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FOREWORD

This report describes work performed in the Structures and Dynamics I
Division, Flight Dynamics Laboratory, Air Force Wright Aeronautical

Laboratories and in the College of Engineering, Air Force Institute of

Technology, under the Defense Research Sciences Program, Project 2304,

Mathematical and Information Sciences, Task NI, Computational Aspects

of Fluid and Structural Mechanics. It constitutes the Final Report of

Work Unit 2304N112, Duct Acoustics Research, describing work accomplished

between December 1975 and May 1981.

The author expresses his appreciation to Ms. Jean Schwab for

running the computer programs, to Dr. Jon Lee for discussions concerning

fluid flows and to Dr. Karl G. Guderley for pointing out to the author

the additional source of error in the least squares approach.
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SECTION I

INTRODUCTION

Duct acoustics continues to be of great. interest to the aircraft
industry because of the need of obtaining quieter aircraft by inserting

sound absorbing linings in jet engines. When considering a reasonably
detailed representation of an aircraft engine, one obtains a system of

linear differential equations with nonconstant coefficients to be solved
in a region with a complicated nonuniform geometry. Earlier, we used a

finite difference method with a conformal map to determine sound pressure

levels within nonuniform ducts in the absence of flow (References I and 2).
However, for all but a few duct geometries the conformal map must be
determined numerically, and this can be a complicated problem ini itself.[ An integral equation method was used in Reference 3 to solve the no-flow
equations in both uniform and nonuniform ducts. This method is very[ efficient in terms of computational time and does not require a mapping
to a uniform geometry. However, for the problem of flow in a nonuniform

duct, the acoustic equations have variable coefficients. The fundamental

solution, which is needed in the integral equation method, is not known.
With the finite element method, we are able to handle complicated non-
uniform geometries and also take advantage of the high Pocder convergence
of the higher order finite element methods. For these reasons, we have
decided to evaluate the finite element method for solving problems in duct
acoustics. Because of the great versatility of the finite element method,
there are many alternatives to consider. For instance, a least squares

apiroach could be used, and the resulting positive definite system of
equations (called the stiffness matrix by the structural engineers) could

be solved by an iterative method. The use of an iterative method had been

considered and rejected for finite differences because the finite difference

system of equations was not positive definite and, hence, not compatible

with an iterative solutioti technique. However, the system of equations

which arises from a least squares finite element approach is positive

definite and can be solved iteratively.
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A problem with the least squares approach is that it introduces an

additional source of error which does not occur with a Galerkin finite

element approach. So perhaps a Galerkin approach should be used. This

can be viewed as a type of weak solution of the differential equations

in question or as a method of weighted residuals. The system of equations
which results when a Galerkin approach is used to solve the Helmholtz

equation is not positive definite and, therefore, cannot be solved

iteratively. If a direct solver is used, the decision has to be made

whether to make it in-core or out-of-core on the computer at hand.

Once the basic approach has been decided, a choice of basis or shape

functions must be made. The two choices considered in this paper are

piecewise linear and piecewise quadratic polynomials. The accuracy of
these two different systems of basis functions are compared as well as

their respective computational times. Related to the choice of basis

function is the way that the duct geometry is divided into elements.

One possibility considered was the use of rectangles and triangles with the

triangles used to improve the approximation of the boundary of a non-

uniform duct. A second approach consists of using only quadrilaterals

with perhaps curved sides to approximate the boundary. Results were
consistent with others (Reference 4) in the discovery that, in general,

triangles have lower accuracy than rectangies or quadrilaterals for

many classes of problems. Since the polynomials and products of poly-

nomials which comprise the basis functions need to be integrated, it has

to be decided whether to integrate exactly or to use numerical quadrature.

These questions and alternatives have been addressed and will be discussed

in subsequent sections of this paper.

One of the most difficult decisions to be imade when solving duct
acoustics problems in nonuniform ducts is choosing the type of flow.
The flow considered is that which corresponds to uniform mean flow in a
uniform duct. This flow field theii provides the coefficients in the

acoustic equations.

2
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As the results indicate, the finite element method offers simplicity

of use once the initial programing and bookkeeping efforts are
completed and is accurate when compared to competing methods such as
finite differences. The advantage that nonuniform geometries are moreI
easily handled by finite elements versus finite differences is not as

great when the mapping function is used to compute the flow field. This

is because the same mapping function could be used to map the nonuniform

duct to a rectangular duct with the acoustic equations on the rectangle

then solved by finite differences.

In Section 11 the derivation of the acoustic equations and boundary

conditions will be described, in Section III the finite element solution

method will be discussed and in Section IV the results will be presented.

For other references using the finite element method to solve duct

acoustics problems, see References 5-8. .

3
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SECTION II
!I

DERIVATION OF THE EQUATIONS

1. DIFFERENTIAL EQUATIONS

If viscous and heat transfer terms are neglected, the equations of

motion for an ideal gas are:

Momentum 0' D(4')/Dt - -Vp' (a)

Continuity D(p')/Ot + p'(V.,') - 0 (b) (1)

Energy and state p - const p (c)

where pl is the density, I' is the velocity vector, and p' is the pressure.

Equations 1 can be combined to form the usual conservation of mass

and momentum equations:

+t .Vp' + p'V-1- 0

p1 BV + •,V -- Vp1

at (2)

Because of the application to aircraft engines, these equations have been

written in cylindrical coordinates and become:

+ u + v'I- + !
at ar r 30

and~~~ a+ml lcutn acouti quniy i e. ii' = + u, 0 ~ ~ +v

Laz Z+' 3 r r ;0 r

F1 LUL + u -w + v a--u 9
[a•v' uV'+t'v wz a Vr + r aej azr

pw~a 'awl' v,aW'w ' +w + W, D
+uat -+-u-+ rr +ýc r V-(- 3vw

--- • -l(3)
S; I u° ' w p'andp' e r

Ifu, v1, W, p, an 'are each written as the sum of a mean quantity

and a small fluctuating acoustic quantity, ie., W'= + u, vý + v,

)4
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W, + w, p' - + p, and p' - + p, where the mean quantities are

independent of time and satisfy the steady mean flow equations and where

products of the fluctuating quantities are considered negligible, then
Equations 3 become:

az ar r

"YPL r + r -- az u -

,+p f w. +• (Lu + V + +maw)-0
M rz ar r r (a)

(i. + +w m)u +• - u - au v
ýz r a-+ ar ar

+ 1E au -1~ -vU~

50 p ar r ae )

+ 0
'r aZ (b )

w U (TT -jV L r r aev
(if, +- ;+ m)v + - +va v+ u,

ar re rZ ar
c (4)

+ (1 a 2---+w Iv ( - +2 ( 2-V- +v I- )paO r w n? 1e v a

+ 1 0 (c)

+ - aw aw = arI

O W_ M+ w +,- )w 5w -• T a

Sor an t d z a

-•T-u + (2w-+-; v+ .c2 (U 2w- +-+v a.-w,

In Equations 4, time dependence is assumed to be of the form eint while
0 dependence is assumed to be of the form eim In addition, the equation

Sp = C 2p has been used to eliminate p from the equations. Therefore, the

equations contain only derivatives with respect to z, the axial coordinate,

and r, the radial coordinate, and the duct can be taken to be two-

dimensional. Equations 4 will be used in Section III in the finite element

formulation ot the duct acoustics problems to be considered.
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2. BOUNDARY CONDTTIONS

Because of the form of the differential Equations 4, the appropriate

boundary conditions are the specification of either the pressures, the

4 velocities or setting the ratio of the pressure and velocity equal to a
S~given impedance around the boundary of the duct. Because of the assumption

of axial symmetry along the part of the boundary corresponding to r = 0,

the radial component of the velocity is set to zero. Along the entrance

of the duct the pressure distribution is specified while at the exit area

of the duct the ratio of the exit velocity and pressure are set equal to

the exit impedance. These conditions can be specified independently of

the flow within the duct. However, at the outer wall where sound absorbing

liner is located, the general form of the boundary condition depends on

the flow if slip is permitted. That is, at the outer wall the boundary

condition is u n +v n

un x + v n r = -/ W0 x 0ra (5)

where n = (n , n ) is the unit outer normnal to the boundary at the point
x r

(x,r). Note that in the case of no-slip on the boundary, u n + v n =0,
so that Equation 5 reduces to u nx + v nr = p/z.

xt r

6I
iI
!-1

l.4
!iI

.F . .r• , ,•....•,.... ...•. ... . . .. ..... :.,.. = ,•''- :• • • • .;• ••., . _•... .. ,: •



AFWAL-TR-81 -3087

SECTION III

THE FINITE ELEMENT METHOD

1. LEAST SQUARES METHOD

Because of the attractiveness of solving large systems of equations by

using an iterative method, the first attempt at solving acoustic problems

with a finite element method was with a least squares method. For iterative

methods to converge, it is necessary that the system to be solved be

positive definite (Reference 9). However, if a straight-forward finiteI

element approach is taken with the acoustic equations, the resulting

system will not be positive definite. On the other hand, the system of

equations resulting from a least squares approach will be positiveii definite and, therefore, amenable to an iterative method. The least
squares formulation of the problem consisted of squaring the left-hand
side of Equations 4a-d, sunwiing the squares, integrating the sum of

squares over the area of the duct, and then minimizing this expression as

a functional of the variables p, u, v, w. In this formulation the boundary
conditions were imposed by writing them as an equation with vanishingj

right-hand side, squaring this equation, integrating it over the boundary

and adding this line integral to the area integral already obtained.

The functions p, u, v, w were written as linear combinations of piece-

jwise polynomial functions defined over rectangular and triangular sub-
divisions of the duct, and these linear combinations were substituted
into thie aforementioned functional. In this way, the functional was

then a function of 4 N unknown variables instead of a functional. There

were 4 N variables because each of four functions p, u, v, w was written

as a combination of N piecewise polynomials so there were N unknown
coeficintsforeac funtio ora ttalof N uknons o dterine

Teusual procedure of differentiating this function with respect to each

of the variables and setting each equal to zero results in 4 N equations
to be solved.

Although the solutions obtained from the least squares approach were

qualitatively correct and quantitatively adequate, when compared to finite

difference solutions requiring approximately the same computational effort

7
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they were not nearly as accurate. The following example illustrates the

source of error in the least squares approach :Mich caused the poor com-

parison with finite differences when both were compared to an exact

solution. Suppose the ordinary differential equation and boundary con-

ditions to be solved are

y' + y =O, y(O) =0, y(l) 1 (6)

on the interval between zero and one. A typical least squares formulation

would be to minimize the functional

I
J(y) ',Y + y 2 dx (7)

0

over the solution space of all functions having an integrable second
derivative which vanish at x = 0 and equal one at x = 1. However, if the

first variation of this functional is taken, the Euler equation obtained is

IV

y +2y' +y=O (8)

with the additional natural boundary conditions 1
(y" + y) : 0 at x=O and y'" + y) 0 at x=l (9)

Now the general solution of the differential Equation 6 is y = a sin (x)

+ b cos (x) and the boundary conditions require that b = 0 and a = I/sin(l).

Therefore, the solution to Equation 6 is y = sin(x)/sin(l). The general

solution of differential Equation 8 is y = a sin(x) + b cos(x) + c x sin(x)
+ d x cos(x). If the boundary conditions,Equation 9 are satisfied exactly,

then c = 0 and d = 0, and the requirement that the solution vanishes at

x = 0 and equals one at x = 1 yields y = sin(x)/sin (1). Therefore, if

the natural boundary conditions are satisfied exactly, the functional

Equation 8 yields the correct solution. But if Equation 7 is minimized

approximately using the finite element method, then Equation 9 will not be
satisfied exactly, and consequently the coefficients c and d will not

vanish. Hence, the finite element solution will contain contributions

from the two spurious functions Y3 = x sin(x) and Y4 = x cos(x). This is

the additional error that one encounters when using a least squares

finite element method which is basic to the problem and not caused by

8 ' .
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nonconforming elements. As a result of this additional error, a finer

discretization is required than would be necessary if it were not present.
If the iterative solution of the least squares problem were sufficiently
quicker in terms of computer time to offset the additional computational

work required as a reult of the finer mesh, then the least squares method

would still be preferable to a Galerkin method which requires a direct

system; solver. To compare the two possibilities, the equations were solved

using both the iterative approach and direct Gaussian elimination and the

computational times were compared. For a system with 314 unknowns and a

bandwidth of 42 (42 non-zero entries in any given row and all of these

entries clustered about the main diagonal), a moderately acLurate iterative

solution was obtained with 41 iterations taking 14 seconds of CP time

and 373 seconds of input-output time on the compute,-. For the same problem,

the direct Gaussian elimination took only 3 seconds of CP time and 10

seconds of input/output time. The conclusion was, therefore, that for

the size matrices considered, a direct solver was preferred to an iterative

method. Because the major attraction of the least squares method was the

possibility of solving the large system of equations iteratively and since
the iterative methods did not turn out to be less expensive computationally,

it was decided to use a Galerkin or weak solution method. The integral or

weak form of the equations will now be described.

2. THE INTEGRAL FORM OF THE EQUATIONS

To avoid rewriting Equations 4 repeatedly, it will be represented by:

DI(pu,v,w) 0 (a)

D2(p,u,v,w) : 0 (b)

(4)
D3(p,u,v,w) = 0 (c)

D4(p,u,v,w) = 0 (d)

Then the weak or integral form of Equations 4 is obtained by multiplying

each of the equations by the product of the variable r and a test function

(weight function) and integrating over the area of the duct. In this way

the requirement that the solutions of Equations 4 have continuous first

9
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derivatives within the duct is relaxed to the requirement that they have

generalizeu first derivatives which are integrable. The integral form of

Equations 4 is written as

j r f Dl(p,u,v,w) dz dr = 0 (a)

Jf r f D2(pu,v,w) dz dr 0 (b)
(rd)

f r f D3(p,u,v,w) dz dr = 0 Wc)

ff r f Dn(p,u,v,w) dz dr = 0 (d)

where f is a test function. The boundary conditions relating the ratio

of the pressure and velocity to the impedance are specified by integrating

some of the terms in Equation lOa by parts.

The particular integration by parts is

(r + r ý-L + v +m w)dz dr

= fyr f p0 (u nz + v nr) ds + ff ff P0 m w (11)

- yr (3-P2 f + p0 2- )u-yr (ýrr f + poLf dz dra z o ;p 3)rd0 dr

Therefore, the term in Equation l0a which corresponds to the left-hand

side of Equation 11 is replaced by the right-hand side of Equation 11.

This new version of Equation lOa will be denoted as Equation lOa'.

A finite eleme'nt solution of Equations lOa', b, c, and d consists
of first dividing the interior of the duct into a collection of rectangles
and triangles and then distributing an appropriate number of grid points

or nodes on the sides and in the interior of these triangles and

rectangles. Figure 1 indicates a typical finite element discretization 4
of two difference duct shapes. If piecewise linear basis functions (shape

functions) are to be used on triangles then a node at each of the vertices

of each of the triangles is appropriate. If piecewise linear basis

functions are to be used on rectangles then a node at each of the vertices

of each rectangle is appropriate. A node at each vertex, a node at the

midpoint of each side and a node at the center of each rectangle for a

total of nine nodes is appropriate if piecewise biquadratic basis functions

S.,. .-10
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are to be used. In Figure 2, the location of nodes on triangles and rec-

tangles is indicated. Whatever the choice of basis function, the next step

is to write P,u,v,w each as a linear combination of the basis functions.

That is,

N

• " ~p(z,r) = jg(z,r)

i•j=l i -

N
v(z,r) = v g.(zr)

j=l j

N
w(z,r) = wj gj(zr) (12)

j--1

where each g, is a basis function, the pj, ui, v3 and w are unknown

coefficients to be determined, and N is the number of basis functions.

Figure la. Discretization of a Conical Duct

S11 -
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I v

Figure lb. Discretization of a Tapered Duct

4

Linear Elements

Quadratic Elements

Figure 2. Distribution of Nodes on Linear and Quadratic Elements

1 12
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The gi are determined by requiring the Jth function to be 1 at the jth

node and to vanish at all other nodes. Typically this is done on an

element basis; that is, the nine biquadratic basis functions which are

nonzero within a rectangle are determined by specifying each to be one at

one node on the rectangle and vanish at the other eight nodes. In this

way a system of equations is obtained which determines the coefficients

of the nine biquadratic basis functions. Once the gj have been deter-

mined, the expression for p,u,v,w dLfined by Equations 12 are substituted

into Equations lOa', b, c, and d. The test function f which appears in

Equations 10 is set equal to each of the functions gj for j = 1 through

j = N. In this way 4 N algebraic equations are obtained which determine

the 4 N unknown coefficients pig ... , p., u,, ."., uN' Vl' ...' vN
wi w Then if the value of p,u,v or w is needed anywhere within

the duct, Equation 12 is used with the computed values of the coefficients

in Equation 12.

Because of the large system of equations which arises in the deter-

mination of the pj's, uj s, vj s, and wi s, an out-of-core solver is

almost mandatory. Even for a relatively coarse discretization of 5 x 5

elements with b*quadratic basis functions, there are 121 nodes and con-

sequently 484 equations to be solved. Even with a system solver which

accounts for a bandwidth of only 200, to keep the entire banded system,

right-hand side and auxiliary vectors in core requires 96,800 memory

locations. This is almost 300,000 octal locations, the maximum core

available with the CDC CYBER machines at the ASD Computer Center at

Wright-Patterson. Therefore, an out-of-core banded solver is used which

requires a moderate amount of in-core storage but much more input/output

time.

Because of the ease of switching from linear to qadratic basis

functions (Figure 3 shows the ease in changing from one mesh to the other),

it was decided to compare the accuracy of the two types of basis functions

in deciding which to use. The following probl(m was solved on the same

grid on a rectangular duct. The differential (!quation was the Helmholtz

equation written in system form,

13
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Fi-r 3a Loato -f 35 -oe nRcagewt ierEeet

Figure 3a. Location of 35 Nodes on Rectangle with Linadrai Elements
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1200CD Linear
r-I

" 80

30

Quadratic
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5 10 20 40
I/h

Figure 4. Least Squares Error as a Function of Grid Size for Linear
and Quadratic Basis Functions

h i P2 BPl PI BP2 + 3P3 + a2thtip- @x P 3 -,@y' @x a• p1  0, with p1 = 1 for

x = 0, P3 = 0 for v = 0 and for y = 1, and P2 + i a p1 = 0 for x = 1.

The solutions obtained uy using the bilinear basis functions and the

biquadratic basis function: were compared to the exact solution for

several different grids, and the error is plotted as a function of grid

size. in Figure 4. The error for bilinear basis functions viries as the

second power of the mesh size, wlile the error for the biq'tadratic basis
functions varies as the fourth puwer of the mesh size. Therefore,

reducing the mesh size N,- a factor ot two reduces the error by a factor

of four if bilinear basis functions are used while it reduces the error

by a factor of sixteen when biquadratic basis functions are used. As a

result of this experience, it was decided to use the biquadratics and

obtain the improved accuracy with less computational time.

1

11
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One final decision that was made was how to handle the nonuniform

geometries. The most straightforward approach was to use rectangles and
triangles with the triangles used to approximate the boundary as indicated

in Figure 1. However, as a test, the case of no-flow in a hard-walled

uniform duct was considered. With a plane wave as input and an appropriate

exit impedance, the exact solution would be p(z,r) = cos(az)-i sin(az)

where a is the specified frequency. With rectangular elements, the finite

element solution duplicated the exact solution, particularly in the rY.spect
that the solution was independent of the variable r; that is, there was no

variation in the r direction. When triangular elements were specified by

dividing each rectangle into two triangles as indicated in Figure 5, the
error increased, and the finite element solution varied incorrectly as a

function of r. This is consistent with the observations of Reference 4.

With this experience, it was decided to look closely at the isoparametric

transformations and the use of quadrilaterals with curved boundaries.

In Figure 6, the two ducts which were depicted in Figure 1 are subdivided

into curve-sided quadrilaterals. The two main difficulties with using

these elements is the definition of the biquadratics on such a nonuniform
geometry and the integration over such a geometry. The advantages are

the improved approximation of c-irved boundaries and the ease of generating

the elements or subdivisions. ThtN two disadvantages are easily overcome

by mapping the nonuniform element to a square as indicated in Figure 7.

On the square the mapped biquadratics become the usual biquadratics, and

the integration is straightforward. The apparent difficulty of deter-
mining the mapping function is also easily resolved. The step which

makes the mapping easy is the approximation of the original nonuniform
geometry by piecewise quadratics around the boundary and requiring the

sides of the quadrilateral elements with curved sides to be quadratic
curves. Then the map from the (c,n) plane to the (z,r) plane in Figure 7

is the biquadratic which maps each of the nine nodes in the (t,,) plane
to the appropriate node of the nonuniform element in the (zr) plane.

But any biquadratic on the (•,n) square can be written as a linear

16
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combination of the nine elementary biquadratic basis functions defined

therl. That is, if the map from the (t,n) plane to the (zr) plane is
z - z (C.n) and r - r (ý,n) then z and r can be written as:

9z-z(,n) ';! aj g(&,n)

r-r(ý,n)=- b g(n) (13)

To determine the nine coefficients a., j 1 to J = 9, and the nine

coefficients bi , j = I to j = 9, one needs to recall that ZkWZ(F(krnk)
9 9= Z aj gj (•k~nk), that rk - r(tklnk) i bjg (&knk) and that

j=l Jul

g g(&k nk)• Iif Jk, and gj(knk) 0 if jfk. Therefore aj = z. and

b= rj, and the map is determined.

A typical integration in the original (zr) plane is transformed

into an integration in the (C,n) plane as follows:

If '(zr) P(z'r) ýz di dr

'll

[f= (~),(~) P(z(Rn),r(E.!-)
00

(�p k p+ ) J(&,n) d& dn (14)
( az an 3z'

where J is the Jacobian of the transformation and is given by

j .z ar az 3r
a a& -n " The partial derivatives of t and n on the right-

hand side of Equation 14 are given by:
DE• rj an -D;/r B -;z/j an /J.
a)z = - T'iz -a ;/J r • an d T-r at J)

The actual integration on the right-hand side of Equation 14 is performed

with three-point Gaussian quadrature in each of the coordinate directions

for a total of nine quadrature points within the square. The results for

uniform and nonuniform ducts with and without flow will now be discussed.

17 i
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LFigure 6a. Quo .'riateral Discretization of a Cone

Figure 6b. Quadrilateral Discretization of a Tapered DuctI
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Figure 7. Map of Quadirilateral to a Square
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SECTION IV

RESULTS

The first test case for the finite element program was to computeI
propagation of a plane wave in a hard-walled uniform duct not containing

flow. The outstanding agreement with the exact solution is indicated in

Figure 8. For a second test case the variation of an individual mode in
a soft wall duct not containing flow was computed. As seen in Figure 9,
the agreement between the finite element solution and the exact solution
is good but not as good as for the plane wave. This is due to the

variation in the radial direction. For the cases of uniform flow in a
uniform duct, a Mach number of .2 with both a plane wave in a hard wall

duct and a single mode in a soft-walled duct was considered. In Figures
10 and 11 the comparisons between the finite element and exact solutions

are indicated. Again, the agreement is good, with agreement for the plane

wave in the hard wall duct outstanding. For a nonuniform duct the two

geometries of Figure 6 were considered to be typical. The cone was most4
interesting because the exact solution for a plane wave propagating in aI hard-walled cone is known and because the finite difference conformal map
solution is available. In Figures 12a and 12b the results for a plane wave

propagating in a hard-walled cone for two different discretizations are
depicted. For the cone, the agreement with exact solution is not as good

for the finite element method as for the finite difference method. This

is because the finite difference method uses an exact map to a uniform
duct while the finite element solution method approximates 16he circular

inlet and exit as piecewise quadratic. This is shown by the decrease in

accuracy in Figure 12b where the number of elements in the radial

direction was reduced in comparison with the number in Figure 12a.
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Figure 8. Plane Wave in Hard Wall Cylindrical COuct 4
Exact Solution.

X Finite ElementS~ Outer Wal l
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Figure 9. Mode in a Cylindrical Duct;
Mach Number = 0, I, =
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Figure 1,O. Plane Wave in Hard Wall Cylindrical Duct,
M = .2, x = 4.7
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X Finite Element SolutionOuter 
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"E' Finite Element Solution

.2 .6

Figure 11. Mode in a Cylindrical Duct;
Mach Number = .2, x =
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z - Exact

El Finite Difference
X Finite Element

.5 1. 1.5

Axial Coordinate I n 2/Z2 + r2
3

Figure 12a. Cone with 32 Elements
4 in Radial Direction
B in Axial Direction

-Exact

fl Finite Difference

X Finite Element

Axial Coordinate In ln 2
3

Figure 12b. Cone with 30 Elements
3 in Radial Direction
10 in Axial Direction
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