size of the

area, for which h and g are constant, goes to zero. Vice versa, &b will

increase with increasing area size. Equation (4.14) shows that &b is

rrEre o
»

proportional to the rms variation of the residual mean elevation as

defined by (4.2), and indirect proportional to the ~ms variation of the
residual elevation. Therefore, an estimate of b for small blocks in L%

mountainous areas should give small estimation errors, provided our model

T YT

is correct and the data distribution is sufficiently homogeneous and

N dense. Poor estimates have to be expected for large blocks in flat areas.

Both phenomena have been strongly confirmed by practical determinations

L of b (Uotila, 1967a,b; Siinkel and Malits, 1981). i

vation h with distance-dependent weights; W(r) is a smooth surface.

|
I
| The mean elevation N is defined as a weighted average of the ele-
|

T

1 | This smooth surface, however, is approximated by a step function h in

: all practical applications. As we have seen above, the variation of N
with respect to a constant is responsible for the error in &b, provided

our model is valid; the block size is closely related to the error &b.

e i Bh

Since we shall hardly ever work with a mean surface N but rather with h
we are interested in the effect of &b, caused by the replacement of [
- by h. We will again consider Faye - anomalies (terrain corrected free-

air anomalies) which are linearly related to the elevation h,
ag = be(h - K) 3

| if we replace h by h, we make b variable (b, s a global constant) and

dependent on position,

ag = b (h -Hh) .
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The right hand sides of both equations hav~ to be equal for all points,

and we obtain the condition

bo(h = R) = b(h ~ T, (4.15)

Splitting b up into b = b, - &b and adding zero to the right hand side,

we obtain

(by ~ &bJ(h - & + & - ),

bo(h - R)
and consequently

sb(h - B) = be(K - A). (4.15)"

(Note that sb, h, N are variable, T is constant.) If b is determined
by means of least-squares adjustment with parameters, the function
sb(h - h) is considered as noise; in our model this noise is represented
by the difference between the mean elevation surface R and the constant
h. Note that in the least-squares collocation solution bo(k - h) is
treated as a signal, but not as noise. As a matter of fact, the power
of this noise is a measire for the error of estimation of b in the Teast-
squares adjustmeit concept.

In the sequal we shall investigate the average deviation of h from
K. The Jerivations are rarticularly simblified if h is considered as
the mean elevation o.er a circular ragion and, moreover, if h is consid-
ered as che output of a moving average applied to the actual topography
h. These two simplifying assumptions do not quite reflect reality, but
the a“-antage of working with the concept of isotropy justifies this

feimal Tnhaccuracy.
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The moving average h of h, taken over a circular cap with radius

Yo, Can be expressed by

R(r) = D Bnhamérm(®) (4.16)
n,m

for the same reason and in the same way as N was expressed by (4.9b).
In this context B, are the eigenvalues of an isotropic moving average

operator with an integral kernel B(t; to) defined by

1
B(t) =,2ﬂt01‘t05 fOl" tos.til . (4.17)

else

(t denotes the cosine of the spherical distance.) The eigenvalues

are obtained through
1

s i
Bn(to) 1_tufl’n(t) dt.
to

The following expression can be found in (Meissl, 1971, p. 24):
B,(ta) = T g [ Py (t0) = Py (t0) ] (4.18a)
Lo 1-t, 2n+l n-1 1 D I .

Sjoberg (1980) has recently derived a quite attractive recurrence rela-

tion which does not require the computation of the Legendre polynomials:

Bolte) = oip [(2n-1)tes,_ (80~ (n-208,_,(t0) |4 n22
with 8o =1 and B8i(te) = % (1+ta). (4.18b)

With (4.9b) and (4.16), the relative error Sb/b, (equ. (4.15)°) can

be representad by

ol

o bl
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Z (kn=Bn) hpm®pm(P)
Qb_('.').a"ﬂ n =n/tnm¥nm . (4'15}“

o > (1-8,) hydym )
n,m

It is obvious that &b vanishes if Kn=8n for all n, Due to the different

behavior of «, and 8,, this condition is only fulfilled in the extreme

: cases of
»
4 a) D=0and yo =0,
? b) D=Randyo =1 .
For all other realistic situations like D=24, 32, or 40 km as discussed %

here, Bn will in general be different from Kn3 therefore, b will not

vanish. The variance of

%(K,,-sn)hnm bpnl?) s

given by D (kp-8p)’hy (4.19)
7 j

is obviously a measure for the mean square value of éb. Therefore, the

i
% i goal is to minimize (4.19) which can be achieved by selecting, for each

compensation depths ). an appropriate cap radius y,. However, the

g optimal relation between D and Yy, is infiuenced by the actual degree i

i

é» ‘ variances of the topography. This means that we have to know the degree

s,

variances h, of the topography, Rapp (1981) has recently determined the

degree variances of rock topography for ns 180 based on a 12 x 1° mean

o bl e

elevation data set. They can be used in (4.16) to represent the energy
which is contained in the long-to-medium wavelengths of the topography.
Highei- degree variances have to be obtained from a degree variance model. 3

Since the author is not aware of the existence of an appropriate model,

sy T
g8 e
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another way has been chosen: In the medium'frequency range the actually
"observed" free-air gravity anomaly degree variances and the correspond-
ing ones derived from topographic data agree fairly well; this agreement
should be even better in the high frequency range becarse of the strong
linear correlation between gravity and elevation. Tierefore, it was
quite natural to use this source of information as topographical height
degree variance model for medium to high frequencies.

Two gravity anomaly degree variance models which fit real world
gravity data best (potential coefficients to degree 180 based on a com-
plete set of 1° x 1° mean free-air anomalies, an observed variance of
1800 mgal?, and a variance of the horizontal gravity gradient of 800 EZ),
are two parameter models suggested by Moritz (1977), numerically investi-

gated by Jekeli (1978) and Rapp (1979). Both models have the form

nN+2 n+2
. 00 0y O
Cn = (n‘l) {—gﬁ_—il— + m] (4.20)

and are determined by 6 parameters each. "Case One" model of Rapp (1979)
gives the best overall fit to the data, "Case Two" model fits the observed

degree variances best.

mode ayfmgal?] | o2[mgal?] 01 o2 Ay | A2
"Case One" 3.4050 140.03 .998006 | .914232 1 2
"Case Two" | 14.966 999,25 .987969 | .850000 | 75 | 20

Table 4,1 Used "best" degree viriance model parameters,
from Rapp (1979), p. 15.

j

1
:
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For a linear correlation model between gravity and ¢ levation with the
Bouguer-factor 27Gp = 0,112 mgal/m, the relation beL. sn the degree

variances hy, (elevation) and ¢, (gravity) is given by

c
- n

Figures 4.3a,b show the degree variances of observed rock topography up

to degree 180, and such ones derived from Rapp's "Case One & Two" gravity

::;fgmg“w:Wﬁﬁmmw*‘m*""v :

anomaly degree variance models for n>180.

e
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o ined
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Fig. 4.3a Observed (n<180) and from (4.20) and (4.21)
derived (n>180) rock topography degree variances

("Case One" -~ mode1) based on various compensa-
tion depths. ;
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1000
observed rock topography

/,D 24 km, Case Two - model
32 km, Cas: Two - model
40 km, Case Two - model

50 km, Case Two - model

nonon o

D
D
D
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(meter)

Vhe

107

1 - : -
0 250 500 750

degree n
Fig. 4.3b Observed (n<180) and from (4.20) and (4.21)

derived (n>180) rock topography degree variances
("Case Two"-model) based on various compensation

depths.

It is obvious from the abov. two figures that the "Case Two"-model has
much less power in the high frequency part than the "Case One"-model.
"Case One"-model matches the trend obviously much better; the 50 km

compensation depths seems to be optimnal for the "Case One" model, 32

km for the "Case Two"-model.

L L
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The contribution of each degree variance to (4.19) is weighted by
(<n-Bp)?%. These weights are graphically represented in Figures 4.4a-c
for various compensation depths and cap sizes. Needless to say, the

zero line corresponds to the never tultilled ideal <ase <y = B8y, Vp.

The following conclusions can be drawn from these figures: The weights
depend strongly on the assumed compensation depth; for the cases con-
sidered here (D=24,32, and 40 km), the cape sizes ¥,=15" and y,=2° can

be ruled out because of their too large deviation from the idexl case;
for the generally adopted compensation depth D=32 km the overall weight
minimum is somewhere around yo=30" to 60°. The weights are significantly
different from zero, up to degree n=750 which cerresponds to a wavelength
of about 50 km; high-frequent variations (n>750) of the topography are
otviously very similarly averaged by (4.2) and (4.17); very low-frequent
variations (n<36) are similarly averaged by (4.2) and (4.17) alike; the

difference between k, and By is strongest in the medium-frequency range.

2 inkil e ki et %
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Since (4,16) does not only depend on kp and 8p but also on hy, it is
particularly important to have a good estimate for medium-degree rock
topography degree variances available. Observed rock topography degree
variances up to degree 180 were available to the autho»; due to the
excellent correspondence between observed and anomaly-derived degree
variances for n ~ 120 to 180, particularly for the "Case One"-model of
Rapp (1979), it was decided to use this model as a representative one

for de_ <es n>180. With this data we computed first the L:-norm of

bo|| K-R|| = |<sb, h-h>] (4.22)

. 2.- 1 2
with | £112 := M'l/“f do ,
o

for various compensation depths D and cap radii ¥,. Naturally, the norm
depends on D as well as ony; for the optimal choice of y,, corresponding
to a prescribed D, the norm depends strongly on y,, but weakly on D, and
assumes values between 8 and 11 mgal; (this corresponds to a minimum rms
difference between § and i of some 70 to 100 meters.) The 8 mgal value
has been obtained for D=24 km, the "Case Two"- model and a cap radius
of w°=45‘. Due to Schwarz” inequality we are able to estimate a globally
valid lower bound of the error b through

l1K-h |l

ilh-h ||

For the optimal choice of vy , corresponding to a prescribed compensation

||8b || 2 be

(4.23)

depth D, the lower bound of ||§ b|| is practically constant and equals
3.0:10°% which is 30% of the normal Bouguer factor, Those optimal values

have been obtained for D=24 km, y,=40" down to D=40 km, y,=110" and the
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"Case One"- model, The graphs in Figs, 4.5 and 4.6 show bo|| K-R || and
|| b || as defined by (4.23) dependent on various compensation depths

and cap sizes, for both the "Case One" and the "Case Two" -~ model.
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In the previous investigation of the error in b, caused by a replacement
of h by h, only the global case has been considered. Therefore, the
optimal estimates for Y, should be interpreted with this reservation.
Local optimal y, - values can be considerably smaller; therefore, the

Py - estimates represent rather upper limits. Best iocal estimates de-
pend on the individual situation; they could be obtained on the basis

of a detailed digital terrain model.

Summarizing we can say that large deviations of b from the normal
Bouguer ygradient of 0.112 mgal/m can be expected if b is determined for
a large block by least-squares adjustmeni and in addition, if the Bouguer
anomaly is not constant within the block. Using a simplified concept
of isostatic compensation, we could give a very simple mathematical ex-
planation for this phenomena. If the least-squares adjustment concept
is used for the estimation of b, the selection of an appropriate block
size should be done very carefully. In general it is much better to
choose a too small block size than a too largc one; this is particularly
true for mountainous areas. The least-squares collocation determination
of b is quite insensitive with respect to the choice of the block size
because it takes into account the variation of the Bouguer - anomaly
within the block. Therefore, it is a very good advise to estimate b using
the method of least-squares collocation with parameters, particularly
in areas with sparse data coverage. In addition, collocation allows at
the same time the estimation of the Bouguer anomaly field and even the
prediction of surface free-air point and mean anomalies together with
their accuracies. The author is not aware of any other nearly as

powerful existing method.
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5. THE TERRAIN EFFECT ON POINT ANOMALIES

The natural goal of estimation problems is to keep the error of

estimation as small as possible, Least-squares interpolation, in parti-

b cular, is sensitive with respect to the statistical properties of the

field to be estimated, expressed in termms of a (usually) isotropic and

homogeneous covariance function. The interpolation error depends strongly

on a) the variance C; and b) on the ratio r = correlation length/data

spacing (Siinkel, 1981). A small interpolation error is achieved by a

? small C, and a large r. Therefore, any data reduction process, which
1 decreases the variance and increases the correlation length, has to be 3
favorably considered. It is common sense that the irregularities of the

topography account significantly in the power of first and higher order

g derivatives of the gravitational field. In particular, the free-air
anomaly's high-frequent variation comes primarily from the influence of
the topography. In other words, the topography makes C, increase and

the correlation length decrease. T[his is why predictions in mountainous

3 f areas, based on unradvcad free-air gravity field quantities, give poor
accuracies. If we want to achieve high prediction accuracy, we have
only twe alternatives: do mannuwer-consuming expensive fi=ld work and
collect more data just to make r increase, or reduce the data for the
influence of the topography. Needless to say, plain mortal geodesists é
rrefer the latter.

[n linear and planar approximation the topographic correction of

gravity at a surface point P is given by (Moritz, 1969, p. 10)

T
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2
C,‘hGpsz]‘(l:;l’_). dq (5.1)
o) 20

with 2o = 2R sin y/2. Since the integral kernel %;° drops rapidly to
zero, only a very small region, centered at the computation point P, has
to be considered for the evaluation of (5.1): therefore, it is legiti-
mate to formally replace the sphere by its tangential plane at P.

In the following we shall investigate how detailed topographic
information has to be made available in order to meet certain accuracy
requirements. Let us first investigate the critical zone in the neighbor-
hood of the computation point P. Following Heiskanen & Moritz (1967,
p.12144.), we represent the topography around ° in terms of a Taylor

series,
h(s,a)} = he + s(hy cosa + hy sina) + ...; (5.2)

here s and o denote the planar distance and the azimuth, x and y are

cartesian coordinates. Then (5.1) is represented by

AT So
2
6C,=3:.Gof f[-m—;%m*—l-sdsda,
Q=0 S=a

and with (5.2) we obtain, neglecting higher order terms,
2T So
6Cp = 3% Gp f (h3 cost + hy2 sin + 2hyhy sina cosu)dsdo.

G=0 S=0

Due to the orthogunality relations of trigonometric functions, this ex-

pression reduces to the simple form
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§Cp = mGosoig(hy + ). (5.3)

Consider e.g, a small zone with a radius s, = 300 m and a moderate slope
of 20° only, the terrain correction will assume a value of about 1 mgal,
Consequently, the resolution of the vsed terrain model has to be very
high in the neighborhood of the calculation point, unless P is located
on a "flat spot" of the terrain.

In order to study the response of C to the terrain, we need terrain
models. However, the choice of a proper terrain model is a very delicate
problem. To some degree it can be anticipated that C will be relatively
insensitive with respect to high-frequent, and sensitive with respect to
medium-frequent topographic variations. As a matter of fact, C should
depend somehow on the power of those variations. For the sake of sim-
plicity we choose a very simple but instructive topographic model: an

isotropic model represented by
h(s) = hy cosws, (5.4)

centered at the computation point Py (note that hy = ho.) The model

Tooks quite unnatiural, tbut it isn't: 1imagine a gravity station either

on a top of a mountain surrounded Ly (circular) mountain chains of com-
parable height which are secparated by valleys, or - numerically equivalent-
a gravity station ir a valley surrounded by mountain chains and other
valieys. The only unlikely structure in our model is the circular sym-
metry, constant amplitude and frequency. However, in order to study the
influs-e of topography on gravity, sacrifices have to be made resulting

in simple structures,
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With (5.4) the topographic correction (5.1) is given by
¥ © 2
C = mGo hﬁf o3 1) gs. (5.5)
s=¢
, (The integration over the azimuth has already been performed.) According
to Ryshik and Gradstein (1963, p. 114, No. 2.523; p. 115, No. 2.526) the
; integral in (5.5) assumes the form
[ c05ws -1 ds = 2,2 ([ s1nws ds - / sngZ»st
ws
+[—i—<2 cosws - % CoS 2ws -~ ¥ ] :
The second expression [-] can easily be shown to vanish by a Taylor ser- g
ies evaluation at s=0. Considering |
' sin px _ m %
; pX 2p 1
(Ryshik and Gradstein, 1963, p. 169, No, 3.522), the first expression
]
(+) assumes the simpie form m/4w; with w = 2v/A (A ... wave-length), ]
the topographic correction (5.5) is given by %
¢ = e B (5.5)°
]
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This remarkably simple result for the equally simple model deserves a
discussion: Let us first reflect about its validity. Formula (5.1)
: represents the linear term of a series expansion of the topographic
é correction in planar approximat:on with respect to [(h—h,)/zojz, which

essentially represents the square of the tangent of the elevation angle

g of a variable terrain point with respect to P, tan?8. The series
g? obviously converges if |B]< 45%; therefore, equations (5.1) as well as
e (5.5)" are valid approximations for moderate terrain only with tan?B

.

% significantly smaller than 1, In terms of the wavelength A of our

3 model, this translates into A> 4ho; in order to be absolutely save, we

should rather write E

4

= C=1r3(3|p!;-\m . A »4hy, . (5.5)*
: C vanishes if A+« as it should be, The most important result (at F

least for the model considered here) can be summarized as follows:
The topographic correction is prcportional to the square of the 1
; amplitude h, {and consequantly linearly dependent on the variance of
' the topography), -+ is inverse proportional to the wavelength X of the
topography, provided A >» 4h,.
- The following Table 5.1 »hows C for our model, dependent on various

§ choices of hy and A.




~ ho(m"("‘) 100 1000 | s000 | 10000
." 10 0.55 | 0.05 | 0.01 | <0.01
g 100 5.5 1.1 0.55
500 27.6 13.8
1000 55.2

Table 5.1 Topographic correction (mgal) dependent
on amplitude h, and wavelength ).

The figures obtained with our simple model agree remarkably well with real

world observations; cf. Heiskanen and Vening Meinesz (1958, p. 154). (Note,
for example, that the figure in the last line and last column corresponds

to the situation of a mountain top 2000 m above the surrounding valley and

T Ty

having a circular basis of 20 km in diameter.) It is quite instructive to
compare these values with figures derived from a cone model with height =
2 h, and base-radius = A/2; the topographic correction can easily be shown A
to equal C = 8nGph3/X; therefore, our two models differ only by 8/n2 = 0.8 é
and consequently, the cone-model values corresponding to the figures in Table ‘
5.1 are only 20% smaller; a very astonishing result, which both convinces

the above rule of thumb and indicates the moderate influence of remote zones.

Let us still investigate another isotropic model represented by

h(s) = ngsinuws, (5.6)

centered at the computation point P; (note that h, = 0.) With (5.1) the

topographic correction is given by

oo

: 2
;
C = mGph S—ﬂ;é"—sds ;

T P T

s=0
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with (Ryshik and Gradstein, 1963, p, 166, No. 3.512) and w = 2n/)\ as before,

we obtain

2
C = 73Gp b}\l s A4 (5.7)°

which is identical to (5.5)™.
As a last model we will consider a non-isotropic so-called "two-

dimensional” model which has a constant profile in one direction,

h(x) = hysinwXx; (5.8)

bl sl ik s g

the computation point is supposed to be locatea at x = 0. With (5.1) the

topographic correction is given by 7

=1 Goho f f sm WX dxd (5.9)

X2 =00 yﬂ-@

Due to the éymmetry of the integrand with respect to x = 0 and y = 0, C can

also be expressed by
- 2602 f j sin? sintux dxdy dxd (5.9)°
\/x +y
x=0 y=0

The integration with respect to ; is very simple and yields

]
Vix? + y? x2\V1 + x X
y=0 yZ y=0

and therafore C reduces to




e e

which differs from (5.7) only by a factor 2/m and we obtain with w = 2m1/)

as above

2
C = 2n2Go %{L , A 34 he. (5.9)

Also fur this quite different model (note that the computation point is
located at the slope of a mountain chain) we observe the same dependence on

h% and A. Therefore, we conclude that our rule of thumb
C = 6(h3/A) (5.10)

seems to be of general validity,

What is the logical consequence for the design of a digital terrain
model for the purpose of reducing gravity measurements? Observing (5.10),
the obvious answer is as follows: the terrain sampling rate must be selected
terrain-specifically; rough terrain requires higher rates, smooth terrain
lower sampling rates; it is not a good advice to keep the sampling rate
globally constant. If we are talking about a rough terrain we mean not only
small wavelengths but also high power; high-frequent terrain oscillations
with a small amplitude need not be resolved, they should be smoothed out by
an appropriate smoothing process; a mean value representation over rectangular
blocks or even a mean value reproducing smooth representation should be
favorably considered. The block size, in turn, depends strongly on the
power of the high-frequent portion of the terrain spectrum, and in addition

on the desired accuracy of the terrain correction.
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The terrain correction (5.1) can also be represented in terms of

polar coordinates (y,a)

™ 2m
_ 2
- Go h-_{_y,'::'-’nj .
Co Vi /L W s inydyda, (5.11)
y=0 o=0

Performing the integration with respect to the azimuth o first (for a fixed

spherical distance ¢), and denoting the mean square height difference (with

respect to h ) by h**(y),

2m
SEORE N I CTO RS S (5.12)
a=0

the terrain correction may be written

T
G h*? . ) A
Cp = lﬁﬂf R——%;— sinydy. (5.11)
v=0 '

Observing the rapid decrease of che furction siny/23(¥), expression (5.11)"

can be considerably simplified for practical applications; with

Siny 2sin $/z cosy/e &0 1
= =
25(v) sin “iuf: v :

for =mall y, (5.11)° is given by

Y
Q
t *2
cy s ;r_gef h_w;udw, (5.11)
U)’O }
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(wo = 19 is sufficient in any case (Hay-Ford zone 0); cf. (Heiskanen
and Vening Meinesz, 1958, p. 154).) In terms of the linear distance

s = Ry, above formula is written

So
2
C = 6o fﬁ*—sS—slds. (5.11)
s=0

Let us now recall the isotropic terrain model (5.4) discussed earlier,
Comparing (5.5) with (5.11)" , we observe that our requirements can
be considerably relaxed: the model has to be such that only its mean
square value (extended over the azimuth o; s fixed) behaves 1like

h% (cos ar s-1)%, otherwise it is largely arbitrary. Consider the in-

tegrand of (5.5): with a constant denominator the maximum would be
attained at s = (2k+1)A»/2, k =0, 1, ... . Due to the rapidly increas-
ing denominator s?, the maximum of the composite integrand is shifted to
smaller values of s; in addition, C gets its power mainly from the re-
gion of the inegrand's first maximum; local maxima of larger s contribute
very little to the terrain effect. This is why the simple cone model
discussed above differs only 1ittle from the model (5.4) as far as the
terrain effect is concerned., Fig. 5.1 illustrates the behavior of the
integrand corresponding to model (5.4) for various wavelengths (common
haes, normalized). It is quite remarkable that these graphs, despite of
the underlying model's simplicity, agree favorably well with graphs
derived from real world topography; cf. (Mathisen, 1976); this fact
confirms once more the h3/A - law,

The practical consequences are as follows: the location of the first
maximum is strongly influenced by the variation of the topography in the

neighborhood of the computation point; therefore a very detailed

,i
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) " Fig. 5.1 Integrand [ho(cos 21 s - 1)/s] 2 for t

3 A
- various wavelengths A.

digital terrain model (DTM) is required in this region, unless the compu-
tation point is located at a fiat spot of the topography. The degree ;
of resolution of the M, therefore, depends on three essential factors:
a) on the variance of the terrain surrounding the computation point P, i

n) on the wevelength of the terrain surrounding P,

¢V on .ae location of the first maximum ¢ the integrand in (5.11)" .
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Table (5.1) and Fig. (5.1) provide us with a rough guideline for
a proper choice of the required DTM's resolution; however, the decision

must be made on individual circumstances.
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6. THE EFFECT OF TOPOGRAPHY ON MEAN ANOMALIES

Mean free-air anomalies as defined by (2.2) can be split up into
two components: the mean Faye inomaly plus a mean terrain correction.
Chapters 2 and 3 deal with the estimation of point and mean Faye anoma-
lies; chapter 5 considers essential aspects concerning the calculation
of peint terrain corrections., As a matter of fact, the effect of topo-
graphy on mean anomalies equals the mean terrain effect; its estimation
will be discussed in the sequel,

The most straightforward way of estimating the mean terrain effect

is to calculate a dense grid of point terrain effects and take the

. average. The calculation of the point terrain effect requires the

evaluation of an integral formula like (5.1), an expensive task even for

high-speed computer. Note that equation (5.1) is of "differentiation
type" which can be clearly seen by observing its behavior in the inner-
mosc zone surrounding the computation point P. The mean terrain effect
is obtained by integrating the noint terrain effects. Do we ireally have
to suffer from the instabilities of differentiation first before we can
enjoy the stability of integration? There must be a direct and inexpen-
sive solution tc the problem of mear  :rain correction estimation which
avoids the up's and down's cof differentiation + integration. (A very
similar problem is encountered in connection with the astrogeodetic
determination of the geoid: plumb-line curvature correction and ortho-
metric reduction; see Heiskanen & Moritz, 1967, pp. 200, 20i.)

‘Lt us consider the terrain correction as given by equation (5.11)7.

The mean térrain correction C = M{C} is obviously obtained by averaging
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1"
the point terrain corrections within the area ac of consideration, ;f
T=L [fcdo (6.1) :
i . .
a0

Let us try to formulate the procedure of calculating C: Af

a)
b)

c)
d)
e)

f)

g)

keep a circle with radius =y fixed;

keep a point P ¢ A ¢ fixed and make it the center of the circle;
calculate the mean square height differences as defined by (5.12)
for this particular circle;

change P and repeat (b) and (c) until Ac is covered;

calculate the average of all outcomes of (c);

change ¢ and repeat (a) - (e) until [0, wo] is covered with an appro-

priate y, (e.q. 1%5);

perform (5.11) .

In terms of a formula it can be written as

‘L’o 2T
.18 L [fL d
C -—-R-P—/' :Ac[/ZW/ Ahzda}ﬁ- (6.2)
Y=o Ao

Q=9

The expression {-} represents (c) - (e) and equals the variance of height

differences between two surface points, separated by a distance ¥, for the

1)
individual area Ac in considerationg This variance is related to the

elevation auto-covariance function H(y) as follows:

)

——
-

1
2mho f ﬂAhszda = 2(Ho - H(¥)] , He=H(0D). (6.3)
Ao

=

... provided Ac is sufficiently larger than vy,




62

Replacing the spherical by planar expression, we obtain the very simple

expression
So
¢ = 200 f LESIC P (6.4)
§=0

In the following we will evaluate this integral for various covariance
functions, the generalized Hirvonen models and the Gaussian covariance
function.

a) The classical Hirvonen model

H(s) = —er (6.5a)

where £ denotes the correlation length, yields an integral (Ryshik and

Gradstein, 1963, p. 60, No. 2.141)

Ho=-H(s) o Hem
J/‘—ﬁgq——- ds -f%~
s=0

and ~e obtain fcr the mean terrain correction the valuye

¢ = m26p %% . (6.6a)

3) The second Hirvonen model has been discussed in Meritz (1980),

His) = -, (6.5b)
)]
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where the parameter a is related to the correlation length £ through

£ =avld,

and we obtain for C the value

C= ZVTTTGD%L . ) (6.6b)

c) The last Hirvonen covariance nodel (Moritz, 1980) is

- Ho
H(s) = [1+—(—§_—)r]—3/2 , (6.5¢)

where the parameter a is related to the correlation length £ through
£ = a(22"3 - 1)%. According to Ryshik and Gradstein (1963, p. 82, No.
2.268) the integral yields

Ho - H(s -2 Hyg
S ds a
S=0

and we obtain for T the expression
T=4V2 " 1 160 %g : (6.6¢)
d) The Gaussian covariance model

2.2

H(s) = Hee ~2°S (6.5d)
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1
has a correlation length £ = a \In2 and yields an integral (Ryshik and
Gradstein, 1963, p. 151, No. 3.273)

and we obtain for the mean terrain correction the value

T=2W Tl oo G (6.6d) i
f In 11 four covariance models we observe the common factor mGp %% .
3 The model-specific multiplication factor is shown in Table 6.1. 4
f Covariance model Co
; Hirvonen (a) T = 3.14
? Hirvonen (b) 2vV3 = 3.46
;_ Hirvonen (c) 4V2© -1 = 3.07 ]
% : Gauss 2Vm n2 = 2.95 E
Table 6.1 Model-spacific multiplication factors, %
T conGo te

We notice that for all four models the mean terrain correction C varies
in a very narrow range with variations of only 10%. Therefore, we con-

clude trai the estimation of € is only little sensitive witn respect to

the model choice. We summarize:

-
9
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. -

The mean tevwadn correction depends Linearly on the terradin variance

and 48 Lnvense proportional to the comnelation Length of the termrain co-

variance gunction valid fon the considered area, It depends weakly on

the type o4 the covariance model.

This very interesting and astonishingly simple resuvlt deserves a
discussion. The variance of the height differences as defined by (6.3) e

is valid for the area Ac in consideration; therefore, the terrain covari-

1
Ed
£
%
v
E

« ance function H(s) has to be derived from topographic data in the same é;
limited area only. In flat areas the variance of the topography is small Eé

and the correlation length big, resuiting in a very small mean terrain i

T T T R

3 | effect as to be expected. In mountainous areas, in constrast, we observe
| a big variance and a small correlation length, resuliting in a very signi- %;
? ; ficant mean terrain effect as also to be expected. How does it come }
: that, according to equations (6.6a-d), the mean terrain effect is vir-
tually independent on the size cf the area Ac? The answer is simple:

the area size Ac lurks in the background and is implicitly introduced

i through the definition and determination of the covariance parameters H,
and £, It is known from experience that the terrain variance and correla-
tion length can considerably change with the size of the area Ac. If Ac

j increases, the correlation length will in general increase too. H, can

attain quite large values; in mountainous areas values of Hy = 0.5 to 1
E% can be observed; the correlation length of the terrain covariance func-
tion is usually much smaller than the one of the free-air anomaly covari-

ance function; particularly in mountainous areas it can be as small as a

Bl 2 b4 ¥

very few kilometers, Fig, 6.1 shows lines of equal mean terrain effect
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depending on the r.m.s, elevation and the correiation length £ for the

Lo

Hirvonen (a) - model; Fig, 6,2 is a 3-D representation of the behavior

of (6.6a).

%

T /

250 ,///,/

rms variation of elevation (m)

5 0 15 20 |

correlation length £ (km)

Fig. 6.1 Lines of equal mean terrain effect depending on
the r.m.s. variation of elevation and the
correiation length £ for the Hirvonen (a)-model.

unit: mgal
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7.  CONCLUSIONS AND RECOMMENDATIONS

Different methods have become available for the prediction of point
and mean free-air anomalies L4:=2d on observea point anomaiies., By far
the most attractive, but also most expensive, tool is least-squares pre-
diction. The most general version of least-squares gravity prediction
involves the processing of gravity and elevation data simultaneously.

In this report a least-squares approach is proposed, which takes ({he gen-
erally observed strong linear correlation between (terrain reduced) free-
air anomalies and elevation into account in terms of two model parameters;
the method is therefore based on least-squares collocation with parameters.
The signal is basically a residual Bouguer anomaly and such is the cor-
responding covariance function. Bouguer anomalies are smooth, therefore,
the covariance function has a rather long correlation length; consequently,
the interpolation (prediction) accuracy is high. It has been shown that

a regional variation of the Bouguer anomaly causes the Bouguer factor to
decrease if a regional least-squarss udjustment is used; in addition its
estimation accuracy becemes very poor. The collocation solution, in con-
trasc, models the Poujuer ancmaly field statistically and provides highly
reliable estimu:es of the Bouguer factor which turned out to be generally
quite close to its normal vzise. Particularly important for free-air
anomaiy predictions in mountainous areas, is the data reduction for the
influence of the topography. Various simple, but instructive, topograph-
ical models have been studied. It turned out that the mean terrain effect
is lin +rly dependent on the variance and indirectly proportional to the
corretation length of the residual topography within the area of consider-

aticn, Therefore, the accuracy of its determination depends on how good
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the estimates of the terrain variance and the terrain correlation length
are.
Summarizing we propose the following method for mean free-air gravity
anomaly estimation:
a) Reduce gravity data for the terrain effect;
b) determine an empirical covariance function and fit a model;
¢) determine the correlation model parameters (mean Bouguer anomaly
and the Bouguer factor) by least-squares collocation;
d) predict point and/or mean anomalies by least-squares collocation with
parameters;
e) add the point and/or mean terrain effect to the obtained estimate
in order to get free-air anomalies.
Predictions with real world data have shown that free-air 5' x 5' anoma-
1ies, even in very rough mountainous areas, can be predicted with an ac-
curacy of <+5 mgal. using the method proposed above, provided the data
density is better than 1/10 km? and the effect of topography has been
carefully taken into account.
Further investigation, particularly as far as the resolution of the

digital terrain model is -oncerned, are both useful and necessary.
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