STANDARD ERROR OF AN EQUATING BY
ITEM RESPONSE THEORY

Frederic M. Lord

This research was sponsored in part by the
Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research, under
Contract No. N00014-80-C-0402
Contract Authority Identification Number
NR No. 150-453
Frederic M. Lord, Principal Investigator

Educational Testing Service
Princeton, New Jersey
November 1981

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

Approved for public release; distribution
unlimited.
STANDARD ERROR OF AN EQUATING BY
ITEM RESPONSE THEORY

Frederic M. Lord

This research was sponsored in part by the Personnel and Training Research Programs Psychological Sciences Division Office of Naval Research, under Contract No. N00014-80-C-0402
Contract Authority Identification Number NR No. 150-453
Frederic M. Lord, Principal Investigator
Educational Testing Service
Princeton, New Jersey
November 1981

Reproduction in whole or in part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.
A formula is derived for the asymptotic standard error of a true-score equating by item response theory. The equating method is applicable when the two tests to be equated are administered to different groups along with an 'anchor test.' Numerical standard errors are shown for an actual equating(1) comparing the standard errors of IRT, linear, and equipercentile methods; (2) illustrating the effect of the length of the anchor test on the standard error of the equating.
Standard Error of an Equating by Item Response Theory

Abstract

A formula is derived for the asymptotic standard error of a true-score equating by item response theory. The equating method is applicable when the two tests to be equated are administered to different groups along with an 'anchor test.' Numerical standard errors are shown for an actual equating 1) comparing the standard errors of IRT, linear, and equipercentile methods; 2) illustrating the effect of the length of the anchor test on the standard error of the equating.
Standard Error of an Equating by Item Response Theory*

In item response theory (IRT), an examinee's expected number-right score ξ on test X is equal to the test characteristic function evaluated at the examinee's ability level θ:

$$\xi = \sum_{g=1}^{n_x} g P(\theta)$$

(1')

where $P_i(\theta)$ is the item response function, the probability of a correct answer to item i at ability level θ. If we have a second test, Y, measuring the same ability as X, the expected number-right score η on this test may be written as

$$\eta = \sum_{h=1}^{n_y} h P(\theta).$$

(4')

Equations (1') and (4') are parametric equations for the functional relationship between ξ and η. Note that this relationship is an exact mathematical one, not a statistical association. Given any θ, (1') and (4') determine a pair of values, ξ and η, that represent the same ability level as θ. Pairs of values (ξ, η) determined in this way are equated. In practice, it is often assumed that the functional relationship of η to ξ given by (1') and (4') can also be applied to actual number-right scores on the two tests, producing an equating of these scores.

*This work was supported in part by contract N00014-80-C-0402, project designation NR 130-453 between the Office of Naval Research and Educational Testing Service. Reproduction in whole or in part is permitted for any purpose of the United States Government.
Here, we simply deal with the sampling errors in estimating the equating relationship of \(\eta \) to \(\xi \). In (1') and (4'), estimated item parameters must be used. These are the source of the sampling errors in IRT equating. Note that the ability estimates for individual examinees are not used in (1') and (4') and thus will not appear in our formulas. Until now, the sampling errors of IRT equatings have never been estimated.

Data

In IRT equating, we frequently have a set of common items that are administered to all examinees. These are needed in order to get Test Y item parameters on the same scale as Test X item parameters. If the common items are external to tests X and Y, as assumed here, the common items are called the anchor test, or, in the present report, Test W. The sampling variance formulas to be obtained here can be modified in obvious ways for the case where some or all of the common items are internal to the tests that are being equated.

Designate the examinees who took both Tests X and W as Group 1; designate the examinees who took Tests Y and W as Group 2. Typically, every examinee falls in one of these two groups.

In practice when there is a series of test forms A,B,...,X,Y,Z,... (say), the 'Group 1' data on Test X are processed as soon as they become available in order to equate Test X to the preceding form. When the Group 2 data become available at some later date, it is often considered uneconomical to rerun the Group 1 data, so Group 2 is
run by itself. This case, where item parameters for Groups 1 and 2 are estimated separately, is the case to be considered here. (The simplifying assumption that is used below to approximate the sampling variances of the estimated item parameters is not available in the alternative case where Groups 1 and 2 are pooled and all parameters estimated simultaneously.)

New Equating Formulas

When parameters are estimated separately for groups 1 and 2, the item parameters and \(\theta \) in (4') have a different origin and scale from the item parameters and \(\theta \) in (1'). It is thus no longer possible simply to eliminate \(\theta \) from (1') and (4') to obtain the relation of \(\eta \) to \(\xi \). The customary procedure in this situation is to use the anchor test to transform the Group 2 item parameters on to the scale of the Group 1 item parameters. This procedure adds to the sampling variance of the transformed item parameters and greatly complicates any determination of the sampling variance of the subsequent equating. The procedures and formulas given below avoid this problem since they avoid any transformation of item parameters.

Equations (1') and (4') remain unchanged except that additional subscripts (explained below) are used. In particular, the symbols \(\theta_1 \) and \(\theta_2 \) must be distinguished because groups 1 and 2 use different ability scales:

\[
\xi = \sum_{g} P_{g1}(\theta_1),
\]

\[
(1)
\]
The item response functions here are written \(P_{gp} \) where \(p = 1, 2, 3, 4 \) refers to (test \(X \), group 1), (test \(W \), group 1), (test \(W \), group 2), and (test \(Y \), group 2) respectively, and \(g = 1, 2, \ldots, n_p \) where \(n_p \) is the number of items in the appropriate test.

Let us write down similar equations for the expected number-right score \(\omega \) on anchor test \(W \):

\[
\omega = \sum_{g} P_{g2}(\theta_1)
\] \hspace{1cm} (2)

\[
\omega = \sum_{g} P_{g3}(\theta_2)
\] \hspace{1cm} (3)

The equation numbering keeps the tests in convenient order. The desired equation relation between \(\eta \) and \(\zeta \) can be obtained by eliminating \(\theta_1, \theta_2, \) and \(\omega \) from these four equations.

Computer programs are available for equating \(\eta \) to \(\zeta \) by eliminating \(\theta \) from \((1')\) and \((4')\). These same programs can be used to equate \(\omega \) to \(\zeta \) in one step, using \((1)\) and \((2)\), then to equate \(\eta \) to \(\omega \) in a second step using \((3)\) and \((4)\). This produces an equating of \(\eta \) to \(\zeta \) for the presently relevant situation where Group 1 and Group 2 parameters are not on the same scale.

An estimated equating is obtained from \((1)\) - \((4)\) after replacing the true item parameters by their maximum likelihood estimates. Using carets to denote this change, we have
These equations show that \(\hat{\eta} \) is a function of all the estimated item parameters together with the specified value of \(\xi \).

Derivatives

For item \(g \), instead of using \(a_g \), \(b_g \), and \(c_g \) to denote the three parameters commonly used in IRT, let us use \(t_{1gp} \), \(t_{2gp} \), and \(t_{3gp} \), respectively. We will need certain derivatives for \(r = 1, 2, 3 \), obtained from (1")-(4"):

\[
\frac{\partial^3 \eta}{\partial t_{rg4}} = p_g^r(\theta_g) ,
\]

\[
\frac{\partial^3 \omega}{\partial t_{rg3}} = p_g^r(\theta_g) ,
\]

\[
\frac{\partial^3 \omega}{\partial t_{rg2}} = p_g^r(\theta_g) ,
\]

where \(p_g^r \) denotes the derivative of \(p_g \) with respect to \(t_{rgp} \).
Similarly,

\[\frac{\partial n}{\partial \theta_2} = \sum g \frac{P'(\theta_2)}{g^4} \]

\[\frac{\partial \omega}{\partial \theta_1} = \sum g \frac{P'(\theta_1)}{g^2} \]

where \(P' \) denotes a derivative with respect to \(\theta \). Using the formula for the derivative of an implicit function, we also find from (1")-(4") for \(r = 1,2,3 \)

\[\frac{\partial \theta_2}{\partial r \theta_3} = - \frac{p^{(r)}(\theta_2)}{\sum g \frac{P'(\theta_2)}{g^3}} \]

\[\frac{\partial \theta_1}{\partial r \theta_1} = - \frac{p^{(r)}(\theta_1)}{\sum g \frac{P'(\theta_1)}{g^1}} \]

\[\frac{\partial \theta_2}{\partial \omega} = \frac{1}{\sum g \frac{P'(\theta_2)}{g^3}} \]

Using the chain rule for derivatives, we find from the above formulas:

\[\frac{\partial \eta}{\partial r \theta_3} = \frac{\partial \eta}{\partial \theta_2} \frac{\partial \theta_2}{\partial r \theta_3} - \frac{p^{(r)}(\theta_2)}{\sum g \frac{P'(\theta_2)}{g^3}} \]

\[= - \frac{p^{(r)}(\theta_2)}{\sum g \frac{P'(\theta_2)}{g^3}} \frac{\sum g \frac{P'(\theta_2)}{g^4}}{\sum g \frac{P'(\theta_2)}{g^3}} \]

\[= \sum g \frac{P'(\theta_2)}{g^3} \]

(6)
\[
\frac{\partial n}{\partial r_{g_1}^{\alpha_1 \alpha_2 \alpha_3}} = \frac{\partial n}{\partial g_2} \frac{\partial g_2}{\partial t_{r_{g_2}}^{\beta_1 \beta_2 \beta_3}} = p(r) \left(\frac{\partial g_2}{\partial g_1} \right) \frac{P'(\theta_1)}{g_2} \frac{P'(\theta_2)}{g_3},
\]

\[
\frac{\partial n}{\partial t_{r_{g_1}}^{\alpha_1 \alpha_2 \alpha_3}} = \frac{\partial n}{\partial g_1} \frac{\partial g_1}{\partial t_{r_{g_1}}^{\beta_1 \beta_2 \beta_3}} = p(r) \left(\frac{\partial g_1}{\partial g_1} \right) \frac{P'(\theta_1)}{g_1} \frac{P'(\theta_2)}{g_3}.
\]

Given \(\xi\), we are now in a position to express \(n\) as a series in powers of \(t_{r_{g_1}} - t_{r_{g_2}}\) \((r = 1,2,3; g = 1,2,\ldots,n_p; p = 1,2,3,4)\).

We will write \(n'_{g_2}\) instead of \(\partial n/\partial t_{r_{g_1}}\) and \(n''_{g_2 g_3}\) instead of \(\partial^2 n/\partial t_{r_{g_1}}^2\)

\[
\hat{n} = n + \sum_{p} \sum_{r} \left(t_{r_{g_1}} - t_{r_{g_2}} \right) n'_{g_2} + \sum_{p} \sum_{q} \sum_{h} \sum_{r} \left(t_{r_{g_1}} - t_{r_{g_2}} \right) \left(t_{r_{g_3}} - t_{r_{g_4}} \right) n''_{g_2 g_3} + \ldots
\]

Sampling Variance

Transposing, squaring, and taking expectations, we find from (9) for fixed \(\xi\),

\[
\text{Var} \hat{n} = 4(n - \hat{n})^2 = \sum_{p} \sum_{q} \sum_{h} \sum_{r} n'_{g_2 n''_{g_2 g_3}} \text{Cov}(\hat{t}_{r_{g_2}}, \hat{t}_{r_{g_3}}) + \ldots
\]
When item parameters and abilities are both estimated simultaneously by maximum likelihood, it is not practical to use the usual sampling covariance formulas for all estimators simultaneously. As a rough approximation, it is customary (Lord, 1980, Section 12.3) to use instead the (simpler) formulas for the case where the ability parameters are known. We will use this rough approximation here to find Cov(\(\hat{t}_{rgp}, \hat{t}_{shq}\)). Because of this approximation, our sampling variance of equating will be an underestimate.

In this case, all covariances involving two different items are exactly zero, as are all covariances involving a single item administered to two different groups of examinees. All nonzero variances and covariances are inversely proportional to \(N\), the number of examinees.

We now have

\[
\text{Var} \hat{\eta} = \sum \sum \left(\sum \sum \left(\hat{\eta}_{rgp} \hat{\eta}_{sgp} \text{Cov}(\hat{t}_{rgp}, \hat{t}_{sgp}) \right) \right),
\]

Some higher order terms are indicated here in order to make clear that the number of terms under summation signs does not increase too rapidly. The triple summation represents 3 times as many terms as the double summation, but each term in the triple summation is divided by \(N^{3/2}\) whereas each term in the double summation is only divided by \(N\). When \(N\) is several thousand, it is reasonable to expect that the higher order terms can be neglected, as is customary with asymptotic variances.
Our final asymptotic formula, then is

\[\text{Var} \hat{\eta} = \sum_{p=1}^{4} \sum_{r=1}^{3} \sum_{s=1}^{3} \eta'_p \eta'_r \eta'_s \text{Cov}(\hat{r}_{gp}, \hat{r}_{sp}) \]

(10)

The \(\eta' \) values required here are computed from (5) - (8). The covariances are obtained by the usual formulas for covariances of maximum likelihood estimators of item parameters when ability parameters are fixed (Lord, 1980, p. 191).

Practical Application

Without data, it is difficult to make inferences about the magnitude of the sampling errors in IRT equating. Will they be larger or smaller than the sampling errors in conventional linear equating? In conventional equipercentile equating? Do sampling errors become large or small at extreme score levels?

Equation (10) has been applied to an equating of the Verbal score on the 90-item Form VSA4 of the Scholastic Aptitude Test (12/73 administration) to the 85-item Form XSA2 Verbal score (4/75 administration). All examinees took an SAT and also a 40-item anchor test. Petersen, Cook, and Stocking (1980) made separate LOGIST runs on the 130 items in the 1973 administration for a sample of 2665 examinees, and on the 125 items in the 1975 administration for a sample of 2686 examinees. They have allowed the use here of their item parameter estimates.
SAT scaled scores are a linear transformation of formula scores (rights minus one-quarter wrongs). Our results here are for the hypothetical case where all examinees answer all items. In this special case formula scores are a linear transformation of number-right scores, so scaled scores are likewise. Since a known linear transformation \(A \xi + B \) of number-right scores \(\xi \) simply multiplies the standard error of \(\hat{\eta} \) by the constant \(A \), it is not difficult to obtain scaled-score standard errors from (10). A computer program to do this was written and run by Marilyn Wingersky.

For each of certain specified formula scores on XSA2, Table 1 shows 1) the equivalent scaled score found by the conventional linear procedure usually used for the SAT (Design IV A, Angoff, 1971), 2) the standard error of these equated (scaled) scores as found by the computer program AUTEST (Lord, 1975) assuming the validity of the linear model; also 3) the equivalent scaled score found by the IRT method of this report, and 4) the corresponding scaled-score standard error calculated from (10). The standard errors in Table 1 are best understood in comparison with the standard deviation of scaled scores, which is 106 for XSA2; and in comparison with the classical test theory standard error of measurement (due to imperfect test reliability), which is 31. Clearly the standard error of equating is small compared to the standard error of measurement.

Judging by the IRT standard errors, the equating is definitely nonlinear, at least outside the score range from 350 to 650. The IRT standard errors show a continued sharp increase as the minimum
Table 1
A Comparison of Linear and IRT Equatings and of Their Standard Errors

<table>
<thead>
<tr>
<th>Selected formula scores*, XSA2</th>
<th>Linear Model</th>
<th>IRT Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Equivalent scaled score</td>
<td>Standard error</td>
</tr>
<tr>
<td>84</td>
<td>780</td>
<td>4.6</td>
</tr>
<tr>
<td>79.74</td>
<td>750</td>
<td>4.2</td>
</tr>
<tr>
<td>72.70</td>
<td>700</td>
<td>3.6</td>
</tr>
<tr>
<td>65.65</td>
<td>650</td>
<td>3.1</td>
</tr>
<tr>
<td>58.61</td>
<td>600</td>
<td>2.5</td>
</tr>
<tr>
<td>51.57</td>
<td>550</td>
<td>2.1</td>
</tr>
<tr>
<td>44.52</td>
<td>500</td>
<td>1.7</td>
</tr>
<tr>
<td>37.48</td>
<td>450</td>
<td>1.5</td>
</tr>
<tr>
<td>30.43</td>
<td>400</td>
<td>1.6</td>
</tr>
<tr>
<td>23.39</td>
<td>350</td>
<td>1.8</td>
</tr>
<tr>
<td>16.35</td>
<td>300</td>
<td>2.3</td>
</tr>
<tr>
<td>9.30</td>
<td>250</td>
<td>2.8</td>
</tr>
<tr>
<td>2.26</td>
<td>200</td>
<td>3.3</td>
</tr>
<tr>
<td>-5</td>
<td>150</td>
<td>3.9</td>
</tr>
</tbody>
</table>

*Although formula score is actually a discrete variable, it is for convenience treated here as continuous.
possible true formula score of -5.5 is approached. At the other end of the score scale, the IRT standard error increases up to a scaled score of 760 and decreases thereafter. The reason for the decrease at the upper end is that for a perfect score, the standard error of this kind of IRT equating is zero. Except at the upper end, the IRT standard error is larger than the linear.

The results of Table 1 are displayed in Figures 1-2. The straight line in Figure 1 shows the linear equating of true formula score on XSA2 to true scaled score on VSA4. The dashed lines are drawn two standard errors above and below the straight line.

Figure 2 similarly displays the curvilinear IRT equating of XSA2 to VSA4 and its standard error. The straight-line extension of the lower end of the equating (middle) line in Figure 2 was obtained by the method described in Lord (1980, pp. 210-211). It is shown in the figure for completeness, but no standard error is shown since there is no good theoretical basis for such an extension.

Table 2 compares present IRT equating with a conventional equipercentile equating of XSA2 to VSA4 via the anchor test. In conventional equating, an XSA2 score and a VSA4 score each equipercentile-ly equivalent to a given anchor test score are taken to be equivalent to each other. The standard error of the resulting equipercentile equating of XSA2 to VSA4 is given by \(\sqrt{SE_{XSA2}^2 + SE_{VSA4}^2} \) where the SE under the radical sign are standard errors of separate equipercentile equatings of each test to the anchor test. Formulas for \(SE_{XSA2} \) and \(SE_{VSA4} \) are given in Lord (1981).
Figure 1. Linear equating of true formula score on XSA2 to true scaled score on VSA4. Dashed lines are two scaled-score standard errors above and below equating line.
Figure 2. IRT equating of XSA2 formula score to VSA4 scaled score, with two-standard-error bounds.
Table 2
A Comparison of Equipercentile and IRT Equating and of Their Standard Scores

<table>
<thead>
<tr>
<th>XSA2 formula score</th>
<th>Equipercentile Method</th>
<th>IRT Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Equivalent scaled score</td>
<td>Standard error</td>
</tr>
<tr>
<td>78.1</td>
<td>774</td>
<td>13.47</td>
</tr>
<tr>
<td>76.6</td>
<td>722</td>
<td>15.85</td>
</tr>
<tr>
<td>64.75</td>
<td>652</td>
<td>10.32</td>
</tr>
<tr>
<td>58.9</td>
<td>602</td>
<td>4.97</td>
</tr>
<tr>
<td>52.9</td>
<td>552</td>
<td>4.12</td>
</tr>
<tr>
<td>47.25</td>
<td>514</td>
<td>3.47</td>
</tr>
<tr>
<td>40.1</td>
<td>466</td>
<td>3.44</td>
</tr>
<tr>
<td>32.4</td>
<td>417</td>
<td>2.93</td>
</tr>
<tr>
<td>25.75</td>
<td>364</td>
<td>3.37</td>
</tr>
<tr>
<td>16.1</td>
<td>314</td>
<td>4.07</td>
</tr>
<tr>
<td>7.6</td>
<td>242</td>
<td>5.70</td>
</tr>
<tr>
<td>-3.75</td>
<td>195</td>
<td>7.85</td>
</tr>
</tbody>
</table>
Since SE_{XSA2} and SE_{VSA4} are estimated from unsmoothed data, the equipercentile standard errors in Table 2 fluctuate somewhat. Nevertheless, it is apparent that the equipercentile method has a much larger standard error above a scaled score of 450. For these data, the IRI method shows a larger standard error than the equipercentile method only when the formula score is negative.

The standard error of equipercentile equating could be reduced by smoothing the frequency distribution of raw scores before equating. Smoothing is undoubtedly desirable as a practical expedient; however the choice of a smoothing formula is somewhat arbitrary and the smoothing is likely to prevent convergence of the estimated equating to its true value in large samples. Formulas for the standard errors of smoothed equipercentile equating are not presently available.

In order to determine the effect of using a shorter anchor test, every other item in the anchor test was discarded and the data reanalyzed on the basis of the remaining 20-item anchor test. The effect on the standard errors of IRT equating is shown in Table 3. The two equatings agree fairly well. At the point where the equating standard errors are a minimum, halving the length of the anchor test increases the standard error by a factor of about $\sqrt{2}$. At the other score points, the effect is less. Given standard errors like those in Table 2, it will now be possible to make a reasonable judgment as to the length necessary for an anchor test.
Table 3

IRT Equatings and Their Scaled-Score Standard Errors, a Comparison of Results Using 20- and 40-Item Anchor Tests

<table>
<thead>
<tr>
<th>Length of Anchor Test</th>
<th>20 Items</th>
<th>40 Items</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scaled score</td>
<td>Standard error</td>
</tr>
<tr>
<td>80</td>
<td>787</td>
<td>5.9</td>
</tr>
<tr>
<td>70</td>
<td>698</td>
<td>5.3</td>
</tr>
<tr>
<td>60</td>
<td>615</td>
<td>3.9</td>
</tr>
<tr>
<td>50</td>
<td>540</td>
<td>3.0</td>
</tr>
<tr>
<td>40</td>
<td>467</td>
<td>2.7</td>
</tr>
<tr>
<td>30</td>
<td>399</td>
<td>3.0</td>
</tr>
<tr>
<td>20</td>
<td>336</td>
<td>3.9</td>
</tr>
<tr>
<td>10</td>
<td>274</td>
<td>5.4</td>
</tr>
<tr>
<td>0</td>
<td>206</td>
<td>9.9</td>
</tr>
</tbody>
</table>
References

DISTRIBUTION LIST

Navy

1 Dr. Ed Aiken
 Navy Personnel R & D Center
 San Diego, CA 92152

1 Dr. Jack R. Borsting
 Provost and Academic Dean
 U.S. Naval Postgraduate School
 Monterey, CA 93940

1 Dr. Robert Breaux
 Code N-711
 NAVTRAQIPCEN
 Orlando, FL 32813

1 Chief of Naval Education and Training Liaison Office
 Air Force Human Resource Laboratory
 Flying Training Division
 Williams Air Force Base, AZ 85514

1 CDR Mike Curran
 Office of Naval Research
 600 North Quincy Street
 Code 270
 Arlington, VA 22217

1 Dr. Richard Elster
 Department of Administrative Sciences
 Naval Postgraduate School
 Monterey, CA 93940

1 Dr. Pat Federico
 Navy Personnel R & D Center
 San Diego, CA 92152

1 Mr. Paul Foley
 Navy Personnel R & D Center
 San Diego, CA 92152

1 Dr. John Ford
 Navy Personnel R & D Center
 San Diego, CA 92152

1 Dr. Patrick R. Harrison
 Psychology Course Director
 Leadership and Law Department (7b)
 Division of Professional Development
 U.S. Naval Academy
 Annapolis, MD 21402

1 Dr. Norman J. Kerr
 Chief of Naval Technical Training
 Naval Air Station Memphis (75)
 Millington, TN 38054

1 Dr. William L. Maloy
 Principal Civilian Advisor for Education and Training
 Naval Training Command, Code OOA
 Pensacola, FL 32506

1 Mr. Keesko Marshall
 Scientific Advisor to DCNO(NPT)
 OpOIT
 Washington, DC 20370

1 Dr. James McBride
 Navy Personnel R & D Center
 San Diego, CA 92152

1 Dr. William Montague
 Navy Personnel R & D Center
 San Diego, CA 92152

1 Mr. William Nordbruck
 Instructional Program Development
 Building WU
 NRT-PDCU
 Great Lakes NTC, IL 60088

1 Library, Code P201L
 Navy Personnel R & D Center
 San Diego, CA 92152
1 Technical Director
Navy Personnel R & D
San Diego, CA 92152

6 Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20390

1 Psychologist
ONR Branch Office
Building 114, Section D
466 Summer Street
Boston, MA 02210

1 Office of Naval Research
Code 437
800 North Quincy Street
Arlington, VA 22217

5 Personnel and Training Research
Programs
Code 458
Office of Naval Research
Arlington, VA 22217

1 Psychologist
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101

1 Office of the Chief of Naval Operations
Research Development and Studies Branch
OP-115
Washington, DC 20350

1 LT Frank C. Petho, MSC, USN (Ph.D.)
Selection and Training Research Division
Human Performance Sciences Department
Naval Aerospace Medical Research Lab.
Pensacola, FL 32508

1 Dr. Bernard Rimland (ODR)
Navy Personnel R & D Center
San Diego, CA 92152

1 Mr. Arnold Rubenstein
Office of Naval Technology
800 N. Quincy Street
Arlington, VA 22217

1 Dr. Worth Scanland, Director
Research, Development, Test
and Evaluation
N-5
Naval Education and Training Command
NAS
Pensacola, FL 32508

1 Dr. Robert G. Smith
Office of Chief of Naval Operations
OP-987H
Washington, DC 20350

1 Dr. Alfred F. Smede
Training Analysis and Evaluation Group
Department of the Navy
Orlando, FL 32813

1 Dr. Richard Sorensen
Navy Personnel R & D Center
San Diego, CA 92152

1 Mr. J. B. Symson
Naval Personnel R & D Center
San Diego, CA 92152

1 Dr. Ronald Weitzman
Code 54 WZ
Department of Administrative Services
U.S. Naval Postgraduate School
Monterey, CA 93940

1 Dr. Robert Wherry
362 Mallard Drive
Chalfont, PA 18914
<table>
<thead>
<tr>
<th>1 Air University Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUL/LSE 76/445</td>
</tr>
<tr>
<td>Maxwell Air Force Base, AL 36112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Director, Office of Manpower Utilisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ, Marine Corps (MPCYPR)</td>
</tr>
<tr>
<td>Bolling Air Force Base, Washington, DC 20332</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 MAJ Michael L. Patrow, USMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headquarters, Marine Corps</td>
</tr>
<tr>
<td>Code MP-20</td>
</tr>
<tr>
<td>Washington, DC 20380</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Dr. A. L. Blakovsky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Code RD-1</td>
</tr>
<tr>
<td>HQ, U.S. Marine Corps</td>
</tr>
<tr>
<td>Washington, DC 20380</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Mr. Thomas A. Ware</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Coast Guard Institute</td>
</tr>
<tr>
<td>F.O. Substation 18</td>
</tr>
<tr>
<td>Oklahoma City, OK 73169</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Dr. Malcolm Roe</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRL/LR</td>
</tr>
<tr>
<td>Wright-Patterson AFB, OH 45433</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Research and Measurement Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Branch, AFRL/MPCYPR</td>
</tr>
<tr>
<td>Randolph Air Force Base, TX 78148</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Dr. Marty Rockway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Director</td>
</tr>
<tr>
<td>AFRL/OT</td>
</tr>
<tr>
<td>Williams Air Force Base, AZ 58224</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Other DoD</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAND</td>
</tr>
<tr>
<td>1400 Wilson Boulevard</td>
</tr>
<tr>
<td>Arlington, VA 22209</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Defense Technical Information Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cameron Station, Building 5</td>
</tr>
<tr>
<td>Attn: TC</td>
</tr>
<tr>
<td>Alexandria, VA 22314</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 Dr. H. William Greenup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education Advisor (E331)</td>
</tr>
<tr>
<td>Education Center, MDEEC</td>
</tr>
<tr>
<td>Quantico, VA 22134</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 D., William Graham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing Directorate</td>
</tr>
<tr>
<td>HRFCON/HRFCY-F</td>
</tr>
<tr>
<td>Ft. Sheridan, IL 60037</td>
</tr>
</tbody>
</table>
1 Dr. Joseph L. Young, Director
Memory and Cognitive Processes
National Science Foundation
Washington, DC 20550
Non-Government

1 Dr. Erling B. Andersen
Department of Statistics
Studiestraede 6
1635 Copenhagen
DENMARK

1 Psychological Research Unit
Department of Defense (Army Office)
Campbell Park Offices
Canberra, ACT 2600
AUSTRALIA

1 Mr. Richard McMillan
Personnel R & D Center
Office of Personnel Management
1900 E Street, NW
Washington, DC 20415

1 Dr.Arthur Melades
National Institute of Education
1900 19th Street, N.W.
Washington, DC 20208

1 Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08541

1 Dr. Menucha Birenbaum
School of Education
Tel Aviv University
Tel Aviv, Ramat Aviv 69976
ISRAEL

1 Dr. Werner Birke
DesWPs im Streitkrafteamt
Postfach 20 30 3
W-5300 Bonn 3
WEST GERMANY
1 Dr. Darrell Bock
 Department of Education
 University of Chicago
 Chicago, IL 60637

1 Liaison Scientists
 Office of Naval Research
 Branch Office, London
 Box 39
 FPO, NY 09510

1 Dr. Robert Brennan
 American College Testing Programs
 P.O. Box 186
 Iowa City, IA 52240

1 Dr. John B. Carroll
 Psychometric Laboratory
 University of North Carolina
 Davis Hall 013A
 Chapel Hill, NC 27514

1 Charles Myers Library
 Livingstone House
 Livingstone Road
 Stratford
 London E15 2LJ
 ENGLAND

1 Dr. Kenneth E. Clark
 College of Arts and Sciences
 University of Rochester
 River Campus Station
 Rochester, NY 14627

1 Dr. Norman Cliff
 Department of Psychology
 University of Southern California
 University Park
 Los Angeles, CA 90007

1 Dr. William E. Coffman
 Director, Iowa Testing Programs
 334 Lindquist Center
 University of Iowa
 Iowa City, IA 52242

1 Dr. Allan M. Collins
 Bolt, Beranek, & Newman, Inc.
 30 Moulton Street
 Cambridge, MA 02138

1 Dr. Meredith P. Crawford
 American Psychological Association
 1200 17th Street, N
 Washington, DC 20036

1 Dr. Hans Crombag
 Education Research Center
 University of Leyden
 Boerhaavelaan 2
 2334 EN Leyden
 THE NETHERLANDS

1 Dr. Fritz Drasgow
 Yale School of Organization and
 Management
 Yale University
 Box 1A
 New Haven, CT 06520

1 LCOL J. C. Eggenberger
 Directorate of Personnel
 Applied Research
 National Defence Hq.
 101 Colonel By Drive
 Ottawa, KIA UK2
 CANADA

1 Dr. Benjamin A. Fairbank, Jr.
 McFann-Gray and Associates, Inc.
 5825 Callaghan
 Suite 225
 San Antonio, TX 78224
1 Dr. Leonard Feldt
Lindequist Center for Measurement
University of Iowa
Iowa City, IA 52242

1 Dr. Richard L. Ferguson
The American College Testing Program
P.O. Box 168
Iowa City, IA 52240

1 Dr. Victor Fiedler
Department of Psychology
Montgomery College
Rockville, MD 20850

1 Univ. Prof. Dr. Gerhard Fischer
Psychologisches Institut der Universität Wien
Liebiggasse 3/3
A-1010 Wien
AUSTRIA

1 Prof. Donald Fitzgerald
University of New England
Armidale, New South Wales 2351
AUSTRALIA

1 Dr. Edwin A. Fleishman
Advanced Research Resources Organization
Suite 900
4330 East West Highway
Washington, DC 20014

1 Dr. John R. Frederiksen
Holt, Rinehart, and Winston
30 Houlton Street
Cambridge, MA 02138

1 Dr. Robert Glaser
LUUC
University of Pittsburgh
3819 O'Hara Street
Pittsburgh, PA 15260

1 Dr. Bert Green
Department of Psychology
Johns Hopkins University
Charles and 34th Streets
Baltimore, MD 21218

1 Dr. Ron Hambleton
School of Education
University of Massachusetts
Amherst, MA 01002

1 Dr. Lloyd Humphreys
Department of Psychology
University of Illinois
Champaign, IL 61820

1 Library
HumRRO/Western Division
27057 Berwick Drive
Carmel, CA 93921

1 Dr. Steven Hunks
Department of Education
University of Alberta
Edmonton, Alberta
CANADA

1 Dr. Earl Hunt
Department of Psychology
University of Washington
Seattle, WA 98105

1 Dr. Jack Hunter
2122 Coolidge Street
Lansing, MI 48906

1 Dr. Huynh Huynh
College of Education
University of South Carolina
Columbia, SC 29208

1 Mr. Marlin Kroger
1117 Via Collete
Palos Verdes Estates, CA 90274
1 Dr. Michael Levine
Department of Educational Psychology
210 Education Building
University of Illinois
Champaign, IL 61801

1 Dr. Melvin R. Novick
Iudick Center for Measurement
University of Iowa
Iowa City, IA 52242

1 Dr. Charles Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Groningen
Oude Boteringestraat 23
9712GC Groningen
NETHERLANDS

1 Dr. Jesse Orlansky
Institute for Defense Analyses
400 Army Navy Drive
Arlington, VA 22202

1 Dr. Wayne Patience
American Council on Education
GED Testing Service, Suite 20
One DuPont Circle, NW
Washington, DC 20027

1 Dr. James A. Paulson
Portland State University
P.O. Box 731
Portland, OR 97207

1 Dr. Wayne Patience
University of Illinois
61810

1 Dr. Charles Lewis
College of Education
University of Illinois
Urbana, IL 61801

1 Dr. Robert Linn
Department of Psychology
University of Western Australia
Nedlands, Western Australia 6009
AUSTRALIA

1 Dr. Gary Marco
Educational Testing Service
Princeton, NJ 08541

1 Dr. Scott Maxwell
Department of Psychology
University of Houston
Houston, TX 77004

1 Dr. Samuel L. Mayo
Loyola University of Chicago
832 North Michigan Avenue
Chicago, IL 60611

1 Dr. Allen Munro
Behavioral Technology Laboratories
4043 Elena Avenue
Fourth Floor
Redondo Beach, CA 90277

1 Dr. James A. Paulson
Portland State University
P.O. Box 731
Portland, OR 97207

1 Dr. Wayne Patience
University of Illinois
61810

1 Mr. Luigi Petrullo
2431 North Edgewood Street
Arlington, VA 22207

1 Dr. Gary Marco
Educational Testing Service
Princeton, NJ 08541

1 Dr. Diane M. Ramsey-Klee
K-Research and System Design
3947 Ridgemont Drive
Malibu, CA 90265

1 Dr. Mark D. Reckase
Educational Psychology Department
University of Missouri-Columbia
4 Hill Hall
Columbia, MO 65211
1 Dr. Robert Teutakawa
Department of Statistics
University of Missouri
Columbia, MO 65201

1 Dr. David Vale
Assessment Systems
Corporation
2395 University Avenue
Suite 30B
St. Paul, MN 55114

1 Dr. Howard Weiner
Educational Testing Service
Princeton, NJ 08541

1 Dr. Thomas Wallsten
Psychometric Laboratory
Davis Hall 013A
University of North Carolina
Chapel Hill, NC 27514

1 Dr. Phyllis Weaver
Graduate School of Education
Harvard University
200 Larsen Hall, Appian Way
Cambridge, MA 02138

1 Dr. David J. Weiss
Robo Elliott Hall
University of Minnesota
75 East River Road
Minneapolis, MN 55455

1 Dr. Susan E. Whitely
Psychology Department
University of Kansas
Lawrence, KS 66044

1 Dr. Wolfgang Wildgrube
Streitkräfteamt
Box 20 50 W3
D-5300 Bonn 2
WEST GERMANY