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1.0 INTRODICTION

e aas it i

. S Analysis of the flight data base, coupled with key
B L ground test programs, has shown that nosetip related effectg
' 'l””markedly influence reentry vehicle performance. 1In clear air
‘environman?s the twc major phenomena affecting performance are
. hosetip transition and heating augmentation. The understanding
P : of these effects is essential for both advanced ballistic
; \ ' vehicles:§n§lfor evalving maneuvering vehicle designs. 1

e e B L

Ndsétipvtransition is triggered by some roughness height
characteristic of the particular material. Since real materials
possesé“a definite statistical distribution of roughness height
‘ it is not certain which roughness height causes transition.

i : Also, real material may not have a uniform surface roughness

distribution, which in turn results in asymmetry in the transition
. - process. For woven carbon-carbons, for example, there may

exist a transition~-front shape which is related to the weave

pattern of the material. Once the onset of transition occurs
¢ ! | on the nosetip, transitional and turbulent flows exist and
cause higher surface heat transfer rates (which can be further
augmented by the surface roughness) which will accelerate the
ablation process. These effects will bring about geometry
variations in the nosetip that will greatly affect the vehicle
accuracy and survivability.

BT P o g

S

T T

e ™ e i it b il i i

3 - To properly understand whether or not nosetip rliaping i
presents a problem to any vehicle design, and to intelligently
pursue materials and designs for advanced system nosetips, it
is necessary to have at least an adequate understanding of

those physical processes which control the tendency cf the |

e i e b

nosetip to change shape.

The desire to predict the fine structure of nosetip
transiti~n, and the rough wall heat transfer that fc¢llows it,
has been part of reentry vehicle work for a decade. ' Barly well
regarded work under the ABRES PANT program generated volumes of
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' A wind tunnel data on rough surface heat transfer and transition. .
! Similar wind tunnel experiments were carried out under ABRES
! STREET programs, and complementary data has been collected
under a number of other DOD and university programs. Until
recently, however, this data base has been almost exclusively
é ' wind tunnel derived, using metallic models with artificial

roughness in low Mach number/marginal Reynolds number flows.

{ : The need for a valida.ion of this existing data base via
experiments using real materials in flight-replicating environments
has been recognized for some time. Holden, (Ref. 1) at CALSPAN,
has been conducting high Mach/Reynolds number experiments on
room temperature metallic models in-his shock tunnel facility,
and has produced results in serious conflict with the existing 3
data base. Reda, (Ref. 2) at NSWC, has utilized the ballistics ‘
range to study transition and heat transfer on graphitic models,
and has generated results contrary to the earlier wind tunnel

: findings. SAI (Ref. 3) collected transition data on tungsten ‘]

! and graphite models at the AEDC ballistic range and showed 3

5 : results that are also contradicting to the wind tunnel data. :

L

Several key questions remain unanswered, and these are:

it nias

1) What is the form of the transition process
in flight environments.

2) What is the characteristic material roughness
height that triggers transition. i

3) What are the magnitudes of heating augmentation
brought about by the surface roughness.
The object of the present program is tc address the
% above questiohs. Tungsten and graphitic materials were tested
{ in simulated flight environments. These environments are char-
acterized by hi¢h enthalpy, stagnation pressure and freestream
Reynclds numbers similar to those of flight environments. The

object of the testing was to:

1) Investigate roughness effects on nosetip transition. A

2) Investicate roughness effects on heating augmentation.

)
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3) Verify state-of-the-art predictive models as to their

applicability to flight environments.

of the data collected in the
The

ation of

This document presents the analysis

AEDC Track G facility as
various problems enco
the track are briefly discussed.

are presented and compared wit
mmendations are made for future
al work.

well as some freas flight data.
he development and calibr
Transition and heat transfer results
art predictive meth-
facility utilizations

untered in t

h state-of-the-

odologies. Reco
and directions to be taken for addition
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2.0 FACILITY AND MODEL DESCRIPTION

2.1 Facility Description

S 2.1.1 Range Description

; The AEDC Hypervelocity Track G is an advanced ground

| test facilicy in which a gun-launched test article is confined

to a straight-line trajectory by four surrounding guide rails

o (Figure 2.la). The facility is designed so that models can

i i be launched at velocities up to 20,000 ft/sec, guided through

: ; 1000 feet ¢f controlled test environment, and recovered without
damage in & 500 foot long decelerator tube. This unigque facility,
which became operational in early 1977, overcomes hyperballistic
range limitations associated with dispersion of the free-flight

- model and the absence of a .nodel recovery capability. v

The major subsystems comprising the Track G test facility ’

d

are:

! 1) A model launcher device;

2) a model guidance system including tha track
and its ancillary hardware;

3) a model recovery system that is used to dis-
sipate the kinetic energy of the test article
without significant damage;

4) a test model that is either a full- or reduced-
scale flight vehicle;

5) an environmental system, the basic component .
of which is the 10-foot-diameter range tank, ;
to provide a wide range of environmental simu- t
.lation such as high altitude flight in clear
air, erosive particle encounter, or special
chemically inert environments; ;

6) an instrumentation system capable of in-flight
data acquisition.

T T T T M 7. YT g sy 1 P e kA
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Detailed description of the facilities have been p.o-
vided in Rererences 4 and 5. The basic capabilities of the range
are similar to the Range G free flight test configuration used
for the studies in Reference 3.
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. 2.1.2 Range Instrumentation

The same basic instrumentation was used for the Track
_ G tests as was used for the free flight tests discussed in
| ' Reference 3. In-flight surface brightness temperatures of
: the model nosetip were measured by five photopyrometer systemns
(References 3, 4, 5) Figure 2.lb, that could be locatcd at the

i following down-range locations: f
} Photcpyrometer (ICC) Distance from Range :
g , Station Entrance, m (ft)
F 1 10.59 ( 34.73) ,\
- 4 30.38 ( 99.63) i
r 11 72.55 (237.48) i
19 121.38 (398.11) ;
; o~ 29 181.85 (596.48)
| ‘ 41 255.02 (836.48)
3 .
é ; For the current series of launches, the ICC Station 1 ‘
E was not available. The optic:l system was arranged such that

the luminous nosetip was viewed from 5 degrees off the flight
axig, thus minimizing motion blur and shadowing effects. As

in the free flight configuration, extraneous shock layer radia-
. tion and surface chemiluminescence which may influence the sur-
3 ; face temperature measurements were surpressed by purging the
region where the image was to be recorded by helium.

v b il s

(PRI SR PN

Various other high speed photographic, electro/optical
and electronic systems used in aeroballistics ranges are also
used in Track G (Reference 4). Given the accurate location of
the in-flight model, stereo-photographic techniques permit moni-
toring the noseitp surface conditions photographically (Figure

2.2).

2.2 Track G Models

.
b S Ml s 1 e e i s 1 .

A Track G model is required to withstand acceleration
loads of up to 200,000 g's during launch as well as extreme
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heating rates, encounters with erosiva fields, thermal degra-
dation over the 1000~foot test environment, and finally decel-
b eration loads of up to 120,000 g's during recovery. In addition,
the carrier for the test specimen (nosetip) must continually
reconform to the launch tube bore to compensate for carrier
wear during the launch process and to form an adequate bearing
; surface while in contact with the rail guidance system and
- § recovery tube. The external model components (Figure 2.3a)
are (a) carrier, (b) carriex heatshield, (c) specimen holder,
and (d) test specimen. Attachment of the specimen carrier to
the specimen support shaft is by means of a shock-absorbing
thread pattern, whereas ti..c test specimen is attached using
}\\ a swaging process. The test specimens comprising the nosetip
: of the model were %" and 0.4" radii hemispheres fabricated from
a variety of materials depending on the specific test objectives.
; Phenomenology tests used the better characterized tungsten
{ and graphitic materials, ATJ-S and 994-2. Real-material T
; assessments were made on carbon-carbon composites such as GE
; 223 and fine weave pierce fabric (FWPF) woven materials. A
| photograph of‘one of the current models in flight guided by

the rails is shown in Figure 2.3b.

T o rer = (e i sy | - e e
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Details of the model surface preparation and characteri-'

zation are discussed in Section 3.0.
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3.0 MODEL SURFACE PREPARATION AND CHARACTERIZATION

Model nosetips were fabricated by AENC from tungsten,
ATJ=-S, 994-2 graphites and carbon-carbon conpositaes, GE 223
and fine weave pierced fabric (FWPF). The tungsten models were
k" and 0.4" radii hemispheres and the graphitic models were
_ 3/8" prior to preflight preparation in the Aerotherm Arc Jet
§ and approximately 0.4" after preconditioning.

e

z Sanmples of each type of model was sent to the SAI
Materials Sciences Division in Santa Ana for careful characteri-

zation.

3.1 Model Surface Preparation

s 3.1.1 Tungsten Models

f Tungsten models were preconditioned in the same manner

J ! as previously described in Reference 3. The resulting surfaces
] | were termed 1) nominally smooth for surface roughnesses of rms

! values of about 25 uin.; 2) super smooth for a surface roughness
of rms values less than about 10 uin., and 3) preroughened
surfac; using grit blasting to achieve surface roughnesses in
the range of 100-300 uin. Only limited tungsten models were
used in the current test series.

et i i
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3.1.2 Graphitic Models

e ek el

To simulate pre-transition surface roughnesses occurring
in actual flight, graphitic models were preconditioned in & plasma %
arc facility. Conditions were chosen such that laminar ablation |
occurred on the nosetip. The preconditioning tests were per-
formed at the Aerotherm 1.5 MW Arc Plasma Generator (APG) Facility.
Figure 3.1 describes the operating performance envelope of the
facility. Test conditions were chosen such that the nosetip
models would experience laminar sublimation and the stagnation

point would recede approximately 30-40 mils.
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3.1.2.1 Ablation Pretest Predictions in Arc-Jet Environment

, CAPER-1D predictions were made using nominal arc-jet

: condit%ons (H, = 45,000 btu/lbm, P . . = .07 atm, &cw = 3330

} btu/ft” sec) to determine recession rates and thus, enabling

' test times to be chosen to obtain the desired recession. The
Aerotherm (Ref. 6), G. E. (Ref. 7), and Kratch (Ref. 8) ablation
models were utilized and the resulting stagnation point reces-
sions are depicted in Figure 3.2. Since the Kratch model best
represented stagnation point recession data in previous arc-jet
i tests (Reda, Ref. 2), test times were chosen using this model.

% Nevertheless, in the present tests, CAPER-1D with the Kratch
ablation model overpredicted stagnation recession by 30%.

-
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- 3.1.2.2 Models

: Graphitic models and three model-sting adaptors were
{
i supplied by AEDC for the preconditioning tests.
)

Preconditioned models D23, 175~9994-4 and MT-4411A3
! ware then sent to the Materials Science Division of SAI for

7 f surface characterization and the remaining models were returned
i ! to AEDC for ballistics range testing.

3.1.2.3 Ablation Test and Flow Calibration

The tests were performed in Aerotherm's Arc Plasma
Generator (APG) Facility and utilized the vacuum chamber test ;
i leg with a segmented constrictor arc heater. A supersonic :
anode configuration combined with a 3.5 inch exit diameter
nozzle produced a test stream with a uniform core of at least
2.0 inch diameter. In all cases, the test gas was simulated
air, 76.8 percent N2 and 23.2 percent 02. The stagnation point
of the test model was positioned % nozzle exit diameters (1.75
inch) from the nozzle exit plane, insuring immersion of the mocdel

in the jet uniform core.
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The stagnation heating rate, &, was measured on the
jet stream centerline at the point corresponding to the model
nosetip through the use of a 2 - % inch diameter, flat facéd,
| transiegt calorimeter with a 1/8 inch corner radius LJﬁ;;; =
{ .421 ft ). The stagnation pressure was measured with a %
inch diameter pitot tube also positiuned at a point correspond-
: ing to the model nosetip. Stagnation pressures were determined

R S e gty 4 e e

tc the nearest .001 atmosphere.

T p—— e

The centerline enthalpy was inferred from the center-
line measurement of heating rate and stagnation pressure through

the equation

R
3 HC = 23.8 q -g_f—f
- ~ t
5 2
1 ! where
P , ;
: ! Hy = local enthalpy on centerline (Btu/lbm) g
’ ) 1
0 ' q = cold wall calorimeter heating rate (Btu/ftz- i
| sec)
% P, = stagnation pressure (atm)
1 2
E Reff = effective calorimeter nose radius (ft)

The test model surface temperature was measured with
an infrared pyrometer. For all tests, the pyrometer sensing
area was centered on the 43° point (corresponding to an axial
distance of .1 inch from ncsetip). Because the model moved
forward in its holder, approximately .05 inch when under test
conditions, the pyrometer would be aligned at an axial distance
of 0.05 inches from the nose. The spread in surface temperatures
could be accounted for by variations in axial movement by the
model from test to test. the pyrometer viewed the model through
a quartz window and the pyrometer output was corrected for the
transmittance of the quartz. The surface emittance was assumed
to be 1.0 for all tests.
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Each model was sized and weighed before and after each

test firing to determine the stagnation point recession and the

total mass loss. Model exposure times were nominally 18 seconds,

' with the exact times determined to the nearest .l seconds from

oscillograph data. Only the very first run had a test tire

: appreciably lower than 18 seconds in order to check for uniform

T R A L S

ablation around the nosetip.

The arc-jet operating conditions and the model test
' results are summarized in Tables 3.1 through 3.3 respectively.

3.2 Model Surface Characterization

L e e o

r Surface roughness characterizations were performed by
: _ taking photcomicrographs of model surface cross-sections or

' > ) their replica and measuring the surface macro and micro rough-
E i . ness. Surface macroroughness and microroughness are defined

as the surface roughness measurements made under a magnification
(The definition of macroroughness

of 50X and 350X respectivley.
here is different from that used for weaved carbon~carbon mat-
The measurements taken were roughness

erials, e.g., CC-223.)
element height h, roughness element width w, and the spacing
between the roughness element peaks, LP (Figure 3.3). The

equivalent sand roughness, k_, has been calrculated from the

s
measurements using the method presented in Reference 9. The

average element spacing, D is given by
_ —*
3y Do W (
D = 3.1)
L™

et S el et i RS s 2

e AL

and the sand grain roughness by the equations

:
22 =139.0 A71%0, 1 5 4,93 j
(3.2)

k
=2 = 0.0164 2778, 3 > 4.93 i
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TaBLe 3.2. Moper NumBerR DESIGNATIONS FOR
P ABLATION FPRECONDITIONING TESTS
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I MATERIAL MODEL NO.

223 Carbon-Carbon MT4411 Al k
5 | " MT4411 A2
ﬁ a " MT4411 A3

) : " MT4411 A3 ﬁ

ATJ-S F23

; } " F45

f: 5 " D67

: “ " D23

4 : 994 178-9994-1
] " 178-9994-2

. " 175-9994-3
! " :175-9994-4 :
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Fi1GURE 3-3.

OPTICALLY DEFINED APPARENT SURFACE

h Average of all roughness heights measured

¥ Adjusted roughness height (by a factor of 4/7)

Equivalent sand roughness

s
W Average width of roughness elements

T Average peak-to-peak spacing Letween roughness

P elements

DEFINITION OF SURFACE CHARACTERIZATION PARAMETERS
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The scaling parameter, A, is given by

' A= 2,92 (3.3)
k

BT e e e g

Where the average roughness height, k is given by

(3.4)

. k = R

A)e

g

The 4/m factor accounts for the failure of a plane cross-sec-
tion to pass through the peak of a hemispherical roughness

element.
Since the roughness characterization of the tungsten

models was to be performed on a sample which was not to be

l | damaged, a replica was made which accurately duplicated the

tungsten sample's surface. Photomicrographs were then taken and

analyzed. Since the graphite and carbon-carbon samples were .

made in duplicate, an actual sample was cut, polished and
Both preflight and 1

. e a————

characterized using standard techniques.
postflight characterizations were performed on the arc jet 3

i pre-conditioned model nosetip. Typical preflight and recovered

postflight nosetip photographs are shown in Figure 3.4 and 3.5.

RN i e g 3
R X TRV T T Ay ypmg SR —
P e L e S,

. 3.2.1 Pre-flight Surface Characterization

Three graphite models, pre-conditioned in the Aerotherm f
Stereo, macro-

Arc Jet and a tungsten model were characterized. i
photographs were taken of two graphite specimens (994-2 and ATJ-S)E
one carbon-carbon sample (from billet 4411-3) and a tungsten g
model which had been grit blaéted. The carbon-carbon sample was g
unusual in that it had matrix material as the least ablated phase !
on the face of the sample (Figure 3.6a). Photographs taken at ?
45° (Figure 3.6b) indicate a stair-step patterr in this orien-

tation. The extension of the matrix phase above the surface of

i

the specimen is also indicated in low magnification photomicro-

i
1 . graphs (Figure 3.6c). Photomicrographs at approximately 340X of
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the 223 specimen cross sections (Figure 3.6d) were taken with
polarized light and clearly show the presence of transverse
oriented graphite in the z yarn bundles. This is evidenced by
the brightly appearing globules between the individual fila-
ments in the z yarn bundles. Very few transverse yarn bundles
were or. the surface of the specimen which is an unusual con-
dition for a laminar CC-223 model.

An epoxy repiica was taken of the tungsten specimen
which was then cross-sectioned, mounted, and polished. A 340
magnification photomicrograph is shown in Figure 3.7. The
actual tungsten sample was then submitted for ballistic range
tests. The remaining two graphite samples were also sectioned,
mounted, and polished. A low magnification photomicrograph of
the 994-2 model is shown in Figure 3.8. Photomicrographs of
the sections were taken at approximately 340X are shown in
Figures 3.9 & 3.10. Measurements were then made to determine
the microroughness on the surface of the specimen.

These measurements are summarized as distribution plots
showing cumulative roughness heights (Figures 3.11 - 3.14). As
can be seen, the roughness height for the two graphite speci-
mens are very similar. The average roughness heights for
both the carbon~carbon material and the tungsten replica are
nearly the same but the distributions are not.

3.2.2 Post Flight Surface Characterization

Models from the following shots were recovered from
the track tests and were submitted for microstructural char-

acterization.
Shot Number Material
4871 CC=-223
4880 GE CC-223
4886 wraphite 994-2

-27-
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Each of the models were sectioned and low magnification photo-
micrographs (l0X) were taken to determine the general appearance
of both the surface and indepth microstructure. These photo-
: micrographs are shown in Figures 3.1%5 - 3.17. The appearance
3 is not significantly different from the preflight photomicro-
graphs 3.6c and 3.7. Model 4880 exhibited gross damage in
some of the 2 yarns of the type generally attributed to pro-
, A cessing. This type of damage has been obsarved and reported
T (Reference 10) in most 223 ablation models that have been
| evaluated over the past two years. Unless this type of damage ]
intersects the surface, it does not appear to affect ablation %
recession or transition performance. The general yarn spacing ]
: and pore distribution were simil¢ in all of the 223 models.
Only the shot 4871 model was characterized in detail, since
4880 is quite similar. b

L s L oo SR

_ Measurements of the surface roughness on model 4871

.{ ' : made from CC-223, were made on a microscale at higher magaifi-
cations (approximately 200X). Photomicrographs ghowing the
typical appearance of the matrix Z yarns and tra;sverse yarns
at the surface of the ablation model are shown in Figure 3.18. 7
i What appears to be a localized tensile fracture is evident in i
1 o one of the 2 yarns. This may have been caused hy some isolated
debris in the ballistic range. In general, it appears that
the 2 yarns eroded uniformly and preferentially and the matrix
material was most resistant to ablation recession. These photo-
micrographs were taken under polarized light in order to observe
the amount of transverse oriented graphite (TOG) contained in %
each of the 2 yarn models. The TOG appearance in 2 yarn bundles
of CC-223 is characterized by globules of very brigh: material
when examined under polarized light. Only a small amount of
these globules appear to be present in these models which is
generally characteristic of material taken from central loca-
tions in carbon-carbon 223 billets. Cumulative plots of the

a4
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roughness heights measured for each phase in the composite and
for a summation of the phases are shown in Figure 3.19. Al-
though the roughness distributions (Figure 3.19) are narrower
for the post flight models, the limited samples and test condi-
tions do not permit a general conclusion concerning the effects
of flight on roughness distribution.

High magnification (200X) photomicrographs were also
i taken of model 4886, made of 994-2 graphite, for roughness
measurements. Typical photomicrographs taken using polarized
light are shown in Figure 3.20. Both the small grain size and
the highly uniform distribution of porosity is evident in these
photomicrographs. The largest roughness elements appear to
occur when pores intersect the surface, rather than from pre-
ferential etching of the individual grains in the graphite.
Accumulative distribution of roughness heights measured is
shown in Figure 3.21 and compares closely with the curve ob-
tained from the preflight sample. However, relatively large
isolated defects do develop in the 994 graphite surface during 5
flight as seen in Figure 3.22 of preflight and postflight nose- ]
tips. The pits in the postflight model may result from range 1
debris or thermal stress in the graphite from the large tem- N
perature gradients, their influence on transition or heat transfer
is not known. While the actual mean rouéhness height of each
. element is greater than the heights measured in the CC-223
model, the large width and spacing of each element gives the
model a much smoother surface appearance. At this time, however,
appropriate means for considering the effect of roughness spacing
differences on a microscale level have not been developed.

g e o e i
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A summary of the relevant roughness parameters are given
in Table 3.4.
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4.0 TEST DESCRIPTION

4.1 Test Matrix

The complete test matrix for the guided track G shots is
Test

listed in Table 4.1 in sequence. as they were launched.

T T 1 e g

conditions are listed in Table 4.2,

4.2 Surface Temperature Data Reduction

T R 4y

Photographic pyrometry techniques used here have been
adequately described in the literature (References 11,12,13).
The basic data reduction procedure consists of:

T e ey

1. Recording on film, nearly head-on, images
of self luminous models with a high speed
image converter camera (ICC).

2. Recording the image of a carbon arc cali-
bration source on identical film and pro-
cessing it simultaneously with the model
photograph.

3. Microdensitometer scanning of the film and
conversion of the film density of the
model image to temperature distribution
using the carbon arc calibration photo-

graphs.

b

T e ey

i st

Geometric projection of the nosetip into the film plane yields

a one-to-one relation between points on the photographic image
The brightness tempera-

SF TR

. and the actual hemispherical nosetip.
- ture data obtained from AEDC are arranged on the nosetip, pro-

i vided a reference point (the stagnation point) on the photo-

graphic image and the projection can be related. For the last
few shots small holes were drilled in the graphitic nosetip ;
equally spaced approximately 60° from the stagnation point. ;
This did not affect the overall performance of the nosetip, but

did serve as reference points which were identifiable in the
The use of raised pegs may be more

R i 6 Skl ik e,

PRI

temperature contour plots.
effective.

PR
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The brightness temperature data on the nosetip is arranged according

to the schematic in Figure 4-1. Temperature is given in 3° '
increments in both 6 (streamwise around nosetip) and ¢ (aximuthal)
and is stored on magnetic tape to facilitate computer processing.

4.3 Data Uncertainty
Several sources of error in the temperature measurements

’ were considered in the free flight test report (Reference 3).
Except for some problems unique to the *rack tests, as will be

discussed below, the uncertainty in the temperature measurements

is still approximately * 150 - + 200°K. As in the free flight

tests, the estimated uncertainty (95 percent confidence level)
of the free-stream measurements and calculated stagnation con-

ditions are as follows:

! : Estimated Random
; Bias Error
f . Parameter Percent Percent
' Free Stream Pressure 0.7 0.3 v
0.1 0.2 j

Free Stream Temperature

Free Stream Velocity Negligible 0.5
Total Enthalpy Negligible 1.0

, Stagnation Pressure 0.8 1.2

T e LA s+

- _; 4.4 Track G Related Problems

A number of problems unique to the operation of the
track were encountered at the beginning of the track test series,

these were considered sufficiently serious that the brightness
A brief discussion of each ;

temperature results were in doubt.
of these problems and their solution is given in this section.

4.4.1 Luminosity Effects from Extraneous Sources

test as in the free flight series, smooth

Early in the
4877) to validate the

tungsten models were flown (Shots 4875,

s Al Lot s .o
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test and data reduction procedures by reproducing a fully

laminar flow over the nosetip. Results from the super smooth

shot 4875, Fiqure 4.2, are significantly higher than predicted

by laminar theory at the early ICC's and furthermore the distribu-
tions are not consistent with either laminar or turbulent
predictions. Since similar free flight data were in excellent

agreement with laminar theory, the present data were considered

suspect. Extraneous illumination sources were thought to

influence the apparent brightness temperature of the nosetip.
The possible sources considered by AEDC were as follows:

1) Exposure flare: internal reflections within
tube allow transfer of light from hot image
areas to adjacent cool image areas.

2) Lens reflections: reflections between elements
of optical system produce out-~of-focus images
which overlay the primary image.

3) Extraneous illumination of model: system can-
not distinguish between self luminosity and
light reflected from model surface.

4) Bleed thru: finite transmission of image con-
verter tube when "off" allows exposure of model
and wake to overlay model image.

Presence of self luminous, reflecting or
absorbing particulate or gaseous cloud

overlaying surface.

5)

The first source appeared to be the most serious and the effect

is shown schematically in Figure 4.3. The magnitude of the

effect varies with the image intensifier tube, e.g., Figure 4.4
shows the exposure flare for the System 82, Gen II tube for
various background brightness temperature levels.

The temperature for unity signal to noise ratio refers

to the temperature for which the radiance of the signal is

twice that of the background. Thus, even though the minimum

detectable temperature is 1200°K, if the position of the mea-
sured temperature of 1200°K, is, say, 0.25" away from a temperature
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of 2700°K, the exposure flare effect results in a reading of ~
1400°K. The luminous source for such potential error was the
hot heatshield as seen in some of the ICC photographs for
various shots in Figures 4.5 and 4.6. The use of a resin-rich
heatshield has alleviated this luminosity source as evidenced
in Figure 4.6 shot 4963 ICC photographs on which the new heat-
shield was used. Other modifications to eliminate or reduce
the effects of extraneous illumination included honeycomb light

absorbers inside the rail sections in the vicinity of the focal 7

plane, mechanical light blockers, rails painted flat black, and
optical blockers in the ICC's. The 4th item (Bleed through) was
determined not to be a problcm and the 5th item, although may
be a source of error in the presence of an erosion environmént
or TCNT models, should not influence the current test results.
The effectiveness of these modifications is demonstrated in
Figures 4.7 and 4.8 which are plots of the mean temperature
distributions at the 5 ICC stations for shots 4909 and 4963.
The corresponding ICC photographs in Figure 4.6, particularly
at ICC's 4 and 11, show the effectiveness of the resin rich
heatshield used in 4963, but not 4909 where a significant
amount of luminesence is observed on the standard heatshield.
Results in Figure 4.7 for ICC4 which show a flat temperature
distribution is probably due to the exposure flare from the hot
heatshield. The corresponding temperature distribution in
Figure 4.8 is consistent with those obtained at the other ICC's
and agree well with calculations. These results indicate that

the exposure flare problem along with other extraneous illumination

problems have been substantially reduced and probably does not
degrade the data. The exposure flare may still affect the
stagnation region temperature when a turbulent temperature
distribution occurs which results in a higher temperature ring
surrounding the stagnation point on the nosetip. However,
estimates of the effect from studies such as that shown in
Figure 4.4 indicate that the majority of the current results
should not be influenced by this.
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4.4.2 Other Considerations

Other problem areas that have been considered were
(1) model tilt which was rectified by using a longer wheelbase
model, (2) potential pressure buildup in the blast tank prior to
model passage through the quick opening valve which was deter-
mined to be minimal and can be accounted for, (3) rail vibrations
due to the launch transients were determined to be preceded by
the model and therefore should not affect the transition results

oL s Ry ey i s e, e e

em i R ey s s i

and (4) range debris particularly near the blast tank exit where
the jet blast may stir up loose particles of dust that would
alter the model surface and possibly change the transition be-

% havior. More effective prelaunch cleanup procedures and use of
' equal blast tank and range pressures to minimize the stirring
effects will help to reduce the debris present.
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5.0 ANALYSIS

5.1 Data Format

E : The brightness temperature data on the entire nosetip

: is available in 3-degree increments, both along the body
(represented by the angle § or wetted distance 8) and around
the nosetip (represented by the azimuthal angle ¢). Therefore,
there are 120 temperature profiles along the nosetip at

If the freesteam and

each image converter camera location.
surface conditions were such that complete axisymmetry

: exists, then these 120 profiles would be identical. However,

E " due to the nonuniformity in the surface roughness elements, as
well as the possibility that an angle of attack may exist, axi-
symmetric conditions are not generally obtained. The degree of
deviation from the symmetric conditions in the data is indica-
tive of how uniform the surface conditions are. A detailed
look at the individual temperature profiles can shed some
light on whether or not a preferred orientation of transition

location exists., Also, the potential existence of gouges can
be identified via hot spots. This task, however, requires
detailed analysis of the large bank of data generated at each

ICC for each shct (a maximum of 600 profiles for each shot).

i el Rkt il

The brightness temperature data were averaged in the ¢
direction (i.e., over the 120 profiles) to give mean temperature
profiles along the nosetip at each image converter camera loca-
tion. Superposing the mean temperature profiles for all the
ICC stations gives the nosetip mean temperature-time history
Such information was plotted for each shot (Figure

o wek A,

down-range.
5-1 depicts an example).

bttt

In addition to the mean temperature profiles, the maxi-
mum, minimum and standard deviations were obtained along the
nosetip, as illustrated in Figure (5.2). The magni’ de of the
standard deviation represents the degree of departure from axial

R S S
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symmetry in the measured temperatures, and hence the nonuni-
formity in surface roughness spatial distributon.

5.2 Modeling and Data Reduction

The objective of the testing and data analysis was to

e Tl T R

investigate

1) transition-front location/offset,
2) stagnation region heating augmentation, and
3) transitional and turbulent heating augmentation,

e A

e

under typical flight environments. Since state-of-the-art pre-
dictive models are mainly based on wind tunnel data generated

under idealized conditions, a secondary objective of the analysis
was to test the extrapolation of these predictive methodologies

to flight environments. These environments are characterized

by both high freestream Reynolds numbers, and stagnation pressures.

e S

: The problem of concern is a very difficult one; the

3 : phenomena involved are highly coupled. Transition from a lami-~
nar to turbulent flow is triggered by some roughness height

f charactes.istic of the particular 'surface. 1In the transitional

% and turbulent flow regimes, roughness further augments the heat
transfer to the surface. Depending on the location of transition,
the stagnation region temperature is markedly affected and may
indicate a stagnation region - transition related heat transfer
augmentation. Furthermore, the surface roughness of real
materials is such that a statistical distribution exists, and
most probably a single roughness height cannot adequately
represent roughness effects on transiton and heating augmentation.
Finally, the roughness height that may correlate with transiton
data may not be the same for the heat transfer augmentation.

The steps undertaken in the data analysis are summarized

as follows:

PRSP SN
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1. Derive the heat transfer distribution around the
nosetip utilizing a two-dimensional transient heat conduction
code. The code used was the SAI CAPER-2D heat conduction code.
The approach was to utilize the mean temperature-time history
around the nosetip to predict the corresponding heat flux. The
nosetip is then acting like a thick wall calorimeter where both
indepth and longitudinal conduction fluxes are accounted for.

Transition

2. Infer the location of the transiton region front from
the shape of the heat flux around the nosetip. The transition
front was taken to be either the minimum heat flux point or the
location of the intercept of the two tangents to the heat flux
distribution curve.

3. Compare between the data inferred transition front
location and that calculated using state-of-the-art transition
models, e.g., Anderson (Ref. 14), Bishop (Ref. 15), and Dirling
(Ref. 16) which are built in a boundary laver predictive code
like the ABRES Shape Change Code (ASCC).

4, Infer the statistical distribution of the location of
the transition front from the individual surface temperature
profiles along the nosetip. The temperature-derived transition
location was at first taken to be the minimum temperature
point, i.e., the point where dT/d6 = Zero. Due to possible
ambiguities, the transition locations were determined manually
to be at the intersection of tangents to the laminar and
turbulent portions of the temperature profile. A comparison
between the heat flux and the most probable surface temperature
derived transiton locations was then performed.

Laminar Region Heating Augmentation

5. Extract the laminar region heating augmentation by
direct comparison between the data derived stagnation point
heat transfer and that computed using a laminar theory, e.g.,
Fay-Riddel as given by ASCC.

-2
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6. Verify the extrapolation of state-of-the-art
laminar rough wall heatinc augmentation methodologies to

flight environments by direct comparison with the data derived

augmentation levels. Phinneys' and the PANT rough wall laminar

augmentation correlations were used in the anlysis.

Transitional/Turbulent Region Heating Augmentation

7. Extract the transitional/turbulent region heating
augmentation by direct comparison between the data derived
heat transfer distribution around the nosetip and that computed

by ASCC for the smooth wall conditions. Since the augmentation

level is a strong function of the location of the transition

the heat transfer coefficients were based on the same

front,
the location of the transi-

location of transition. That is,
tion front was set 2gqual to data derived values.

8. Verify extrapolating state-~of-the-art transitional/
turbulent heat trznsfer augmentation as given by ASCC metholo-
logy, to flight eavironments, by comparing the data derived
and ASCC computed rough wall heat transfer distributions around
the nosetip. Tvo situations were considered here for the
ASCC calculations. In the first the transition locations were
set equal to the data derived values, and in the second situa-
tion the transiition was computed using the PANT transition

correlation.

A different approach was also taken in the data analysis
where the nosetip measured mean surface temperatures were com-
pared with those predicted using the ABRES shape change code
(ASCC). The degree of agreement between the two temperature
profiles at all image converter camera locations determines the
capability of the code and its built~-in predictive models to
simulate the transition location and heat transfer distribution.
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Deviations between the measured and predicted temperature pro-
files can be due to inadequacies in the transition and/or heat
transfer models, or due to incorrect representation of the
surface roughness. This data reduction approach is difficult
due to the strong coupling between transition, heat transfer
and surface roughness characterization.

The advantage of the heat flux approach over the surface
temperature one is that the derived heat flux is independent of

any boundary layer theory one may use, and represents the net

heat flux the model is subjected to. The approach, however, is

sensitive to the nature of the temperature-time history and
a maximum number of data points along the trajectory are needed
Unfortunately only a maximum

for the approach to be reliable.
and for a few of

of five image converter cameras are available,
the shots the data at all locations were either not available

or unvreliable.
One-~dimensional transient heat conduction calculations

were first made to determine the sensitivity of the heat trans-

fer to the time-interpolation of temperature data between the

ICC stations. In Figure 5.3, the wall :emperature history was
calculated for an assumed cold wall heating input. Then dis-~-

crete computed temperature data at times approximating ICC

station locations were determined with T(to) assumed to be at

room temperature. Interpolation schemes were tested to determine

best fit to the calculated points in between the data points.
From t, to the first ICC (4), a gquadratic interpolation fits

the data very well as cne might anticipate on theoretical

grounds since AT ~ t!5 for short times. 1In hetween the other
points, i.e., ICC locations, a 3 point Lagrangian interpolation

appears quite good. A comparison of the derived heating rate,

inputing the wall temperature in this discrete-interpolated
manner, with the initially input heating rate is shown in

Figure 5.4. The results are seen to be in some error for

small t, but in good agreement elsewhere.
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Similar to the one dimensional case, two-dimensional
analyses were performed, utilizing the SAI CAPER-2D heat con-
duction code, in order to assess the effect of the temperature-
time interpolation scheme between the 1CC locations on the
derived heat flux. The following was performed for a .25'

tungsten model! with a range pressure Pu/PD = 570/570 torrs, a
= 15,825 ft/sec and a ballistic coefficient

launch velocity, UI
3 = 110 1b/£t2,
1. For both laminar and turbulent situwations the con=-

tinuous temperature-tiie histories of the model surface tempera-

ture were generated. Figure 5.5 shows the laminar and turbulent

heat fluxes input to the model surface at all ICC locations.
Figure 5.6 depicts the corresponding thermal response of the

model surface.

2. Generate the model surface heat fluxes which cor-

respond to the discretized surface temperature at the ICC
Between launch and the first ICC a quadratic in-

locations.
Downstream of the first

terpolation was used, i.e., AT ©~ t%.
ICC a 3~point lagrangian interpolation along the trajectory
was used.

3. Compare between the input (step 1) and the generated

(step 2) heat fluxes.

Similar to the 1D analysis, the comparison was found to
be within 1% for both the laminar and trubulent cases, as
expected. The heat flux is nearly one dimensional during the
initial heat-up period of the model surface (the conduction
depth is small, and heat is flowing mainly normal to the

surface).

5.3 Codes Utilizec in the Analysis

5.3.1 The ABRES Shape Change Code (ASCC)

This code represents state-of-the-art in nosetip shape
change calculations and utilizes boundary layer computations,

~76~
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The aerothermal environment

based on the integral technique.
is obtained via predicting both the inviscid (pressure distri-

bution and bow shock shape) and viscous (momentum and energy
g transport) flowfields. The inviscid flowfield solution estab-
lishes the boundary layer edge conditions necessary tc perform
the viscous calculations, accounting for entropy swallowing
effects. The viscous solution provides wall fluxes (heat
transfer and shear) as well as boundary layer characteristics
(momentum thickness, shape factor, enthalpy thickness, etc.).
The laminar, transitional and turbulent boundary layer regimes
The surface temperature, indepth temperature

T T T b e -, nie e -

are also treated.
profiles and shape change are obtained from solutions to the

coupled energy and mass balance equations at the surface, and
the indepth two-dimensional transient conduction equations.

The code can also be run in the aerocheating mode where the heat
flux distribution is generated for an input surface temperature

T e

profile around the nosetip.

: ' The boundary layer parameters and wall fluxes are obtained

by solving the integral forms of the axial momentum and thermal
The basic heat transfer and wall shear laws
Influence

energy eguations.
are those of an incompressible flow over a flat plate.

factors are then applied to these laws to account for the

effects of acceleration, blowing, variable properties, Mach
Details of the code can be found in

. number, and roughness.

Bl b bt b sl e it

Reference 17.

5.3.2 The SAI CAPER-2D Code
The CAPER-2D code is a two-dimensional transient code
which solves the axisymmetric heat conduction equation accounting

for variable properties and shape change. The numerical
technique utilized is a fully implicit finite difference scheme,

where the governing differential equation together with the
finite

1= st 3

surface relations are guasi-linearized and cast in their

difference analogues. The resulting nonlinear algebraic equations

-79-
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are solved using the alternating-direction-implicit (ADI)
The solution procedure incorporates surface and internal

method.
computational costs.

recions in order to minimize the overall
The:re are two options for the code which are:

: 1. Heat Flux Boundary Condition: In this cption the
function of time, for

t
Lo heat flux around the nosetip is input as
example utilizing an aeroheating boundary layer code, and the

output is the temperature-time history of the model, i.e., the

s
Lo thermal response.

2. Surface Temperature Boundary Condition: Here the

temperature-time history of the nosetip surface is input to the
code and the output is the corresponding indepth heat conduction

flux.

Details of the code are presented in Reference 18,

5.3.3 Matrix of the Analyzed Shots
These shots were

R o T
TR s e

i il

Table 5.1 lists the shots analyzed.

chosen based on availability and quality of temperature data.

The model surface characterization, and the ICC locations at

which the brightness temperature data was available are also
given in the Table. The table indicates that some temperature
smoothing was performed for a few shots to eliminate the effects
the data at some ICC locations

e i e

of the hot heatshield. Also,
which were not consistent with the rest of the data due to ICC
The launch and trajectory

Y TR e e ¢

3 tube saturation were eliminated.
t information are given in Tables 5.2 and 5.3 respectively.
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TABLE 5,3, TRAJECTORY INFORMATION OF ANALYZED SHOTS
hot xcc [Fresstrean | PRI S(E_%g%p%’“ s§§(§%§i§“
lae /ey m
—_—— g e
4882 4 13.85 6.98 4991 191.3
19 12.48 6.3 4055 155.8
29 11.65 5.88 3533 135.7
4963 | 4 13.78 6.95 4941 189.4
11 13.23 6.67 . 4552 174.9
19 12.60 6.35 | 4128 156.6
29 11.89 6.0 3681 141.5
4953 | 4 14.06 1.85 5144 51.7
11 13.9] 1.83 5036 50.5
19 13.69 1.8 4879 49.0
29 13.55 1.78 4776 48.0
4974 | 4 13.66 2.4 4857 64.8
11 13.:6 2.35 4716 63.0
19 3.25 2.32 4570 61.0
29 13.00 2.27 4396 58.7
4951 4 14.26 2.53 5294 71.5
11 14.06 2.49 5143 §9.4
19 13.83 2.45 4975 67.1
29 13.54 | 2.40 47173 64.5
-§3-
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TABLE 5.3, TRAJECTORY INFORMATION OF ANALYZED SHoTs (CONT'D)
Shot|ycc |Treestream | TTRESCISAM | SEAZIAMLOR | SETiamie”
) 41}0-7/ft) (BTU/lbm) (atm)

5018 | 4 13.76 2.44 4926 66.4
11 13.50 2.39 4744 64.1
19 13.21 2.34 4541 61.4
29 12.86 2.28 4303 58.1

4871 4 14.11 1.20 5177 50.4
11 13.91 1.78 5034 49.0
29 13.50 1.72 4743 46.2
41 13.18 1.68 4522 44.1

4880 | 4 13.80 1.22 4956 33.5
11 13.68 1.21 4869 33.0
19 13.54 1.20 4767 32.3
29 13.36 1.19 4644 31.5

4954 4 14.27 0.89 5300 25.2
11 14.20 0.88 5248 24.9
19 14.12 0.88 5187 24.6
29 14.01 0.87 5110 24.3

5068 | 4 13.85 1.82 4991 50.0
11 13.59 1.79 4802 48.3
19 13.28 1.75 4592 46.1
29 12.92 1.70 4345 43.7

-84~

R e e e g T o ety e st e I

el o b




> - R

TR (T TR e

.

TaBLE 5.3, TRAJECTORY INFORMATION OF ANALYZED SHoTs (CoNnT’D)
. Freestream Stagnation Stagnation
Shot | ;oo | Freestream Re No. Enthalpy Pressure
No. Mach No. -7 (BTU/1b_) (atm)
ﬁm
5069 | 4 13.73 3.65 4906 99.2
11 13.38 3.55 4656 94.3
19 12.98 3.45 4383 88.8
29 12.50 3.32 4066 82.3
-35_
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6.0 TRANSITION RESULTS

In this section the transition analysis results are
presented. Transition-front locations were extracted from both
the data derived heat flux and the temperatuce data distributions.
Comparisons between the data inferred transition locations and

those predicted by state-of-the-art nosetip transition models

were also performed. A brief discription of the transition cor-

relations used in the analysis is given below.

6.1 Nosetip Transition Correlations

6.1.1 Anderson - PANT Correlation (Ref. 14)

The PANT correlation represents state~of-the-art in

predicting laminar to turbulent boundary layer transition.
model, which was based on wind tunnel testing, is given by the

The

following relations

0.7

[x,
Ree\v% (at sonic point) = 255 for transition onset
(6.1)
X 0.7
i - ‘ oy .
Ree,tr (Tﬁ) = 215 for transition location

where ki is the intrinsic roughness, and ¥ is a perturbation para-

meter given by

B' B'\ Pe
15)

6.1.2 Bishop's Transition Correlation (Ref.

The Bishop transition criteria basically divides the

nocetip into two regions: a forward region where the curvature of

the concave streamlines (in the shock layer) influences transi-
tion, and a backward regicn where streamline curvature effects




This dividing point on the nosetip is

on transition are small.
In the flow regime

approximately 20° off the stagnation point.
close to the stagnation point transition location is given by

§ | l.23 1.96
T /T M
K ( w/ e) [+ (6.2)

B=152 ‘(WRN_) ;{—egg

b
‘ For € > 20° the transition location is given by

-1/3 T ~-1/2 {
5.6(%) = Re, '[1 + 4.5(%) Mﬁ] (6.3) ’

1 ; Where K/D is the dimensionless roughness requirad to produce
r : ) transition at a point on the nosetip where (Ki/D 2 K/D).

f ' 6.1.3 Dirling's Transition Correlation (Ref. 16)

} .

' Dirling's approach is very similar to the PANT,
¥ f disturbance parameter, however, assumes a different form. The

i ' model is based on defining an effective roughness height, X,
which accounts for the nosetip bluntness, at which the transition

The

parameter is evaluated as follows

i K.
K _ i
= (1 + 350 E;) , and

s T

(6.4)

v s

=
=
E

The quantities p~ and U. are obtained from the Pohlhansen
fourth degree polynominial fit to the compressible laminar

boundary profiles.
|
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6.2 Data Inferred Transition Location

The nosetip transition-front location was determined in
two ways:

1. From the mean temperature data-derived heat flux
distributions the transition point was determined to be the point
of either the minimum heat flux (dq/dS = znro) or the intercept
of the tangents to the laminar and transitional legs of the heat
flux profile around the nosetip. The latter determination required

scme engineering judgement, but for the most part was unambiguous.
Transition statistics may be obLteined, in principle, from identical
firings of many models of the same material.

2. Statistical transition information may be obtained
from the data of a single flight if it is assumed that the bright-
ness temperature distribution is directly related to the heat
transfer distribution. The brightness temperature data on the entirr
nosetip is available in 3-degree increments, both along the body
(represented by the angle 6 or S/RN) and around the nosetip (rep-
epresented by the azimuthal angle). There are 120 temperature R

profiles along the nosetip at each image converter camera location.

Initially from the brightness temperature data the
transition front location was determined to be the point of
minimum temperature, i.e., dT/dS = zero. At each ICC location
the minima were obtained numerically for each of the 120 nosetip
temperature distributions (each consists of 26 data points). The
data points were first smoothed locally by applying a first-

degree least squares approximation to three contiguous points ;
(Ref. 19) sequentially until a new set of smoothed data points :
are obtained for the temperature distribution. The first derivative%
of the smoothed data was then calculated numerically ancl the zero :
slope point was determined. Historgrams of the transition front
location were then constructed. However, the results obtained
numerically in this manner were greatly influenced by the numericali
data smoothing and were judged to be inaccurste. Hence, the
temperature deduced transition data were all hand processed at
each ICC location as follows:

-
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(a) For each temperature profile, the transition
front location was determined to be the point

of intercept of the laminar and turbulent legs

of the temperature profile.

(b) Historgrams showing the percentage of occur-
rence of transition at a given location on the
nosetip were constructed.

(¢) Transition front density functions were

then constructed from the histograms. The
probability density curves determine the width and
movement of the transition front for each nosetip

material.

Table 6.1 shows a comparison between the transition loca-
tions inferred from the temperature-transition histograms and
those inferred from the data derived heat flux distributionms.
Although, in principle, the heat flux-iuferred transition loca-
tion represents a more realistic location of transition, the

derived heat flux distributions were based on mean temperature

profiles at each ICC. As a result, any preferred orientation in

the transition location was smoothed out in the averaging process.
Furthermore, the results show an apparent heating augmentation at
the stagnation point (see section 7) which gives a rather flat
heat transfer distribution and causue difficulties in defining a

transition point. Hence, the range of heat flux inferred transitioi

locations are shown for some of the shots in Table 6.1. Also

shown in Table 6.1 are PANT/ASCC predicted transition locations
using different roughness and well temperatures to show these
effects on transition a2ccording to PANT. Inferring the transition
location from the temperature data can be in error due to the
lateral conduction smoothing effect of the surface temperature,
and also due to the transient response of the model. That is, if
transition offset took place the heat flux distribution becomes

laminar while the surface temperature may still indicate a

transitional/turbulent behavior. 1In this case, the temperature

data may erroneously indicate a forward moving of the transition-
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front. In any case, only temperature data are available to determine
the transition statistics.

Detailed transition statistics have been generated for the
Track G shots that had valid data. The specific shots analyzed

‘ were:
Lo Shot ¢ Material Surface Conditions
E 4882 W Pre-roughened
' 4974 ATJ-S Pre-ablated
L 4951 994-2 Pre-ablated
E i 5018 994-2 Pre-ablated
v 4880 CcC-223 Pre-ablated
5068 CC-223 Pre-ablated
5069 CC-223 Pre-ablated

For each shot, the following was determined

(1) Circumferential histograms of the transition front
location as shown in Figures 6.1-6.7.

(2) Circumferential cumulative distribution of the trans
) ition front location (showing the transition front
width) as shown in Figures 6.8-6.14.

TIPPT T PN

(3) Mean location of tﬁe transition front.

(4) Standard deviations transition front.

The transition location statistics are summarized in Table
6.2 along with the previously discussed heat transfer derived
transition location and PANT predicted values.

b o kb sk A e kit o
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6.3 Comparisons with Transition Correlations

The data derived from the track G shots as well as data
from earlier free flights in Range G, are compared with the corre-
lations obtained in the PANT program, those derived by Bishop, and

Lo by Dirling. These correlations were summarized in Section 6.1.
f Table 6.3 is a summary of the calculated local flow properties
required to compute the correlation parameters.

5 : 6.3.1 Comparisons with the PANT Correlation

[ 12 i T AP om0 1 ot

{ Two equivalent means of comparison were used. The fitrst
! was to calculate the implied roughness according to PANT using the F
1 . temperature data derived transition locations. The second method
was to calculate transition locations using the characterized
roughnesses in the PANT criteri: and compare this with the ballistics
range data.

TR T

Figures 6.15 to 6.17 show comparisons between the data inferred’ i
and PANT computed transition locations. In displaying the results }
the sand grain roughness type materials (W, ATJ-S, 994-2) were '

: separated from the weave-type materials (CC-223). This was done to
i , eliminate any material type effects on transition. For the sake of
' completeness some of the free flight results are displayed. Figure
6.15 shows that using the Krms as the characteristic roughness
height of the material in PANT does not correlate the data well.
Some data points lie to the left of the laminar boundary as in- i
dicated in the figure for shot 4963, where the flow was completely
laminar over the supersmooth nosetip. Also, the PANT correlation
was based on peak to valley roughness heights (which was almost 4 ;
times the Krms)' Figures 6.16 and 6.17 show the comparisons based 1
on K oan+ It can be seen there that most of the data lie below the
PANT line, i.e., transition occurs upsteam of predicted values and
very close to the stagnation point. It was curious for the smooth
tungstan free flight data that either the flow remained laminar on
the supersmooth models, or, when transition occurred, it was always

close to the stagnation point.
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Table 6.5 1lists the magnitudes of the inferred roughness
heights that insures agreement between data and PANT predictioms.
For CC-223 the inferred roughnesses were found to be of the order
of the macroroughness. For preablated 994-2 the inferred roughness
heights were only 16% higher then the average values for the
' track shots, which indicated good agreement with the PANT correlation.

e e

6.3.2 Comparisons with Dirling's and Bishop's
Transition Correlations

i Table 6.5 shows a comparison between the data inferred
transition location and predictions by the PANT, Dirling's and
Bishop's transition correlations. The comparisons ccver a range
of stagunation pressure from 40 to 197 atmospherees, freestream
Reynolds number from 18 to 70 x 106/ft and mean roughness heights

] from 0.25 to 0.57 mils. The table lists the transition locations
as predicted by the three predictive models and those infered
from the mean temperature distribution around each nosetip. 1In
general, the Dirling correlation predicted the most forward

, location of transition based on K mean. Also, all the models

' ‘ predicted backward movement of the transition location as well as

. transition offset, i.e., relaminarization of the flow on the
nosetip. The data however, indicated an almost fully turbulént :
flcw for the flight conditions analyzed.

Shot 5068 was selected to investigate the effect of the
characteristic roughness h:ight, used in conjunction with the
predictive correlations, on the transition-front location and its
agreement with the data. The results showed excellent agreement
between the data and the PANT prediction, if the macroroughness
height (K = 2.5 mils) was used instead of the microroughness (K =
.25 mils). Hcwever, the use of the ma:roroughness as the transi-
tion characteristics roughness height may not be justifiable.
Comparisons of the data with the Dirling and Bishop correlatioms
are shown in Figures 6.18-6.20.

6.3.3 Comparisons with Reda-Raper Transition Data

- P R et

Recently (Reference 20) transition experiments were
conducted on large preablated CMT graphite nosetips in the AEDC
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Track G facility. The effects of nosetip radius and freestream
static pressures on the transition-front movements were investi-
gated. The data indicated that nosetip radius has no effect on
the trancsition location. The mean transition front location was
observed to progress forward with the freestream static pressure.
The correlated relation berween the mean transition-front location
and range static pressure was given as - -

S = o371 pt:4%7

RNt
Figure 6.21 is a plot of this correlation with the current temp-
erature-derived data, while Figure 6.22 shows the heat flux derived
data. The current data do not show agreement with the Reda-Raper

(6.5)

correlation.

Other correlations with k/g, Ree arid Re_ are shown in Figures
6.23 and 6.24 and do not show much promise in correlating the current
data.

It is felt that a larger sample of high quality data on a variety
of well characterized materials as was intended in the current program,
before its untimely demise, is necessary befcre any firm conclusions
concerning the veracity of the existing transition correlations. The
large CMT models flown by Reda and Raper were certainly in the right

direction.
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7.0 HEAT TRANSFER RESULTS

The object of this section is to investigate the effects
' of surface roughness on the stagnaticn region and transitional/
turbulent heat transfer augmentation. By direct comparisons
» between the data~-inferred heat transfer to the model surface,
{ : and the smooth wall calculated values using the ASCC, augmenta-
| tion levels can be extracted. Also, the various heat transfer
augmentation predictive methodologies can be verified.

7.1 Stagnation Point Heat Transfer Augmentation

7.1.1 Augmentation Factors

The heat transfer augmentation levels were extracted

as follows:

& Gt

1. Derive the model surface heat transfer using the
CAPER-2D heat conduction code from the mean surface tempera-

! : ture-time histories down range.

T [~ agpre—y

2. Calculate the smooth wall stagnation point heat
transfer using ASCC. The ASCC prediction should be in agreement

with the Fay-Riddel theory. :
]

: ' 3. Compute the heat transfer augmentation factors by
taking the ratio of the data-inferred stagnation peoint flux

to the smnoth wall value.

et | L e L e S

4. Verify laminar augmentation methodologies by comput-
ing augmentation factors for the test conditions and compare

with augmentation levels derived in step 3.

Table 7.1 lists the data derived augmentation factors i
at the stagnation point for all the shots analyzed. There is i
a good agreement between the theory and data for Shot 4963,
where the model surface was super smocuth. The data indicated
augmentation factors around unity as exgected. For the pre-
roughened and pre-ablated models, augmentation due to roughness

LI T S VA
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TABLE 7.1, STAGNATION POINT HEAT TRANSFER AUGMENTATION
Stagnation Point Heat Transfer
Augmentation Factors =
shot # | Material | IccC Qaata’%calculated
ASCC Generated Wall Temperature

Wall Temperature Data

4882 W 19 - 1.22
29 - 1.17

4963 W 11 .93 .96
19 1.03 1.03

29 1.03 .98

4953 ATJ-5 11 .99 1.02
19 1.17 1.15

29 1.2 1.17

4974 ATJ-S 11 1.04 1.06
19 .88 .95

29 .92 97

4951 994-2 11 .92 .99
19 1.34 1.27

29 1.31 1.27

5018 994-2 11 .87 .93
19 .91 .93

29 1.22 1.12

4871 CCc=-223 11 1.05 1.06
29 1.18 1.11

4880 CC=-223 11 1.25 1.17
19 .99 1.02

29 .83 .92

4954 CC~223 11 1.02 1.02
19 .77 .94

29 .62 .79

5068 CC~223 11 - 1.10
19 - 1.05

29 - 1.17

5069 CC-223 11 - 1.17
19 - 1.25

29 - 1.28
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For thz flight conditions tested augmentation

was observed.
To elimi-

factors as high as 2.0 were observed (Figure 7.1).
nate the effects of wall temperature on the augmentation fac-

f
' tors, the calculated stagnation flux was based on the measured

wall temperature. Listed in the table also are augmentation

factors where the ASCC computed fluxes were based on the ASCC
generated surface temperatures using the transient option of

e

the code.

7.1.2 Comparisons with the PANT and Phinney's Laminar

& : Augmentation Correlations _

¥

] Comparisons were made between the measured stagnation
: point augmentation levels and those predicted usiny the PANT
and Phinneys correlations, in order to verify extrapolation of

the predictive methodologies to the ballistics range flight i
The correlations have the following forms:

environments.

i it i 3

PANT Laminar Augmentation
i

K, = 1 for & < 50

f | 2
? K, = 1.307 1n ¢ + 23.09 ¢7-%%¢ - 6.269 for ¢ > 50 j
.2
: poU
R where J =(—2—EE§) X
Uy ©

Phinney's Heating Augmentation

T b e o g

] pU -
KQ-“(HRN.) (&)
Moy 8
k K 5
. (k ) _ L0017 T* for I* < 2.41 §
%) -

004 , for 55> 2.41 j

Figure 7.1 shows a comparison between the data and

predictions of the PANT correlation for all the materials. The

materials were divided into sand grain and weave type materials,
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in order to eliminate effects of the nature of the surface on
the results. It can be seen that for the flight regime, augmen-
tation factors up to 200% were observed, while the PANT cor-
relation did not predict any augmentation. The comparison be-
tween the data and predictions using Phinney's correlation
depicted in Figure 7.2, indicates that the correlation over-
predicted the data for all the materials tested.

No attempt will be made here to correlate the observed

augmentation factors. However, the data will be presented in
terms of all the pertinent correlating parameters Re_, Rez, K/9,

K/68* as presented in Figures 7.3 to 7.10.

7.2 Transitional/Turbulent Heat Transfer Augmentation

In this section the results of the heat transfer augmentation
around the nosetip are presented for all the analyzed shots. 4
; . First, the heat transfer augmentation factors in the ballistics
E ; . range environments were derived by direct comparison of the 3
E | derived heat transfer data to the calculated smooth wall values.
f ; Secondly, state-of-the-art turbulent heating augmentation
f : methodology, as given by the ASC code, was compared with the
? i data, in order to validate the extrapolation of the predictive

model to flight environments.
i ! The heat transfer around the nosetip is affected by the

following parameters.

1. Transition-front location: transition from laminar

to turbulent flow is triggered by some roughness height char-

acteristic of the particular surface.

P Y

2. Roughness effects: heat transfer is augmented by !
some roughness height, which may be different from the height

which correlates with transition data.

3. Real materials: surface roughness of real materi-
als is such that a statistical distribution exists, and

e e A ——— s
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most probably a single roughness height cannot adequately represent
roughness effects on transition and heating augmentation.

The heat transfer in the transitional region is mainly
dependent upon the magnitude of the intermittency factor, width
of transitional region, and roughness effects. In the fully
turbulent region the heat transfer depends on roughness effects
in the transitional (K+ < 70) and fully rough regimes (K+ > 70).

In order to properly derive the magnitudes of the heat
transfer augmentation factors around the nosetip the effect of
the transition-front location had to be accounted for by fixing
the transition location at each ICC location. Therefore, to be
consistant with the derived heat transfer data the transition
location should be set equal to the experimentally derived location.
Predicting the transition location by some methodolegy, e.g., rhe
PANT correlation, which may not be consistant with the observed
transition location, can greatly bias the augmentation factors.
This effect will be seen later in this section.

A summary of the steps undertaken to derive thz heat transfeyr
augmentation factors around the nosetip is as follows:

1) Derive the heat transfer distributions from
the mean temperature-history data downrange
using CAPER-2D.

2) Infer the transition-front location from the
heat flux data at each ICC location.

3) Predict the smooth wall heat transfer distribution
around the nosetip at each ICC location
using ASCC-aeroheating option (after set-
ting the transition locations equal to the data
derived values).

4) Derive the augmentation factors by simply tak
ing the ratio of the data derived heat flux
to the computed smooth wall values at each of
the body points on the nosetip, and at each ICC
locations.
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The steps undertaken to verify the ASCC rough wall aug-

mentation predictive methodology were as follows:

' 1) Use the ASCC code in the aeroheating calculation
mode at each ICC location using the mean roughness.

2) Set the transition location toc the data-~inferred
values.

: 3) Compute the rough wall heat transfer around the
i nosetip using the ASCC methodology.

4) Compare the data derived heat flux to the ASCC
computer rough-wall heat transfer and/or compare
the ASCC computed rough wall augmentation factor
to the data derived values.

S -

—

In the ASCC the turbulent heat transfer enhancement
due to roughness is treated via roughness augmentation coef-
ficients given by:

B e asietc i 0 LTS

~

= L
I ¢ p=1+0.3 f(e ) g (%

E ' where
k -ik, /© !

1+ 0.09 (E‘t‘) +0.53 (1L - e

.
i

x+ 1.5 (1 ~-e* for x>0

Q
z
"

b . = 0 for x < 0

k+
x = log;, (I_"s.s)

o o [ Pelek e\ e\ W\t
Mo Ho/\Pe Y f,t,8/2

kt is the local turbulent surface roughness and Cf,t,s is the
smooth wall turbulent friction coefficient. In the transitional
region, the heat transfer is computed via an intermittancy factor
as given by the ASCC methodology.

St et
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7.2.1 Data Derived Rough Wall Heat Transfer

Augmentation Factors

Figures 7.11 through 7.32 display comparisons between
the data derived and smooth wall computed heat transfer distributions
as well as, the heat transfer augmentation factors around the
nosetip. As an example, Figure 7.11 shows plots of the data-
derived and computed smooth wall heat transfer versus the body
angle, for ICC 19 and 29 of the tungsten shot 4882. For both ICC
locations the transition-front location was set to 7°, as derived
' from the heat transfer data, and indicated in the figure. Figure
E | 7.12, as an example, shows heat transfer augmentation factors as
function of the body angle on the nosetip (ration of the data-
derived to the computed smooth wall heat transfer coefficient).

R T e e T £+ e

The super smooth tungsten shot 4963 is of particular i
interest here. This shot's data essentially calibrates not only §
the ballistics range data, but also.verifies the data reduction |
3 scheme utilized in the analysis (i.e., the derivation of the heat
3 ' transfer distribution from the mean-temperature-time histories at
' | all ICC locations). For this shot and at all ICC's the surface

temperature distribucions indicated fully laminar flow on the
\ nosetip, as expected since the roughness height, Krms, was < .01 mils.
f The fluw parameters were suvch that natural transition was not
f observed. Figure 7.13 and 7.14 indicate very good agreement
between the data derived, and computed smooth wall heat transfer

coefficients.

Table 7.2 lists the heat transfer augmentation factors
(heat transfer data/computed smooth wall heat transfer) at the
transition-front location and at 40° off the stagnation point.
The details of the heat transfer coefficients ratios are given in
Figures 7.11 to 7.32. It can be seen in the table that a maximum
of 1.4 was observed for the rough wall augmentation

~-139-
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TaBLE 7.2. HeAT TRANSFER AUGMENTATIoN FACTORS
Heat Transfer Augmentation Factor
Shot # | Material| ICC | (Q /Qeog)* | (o /Crl3) .
( data’ “C s)transition |( data’ =C 3)40'
#==:=-_ ‘
4882 W 19 1.23 1.05
29 1.32 1.16
4963 W b1l Laminar Laminar
19 Laminar Laminar
29 Laminar Laminar
4953 ATJI~S 11 1.06 1.07
19 l.16 1.12
29 1.20 1.20
4974 ATJ=-S 11 l.10 .93
19 .95 .9
29 .98 1.0
4951 994-2 11 1.11 1.0
19 1.28 1.2
29 1.42 1.4
5G18 994-2 11 .96 .9
19 .96 .85
29 1.10 .9
4871 CC-223 11 1.13 1.03
19 1.13 1.11
4880 cc-223 | 11 1.20 1.14
19 1.04 .95
29 .39 .98
4954 CC=223 11 1.03 1.04
19 094 091
29 .81 .8
5068 CC~-223 11 1.10 .95
19 1.05 .98
29 1.17 1.1
5069 CC-~223 11 1.20 1.0
19 1.25 1.0
| 29 1.28 1.1
*Qdata = data inferred heat transfer
Qc.g = computed smooth wall heat transfer

b

s it



factors (or ratios), but most of the data indicated small heat
transfer augmentation ratios k 1.20). This was expected since
for the suriice roughness and flight conditions tested, the
roughness Reynolds number, k+, were mainly in the transitionally
rough regime (k+ < 70), as indicated by Table 7.3. The calcula-
tions indicated that not only were k* values small, but that

the flow was mainly transitional i.e., the boundary layer was
not fully turbulent. (The definition of the roughness regime

3 ‘ here is not exact, since it is only applied to fully turbulent
flows and the flow here was transitional.)

. 7.2.2 Comparisons with the ASCC Turbulent Heating x
Augmentation Methodology
In this section a comparison is made between the data
inferred heat distribution around the nosetip, and the rough
wall computed values using the rough wall augmentation metho-
dology of the ASC code. 7The purwnose here was to verify extrupo-
lating the ASCC analytical rcugh wall augmentation model'to the

ballistics range flight environment. ;

Figures 7.33 to 7.42 show the distributions of the heat
transfer coefficient ratios around the nosetip. These are the
ratios of data inferred to the ASCC computed rough wall heat
transfer. A value of unity to the heat transfer coefficient

ratio represent an exact agreement between the data and theory.
In computing the heat transfer coefficient around the nosetip
at each ICC location the transition-front location was set
equal to the data inferred value, and the surface temperature
distribution was set equal to the measured data. It was found
that, in general, the compuﬁed rough wall heat transfer coef- H
ficients were higher than the data-inferred values. The calcula- i
tions were at the most 25% higher than the daca.
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TaBLE 7.3, MaximuM RoucHNESS REYNoLDS NUMBER
oN THE NoseTip (CompuTeDp BY ASCC)
+
Shot # | K ean I1CC k
4882 292 19 73
29 57
4953 .55 11 71
19 55
29 44
4974 58 11 97
19 84
29 63
4951 .97 11 90
19 63
29 48
5018 .57 11 11€
19 100
. 29 80
4871 .25 11 30
19 20
4880 .25 11 23
1 22
29 19
4954 .25 11 20
19 20
29 20
5068 .25 11 >
19 27
29 20
5069 .28 11 42
l ‘ 19 34
o | 29 " 27
+
llote: K = Roughnnoos Reynolds “urber
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Table 7.4 lists a detailed comparison between the data
and ASCC predictions at two points on the nosetip. These are
the transition and the 40° point. The details at all the
points on the nosetip can be found in Figures 7.33 to 7.42. At
the 40° point on the nosetip the following is listed.

o e —— 1 g

1. Qdata/QASCC fixed transition/rough wall: transi-
tion-front locations werce set equal to the data inferred
values, and the rough wall turbulent augmentation was included
in the heat transfer calculations. This ratio indicates the
degree of agreement. between data and rough wall theory. It can
be seen in the table that for most of the CC-223 shots the
agreements are within 10%. For the graphite shots the agree-
ments are within 20%. That is, for all the flight conditions
tested, the roughness effects on enhancing the heat transfer

were small, as expected for the calculated values of kt‘

e ey,

' 2. Qdata/QASCC fixed transition/smooth wall: again
the locations of transition in the calculations were set equal
to the data inferred values but QASCC were smooth wall values.
This ratio represents one of the following: (a) heat transfer
augmentation values due to roughness, (b) degree of agreement
between data and laminar theory if roughness effects are small.
The heat transfer ratios indicated that roughness effects were
small, and fairly good agreement between data and laminar

theory was found.

3. Qdata/QASCC PANT transition/rough wall: QASCC
was based on a transition location predicted by the PANT tran- {
sition criteria. The heat transfer coefficient ratios baccme '
large as indicated in Table 7.4 when the theory predicts lami-
nar flow or transition offset, while the data infer a transi-
tional/ turbulent flow. 17his was the case for the CC~223 Shots ?
4871, 4880, 4954 and 5068 (ICC's 29, 41). Figure 7.43 shows }
ratios of data derived t¢ LCC calculated rough wall heat trans- ’
Fov rnomfficientr, The tr. asition front location was predicted
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TasLE 7.4, RaT1o oF DATA Derivep tc COoMPUTED
HEAT TRANSFER RATES

Seat Transfer Cosfficients Ratio

0anea’Onace’ (Qgaea’ngcc!

Tranaition 40 Degrees
: , Shoe ¢ | Material 1cc Fined Commants
P PANT® Fixed PANT Transitiont
I Transition | Trameition | TTANSition Mao s oy Rough
: Rough Wall | “ygy) wall
4
f 4082 ] 19 .18 1.23 1.0 1.08 .9 o ASCC (PANT) predicts tranaition between
: a9 1.6€ 1.32 1,88 1.1¢ 1.0 -10°.

e Data derived troasition is 7°.

. 4963 ] 11 Laminar Laminar Laminsy Laminar Laminar | ¢ Laminar-good agreesent between data and
, 19 Lasianr Laminar Laminar Laminar Laminar theory.
; : 29 Laminar ‘| Leminar Laminar Laminar Laminar
: 4953 ATJ-8 11 1.17 1.06 .9 1.07 .92 ® ASCC (PANT) pt-dl.en transicion at
H . 19 1.3 1.16 .97 1.12 .97 approximstely 10-19°,
: 29 1.48 1.20 .09 1.2 1.07 ] bn;n indicate traneition at approximstel
. 3-5°,
P o Turbulent sgreement between dats asd
: theory for ABCC with fixed traneition
: fairly good,
; 4974 ATI-8 11 1.1 1.10 1.0 .93 -0 ® ASCC (PANT) predict ’ cransition at
4 19 .9 .95 .9 .9 .9 approximately 12-1%°,
E 29 1.0 .9 .8 1.0 .9 o Data indicate transition 5-17°.
o Data and theory ars in good agreement
' for smooth wall case (fixed trsnaitiom).
Rough wall calculations overpreidots
data.
4 4951 994-2 11 1.18 .11 .9 1.0 .93 o ASCC pnm predicts transition between
19 1.3 1.29 1.08 1.2 1.2 10-18%
29 1,8 1.42 1.2 1.4 1.4 ¢ Data d.:lm transition is 8¢,

e Good data theory agreement at IC 11
(fixed trensition) for smooth wall.

) smooth and rouvgh wall under-~

. pndtetod at IC 19 and IC 29. -
F' sSo1e 994-2 11 .95 .96 .73 .9 .02 ] PANT predicts transition between
19 .96 .96 .78 .85 .0 10-11 as aloo the dasta
‘ 29 1.1 1.10 .80 .9 .08 o Both 3mooth and rough \nu csloulations’
) (fixed cransition) overpredicts data.
’ 4071 €c-223 11 Large* 1.1) Large 1.0) .93 @ ABCC (PANT) predicts laminar flow
29 Large 1.1} Large 1.1} 1.00 through entire flight.

e Datas tndleun transition st spproxi-
mately 4-° ',

o Good aq-u-nnt between data and theory
for ASCC with fixed transition (both
smooth and rough wall).

4990 £C-223 11 Large 1.20 Large 1.14 1.1 ® ASCC (PANT) indicates laminar flow
1 19 Large 1.04 Large .95 .9 thro entire flight.
q 29 Large .99 Large .90 97 o Data indicates turbulent flow.
A ¢ Good agresment between da:a and theory
4 , for tized vransition.
4954 cc-22) 11 Larye 1.03 Large 1.04 1.0 o ASCC (PANT) indicates laminar flow
A . 19 large .94 Large 9 .9 through the entire flight,
29 Large 01 Large 8 .1 o Good agrsemgnt batween 4sts and fixed
g transition ASCC for IC 11, Theory over~
prediats (smooth and rough) at IC 19-19.
soee €C-22) 11 1.48 1.10 1,08 .98 R o ABCC (PANT) Andtcn,l transition at
19 1.e7 1.08 1.1 Rl B appronimataly 23-10
29 Large 1.17 Large 1.1 1.07 [} Dan‘mdiu,n enmuton et sppromi-~
I.tl

[ {/'lnuuon eriteria predicts transi
non offset at 1CC 29,

e Good agreement between data and theory
for ASCC with finmed tzanvition and
smooth wail,

5069 cc=22) 13 1,99 1,30 1.0 1.0 ) ® AS3C (PANT) pndlc%l transition at
19 1.4¢ 1.28 1,08 1.0 91 spproximatelyl?-2)
9 1.9 1.28 1.3 1.1 1,08 ¢ Data ln,luto !nnuuon at approxi-
matel

o Gcod Z\m;uunt agresment between dats

ad theory fer C with fixed tran-
| sition and smooth wall.

*Transition- front location was predicted by PANT correlation
tTransition- front location was aqual to the data-derived value
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4

f : by the PANT correlation. The plots show high heat transfer
; : ratios in the transitional region due to inconsistency in
transition location between data and theory.

%, b similarly, the heat transfer ratios are listed in the %
r
§ table for the case when transition is given by the PANT correlation 1
E and transition point set equal to the data inferred values. 1
: 5 Detailed comments are also listed in the table.
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8.0 SUMMARY AND CONCLUSIONS |

7 Transition and heat transfer tests were performed in the
5 REDC hyperballistics Track-G test facility. The objectives of '

the tests were:
L 1) Investigate the effects of surface roughness
on nosetip transition.

{

|

2) Investigate the effects of surface roughness _ j
on heating augmentation. i

3) Verify existing simulation methodologies as
to their applicability to flight environments.

e g

e

Tungsten, graphitic and carbon-carbon models were
tested. From a flight simulation point of view, the test condi-
tions were selected to simulate altitudes where transition and
heating augmentation influence the shape development of nose-
tips. From a testing point of view, the test environments were

T e AT T ey

selected to insure nosetip transition and to obtain surface

] . temperatures that are within the dynamic response range of the
image converter cameras used to record the nosetip image. This
was mainly to ensure more relizble data. The test freestream
conditions covered a range of stagnation pressure from approxi-
F mately 20 to 195 atmospheres and freestream unit Reynolds

3 ‘ number from 17 to 70 million/ft.

3 The surface of the tested models were first precondi-
tioned and then characterized. The tungsten models were either
super-polished to obtain a super-smooth surface finish (Krms
S 10 pinches = 0.0l mils), or preroughened to obtain a uniform
surface roughness. The graphite and carbon-carbon models were a
i preablated in the Aerotherm low pressure-high enthalpy arc jet
facility, in order to create surface roughnesses similar to those
that may develop in a laminar ablation environment prior to
nosetip transition. Representative models of each material
were then characterized to obtain the surface roughness height
statistical distributions. Mean and median roughness heights
were then obtained from the roughness distributions.
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The temperature data reduction and handling were automated.
Temperature data on the entire nosetip were obtained at 3 degree
increments along and around the nosetip. The brightness tempera-
ture data were recorded on a magnetic tape, which was then pro-
cessed by computer. For each shot and at each image converter
camera location, 120 temperature profiles along the body were
obtained. The mean, maximum, and minimum temperatures, as well
as standa:d deviations were then obtained utilizing these 120

profiles.

Sensitivity studies were performed according to Ref. 3 to
estimate the level of uncertainties in the measured surface
temperature due to surface spectral emissivity, shock layer
radiation, surface reactions, motion blur, and gun barrel heating.
It is believed that the measured brightness and surface temperatures

are accurate to * 100 to * 200 degrees Kelvin.

The nosetip transition locations were inferred in three
ways.

1. At each ICC location the 120 temperature profiles were
numerically processed and the transition was taken to be the
point of minimum temperature, i.e., the point of zero temperature
slope.

2. The 120 temperature profiles were also manually processead,
since some engineering judgement was required to determine the
transition location, defined as the intersection of the tangents
to the laminar and transitional region of the profile.

3. Using the mean temperature profiles at all the ICC
iocations, the mean heat flux distributions were inferred using a
heat conduction code. The transition location was then inferred
as the point of intercept of the tangents to the laminar and
transitional leg of this mean heat flux curve.

The first approach, though rendering a statistical distribution
of the transition front location quice conveniently by the computer,
produces results that are biased by the numerical smoothing of
the data. The second approach, though tedious, permits a more
realistic determination of the transition location. However,
inferring transition location from the temperature profiles may
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lead to errors due to the smoothing out of the nosetip temperature
profiles because of lateral heat conduction, and, more important,
due to the transient nature of the tests in the ballistics ~ange,
the measured temperature profile shape may be completely different
from the corresponding heat transfer distribution. Human judgement
must be applied here. However, analyzing 600 temperature profiles
per shot is a very tedious task, and an automated system using

interactive graphics would be helpful.

Inferring the transition locations from the heat flux distri-
butions allows better definition of the transition-fronts.
However, utilizing the mean-temperature histories in deriving the
heat flux distribution elements obscures any statistical information
on the transition front, due to the averaging process of the
surface temperatures around the nosetip at each ICC locatiom.

The results of the transition analyses showed that:

1. For all the tested materials transition was observed
on the nosetip and no transition offset occured. A
fully laminar distribution was achieved only on the
super smooth tungsten model; otherwise, transition
occured in the stagnation region even for nominally
smooth tungsten models.

2. The data indicated transition locations consider-
ably upstream of the PANT transition correlation
using the mean roughness height, kmean‘

3. For certain flight-surface conditions the data
indicated transitional flow yet the PANT transi-
tion correlation predicted either laminar flow

or transition offset.

4. For the test conditions analyzed the PANT transit-
tion correlation predictions were upstream of those
given by Dirling's and Bishop's transition models.

5. The inferred transition-front locations were
quite scattered when compared with the Reda-

Raper transition locatiomn-range pressure
corralation.

6. The inferred roughness heights, that is, roughness
heights to produce agreement with the PANT predic-
tions, were of the order of the roughness associ-
ated with the matrix or weave structure for CC-223
and considerably higher than the k for the
other tested materials. mean
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Stagnation point heat transfer augmentation factors

were derived at each ICC location. The data inferred heat

transfer rates were then compared with laminar theory predic-
tions. To eliminate any wall temperature efferts, the com-
parisons were performed for the same wall temperatures as the
R data., The derived augmentation factors were then compared\with
. the predictions of the PANT and Phinneys laminar augmentation
The stagnation point results can be summarized

AT L e

iy

correlations.
as follows:

1, Stagnation point augmentation factors were
ohserved in the ballistic range environments.

2, The data were scattered but a 20% excess in
heat transfer over and above the laminar
theory exists. ]

3. The PANT laminar augmentation ccrrelation
did not predict augmentations for the flight
i

regime considered.

' 4. The Phinneys augmentation correlation over-
predicted the observed factors.

B
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The data-derived heat transfer distributions around the
nosetip were then compared with smooth wall predictions, (in
order to infer rough wall transitional/turbulent heating aug-

mentation levels) and rough wall predictions (to verify the
The comparisons were performed

Mgt L S R

ASCC rough wall methodology).
for two situations, where the transitioun-front locations were

either set equal to the data inferred values, or predicted by

et i 1 st oot

3 the PANT transition criteria.
The heat transfer results off cthe stagnation point

showed that:
l. Comparisons between the data derived heat fluxes

and the predicted smooth wall values, indicated that roughness

effects are small (= 20%). Although, the transition-front

locations in the calculations were set equal to the data in-
ferred values, it is not certain whether the predicted transi- \

tion region width is equal to that on the model in flight.
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2. Comparisons between the data derived heat fluxes
and the ASCC predict2d rough wall values, also indicated that
roughness effects are small. The predictions showed relatively
small values of the roughness Reynolds numbers, k+, and that
the boundaxy layer is mainly transitional. For certain flow
situations the ASCC-rough wall overpredicted the data by 25%.

3. In verifying the heat transfer prediction models
off the stagnation point, it is essential that the transition
front location be consistent between data and theory. For
certain test conditions the experimentally observed heat flux
showed that the flow was turbulent, while the predictions
indicated a laminar or relaminarized flow. In this case one
is taking the ratio of a turbulent flux to a laminar one, and
the ratio becomes larger, as expected and shown in Section 7.

4., Obtaining the heat transfer augmentation factors by
simply taking the ratio of the rough-wall data-inferred heat
flux to the smooth wall predicted value at the same streamwise
lccation on the nosetip, is misleading. This ratio can assume
a1y value since the rough wall boundary layer is quite different
from that of a smooth wall, hence the boundary layer parameters
are different in the two cases. One has to correlate the
rough wall heat transfer (and not the augmentation factors)

with the rough wall boundary layer parameters e.g., kK/6, k,
hw/he‘

Based on the above discussion one can conclude the
following: '

1. The use of in-flight surface temperature to verify
nosetip aerothermal predictive methodologies requires complex
data reduction, due to the high coupling between transition,
heating augmentation and roughness effects.

2. A detailed look at the individual temperature pro-
files along the nosetip at each ICC location is useful for
defining transition front locations. An interactive
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graphics system is essential here for the data reduction
process. The results however can be very misleading (4 below).

to 3. Inferring the transition location from the data-
: ' derived heat flux eliminates any statistical behavior of the
transition front due to the smoothing of the temperature

variations affected by the averaging process of the data.

]

§ | 4., It is essential to infer the transition-front

; ? locations from the derived heat transfer data. Inferring transi-
tion only from the temperature data can be seriously in error
in situations where transition offset takes place. Due to the :
transient nature of the model response the temperature data may ‘
indicate a transitional/turbulent distribution but in reality

: the heat flux indicates a laminar distribution. The temperature
‘ : data can therefore indicate, erroneously, a forward movement of

R e —

However, the temperature data can predict

PPN

the transition-front.
! transition locations correctly at the early ICC locations (ICC
X 4 and 1l1) and give information on statistical distribution of

the front. j
The approach then should be that transition be inferred
from heat flux data and further refined and checked by informa-
tion obtained from the temperature data. One can not rely only
on the temperature data. Heat flux calculations should then be
performed and compared with heat flux data for both laminar and
turbulent situations in order to insure whether or rnot transition

F T ey w0 ey emeen e

offset took place.

5. Transition-front locations were considerably up-
stream of the PANT, Dirling's and Bishop's predictions. Also,
no relaminarization was observed. The PANT correlation pre-
dicted transition upstream of those of Dirling's and Bishop's,

respectively.
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6. Due to the transient nature of the problem, predic-
tive models verifications by comparison between the measured and ]
; . predicted surface temperature at one ICC location can be very
E misleading and markedly in error. Comparisons must be periormed
at all ICC locations. This approach however, is tedious due to
the strong coupling between transition, heat transfer and surface
roughness affects.

7. While higher roughness levels might seem indicated ]
from the transition data, larger roughness hei. c¢s will lead 1
to higher heat transfer rates. This may result in poorer agree-
ment between data and theory for the heat transfer. It seems ]
, likely that roughness heights that correlate with transition i
ﬁ data may not be those correlating with heating augmentation

AR e e e
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A data.

! f ' 8. The hyperballistics range track facility is a unique
; ground test facility to simulate a wide range of flight environ-
; ) ments. Flow uncertainties that exist in wind tunnel and arc :
] | jet facili+ies, e.g., pressure fluctuations, freestream tur- ?
5 : bulence, are absent. Other track related problems appear to

A e

have been resolved.
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9.0 RECOMMENDATIONS

It seems clear that the ballistics range will become
an increasingly important facility in the study of aerothermal
processes on hypervelocity vehicles and in the development of 5
new materials and concepts. Recommendations for utilization ;
and near-term improvements of the ballistics range are summarized

e r——

L below.

| 1. Continue using the guided track mode of testing in
investigating transition characteristics and heat transfer on

E | nosetips.

| 2. Test well and better characterized materials (W,

ATJ~S, 994-2) to understand the basic transition phenomena

before investigating more complicated materials (FWPF, CC).

3. Reduce ballistic range data to key boundary layer

e R e —

; and material response parameters necessary +to more carefully
' assess the events and shortcomings of competing transition and

rough wall heating techniques.

R Tt T —

4. Use the developed ballistics range test techniques
to investigate transition and heat transfer of non-spherical
configurations, e.g., ellipsoids, nosetips at angle of attack

and aerodynamic control surfaces,

- z 5. Expand the materials performance characterizations

{ . begun in this program to encompass all candidate advanced nose-
tip material characterization work, transition modeling studies,
nosetip shape change modeling work, and other related experimental

' programs (CALSPAN, Tunnel F).

SO S

6. Make ballistics range testing, using the technology
developed under these (and other) programs, an integral part of
the pre-flight evaluation process for new materials and concepts,
to complement the testing standardly carried out in the AFFDL §

50 MW facility.
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7. Add high sensitivity image converter cameras at
Reduc-

‘ uprange stations to improve data reduction accuracies.
| _ tion of measured temperatures to heating rates is absolutely
essential if any reliable conclusions are to be drawn concern- 1
ing transition and rough wall heating. Addition of at least one

camera would greatly enhance data conlidence.

8. Develop an interactive-graphics system at AEDC
which enables the detailed investigation of the individual
temperature profiles on the nosetip at each ICC location (600 :
total per shot). This system is essential for investigation ,
of nosetip transition asymmetry and possibly gouge formation.
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