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DIGEST

The past decade has witnessed the rapid assembly of rather large
body of data relating to the mechanical behavior and failure of materials
under extreme pressure, temperature and shear loading conditions. Al-
though this has led to a number of important phenomenological insights,
the molecular engineering of new materials with improved response and
strength characteristics in impeded by the absence of a fundamental under-
standing of the failure modes of substances subjected to these conditionms,

For the past several years a group at the Vitreous State Laboratory
of Catholic University of America has been engaged in the investigation of
the response of liquids and amorphous solids to large, rapidly imposed
disturbances. Initially our approach was to make use of Molecular Dynamics
(MD) experiment simulations to probe the microscopic origins and mechanisms

of certain anomalous macroscopic résponse features of liquids under such
conditions.

In its initial stages the work was focused on such non-linear visco-
elastic phenomena as shear viscosity thinning and stress overshoot under
conditions of large shearing rates. In carrying out this work it became
apparent that the behavior that was observed in the simple MD model system
(of point particles interacting via a Lounard-Jones 6-12 potential) were
quite general--having been seen in such diverse systems as organic lubri-
cants, polymers, metals, glasses and composites. In each of these cases,
the extant explanations of the behavior involved mechanisms specific to the
particular structural, configurational, or bonding properties of the indi-
vidual systems; the MD data suggest that the origin of many of these obser-
var.ions can be understood in a more general fundamental way.

In particular, our studies showed that it is possible to rationalize
much of the behavior as a consequence of the strain-induced (or stress-in-
duced) structural changes that were observed to occur jin the MD experiments.
In the liquid and high temperature glass systems, for example, it was found
that large shear rates cause the development of locally organized anisotro-
pic structures in terms of which the dynamical pseudo-plastic behavior of
these materials can be understocd. These structural changes result in a
limit to the steady-state stress that the material can support and offer a
framework for understanding the ductile failure process in these substances.

To complement the MD work a supporting experimental program was estab-
lished with in-house university funds. This joint experimental/MD effort
has proven to be unusually valuable both in assisting in the interpretaticn
of the data that is obtained, and in providing guidance for continuing studies.
It was found, for instance that effective vigcosity data from both the MD
and laboratory experiments exhibited essentially the same dependence on im-
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posed strain rate and could be interpreted in terms of the same non-
linear viscoelastic response hypothesis. The analysis of the MD results
showed that the crucial material property in the data reduction can be
represented by a parameter that can be interpreted as the maximum steady-
state stress that can be developed in the material under the application
of a uniform strain note. In the experimental work it was found that when
a material is subjected to a stress exceeding this value, it initially de-
forms plastically; however, as the stress is continued, this ductile re-
sponge is arrested and the material fails in sudden fracture.

This transition of ductile flow to fracture occurs as the material
attempts to rearrange its structure to reduce the stress accompanying the
applied strain rate. When these structural changes cannot occur rapidly
enough to compensate for the development of stress levels in exceas of the
limiting stress (initially conceived as -he parameter used in fitting the
MD and experimental data), the material fractures spontaneously. The lim-
iting steady-state stress value {s therefore the actual cohesive strength
of the material.

In the MD studies of low-temperature glasses the imposition of large
strain rates causes initially a pseudo-plastic material response leading to
ductile failure; under confincment conditions the material then res=ructures
itself in a crystalline form with improved modulus and strength properties.
Some preliminary studies in a crystalline system suggest that qualitatively
similar behavior (the development of transient dislocations followed by re-
crystallization) occurs at elevated shear stress levels in crystals.
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INTRODUCTION

This technical report presents the results of research in
the dynamical response of materials to large, suddenly applied
disturbances. The work reported herein was carried out under the
sponsorship of the Office of Naval Research Research (Contract
Numbers N00014-75-C-0856 and N00014-81-K-0296) and covers the
time period October 1, 1979 through May 31, 1981.

The body of the report consists of six sections. 1In the
first is presented a molecular dynamics (MD) investigatior ~f the
non-linear shear response of a Lennard-Jones model system at
elevated pressures. Among the key resalts reported here are the
observations of "shear thinning" and "shear overshoot" effects at
high shear rates. These are accompanied by, and indeed are, a
consequence of dynamical strain-induced organization of the
liquid structure. In the second section, these data are com-
pared with results obtained in both inorganiz glass and polymeric
systems. While there are quantitative differences among the
various materials, several important features ave qualitiatively
quite similar, indicating that the molecular dynamics studies
(where one is able to extract detailed microscopic information)
can be quite useful in the interpretation of phenomena observed
in "real materials." The third section continues this comparison
of the molecular dynamics "experimental results" with primary
laboratory data. In this work it is shown that the concept of
shear induced structurzl organization derived from the MD work can
be applied in characterizing and understanding *he mechanical and

thermal respcnses of organic traction lubricants at high shearing

.
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rates.

To interpret these results a model proposed by Bair and
Winer [S. Bair and W.O. Winer, ASME J. Lub. Tech. 100, 40,
(1979) ] was generalized to provide a matﬁematical framework
in wnich tc¢ consider dynamical nonlinear viscoelasticity. This
cunstitutes the fourth section of the report. One of the key
features in this work is the identification of the dimensionless
guantity

x = €1,(G_/o*)

(here ¢ = strain rate, Ty = shear relaxation time, G_ = shear
rigidity modulus, and o* = maximum steady-state stress) as the
parameter governing the type of behavior, i.e., linear visco—
elastic, pseudoplastic, etc., that is okserved. It was hypothe-
sized that for large x values ductile faiiure of the material
will be the result. 1In sections five and six, MD and primary
laboratory results obtained in such circumstances are given,
respectively. In these experiments low temperature ylassy
materials for which T (and therefore x) is large were studied
and the predicted failure was indeed observed. In the MD work

the iritial pseudoplastic response of the material gave way to

ductile faiiure in which the stress that was developed dropped

precipitously to zero. Under confinement conditions the continued

application of shear led to strain-induced crystallization as the

material restructured itself in a higher strength form.




Section I. Time dependent non-~linear shear streas effects in simple
liquids: A molecular dynamics study.

by D. M. Heyes, J. J. Kim, C. J. Montrose
and T. A, Litovitz
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Time dependent nonlinear shear stress effects in slmpOeA
liquids: A molecular dynamics study®

D. M. Heyes, J. J. Kim,* C. J. Montrose, and T. A. Litovitz
Vitreous State Laboratory, Catholic Unversity of America, Washington D.C. 20064

(Received 17 December 1979: accepted 11 July 190C)

The effecta of large amplitude sheating rates on 108 particie amorphous Lennard-Jones systems have been
examined. A resolution of the structural and dynamical properties reveals that there is a tendency for shesr tv
reorganize the liquid into layers to facilitate flow and hence reduce shear viscosity. The first steps have been
made to determine those physical phenomena that are necessary to develop a theary of iime dependent
nonlinear shear viscoelastic effects. The form of the distortion giving rise 10 nonlinear shesr stresses ia well
understood although its magnitude is intimately linked with paraliel structural changes in an, at present,

intractable way.

I. INTRODUCTION

In a rather wide variety of technological applications,
e.g., elastohydrodynamic lubrication, shock loading,
fatigue, liquids and amorphous solids are subjucted tn
large shearing forces. The microscopic mechanisms
that are of importance in such nonlinear situations are
not well understood. To attempt to gain some insights
into this phenomenon, a molecular dynamics (MD) in-
veetigation of the viscoelastic respoase of liquids sub-
jected to large shear strain rates was undertaken.

We have used a modification of the normal MD pro.
cedure in order to follow the response of the system to
an applied perturbation. In the past, nonequilibrium
MD has been used to produce steady shear flow' in a
number of ways. Ashurst and Hoover? sheared a molec-
ular system through the action of “fluid walls” on two
oppoeite faces of the MD cell. Their technique produces
surface effects which lead to an inhomogeneous material
being sheared. This problem is largely eliminated by
the homogeneous shear method® (HSM), which uses pe-
riodic boundary conditions in all iirections. A modifi-
cation of the HSM, similar to one proposed by Evans, ¢
was used in these calculations. It enables a particular
strain rate to be established inatantaneously. The un-
perturbed velocity of the real or image molecule i, i.e.,
v;, is altered to V; by applying a shear rate €,, 80 that
it only alters the x component of velocity

(."Z,
Vi=vy+| 0 ) )]
0

where 2; is the z coordinate of particle i measured from
the center of the cubic MD cell of side length L. A
molecule that leaves the MD cell in the £ direction is re-
introduced through the opposite face with the (x,y) coor-
dinates and velocity of its nearasst displaced im:je. All
the calculations were ccnducted isothermally by acaling
the v; to maintain the desired temperature,

“'Research supported in part by the office of Naval Ressarch
Contract No. N00014-75-C-0858.

%On leave from Korea Advanoed Institute of Science, P. O.
Box 150 Chonguangni, Seocul, Kores.

Calculations were performed under steady state shear
conditions. In addition, the response of the system to a
time dependent strain rate was studied. Theae latter
calculations consisted of segments lasting for 898 time
stens. In each segment the same “large’ strain rate
€., was applied during the first {ime step and was main-
tained for the next 450 steps, at which time it was sud-
denly awitched off and then heid at =ero for the remain-
der of the serment. The time dependent system prop-
erties were averaged over approximately 20 such seg-
ments in order to reduce the statistical noise.

The segmented MD procedure was modified to allow
the response of the system to small shear strain rates
d¢,, to be followed.® The system was allowed to evolve
from the same starting configuration with and without
the perturbation. A grea! deal of the statistica’ noise
was eliminated by subtracting at each time step the
value for the property under examination of the undis-
turbed system from that of the perturbed medium.

The MD cell contained 108 particles interacting
through the Lennard-Jones (LJ) potential

o(r) = 4eila/n'? - (0/7)%] . 2

The units of energy, length, and time used througiout
this paper are ¢, o, and (ma*/c)!?, respectively; m is
the particle’s mass. All other quantities are expressed
in terms of these fundamental units. The equations of
motion were integrated using the Verlet algorithm® with
a time step having a typical duration of 0.005. The in-
teractions were truncated beyond »=2.50. The system
was investigated at an average temperature T of 0. 722
{e/k,) and number densities p of 0.8442, 0.92863,
1.01304, and 1.2663. Had each of the latter three states
bean achieved slowly, the system would have crystal-
lized’; however, these states were in fact achieved by
suddenly (in one time step) reducing the volume of the
p=0.8444 system by 10%, 30%, and 50%, respectively.
This rapid densification prohibited those structural re-
arrangements that are necessary for crystallization to
occur 80 that a “‘superdensified” liquid syatem was pro-
duced. Accumulation of the configurational averages
followed an initial equilibration period of sevaral thou-
sand time steps. The calculations were performed on a
PDP 11/40 comnuter,

J. Cham. Phys. 73(8), 15 Oct. 1980
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FIG. 1, The time dependence of the reduced shear stress
0, (1)/Gq for the p=1,01304 ayatems subjected to the following
strain rate Mstory: €, ()¢, 0€8¢2.3. & ()0, 2.3<t<4.6,
vese, €x0,1792; ~---, €=0,3584; and —, € =0.7168.

Il. RESULTS AND DISCUSSION

We first diacuss the nature of the relaxational pro-
cesses that accompany a time varying large strain rate.
The segmented technique was used. Each segment con-
sisted of continuous shear for 0 <¢ <2.3. The system
was then allowed to evolve in the absence of shear from
t=2.3 to t~4. 5, when the shear rate was again applied.

The development of the stress tensor ¢ is of particular
interest; the a8 component of this was computed using
the fornwula®

¥
Oap=-(1 /V)[Z mefe?

il
N N

1 8
-3 Z‘”:(a"ﬁu/r") ;%] ) 3

where V is the volume of the MD cell which contains N
molecules; r{ is the @ component of the velocity of the
ith particle relative to the imposed velocity; a,, and §;,
are the a and 8 components, reapectively, of the vector
£y, =t -¢, whers r, defines the position of molecule i.

Immediately after a strain rate ¢,, is applied at time
t=0, a liquid takes time to respond atructurally. Asa
result, at {irst the shear stress rises linearly with time
as in an elastic material

o,g(‘) = Gm(“g‘ ) (4)

where G_ is *he shear rigidity modulus. Since a liquid
wiil not suzport a static stress (it will flow), the rate of
ascent of shear stress decreases until it reaches a
limiting value governed by the shear viscority 9, i.e.,
0,(t~%)=né,,. This is illustrated in Fig. 1, which
shows the shear rate dependence of 0,,(1)/G., for the p
=1,01304 atate. Observe that the steady state stress
does not increase in proportion to the shear rate, i.e.,
the shear viscosity decreases with increasing shear
rate—so-called shear thinning. Table I reveals that
this trend is manifest at all densities. This is strong
evidence that, on shearing, structural changes are in-
duced in a liquid which altera its pbysical properties.

A second experiment was carried out to probe the
viscosity behavior at high shear rates. For a given ¢,,,

TABLE 1. The deasity p and steady state shear rate ¢, dependence of the shear visoosity 7,
normal pressurs componeats P,,, oonfigurational energy U,, shear rigidity modulus G, and
stress-optical cveffictent C,. Values of G, obtained {rom Eq. (3) are given in parentheses.
The estimated maximum standard error is s 10% at the lowest shear rate of each density,

. — _——— —— — .}

o €u n Pu Py Py Us G. CoGang
0.8442 0.0 ~2.70 0.8 0.8 0.8 -5.68 22,5
(233.7
0,8442 0.0432 2.64 0.8 0.9 0.9 ~ 5,84
0.8442 0.1686 2.58 1.0 0.9 1.0 -5.62
0.8442 0,3373 2.44 1,2 1.0 1.3 -5.58
0.8442 0.8745 2.12 1.8 1.4 1.7 -5.81 3.5
0. 92882 0.0 ~10 3.0 3.0 3.0 ~-6.08 33.4
(37.3)
0,93862 0.0435 7.4 3.0 2,9 3.0 -8.08
0.92862 0.1741 4.8 3.3 3.2 3.4 -5.99
0.92862 0,3482 4.0 3.7 3.5 3.9 -5.81
0, 92882 0,8963 3.3 4.4 4.2 4.7 -5.77 4.0
1,01304 0,0 ~20 <?,0 <7.0 <7.0 <-~6.38 48.9
(49,4)
1,01304 0.0898 12.8 7.0 3.4 7.0 -6.22 4.0
1.01304 0.1792 8.0 7.5 7.4 7.3 -6.14 4.0
1.01304 0.3584 8.7 8.3 7.9 8.4 -5.96 4.5
1,01304 ¢, 7168 4.6 9.5 8.8 9.9 -5.78 5.0
1.2663 0.0 ~ 200 <37 <37 <37 <-4.5 123.8
(108,8)
1,2663 0,0483 104 40 36 3 -~4.49
1,30883 0.1930 a5 42 p L) 41 -3.
1. 3883 0. 3861 18 5 43 45 -3.39
1. 268683 0,7781 11 49 47 48 -2.88 8.5

J. Chem. Phys., Vol. 73, No. 8, 16 October 1980
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M"r
ptl(l
8 1_
0 1
¢ t
. 1IG. 2, The time dependent normal prexsure components lor

the strain rate history of Fig. 1 and € =0.7168, p =1, 01304,
=y By ), === Py(t); and » oo, Py ib),

the system was allowed to reach its steadyv state stress
value 0,,, at which time, say ', a small increment in
shear rate 5¢_, was applied. The siress 80,,(f) result-
ing from the application of 8¢,, continuously from ¢' is
given by linear response theory as

¢
do (H=G., f A oe NC -1, (5)
"

where the relaxation function to be used in Eq. (5) is
that characteristic of the sheared state (see below).
This leads directly to an alternate measurement of the
shear viscosity at high shear rates:

n=Ulmdc, (N d¢,, . (6)
e

The values obtained in this manner, although less pre-
cise, agree reasonably well with and follow qualitatively
the same trends as those showt. in Table I derived from:
n= G"(!-' ”)/“ =

The time evolution of the shear a'ress is also affected
rather dramatically at the higher slear rates. In Fig.
1 it can be seen that the shear stre:s rizes to a peak
before deacending to its steady-state value. This be-
havior is observed for shear rates such that ¢ .,n/G.
20.05; at lower shear rates no local maxima in the o,,
versus { curves were discernible. One also finds that
upon cessation of the applied shear rate, the immediate
streas relaxation is fastei: for the more highly sheared
media. The rate of stress decay slows with time as the
equilibrium state is approached. We shall later consider
the possible microscopic origin of the shear thinning and
shear stress overshoot phenomena; before doing so,
however, we axamine some of the other changes that oc-
cur in the system in response to the large and suddenly
applied shear disturbances.

Each normal pressure component P,, = - 0., rises
when the liquid is sheared. They reflect the structural
changes that the shear forces introduce into the liquid,
The P, (1) of the p=1,01304, ¢, =0. 7168 state are given
in Fig. 2. The time scale of the development of the nor-

-

mal presaure components is longer than that of the shear
stress. No normal pressure overshoot is present and a
P,, overshoot is observed only when o ~1,2863, Table

I reveals that the configurational energy per particle

N N
U= /RN)Z;‘Z: olr,))
§

increases with shear rate. This is additional evidenre
of structural alteration of the fluid to states which are
only snergeticaily favorable in the presence of steady
shear flow,

The shear stress viscoelasticic behavior ia usefully
cast in relaxation function formaliam. The normalized
shear atress relaxation function C(f) has been evaluated
from both the sheared and unsheared mcdia using the
aforementioned small perturbation technique. The
change in shear stress 80,,(f) following the application
of a small strain rate 8¢,, for the duration of one time
step Af at !’ is given by C(¢ - ') as follows:

80t -tV =G.0¢ AlC(-1"), (7

where C(0) =1 and C(=)=0. The C(¢{-t') derived for the
p=1.01304 state with ¢,,= 0. 7168, taking time origins
at 1'=0,16, 1.2, and 3.6, are shown in Fig, 3. At
short times (¢t - ¢’ <0,2), all the C(t - ¢') coincide, pre-
sumably because this portion of stress decay is inertial
and results from small motions of molecules within the
free space of the random network structure, After this,
the remaining portion of the stress decays more slowly
because it involves the structural rearrangement of the
medium, reguiring the participation of the cooperative
motions of larger molecular groups. Figure 3 reveals
thet as shear streas increases, the more glowly decay-
ing process progressively disappears. This has been
observed experimentally’ and is further evidence of the
structural changes that take place in the liquid at high
sheer stresses to make shear flow easier. For the p

= 0. 8442 state, the form of C(f) with ¢, =0 is, within
statistical uncertainty, the same as that given by
Levesque, Verlet, and Kirki‘arvi.!® The variation for
nonzero values of ¢, is qualitatively the same aa for the
p=1,01304 state, although the changes in the long-time
behavior are somewhat leas proncunced.

1.0

clr-t)

t-t'

FIG. 3. The shear streas relaxation function C(¢ - ¢*) for the
state of Fig. 2 and time origina ¢ at ----, ##=0,16, —, ¢
wl,3t and +e¢c ' =3.86,

J. Chem. Phys., Vol. 73, Na. B 15 October 1960
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FIG. 4. The shear stress relaxation tunctions C(f) tor the
sheared (—) and unsheared (----) portions of the segment for
the state p=0. 92862, €,,=0.6963,

A selection of the C(f) obtained at the other densities
in the steady state shear and zero shear portions of the
segment are presented in Figs. 4 and 5. Their forms
are consistent with the above interpretation. It ie cer-
*ainly not surprising that the characteristic response
functions are different for the highly stressed steady
state system as compared with the equilibrium system.
On fairly general grounds, one expects that the existence
of large shear stresses in the liquid reflects the fact
that iocal structural distortions are present, That these
should impact on the response characteristics of the
liquid seems guite apparent,

The values obtained for the shear rigidity modulus G,
are pregented in Table I, where they are compared with
the values derived using the expression of Zwanzig and
Mountain'!:

- 27 f ' 4
G.=phgT+ 5P A dr g(7) dr(r de¢/dy) . (8)
In this equation gy(») is the radial distribution function,
which was computed as a part of the MD runs at each
density., Within the statistical! uncertainties, G_, was

found to be independent of the shear stress at a particu-
lar density,

1.0

cly

0.8

F1G. 5. ‘The shear stress relaxetinn functions Ctt) tor the
sheared (-~) and the unsheared (---<) portions ol the segment
for the state p=1,2663, ¢_20.7721,

o

r 7
0 N /VV\
W

01
dn(z)

-01 1 ) 1 1 _
0 1 2

FIG, 6, The excess directional number density functions éa(a)
for the p=1.2663 and €,=0,7721 state,

We now turn to consider the nature of the structural
and dynamicel changes that these large shear rates pro-
duce in the LJ liquids. For the purpose of investigating
shear-induced structural anisotropy, a directional prob-
ability density function n(a) was defined: pLZn(a)da
= the probability of locating a particle in the plane lamira
(of thickness da and dimensions L X L) oriented normal
to the a axis and located a perpendicular distance o
from a given particle, Structural anisotropy is then re-
vealed by examining én{a), the difference between » («)
characterizing the sheared system and nga) of the equi-
librium system. In terms of the pair distribution func-
tion this can be written as (for the a =z case, for ex-
ample)

onte)=(1/19 [ “ax / “ay Lg,t0) -] (9)

where g,(r) is the pair distribution function for the
sheared system and g,(r) is the equilibriura radial dis-
tribution function, We have obtained the 6n{a) by com-
puting the average number of particles from a reference
particle in the distance range 1x| to | x| +Ax (where Ax
was taken as L,200) selected from the N -1 particles in
the reorientated MD cell. Figure 6 shows the dn(a) un-
der the conditions p=1.2663 and ¢,,=0.7721. Although
the maximum displacement is 10% at most, there is
evidence of a tendency of the molecules to reorder them-
selves into xy layers (layers normal to the velocity gra-
dient). The xz shearing increases the probability of the
molecules in an xz plane being found at multiples of the
intermolecular diameter from each other {n the z direc-
tion, It is energetically favorable for these layers to be
staggered in the y direction. Although not so well de-
fined, these trends are present at the lower densities.
The (grossly simplified) picture that emerges is one of
corrugated sheets of atoms sliding past one another. A
pictorial representation of this suggested structure is
given in Fig. 7.
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FIG. 7. A pictorial representation ol the structural changes
that take place on going from an unsheared (a) to a sheared (b)
state. ‘The arrows denote the line and plane of shear.

The structural reorganization results from the action
of the imposed velocity profile which, at the shear rates
considered, dominates the molecular motion. This ‘a
well demcnstrated by the trajectury plots of Fig. 8,
which show time -elapsed posgitions in the xz plane of a
selection of the particles from the p:=1,01304 and ¢,,
=0.7168 state. Major movements are confined to the
line of ghear.

It is to be expected that the effect of the shear should
not be confined tu structural changes but must also alter
the self -diffusional dynamics of the molecules. To
assess this, the x, y, and z components of the mean
square displacements (+%(1)), which exclude the imposed
flow, have been calculated, i,e.,

<r?.(r)>=§:2 ([ veerar —ao@] ). o

The directional diffusion coefficients

TABLE 1I. The density and shear rate depen-
dence of the directional diffusion coefficients D,
obtained frora the MD experiments using Eq. (10).
The results are taken from the unsheared and
sheared portions of the segments.

== e

p én < D, b, D,

0.8442 0,0 0.032 0.032 0.032
0.8442 0.6745 0,052 0,045 0,052
0.92862 0.0 0.018 0.018 0,018
0.92862 0,6963 0,043 0,037 0,045
1.01304 0,0 0. 008 0,008 0,008
1.01304 0,1792  0.02 0,014 v, 02
1.01304 0.3684 0,03 0,025 0.03
1.2663 0.0 0.0045 0.0046 0,0045
1. 2063 0.7721 0,046 0.03 0,03
S —
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FIG. 8. ‘The trajectories of five molecules in the xz plane
during the 5=1.01304 and &,,=0.7168 segment, The molecules
originated from within a xz slice of thickness ~ L/10 taken
through the center of the cell,

1 (d<"2n(," ”)))
Do = ) dl

for a selection of the states are presented in Table II.
The value of D, =0, 032 for the unsheared liquid near the
triple point compares favorably with the value of 0. 033
previously obtained.'® The D, of the unsheared liquid
decrease by approximately an order of magnitude on in-
creasing the density from p=-0,8442 to 1.2663, How-
ever, at larger shear rates the density has a diminish-
ing influence on the diffusion coefficients. The high
gshear stresses enhance the fluidity and create a “liquid”
which has directionality, All the diffusion coefficient
components rise with shear rate at a particular density
because the structural reorganization that takes place on
shearing apparently creates paths along which particles
can more readily move, The D, are typically two thirds
of the D, and D,, indicating that the self-diffusion is
favored in the shearing plane, Thus, paradoxically, al-
though structural aspects of the liquids under shear
present a more solid-like appearance, other more dy-
namically related properties such as self -diffusion and
shear viscosity manifest changes which are associated
with enhanced fluidity.

Another uspect of the ghear induced structural distor-
tion is presented by the .ime dependent pair radial dis-
tribution function g{r, t}, which is conveniently decom-
posed into the following component configurational av-
erages:

£, )= 20r) + 6/ P o, )+ (VY7 ey, o, 1)
(2 Py, ) + 2/ P, N+ - . (11)

If fos(r, ¢) 18 the average of (a,B,,/7},) in the radial
element r - ¥+ dr about a molecule i at time ¢, then

Baar, ) =18 fouo (7, 1)/ (dmpridr) ,
=3 tgalry Y+ 10anlr, )+ 10 b, 1), {12)
where a#{+#y, and
Zas(r, )= 151,4(r, 1)/ Unpriar) ,
= gpr, 1) (13)
where « #8,
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I'IG. 9. The g(#) (*+**), Bq (v (=), and gy, (#) (----) of the
sheared minus the unsheared portions of the p - 1.0130] and
{1e=0.7168 segmented calculation,

The 7,e(r, 1) have been calculated at various times
during the segment. The difference between the g, (. 1)
of the steady state sheared (p=1.01304 and & = 0. 7168)
system and the unsheared system at the same density
8iraalr, £} is shown in Fig. 9. It reveals that shearing
produces a net movement of particles in each coordina-
tion shell towards the origin molecule. This is also il-
lustrated by the difference between the pair distribution
functions of the sheared and unsheared liquids shown in
Fig. 10.

The shear rate dependent g,,(7, 1) at steady state of
the p=0.8442 system are compared with the spherically
averaged glr, t) from these samples in Fig. 10. They
give convineing evidence of angular distortion in each
coordination shell such that in the positive y2 quadrants
the inside of each shell is on average depleted of par-
ticles when compared with the unsheared liquid. In con-
trast, the outside of each shell has an excess of mole-
cules in the positive xz quadrants, when compared with
the unsheared medium, The opposite changes take place
in the negative quadrants,

The time dependence of g., (7, t) and g,,(, t), shown
in Fig. 11, reveal that structural reorganization having
the symmetry of shear (xz/r%) is much faster than that
of {a’/r®) symmetry. Within the latter series, (x*/»%)
and {z*/7%) evolve more rapidly to their steady state
values than (y2/7%. For example, when p=1.01304 and
€, =0,7188, the former three averages have nearly
reached their steady state values by /= 0. 25 whereas
that of the (y?/»®) summation hardly differs from zero
by that time,

These observations suggest a possible mechanism
for the origin of the Btress overshoot, When a liquid is
sheared, the shearing forces alter its structure so that
the steady state stress attained corresponds to a new
lower viscosity, not that characterizing the starting
liquid. At high rates of shear the structural evolution
necessary to attain this new viscosity is significantly
slower than the viscoelastic shear relaxation. Viewed
simply this means that the original viscosity can re-
main for a sufficiently long time to enable the shear

leyes et al.. Nonlinear shear in Liguids

stress (o exceoed its steady state value, The situation
is more complicated than this sinple explanation pre-
sents, however, because the overshoot tukes place at

times when a purely viscous model for shear stress is
not an entirely acceptable approximation,

Another probe into the time dependent structural
changes associitted with shear stress viscoelasiicity is
provided by the angular rotation functivn (r) detined
below:

N N
b(,.)=<z‘j‘?:(v,xr.,)/ﬁ,>/~, (14)

where the cross product is confined to the xz plane,
When a material is sheared, molecules observe their
neighbors rotate around them with an angular velocity
such that on average 8(r) = €,,/3. The time and radial
dependence of tt - function gives information about
hindered rotation and hence the nature of structural dis-
ruption associated with shear strecs relaxation, Large
departures in 8(r) from its continuum value of €,,/3 in-
dicate major structural rearrangement at that intermo-
lecular separation. Figure 12 shows b(r) averaged over
three time zones after the start of s‘eady shear in the
p=1.01304, € = 0.7188 calculation. This and simiiar
plots for the calculation involving a step in strain only
exhibit a spike in 8() at »=0. Y at times when the strain
rate has been turned off and which is clearly above the
noise. This shows that the slowly decaying part of the
stress, after a change in applied strain rate, results
from further rearrangements in the inside of the first
coordination shell, which presumably require reorgan-
ization of the liquid structure before they can occur.

The following discussior uses the MD results to evalu-
ate models for nenlinear shear behavior.

Previous MD studies of this subject have used the
Ree-Eyring hyperbolic sine model® to fit the shear rate
dependence of 7. From simple activation energy con-
siderations the following relationship can be derived:

n/ny = sinh’! (€,,7)/ (€,,7) , (15)

where 7 is the shear viscosity in the limit of zero
shear rate. The relaxation time 7 characterizes the

o

-

-4 1 | 1

4

FIG. 10. The shear rate dependence of g(r) and g, (¥) for the
p=0.8442 states, ¢,x0 (—); & ,n0,1688 (++++); €,=0,3373
(=+=ome); €4y=0.6745 (=an-),
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FIG. 11. The functions g,y (7,1) and g4 (7,8) for the calculation of Fig. 10: (a) xx, (b) yy, (o) £2, {(d) xz for the 20,25 (+*+*) and

¢=1.8 (—) states.

medium’s unsheared state and is roughly an order of
magnitude larger than the average shear relaxation time
[=fo C(t)dt=ny/Ga]. Although the model relates 7 to a
flow volume V, through the relationship

T=ngV,/2kgT, (16)

T is usually taken as an adjustable parameter. Reason-
able fits to the MD results can be achieved by taking V,
= 1.1 independent of density, For exampie, for the o
=1. 01304 state, this provides better than 15% agree-
ment with the data; at the other densities the agreement
rarges from 13% to 18%. The general trends in the
plots of /1y versus &, at all densities suggest that the
disagreement is not totally statisticai; the shear thinning
effect is systematically more pronounced (i.e., n/n,
falls more rapidly) than Eq. (15) would predict. We also
note that the parameter 7 increases more rapidly with
density than does the shear relaxation time 7,. At the
lowest density 7/7,~20 whereas for the highest density
state 7/7,*100,

A perhaps more satisfying model has its basis in a
trend in the sheas rate dependence of g,,(r, #), shown in
Fig, 10, The magnitude of the angular distortion
roughly incroases in p: oportion to the shear rate, an
does the shear stress. This suggests that some of the

properties of a sheared liquid can be characterized by
a quasielastic solid model in which the only nonequilib-
rium property is a time dependent recoverable shear

36

FIG. 12, The normalized angular rotation function 3'0(1)/6.
averaged over the time regions 0.17 to 0,33 (~), 1.564 to 2.08
(~w=-}, and §.86 to 4,46 (+*++) for the segmented p=1, 01304
and &, =0,71€8 caloulstion,
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A~ 3 . N .- N , ,
* 6l ) n.n,,(.)/o e a (g ‘-gg/r)/ 15
4 + pzn--\(:,(l)f Prdrd S /3 . (20)
9(') i
and
r 3 ) 2 2 " 2Oy, ’
" \ Lo 0= - P "Aan‘\(u(l) f ridr ¥’:J7~ ‘ (‘.1-'0 "5'0/"')
) A N !
5 LV - 8
0 (p e Y e - 'l ad, (1) f r ""rﬂ,s e, 21
; KL 0 4
i *
p where A, A, ~3/105, A, - 1/105; and B, = B, == 1/15,
-2r " R, 1/%
g £2 .
I'he predictions for U (1) ar d 58,,(t), using this
.4 i ] 1 1 ] model and akinge c feaing feom Tl 119), are =evers! ar
(o] 1 2 ders of magnitude less than thoge obtained by MD. It is

4
FIG. 13. A comparison between the spherically averaged pair
correlation function y(3) (=Y, g,,(» ¢ ++), and - Ac  r(3 /)
(----) for the p=1.2663 and ¢ = 0,083 state,

strain A€, {/}. Such an alpproach2 is obtained from a
Taylor expansion of g(r, /):

X Iy (5
ole, = golr) + 2 ag, (1) 'DBQ\Q)

2 2
2 ¢y Lkl
+ g a0 T an
Hence,
ale, D=gor)+xz ae (D gy r + 322 A, (N’ /¥
-&/PV 2+ aed, () g/ @r)4 -, (18)

where g and g’ denote dgy/dr and d’gy/dr?, respective-
ly. A comparison between Eqs. (11) and (18) reveals
that

rae, (g =, lr, 1) . (19)

For most of the density/shear rate combinations stud-
ied, a &c¢,,(l) can always be chosen so that Eq. (19) is
an excellent approximation. Good agreement for the p
=1,2663 and €,,=0.048 calculation is illustrated in

Fig. 13. The gy({r) was approximated with little error
by the gpherically symmetrical g(r) of that calculation.
The recoverable strain necessary to satisfy Eq. (19) was
found to be the Hooke’s law strain (= 0,,/G.) to a good
approximation., Similar caiculatiuns were performed
for the other states, The go(r) were taken from the low-
est shear rate at 2ach deunsity or where possible {rom
the unsheared portion of the segment in non-steady state
calculations, ThiB latter method was adopted in order
to explore a larger ‘egion of phase space than would be
possible with a single simulation at equilibrium, es-
pecially at these high densities. The best fits for ag,,
are again given with few exceptions by 0,,/G., as Table
III reveals.

Equations (17)-(19) also predict changes in the con-
figurational parts of the total energy and norma! pres-
sure components that take the form

thought that this is because the model only takes into
account those changes in “bulk” properties (e.g., U,
and P,.) which arise directly from distortion of the
liquid having g, symmetry. Ciear evidence of other in-
duced strains, having g,, symmetry, has already been
presented. Although these are derived from the shear-
ing action, they are not, at present, related to itina
well defined way. It is apparent that in the MD results
the major source of the 8U, and 6P, , originates from
this latter structural alteration of the liquid which is not
incorporated in the above model. .The success of this
theory for predicting shear stress follows from the rela-
tively small change in g(r) that occurs on shearing the
fluids —even in the nonlinear region, In addition, the
recoverable shear strain (which can be considered to be
an expansion argument) induced is small (s0.07). It
suggests that models characterizing the nonlinear shear
stress can be constructed using a recoverable shear
strain as the only nonequilibrium parameter.

The analysis in the preceding paragraph should be re-
garded as a tentative hypothesis to be explored, rather
than as a firm conclusion, It is not unreasonable to ex-
pect that the shear induced changes 5U, and 8P,, will

TABLE lIl. A comparison between

the fitted recoverable strain of Eq.

(19) and the equiva.ent elastic

medium strain o,,/G..

- — . __ ]
p ¢ " Q€ 0y/Ca

U, 8442 0,0422 0.005 0,006
0.8442 0.1686 v.027 0,019
0, 8442 0.3373 0.037 0,047
0.8442 0.6745 0.064 0,064
0.92862 0.0435 0.01 0.01

0,92r6< 0.1741 0,026 0,024
0. 82862 0, 3482 0.042 0,042
0, 92862  0,.6963 0.068 0,069
1.01304 0,089 0,024 0.024
1.01304 00,1792 U034 0,034
1.01304  0,3684 Vo044 0,044
1.01304 v, 7168 0.0%0 0,070
1.2603 0, 0483 (o4l  0.041
i.2663 0, 1930 0.039 0,039
1. 2063 0. 3861 0.048 0,050
i. 2663 0.7721 0,051 0,089

N T EE U SR S
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Sudt)

4
W
i 1 R
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(1 1 2 3 4
t
I'IG, k4. The time dependence ol the a1z components ul the
stresa (—) and gusceptibility (~---) tensors for the p=1, 2663
system subjected to the strain rate history: €.,=0.7721, 0¢¢
Tl {® =0, 2.2<t 4id,

depend (perhaps rather strongly) on system size. If this
is indeed the case, one might find that the discrepancies
between the measured changes and those caleulated

from Egs. (20) and (21) are artifacts resulting from the

small size of the MD system,

Experimentally, the stress produced by large ampli-
tude straing can be measured using the optical technique
of birefringence. !’ A fundamental assumption of the
analysis requires that the stress and susceptibility ten-
sor § respond in a fixed ratio to the shear strains., In
order to test this assumption the components of 8,

i.e.,

dra® f: z'i‘ 30’“ - r’! i
Sea=- v “4 ﬁ; (22)
and

S m_ﬂﬁzﬂ:g‘#u
al =~ v " , ’ ‘23)

have been calculated. In Eqs. (22) and (23), a is the
molecular polarizability, which is assumed to be equal

to o® here. A stress-optical coefficient Cy is defined to
be

Co=5./20,n0 (24)

where ng is the refractive index of the medium. The
stress-optical coefficient is found to be oc1/G. for many
materials. '™ In order to test this assumption, o,,(t)
and $_,(1), taken from the p=1.2663 and &,,=0. 7221
cegmented calculation, are shown in Fig. 14, Even un-
der these highly nonlinear conditions this proportionality
is obeyed quite well. This is perhaps not surprising
when the similarity of the configurational average for
each is considered. Table I reveals that C, is relatively
insensitive to shear rate when compared with n, in

agreement with experimental evidence, '' and to a lesser
extent density.

The susce)itibility is a probe which weights longer
range interactions to a greater extent than the stress,
This is evident in comparable o, (f) and S, (1) profiles.

Tle 844 (1) do not exhibit the same deflaite time depen-
dence as does the ¢aq (). The latter is dependent on the
interaction potential and is thus more seusitive to the
short range structural distortions accompanying shear.
Nevertheless. these calculations pive support for the
use of this technique in studying stresses in the no~lin-
ear regime.

For each normal tensorial property T, (e.g., stress,
recoverable strain, andi susceptibility) the direction and
its perpendicular along which the minimum and maxi-
mum value of that property occur define the minor and
major axes of the tensorial distortion ellipsoid. The
amallest angle x betwaen either of these two directions
and the v direction is to a first approximation the sz.ne
for stress, recoverable strain, aud susceptibility. The
expressions

x = tan 27,/ (T, - T..)] (25)
and
x = tan"(2/4a¢,,)/ & (26)

are readily derived and predict that for the states stud-
ied ) differs little from 45°.

111. CONCLUSIONS

We have performed nonequilibrium molecular dynam -
ics caleulations on LdJ fluids with the aim of gaining in-
sights into the mechanism of liquid failure at high levels
of shear stress. The shearing action has been found lo
change the liquid structure so that there is a tendency o
stratify along the lines of shear, enabling flow to \ake
place more easily. The resulting increase in fluidity is
evident in the enhanced seli ~diffusion coefficients and
the rate of decay of the relaxation functions relative to
the unsheared parent system. In other words, the fluid
has a shorter memory of its past behavior.

The structural distortions giving rise to the shear
stress changes are relatively small and are to 2 large
extent decoupled from other structural changes. They
can be characterized using a first order perturbation
expansion from the equilibrium structure. The only
nonequilibrium parameter needed is a recoverable shear
strain which is given to a good approximation by the
shear stress divided by the shear rigidity modulus. Un-
fortunately, we do not understand how to formulate the
mechanigm by which the shearing changes the other
aspects of the liquid’s structure, which undoubtedly has
a strong influence in determining the recoverable shear
strain. Model predictions of “bulk” property changes,
e.g., in configurational and normal pre&sure compo-
nents, are similarly only at an elementary stage of de-
velopment.
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Section II. Comparison of viscoelastic behavior of glass with a
Lennard-Jones model system.

by S. M. Rekhson, D. M. Heyes, C. J. Montrose
and T. A. Litovitz
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COMPARISON OF VISCORLASTIC BEHAVIOR OF GLASS WI'TH A LENNARD-JONES
MODEL SYSTEM

by
S. M. Rekhson*, D. M. Heyes, €, J. Montrose, and T. A, Litovitz

Vitreous State Laboratory
The Catholic University of America
Washington, DC 20064
H.8S. A,

viscoelastic propertiea of a L. anavd-Jones
(1.1) model system studied in a previous work
were compared with the behavior of inorqanic
and organic qlass=forming liquids and solid
qlassea, In the region of samall stresses and
atrains both the LJ model system and “real
materiala® demonstrate linear hehavior.
After adjustment of time scales thc stress
relaxation curves for LJ model and fused
ailica were found to be similar despite tne
16 orders of maqnitude difference in
viscosities of the liquids,

At high stresses the viscosity of the LI
model system drops, stress relaxation occurs
faater, and a peak appeara {n the streas
versus time plots for shearing with a
constant rate. This phenomenon, well-known
for high polymers, has also been ohaerved fov
inorqanic glasses, The «curves, Aalog n
va. 109 o, that shew a drop of viscosity of
Rb.O - SiO, glass and LJ model at stresses
nidher thén  10%Pa, are in remarkable
aqreement. The LJ model is shown to provide
a semi-quantitative representation of a
variety of glass-forming liquids,

INTROMUCTION

Inorganic qlass-torming liquids are often subjected to severe
manufacturing and operating conditions. For example, during forming
operations qlass melts experience shear strains and rates about 10°%
ca/cm and 108 sec”!, respectively -- enormous values. Calrulations
of melt behavior, however, are normally made using experimental data
obtained at strains and rvates 10 orders of magnitude lower., On
looking for methods to study the behavior qlass-forming ligquids
subjected to hiqh amplicude disturbances we came to a wolecular
dynamica (MD) investiqation of a model liquid system.

¥nNow with General Flectric Co., Lighting Business Group, Nela Park,
Cleveland, Ohio 44112,
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MD is a computer aimulation technique for probing the micrvouwcen: -
behavior of a system that allows one to account for the many-ho.ry
nature of the malecu avr tntevactions, 1t involves tollowing so:
representative number of molecules, N, by solving the clasaical
equations of motion on a high apeed computer to abtain  their
trajectories in time ateps at -~ 10™'*,  Prom the vesults of an Mb
experiment =- casentially a record of the system®s path  thiouqgh
phase space =-- onc can Jdetermine any measerable property of  the
system, as well as many that arec expevimentally inaccessible.

Heyes, Kim, Montrose and Litovitz [l]| studied by this methnd thu
model syatem of 108 Lennavd=-Jones (1.1) particlea, These "molocules®
interact through pairwise additive forcea described by the 13 6-1.
potential

olr) = -4u [tase)d = (a/r)V?), (n

where r is the sepavation of an intevacting paic and u and 1 are
constanta with dimensiuong of encrgy and distance respectively. The
method of computer simulation was shown [1' ro be 3 very eftective
technigque Cor studying the behavior of an L) model. tn this paper
we compare the vosults obtained for the L) system with the buhavior
of inorganic and organic qlags-forming liquids to assess the oxtent
to which it can be considered rcepresentative of ceal materials,
Althounh no real glass-forming liquid can be characterized Ly a
potential of the LJ form (only the nohle qas flufids Ar, Kr, oeco.,
are quantitatively represented in this way) there may be some
important common features in dynamical hchavior of liquids which ave
essentially indepondent on the chemical composition and the oxtont
of supercooling relative to the melting point,
]
SHEAR STRESS RELAXATION, LINRKAR BFHAVIOR

Consider firat the linear (small stress and satrain) behavior,
Figure 1 shows th: stross vesponse when a shear strain is switched
on at the instant t = {) and is kept constant,

——ey.
. 10 1.4
{‘ 10810 2 tor LJ mode!

137102 tor 8i0,
Figure 1

A Comparison of the Normalized Stress Relaxation
Functions for the 1.1 Model System and Slo2 Glass
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-8 STRESY RELAXATION? NON=LINFAR
%x9.03:-10 REHAVTOR

Expuriments on stress relaxation
for constant atrain ¢, imponed at
t = 0 ware carriedo out as a
function of €. There is little
change in the "inatantencous ahear
rigqidity as a Cunction of ¢
howaver, there is a markgd
difterence in the relaxation
tunction, ¢(t). The relaxation
function in the hiqh initial
atrain case decays more rapidly
to zero at lonq times. Precisely
the same conclusions were drawn
by the authors [6] who studied

1] extensively the stress relaxation

: in polyiscbutylene., Their data

0 1 2 demonstrate the dependence of the
%218 storage modulus G' on radian

o frequency w for different maximum

NN) amplitudes of deformation rate

Figure 2 Enax * sgv _ (where v is the

The Time Dependence of frequency)., Increase of ¢ {or
the Reduced Streas, ¢, for any qiven v) cuts oft the
o(t)/2, for the LI model: 18nq time tail of G'(w) €unction
= 4.4 = 10!0 571, similarly to that observed in

em=e ¢ = 1,66 = 1011 g7},
sese ¢ m 3,32 % JOML g7t .
VISCOSITY: NON-LINEAR BEHAVIOR

this work for ¢(t).

Fiqure 3 shows experimental data for ¢ systems with viscoaities
ranging from 10 to 10'“ Passa, Despite an enormous difference in
structures for all systums we have similar behavior; that is, a
decrease of viscosity beqinning at a certain range of valuesa of the
stress. The stresses at which deviations beqin are different and
clearly dependent on the details of structure. In this connection
it is interesting to note the coincidence of the curves for
inorganic glass and the LJ model. *

STRESSES IN A LIQUID SHEARED WITH A CONSTANT RATE ¢

Typical curves obtained for the I.J model at small and larqe ¢ Jre
shown in PFig. 2. The Cact that at high ¢ the stress versus time
curve rises to a maximum value and then decays to its long time
limiting value is well known for real materials. The curves, quite
similar to ones shown in Fiq. 2, were veported for poly(vinyl
acetate) {9], and other qlass-forming liquids,

DISCUSSION

1. Experimental evidence i8 provided to support the assumption that
theve are important basic fecatures in viscoelastic behavior which
are common to materials with enormous differences ir structure.
These are: a) transition from elastic hehavior at t » 0 to viscous
flow at larqer times. The transition itself can be characterized by
tairly similar distributions ot relaxation times for LJ model
compared to that of real materials: inorganic qlasses, inorgqanic and
organic monomeric liquids, h) In all =systems studied similar

24
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Adjusting time scales we compare relaxation of atreases (in portionu
of initial streas) in fused silica glass and the LI model. For Si0
we used the data of Leko and Meschuryakova [2]). Taking into account
the 16 orders of magnitude difference in viscomitiea the similarity
in behavior seems to be remarkahle. The LJ curve indicates that the
stresas relaxation irn the L1 model {ia charactertized by the
distribution of relaration timea. The J curve {n Fla. 1 is well
approximated by a function of the double exponential form

G(t) = G, {(1 - &) expl=t/t, ] ¢+ a expl-vt/yllb ' (2)

where G, ia the inatantaneous shear rigidity and a the constant.
The ratio t,/t+ , which is usually considered as a characteristic of
the distritdtidn width, is equal to 10, This ratio ir very close to
that found in most inocrganic and acganic monomeric liquids (3,4).
For example, for B0y, v, /1, * 9, and for borosilicate glass, ta/‘ll
-8,

Coincidence of the parameters deacribing mecroscopic behavior does
not mean *he identity of microscopic mechanisms. It means, however,
that the varieties of mechaniams arec aimjlar in the sense that much
faster machaniams coexiat with alower ones.

VISCOSITY: LINEAR BEHAVYOR

The next step is to apply to the ) model some of the equations of
the linear theory of viscoelaaticity which were proven to be valid
for inorganic wlasses. The equation relating the normalized shear
stress relaxation function, ¢ (t), the shaar rigidity modulus, G_, to
the viscosity of the material, 13.

n =G, [7 dt e(t). (3)

In Ret, (1] n was computed for the LJ system in this fashion, i.e.,
using G, and ¢(t) obtained in the stress relaxation experiment at
constant strain c¢. Then the experiment on LJ model was carried out
to determine the stress response of the aystem when a conatant shear
rate ¢ is initiated at t = 0,

The stress was found to behave as shown in Fiq. 2 (see the upper
curve). Again using the linear thenry, this response is described
by the form

o(t) = & G, [F de' g (t), )

which gives Eq. (J) at t = @: g(tem)/d = n = G, [7 dt g(t). The
initial slope is G,¢ and the long-time value is n.&. The shear
rigidity and viscosity determined in this second type of experiment
agreed to within atatistical uncectainty with that found in the
first type of experiment. This procedure or similar anes were
carried out for many commercial silicate qlasses [5) to show that
they behave as linear viscoslastic bodies at low stress and gtrain,
Thus the LJ model is quite representative of many real materials,
t:::e behavior of which at low amplitudes, is described by linear
theory,

— - e
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non-linear effects were observed at higher amplitudes of shearing
strain or stress.

0 Y b :.—.“\
o LJ liquid 1
oLJ glass
s Si0, glass

-1 opolystyrenesol 1%

- . - - 5%

2
<q
-2} .
é Iy 1 i é I 3
logo (Pa)
Figure 3

Viscosity as a Function of Stress for Several Liquids and Glass: s
(the data for Rb, 0-S10, glass was obtained by Li and Uhlmann [7]
the data for ﬁolymef solutions are given by Ferry in [8]).

2. The drop of ligquid viscosity with increasinqg stress or strain
rate seems to be a general phenomenon; it occurs in all liquids
studied under shear, uniaxial extension and compression, and in some
liguids even under hydrostatic pressure,

All viscoelastic functions and parameters as definei refer to
isothermal changes of state. At the same time tne energy,
dissipated during viscous flow may heat the sample. The work of
viscous shearing heating is W = ge¢ = oft » o0%t/n, which indicates
that the dissipated energy increases as o2. Theretore, the control
of constant temperature of the sample is an important feature of the
measurements of viscosity as a function of stress, While it is a
difficult problem in some "real® experiments is was fairly easy to
keep constant the temperature of the "sample" during MD experiments,
Thus, the factor which might be considered as a reason for the drop
in viscosity has been excluded, WT-rge deformations are 1likely to
produce distortion or veorganization of the system's structure.
Evidence supporting this hypothesis was obtained in Ref, (1] by
defining and measuring a set of planar distributicn functions for
the LJ model system. The representation of the modified structure
is sketched in Fig. 4 (neglect at first the line connecting the
center of the molecules).
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(1}

{2)

(3}

(4]

{5]

(6]

(71

(8]

(9]
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From this once can see the nature

of the structural reorganization

that has occurred; the system has

unshaared arranged itsolf into layers
aliqgned with the flow direction,

W\/ The connection of the center of

the molecules by the line qives an

impression of the analogy in the
sheared behavior of simple 1liquids and

polymers of high molecular weight,

W ~—1L """ Fiqure 4b shows the influence of
W —~—— shearing upon the two polymer
chains with entanglement coupling.

a b The nature of stress or strain

Figure 4 induced structural rearrangements

A pictorial Representation i8 still  quite speculative,
of the Structural Changes Fiqure 4 gives one of the possible
Under Influence of Large pictorial interpretations of the

Deformations in Simple ILiq- Similarity in behavior which has

uids (a) and Polymers with been found in this work for the

Entanglement Coupling .b), materials with difterent stiuv-
tures.
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Section III.

The viscoelastic behavior and rheology of liquids under
shear at high pressures: A molecular dynamic study.

by D. M. Heyes, T. A. Litovitz
and C. J. Montrose
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The viscoelastic behavior and rheology of liquids under

shear at high pressures: A molecular dynamics study

by
D.M. Heyes, T.A. Litovitz and C.J. Montrose

Vitreous State Laboratory
Catholic University of America
wWashington, D.C. 20064

ABSTRACT

A molecuiar dynamics investigation of the microscopic
benavior of simple 1liquids subjected to shearing conditions
similar to those found in elastohydrodynamic rolling contacts is
outlined. The behaQior of a model liquid and more Eomplicated
traction fluids at high levels qf stress are strikingly similar.
The calculations give insights into the structural origin of
shear failure and reveal a restructuring of the compacted
material into layers, which significantly . reduces its shear
viscosity. This change is also manifest in an irncrease of bulk
pressure and decrease in high frequency shear rigidity modulus
and thermal conductivity. Thermal effects in the nonlinear
region of viscosity are consistent with standard macroscopic

theory.
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can be done by appending the idea of a limiting shear stress to
the low amplitude, 1i.- linear, shear response. In order to
test this hypothesis and, more generally, to provide a framework
on which to base analytical representations of lubricant
viscoelastic behavior, we have undertaken a Molecular Dynamics
(MD) investigation of a model liquid system under con:.cions
approximating those found in an EHD contact. Even though the
model gystem is particularly simple, one can expect to reproduce
the major features of shear characteristics of real lubricants.
Then, because an MD experiment provides one with a complete
microscopic record of the system's evolution in time, onre can
"measure® aspects of its behavior that are not accessib:*e in
conventional experiments, but which provide useful insights into
the origin of the properties of.liduids under the above extreme
conditions.

The MD calculation procedure follows rather closely that
pursued in certain model calculations of the contact (3] in that
we observe a portion of 1liquid as it is sheared. This 1is
equivalent to concentrating on a “slice®" of lubricant as it
traverses the region of contact. Although a seimultaneously
applied time dependent pressure and shear rate could have been
studied, we have confined our attention at this stage to
conasidering the response of a model fluid to a time varying

shear rate at a series of densities (pressures).
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INTRODUCTION

In several recent paPeEa Bair and Winer {[1,2] have examined
the problem of understanding the shear stress response of
liquids in concentrated contacts with particular atteation to
the possibility of predicting elastohydrodynamic (EHD) traction
data. They point out that, under the severe conditions to which
the lubricant is subjected -- large shearing rates and large,
rapidly varing normal pressures, there is a dearth of primary
laboratory data on which to base a physical model of the
lubricant's behavior. In a series of well conceived
experiments, they have attempted to remedy, at least partially,
this situation. Using their data, they were then able to
develop. a physically appealing thnomenological model o£ the
non-linear shear response of 1liquids that is reasonably
successful in predicting EHD traction results.

In order to predict traction, one must be able to compute
the average shear streas in the contact, which is equivalent to
knowing the time evolution of the stress in a fluid element as
it moves through the contact 2zone, where it encounters a
simultanecusly applied steady shear rate and a time varying
pressure. The response of the system under these conditions
can, for low shearing rates, be parameterized in terms of the
shear viscosity, n, a shear rigidity modulus, G,, and a
distribution of relaxation times. At the rather large shearing
rates generally encountered, this relatively simple description
must be modified to incorporate the non-linear character of the

dynamical stress response. Bair and Winer [2] suppose that this
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THE MODEL

MD is a computer simu}ation technique for probing the
microscopic behavior of a system that allows one to account for
the many-body nature of the molecular interactions., It involves
following some repreésentative number of molrcules, N, by sclving
the classical equations of motion on a high speed computer to
obtain their trajectories in time steps of typically 0.0l ps
[4). Since only a rather a limited number of molecules is
treated (generally less than a thousand), the molecules are
confined to remain in a cubic box which is surrounded by images
of itself to avoid severe boundary effects. In many
circumstances the artificialities introduced by this procedure
are rather insignificant. From the results of an MD
*experiment® -- essentially a record of the system's path
through phase space -- one can determine any measurable property
of the system, as well as many that are experimentally
inaccessible.

The model system under investigation is an assembly of 108
Lennard-Jones (LJ) particles; these molecules interact through

pairwise additive forces described by the LJ 6-12 potential,

¢(r) = -4u [(a/r)¢ - (a/r)l1?], (1)

where r 1{is the separation of an interacting pair, and u and a
are constants with dimensions of energy and distance,
respectively., All the computed quantities are in so-called IJ

reduced units which are given in terms of u, a, and m, the mass
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of an individual particle. Although no real lubricant can be
characterized by a potentifl of the LJ form (only the noble gas
fluids Ar, Kr, etc., are quantatively represented in this way)
their structural and dynamical behavior can be expected to be
qualitatively similar to that of the model fluid. As a result
one can expect that the microsceopic 1insights derived from MD
experiments will serve as useful guidelines for understanding
and modeling the behavior of real lubricants and perhaps for the
"molecular engineering® of improved liquid traction fluids and
lubricants. For the purpose of comparison with experiment
frequent conversion from reduced to “real" units will be made,
using the parameters for Ar which are given in Table 1.

Two methods of shearing thq box of molecules were adopted.
The results of each method agree within statistical error;
however, each method is well suited to examine a particular
aspect of the investigated phenomenon.

The first method attempts to mimic the enviroment a
lubricant experiences in EHD rolling contacts, 1in which the
fluid forms a thin, almost parallel film of length 400um and
thickness luym, typically under fully flooded conditions. This
thin film is achieved in the model system by employing
periodicity in the x and y directions only, so that an
infinitely thin film is simulated [5). The moving rollers are
replaced by two fluid layers translating with the desired
velocities, U, and u,. Molecules from the three regions are not
allowed to mix and are kept from doing so by reflection boundary

conditions in the 2z direction, which are discussed in detail
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elsewhere [5]). The fluid walls (FW) are maintained at a preset
temperature by adjusting ;heir velocities at each time step of
the integration scheme. The main features of the model are
pictorially represented in Fig. 1.

The second method is a modification of the Homogeneous
Shear technique (4] (MHS), which is better suited to study the
viscoelastic behavior of the fluid because it employs
periodicity in all directions so that a bulk material is
sheared. It also enables a desired strain rate to be
inatantaneously achieved throughout the iiquid. The molecular
trajectories are disturbed from those governed by equilibrium
fluctuations by imposing a shear strain rate, ¢, on the system.
This is accomplished by displacing the x-coocdinate of the i'th
molecule in the MD cell by an amount §x; = ézjat, where z; |is
the 2 coordinate of particle i and At is the length of the time
step, for as long as the shearing is required. The results of
this technique, in particular those relating to viscoelasticity
(derived uaing a time dependent strain rate), complement those

of the FW method.

We have used non-equilibrium MD experiments to investigate

the lineszr and non-linear shear response of the LJ system under
4 variety of thermodynamic conditions. The temperature, T, and
number density, p, initially studied were close to the normal
freezing temperature, T,» of the LJ liquid, that is, 0.722 kgT/u
and 0.8442 Nad/V, respectively. Densifications of 10%, 20%, and
508 relative to the starting density were achieved by suddenly

(within one time step) compressing the system at constant

35
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temperature. The densifications were achieved so rapidly that
the gystems were kinetically prevented from crystallizing. The
reduce:i number densities of the other states considered are thus
0.92862, 1.01304 and 1.2663.

Each calculation was undertaken for a duration of at least

30 reduced timé units (65 ps). The computations were carried

out on a PDP 11/40 computer.
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RESULTS AND DISCUSSION

We first consider the  dependence of shear viscosity on
shear rate in the non-linear region.

In the MHS method a uniform x velocity profile was set up
instantaneously whereas a period of several time units was
required for the fluid walls to drive the central region into
this state. An x velocity gradient was achieved by maintaining
the uppet and lower walls at velocities of U and -U,
respectively. It is relevant here to mention that at all
densities and shear rates considered, the fluid film sheared
uniformly in the z direction without slip at the walls, and not
concentrated in ¢the center as has been speculated before [(6].
An example of a v,(z) so derived from the p = 0.8442 and ¢ =
0.3373 calculation is shown in Fig. 2. The value of ¢
corresponds to an extremely large shear rate -- on the order of
101037} depending somewhat upon the particular values of u, a,
and m that are chosen. Such large values of ¢ were chosen since
it 1is desirable to explore the system's behavior at shear rates
on the order of the reciprocal of the viscoelastic relaxation
times, For the LJ fluids these are approximately unity (about
10712 g). The shear stress needed to define a shear viscosity
is readily derived from the velocities and positions of the
molecules. The a8 component of the stress tensor is defined

below,

N N N
1 3¢
o, = = (1/V) [ | mv?vi =5 ) 1 (ajiBii/riq)eoi—s (2)
af i=1 2 5.5 MR M
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where V is the volume of the MD cell, v] is the a velocity
component of molecule i relative to the average velocity and ajqy
is the a component of the separation between molecules i and j.
The subscripts for the shear stress component, o,,, are dropped
in further discussion.

At low shear rates (AU/h) plots of traction versus slip are
iinear, however at hign stress levels (.- G,/100) the traction
increases less rapidly than ¢elip speed. I[n other words the
shear viscosity (= g/¢) decreases from the equilibrium value of
n, with inreasing shear rate. The MHS method was used to obtain
n versus ¢ for a variety of densities. The forms of n/no versus
stress in Fig. 3 resemble closely those obtained from twin-disk
experiments for the fluids SP4E (7], L63/1271 [8) and Oxilube
85/140 [9) after making the appropriate conversions to real
uni*s. The vatio n/ng descends markedly from unity in the
region ~ 50MPa. The de~rease in n with ¢ is not due to thermal
heating because the calculations were conducted isothermally.
Another method of presenting the behavior, lpg[n/nol Vs,
loglét], where t is a characteristic shear relaxation time (=
no/G.), again shows marked quantitative similarity between the
model fluid and a real fluid, which is in this case SP4E [2].
These results suggest that the model and real liquids might
share a common mechanism of failire at high levels of shear
stress. With the support of the p-&vious results we now discuss
associated changes in the fluids which until now have only been

speculated upon.
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These high s8stresses cause extreme distortions of the
system's structure. The ' intermolecul ar forces are not
sufficiently strong to support the enormous atress levels that
develop; consequently there is a rupturing and reorganization of
the structure resulting in enhanced flow behavior. Evidence
supporting this hypothesia was obtuained by measuring the number
density in the 2 direction between the fluid walls. The density
profile of Fig. 5, derived for o = 1.01304 and ¢ = 0.3584
suggests the form of this structural reordering. The molecules
align themselves into "glide" planes along the line of shear. A
pictorial representation of the structure suggested is given in
Fig., 6. This layering was not observed when the walls were
stationary or moving in the same direction with equal velocity.
In this context it is relevant to note that IR studies of flow
under EHD conditions have also been interpreted in terms of
molecular alignment along the line of shear [10].

Thesa atructural rearrangements are also manifest in
changes in the so-called normal pressura components , Pya (*
~%qq)+ Typically, Pg; > Pyy > Py, although their differences
are small when compared with each component's change on
shearing. The zz pressure component increases are shown in
Fig. 7 and predict an improvement in the load carrying capacity
egquivalent to ~0.5GPa at most,.

It is now widely accepted that knowledge of the
viscoelastic response of lubricants is necessary to interpret

EHD results over the range of possible operating conditions ([9].
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In order to better understand non-linear viscoelasticity the MD
calculations were conducted:swith a time varying strain rate.

We consider the dynamical response of the LJ material to an
imposed shear that is "switched on" suddenly using the MHS
method. Two types of MD experiments are of interest: (a) the
response of the system to a steady shearing rate (uniform
velocity gradient) ¢ = 3v,/dz that is initiated at time t = 0;
and (b) the reasponse of the syatem to a constant shear strain (a
pulse of shearing rate) imposed at time t = t', Linear response
theory provides us with relations between the two types of
responses: the shear stress response to a step of shear strain

can be written as

o(t)/c = Gug(t), . (3)

where ¢(t) is the normalized (¢ (0) = 1) shear stress relaxation
function. In terms of these parameters the shear stress

response to a “"small® steady shear rate imposed at t = 0 is,

o(t)/é = G, [& atr ¢(t'). (4)

Since the steady state (t + «) value of this is just the

viscosity of the material, n,+ we have,
Ny, = Ga [g dt' ¢(t') = G.1. (5)

The last equality serves to define the shear relaxation time t,
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; . Experiments of the type described as (a) above were then
carried out as a function,of ¢ for values of ¢ well beyond the
| range for which linear behavior can be expected. A
representative selection of the results is dieplayed in Figs. 8
and 9 in which the density (constant ¢) and shear rate (constant
density) dependence of n are shown, respectively.
"Several features of these figures are worthy of comment.
At short times the system behaves largely as an elastic solid in

that the stress increases linearly with time,

a(t) = G it. (6)

By

‘ The shear rigidity modulus ri?es linearly with pressure at
roughly the same rate as more complicated fluids, as is revealed
in Pig, 10. Liquids cannot permanently support a shear strain
and consequently the streas levels off to a value determined by
the shear viscosity of the sheared state. There is evident
“shear thinning," or a decrease of viscosity with increasing
shear rate. The predicted value of the stress build-up for the
p = 0,92862, ¢ = 0.6963 state using equation (4), shown in
Fig. 8, clearly overestimates the actual stress obtained.

Also, a maximum in the stress versus time curve for those
simulations in the high density/shear rate regime is observed.
This indicates that the large shear deformations are producing
structural distortions which lag in time somewhat behind the
growth of the shear stress but follow rather closely the

observed time variation of the normal pressure components in the
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material (see Fiyg. ll). This relatively slower development of
what can be thought of as transient stress-induced glide planes
is consistent with the observed shear thinning and stress
"overshoot" behavior presented. It is also consistent with the
observation that the stress relaxation function decays more
vapidly in a highly sheared system than in an equilibrium
system. A comparison of the two types of behavior is presented
in Fig. 12. The form of these ¢ (t) consists of a rapidly (t <
0.2) decaying portion which is presumably inertial in origin and
due tc small motions of the molecules within the random network
structure, Further stress relaxation requires the cooperative
rearrangement of larger molecular groups and 1is consequently
slower. The attenuation of ¢ (t) with increasing shear rate is
indicative of the enhanced stress relieving properties of the
structurally reorganized system. The stress overshcot observed
in non-linear viscoelastic experiments on polymers [ll] has a
form that is quite similer to the curves 6bta1ned for the LJ
system. While the microscopic mechanisms for the two systems
are obviously quite different, the general principle that
associates the stress overshoot phenomena (as well as shear
thinning) with a time dependent structural reorganization
process remains quite valid.

In this context it is perhaps relevant to note that a more
rapid decay of the stress relaxation function can be thought of
as both a suppression of the long relaxation times associated
with stress relaxation and also a reduction in the shear

rigidity modulus, at low frequencies, G, (a rather well known
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phenomenon in polymeric systems {12]). It is found
experimentally that the extracted shear rigidity modulus of the
liquids confined in conceétrated contacts is up to an order of
magnitude smaller than those observed obtained from independent
laboratory (ultrasonic) measurements at the same temperature and
pressure. The large shear rates (~ 104s™! ) that exist in the
inlet 2zone, even under “"pure rolling" conditions, could be
sufficient to reorder the liquid preferentially along the line
of shear. The observed increase in shear modulus with rolling
speed [13] for a wide range of fluids is particularly
significant evidence for this interpretation because |if
molecular orientation of the molecule along the line of flow is
the cause of this phenomenon then it would be expected that the
nodulus would increase with rolliég speed because there is less
time for molecular rearrangement to take place.,

Thermal effects are a major factor in limiting the ability
of a fluid to sustain a shear stress at high strain rates [6].
The FW technique 1is well suited to determine the validity of
using standard macroscopic theory on thin films. From
conservation of energy considerations the temperature profile

under conditions of steady shear flow as given by [14],

327T;2)
322

K = -n £2/(pC), (7)

where K = 3A/(pC), and A and C are the thermal conductivity and

specific heat, respectively. Assuming a temperature independent

13

shear viscosity then the solution to equation (7) is

et S < e e S o 4 T g 4
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T(z) = T(0) - n &2 22/(2)). (8)

A typicalltemperature profile, taken from the p = 1,01304
and ¢ = 0.3584 state, is shown in Fig. 13. All the temperature
profiles can be fitted rather well to the above form which is
parabolic 1in 2z and hence can be used to estimate A, Note that
these macroscopic equations only apply to a steady state viscous
material and do not apply under viscoelastic conditions where
some energy is stored as potential energy and is not dissipated.
The density and shear rate dependence of A is given in Fiq. 14.
The trends are consistent with the general behavior that thermal

conductivity decreases as a materjial becomes more fluid-like.
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CONCILUSTIONS

We have performed non-equilibrium molecular dynamics
calculations on LJ fluids with the aim of gaining insights into
the mechanisms of liquid failure at high levels of stress such
as is found in EHD contacts.

The model liquids "rupture" at similar stresses to those of
more complicated real fiuids due to marked structural reordering
into layers. Paradoxically, altftough structural aspects of the
liquids present a more solid-like appearance, other more

dynamically related properties such as shear viscosity and

thermal conductivity manifest changes which are associated with

enhanced fluidity.
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Table 1

A summary of cthe reduced units in terms of which all quantities are

given, Boltzmann's constant is denoted by kg.

Quantity Reduced Unit SI Unit for Ar
distance a 0.3405 nm
mass m 6.64 x 10726 g
energy u 1.65 x 10721 g
time a(m/u)l’/2 2.16 ps
density a~3 42,1 kg mol/m?
temperature u/kg 119.8 K
Pressure, stress u/al - 41,8 Mpa
modulus u/al 41.8 MPa
viscosity (mu)l/2 /a2, 9.d3 x 1075 pa s

thernal conductivity kg(m/u)~1/2572 1,88 x 1672 J m~! K~! g-!
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Fig. 1

Fig. 2

Fig., 3

Fig. 4

Fig. §

Fig. 6

-20=-
Captions to the Figures
A pictorial representation of the relationship between
the FW MD techniéue and an EHD contact. The encounter
of of molecules with the reflection boundaries in the z
direction and periodic boundaries in the x and vy

directions are illustrated.

The z dependence of the average x velocity for the ¢
0.8442 and € = 0.3373 state using the FW model. The z
coordinate system is measured from the center of the
film,

The non-linear behavior of: A BP L63/1271 (8] (P = 0.8
GPa, T = 27'C, U = 1.12 m/s), O SP4E [7]) (P =+ 0.45 GPa,
T = 27°C, U= 0,6 m/s) and Vv Oxilube 85/140 [9] (P = 1.2
GPa, T = 30°C, U= 2,2 Ays) from twin-disk experiments.
The MHS model: Ao p = 0.8442, V p = 0,92862, 0 p =
1.01304 and open square p = 1.2663.

The non-linear behavior of: S5P4E (2] v = 9 x 1073 s from
experiment. The filled in: A p = 0.8442, V p = 0.92862,
Op = 1.01304 and square p = 1.2663 from MHS MD. The
relaxation times, 1, are: 0.12, 0.30, 0.43, and 1.62,
respectively.

The density profile frcm the p : 1.01304 and € = 0.3584
FW calculation.

A pictorial representation of the structural changes
that take place on going from an unsheared (a) to a
sheared (b) state. The arrows denote the line and plane

of shear.
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Fig.

Fig. 10

Fig.

Fig.
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12
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The variation in the zz normal pressure conponent for
the MHS systems. A& p = 0.8442, V p = 0,92862, Op =
1.01304 and square p = 1.2663,

The time dependence of the reduced stress, o (t)/8t ===-

p = 0.8442, €, = 0.6745; s+e+ (a) actual sees (b)

predicted using equation (4) p = 0.92862, €, = 0.6963;

— T —p =1.01304, é, = 0.7168; —— p = 1.2663, 50 =

0
0.7721. The associated strain rate varilations are

indicated above the figure.

The time dependence of the reduced stress, o(t)/¢., for

€y = 0.0896, ==~- ¢ =

the p = 1.01304 state:

0.3584, esee € = 0,7168,

0
The pressure dependence:. of G,: A Santotrac 40 [9); O
di(2-ethylhexyl) phthalate (9] from a twin-disk
apparatus, Solid 1line G, = (06.293 + 1,70P) GPa
di(2-e)phthalate [15]., The filled in O are obtained
from MHS MD.

The time dependence of the normal pressure components

for the p = 0.92862 and = 0.6963 state: ssee,

éo
Pxx(t), and ---- Pyy(t).

pzz(t)l

The shear stress relaxation functions for the p = 0.8442

€ = 0 and -=== ¢ = 0.6745. The step in strain (¢ =
3.o x 1073) at t = 0 is illustrated above this figure.
The variation in temperature in the z direction for the

p = 1,01304 and ¢ = 0.3584 state where T, = 0.722.
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14 The effect of non-linearity on thermal conductivity ().

The symbols refer to the same calculations as for

Fig. 7.

e —— e —— -

. dl—




Ai —
t

O h
l TN~

FIGURE !




1
v, 2l
0
-1
i
-2

| 1 I
-0.6 0.0 0.6
z/h




S

FIGURE 3

et o b o et




S1o

01

0.01

0.01

0.1

FIGRRRE 4




2/n

FIGURE

57

e SO T T T




/D

FIGURE 6




C——

GPg

0.01 0.1 1.0

54

T R A e A ARG LI KR L W e S

- ot o

P S G -~




©IQ

>
I
{]
1 L I8 )

1011

4

FIGURE 8

e e g




FIGURE 9




100

62

50

FIGURE 10

S




st e s iy S0 O A Sttt 88

B e e - -

e

FIGURE 11

63

P O i et JE L R L S

e ——— e e A




0.0036

Crt;

0.0

0.6

FIGURE 12

O PSR
—— o N .




- 1.6

14
Tiz)
To 1.2
1.0|
0.8

] L ] ] | J
-0.6 0.0 0.6
Z/h

65




Section 1IV.

A theory of non-linear response in liquids and amorphous
solids.

by C. J. Montrose
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A THEORY OF NONLINEAR RESPONSE IN LIQUIDS

AND AMORPHOUS SOLIDS *

by

C.J. Montrose
Vitreous State laboratory
The Catholic University of Ameri .
Washington, D.C. 20064
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ABSTRACT

A mathematical model of nonlinear viscoelastic stress relaxation is derived
using heuris#ic arguments relating shear response to dynamical strain induced
srructurhl changes in the material. A parameter characterizing the limiting
steady-state shear stress appears as a central feature of the model.
formulae are presented and some representative specific cases are considered.

predicted behavior is in qualitative agreement with both MD and "real

experimental observaticns.

* This work was supported by the Office of Naval Research (Contract No.

N00014-81-K-0296) .
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INTRODUCTION

The shear stress response at time t to a ghear strain rate history imposed
over the time interval O to t is given for small stresses by the linear convclution

integral form

o(t) = t(dc' Gy (t-t")e(t"). (1)

In this o(t) is the shear stress at time t, €(t') = de/dt' is the shear strain

rate, and Gy(t-t') i1s the shear stress relaxation function. In terms of

-

this last, one can obtain the usual shear viscoelastic parameters of the material:
(i) The instantaneous shear rigidity modulus is just the value of Gy at
the zero-value of its argument, i.e. .
Gy(0) = G, . 2)
We make use of this_to define a normalized shear stress relaxation
function gu(s) - -
Go(s) = G_gg(s) . - ()
(2) The shear viscosity is the integral of the relaxation function Go:
no = fds Gq(e) )
(3) The shear relaxation time is the integral of the normalized relaxation
function:
vo = Jds go(a) = no/C.. 5)
the second equality following from the use of Eq. (3) in the first.
That the relarions expressed in Eqs. (2) - (5) are appropriate can be seen by
considering a fev special strain-rate histories.
Consider first a step of strain Aeo switchgd on at the instant of time = O%.
The shear strain rate is e(t') = Aegd(t') and from (1) the stress respons is
o(t) = AeqgGo(t). (6)
At the instant t=0, this gives the instantancous elastic response. Thus, Gg(0)

is indeed the instantaneous shear rigidity, G_.
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In a similar fashion, we may examine the response to a steady strain rate

¢o switched on at time = ot; here_the stress 1s given by
t t
o(t) = éogdt' Gy(t-t') = éogds Go(s), (7

the second equality following from substituting t'=t-s in the first. The

steady-state viscous behavior is found by taking the ¢t -+ = limit:
(-]
o(t + =) = éogds Gq (s) 8)

The ratio o(t >+ w)/éo is the usual! definition of ghe viscogity in agreement
-1ith Fq. (4). |

The results and formulae ju.t given are the usual viscoelastic equations
for tte linear response of a system when the stresses and strains (and strain-rates)
are small. The purpose of this paper is to develop formulae analogous to these
which can be used in situations of large stresses and étrains, and which will
of course reduce to these in the appropriate limits. The paper consists of two
main parts: in the first a heur stic approach is used to derive a generalized
stress response formula analagous to (1) and to use this to define effective, i.e.
strain-rate dependent, moduli, viscosities, and relaxation times. The behavior
for some particularly simple impressed straln rate histories is examined. 1In
the second part, specific forms (based roughly on the MD results obtained in this
laboratOtyl) of the relevant shear and structural response functions in the
theory are assumed. The consequences of these are worked out and the resulting

behavior is compared with some existing experimental work.

THE KON-1INFAR RESPONSE EQUATIONS

In generalizing Eq. (1) for the case of finite amplitude shear rates, we
assume that the same form can b2 used if explicit allowance for the dependence of

(and dynamic response of) the stress relaxation function on strain rate is made.
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Specifically, it 1s assumed that the stress relaxation function depends upon the
structural configuration of the material, which, in turn, responds to the impressed

shearing rate. The shear stress is thus expressed as
t .
a(t) = {dtOG[t-t0|t,éJé(t0). (9)
The form of G for a giver. shear rate is taken to be
clt~tgit,&] = Go(t-t){1 - A[de a(tIF[t-tq]t,E]). (10) ‘
0

where F is the structural relaxation function (explicitly time shear rate
dependent) and 1is a "strength of coupling" parameter, for which a more physical
interpretation will be given below. The structural relaxation function is
assumed to depend on the material configuration in the same manner as G, that is,

we take

. t ‘
Fle-t)|t,&] = folt-t) {1 - Afde,e(e)F[e-t,]t,e]). (11)
0

Combining (9)-(11) gives for the shear stress
t t t i
o(t) = {dtoe(to)Go(t-to) - A{dtoé(to)co(t—to) gdtIE(tl)fFo(t‘tl) ;

t t 't
+ A2fdege(t 6o (t=ty) fde ety ) fy (b=t ) fdE, e (e, F (et |E,8)  (12)
0 0 0

Repeated use of Eq. (11) in (12) leads to an infinite series form for the stress:

t @ t
o(t) = [dtgé(tg)GolL-ty) 2(-x)“ljdc'é(t')f0(c-t')I“ (13)
0 n=0 0 '
It should be appreciated that the form in (13) can be obtained more formally

from the general Green-Rivlin integral equatiom,?

t t t
o(t) = fdeg(ty)Go(t-ty) + Jdtog () fdt 8(e,)6, (t-t ), t-t,)
0 0 0

t t t
+ [dtgk(to)fde & (e)) [de,8(t,)G(e-ty, t-ty, t-t,) + ..... (14)
0 0 0
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4
hy assuming that the nth order response function is factorizable as
Glt=tg, ... t-ty) = Go(t-tg) (-A)"fp(t-t) Fo(t=ty) ... fo(t-ty). (15)
With the usual restrictions on the summand, the series in (13) can be
summed in closed form; the result is .
t
fdtye(ey)Golt-t")
0
o(t) = T - .- . (16)

1+ 2fde'e (e Fole-t")
0

Eq. (16) is the fundamental dynamical result of this paper. Note that without

any loss of generality we may assume that:Fo is normalized as
fo® = 1, | (17)

ahsorbing any other factors into the coupling parameter A. This also implies

a definition of the structural relaxation time tg as
[+ 4]
I'd
T, = Jdt"}(t') . 18
séj)() (18)

Eq. (16) can now be written in terms of somewhat more physical quantities by
examining the steady-state (t + ») form predicted by this equation when a steady

shear rate

0 (£<0)
€ = (19)
€ (t>0)
is applied. The resuvlt is
a(=) = &01oG /(1 + €xd1y) (20)
For large shear rates this bhecomes
o (x) -—é—‘-—-—-) GooTg/Atg = o* (21)
-+ ™

o* is seen to be the maximum steady state stear stress that can be sustained by

i
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the system. FEq. (16) can now be cast as

t
Geofdtge(tg)gq (t-ty)
o(t) = 0 (22)

t
%1 'e ' '
1 + 10 (Ge/o )?sgdt e(t )fo(t-t )

By considering the strain rate history given in (19) it is possible to define an

effective shear-rate-dependent viscosity
n(éo) = 0(""')/530 H (23)‘

the form of this is easily found by substitucing the second equality in (21)
into (20):

Gm‘l' 0

. - (24)
n(€o) 14 &t (Gw/ ™)

This is sketched in Fioure 1. An effective rigidiiy modulus can also be

defined by considering the iustantaneous stress developed upon application of

a step in strain Aeo. Here we obtain

+
Glaeg) = 200 . Geo ' (25)
Aegg 1+ Aeo(cwrolc*rs)

SPECIAL CASES

In the sample computations presented in this section we have used the
following typical functional formg and parameter values:
A.  gy(t) = a exp(-t/11) + (1-a)exp(-t/13)
a= 0.9
T/t = 9

s A e =hem s

ca -t
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6
B. jo(t) = vxv(-t/fz)
TS = TZ

C.  Gw/o®* =10

Figure 2 presents computations using these functions and parameters in Eq. (22)
for the strain rate history given in (19). Observe that both the Qtress overshoot
and shear thinning effects observed by Heyes et ﬂll (section 1 of this report)
are reproduced. As expected, these effects become more pronounced for large
values of the reduced strain rate.

| We have also examined the behavior when a step of strain Aeo 1s switched
on at time = 0. Fur this case the stréin dependent shear rigidity is given by
Fq. (25) and is plotted in Figure 3. The time evolution of the stress is

easily compuced to be

B 63
9(6) = Cabey T4 heg(Gato/o™t 1o (E) (263

This is plotted in Figure 4.
As a last case we consider the application of a steady shear rate [§ee Eq.(19)]
at time = 0, followed by the application of a small (infinitesimal) step of strain

8¢ imposed at a time t*s>> ¢ i.e. after the stress has reached its steady state

0!

value. The incremental stress 80 is calculaied to be

. et ] 270 Gl ") _ .
8a(t) = 1 4 &ytq(Culo™) [go(t) T 1+ &gty (Gela™) (To/TS)-{O(t)J; 27
in this equation, the time variable t represents the time following the
application of the strain increment. From this equation we can define an effective

shear-rate dependent rigidity

80 (0) 1+ éoro(Gm/o*)(l-'ro/TS)
G0 2T T T 4 egyGalotl? ’ 2

— ra—
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and a shear-rate dependent stress relaxation function

Bo(E) - £gTo(6ulo™ [Bo(t) = (ro/15)F0(8)]
g(tidy) = — e

1+ €pTg (GO/U*) (1"1'0.};'8)

©— e gty

This last is plotted in Figure 5.

observations of Heyes et al.l

Again there 1s qualitative agreement with the

(29) 1
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NORMALIZED VISCOSITY, 74

1.0 rmeneinm e ——— M T T
l’.' »
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G/o{himit) 13
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NORMALIZED STRAIN RATE, ¢t
FIGURE 1. The shear-rate dependent viscosity plotted

versus reduced strain rate. The data points
are MD results (Section I, this report) and
the value G/o(limit), i.e. Gm/o*, of 13 was
chosen to best fit these data.
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A MOLECULAR DYNAMIC STUDY OF STRUCTURAL CHANGES
’
ACCCMPANYING MATERIAL FAILURE: PRELIMINARY RESULTS

by
S. D. Grant and C. J. Montrose
Vitreous State lLaboratory

The Catholic University of America
washington, D.C, 20064

INTRODUCTION

In a recent paper1 we reported a molecular dynamics (MD)
study of the nonlinear shear response of stable and metastable
(undercooled) liquid systems. Among the principal results of
this work was the observation that accompanying, and indeed
responsible for, the reduction i; the effective viscosity (shear
thinning) at elevated shear rates is a reorganization of the
liguid structure into laminae approximately aligned with the
shear force. The effect of this is to facilitate flow and hence
reduce the shearing stress that is réquired to maintain the shear
rate. At the time it was hypothesized that this structural
reorganization could be viewed as the precursor of a material
failure process, the actual fracture of the system being prevented
by rapid molecular diffusion that acts as a local "healing"
mechanism. To investigate this hypothesis we have undertaken
a set of MD experiments on systems that hava been rapidly quenched
to low temperatures -- glasses--so that, on the time scale of the
experiments, molecular diffusion is arrested. In this note, we

report some preliminary results of those experiments.
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COMPUTATIONS AND RESULTS

The system under investigation if an assembly of 108 parti-
cles (a few runs have been carried cut on larger systems) inter-

acting pairwise via a Lennard-Jones 6-12 potential
¢p(r) = 4de¢llo/r)'? - (0/r)®).

The equations of motion were integrated using the Verlet algorithm
with a time step of about 0.01.2 The results that we present here
were obtained at a temperature of 0.10 and a density of 1,013,
This state was reached by rapidly (in one time step) "crushing”
a triple-point liquid system (T = .722 and p = .8442) to achieve
a 20% densification, then allowing this state to equilibrate, and
finally "quenching” the system (again in one time step) to the
desired temperature. The rapid densification and cooling steps
inhibit those structural rearrangements that are required for
crystallization to occur.

~ The experiment consists on switching on a shear strain rate
éxy at time = 03 and examining the subsequent time evolution of
the system. The temperature was held constant by sczling the
particle velocities after each time step. Among the system
properties "measured" were the shear and normal stress components
and distribution functions characterizing the local structure.

Typical of the results obtained is the plot of shea (xy)

stress versus time shown in Fig. 1. As is evident the stress
rises until approximately t = 12 at which time (when the strain

is about 6%) it drops precipitously to zero. This stress release
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is interpreted as a failure mode of the material; fracture in
the normal sense cannot octuir because of the confinement
condition imposed by the density constraint on the system.
This effect was quite reproducible occuring in three separate
runs with éxy = ,005 and in one with éxy = ,001l. In all cases
the stress release occurs at stresses = 0.6 and at strains of
5% to 6%,

One of the runs with éxy = .005 was continued out to t = 75
(Fir, 2). Observe that following the failure at t = 12, the
stress, after hovering near zero for a short time begins to rise
at t = 20 before dropping at t = 42. Note that at this point
the stress has risen to a value more than twice as large as the
level initially required to init’iate failure. This growth and
sudden fall of the stress is repeated agairn between t = 50 and
t = 72,

The time dependence of tne other stress components are

shown for the same run in Figs. 3 through 8.

Accompanying each of the major stress changes are significant

structural rearrangementa. These are pictured in Figs 9(a) and (b).

It is evident that the initial stress buildup causes a strati-
fication of the amorphous structure; the failure of the system
coincides with a reorientation of these strata. Continued
shearing of the system leads to a "reconstruction" of the material
in which it is reconfigured as a crystalline solid.

This is illustrated in Figs. 10 - 12 where the radial distri-

bution function is given at various time instants. At the later
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time instants the crystalline character of the material is clear;
the positions of the first four peaks in the RDF's are in the

ratios 1, vZ, /3, and /4 indicating an FCC crystal structure.
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The radial distribution of the system at the time

instants 6.9, 15.2 and 23.4 (reading up).
are displaced by one unit;

the dotted curve is the
equilibrium distribution function.
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time instants 56.5, 64.7 and 73.0 (reading up).
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Section V1. Non-newtonian viscous flow in glass.

vy J. H. Simmons, R. K. Mohr
and C. J. Montrose
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Non=Newtonian Viscouus Flow in Glass

by

Joseph H. Simmons, Robert K, Mohr, and C. J. Montrose

Department of Physics
Catholic University of America
Washington, D.C. 20064
ABSTRACT

The viscogsity of a soda-lime silica glass was measured at
high strain rates. The data show non-Newtonian viscous flow in
this inorganic oxide glass with the viscosity valurs below the
expected Newtonian value. Following the imposition of larqge,
steady strain rates, the observed stress increases with time to
a maximum and then decreases to a time~independent value. A
comparison of the viscosity behavior of this glass with the
molecular dynamics results in a "Lennard-Jones" glass shows a
number of points of corregpondence and suggests the interpreta-
tion of the non-Newtonian behavior as resulting from structural
rearrangements in the material. The combined data show that the
sustained, steady-state stress asymptotically approaches a maxi-
mum at very high strain rates. This limiting stress is inter-
preted as the actual cohesive strength of the material and 1is

calculated to be 1.4 x 108N/m¢ (20,000 psi) for the glass under

study.
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INTRODUCTION

The strain rate response of non-crystalline materials under
an applied stress has generally been observed to be linear
(Newtonian) for low stress or strain rates. Organic materials
have exhibited large deviations from Newtonian behavior "oth in
the pseudoplastic direction (below Newtonian viscosity) and the
dilatant direction (above Newtonian viscosity).1 Since a cor-
respondence between specific structural changes and the non-
Newtonian response has not been determined for these materials,
it has been generally surmised that the non-Newtonian behavior
is a result of complex moleculaf chain kinetics such as unfold-
ing, stretching, cross-linking, etc.

Recent "experiments® with Lennard-Jones spheres in a glassy
state using molecular dynamics (MB) calculations have also shown
the onset of non-Newtonian behavior under increasing strain
rates or applied stresses.2'3 The calculations show that when
an applied shear strain rate is imposed on a box containing
Lennard-Jones spheres, the resulting stress is proportional to
the applied strain rate, ¢, only for low strain rate values
(Et°<<1, where 1, is the shear isothermal relaxation time in the
Newtonian region). At higher strain rates, the measured
stresses and the corresponding viscosity do not reach their
expected Newtonian value, with the deviation growing for
increasing strain rates. The resulting behavior is shown in
Figure 1. Since in Lennard-Jones glasses the atoms interact
only via central forces, it seems clear that the observed non-

linear behavior in MD calculations is a fundamental property of
the liquid or glassy state.
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Oxide glasses consist ot ions which bind with both an ionic
and a covalent character. Silicate qglasses have not demon-
strated any chain characteristics, and therefore, they offer a
set of materials whose behavior can be compared to MD Lennard-
Jones glasses. Some differences are expected since silicate
glasses exhibit some covalent (directional) bonding. But much
similarity is also expected since a large por:iion of their
molecular make-up is ionic.

Measurements by Li and Uhlmann on rubidium silicate
glasses4 have shown the existence of a non-Newtonian region in
the viscoela=tic response of the glass to an applied constant
load, As is the case for MD glasses, the deviation from Newto-
nian behavior was in the pseudoplastic direction. However, the
dynamics of the non-Newtonian :behavior of the glass were not
studied in detail. We have analyzed their data, and a compari-
son of their results to MD experiments and to our resnlts is
presented below.

In this paper, a stable silicate glass was selected for an
investigation of non-Newtonian behavior. The glass is a stan-
dard reference material for viscosity issued by the National

Bureau of Standards.5

its Newtonian viscosity has been measured
at great length and its stability in air at high-~temperatures
has been established through numeious tests.2¢6,7

The experiment which we present is conducted differently
from that of Li and Uhlmann, and is designed to reproduce the

conditions of the MD czlculations. The experiment is conducted

at constant strain rate rather than constant stress or applied
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load. While these conditions are interchangeable when the
material is exhibiting Newtonian behavior, they are not equiva-
lent when the response i8 non=-=linear. Constant strain=-vate
experiments were performed because they allow a detailed study
of the non-linear behavior before the onset of material failure.
Experiment

Measurements were conducted on an oxide glass fiber whose
composition is shown in Table 1. Fibers were made by hand draw-

ing from the molten glass at 1150°C, and had diameters of 0.1 to

1mm,
TABLE 1* - GLASS COMPQSITION
Sio2 70,.5% szo3 1.1%
K.,O0 7.7% . SO3 0.2%
Nazo 8.7% Alzoa' Fezo3 0.2%

Cao 11.6%

*This glass is known as NBS-710 Viscosity Standard.

Each tested fiber was inserted through a furnace l2cm long with
a narrow central channel and was attached to a stationary fix-
ture at the bottom end and to a moveable load cell at the top
end. See Fig. 2 for a schematic of the fiber and furnace
arrangement. The furnace was designed to yield a relatively
constant temperature over most of its length (23°C over 90mm)
and to drop rapidly in temperature at each end (AT = ~20°C in
less than 6mm). This guaranteed a constant, well defined hot

zone. At selected temperatures, the fiber was elongated at a
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constant rate while the resulting force was measured. The
measurements were conducted at all the different strain rvates
ctudied before the temperature was changed,

Since the length of hot tiber was fixed by the furnace,
this resulted in a constant applied strain rate, The fiber
diameter was reduced as its total length increased, therefore it
was necessary to calculate a correction for the steady-state
cross-sectional area reduction. Steady-state refers to the con-
dition where the cross-sectional area decreases uniformly over
the entire hot-length of the fiber. This iz seiectad to differ-
entiate it from localized necking which we shail discuss later.

An exact solution to the steady-state correcti.:. is:

A(t) = Aoe'e(t'to)p (1)

where A, is the area at t, and ¢ is the strain rate. The vali-
dity of this correction was verified by the measurement of the
expected Newtonian viscosity at low strain rates before and
after substantial elongation at high strain rates. Using this
area correction, plots of the variation of developed stress with
time were obtained for different applied constant strain rates.
A typical dependence of stress on strain rate is shown in Fig.
3. Note the linear region at low strain rates, and the pseudo-
plastic deviation at higher strain rates. The apparent

viscosity n was calculated &s follows:
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where o is the developed stress.* Fiqure 4 shows the temperature

dependence of the Newtonian viscosity measured at Jow strain

rates.

*This is a commonly used definition of viscosity in the Newto-
nian region. The definition of viscosity %n non-Newtonian
regions becomes somewhat ambiguous and others®™ have suggested
that n=1/3(30/2¢) is a more appropriate definition (the two
definitions are equal in the Newtonian region). The use of Eq.
2, however allows us to plot viscosity as a function of time at
fixed & and this is more useful for our fixed strain rate exper-
iments. The use of the differential form reguires data with
very low scatter to calculate the viscosity with any accuracy
and therefore is not used here.
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Discussion

A. Experimental Resulta

A study of the non-iinolr behavior of this qlass and a com~
parison with the Lennard-Jones, molecular dynamics experiments
are best effected by looking at the time dependence of the
apparent viscosity for a given applied constant strain rate.
Figures 5 and 6 show the non-Newtonian behavior for two differ-
ent temperatures. The onset of non-linear behavior occurs at
higher strain rates for higher temperatures and lower viscosi-
ties. The slow increase in viscosity to its Newtonian value,
Ny at the low strain rates corresponds to shear relaxation
effects in the glass, and the time to reach the steady-state,
Newtonian behavior is proportional to the average shear relaxa-
tion time, Ty no/c where G is the instantaneous shear modulus.

As the strain rate is inc;eased, three significant effects
can be observed. First, the apparent viscosity approaches a
steady-state value for long times. This steady-state, apparent
viscosity decreases with increasing strain rate. Second, there
is a short-time overshoot of this steady-state value during the
shear relaxation period. T™ird, the slower shear relaxation
processes appear to be chort-circuited by a faster process which
leads to the lowered viscoeity. These results are qualitatively
identical to the behavior of Lennard-Jones spheres in the MD
experiment (Fig. 1l). This process appears to be a structural
breakdown mechanism and occurs at earlier times for increased
strain rates (i.e. compare the curves with ¢ = 72x '0~“/sec. and

18x 10~%/sec. in Fig. 5). It appears that the high strain rates
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cause a breakdown of the glass structure which in turn allows
stress relaxation to occuxr by the faster available mechanisms
rather than the sum of all relaxation mechanisms. Because, the
Newtonian shear relaxation processes and the structural break-
down prccesses have different relaxation times and amplitudes,
there is an overshoot in the apparent viscosity.

Each set of tests shown on Figs., 5 and 6 was conducted on a
single fiber., The measurements gave the same steady~-state vis-
cosity values at each given ¢ whether th= measurements were made
following a higher or a lower ¢. Therefore, the steady-state
viscosity values appear to be independent of past history. 1In
each figure, the highest & value corresponds to & failure of the
fiber., In Fig. 5, the viscosity appears to be approaching
steady-state when failure occurs.

L]

B. Heating Effects

It is apparent that the observed non~linear behavior of the
silicate glass fibers is similar to the behavior of the Lennard-
Jones glass. Before a discussion of similarities &ard differ-
ences between these two results, it is necessary to establish
that test conditions were similar. For example, in the MD
experiments, the temperature was maintained constant. Therefore
it is recessary to determine whether the silicate glass Eibers
were heated above the furnace temperature at the higher strain
rates, and whether the heating, if present, would be sufficient
to cause the decrease that was observed in the viscosity. For
example, the drop in observed viscosity at 563°C from the Newto-

nian value of 3.2 x 10l!2F to the pseudo-plastic value of 1.1 «x
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1012p (at the strain vate of 7.2 x 107“sec”!) corresponds to a
temperature increase of 10°C.
A lower limit to the rate of heat loss from a fiber can be
calculated using the radiative heat transfer coefficient, H,
defined for small temperature differences between the fiber and

the furnace as:
H = 4eST? (3)

where e is the glass emissivity, S is the Stefan-Boltzmann con-
stant hnd T is the absolute temperature. The rate of heat loss

dQ/dt is then given by

dQ ‘
3t~ HAgaT (4)

where Ay is the surface area of the fiber in the furnace and AT
is the temperature difference between the fiber and the furnace.
Using S = 5,67 x 107%J/secem?+K', T = 836K, and e = 0.9 we cal-
culated a value for H = 1.2 x 102J/K.m2.gec. This value is an
underestimate of the total heat transfer coefficient since only
radiative mechanisms have been considered. Paek and Kurkjian8
have estimated H from ccoling rate measurements made on glass
fibers with similar dimensions as those tested here. Their
estimate yielded H = 2.9 x 102J/Ke.m2+.sec which is consistent
with our calculation.

A calculation of the rate of dcing work on the fiber was
made to determine an upper limit on any resulting temperature

rise. The rate of doing work is
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where V is the volume of the fiber given by f«A(t). Under
steady-state conditions the maximum rate of heat input due to
conversion of all the work to heat was calculated to be 3.37 x
10"%J/sec. Since the surface area of the fiber in the furnace
was approximately lcm? the largest temperature rise that could
be supported considering only radiative heat loss is less than
0.03°C. ‘This is far below the value of 10°C necessary to cause
the observed non-linear behavior. Therefore, we can reasonably
conclude that the non-linear behavior of the glass during these
experiments was not a result of localized heating of the fiber,
and the test does duplicate the isothermal conditions 6f the MD
experiments.

C. Mechanism

During the MD experiments, it is possible to arrest the
system and examine its structure. The examinations of systems
having undergone extensive non-linear behavior showed definite
structural changes indicative of a layering effect for planar
shear. The layers appear to form almost parallel to the shear
planes with a small angular deviation from the shear direction.
The angles decrease with increasing shear rates.? Real glasses
may also be suddenly frozen by rapid cooling to temperatures
below the glass transition temperature. However, structural
examinations of real glasses on the molecular level are diffi-
cult and cannot be made directly. Therefore, we have not yet
attempted tc gather structural correspondence tor the non-linear

behavior.
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It is possible however, to discuss the non-linear behavior
of real, inorganic glasses by comparison with MD results. The
reduced steady-state viscosity (apparent viscosity divided by
Newtonian viscosity, n/no) can be plotted versus stress or
versus reduced stra.n rate (strain rate times the Newtonian

average relaxation time, €t for each temperature. In both

0!
instances, the data reduces to the same general shape, although
it appears to us that the reduction with reduced strain rate is
better. Both inorganic glass experiments and the MD data follow
the same general behavior.

The decrease in viscosity with increasing strain rate
results from an asymptotic approach of the sustained steady-
state stress to a maximum value (°limit) at very high strain
rates. The existence of a limit.in the sustainable steady-~state
stress indicates that if the system is placed under a stress
greater than the limit, steady-state conditions cannot be main-
tained and catastrophic failure ensues. This 'stress limit,
therefore, can be interpreted as the actual cohesive strength of
the material. This result shows a unique and valuable feature
of the non-Newtonian viscosity studies since the actual cohesive
strength of the material is obtained here without a need to
fracture the material.

A calculation of the limiting stress requires some extrapo-
lation of the data to very high shear rates. In this task, we
rely on the similarity between the measurements conducted on the

soda-lime silica glass and the MD calculations on the Lennard-

Jones glass. The normalized viscosity of both systems reduces

1t o v o i e =

S
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to the same curve when the shear rate is normalized through the
function Ero/a where a is an adjustable parameter. The value of
a is found to be 0.0063 for the soda~lime silica glass, 0.0053
for the rubidium silicate glass and 0.07/ for the Lennard-Jones

glass. Reduced in this fashion, all data follow the same beha-

vior, independent of temperature and composition as shown in

Fig. 7.

The fall-off in reduced viscosity at increasing strain
rates, thus appears to result from dynamic changes in the struc-
ture of the material which accompany the large applied strain
rates. Reduction of this data from different temperatures on
the same glass by use of the average Newtonian shear relaxation
time indicates that the structural rearrangement is controlled
by the shear flow processes in ghe glass.

The functional dependence of the decrease in normalized
viscosity can be obtained from an equation based on the concept
of a limiting stress used by Bair and Winer to discuss similar
behavior for highly viscous organic lubricants.?® The equation
was derived by Montrose using semi-empirical arguments.10 The
equation yields a simple relationship between reduced viscosity

and the normalized strain rate function, eto/u:

n 1
- —— (6)
Mo 1l + ero/a

where the factor a is found to be the ratio of the maximum
stress sustained by the system and the instantaneous shear

modulus of the glass, 01imit/G. The fit of this equation to the

data is also shown in Fig. 7.
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01imit 1is the maximum stress developed in the system under
steady-state conditions as the strain rate goes to infinity
without material failure. Therefore, o);nit represents the
actual cohesive strength of the material. This actual cohesive
strength is interpreted as the maximum stress sustainable by the
material when the stress is applied at a rate slower than the
effective relaxation time of the glass. 1Its existence suggests
that when viscous or plastic flow occurs under an increasing
tensile or shear stress, there is a stress value where steady-
state flow cannot be sustained and the naterial fractures at.the
point where the stress 1is applied. In the case of loaded
fibers, this result suggests that as the diameter of the fiber
undergoes localized necking, a point is reached when 9applied >
0limit and fracture occurs, rather than continued necking of the
fiber. .

In the MD experiments, an independent measurement of
°limit/G was conducted and agrees very well with the value of a
obtained by fitting the non-linear viscosity to Eq. 6.

This generalized behavior of inorganic glasses at different
temperatures and composition is an encouraging basis for the
development of molecular models to interpret non-linear behaviar
in inorganic glasses. The strong similarities to the MD glasses
indicate that the effect is indeed a result of structural rear-
rangements in the glasses. The parameter, o appears to be
linked to the strength of some average structural bond of the

material at the temperature of measurement. Therefore, this

exp -riment offers a direct measurement of the cohesive strength
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of different glusses and a possibility for measuring its
temperature drpendence. The values obtained here show that both
oxide glasses can only sustain stresses about 1/160 of their
shear modulus while the Lennard-Jones glasses can go up to about
1/10 of the shear modulus.“ This result is reasonable from
structural considerations since the bonding forces in the LJ
glass are spherically symmetric, while a significant portion of
the bonding of the oxide glasses is covalent und therefore high-
ly directional. It is expected that these covalent bonds are
much less resistant to shear stresses since they can break by
bond rotation than are the non-directional ionic bonds which
break by bond extension alone. Estimatingy a shear modulus for
the soda-lime silica glass of 2.2 x 10!%a, based on high tem-
perature ultrasonic sound velocity measurements, our interpreta-
tion of the reported measure;ents yield an actual cohesive
strength of 1.4 x 10%Pa (20 Kpsi) for this glass at temperatures
near 560°C, and Newtonian viscosities of 10190-10!1lpa.s (1011~

10! 2poise).
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SUMMARY AND CONCLUSIONS

The viscosity of a stable, soda-lime silica glass was meas-
ured at high shear rates. The results showed a non-Newtonian
viscosity behavior of the pseudo-plastic type. As a function of
time, the viscosity at high, constant strain rates first
increased to a maximum, then decreased to a constant time-inde-
pendent value, lower than the expected Newtonian viscosity. The
time independent behavior at long times yields a steady-state
vigcosity which is a function of the applied sttain rate.

The measurements when compared to molecular dynamic calcu-
lations on a Lennard-Jones material show unexpected similarity
in the time and temperature dependence of the non-Newtonian vis-
cosity. The observed behavior also agrees with earlier work on
a rubidium silicate glass. Comparison of these data indicates
that the time evolution of the viscosity of the silicate glasses
corresponds to that calculated for the Lennard-Jones glasses
which is known to result from a structural rearrangement in the
material under high deformation rates.

” An examination of the combined data of the inorganic
glasses and the MD glass showed that the steady-state, sustained
stress under applied constant strain rates approaches a limiting
stress value, ojjni¢s for infinite strain rates. This limiting
sustained stress is interpreted as the actual cohesive strength
of the glass since any applied stress greater than ¢);yjt cannot
be sustained under steady-state conditions and leads to catas-

trophic failuve. The extrapolation of data using a semi-empiri-

cal model showed that oy ;nhijt for the two incrganic glasses
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analyzed is near 1/160 times the 1igid shear modulus, ‘or
approximately 20Kpsi for the soda 1lime silica glass. These
results suggest a mechanism for material failure at high temper-
atures (under conditions of plastic flow). By this mechanism,
an applied shear stress greater than o);.i, induces initially a
plastic flow reaction which changes to fracture when the struc-
ture attempts to adjust to the stressed condition. An applied
shear stress lower than O01imit induces a plastic flow reaction
which reaches a steady state strain rate as the structure rear-
ranges itself to ajcomodate the stress.
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FIGURE CAPTIONS

Results from molecular dynamics calculations. Shear
stress versus time for the shear strain rates shown at
the right, switched on at time zero. Note the stress
overshoot at the upper strain rate. (See Ref. 2 for
details).

Details of the furnace and load cell asaemblies. The
end heaters, 1 and 3 were adjusted to obtain a uniform
temperature in the furnace.

variation of stress versus strain rate for the soda-
lime-silica glass. The deviation from Newtonian beha-
vior is clearly seen for strain rates above 1.5 «x
10"4sec™!.

Newtonian Viscosity of the measured soda-lime-silica
glass.

Measured viscosity versus time for the strain rates
shown, switched on at time zero. The dashed line is
the Newtonian value.

Measured viscosity versus time for the strain rates
shown, switched on at time zero. The dashed line is
the Newtonian value. .

Plots of viscosity reduced by <&he MNewtonian value
versus normalized strain rates, ct1, for various tem-
peratures, The solid line represents equation (6) and
shows how a reduction of the strain rate by the single
parameter of: G/o(limit) can fit the data from three
totally different materials:

a) Rubidium-silicate data from Li and Uhlmann? ana-
lyzed by the method presented in this paper. The tem-
peratures are as follows: open circles = 528°C, solid
trianges = 555°C, open triangles = 536°C, squares =
501°C, solid circles = 480°C.

b) Soda-lime-silica glass whose measurement is des-
cribed here. The temperatures are as follows: cir-
cles = 563°C, diamonds = 574°C, triangles = 593°C, and
squares = 596°C. The two solid points are estimates
of viscosity before failure,

c) Molgcular dynamics calculations on a Lennard-Jones
glass. Here different densities are used to repre-
sent different thermodynamic states. The densities
are in terms of the triple point density, pm: circles
= 1DT. triangles = 1l.lpp, diamonds = T.ZpT, and
squares = l.5pq.
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