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NOMENCL.ATURE

a isentropic speed of sound
ay stretching coefficient in ¢ = ¢, plane
hg vehicle base area, nRB'

b(;.e) body surface in (&,n,0) space

c(£,8,t) bow shock surface in (&,n,8) space

CN normal force coefficient, FN/quB

Cn pitching moment coefficient, M, /q Agl
c cos (-w)

d shock layer thickness

e total energy per unit volume

Fn normal force

9 a;/az|¢ = constant

95 823,1/924l4 = constant

G ]

h static enthalpy, or altitude

hi.j,k hinge point 1 in jgl transformed plane in ¢ =_¢k plane
H total enthalpy

i V-1

1.3.k unit vectors in {£,n,8) space

£,3,2 unit vectors in (x,y,¢) space

L reference length

LA vehicle length, measured from virtual apex
M Mach number

Mz pitching moment

n unit normal vector

P pressure
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a,B,Y

stagnatior pressure
logarithm of pressure
dynamic pressure, 1/2pV?
gas constant ¥
vehicle base radius

vehicle nose radius

Reynolds number

entropy

non-dimensional entropy, $/R

sin tw)

time coordinate in (x,y,¢) frame
time coordinate in (X,V,Z) frame
velocity components in (x,y,¢) space

velocity components in (£,n,8) space

normal velocity component

velocity vector

magnitude of velocity vecter

tangential velocity component 3
shock velocity %
cylindrical coordinates in physical space ?
Cartesian coordinates at centerline i

comp.tatioral cnordinates

moment reference poirt

pitch center of pressure location

x+iy in ¢ = ¢k plane

image of z, in jﬁh-transformed plane

damping coefficients for conservation calculations
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a angie of attack
or trim angle of attack
8 sideslip angle
Y isentropic exponent
- s boundary layer thickness
é _ Gj.k exponent for JEE conformal transformation in ¢ = L plane
= &, bow shock stand-off distance
; ; Ty E+in in ¢ = Oy plane !
& 8y body slope
E- A characteristic slope ;
% u viscosity ﬁ
5 ; £,n,0 coordinates in transformed space
EL(e) downstream boundary of computational region in transformed
space :
p density ;
o} shock slope 5
T time coordinate in (§,n,8) frame
® ¢'I * i¢2 = 3(1og g)/ac|¢ = constant
w arg (g) ;
( )b quantity at body surface 3
( g quantity at bow shock
( o freestream quantity
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SECTION 1
INTRODUCTION

Current research efforts in ballistic reentry vehicle aero-
dynamics are prim>rily concerned with the improvement of vehicle targeting
accuracy. Accurate evaluation of possible targeting errors requires a

detailed understanding of all mechanisms that may deflect the vehicle

away from its nominal ballistic trajectory. Of the dispersion errors

23 that can be attributed directly to the reentry vehicle, the low altitude

v roll-trim effect is one of the prime contributors to miss distance.
Rol1-trim dispersion results when normal forces, such as

; created by a trim angle of attack condition, are not integrated cut by

the spin of the vehicle. The characterization of such dispersion re-

quires a coupling of the vehicle's dynamics with its aerodynamic charac-
teristics along the entire entry trajectory. This effort is aimed at ex-
tending current aerodynamic prediction capabilities relative to the low
altitude roll-trim dispersion problem.

The current generation of ballistic reentry vehicles are

typically slender blunted cones or biconic configurations, with the nose-
tips generally being fabricated from woven carbonaceous materials. During
reentry the severity of the aerothermodynamic environment causes ablation
of the nosetip material, leading to both axial recession of the nosetip

and to alterations in the basic shape of the nose.

At higher altitudes (100 KFT 2 h 2 50 KFT) the flow in the
nosetip boundary layer remains laminar, resulting primarily in blunting

of the nosetip. Below approximately 50 KFT, however, as the nosetip

boundary layer is passing through transition to a fully turbulent

s
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state, the increased heating levels lead to a sharpening of the nosetip
shape, as illustrated in Figure 1.1,

Because of circumferential variations in the onset and pro-
gression of nosetip transition, asymmetric nose geometries can result.
The mechanisms governing this transition process, such as surface rough-

ness variations,are generally evaluated statistically, as by Dirling® .

— 0

LAMINAR

I

) )
0

TRANSITIONAL TURBULENT

Figure 1.1. Typic1l Nose Shape Progression
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The development of an asymmetric nosetip shape on an otherwise

axisymmetric body will lead to the development of a trim angle of attack

T P A T

and corresponding side forces which teni to deflect the vehicle from its

ballistic trajectory. To minimize these trim effects, reentry vehicles

are spun prior to their reentering the atmosphere; thus the integrated gﬂ

o
i

: resultant of a body-fixed 1ift force over one revolutionr of the hody will
be nearly zero. However, rapid variations in nose shape and angle of

f attack (and hence 1ift force) and roll rate can result in a non-zero

resultant force, leading to trajectory deflection due to roll-trim dis-

el A i ol Yt b sl s e o

i

j

| persion. |
i !

Because of the inherent uncertainties in nose shape change

predictions, the roll-trim effect is usually evaluated statistically,

v gu us e [
T T TR W1 W R e e

as by Pettus, Larmour, and Palmer?2. Given a nose shape, however, the
I
? evaluation of aerodynamic characteristics, a necessary part of any roll-

trim evaluation, is a deterministic problem.

B S S TR
T ;

Aside from expensive and time-consuming wind tunnel tests, the

L ekl 4 Dbl vt i b, 3 S o e 222 Nt £ st L b o

most accurate and reliable method for the prediction of aerodynamic
characteristics is the numerical integration of the invsicid equations
of fluid motion. Fortunately, at the flight conditions of interest (and
in most hypersonic wind tunnels simulating reentry conditions at low

altitudes) the Reynolds number is sufficiently large that the shock

2 s Bl e cme b e

layer is almost entirely inviscid, except for the thin boundary layer

s’ e ke

adjacent to the vehicle surface. Additionally, the flow is in the weak

interaction regime, as defined in Hayes and Probstein® , where viscous
shear and induced pressure effects significantly affect only the axial

b force experienced by the vehicle. Other vehicle forces and moments

has

(normal and side forces, pitching and yawing moments) can then be

it "

11.




R e e et J—
< R T T I R T

Jrm g

et b it e o

accurately determined solely through consideration of the inviscid
pressure distribution.:

In the past decade many numerical procedures have been developed
for the calculation of inviscid aerodynamic characteristics for ballistic
reentry vehicles. These techniques have proven to be valuable adjuncts

to the design process and have, to some extent, lessened the ne.d of

performing extensive wind tunnel tests to validate proposed configurations.

The three-dimensional numerical procedures currently in use consist of
two parts: a transonic flow field procedure to treat the subsonic region
surrounding tie stagnation point, and an afterbody procedure to treat the
the superéonic flow on the vehicle frustum.

The inviscid afterbody flow field problem is now well in hand
for the simple axisymmetric ffusta found on ballistic reentry vehicles.
(In addition, ballistic vehicles at Tow altitudes generally do not
develop large angles of attack which would lead to flow separation on
the leeside of the afterbody, invalidating the inviscid assumption.) The
existing inviscid transonic nosetip flow field capability is festricted,
however, to convex shapes, where strong embedded shock waves, such as
shown in the Schlieran photograph in Figure 1.2, do not occur. Further-
more, other restrictions arise even for convex shapes, when the coordinate
system used in the calculation is not closely aligned with the surface of
the nosetip. (These shortcomings of the current techniques were identi-

fied by Hall, Kyriss, Truncellito, and Martellucci® .)

12.
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Figure 1.2.

Schlieren Photograph of Ablated Nosetip with Embedded Shock
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The goal of the current research effort is to eliminate the

above two restrictions on inviscid transonic flow field techniques. By
extending the range of nosetip shapes that can be analyzed numerically
to include slender and indented shapes such as have been observed in
flight, the capability for accurate evaluation of roll-trim dispersion
will be greatly expanded. In addition this new capability will aliow
more accurate nose shape reconstruction efforts (in which a nose shape
is sought that produces aerodynamic characteristics that agree with
those derived from the vehicle motion observed in flight), as described
by Hall and Nowlan® . Furthermore, this transonic flow field technique
will be applicable to maneuvering as well as ballistic reentry vehicles,
singe autopilot design for maneuvering vehicles must account for the
aerodynamic characteristics that result from ablated nosetip geometries.
The approach taken to eliminate these deficiencies of the
current nosetip flow field procedures is outlined in Section 2.2.
Section 3.0 details the conformal mapping transformation used to produce
a coordinate system closely aligned with the body surface, and Section
4.0 describes the procedures used for the calculation of embedded shocks.
In Section 5.0, details are provided on the numerical procedures used in
this new transonic flow field technique, which is validated by compari-

sons to data in Section 6.0.
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SECTION 2 :
PROBLEM DEFINITION

2.1 STATEMENT OF THE PROBLEM

The problem being examined in this research effort involves

b Ak L L sy ot

the numerical prediction of the inviscid aerodynamic characteristics

of ballistic reentry vehicles with asymmetric, ablated nosetips. In i

TR

particular, emphasis is placed on the development of a numeric.l tech-

nique to determine the inviscid flow field about a three-dimensional,

et .

asymmetric nosetip ir a uniform hypersonic or supersonic freestream flow. i

s | P

The determination of the nosetip flow field is a necessary first step

Rl A A

for the prediction of total vehicle aerodynamics.

Rt

i The assumption is made in this analysis that inviscid flow

theory is adequate to accurately predict the aerodynamic characteristics

of reentry vehicles at altitudes where asymnetric nose shapes can result
from ablation (h < 50 KFT). (Accurate calculation of drag forces will ]
also require consideration of surface shear and induced pressure effects,
however.) Implicit in the assumption of inQiscid flow are the require- i
ments that the thin boundary layer assumption be valid and that no regions
of separated flow exist on the vehicle.
Moretti and Salas®, in their analysis of viscous rarefied

fiows, have presented a breakdown of the various flow regimes that might

be expected as a function of freestream Mach and Reynolds numbers (with

St e

the Reynolds number based on nosetip radius for a spherical nose), as i

depicted in Figure 2.1. Also indicated in this figure is an M_ - Re

L

history for a typical modern ballistic reentry vehicle as a function of

altitude. Defining the thin boundary layer regime as the region where

15.
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the boundary layer thickness (§) is less than 1% of the shock layer
thickness (d), this figure clearly indicates the validity of the in-
viscid assumption for the probler being considered here.

The hypersunic fiow over a blunt nosetip is characterized by a
detached bow shock wave separating the shock layer from the undisturbed
freestream flow. In the vicinity of the stagnation point, where the
bow shock is nearly normal to the freestream velocity vector, the flow
in the shock layer is locally subsonic; thus, the steady flow problem in
this region has an elliptic character. As the\bow shock curves back
around the body and becomes more oblique to the freestream velocity
vector, and as the shock layer flow expands around the nose, the flow
becomes locally gupersonic, and the steady flow problem becomes hyper-
bolic. Other complications can arise in this basic inviscid fiow field
structure if the body surface has indented regions producing embedded
shock waves. Depending on the shock strength, the flow behind such an
embed&ed shock could be either subsonic or supersonic.

Because of this variety of flow conditions that can be en-
countered in the blunt body problem, it is convenient to seek the steady
solution as the asymptotic 1imit of the time-dependent problem, since
the unsteady flow equations are hyperbolic in time, regardless of the
iocal Mach number. Furthernore, since the location of the bow shock
wave is unknown a priori and must be determined as part of the solution
procedure, this time-asymptotic approach has the additional benefit of
allowing the calculation of the time history of the shock shape starting
from an assumed initial shock position.

The numerical procedure to be used in the solution of this

time-dependent problem is an explicit, second-order accurate finite-

17.
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difference pyuceaure. Similar schemes have been deveioped previousiy,
and are cuirently in wide use; however, these procedures are limited in
their ability to treat slender ablated nosetip shapes, and in their
ability to treat embedded shocks. This research effort is devoted to
the development of a procedure that eliminates the deficiencies observed
in other transonic¢c time-dependent codes. in particular, this requires
development of a generalized coordinate system that is capable of being
closelv aligred with the three-dimensional body surface for abritrar&
body geometries, as well as the development of a procedure for the cal-
culation of three-dimensional embedded shocks on indented nosetip shapes.

Coupling this nosetip transonic procedure to an existing
supersonic afterbody code will thus allow accurate theoretical assess-
ment of the effect of ablated nosetip geometries on the performance of
the total vehicle for many nose shapes that could nct previously be
analyzed.
2.2 OUTLINE OF APPROACH

The fundamental approach selected in this research effort for
the solution of the blunt body problem Tor ablated asvmmetric nosetips
is the time-dependent relaxition approach. This technique has been widely
used in previous work and has several advantages directly related to
difficulties associated with the blunt body problem. In particular, the
%ime-dependent approach allows the uce of a convenient forward-marching
(in time) numerical algorithm, avoiding many of the difficuities other-
wise encountered in the steady flow problem.

The numerical scheme selected for this analysis is in many ways

similar to that used in other procedures. For example, the treatment of

18.
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field points in this algorithm (when no embedded shocks are present) is
based on the second-order accurate explicit MacCormack’” predictor-
corrector finite differencing scheme. This particular scheme has found
wide appiicaticn to computational fluid dynamics problems (e.g., References
8, 9, 10, 11, 12) because of its high degree of accuracy and ease of
implementation. Boundary points at the body surface and at the outer
(bow) shock 2re treated using the Kentzer-Moretti predictor-corrector
boundary point procedure, in which a discretization of boundary conditions
suggested by Kentzer!® was extended to a predictor-corrector format by
Moretti and Pandolfi®. This boundary point procedure has found wide
application in computational fluid dynamics, and its properties have been
analyzed and discussed by Halll“,

A conformal mapping technique was selected to define the coordi-
nate system for this problem because of its ability to preserve local
angles under the transformation. Thus, by formulating a mapping in which
the image of the body surface is a nearly horizontal line, and selecting
another coordinate direction to be the vertical direction in the trans-
formed space (and hence nearly normal to the body image), the resulting
grid in physical space will consist of surfaces closely aligned with and
nearly norma! to the body surface. The ability to automatically generate
such a coordinate system for ablated asymmetric nosetip shapes is critical
to the success of the numerical aigorithm in computing inviscid flows
about such shapes.

The coordinate system developed in this research is based on
the "hinge point" concept of Moretti, as developed in References 15, 16,

anc 17. Application of this technique to the asymmetric nosetip problem

19.
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has required the extension of this technique to three dimensions; this

development is described in Section 3.2.

To treat the embedded shock problem in this research effort,

the shock-capturing approach has been selected, in which the structure of

i
5
{
3
i
i

oL

the embedded shock is approximated, but for which no special logic is

required to explicitly treat the shock. Two shock-capturing approaches

ot i) T

are examined: the conservation formulation, discussed in Section 4.1,
and ‘the A-differencing approach, discussed in Section 4.2. Axisymmetric

E | versions of both of these techniques have been developed, and a comparison

of the results of these two approaches is made in Section 4.3. Based on

these comparisons, it is concluded that the A-differencing approach is

the superior method, and, accordingly, is extended to three-dimensions in

T T R R R T

- Section 4.4,
Axisymmetric, inviscid, time-dependent procedures with a shock-

capturing approach to the treatment of embedded shocks have, of course, é
been developed previously, notably by Kutler, Chakravarthy, and Lombard®® |
(using the conservation form) and by Moretti!® (using the A-differencing
approach). The successful application of the A-shock-capturing technique
to the three-dimensional time-dependent embedded shock problem is, however,
new.

The final portion of this effort is devoted to the validation
of the resulting numerical technique for the calculation of inviscid nose-
tip flow fields. For simple nosetip shapes (e.g., spheres) this new
technique is compared to proven flow field codes, such as that developed

by Kyriss and Harris®. For other shapes, representative of nosetip shapes

that result from the ablation process, comparisons are made with wind ) ;

20.
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tunnel measurements of surface pressure and bow shock shape. Un-
fortunately, most of the existing wind tunnel data providing these details
on nosetip flows are available only for axisymmetric shapes, as in

Reeves, Todisco, Lin, and Pallone?® and Jackson and Baker?!.

A large body of wind tunnel data does exist for the total aero-
dynamics of reentry vehicles with asymmetric nosetips. Coupling the new
nosetip flow field procecure to an existing afterbody code, comparisons
are made between predicted and measured vehicle forces and moments, thus
providing an indirect means of verifying the accuracy of the nosetip

calculation. These comparisons are presented in Section 6.4.

21.
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SECTION 3
COORDINATE SYSTEM AND GOVERNING EQUATIONS

This section provides details on the coordinate transformation
developed in this effort that is capable of mapping the surface ot
ablated, asymmetric nosetip geometries .nio a nearly horizontal surface,
thus producing a coordinate grid clns>ly aligned with the body geometry.
This mapping is then used to generate the three-dimensional inviscid
time-dependent equations of fluid motion written in terms of the new
coordinates. A final computational transformation is described that
maps the transformed shock layer onto a regular, equally spaced grid.

The equations derived in this section are written in non-
conservation form; i.e., the dependent vqriab1es are the primary flow
variables. This form of the governing equations is the form used for
flow calculations when embedded shocks are not present, and as the basis
of the A-differencing shock-capturing scheme described in Section 4.2.
The conservation form of the governing equations is discussed in Sectioq
4.1.

3.1 INVISCID EQUATIONS OF MOTION

The three-dimensional time-dependent inviscid eouations of
motion in non-conservation form may be written in cylindrical coordinates
as

Pt + UPx + VPy + NP¢/y + y(ux + vy f w¢/y + V/y) =0 (3.1)

Ug + WU, + VU, + WU/y + pPy/p = 0 (3.2)
2 =
Ve + W, + WV + W /y - W2y + pP /o = 0 (3.3)
22.
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Nt + UNx + wa + NN¢/y + VW/y + pP¢/py =0 (3.4)

sy + Us, + Vsy + WS¢/y =0 (3.5)

where

V= UL+ V3 + WK
with I, J, and K being the unit vectors in the x, y, and ¢ directions,
respectively. (In this cylindrical system, x is the axial, y the radial,

and ¢ the circumferential coordinate.) In this formulation the dependent

thermodynamic variables are P and s, where
P=2np (3.6)

and s is some suitable analog of the entropy. The choice of P as a
dependent variable is motivated by computational considerations, since
the logarithm of pressure throughout the shock layer will not vary by
several orders of magnitude as the pressure might; thus, one can expect
more accurate finite difference representations of derivatives of P than
could be expected for p.

For closure of this system of partial differential equations,

a thermodynamic equation of state of the form

p = p(p,s) (3.7)

is required. For an equilibrium real gas calculation, the relation em-
bodied in Equation (3.7) may be provided either through tabulations of
the thermodynamic properties or through an appropriate curve fit of the
thermodynamic data. In the case of a thermally and calorically perfect

(ideal) gas, this thermodynamic relation may be expressed implicitly as

"
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s =(anp-yenpy(y-1) (3.8)

where the thermodynamic variable s is defined in terms of the entropy

S as

s = (5-3_)/R (3.9)

with v the isentropic exponent and R the gas constant. Inversion of
Equation (3.8) yields

o = p1/'Ye . (3.10)

Finally, to complete the definition of the mathematical problem,
initial and boundary conditions must be specified. Since the steady-state
solution is sought as the asymptotic ]1mit of the transient problem, the
specification of an initial flow field is required. Details on the de-
finition of this assumed initial flow field are presented in Section 5.1.

Boundary conditions for this problem must be specified at
the boundaries of the region being computed: at the bow shock wave
y = ys(x,¢), on the body surface y = yb(x,¢), and on some downstream
boundary, running between the body and the shock. The location of the
downstream boundary is arbitrary, subject only to the restriction that
the flow across this boundary be supersonic. As long as this boundary
is entirely supersonic, no condition need be imposed there, since the
range of influence of this boundary will then not extend back into the
region being computed.

At the bow shock, whose position is unknown a priori and
must be determined as part of the solution procedure, the appropriate

boundary conditions are given by the familiar Rankine-Hugoniot conditions.

24.
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By incorporating differential forms of these relations for conservation
of mass, momentum, and energy across the shock into a characteristic
compatibility relation, an equation for the shock acceleration is obtained,
which may be integrated to yield shock velocity and position. This
numerical scheme is described in more detail in Section 5.4.

At the body the appropriate boundary condition to be imposed
is the inviscid kinematic bouhdary condition, which requires that there
be no velocity component normal fo the body surface. This condition is
applied in conjunction with a characteristic compatibility condition to
develop a numerical procedure for body points as described in Section 5.3.

Also of interest in the treatment of boundary conditions for
this problem is the value of entropy that applies along the streamline
that wets the body surface. It is frequently assumed that the surface
entropy for inviscid flows is exactly the normal shock value of entropy,
but this can be proven only for axisymmetric flows. Numerical results
of Swigart?2 and the experimental results of Xerikos and Anderson 23
indicate that this assumption may not be true and that the normal shock
streamline does not wet the body surface. However, in his survey paper,
Rusanov2* argues that the results of Swigart's calculations using an
inverse method are inconclusive because of the inherent assumptions and
computational errors. Additionally, Rusanov points out that his own
computational results using a finite difference procedure produced:
variations between the computed surtace entropy and the normal shock
entropy of less than 0.1%, which is within the error level of his calcu-
lation. From the examination of his studies and the results of others,

Rusanov concludes that there is no firm evidence of the surface entropy's

25.
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‘not having the novmal shock value, although there is likewise no

proof that these values coincide.

From & practical standpoint, the question of the value of the
surface entropy is not critical, since even the variations in surface
entropy claimed by Swigart and Xerikos and Anderson produce only small
parturbations on the other flow variables (e.g., density, velocity).
Accordingly, the body surface is assigned the known normal shock value
of entropy in this problem.

Circumferentially, the boundary condition to be imposed in
this problem is that of periodicity; i.e., the solution at ¢ = 0 must
coincide with the solution at ¢ = 2n. For the case of a pitch plane of
symmetry (geometric symmetry and no sideslip), the calculation need be

performed only from ¢ = 0 to ¢ = m, and the circumferential boundary

conditions simply require symmetry about the pitch plane.

3.2 THREE-DIMENSIONAL CONFORMAL TRANSFORMATION

A major portion of this reéearéh is devoted to the development
of a generalized, three-dimensional coordinate trahsformat1on.that is
capable of producing a cocrdinate surface c1qse1yAéiigned with the bady
surface. As outlined earlier, the method that has resulted is based on
an idea of Moretti's!” for axisymmetric time-dependent calculations.

The general coordinate transformation used vakes the functional

form
£ = E(x,¥,9) (3.11)
n = n(x,y,¢) (3.12)
d=¢ (3.13)
T=t (3.18)

26.
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which implies that the transformation of the spatial coordinates is
independent of time. Furthermore, ¢ = constant planes are transformed
directly to 6 = constant planes, thus retaining a somewhat "cylindrical"
quality to the transformation.

Prior to reentry, ballistic vehicles are initially axisym-
metric, and it may thus be expected that ablated asymmetric nasetip
shapes that develop during reentry will retain some "axisymr:iric"
character. In other words, since the ¢ = constant planes wil. be ncrmal
tc the vehicle surface prior to reentry, it is reasonable to expect that
the simple transformation 6 = ¢ will lead to 8 = constant planes that are
nearly normal to the surface of the ablated nosetip, even though the
ablated shape may not be truly axisymmetric.

Within each ¢ = constant plane, then, the transformation re-

duces to the Torm

oy
[

= £(x.y) (3.15)

i

n = n{x,y) . | (3.16)

Sincé it is desirable to have a coordinate grid closely aligned with

the body geometry (and hence with the streamlines of the flow), a
transformation is sought that closely aligns the § direction with the
body surface ‘within a ¢ = constant plane). In order to have the
nﬁdirection normal to the £-direction at all points {and hence nearly
normal to the body surface), a conformal transformation is sought, since
under a conformal transformation, the orthogonal (x,y) grid maps onto

an orthogonal (£,n) grid.

27.
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Conformal transformations from the Zy = X + iy space to E

the g . E + in space can then be developed independently in each ¢-plane. ;;

These transformations rely on the concept of "hinge points" as developed
by Moretti !5°!6*17 to ensure that the E-direction is closely aligned with
the body surface. 5

The concept behind this "hinge point" approach is to define j

a sequence of points in the 2, space that 1ie close to the body surface ¥

and define an approximate equivalent body shape. A sequence of con-

formal transformations is then applied to map each of these hinge points

oot alab L s i s il

st -+

in turn onto the horizontal axis; if the hinge points in the zy space

accurately simulate the body contour, the resulting transformed contour

§ { will then be nearly horizontal (i.e., will be closely aligned with a
coordinate surface).
For the mapping function developed in this research, which , i

has teen adopted by Moretti!’ for axisymmetric calculations, hinge points
th

are defined as iilustrated in Figure 3.1. Let h, . K denote the i

LI Y
hinge point in the jth transformed space (j = 1 is (x,y) space) in the

¢ = &y piane. It is required that h] 1.k be located on the nosetip
sty

e e S L T T

centerline outside of the body and that h2 1.k be located on the center-
L 20N ]
line inside the body. The remaining hinge points hi 1.k* i=3,4,...,0C
3l

are selected so as to model the body contour. Note from Figure 3.1 that

i this specification of noints produces JA = JC - 2 "corners" which must
be &liminated by the mapping sequence to have all hinge point images on

the horizontal axis (in the transformed space).

28.
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To eliminate each corner in succession, the mappings, which

have been developed as part of this effort, of the form

- h,

6.k
341,500 (3.17)

Ziak T gk
are applied sequentially for j =1, 2,...,JA. The form of this transforma-
tion is related to the Schwarz-Christoffel transformation and indeed may
be regarded as a "point-wise" Schwarz-Christoffel transformation. By

proper selection of the exponents 6j K defined from

- ™
S5k = Ty = Py 1] (3.18)
m-tan=-! Rm R 2 P ]’.L__
elhjia,5,k = My+1, 5,k

these mappings have the required property of maintaining all hinge
points hi,j,k’ i £ j on the real axis, while mapping hj+],j,k onto the
real axis.

The application of this mapping is illustrated in Figure 3.2,
showing how each of the JA corners is eliminated successively, resulting
in all hi,JB,k (with JB = JA + 1 = JC - 1) 1ying on the real axis in
the Z3g,k SPace. It is important to note that straight line segments
between hinge points in the z]’k space are not maintained as straight
segments under this sequence of transformations. Since each of these
intermediate transformaticns is conformal, the sequence of mappings will

itself be a cenformal transformation.
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Two further transformetions are required to complete the

sperification of a suitable coordinate grid. First, it is beneficial
to have the transformed body contour (which is now aligneA closely with
the horizontal axis in the zJB,k space) nearly perpendicular to the
image of the centerline, which runs between hl.JB.k and hZ,JB,k (and is
still a s* aight 1ine). Accordingly, a simple sqﬁare root conformal

transformaticn may be applied in the forn

)l/2

236,k = "2am,k = M2,08,k (3.19)

leading to the hinge point alignment shown in Figure 3.3. Alsc shown in
this figure is the resulting body surface contour for the simple case of

a sphere, using the hinge points shown in Figure 3.2.

n
“_‘_-~"“n = b(E)
J}* Tl —0 3—

Ficure 3.3. & PLANE HINGE PoINT IMAGES AND
Bopy ConTour (SPHERE)
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Because the sequence of transformations defined- above is ]

carried out independently in each ¢ = ¢k plane, there is no necessary

correspondence between hinge point image locations in these planes,

except that hZ,JC,k = 0 and Re (hl,JC,k) = 0 for all ¢,. In order to

et Wi one il St

minimize the discrepancies that must arise between these mappings along

Lo

the centerline (which is common to all ¢y planes), a final stretching is

PN AT R T T

applied in each plane to ensure that the hinge point images h1 JC.k
coincide in the gy = €+ in space. This goal is attained by setting

% S = 3 )¢,k (3.20)

>

P with the real coefficients ay defined by %

(3.21)

e conFit Y s

a = by 9c,1/M 00,k

P

This simple scaling is itself a conformal transformation and thus
preserves the orthogonal nature of the (£,n) grid. (Note that the (&,n,6)

space is not, however, necessarily ortheogonal.)

bt il e s A s

It is important to note that while the final images of
h1,1,k and hz,],k have the same values in the %, Space that only those |
two points along the centerline have direct correspondence in the 2y ¥

space. Because cof different scale factors that arise from the independent

conformal transformations in each ¢k plane, points with the same g

value do not necessarily correspond to the same point in the 2 ¢ planes.

34,
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Although the conformal mappings in each ¢k plane are defined
independently, the global transformation may be considered continuous
by requiring that the governing parameters of the transformation be
continuous functions of ¢ and that each °k plane have the same number
of hinge points (JC). In particular, this requires that the functions
a(e), hz,J5(¢)' hj+1.j(¢)’ and Gj(¢) be continuous.

The success of this mapping sequence is illustrated in
Figures 3.4 -~ 3.7. Shown in these figures are longitudinal nosetip
profiles that are characteristics of low altitude, turbulent ablation of
initially spherical carbonaceous nosetips. In each case, the hinge
points used in the transformation are indicated in the z, plane, as weli
as the body contours that result in the ¢ plane. These figures indicate
the flexibility inherent in this conformal mapping procedure, allowing
any arbitrary n6setip contour to be mapped onto a nearly horizontal line.
Figures 3.5 and 3.6 represent postulated axisymmetric nosetip shapes that
have been tested in wind tunnels: the Very Mildly Indented Body (VMIB),
as reported by Reeves, Todisco, Lin, and Pallone?® (Figure 3.5) and the
PANT Triconic, as reported by Jackson and Baker?! (Figure 3.6). Figure
3.7 represents a profile of the indented nosetip shown in the Schlieren
photograph in Figure 1.2, which was recovered from a flight test.
The process of mapping the body contour onto a nearly hori-

zontal line is relatively insensitive to the selection of hinge points,

as long as the hinge points approximate the body shape in some reasonable

fashion. Thus, the selection of hinge points is easily automated by
spacing them at a fixed distance along inward body normals (in the (x,y)

plane) from body points equally spaced in wetted length.
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3.3 TRANSFORMED EQUATIONS OF MOTION 1
Using the mapping from (x,y,$,t) space to (£,n,8,T) space
described in the preceding section, the governing inviscid equations
(Equations (3.1)-(3.5))may be transformed to (&,n,8,t) coordinates by
application of the chain rule. Recalling the functional deperdence of
the transformation defined in Equations (3.11)-(3.14), the appropriate i
chain rules take the forms é
) 2 !
3 % 5% (3.22) {
d .p D 4gq &
TR % (3.23)
5 ., 3 3 :
T S O (3.24) ?
0 ) 3 ? 3
5 ., 3 3,9 \
5" g¢ ag+”¢ = * 5 . (3.25) i
1%t is convenient to define, using the notation of Moretti!’,
;
g= 2% =g’ =g - if) (3.26) |
1 _
and ]
_30loga) . - 3‘
$ = 5 o + ity (3.27) 3
with %
6 = |g| (3.28) §
B
w = arg(g) (3.29) 3
40.
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¢ = cos (-w) (3.30)
S = sin (-w) (3.31)
From the definition of the conformal transformation, it follows that
JA ( )
g=a [1 g /2z 3.32
k j=1 J JC,k ,
with
95 = 85k (Zgeq,k = /{2540 = Py 5 1) (3.33)
and
: : JA
- +— 3 {9495...9:(85 171)/(25 -hieq 5 )} (3.34)
With these definitions, the partial derivatives required
by the chain rules are found to be
g, = 6C (3.35)
€y = GS (3.36)
n, = -GS (3.37)
ny = GC (3.38)
41.
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Note that these forms verify that the mapping ¢ = ¢ (z])

in any ¢ = constant plane is conformal, since the Cauchy-Riemann

conditions f

& = Ny (3.39)
fy T T - (3.40) ﬂ
% are satisfied. |
; i Circumferential variations of the mappings are accounted
F} for with the equations (derived from a Taylor series expansion)
i',

§¢ = Ecb + 'irl¢ = [52‘51“9(22"2])]/(¢2‘¢]) (3.41)

9y = [99-91-9% ¢ (25-27)1/(65-¢;) (3.42)

where

C-l = C(x] 9y] 9¢'|)
C2= C(XZ’y2’¢2)
g1 = 9(x15¥757)

9p = 9(Xps¥519,)

with (x],y1,¢]) and (xz,y2,¢2) representing computational grid points in
surrounding ¢ planes; i.e., ¢ = ¢ - 40, ¢, = ¢ + A¢.
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It is convenient to write the governing equations in terms

of velocity components in the (£,n,8) space. Defining
V=ul +v]+wk (3.43)

with T, J, and k being unit vectors in the £,n, and 8 directions,
respectively, the new velocity components may be written in terms of

the cylindrical velocity components (U,V,W) as

u=UC + VS ‘ (3.44)
v = -US + VC (3.45)
w=W . (3.46)

In terms of these velocity components, the governing equations
in non-conservation form may be transformed, using the chain rules de-

fined above, to

%% + Y[G(uE *v Ve, - u¢])

+ (Ey Mgty W+ W+ uS +vC)/yl = 0 (3.47)
g—: + vG(vo, + ug,) + vw(£¢¢2 gyt wg)/y

- Sw2/y + GpPy/p = 0 (3.48)
%% = UG(vey + udy) - uW(Eby + Mydy + wglly

- Cw?/y + GpP /p = 0 (3.49)
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Dw S + vl = |

pr + WUS + vC)/y + p(E,Pp + nyP o+ Pg)/py = O (3.50) %

s g (3.51)

E

where |
D _a_

.

=+ (Gu + w€¢/y) %—g+ (Gv + wn¢/y) %n—

<)
-
QU

+ W/yg—e

The term wy can be evaluated from §§

mintly et it el

Prior to obtaining numerical solutions of the transformed

governing equations, it is convenient to perform an additional coordinate

wg = Im{gy/g} (3.52) :

with dg expressed as é
1

3

3

A

3. COMPUTATIONAL TRANSFORMATION §
3

1

transformation to map (£,n,8,T) space onto a rectangular computational
space (X,Y,Z,T), in which an equally spaced mesh can easily be established

to facilitate numerical approximations of derivatives. In this computa-

et i L I e L

.12nal s .ea, the coordinate Z is selacted so as to be 0 on the body ;
surface and 1 on the outer boundary (bow shock wave) of the region of
interest. S+nilarly, Y is defined as being O on the centerline and 1 at

the downstr:. - boundary of the region to be computed. X is directiy

proportional to the circumferential coordinate 6.
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P
1 This computational transformation is described mathematically ;
X = 8/2n (3.54) i
B Y = £/¢, (6) (3.55)
3
Z = In-b(£,6)1/[c(E,8,7)-b(g,8)] (3.56) ”
!
) i . T=" (3.57) :
where the body surface is described as %
n = b(g,8) (3.58)
1
‘ and the bow shock positiun as 3
é !
I n= C(Esear) . (3.59) 1
4
The downstream boundary is defined by %
£ = gL(e) ) (3.60)
Because the position of the bow shock varies with time %

during the solution of the time-dependent problem, the computational
- grid also varies with time, but always maintains equally spaced points
between the body and bow shock (in Z}.

To transform the governing equations into the computational

coordinates, the following chain rules are applied:

3 _ 3 3
- =eart Z, 57 (3.61)
3 _ 3 9
|
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with the body

PEY

¢

]
>
[e>]
jor
N

= 1/2n

1/, (8)
T e,

= 1/[C(E,9,T)‘b(£,9)]

1]

-Zn[(1-2)b€ + chl

"

-Zn[(l-z)be + chl

-ZchT

(3.63)

(3.64)

and shock slopes in the transformed s-ace being determined

(Cyp, - $)/(Syp, + ©)

(Cygy - S Byg, + O

= Gys¢/(§ysx + E) - E¢CE + T]¢

46.

(3.65)
(3.66)
(3.67)

(3.68)
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Using Equations (3.54)-(3.57) to define the computational 4

transformation and selecting equal mesh intervals in X,Y, and Z leads

to points equally spaced in n (between body and shock), in & (along
the body), and in t (circumferentially). It is possible, however, to
use stretching functions in the definitions of X,Y, and Z in order to

concentrate mesh points in certain regions if so desired, while main-

ikas . 2 e DM . L b

taining equal spacing in X,Y, and Z. For example, Moretti}’ and

Kutler, Chakravarthy, and Lombard'® have used such stretching functions 4

to concentrate grid points near the body surface to facilitate viscous :

R L

i e i e =

calculations. For the nosetip inviscid flow problem, such stretching
is not deemed necessary, and the simpler definiiicns of X,Y, and Z, as i
! presented above, are used.

The governing equations written in the computational space

C k5 aacloiatan U Rt sl
i

may now be expressed as

DP 4 yary

DT y+ 1

gy £Y7 + vaz +E+ (u§ + vE)/Gy]

+YIE,(Yeuy + Zgwz) +nyZ Wy + Xouy + Yowy

*Iguylly =0 (3.69) j
%% + vGD + wwF/y - ng/y + Gp(YEPY + ZEPZ)/p =0 (3.70)
%% - uGD ~ uwF/y - EWZ/,Y + sznpz/p =0 (3.71)
| o o
EA oT * w(uS + vC)/y + p[(zgg¢ + Zn“¢ + 2P,
l[.

b (EYg * Y3)Py + XgPyl/py = O (3.72) j

47,

TR P o T
L, 2 .
e —— e e ae—g—..




g T T

i ot

TR T et e 1

A e o+ i hr

oo ‘o i»(s.;173)
with e

B_T=%T+A%Z'+B%V+C%Y

A=Z + (Gu+wey/y)Z, + (G + wny/y)Z + wZoly ’

B = (Gu + wg,/y)Yp + WY /y '

C= er/y

D= vcb1 + u¢2

E = Vo, - Ud,

F= €¢¢2 + n¢¢] + we

Typical grids (in physical space, ¢ = constant) that result
from this computational transformation are shown in Figures 3.8-3.10.

(In these figures, the bow shock shape used in defining the computational
region is an assumed initial bow shock shape.) For clarity in these
figures, a coarser grid is shown than would actually be used in the
calculation of a flow field about such bodies.

It is important to note in these figures that the £ = constant
lines are indeed nearly normal to the body surface, as is expected when
the image of the body contour is nearly horizontal (n = constant) and
the mapping is conformal. The generation of such grids was the goal

in the development of the mapping function presented here, and will

greatly expand the range of nosetip shapes that can be successfully computed.

48.
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3.5 CHARACTERISTIC RELATIONS
The numerical procedures to be used at body and bow shock

points (which will be discussed in Sections 5.3 and 5.4) are based
on the characteristic compatibility relations resulting from the
governing system of partial differential equations, Equations (3.69)-
(3.73). Accordingly, the appropriate forms of these compatibility
rejations at the body and bow shock are derived in this section.

"In the theory of partial differential equations a charac-
teristic surface is a surface across which the derivatives of the
dependent variables may be indeterminant in the direction normal to the

surface. The characteristic compatibility condition is a 1inear combi-

nation of the governing equations valid along this characteristic surface.

For use in this analysis, characteristics in the (Z,T)
reference plane are of interest; X and Y derivatives appearing in the
governing equations will be treated as forcing functions. Reduction of
the four-dimensional (X,Y,Z,T) problem to two dimensions results in a
characteristic curve, rather than a characteristic surface.

The governing equations may be rewritten as

Pr + AP, + YG(ZEUZ + znVZ)

+ Y(£¢Z£ tngl, * Zg)Wa/y = Ry (3.74)
up + Aug + GpZEPZ/p = R, (3.75)
vp + Avg + sznPZ/p = Ry (3.76)
W + Awg + p(£¢ZE * gz, + Zy)Py/0y = Ry (3.77)

52.
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ié where
g; Ry = -[BPy + CPy + YG(YE“Y + E + V/Gy)
’ - + Y(E¢YEWY + xewx " Yewy)/y}
;; R2 = -[BuY + Cux + vGD + wwF/y - §w2/y
+ GpY Py/0]
;i R3 = -[BvY + Cvx - uGD - uwF/y - Cw®/y]l £
o ;
Ry = -[Bwy + wa + w(uS + vC)/y
| + pUE,Y, + Yg)Py + XgPy}/by]
s | :
g (The equation for entropy convection, Equation (3.73), is not X
| considered here, since it is known that the characteristic resulting i
from its inclusion is simply a streamline. Wkhile a streamline is a f
valid characteristic, it is not of immediate interest for this application.) é
Defining the characteristic curve as }
f(T,Z) =0 (3,78)
& :
Jl i
) the normal to this curve is 3
%E §
'i and the characteristic slope may then be defined as
f
e
Z
?

A L

Fﬁif“ ‘
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-
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The characteristic compatibility condition is written as a linear

~ combination of the governing equations, where l], 22, 23 and 24 are

ol - 41

the as yet undetermined multipliers for Equations (3.74)-(3.77), ¢

respectively. Combining terms, the compatibility condition can then

be written as

¢ Koo L i

2Py + I4A + Gp(RyZy + 237 )/0 + P82, + nyZ + Zg)/pylP,
* fyup t (n1szE + zZA)uz *gvp ¥ (l]yGZn + léA)Vz

* fawp t [z]y(£¢2E + n¢Zn + Ze)/y + %AW, = P 23Ry . (3.81) A
§

The terms involving derivatives of P may be regarded as a

directional derivative in the direction W], where

s Batd,

Wy = 120,008 + Gp(R,Z, + 252 )/p + 24P(84Z¢

* gl * Ig)/ oy} : (3.82)

Similarly, derivatives of u,v, and w may also be viewed as directional

derivatives in the directions WZ,WB, and W4:

Wz = [25.21Y6Z, + L,A] (3.83) S
Wy = [25,00762, + 2] (3.84) é
W4 = [2044 y(g¢zE + n¢zn-+ze)/y + 2,A1 . (3.85)

z
,
.
-
.
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For Equation (3.81) to be valid along the characteristic,

these directional derivatives must not have any component along the %

direction of the normal to the characteristic curve (in which direction

the derivatives may be indeterminant). These conditions may be expressed

TR,

as

- oW =R W= y=N.0=-0 . (3.86)

,
A i e,

Noting that %T-= -A-%z » this system of equations may be written in

tondldahizidon o bt

matrix form as

: - -
: A-x GpZe/o  GPZ /o p{E,L4ngZ +Zg) 0y | 02 §
| :
YGZE A-A 0 0 Lo 3

7o
-Y(E¢Zg+n¢zn+ze)/.y 0 0 A-) \14 ‘ (3.87)
For a solution to this system of homogeneous equations to §

exist, it is necessary that the determinant of the coefficient matrix

vanish. Furtharmore, any one of the four unknowns may be scaled arbi-

[

trarily. Expansion of the determinant results in the following algebraic ;

equation:

(A-1)2[(A-\)2 - aZGZZE2 - GZGZan 3

-a(g,2, * 7, * Z5)Y/y%1= 0 (3.88) ;
5
55.
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where the isentropic speed of sound is defined from

a = (vp/p)'/? : (3.89)
The four roots to this equation are
A = A (redundant root) (3.90)
and
A=Aza [62(Z.2 +2.%) + 5 (£.2, +nZ +2.)212 | (3.01)
- £ n y (-3 3 | 9 )

The redundant root A = A simply shows that streamlines are characteristic
directions, but, as stated earlier, this relation is not of immediate

interest. Thus, the characteristic slopes being sought are those defined

by Equation (3.91).
To evaluate the unknown multipliers zi, it is convenient to

select 21 = 1; it then follows that

Ly = YGZE/(A-A) (3.92)
Ry = YGZ /(r-A) (3.93)
%y = Y(€¢Z£ *ngly ¥t Zg)/(A-A)y (3.94)

The compatibility condition will then take the final form

PT + XPZ * L (uT + xuz) + zs(vT + sz)

+ £4(WT + sz) = Z:] g"iR'i (3.95)
i=

56.
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To derive forms of this relation valid at the body, it is
first necessary to write the kinematic boundary condition in (&,n,8)

space. Denoting the body normal as

-

- ~ ” - - o

¥ Ny = -GbE1 + GJ + (n¢ E¢b£ be)/y k (3.96)
;; ' the boundary condition becomes

% | -Gubg + Gv + w(n¢-§¢bg-be)/y =0 . (3.97)
;1 The coefficient A, defined as

; , A= ZT + (Gu + w£¢/y)Zg + (Gv + wn¢/y)Zn + wZe/y

- can be shown to vanish at the body since, with Z = 0,

ZT =0
ZE = -ang
Ze = -ane

and thus
A = 7 [-Guby + Gv + w(ny-E4bp-bg)/y] = 0

from Equation (3.97). Choosing A < 0 at the body and simplifying the

expression for X yields

- b b Y2/v271/2
Ay = -aZ [62(1+b,%) + (ny-E4bp-bg)?/y?) (3.98)
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and the compatibility condition becomes
Pr + APZ + an['EbE“Z + sz + (ncb-gdbbﬁ

-bg Wy /y] = EE% 2R (3.99)

since ZZUT + z3vT + 24wT = 0 from the time invariant boundary ccndition,
Equation (3.97).
At the shock, with A > 0 and Z = 1, it follows that

Ag = A+ azn [62(1+c52) + (n¢-£¢cg-ce)2/y2}"2 (3.100)
since

g = L

Za = -che

and A no Tonger vanishes. The appropriate compatibility condition at the
shock is given in the general form of Equation (3.95).

Specific application of these characteristic relations for
boundary point calculations will be presented in Section 5.0.

3.6 TREATMENT OF THE SINGULAR CENTERLINE '
0)

In the (x,¥,¢) cylindrical coordinate system the x-axis (y
is a singular line, where the coordinate ¢ is mu1ti-v51ued. Along this
axis the governing Equations (3.69)-(3.73) must take on different forms
valid along this axis, eliminating indeterminate terms that result from
the singularity. The modified governing equations that then result

involve second derivatives of the dependent variables, such as PXY’ etc.

58.
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In order to avoid these second derivatives, other approaches

to the centerline problem may be used. For example, the governing equa-
tions can be reformulated in a local Cartesian coordinate system, which
does not exhibit singular behavior. Approximation of derivatives in
the Cartesian space would, however, require extensive interpolation on
the data at the computational grid points which are not aligned with the
Cartesian coordinates.

In this analysis, a set of governing equations based on the

Cartesian approach at the centerline is developed which minimizes the
need for interpolation, while simultaneously avoiding the approximation

of second derivatives. (For the three-dimensional conformal mapping

approach developed in this research effort, the approximation of second
derivatives at the centerline is made particularly difficult by the fact
that the transformations used in each ¢ plane are independent and thus

are not continuous across the centerline.)

To develop the form of the governing equations desired at

the ~2nterline, consider a Cartesian reference frame (x].xz,x3), oriented

with the (x,y.9) cylindrical system as shown in Figure 3.11, and defined

(3.101)

by
X] = X
Xo = Y cos ¢
Xq =y sin¢

50,
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(3.103)
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Ficure 3.11. CArRTESIAN COORDINATE
SYsTEM AT THE CENTERLINE

Then, by the chain rule,

33
ﬁ‘ ax] ax
2. 3 cinely &
){ 7% cos¢ 55 - sind/y Y
: 3 - cine 3
5;; = sind 55 + cosd/y 36
60.




Lol

CHCES A e Lan 1 B

P D RGP s
e — |

- B SR Be

= At BERS

Lonareas e

ol L

Derivatives in the Cartesian frame may now be expressed in terms of the
cylindrical frame, without any indefinite Torms appearing, by carefully

selecting the values of ¢ for which certain derivatives are evaluated.

For example, all derivatives gx are evaluated as cos¢ 5}"" the ¢ = 0
and ¢ = 7 planes, and all derivatives gx are evaluated as sing -y-in
3
" the ¢ = n/2 and ¢ = 3n/2 planes. These simple forms result since
lim 13_=_3__
y0 yoad 23y (3.107)

which has a finite value (if gxz and gx3 are bounded, as is implicitly
assumed in this analysis).

Starting with the governing inviscid equations written in a
Cartesian coordinate system and applying these chain rules, a system of
equations in cylindrical coordinates results that is valid along the
centerline and does not involve any second derivatives. The resulting
equations do, however, have some terms that must be evaluated in the
¢ =0 or ¢ = m planes, and others that must be eva]uatgd in the ¢ = n/2
or ¢ = 3n/2 planes. (Because of this form of the equations, it is
necessary in the numerical solution to require a computational grid that
includes these four ¢ planes.)

Transforming these special eniations in cylindrical coordi-
nates tc (£,n,9,7) space and then to the (X,Y,Z.T) computational space,
and writing the equations in terms of the transformed velocity components
results in tre firal forms of

[Py + APy + ByPy + Y6 {Zguy * Yely ¥ Zvz+ 8y 2 opn
(3.108)
+ [6u(ZgPy + YEPY) + Y6(Zgug + Yeuy * V¢2)l¢=%,,37"_ =0

61.
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[{uT + A1uz + B.luY + vGD + pG(ZEPz + YEPY)/p}cosM¢ . 0,7

(3.109)
+ [-Gu(Zsz + YEWY)S'M¢]¢ - %'_3211 =0
3 [VT + A'lvz + B-IVY - uGD + pGZnPZ/p]¢ = O,Tf
% (3.110)
—. ; + [GU(ZEVZ + YEVY - u¢2)]¢ - %'_3217_ =0
|
L i (wp + Aywy + Bywylcosely g o + [{Gu(ZEuz + Yeuy + véy)
+ BG(Z,Py + Y,Py)/odsingl, .1 31 =0 (311
2 P + plsingl, _m 3n =
& gz gy ¢ =73

(Sp+ Aysg * Bysyly = g,n ¥ TU(ZSy * Yesylly 1 =0 (31

where

pog
]

1 ZT + G(uZE + vZn)

GuY

g

The characteristic compatibility conditions required at the body and

shock points on the centerline may be formad as a linear combination of

; these special centerliine equations following the same procedure presented

R il e U " e B
i ML L B -

in Section 3.5 for regular points. Special forms of the characteristic
slopes A and the multipiiers %; may be derived at the centerline as

é i follows.
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£i : Consider the unit body normal at the centerline. In general

the unit body normal at points off the centerline may be written as

~ bl ¢ 63 + (ny-E,bg-by)/y k '
[62(]+b52) + (n¢‘€¢bs'be)z/yzl‘/2 (3..”3)

At the centerline, of course, a different expression must be used for
the ﬁ component of this vector. But now consider this unit vector at
the centerline in the ¢ = 0 plane (with unit vectors ?],31.§]) and in |
the ¢ = 7/2 plane (with unit vectors ?2,32,22). as depicted in Figure ]
3.12. This unit body normal can then be written in the two equivalent

forms

_ Gbgyiy + B3y + (ngy-Eaybey - bey)/yy Ky
0 (3.114)

it e b B e

~Gabealy + Badp *+ (ngy-Egybey - bey)iyy Ky
5
2

3>

(3.115)

where D1 and 02 are the respective denominators. But noting that j]

and 32 are coincident with the centerline and that Equations (3.114)
and (3.115) represent the same vector, it follows that

R S . (3.116)
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Furthermore, since k1 = 12,

(ngy-E¢1bgy -beyi/yy  -Gobe,
0 - _-'TE;'

(3.117)

and the indeterminate term at the centerline may be expressed as

;j:b (n¢]'£¢]b51 - be1)/¥1 = ~Gybg, . (3.118)

bk 8 s il ot

Thus, the outward body normal may be written as

S Gl £l i 1

S R T T
b [1+b€12 + bEZZ B

(3.119)

and similarly, the shock normal may be written as

3 B T S Wl 7
[ []+CE'|2 + CEZZ]IIZ

(3.120)

The characteristic slopes can then be written in the

¢ = 0 plane as

= 2 2q91/2

o
[l

>
[}

2 211/ 2
A+ a6z [+cgy® + cgy’)

65.
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where A at ¢ = 0 is now given by ig

=
il

A] - GwZnC£2 . (3.123)

The multipliers 21 at the body become

[}
ibassar i

‘YGanE]/A (3.124)

)
w
]
e e e

YGZn/A (3.125)

= 'YGangz/X (3.126)

:_;é
i

and at the shock

T R T T T T O T e T I L O e i =

. o ’ F e N S e il R LA KR *

N L et i e - it et e e e s i
]

{ L, = =Y6Z cg1/(A-A) (3.127)

b
u

3 yezn/(x-A) (3.128)

“Y6Z, cgp/ (A-A) . (3.129)

While the expressions presented above have been derived 3

assuming that )] refers to ¢ = 0 and ( )2 refers to ¢ = m/2, these

forms are equally valid for ( )1 representing ¢ = m and )2

representing ¢ = 3n/2.
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SECTION 4
CALCULATION OF EMBEDDED SHOCKS

5{ ‘ ) The method selected in this research for the calculation
of embedded shocks is the shock-capturing approach, in which shock

waves (and other discontinuities, such as s1ip lines) are computed

b s et e

automatically, albeit approximately. Two methods of shock-capturing
u : are examined in this section: the conservation (shock-smearing) 3
;! : approach and the A-differencing (non-conservation) approach. The

relative merits of these two methods are compared by developing

e b bt e

axisymmetric versions of both procedures, described in Sections 4.1

and 4.2, and assessing the abilities of each scheme to compute in-

viscid shock layer flows with embedded shocks. Section 4.3 details

the comparisons of tnese calculations to experimentai data, which : é

show the A-differencing approach to be superior. Finally, in Section 1
4.4, the A-differencing scheme is extended to three dimensions.
4.1 CONSERVATION LAW APPROACH TO SHOCK-CAPTURING

The theory behind the conservation law approach is to
reformulate the governing parcial differential equations in terms

of dependent variables that appear naturally in the integral con-

ot o bl Wb il SRR ad L

servation laws. The resulting dependent variables then represent
quantities that are reminiscent of the quantities conserved across a

discontinuity from the Rankine-Hugoniot conditions (mass, momentum,

and energy flux). Hopefully, these new dependent variables will be

'

.,;3
.—a

continuous across the discontinuity, and thus a numerical solution

can be obtained directly without special treatment for the discontinuity.

W e T e s e T TR Sl
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It must be noted, hawever, that the dependent variab]es in
the differential conservation formulation ere strictly confinuous only
if the discontinuity is perfectly aligned with the coordinate mesh
used in the calculations and if the discontinuity is stationary. There-
fore, for shocks that are not aligned with the mesk or that are moving
(such as during the transient phase of a time-acymptotic calculation),
the dependent variables are not continuous and the conservation form
of the governing differential equations is not strictly valid.

To illustrate these points, consider a stationary shock
inclined at an angle o to a two-dimensional Ca:tesian mesh, as shown
in Figure 4.1. The conservation form of the steady inviscid continuity

equation is
(pu), + (ov)y = 0 (4.1)

where u and v are the x- and y- velocity components, respectively.

<?

2k

N ..

Ficure 4.1, STeADY INCLINED SHOCK
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The Rankine-Hugoniot conditions for this case require that
P1ly = pally (4.2)
V=Y, | (4.3)

where ( )1 denotes the jow pressure side of the shock, and ( )2

denotes the high pressure side. Since

U=ucosg -vsing (4.8)

usinoc +vcoso (4.5)

<t
il

the continuity relation given by Equation (4.2) beccmes
PyUy = poly * tano (p'lv] - pzvz) . (4.6)

Clearly, the conservation variabie pu will be continuous across the
shock only if o = 0 (i.e., if the shock is aligned with the coordinate
system). _

Similarly, consider the case of a normal shock (o = m/2)
moving to the left with velocity W, as iliustrated in Figure 4.2.

Equation (4.2) becomes
p-l(u] + N) = pz(“z + N) . . (4-7)

Hence the conservation variable pu will be continuous across the shock:
only if the shock velocity were to vanish.

A discussion of thé dependence of cunservation shock-
capturing results on the orientation of the discontinuity relative to

the ccordinate mesh may be found in MacCormack and Paullay ?°.
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Despite the lack of continuity of the conservation variables

across a shock in the general case, however, it can reasonably be
expected that the conservation variables will be "smoother" than
the primitive variables (p,p,etc.) across a shock. Thus, conservation
form calculations may have the potential of "automatically" computing
shocks in cases where the non-conservation (Eulerian) formulation,
without A-differencing or shock-fitting, would fail.

The calculation of discontinuities with the conservation

formulation smears the discontinuities over several mesh intervals

ard also introduces oscillations into the calculation at discontinuities.

f The conservation approach must then be viewed as an approximate method

for computing embedded shocks since the discrete discontinuity is smeared

[ out; the results obtained with this approach will thus be mesh dependent.
Et This approach requires a fine computational mesh to obtain accurate

e

1 ‘ approximations to embedded shocks.
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The presence of spurious oscillations in the conservation 'é
calculations may require special numerical treatment to avoid failure ~
of the computation. The procedures used in this analysis to control
these oscillations are detailed later in this section.

The conservation form of the governing equations can be
derived in many forms; the recommended formulation for the calculation
of embedded shocks is the “"strong" conservation form, in which no
undifferentiated terms appear, leading to the overall conservation of
mass, momentum, and energy, as discussed by Vinokur?®. (Note, however,
that this is a global conservation of mass, momentum, and energy.) The
totally "strong" conservation form cannot be obta}ned for the axisym-
metric equations, however.

The axisymmetric conservation equations in the computational

coordinate system may be written as

?T + EZ + ﬁY +R=0 (4.8)
where the vector quantities are defined as ¥
[ P :
pU f
F= —;l— ) :
6L | oV
e
¢ pA 3
% . 2] l pUA + G(CZE - SZn)p
&7, | evA+a(Sz, + Tz )p

\ eA + G(uZE + vZn)p J

7.




4 pu
a Cp + pul
H—G_Z_J.,p P
n Sp + puV
\ u(e + p)
p A
R !
= 2
ez v |
“e+pd

with e representing the total energy per unit volume,

e=oH=plh+x (U2 +V2)] (4.9)

and the computational coordinate Y being redefined for the axisymmetric

case as

Y=¢ (4.10)
and the coefficient A representing

A=17 + GuZE + GvZn . (4.17)

After each computational step (predictor or corrector), the
conservation vector F must be decoded to recover the primitive flow
variables. The quantities p,u,v, and h can be determined directly from

?; the pressure p &.d entropy s can be found directly from these

72.
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quantities for an ideal gas, while an iterative decoding procedure may

be required for equilibwrium real gas thermodynamics.

The use of the conservation formulation of the governing

equations can lead to the presence of spurious oscillations in the |

vicinity of a smeared-out discontinuity. Typically, the magnitude of

the oscillations tends to increase as the shock strength increases,

and if the oscillations are undamped, the calculation can quickly fail ;

as the oscillations spread throughout the shock layer being computed.

EADPEY

Most conservation law techniques use some form of numerical

damping (either implicit or explicit) to control these oscillations
In this aralysis, a simpie damping

s S it im e

(which are mesh dependent).
technique has been used, which is shown to be ecuivalent to an arti-

ficial viscosity, similar to that used in other conservation formula-

et A e g

tions, such as by Lax and Wendroff27.
To illustrate the damping procadure used, consider the

simple hyperbolic equation
(4.12)

fo + uofy * Vofy =0

et A e, s

The numerical solution to this equation is first advanced one time

step using the MacCormack ? predictor-corrector finite difference ﬁ

cscheme, describad in Section 5.6. Following the corrector stage, a

weighted averaging of the solution fﬁ;] is pertormed, as
]

]

k+1 . k# k+1 k+1
fnm " “fnm + B[fn+1,m * fn-1,m

k1 K+
et fmet!

73.




L% R o T T TR - T Tt B A
ot ‘.'w_‘w'w, g bad : . oo IR RN AR
.

where fzm = f(t° + kAt, Xo + nAx, Y, + mAdy) and subject to the con-
straint that

a+ 28 +2y = . (4.14)

Application of this averaging procedure to the numerical
solution of Equation (4.12) can be shown through Taylor series expansion
to be equivalent to the solution of the modified equation

ft * uofx * Yo

= Blax)?/at £, + y(ay)?/at f

fy Yy

+ 0(At?, Ax?, Ay?) . (4.15)

The coefficients of the second order terms are thus similar to viscosities.

For consistency of these viscous-like cuefficients, the ccefficient y

can be selected to be
Y = B(ax/by)? : (4.16)

To more closely simulate physical viscosity, this damping is applied
only to the two momentum equations appearing in the axisymmetric con-
servation system, Equation (4.8).

While the damping formulation described above can be helgful
in controlling the oscillations that arise in the calculation cf embedded
shocks with the conservation equations, it cannot compietely compensate
for large oscillations. If the oscillations are severe enough, the
calculation will typically fail when a negative pressure (p<0) is
encountered in the decoding of the conservation variables. Since this
condition might occur only during the transient phase of a time-dependent
calculation, and not in the steady-state, a second damping (or smoothing)

technique is applied locally when required to eliminate the p<0

74.
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condition and allow the calculation to continue. At any point Y = mAY
and Z = nAZ where p< 0 is encountered, the entire F vector ut that Y

location is smoothed in Z, from

Fo=10

m I (4.18)

+2F  + ?n_1

n+l,m n,m »M

ittt kst o il b e e 2l

This is the same smoothing furction used by Solomon, et al.'? when the

:yi p< 0 condition is encountered in the conservation calculation of embedded
shocks in steady supersonic flow on reentry vehicle afterbodies. This

local smoothing function reduces the numerical scheme to first order

etk iob ] ik sintd s Tl

accuracy in AZ, but has been found helpful in overcoming transient

: i difficulties in the time-dependent calculation.
4.2 A-DIFFERENCING APPROACH TO SHOCK-CAPTURING

The A-differencing approach to shock-capturing is fundamentally

different from the conservation approach in that its shack-capturing

ability comes not from a special formulation of the dependent variables,

ks o it ', il S il

but rather from careful treatment of the approximations to spatial :
derivatives. By constructing finite difference approximations‘that

accurately model the domain of dependence of each point being computed,

s L e el s e 1

the resulting finite difference equations admit "discontinuous" solu- .

L eesh

tions that approximate the structure of physica! solutions with embedded

shocks.

The A-scheme is formulated in terms_of the non-conservation

e
[P

governing equations, in which the dependent variables, in two-dimensions,
are P,u,v, and s. To illustrate construction of the A-scheme, consicer

a one-dimensional, time-dependent inviscid flow, whose governing equations

are

75.




Py + WP+ yu =0 : (4.17)

up + uu, + p/pP, = 0 (4.18)
Sy tus, = 0 . (4.19)
\ This system of equations has two characteristic directions (aside from 5

the particle path, which is not of interest in this application), de-

fined as

bk et S i P i B b i [ A, - il L TTTR
o - Ce . e S i A o kbt
—!"4‘:‘- — P - .- . el e N e e
(MORINNTRY

Ay = u-a | (4.20)

E | Ap = uta : (4.21)

— e

Note that supersonic flow impiies Ay 0 and A2>'0 and that subsonic

flow produces A]< 0 and A2>'0, as illustrated in Figure 4.3. The signs

bkl e et i AN b i e ikt ke B e

of these characteristic slopes at any point define the direction of

RPN

the domain of dependence at that point.
The basis of the A-scheme is to rewrite Equations (4.17)

and (4.18) in such a manner that the domain of dependence information

i r ity U] Riaturalal bt sedas it s

inherent in the characteristic slopes can easily be incorporated into
the resulting finite difference scheme. To this end, the governing i

equations may be written as

) =
Py + 3 (A]Px] + AZPXZ) + y(Aouxy = Aquxq)/2a = 0 (4.22)

1 =

which are entirely equivalent to Equations (4.17) and (4.18), with

Pxy = Pxp and uy; = uy,.

P TR T
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a.) SUBSONIC FLOW
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FiGure 4.3,

In a finite difference represengétibn
Px1 and sz (or Uxy and uxZ) need not be the same approximation to Py
(or uy). By constructing seccnd-order accurate one-sided derivative
approximations for Px1, sz, Uxys and Uxo in the directions suggested
by the corresponding coefficients Ay and A5, the numerical algorithm
will more accurately model the phyvsical domain of dependence. Thus,
for supersonic fiow, only upwind information will enter the spatial

derivative approximations, and for subsonic flow, a weighted averaging

b.) SUPERSONIC FLOW

CHARACTERISTIE ©
SLOPES 1IN x—ﬁ'PLANE

of thece equations,

of upwind and downwind information will be employed.
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The ability of this scheme to approxiniate discontinuities -
arises from its accurate modeling of the physical domain of dependence |
of each point being computed. In particular, points immediately up-
stream of a shock, where the flow musi be supersonic, will then have no
dependence on the flow downstream of the shock. This feature prevents
any inaccuracies that arise at the chock from propagating upstream and
affecting the entire calculation.

The fundamental limitation of the A-scheme is that there i.
no mechanism for an entropy increase across an embedded shock since the
shock is not treated explicitly. Furthermore, the A-scheme is applied
only to the continuity and momentum equations: the energy equation still
expressas entropy conservation along streamlines. At best, then, the
A-scheme can be expected to approximate an embedded shock as an isentropic
compressive discontinuity.

Extending the A-scheme concept to two-dimensional unsteady
flows using the new coordinate system requires the determination of
characteristic slopes in both the Z-T and Y-T reference planes. These

characteristic slopes may be written as

Mgy = A - 262 (1 + 0/7 )R (4.24)
Azp = A +a6Z (1 + zgz/znz)”2 (4.25)
Ayq = Glu-a) (4.26) i
Ay, = G(u+a) (4.27) |
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and the governing equations become

1 1
Pr+ 7 O2ifzy + APzp) + 7 (AqPyy + AypPyy)
+ ¥(Ayouyy - Ayquyq)/2a + Y(Azpvzy - Azyvzy)/2av

* YGZEUZ +yGE = 0

'I .
up + AuZ +t 5 (Ay1uy] + AYg“Yz) + GpZEPZ/p

+ a(kyzpyz - AY]PY])/ZY +GvwD =0

1

2,7 2y1/2
where v (]+Z€/% )

-3
]

Zz + GuZE + GvZn

o
I

= v¢] + u¢2

m
il

= -u¢1 + v¢2 + V/Gy

The derivative approximations used in the A-scheme are

described in Section 5.7.
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4.3 COMPARISON OF AXISYMMETRIC SHOCK-CAPTURING PROCEDURES

In order to compare the relative merits of the conservation
and A-scheme shock-capturing algorithms for the computation of flows
over indented nosetips, two ~xisymmetric codes have been developed from
the analyses presentaed in the preceding two sections. Primarily, the
two codes differ in their treatment of the field points; treatment of
body and bow shock points is essentially the same for the two approaches,
and is equivalent to the procedures described in Sections 5.3 and 5.4.

The first comparison made is for an axisymmetric indented
shape, tr2 Very Mildly Indented Body (VMIB), on which wind tunnel tests
have been conducted, as described by Reeves, Todisco, Lin, and Pallone®°.
(Recalibraticn of the wind tunnel subsequent to the VMIB testsarevealed
that the nominal Mach number was 7.2, and not 8, as stated in Reference
20.) Figure 4.4 presents predictions of bow shock shape compared to
evperimental data for the VMIB using the two schemes; both calculations
used a 16 x 28 mesh (16 points across the shock layer and 28 points along
the body) and were run for 1000 time steps; convergence c}iteria (see
Section 6.2) were satisfied by both calculations. This comparison is
centinued in Figure 4.5, showing predictions of the surface pressure
distribution and the experimental data. As evidenced by these figures,
the predictions obtained with both techniques exhibit good agreement
with the data. Differences are apparent in the two predictions in the
bow shock position towards the downstream boundary of the noset’p shock

layer, and in the local extrema of the surface pressure distribution.
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It should be noted that, even though the VMIB does not have

Yy

a strong embedded shock, a small amount of numerical damping (B = 0.0608,

with AZ =-0.067 and AY = 0.085) is required to obtain a solution for this

shape using the conservation form of shock-capturing. The differences

noted above between the conservation and A-differencing solutions are

entirely consistent with the effective viscosity implied by the use of

numerical damping.

ol oo 3 Mt s Aol Sl AR adabal

The hazards of the use of numerical damping are illustrated

b it e, oot .t

in Figure 4.6, which presents predictions of the bow shock shape for a
sphere in ideal gas (y = 1.4) at M, = 10 obtained with the conservation

code using three values of the damping parameter R, with AZ = 0.2 and

AY = 0.11. The solution with 8 = 0 (no damping) agrees well with

predictions made using a non-conservation axisymmetric code and the

x-differancing code. The effect of increased damping is clearly evident

in this figure; the solution with B = 0.02 is fairly close to that

obtained with no damping. At B = 0.06, however, the potential of

numerical damping to distort the shock layer is graphically illustrated.

s ozl 1 D A 1

For most calculations, of course, a comparison such as that

in Figure 4.6 i5 not possible, and the risk of obtaining a "reasonable"

conservation solution with numerical damping that is a poor approximation

to the inviscid flow being computed is great. In this regard, the

A-differencing approach is judged to be superior to the conservation

approach in that the A-differencing scheme eliminates the uncertainties

s 2 a1 i et kb e = b

_ inherent in the numerical damping required to generate solutions with the :
E
conservation formulation. 3
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Another comparison of the two shock-capturing approaches
under consideration has been made for the Mildly Indented Body (MIB),
another of the axisymmetric shapes considered by Reeves, Todisco, Lin,
and Pallone??. Figure 4.7 shows the bow shock shape for this indented
body (on which an embedded shock does form) as predicted by the two
shock~-capturing schemes compared to the data obtained at M_ = 9. (In
Reference 20, the Mach number for the MIB tests was given as 12;
recalibration of AEDC Tunnel F has indicated the true Mach number was
approximately 9.) The A-scheme has produced a converged solution for
this case (1000 steps), while the conservation solution shown (400 steps)
has not converged; in fact the oscillations arising in the conservation
solution from the smeared embedded shock are growing and the solution
is diverging. Control of these oscillations requires application of a
level of numerical damping that grossly distorts the predicted bow
shock shape.

As is evident from Figure 4.7, the A-differencing scheme
produces fair agreement with the data, but locates the triple point
(where the embedded shock intersects the bow shock) too far downstream
and the downstream bow shock too far away from the body. These
discrepancies arise because c¢f the lack of accurate modeling of the
shock intersection point and the assumption of isentropic flow across
the embedded shock.

In an attempt to combine the beneficial features of both the
A-differencing and conservation approaches to embedded shock predictions,
conservation calculations were made for the MIB using second-order
accurate upwind differences in regions of supersonic flow. Although

s1ightly reducing the amount of numerical damping required to obtain a
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solution, this modified conservation approach did not produce any
significant improvement in thé conservation results depicted in Figure
4.1. "'

This case serves a5 an example of the ability of the

A-differencing scheme to compute inviscid time-dependent flows with

~ embedded shocks in a Stra.ght-forward manner without resorting to the

artifice of numerical damping, thus avoiding the problem of inconsistency
of the damped finite diff::2nce eyuations with the inviscid flow
equations.

1% should be noted that freguently many attempts are required
to produce a "g¢”1" conservation solution, the problem being to find the
smallest possible amount of -mping that will sufficiently control the
osvillationy to allow tiie solution to proceed without failure, without
overly distorting the flow being computed. In some cases, no such value
of the damping param:ier has been found for the conservaticn procedure
developed in this vesearct.

Based on a number of ccmporisons of the A-differencing and
conservation solufints, of which the cemparisons presented in this
section are cniy a samnle, it is concluded chat the i-differencing scheme
offers a significant aa“a.tage over the conservotion solution of the
embeuded shock problem. Since the i-scheme <<2s not produce oscillations
in the colution as. it "captures" an embedded shgiii, as dves the con-
servation formulation, numerical damping is not reauired, and the question
of consistenc, of the proY.em being soived numerically with the inviscid
problem does not arisa. Furtlizrmore, the A-scheme has been found to oe

far more efficient to apply to a g-ven problem, generally requiring only
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one calculation, where many conservation solution attempts-are typically
required to determine the optimum value of the damping parameter. Be-

cause of these comparisons, the A-differencing scheme is the approach I

to the embedded shock problem that has been selected for extension to
the three-dimensional problem.

It must be remembered, however, that the A-differencing
scheme can, at best, only approximate the structure of flows with em-

bedded shocks because of its assumption of isentropic flow. As the |

Uit ol adly Tl b Sl Sl

strength of the embedded shock grows, this approximate embedded shock

solution can be expected to become less accurate. Improving the acc'racy

. el s S e

of embedded shock calculations will require strict enforcement of the

! Rankine-Hugoniot conditions, necessitating a shock-fitting, instead of

a shock-capturing, approach. lé

4.4 A-DIFFERENCING SCHEME IN THREE DIMENSIONS :
The extension of the axisymmetric A-differencing scheme

described in Section 4.2 to three dimensions requires the determina<ion

of characteristic slopes in the 2-T, Y-T, and X-T reference planes. .é

These six characteristic sinpes may be written as:

Azy = A - 2GZ vy | (4.31)
Ay = A+ aGZ v, (4.32)
AYy = B - aGYEv\ (4.33)
Ay, = B + aGngY
Axy = Xg(w-a)/y
Axp = Xglw+a)/y
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where

vz r D * TR (B Ze/T + my * Ty/2 ) /GNP

vy = [+ (6, + Yo/Y)2/G7y21M2

In the A-differencing scheme the continuity and momentum
equations described in Section 3.4 (Equations (3.69)-(3.72)) are re-

written in a form that allows accurate modeling of the domain of
| dependence of each point.
{

The resulting three-dimensional time-
dependent equations become

e T T
.- et

1
Pr+ 3 (A3Py + Az5Pz5) *+ 5 OyyPyy + AvgPyy)

T [ TR 3R T

1

+ 3 (g Pxy * AxgPxp) + %‘Y(AYZUYZ - Ayquy)/avy
1 1

+ YG(ZEUZ + E + V/Gy) + Y[(E¢Y§ * Yo wy

1
UT + AuZ + ’2" (}Y]UY] + AYZ'JYZ) + Cux + vGD

+ vwF/y - Swi/y + GpZEPz/p

+ %— a (AYZPYZ - Ayle] )/WY =0 (4.38)

1
VT + '2' (AZ] VZ] + A22VZZ) + BVY + CVX - uGD

-uwF/y - TW2/y + 5 a (Az,Pzy = AzyPzy)/vvg = 0 (4.39)
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wp + Awg + Bwy + %-(XX1NX] + AxoWxp) + w(uS + vC)/y

i
| I
|

o el i bl i

+ P UZE, + Zny * Zg)Py + (Y, + Yg)Pyl/oy

The coefficients appearing in the above equations are those defined

§ in Section 3.4.

As with the axisymmetric version of the A-scheme, the energy =

equation (conservation of entropy along streamlines) is unaltered in

i
:
i

the A-differencing formulation. Centerline points are treated using

the special forms of the governing equations derived in Section 3.6.
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SECTION 5
NUMERICAL PROCEDURES

5.1 TIME-ASYMPTOTIC SOLUTION & INITIALIZATION

The approach selected for the solution of this steady inviscid
flow problem is the time-asymptotic relaxation method. In this approach,
the steady flow solution is sought as the limit of a time-dependent flow
with time invariant boundary conditions as t + =, Because the time-
dépendent equations are hyperbolic, this method allows solution of the
steady flow problem, which is a boundary value problem, as a mixed
initial-boundary value problem with a forward-marching (in time)
numerical technique.

Implicit in this approach is the assumption that a steady
flow 1imit exists and is unique. Purely unsteady flows, with an
oscillating bow shock, can occur on severely indented nosetips, as
analyzed by Reeves®®. In principle, a time-dependent numerical technique
can compute such oscillatory flows. However, such flows are dominated
by viscous separation effeéts, and thus are not considered in the in-
viscid probiem being addressed.

To properly pose the initial value problem, it is necessary
to completely dofine the flow field at some arbitrary instant of time,

t = 0. Theoretically, eny estimate of the flow field at this instant
will suffice, with the solution eventually converging to the (assumed)
unique steady state. In practice, however, it is best to use as
reasonable an initial flow field estimate as possible, for grossly
inaccurate initializations produce large gradients in the flow that the

numerical scheme is incapable of handling. Additionally, estimates of
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the initial state that are reasonable estimates of the final steady
flow field tend to accelerate convergence of the time-dependent technique.
Initial data is generated for this nosetip flow field technique

by neglecting the effects of circumferential flow variation. First, an

T TV

estimate of the shock stand-off distance at the centerline is obtained

t from

Ap = Ry [0.6137/(M_2-1) + 0.13] ' (5.1)

s

which is a curve fit of numerical results for spheres at zero angle of

™
it dr e, it anathti i 2 Wl i L i o Lot

attack. From this shock point at the centerline, estimates of the shock
shape in each meridional plane can be obtained using a correlation for
shock slope on a sphere in terms of the equivalent body angle Oy from

Abbett and Davis®®as:

o W kg bt L i s il )bt .

¢ = 0.5236 + 0.33330, + 0.21229b2 (5.2)

where the equivaient body angle is defined as

3

eb = tan~![ —%% -acosd - B sing ] (5.3)

170 bl A N b ¢ 8 e

thus including some effects of angle of attack and sideslip. Strictly i

k
4
4

speaking, the correlation given by Equation (5.2) applies along a body- {
normal; for this application it is assumed valid along £ = constant
curves.

Given all of the shock points, tie shock slopes Ce and Cq

may then be evaluated using finite-difference expressions. From the

shock slopes and freestream conditions the downstream shock properties

are then evaluated from the Rankine-Hugoniot conditions.
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Next, the flow conditions at ‘{he body are approximated. From
the modified Newtonian impact theory, the surface pressure may be ex-

pressed as
P =P sinzeb : (5.4)

where the equivalent body angle is given by Equation (5.3) and Pg is the
normal shock stagnation pressure. Assuming that the nprmal shock value
of entropy applies at the body surface (see Section 3.1), the static
enthalpy h(p,s) can then be evaluated from the thermodynamic state
relations. Since the total enthalpy H is constant for a steady inviscid

flow and

H=h+ %-qz = h +-% (U2 + v2 + w?) (5.5)

the total velncity V at the body surface can be found. Neglecting

crossflow (w = 0) and imposing the kinematic boundary condition t-esults

in

c
1]

= V(1 + b€2)1/2 (5.6)

ub (5.7)

<
1]

g

To complete the specification of the initial flow field,
linear distributions of P,s,v, and w in n are assumed between the body
and shock along £ = constant lines. The final velocity component u is

assigned from the total enthalpy relation, Equation (5.5).
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From this assumed initial state the time-dependent equations
can be integrated forward in time to the steady state solution. The
problem still remains, however, of determining when a solution is
sufficiently converged to be considered an adequate representation of
the steady solution.

Convergence of an iterative solution can be defined in terms
of variations of the dependent variables; i.e., when the percentage
change from step to step of a11_dependent variables at all mesh points
is less than some €, the solution can be assumed converged. The natuce
of the inviscid nosetip time-dependent problem does, however, con-
veniently provide other parameters that can be used as a measure of
convergence.

During the course of a time-dependent calculation the bow
shock position continuously adjusts from its assumed initial position
to its final (converged) steady state position. Thus, the root-mean-
square of the velocities of the shock points used in the calculation
serves as a convenient measure of the convergence of the solution.
Additionally, the motion of the bow shock during the calculation provides
another criterion for convergence: the conservation of total enthalpy.
Unlike the steady case, the total enthalpy is not conserved across a
moving shock; thus the total enthalpy will vary throughout the flow
field during a time-dependent calculation. The variation of the total
enthalpy from its known freestream value then serves as a direct
measure of convergence of the calcuiation, since this difference in total
enthalpy will diminish only if all shock velocities are diminishing.
Details on the actual convergence criteria used to judge the merits of

a calculation are provided in Section 6.2.
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5.2 NON-CONSERVATION FIELD POINT TREATMENT

At field points (i.e., all computational grid points not
located either on the body or the shock), the governing time-dependent
equations in non-conservation form are solved using the MacCormack ’
finite-difference scheme, with sbme variations. This widely used
numerical technique is a two-step predictor-corrector scheme and main-
tains second order accuracy in both mesh spacing and time.

To illustrate the MacCormack technique, consider the simple

hyperbolic equation

f, + AF, = 0 (5.8)

where f may represent either a scalar or a vector quantity, and fz
represents f(to + kat, x, + nAx). In the predictor stage, the spatial

derivative is approximated as a forward difference

k

fy = (fn+] - fﬁ)/Ax (5.9)

and the predicted value of | at t =t + (k+1)At, denoted by ?ﬁ, is

obtained from

k _ ¢k k k
fn = fn -A At(fn+] - fn)/Ax . (5.10)
In the corrector stage, fx is approximated using backward
differences of the predicted data:
_ 3k zk
fx = (fn - fn_])/Ax . (5.11)
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Overall second order accuracy is achieved by obtaining the
final corrected value from

k+1 _ 1 ko 3k 3k _ zk
f g [f, + f, - Aat(f, - f_1)/8x] . (5.12)

Assuming the coefficient (or coefficient matrix) to be constant, a
truncation error analysis shows the leading order error of this scheme

- 2
to be -1/6 [fttt(At) + Af

xxx(Ax)z] for the simple equation considered

here.

The standard MacCormack scheme is not used consistently
throughout non-conservation calculations, however. As noted by Morettil”,
the standard scheme is inappropriate for the approximation of convective
derivatives; i.e., Lagrangian derivatives should be approximated using
upwind differences only. To maintain second order accuracy for these
cases in the context of a predictor-corrector scheme, the standard

MacCormack scheme can be modified by replacing Equation (5.9) with

k

« (2fK
fx = (2fn - 3fn-]

+ fz_z)/Ax (5.13)

when backward differences are required, or by replacing Equation (5.11)

with

k
n+2

k

zk
X - 2fn)/Ax (5.14)

when forward differences are required. Use of either of the above
modifications retains the overall order of accuracy of the calculation

with a truncation error of 1/6 fttt(At)2 + 1/3 Af__ (ax)%. This

XXX
convective differencing version of the MacCormack predictor-corrector

scheme is used in the non-conservation form of the governing equations
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for the entropy derivatives in Equation (3.73) and for the derivatives
in the convective terms in the momentum Equations (3.70)-(3.72).

Because the MacCormack scheme is explicit, limitations on
the time step o be taken must be imposed to prevent unstable calcula-
tions. According to the Courant-Friedrichs-Lewy (CFL)®°criterion for
stability, the time step must be selected such that the numerical domain
of dependence does not exceed the physical domain of dependence of the
point being computed. The allowable time step may be evaluated as tHe

minimum value at all points of At computed as
At = min(ax,Ay)/ V2{ (u? + v2 + w2)Y/2+ a)y . (5.15)

This form assumes that the circumferential spacing (yA¢) will not be the
controlling length scale, a reasonable assumption for the ablated nosetip
geometries usually encountered.
5.3 BODY POINT TREATMENT

Special computational procedures are required at the boundary
points of the computational region (i.e., body points and bow shock
points), where the governing partial differential equations must be
solved in conjunction with the boundary conditions that are to he imposed.

At the body points, the Kentzer-Moretti predictor-corrector
scheme is used to accurately model the physics of the flow at the
impermeable boundary. In this scheme, the discretization of the boundary
conditions suggested by Kentzer:3 was extended to the predictor-corrector
format by Moretti and Pandolfi® . The parallels between this scheme and
the numerical method of characteristics solution at the body point have

been examined by Hali!“.
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In the application of the Kentzer-Moretti scheme to the
three-dimensional time-dependent problem, the continuity relation given
by Equation (3.69) is replaced by the characteristic compatibility
condition expressed by Equaticn (3.99). The circumferential momentum
relation, Equation (3.72), is used directly, and the surface entropy is
assigned as the normal shock value of the entropy, as discussed in
Section 3.1. (DeNeef®! has recently published an efficient method of
coding the compatibility condftion.)

To complete the specification of the body point procedure,
two more relations are required.

The kinematic boundary condition, Equation (3.97), provides
one of these relations. The other may be obtained from a linear combina-
tion of the £- and n- momentum equations, given in computational coordi-
nates by Equations (3.70) and (3.71). Defining a "tangential" velocity

component v as

Vv=u+ by v (5.16)

a time-dependent "tangential" momentum equation may be written as

Vg = up bE V1 (5.17)

with uy and vy being evaluated from Equations (3.70) and (3.7).

The solution at a body point is obtained by solving Equations
(3.99), (3.72), and (5.17) with the standard MacCormack scheme, except
that Z-derivatives must always be approximated as forward differences,
requiring the use of Equation (5.14) in the corrector stage. Once new

values of v and w have been computed, the other velocity components can
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be determined from Equation (5.16) and the kinematic boundary condition
to be
Vbe - wlng - E¢br - bg )Gy

2
1+ bE

(5.18)

v =

u=y - vb, . (5.19)

It was discovered during the formulation of this body point
procadure that the form of the "tangential" momentum equation described
above, where ;T is a linear combinaticn of ur and vy determined from
Equations (3.70) and (3.71), respectively, must be used when convective
Y-differences are taken. In Moretti's'’ original axisymmetric formula-

tion of this scheme, Equation (5.17) was written as

vy = B(vY - VbEE) + ... (5.20)

which follows analytically from
Vy Uy + by + VbEE . (5.21)

In theory, this approach is entirely equivalent to th2 result obtained

from the linear comhination of Equations (3.70) and (3.71), namely

CT = Buy + byByy + . . . . (5.22)

However, when convective Y-differences are used for ;Y in Equation (5.20)
and for uy and vy, in Equation (5.22), the resulting finite ¢ fference
expressions are not equivalent. A truncation error analysis shows that

second order accurate convective differencing for ;Y at Y = mAY produces
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Vy = Uy + bE

: vy * Vb“m + 0(aAY) (5.23)

which does not produce an accurate representation of Uy + bgmvy. Thus,
the form for ;T given by Equation (5.17) is the preferred form for this
approach, and has been shown to produce more accurate solutions, in the
sense of producing smaller errors in total enthalpy at the body when
the solution has converged‘to the steady state.
5.4 BOW SHOCK POINT TREATMENT

The Kentzer-Moretti predictor-corrector scheme, described in
the previous section, is also used for the computation of bow shock

points. Unlike the body point procedure, however, the use of this scheme

at bow shock points produces an equation for the shock acceleration
derived from a characteristic compatibility condition, which can be
integrated twice in time to compute the shock velocity and position.
The procedure outlined below is essentially that developed and used
extensively by Moretti; e.g., as in Reference 17; application of this
method has recently been simplified by deNeef®'.

Derivation of the equation for the shock acceleration starts
with the characteristic compatibility condition given by Equation (3.95).
The normal freestream velocity component relative to the moving shock

may be written as

~

Up = Uy + (vg - cT/G)N? + W Nq (5.24)

100.

4 st L el BN B
 —— .. e .. .

P I T AP S L T TH (W A e p

g b G gl e

B TR TR T R [T 7o TN (o P



where

u, * v.['é cosBcosa + S(sindsing + cosBsinacose)] (5.25)
v, * M,[;§ cosBcosa + C(sinBsing + cosBsinacoss)] (5.26)
w, = V_(sinBcosé - cosBsinasing) (5.27)

and o and B are the angles of attack ai+ sideslip, respectively. The

unit normal to the shock is

ﬁsaN‘?+N23+N3ﬁ (5.28)
where

Ny =-GcE/v (5.29)

Ny = G/v (5.30)

Ng = (ny - E4Cg=Co) /WY (5.31)
and

Ve (650 % gt b (ny - B0 - Gl (5.32)

The normal downstream velocity component relative to the moving shock

is

U= Ny + (V- cp/BIN, * Wy (5.33)
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and the downstream velocity components may be written as

u= l.l. + (G - a‘)N1

v = Vu*‘ (a - a.)Nz

W (U= u Ny

—
]
(5.34) éj
i
(5.35) 3
(5.36) ;

The time derivatives that appear in Equation (3.95) can now be replaced i

with expressions involving the shock acceleration by differentiating the
Rankine-Hugoniot conditions to obtain PT. G“T' and ET. and thus also

Urs Vys and wy from Equations (5.34)-(5.36).

written as

where

The Z-derivatives in Equation (5.39) must be evaluated with backward
differences, using Equation (5.13) in the predictor calcuiation. The

coefficients in the above expressions are derived in the Appendix.

The final equation for the shock acceleration may then be

4
Cr7 = [EEA 2Ry =Ty - T3/,
Ty = C3 + 50g + 230y + 2404,
T2 = A[Pz + zzuz + 23VZ + 24wZ]
Ty = Gy *+ 2040 + 23015 + L4404y
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In the predictor stage, Equation (5.37) can be integrated

to yield
~ k + T
CT n CT c.n. A (5.4])
tacke c% aT . (5.42)

The final values of the shock speed and position are obtained in the

corrector stage of the calculation from

ekt w3 (K 4 &+ eqp aT) (5.43)
ck+1 -<% (ck +¢+ c¥+] AT) . (5.44)

Once the new ~hock positions have been determined (predictor

or corrector), the shock slopes Cg and Cg may be evaluated from

(5.45)

cE Cy YE

and
(5.46)

Cg = Cy Xg * Cy Yq

where Cy and cy are evaluated from difference formulas. At most shock

points, Cy is evaluated at Y = mAY from a standard four point formula as

Cy = (Cpup - Bcpy + 3¢ + 2 ,,)/6AY . (5.4?)
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At the last two points in each 6-plane, the expression

CY = (-Zcm_3 + 9Cm_2 - 18Cm_] + 1]Cm)/SAY (5.48)

is used, while at the point adjacent to the centerline the form use? is

Cy is evaluated at X = 24X using the centered two-poirt difference

formula:

[ RO

The other shock derivatives required, CET and Cgr» are
determined using the difference formulas given above, but using s the
shock velocity, in place of <.

Knowing the shock slopes and velocities, the properties down-

stream of the shock are determined directly from the Rankine-Hugoniot

conditions:
ou = p_U, (5.51)
P+ pUt = Py + P, (5.52)
h+ddz=h +402
§' u® = " '2- Uu . (5.53)

For an ideal gas, these equations can be solved analytically for p, p, %
and u; for an equilibrium real gas an iterative solution is required.
To avoid this time-<onsuming iteration for real gas calculations, a

table of shock properties as a function of Gm is created at the start
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of the calculation, thus requiring only interpolation to determine the
downstream properties at any shock point during the computation. Once

U has been determined, the downstream velocity components can be computed

from Equations (5.34)-(5.36).
| 5.5 CENTERLINE POINT TREATMENT

T A——

Modifications of the numerical procedures described in the

| preceding sections are required for computational grid points located

on the singular centerline. These special procedures required at the

i e AL 3 K ek IS e en D

centerline are made necessary by the special forms of the governing

s R DS TR W SN PN

equations derived in Section 3.6, in which the equations at the center-

1ine are written with terms evaluated oniy in the planes ¢ = 0, 7/2, m,

and 3r/2.
Within any ¢ p1ane, only forward differences in Y are possible
at the centerline. In order to maintain a two-sided predictor-corrector

sequence for the Y-differences at the centerline, terms in the governing

equations are evaluated in the ¢ = 0 and ¢ = /2 planes in the predictor

stage, and in the ¢ = m and ¢ = 3r/2 planes in the corrector stage. The

I

resulting numerical scheme thus utilizes information from all directions,
in the spirit of the finite difference scheme used at points not located

on the centerline,

At field points along the centerline, the equations to be

f j solved with this procedure are given by Equations (3.108)-(3.112). A
difficulty arises, however, in the application of this technique when
the coordinate transformation to (£,n,8) space is not axisymmetric. In
this case, variations in the complex scaling factor g along the center-

line among the ¢ planes result in the non-correspondence of the
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computational grid points in physical space. In other words, even ' _% 1

though the computational grid points at the centerline are equally ' i 3

spaced in Z for all ¢ planes, grid points with the same Z value in

different ¢ planes may represent different points in physical space.

These differences are minimized by the use of the stretching parameter

a, in the coordinate transformation defined in Section 3.2, and thus

e e bt

linear interpolation procedures can be used to resolve the differences

? ; without any noticeable effect on accuracy. H
?‘i Calculations of the body and shock points along the center- g

line do not, of course, experience this difficulty, thus simplifying é
: f the numerical approach at these points. Details on the modifications §

! required for the characteristic slopes and compatibility conditions at
these boundary points are provided in Section 3.6.
A special procedure is required for the calculation of ;

shock slopes at the centerline, where accuracy requires a formulation

that utilizes information from more than one ¢ plane. In particular,

the calculation of cE in some plane ¢1 also requires information about

the shock shape from the plane ¢1 + m. A standard difference procedura
cannot be used, however, when an asymmetric mapping is invoked; i.e.,

when the mesh spacings Af and the transformed shock locations c are

not necessarily equal in the ¢] and ¢1 + 7 planes.

At the centerline, S=1and ¢ = 0 for all ¢ planes. It

PO PN

then follows that, with ( )1 denoting the ¢, plane and ( )2 denoting
the ¢1 + 7 plane,

(dn/G)~| = (dn/G)z
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and, in the limit as y-+0,

(de/6), = (de/6), . (5.55)

Using these relations, a four-point difference formula for cp can be
?% derived for unequally spaced base points;
Cg = Acg * Bey + Ccy + Dc g (5.56)
where
co =cC (0:¢])
S C(A513¢~|)
- C2 = C(ZAE] 9¢'l)
C_-|= Co + [C(A€23¢] +m) - C(0:¢] +17)] G]/Gz
Defining
o = G]A!:;Z/GZL\E.I (5.57)
where A£1 and AEZ are the mesh spacings in the respective ¢ planes, the
coefficients in Equation (5.56) are given by
1 A = (a2-5a + 2)/2AE.|cx(u.+'I) ' (5.58) :
-
B = 2/08, (a+1) (5.59) |
C = -a/2A£1(a+2) (5.60)
A‘ D= 2/A&;]a(a2 + 3o + 2) . (5.61)
3 107.
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The derivative cET is evaluated at the centerline using the same approach.

For the case of an axisymmetric mapping with a = 1, the difference formula
given by Equation (5.56) reduces to the standard four-point formula given
by Equation (5.47).

Once the solution at a centerline point has been obtained

within any one ¢ plane, the solution within other ¢ planes will also !
have been determined. Thermodynamic properties, such as P and s, corre- §

spond .irectly, but a change in the value of ¢ requires a rotation of

the velocity components. The transformed velocity components within

any ¢ plane can be written in terms of the known components in some

Pt I T

plane 4 =4y from

Lt s e e i

u(¢) = u(ey)cospcosd, +singsing;]

P eI

+ w(¢1)[sin¢cos¢] - cos¢sin¢]] (5.62)
v(o) = v(¢q) (5.63) !
i
w(9) = u(¢,)lcos¢sing, - singcosy,] i
+ w(¢1)[cos¢cos¢] + sin¢sin¢]] (5.64)

Similarly, the shock slope Cy at the centerline within any ¢ plane may

be expressed in terms of the slopes in the¢ =0 and¢ = 7/2 planes as l

cg(9) ='cg(¢=0)c05¢ + cg(¢=%)sin¢ . (5.65)
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The transformed centerline shock velocities miy also be related from
the condition that the quantity cT/G, which corresponds to the physical

shock velocity, is the same for all ¢ planes; thus

cr(¢) = Glo)er(e,)/6(e;) . (5.66)

5.6 CONSERVATION FIELD POINT TREATMENT

The conservation law approach to shock-capturing, described
in Section 4.1, is one of two methods investigated for the calculation
of embedded shocks within inviscid shock layers on reentry vehicle
nosetips. This approach requires the solution of the governing equatinns
written in conservation form at all field points using a version of the
MacCormack finite difference scheme described in Section 5.2. After each
integration step, the conservation solution may be damped and smoothed,
as vequired.

One change has been made in the MacCormack scheme for appli-
cation to the conservation calculations. Because the oscillations inherent
in conservation calculations near a discontinuity arise from approximating
derivatives across the discontinuity, the modification made to the
MacCormack scheme is designed to minimize the number of differences taken
across the discontinuity. This is accomplished by more closely aligning
the numerical domain of dependence of any given field point with the
probable orientation of an embedded shock within the computational mesh.

To illustrate this point, consider the numerical domain of
dependence of a point Y = mAY and Z = nAZ. Defining the numerical domain
of dependence of a point as all grid points that can effect the solution
at that point in one time step, the standard MacCormack scheme produces

the domain of dependence (in the Y-Z plane) shown in Figure 5.1.
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2 Fieure 5.1, NumericaL DoMAIN oF
DEPENDENCE FOR REGULAR
MacCorMACK SCHEME

Since the Y-coordinate direction is nearly normal to the body,

an embedded shock can be expected co be aligned within the Y-Z mesh as

3 shown in Figure 5.2. Note that the orientation of the shock in the Y-Z
mesh is counter to that of the numerical domain of dependence for the
regular MacCormack scheme. By changing the orientation of the numerical
i domain of dependence to be more ccnsistent with the expected shock

orientation, a smaller portion of the numerical domain of dependence of ]

a point near the shock will Tie across the discontinuity from that point.
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Ficure 5.2. TyprcaL ALIGNMENT OF EMBEDDED
SHock IN Y-Z COORDINATE MeSH

The numerical domain of dependence is reoriented by reversing
the directions of the Z-derivative approximations in the predictor and
corrector stages of the MacCormack scheme; i.e., backward differences
in the predictor stage and forward differences in the corrector stage.

The resulting numerical domain of dependence for this variation on the
MacCormack scheme is shown in Figure 5.3.

While this modification to the numerical scheme cannot eliminate

the oscillations inherent in éonservation calculations of discontinuities,

it will, in some circumstances, decrease the magnitude of the oscillations.
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Ficure 5.3, NuMmericAL DoOMAIN oOF
DerENDENCE FOR MAcCCorRMACK
ScHEME INVERTED IN 7 DIRECTION

5.7 A-DIFFERENCING FIELD POINT TREATMENT

The second method examined in this effort for the automatic
calculation of embedded shocks is the A-differencing scheme, described
in Section 4.2. In this approach to the embedded s iack problem, the
governing equations are written in non-conservation form and certain
terms are written in "split" forms that allow accurate modeling of the
domain of dependence. For example, the term AP2 would be approximated
as I/Z(XZ]PZ] + Az,Pz,) with this scheme, where the particular finite
difference expressions used for Pz] and PZ2 would be dependent on the

signs of AZ, and AZp» respectively.
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In each "split" term, both the ( )] and ( )2 derivatives
are approximated using a second-order accurate, one-sided, predictor-
corrector finite difference scheme. For either derivative, if the
corresponding coefficient ¥ is positive, backward differences are
employed; conversely, if the coefficient is negative, forward differences
are used. Backward differences are formed using Equations (5.13) and
(5.11) in the predictor and corrector stages, respectively, while forward
differences are formed using Equatidns (5.9) and (5.14), as described

in Section 5.2.

It will be noted in the A-differencing forms of the

governing equations, described in Sections 4.2 (axisymmetric) and 4.4
(three dimensional), that some terms are not split. These unsplit terms
are those that arise from the computational transformation to (X,Y,Z,T)
space and are generally small. The derivatives appearing in these terms
are approximated using convective differences, as described in Section

5.2, maintaining the overall second-order accuracy of the scheme.
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SECTION 6
VALIDATION OF SOLUTION

6.1 LIMITATIONS OF TECHNIQUE

In c¢his analysis a time-dependent algorithm has been de-
veloped for the computation o steady inviscid flows over ablated re-
entry vehicle nosetips with uniform supersonic or hypersonic freestream
conditions. This’procedure has been formulated in a new coordinate
system that is capable of being closely aligned with any nosetip geometry,
and includes a technique for the approximate calculation of embedded
shocks. The primary limitation that exists for this technique is the
assumption of isentropic flow downstream of the bow shock.

Because of the inviscid flowv assumption, the validity of
this analysis is limited to those high Reynolds number cases where the
thin boundary layer assumption and weak interaction theory apply.
Fortunately, for the flight conditions of reentry vehicles with ablated
nosetins. fcr which this analysis was undertaken, viscous effects are
gen2rally confined to a thin boundary layer adjacent to the vehicle
surface, and the inviscid flow field may be determined independently
of the boundary layer.

This inviscid assumption fails, however, when the nosetip
gecnetry produces separation nf the shock layer flow. Prediction of the

separated flow region must include viscous effects, for which the present

analysis is unsuitable.

.

As discussed in Section 1.0, inviscid theory has been

shown to produce accurate aerodynamic predictions for the flight conditions

of interest for all aerodynamic coefficients, with the exception of the
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axial force coefficient, which can be significantly affected by viscous f
shear and induced pressure effects. Thus, an inviscid aerodynamic pre-
diction procedure, such as developed here, can be a valuable tool for %

both the pre-flight and post-flight evaluation efforts relating to reentry

vehicle design and performance.

- Other limitations apply to the numerical procedure developad

in this research that are common to all numerical fluid flow computa-

el e | b

tional procedures. Fundamentally, it is required for accurate results

that the discrete grid points used in the numerical calculations be

LR i i s iR

spaced so as to be able to resolve all pertinent features of the body

e
. —— T =

geometry and the surroundiny flow field. In particular, a finer mesh

r ; will be required in regions of large flow gradients to avoid wiggles in

the numerical solution. (The appearance of wiggles in a numerical solu-

tion is indicative of inadequate mesh resolution for the case being

ke o1, it bt L bl

computed, or of come other error in the formulation or application of
the numerical technique. This point is discussed more fully by Moretti?®2.)
Criteria for the selection of appropriate mesh spacings for an earlier

transonic code were developed by H.i1, Kyriss, Truncellito, and

et U S a2

Martellucei ® ; these criteria are equally valid for the procedure developed
in this report.

Inconsistencies between the mesh point spacing and flow

gradients can, of course, be eliminated simply by using more mesh points
in the finite difference calculation. More core storage will also be
required for the computer code with an increased number of mesh points;

the only limitations on the use of this analysis in this regard is the

available core storage on the computer and the economics of a calculation

with a large number of mesh points.
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6.2 CONVERGENCE PROPERTIES

The time-dependent approach to solving the steady transonic
probiem is an iterative technique in which advancement of the solution
at any given iteraticn is defined using the time-dependent equations of
motion. In theory, as time increases to infinity, the steady-state
flow field solution is approached. The time variable used in the time-
dependent technique is directly analogous to the iteration number in
other iterative numerical techniques. In any iterative technique, it
1s necessary to define criteria for accepting a solution as being con-
verged. This section defines convergence criteria that have been
developed for time-dependent techniques in Reference 4 . These criteria
are defined in terms of fluid dynamic phenomena that arise in the course
of calculating the shock layer about a body in supersonic flow.

The criteria detailed below are sufficient to determine
convergence; i.»., when they are satisfied, the convergence of that
particular solution is ensured. Cases frequently arise, however, when
a satisfactory solution (from the standpoint of accurate aerodynamic
predictions) can be obtained without satisfying all of the convergence
criteria. Acceptance of such solutions requires judgement on the part
of the user, (In other words, the criteria presented here represent
sufficient, but not necessary, conditions for an acceptable solution.)

For a numerical method to be an accurate solution to a
problem, it must not only converge, but the numerical scheme must be
consistent with the problem being solved. The consistency of the time-
dependent technique used in this analysis is based on its discretization

of the inviscid Euler equations, and its use of non-dissipative
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differencing schemes. Thus, the validity of a solution obtained with
this procedure may be examined solely upon the degree of convergence

of the solution (assuming that the mesh spacing selected by the user is
adequate to define the details of the body geometry).

The convergence criteria developed in the previous study
will be summarized below, and then discussed in more detail. These
criteria are:

1. The “"stagnation" pressure must have converged

to an essentially constant value. If the actual
stagnation point is known tc lie exactly on a
mesh‘point in the finite-difference grid, the
computed value of stagnation pressure should be
within 0.5% of the known theoretical value of Po

2. The "stand-off distance" of the shock, Ao, must

have converged to a constant value.

3. The root-mean-square (rms) of the shock velocities,

(CT/G)rms’ must be converging (decreasing in
value) or have converged and, in magnitude, must
satisfy the relation (CT/G)rms < 0.004 V.

4, The total enthalpy at every point in the flow

being computed must be within 5% of the known
steady-state total enthalpy.

In a three-dimensional calculation, the flow stagnation
point does not usually correspond exactly to a computational grid point;
thus, for the first two criteria listed above, “po" is taken as the
pressure occurring at the centerline body point and “Ao“ is taken as

the distance between the body point and the pow shock point at
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the centerline. To i1llustrate the convergence of these quantities,
Figures 6.1 and 6.2 provide examples of convergent and non-convergent
time histories of Po

In the time-dependent technique an initial shock shape is
assumed and is allowed to adjust its position durirg the cours2 of the
calculation. Theo,etically, for a solution that has converged to a
steady state, the shock velocity will have vanished at all shock points
to within some "epsilon" of the freestream velocity. On a more practical
basis, the criterion described above ((cT/G)rms < 0.004 V_) is sufficient
to determine a satisfactorily converged solution, provided that the
magnitude of (CT/G)rms is decreasing from step to step (i.e., is not
diverging)when the criterion is only margirally satisfied. Samples of
converging and diverging time-histories of (CT/G)rms are illustrated
in the plots shown in Figures 6.3 and 6.4. One caveat is required
in the assessment of (CT/G)rms' Since (CT/G)rms is, in a sense, an
average of individual shock velocities, it is possible that the criterion
on (CT/G)rms be satisfied, while one or two individual shock velocities
are relatively large. Thus, judicious assessment of convergence based
on shock velocity should include examination of the individual shock
velocities as well as the value of (CT/G)rms'

The final criterion for convergence is based upon the
conservation of total enthalpy. Since the total enthalpy is not con-
stant in an unsteady flow, an indication of the convergence and accuracy
of a time-deperdent solution can be obtained by examining the difference
between the computed total enthalpy at each point and the known steady

state value (which is equal to the freestream total enthalpy).
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Defining

AH = (H-H_)/H_ (6.1)

a suitable c¢riterion for convergence has been found to be

o

|aH| < 0.05 . (6.2)

et bt

‘ The question of convergence of the time-dependen:: solution

can be summarized as follows: when a time-dependent solution satisfies :

L

the convergence criteria described above, it can be used with confidence

to provide accurate and reliable aerodynamic predictions, provided that
5 the mesh adequately resolves the important details of the body geometry
and of the surrounding flow field.
6.3 VALIDATION OF NOSETIP SOLUTION y
In this section the numerical procedures developed in this
research are validated by comparisons of predictions to experimental data
and, where appropriate, predictions obtained with o;her numerical tech-

niques. The validation process described in this section pertains only

to the nosetip solution procedures; the ability of these transonic

procedures, when coupled to a steady supersonic afterbody code, to make

accurate determinations of total vehicle inviscid aerodynamics is

demonstrated in Section 6.4. 3

Two versions of the three-dimensional time-dependent

inviscid code formulated in the new coordinate system (based on a series

i o

of conformal transformations) have been developed in this effort. The

basic version, which is denoted by CM3DT(NC), is formulated in terms of

s

the non-conservation dependent variables and is incapable of treating
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embedded shocks. The version based on the A-differencing scheme,

providing a method for treating embedded shocks, is denoted by CM3DT()).

s xS b W

The first step in the validation process is the demonstra-
tion of the ability of the new coordinate system to permit accurate
calculations of the inviscid flow over a wide variety of body shapes,

including shapes that could not previously be treated with transonic

ool "

codes formulated in standard coordinate systems (e.g., spherical). Use

of this new coordinate system does not, however, reduce the accuracy of

e R IR PR

calculations for shapes that are well-suited to analysis using a standard

coordinate system,
To 1llustrate the ability of the new coordinate system to

treat shapes that are well-suited to calculations using a standard

coordinate system, Figures 6.5 and 6.6 present predictions of the bow

kil b e s

shock shape and surface pressure distribution for a sphere in equilibrium
air at an altitude of 100 KFT with a freestream velocity of 20,000 ft/sec.
Two predictions are made with the CM3DT(NC) technique, using both a

coarse mesh (6 x 9; i.e., six points across the shock layer and nine
The other predictions

kbt tithbr i . o s et gl 1,

points along the body) and a fine mesh (11 x 17).
shown for this flow have been obtained from the inverse technique of

Lomax and Inouye 3% and from the technique developed by Kyriss and

Harris® , which is an explicit time-dependent finite-difference code

formulated in a spherical coordinate system. (The method of Kyriss and ]

Harris has been extensively validated by comparisons to experimental

Hall and Nowlan® .)

E ’ data, e.g., by Hall, Kyriss, Truncellito, and Martellucci * and by
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The results obtained with the CM3DT(NC) code show
excellent agreement with the other predictions for this case and,
furthermore, are 21so seen to be invariant with refinement of the mesh,
verifying the consistency of the numerical approximations. This case
also serves to illustrate the real gas thermodynamic capabilities of
the CM3DT procedure,

The ability of the new coordinate system to treat less
regular shapes is shown in Figures 6.7-6.10, which present comparisons
of bow shock shape and surface pressure distribution predictions for
the axisymmetric PANT Triconic (described by Jackson and Baker in
Reference 21) to experimental data at M_ = 5 and a = 0°. (Although
an indented shape, no embedded shock forms on this configuration at
these flow conditions.) Figure 6.7 presents the surface pressure distri-
bution predicted with the CM3DT(NC) procedure for this configuration,
which has a small radius corner at the shoulder leading back to an aft
cone, as evident in Figure 6.10, The agreement between the prediction
and the data is seen to be good in Figure 6.7, except for oscillations
arising in the vicinity of the corner. These oscillations are the result
of inadequate resolution of the finite difference grid in the vicinity
of the corner, as discussed and illustrated by Hall, Kyriss, Truncellito,
and Martellucci® . The influence of this sharp corner is made more
evident by the results obtained from a similar calculation, in which
the sharp corner and cone were removed. As shown in Figure 6.8, no
oscillations appear in the CM3DT(NC) prediction of surface pressure when

the sharp corner is eliminated.
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It was discovered during the course of this research that

gi the X-differencing scheme, in addition to its shock-capturing capability,

E has the additional ability of eliminating the spurious oscillations that
arise at such sharp corners. This capability is illustrated in Figure

6.9, which depicts the surface pressure distribution for the PANT Triconic
(with the sharp corner and conical aft section included) as predicted

by the CM3DT(A) procedure. The lack of oscillations in this calculation

is a manifestation of the ability of the A-differencing scheme to
accurately model the physical domain of dependence, preventing oscillations

from propagating upstream in supersonic flow.

o st b cn . -

The final comparison for the PANT Triconic predictions
| is shown in Figure 6.10, demonstrating the agreement between predictions
‘ and experimental data for the bow shock shape. (A1l CM3DT predictions,
;ﬁ both with and without the sharp corner, for the bow shock shape are
essentially equivalent.)
It should be noted that attempts at computing this slender
shape with the technique of Kyriss and Harris ®, which is formulated in

a spherical coordinate system, were unsuccessful, because of the inability

of the spherical coordinate system to be closely alignedu with the body

?5 geometry.

‘ Further evidence of the abilities of the new coordinate

‘ system is provided in Figure 6.11, which presents a comparison of surface
pressure predictions and experimental data for the PANT Simple Biconic
(described by Jackson and Baker?') at M_ = 5 and o = 5°. This axisym-
metric configuration is a 45° sphere-cone nosetip, with a rounded

shoulder leading to a 6° aft cone. As seen in this figure, the

,‘ 132.
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predictions of both CM3DT(NC) and the technique of Kyriss and Harris®
show good agreement with the data, except for the oscillations created
by the lack of adequate resolution at the shoulder. Not apparent from
this figure, however, is the improved convergence behavior obtained
with the new transonic technique. After 400 time steps, using the
same number of grid points, and computing approximately the same elapsed
physical time, the root-mean-squares of the shock velocities, which,
as discussed in Section 6.2, are reliable indicators of convergence,
differ by an order of magnitude. For CM3DT(NC), (CT/G)rms/V“ = 0,004,
while the equivalent quantity for the other technique is 0,056, which
does not satisfy the convergence criterion.

Another good indicator of convergence for a time-dependent
technique is the maximum error in computed total enthalpy. For CM3DT(NC),
the maximum error is 8.6% for this case, compared to a maximum error of
28.5% for the technique of Kyriss and Harris, further illustrating the
benefits of the new coordinate system.

The ability of the CM3DT(NC) code to treat asymmetric shapes
at angle of attack using the new coordinate system is illustrated in

Figure 6.12, showing predictions of the bow shock shape for the Blunt-1l

shape at M_ = 13,4 and « = 3°. (This asymmetric nosetip shape was
derived in a nosetip reconstruction ané1ysis described by Hall and
Nowlan® .) The predicted shock shape is seen to agree well with that
predicted using the technique of Kyriss and Harris?® ,

The final step in the validation process for the nosetip
solution is the demonstration of the ability of the Cii3DT()A) procedure

to predict flows over shapes that produce an embedded shock. In Figure

134.
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6.13, a comparison is shown of the predicted surface pressure distri-
bution and the experimental data for the PANT Triconic at M, =5 and
a = 10°; the agreement is seen to be excellent. Schlieren photographs
of this configuration at this angle of attack, which may be found in
Reference 21, clearly indicate the presence of an embedded shock in
the lee plane. This comparison serves to illustrate the capability of
the three dimensional version of the A-differencing scheme to compute
inviscid nosetip flow fields with embedded shocks. (The capabilities of
the axisymmetric version of the A-differencing scheme have been demon-
strated in Section 4.)
6.4 PREDICTION OF TOTAL VEHICLE INVISCID AERODYNAMICS

In the preceding section the ability of the CM3DT technique to
accurately predict inviscid flow fields over ablated reentry vehicle
nosetips has been demonstrated. To complete the validation prucess for
this technique, it remains only to demonstrate the capability of the
CM3DT nosetip code, when coupled with an existing supersonic afterbody
code, to make accurate predictions of total vehicle inviscid aerodynamics.
For this validation effort, the CM3DT code has been coupled to the super-
sonic afterbody code of Kyriss and Hafris8 » which is a steady, fcrward
marching finite difference technique formulated in a cylindrical co-
ordinate system. (Coupling of the nosetip and afterbody codes requires
interpolation on the nosetip solution to determine the flow variables
in the initial data plane of the afterbody solution and an integration

to determine the forces and moments acting on the nosetip.)
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In the calculation of total vehicle aerodynamics it is of
critical importance to accurately model the influence of the nosetip
shape on the afterbody fiow field, and thus on the resulting forces
and moments acting on the vehicle. For example, the importance of

the downstream influence of an asymmetric nosetip in the determination

of the trim angle of attack (aT) for a ballistic reentry vehicle has
been demonstrated by Hall and Nowlan® . Direct coupling of numerical
flow field calculations for nosetips with afterbody procedures will
é ; automatically include the nosetip's influence on the afterbody flow
field.

E The first validation case for the CM3DT code coupled to the

afterbody solution is presented in Figure 6.14. This figure depicts a

comparison of predictions of the normal force coefficient (CN) and the
pitching moment coefficient (Cm) as a function of angle of attack for
a 9° cone with a spherical nose, with a vehicle bluntness ratio (RN/RB)
of 15%, at M_ = 20 in ideal gas (y = 1.4) with no sideslip (8 = 0°).
The prediction labeled CM3DT was obtained using the CM3DT(NC) code to
provide the initial data required for the Kyriss and Harris® after-
body code; the other prediction was obtained using an axisymmetric
calculation of the spherical nosetip flow field (in wind-fixed coordi-

nates), with the required initial data being obtained by suitable rotations

of the spherical solution, as described in Reference 8 . The accuracy
of the Kyriss and Harris afterbody code, and of the Kyriss and Harris

axisymmetric and three-dimensional transonic codes for blunt, convex

"‘ nosetips, has been extensively demonstrated through comparisons of
‘ predictions to wind tunnel data, as shown, for example, in References
{

138.

U o o T




0.4 | | T | T

CM3DT(NC)

o) KYRISS AND HARRIS 8]

o
w
!

=
o
uv
e
')
g™
i
S o
=0
0.1 -~
Q ]
0 LI ! 1 I L
%&_’,E -0.1
5
=
]
T =
=2 -0.2}F -
S
E§ xcg/LA =0
-0.3 | | 1 1 |
0 2 4 6 8 10

ANGLE OF ATTACK (DEG.)

Ficure 6.14, NormAL Force AND PITcHING MOMENT
COEFFICIENTS VS, ANGLE OF ATTACK FOR
9° SpHERE-CONE OF 157 BLUNTNESS AT
M. =20, 8 =20°

139.

sl a b 4




TR T ST T RIS YT W

4, 5, and 8. As is evident in Figure 6.14, the agreement hetween
the predictions of CN(a) and Cm(a) is excellent.

The comparison of aerodynamic predictions for spherically
blunted cones obtained with these two techniques is continued in Figure
6.15. This figure illustrates the excellent agreement obtained between
the two predictions of pitch center of pressure as a function of
bluntness ratio for the 9° sphere-cone at M_ = 20 and a = 5°. (The
pitch center of pressure is defined as xcp/LA = xcg/LA - Cm/CN when
the reference length used in the non-dimensionalization of the pitching
moment is the virtual cone length.)

The ability of CM3DT to provide accurate initial data to
the afterbody calculation for spherically-nosed vehicles is further
demonstrated in Figure 6.16. This comparison is similar to that shown
in Figure 6.14, in that predictions are obtained for CN(a) and Cm(a)
for a 15% blunt 9° sphere-cone at M_ = 20, except that the vehicle is
at « onstant sideslip angle (B) of 5°. The agreement between the two
predictions is again seen to be excellent, and serves to verify the
ability of the CM3DT to compute flow fields on nosetips in both pitch
and yaw.

Figures €.17 and 6.18 present a comparison of inviscid aerodynamic
prad: _‘ons . ained for a vehicle with a blunt asymmetric nosetip. The
vehicle is a 6° cone with a nominal bluntness ratio of 25%; the nosetip
is the Blunt-1 shape (illustrated in Figure 6.12), which was derived in
a nosetip sh- - .econstruction effort described by Hall and Nowlan® .
(In Reference 5 , the Blunt-1 shape was selected as a plausible nosetip

shape for an actual flight vehicle at 20 KFT, based on actual recession
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measurements and on the consistency of aerodynamic characteristics derived

from motion data with those computed with the transonic nosetip and
supersonic afterbody codes of Kyriss and Harris® . The computed trim
angle of attack, ap = 3.35°, was consistent with that measured by an
onboard magnetometer, as indicated in Figure 6.18.)

A comparison of CN(a) predictions for this configuration is
presented in Figure 6.17, and fair agreement is evident between the
predictions obtained with the CM3DT(NC) technique and with the three-
dimensional transonic code of Kyriss and Harris. Similar agreement is
seen in the Cm(a) predictions shown in Figure 6.18. The CM3DT pre-
dictions indicate a trim angle of attack of 3.58°, which is within the
ar range measured by the magnetometer.

The above comparisons have demonstrated the ability of the
CM3DT code to produce nosetip flow field solutions and afterbody solution
initial data for spherical and blunt convex nosetip shapes with an accuracy
equivalent to that of the extensively valiaated cransonic technique of
Kyriss and Harris® . Because the CM3DT code has been developed to
extend the range of nosetip geometries for which accurate numerical
inviscid aerodynamic predictions can be made, however, the remaining
validation cases to be documented in this section must rely on compari-
sons of CM3DT solutions with wind tunnel data for complete reentry
vehicles, rather than with other numerical solutions.

The first case to be considered in this comparison of numerical
predictions and experimental data is the N8 nosetip, shown in Figure

6.19, mounted on a 6.3° cone, with a nominal bluntness of 25%.
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Experimental data were obtained at Mach 8 in Tunnel B at the Arnold
Engineering Development Center (AEDC); details of the tests and the
resulting data are described by Hahn and Little®*. The N8 nosetip is

a "tilted cone" shape, with relatively small shoulder radii, and is
intended to simulate an asymmetric shape that could result from
turbulent ablation on the nose. Because of the fairly sharp corners

on this shape, the CM3DT()) code was used to generate the nosetip flow
field solution, since the A-differencing scheme has been found to
eliminate wiggles arising at sharp corners, as discussed in Section 6.3.

Comparisons of the predictions of the normal force and pitching
moment coefficients to the experimental data are shown in Figures 6.20
and 6.21, respectively. These comparisons show good agreement between
the predictions and the data. Also, the CM3DT technique has accurately
computed the trim angle of attack to be 3.86° (based on a linear inter-
polation between values of Cm computed at o = 2° and o = 4°), compared
to the experimentally determined value of 3.52° (based on a linear
interpolation between-data points at a = 3° and a = 4°).

The final validation cases to be presented in this section
involve comparisons between predictions and tunnel measurements of
aerodynamic forces and moments for a 6° cone (25% nominal biuntness)
with two axisymmetric indented nosetips. The tests were conducted in
Tunnel F at AEDC at a Mach number of 11.6 and are described by Boudreau,
Crain, and Edenfield3®> The nosetips tested were the Very Mildly In-
dented Body (VMIB) and the Mildly Indented Body (MIB), described by

Reeves, Todisco, Lin, and Pallone2?, and illustrated in Figures 4.4

and 4.7, respectively.
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Since both the VMIB and MIB nosetips are indented and test: were

conducted at non-zero angles of attack, it was necessary to use the

bl it i o1

CM3DT(X) code because of the shock-capturing capability of the A-dif-

ferencing scheme for the treatment of embedded shocks. Figures 6.22 and

T

6.23 present comparisons of CN(a) and Cm(a) predictions to the data,

respectively, for the VMIB nosetip, and the agreement is seen to be

PRI & SERTIEE B Rt

excellent. .
Zi . The same comparisons are presented in Figures 6.24 and 6.25 for f
the vehicle with the MIB nosetip. Again, the overall agreement between

the predictions and the data is seen to be good. (Discrepancies are

o
i At bl b = =

apparent, however, between the predicted and measured values of CN and Cm

at o = 4° for this configuration. The validity of the CM3DT calculation

|
!

at this angle of attack, as measured by the convergence of the computation,

is comparable to that of the calculations at other angles of attack, where ?

T A OO AR PRI PRSI YIS S TR wuivs i qpppmseaaaay

good agreement between predictions and data is evident.)
Further validation of the VMIB and MIB calculations is presented %
in Figure 6.26, which depicts the predicted pitch center of pressure loca-

tions compared to the experimental center of pressure data presented in

Reference 8. The agreement is seen to be excellent.

In conclusion, the ability of the CM3DT()) code to compute in-

e, TR AT L

viscid flow fields on indented nosetips at angle of attack, when coupled
with a supersonic afterbody code, has resulted in a technique that is
capable of producing accurate aerodynamic predictions for reentry vehicles

with realistic ablated nosetip shapes, as demonstrated above. This capa-

| bility represents a significant extension of the applicability of numerical
‘ techniques to the evaluation of reentry vehicle inviscid aerodynamics.
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SECTION 7

CONCLUSIONS

The goal of this research effort has been the development of
a computational technique for the prediction of inviscid flow fields
about ablated reentry vehicle nosetips. The development of this capa-
bility has required the elimination of two major deficiencies in
existing supersonic blunt body flow field procedures. First, a co-
ordinate system n.s been developed that is capable of being closely
aligned with ablated nosetip shapes, producing coordinate surfaces
that are either nearly parailel or nearly normal to the nosetip surface.
Second, an approximate capability has been developed for the calcula-
tion of embedded shocks on indented nosetips.

The new three-dimensional coordinate system is based on
sequences of conformal transformations that are carried out independently
in each meridional plane. The conformal transformations developed for
this effort are defined in terms of "hinge points", which are discrete
points selected such that the body contours are modeled in an approxi-
mate manner.

A three-dimensional blunt body code has been developed using
this new coordinate system, with the governing equations written in
non-conservation form. A second-order accurate, explicit procedure
has beer used to integrate the time-dependent equations, with the
steady state solution being sought as the asymptotic limit of an
unsteady flow. Body points and bow shock points are computed using

special algorithms that are based on the method of characteristics.
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This new three-dimensional blunt body code has extended the

range of nosetip geometries for which inviscid flows can be success-
fully computed. For ablated nosetips without embedded shocks, this
technique has demonstrated excellent agreement with experimental data
and (for sufficiently regular shapes) with other numerical techniques.

As a first step in treating the embedded shock problem on
ablated nosetips, two shock-capturing techniques have been examined
for the axisymmetric problem. These two procedures, the conservation
formulation and the A-differencing approach, can only approximate
discrete embedded shocks, but do not require special logic to detect
the embedded shocks or to treat their movement through the coordinate
mesh during the time-dependent calculation. Comparisons of these two
techniques have been carried out by developing two axisymmetric time-
dependent blunt body codes, using the new coordinate system developed
in the first part of this effort.

The conservation formulation, in which the dependent variables
used are derived from the inteqgral conservation laws, was found to
require numerical damping to control the¢ oscillations produced when
capturing a shock. This artificial damping has been demonstrated to
have the potential of distorting the shock layer being computed,
leading to smooth but inaccurate results.

In the A-differencing approach, in which the non-conservation
form of the governing equations is solved using a finite difference
scheme that accurately models the domain of dependence of each mesh
point, no numerical damping was required. In general, the A-differencing
scheme has been found to produce better agreement with experimental data

for nosetips with embedded shocks than the conservation approach.
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F! The A-differencing scheme is at best, however, an approximate embedded

shock solution, since there is no mechanism for an increase in entropy

A
4 bt Al i i s £ e et s

across the "captured" embedded shock.

Based on this comparison of axisymmetric shock-capturing %
techniques, the A-differencing scheme was selected for extension to |
the three-dimensional problem, using the new coordinate system. (This :
effort is the first use of the A-differencing scheme for a three- %

dimensional, time-dependent problem.) The three-dimensional i-differencing

scheme has produced gcod agreement with experimental data for indented i
nosetips at angle of attack.
In addition to its shock-capturing abilities, the A-differencing

i scheme has also demonstrated an ability to eliminate oscillations that

1 appear in other blunt body solutions at sharp corners in supersonic flow.
= This capability arises from the accurate modeling of the domain of
‘ dependence of each grid point by the A-differencing scheme, preventing
disturbances from propagating upstream in supersonic flow. The capa-
bilities of the A-differencing scheme are evidence of the importance

of considering the physics of the flow when developing a numerical

simulation.

The codes developed in this effort have significantly in-
creased the range of ablated nosetip geometries for which inviscid
aerodynamic predictions can be obtained. Coupling these nosetip codes
to an existing sﬁpersonic afterbody code has provided a unique capa-
bility for the determination of inviscid aerodynamic performance

for an entire reentry vehicle, both for pre-flight aerodynamic

predictions .nd for post-flight performance analyses. The utility

of these codes is enhanced by their relative efficiency, with a

158.




g

SRS O

typical nosetip flow field calculation requiring approximately three
minutes on the COC Cyber 176 computer, allowing the use of these
codes on a routine basis for design and evaluation efforts.

Extension of the current effort would require the develop-
ment of a procedure for treating embedded shocks as discrete dis-
continuities. Such a shock-fitting technique, in which the Rankine-
Hugoniot conditions are strictly enforced across the embedded shocks,
would remove the approximations inherent in the isentropic A-differencing
scheme. The development of a shock-fitting algorithm will be simplified
by the use of the A-differencing scheme since the A-scheme provides
a convenient, reliable method for the detection of shocks. Coupled
with the generalized coordinate system developed in this effort, a
shock-fitting technique would represent the ultimate capability for
flow field predictionsAfor ablated reentry vehicle nosetips, subject to

the limitations inherent in the assumption of inviscid flow.
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APPENDIX
COEFFICIENTS FOR THE SHOCK ACCELERATION EQUATION

In Section 5.4, a form of the characteristic compatibility
condition for bow shock points written in terms of the shock accelera-
tion cop is given by Equation (5.36). Because of the complexity of
the resulting equation, the shock acceleration is written for con-
venience in terms of a number of coefficients, which are derived in
this Appendix.

First, it is necessary to find the time variation of the

unit shock normal by differentiating Equations (5.29)-(5.31), re-

sulting in
N2T = -N2(¢2cT + vT/v) (A.1)
N1p = - CENZT - N, Cet (A.2)
N3p = -N3(§cT/Gy + vp/v) + [cT(G¢/G + cgw¢)
- E4CeT = Crl/YV (A.3)
where

vp = Ny [G{-¢pcr (1+c52) + Cgch}
-Cep (ng = Eucp = cg)?/G%°
+ {CT(G¢/G + C€U¢) - £¢C£T - CBT}(n¢"E¢CE'Ce)/Gy2] . (A.4)

Defining

(A.5)
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and differentiating Equation (5.24) results in

C] = ‘Nz/G (A.G)

Cz = ¢]CT(-VQN1 + umNz) - CT2¢2N2/G

+

uNip + (v, - cT/G) Nap + wN3p (A.7)

where it has been noted that

T Ol T 0 S O 0 A i .

éi Uop = = VodyCp

Voo = Ug$7Cq

ol bkt 4 1.t i bt

Other required time derivatives are defined as

Lot el
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31t Gy | (A.8) 3

= Cs CTT + C6 (A°g)

which are to be evaluated from ¥
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resulting in
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The derivatives 3P/3u, and 3U/3lU_ may be evaluated by straightforward
differentiation of the well-known Rankine-Hugoniot conditions for an
ideal gas; for equilibrium real gas thermodynamics. where the Rankine-
Hugoniot conditions must be solved by iteration, these derivatives may
be evaluated numerically from tables of shock properties as functions
of U_.

Velocity components downstream of the shock, given by

Equations (5.34)-(5.36) may be differentiated to give

ur = C9 crr * C]0 (A.
T et Gy (A,
Wp = Cig ot Gy (A.
where

Cg = (Cg - G N (A.
Clo = Vautiop + (Cg - Cp) Ny

+ (W - T) Ny (A.
¢y = (€ - C) N, (A.
Crz = uabyop *+ (Cg - o) Ny

+ (U - T,) Npy (A.
Cg = (C5 - C)) Ny (A.
Crq = (Cg - Cp) Ny + (U - T,) N3 . (A.
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The coefficients C7 and C8 are defined for convenience as

(A.26)

Cg = Cg - C
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