ADA108819

UNG FILE _CORY

-

;f'.:
Y

TECHNICAL REPORT |
GIT—ICS—81/15 LE_VIL ﬁ

A SIMULATION TOOL FOR DISTRIBUTED DATABASES

By

Nancy . Griffeth . DT‘G

.\ \ ELECTE i.\; 5

Prepared for

OFFICE OF NAVAL RESEARCH
800 N. QUINCY STREET
ARLINGTON, VIRGINIA 22217

Under

Contract No. N00014—-79—-C—0873
GIT Project No. G36—-643

| oA
September 1981 Hio o4

GEORGIA INSTITUTE OF TECHNOLOGY

A UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA
SCHOOL OF INFORMATION AND CCMPUTER SCIENCE
ATLANTA, GEORGIA 30332

This document has been approved
for public release «nd sale; it
distribution e unimited. - A

THE RESEARCH PROGRAM IN
FULLY DISTRIBUTED PROCESSING SYSTEMS

SRl

T

A SIMULATION TOOL FOR DISTRIBUTED DATABASE SYSTEMS

TECIHNICAL REPORT

GIT-1CS-81/15
Accession Fof_
"NTIS GRAZT
DYIC TAB
Unannovneod

Nancy D. Griffeth

By -
Distritvt o/

November, 1981 F '
iDigs | fpooids

Al |

Justifice e

N

e e s s et gerireee

Avail-n' ¥ v Cedes
T 2o

el

P

Office of Naval Research
800 N. Quincy Street
Arlington, Virginia 22217

Contract No. N0O0014-79-C-0873
GIT Project No. G36-~643

The Georgia Tech Research Program in
Fully Distributed Processirg Systems
School of Information and Computer Science
Georgla Institute of Technology
Atlanta, Georgia 30332

ol UG Sk b

e e e e e

s

PN

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF
THE AUTHORS AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE 4
NAVY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER
DOCUMENTATION. '

Georgia Institute of Technology Simulation Tool for Distributed Databases

g e e = g —m———

—.lncla:
SECURITY CLASSIFICATION OF THIS PAGE (\Yhen Date Eniered)
'REPORT DOCUMENTATION PAGE pepREAD INSIRUCTIONS
1. REPORT NUMBER 2. aovv Acc:ssuou NO.| 3. RECIPIENT'S CATALOG NUMBER
GIT-ICS-81/15 AD-{A LYe) g :
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED !
A Simulation Tool for Distributed Database Technical Report i
Syﬂtems 9/1/81 ;
: 6. PERFORMING ORG. ne?n NUMBER ;
-TCS~
7. AUTROR(S) S. CONTRACT OR GRANT NUMBER(A) |
t

Nency D. Griffeth
NO0014-79-C-0873

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10, PROGRAM ELEMENT, PROJECT, TASK
School of Information and Computer Science AREA & WORK UNIT NUMBERS

Georgia Institute of Technology
Atlanta, Georgia 30332

K B N S L sl

T4. MONITORING AGENCY NAME & ADDRESS(i! different from Controlling Office) 18, SECURITY CL ASS. (of this report)

3 1. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE

F Office of Naval Research 9/1/81

) 800 N. Quincy Street 13. NUMBER OF PAGES
y Arlington, Virginia 22217 24 + vi !

Unclassified i

15a, DECL ASSIFICATION GCOWNGRADING
SCHEDULE

same

16. DISTRIBUTION STATEMENT rof this Report)

it L A B B R ot £ it NTRE e L

Approved for public release, distribution unlimited,

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, it difterent from Report)

18 SUPPLEMENTARY NOTES

The findings of this report are not to be construed as an official
Department of the Navy position unless so designated by other
authorized documents.

19. KEY WORODS /Cantinue on reverse side if necessary and identity by block number)

concurrency control; recovery; atomic action; deadlock;
distributed database systems; locking; serializability; timestamps;
two-phase commit; two-phase locking; transactions; reliability.

ABSTRACT (Continue on teverse side If necessary and identify by block number)

An experimental software tool for simulating the behavior of distributed
algorithms is proposed. The primary motivation for developing the tool is
to study distributed database algorithms. Also, a classification of
techniques presently used for distributed database problems of concurrency
- control and recovery is presunted. This classification will be used to

3 reduce the experimentation necessary to compare the performance of

i ‘ alternative algorithms. : :

8

DD ,75%%: 1473 eoimion oF 1 Nov 8815 0BSOLETE

Unclassifjied

SECURITY CLASSIFICATION OF THIS PAGE /When Data Entered)

el T ke o s Bk

sl

it i
e

ECURITY CLASSIFICATION OF THIS PAGE(When Data Entered;

N

The study and development of distributed algorithms in general and distributed
database algorithmes in particular is behavior of distributed systems., Both
intuition and present-day analytical tools are inadequate to characterize -
their behavior. Another barrier to understanding such algorithms is the
complexity of their interaction, due to the potential lack of synchronization
between nodes of a distributed system. Finally, it is not yet clear what
“good” behaviors are reasonable to expect from a distributed system., As a
result, a multitude of algorithms may exist for golving a single problem,

but without more experience and analysis, their behavior cannot be well
understood or compared. -

“This report describes an approach to providing the experience necessary
for understanding the behavior of these algorithms.. .

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

e

il

bk,

ABSTRACT

et L

il PR

An experimental software tool for simulating the behavior of 3
distributed algorithms is proposed. The primary motivation for developing
the tool is to study distributed database algorithms. Also, a olaasifioca- E
tion of techniques presently used for distributed database problems of :
concurrency ocontrol and recovery is presented. This classification will be f
used to reduce the experimentation necessary to compare the performance of ;
alternative algorithms,

The study and development of distributed algorithms in general and
distributed database algorithms in particular is behavior of distributed
aystems, Both intuition and present-day analytical tools are inadequate to
characterize their behavior. Another barrier to understanding such
algorithms is the complexity of their interaction, due to the potentiel
lack of synchronization between nodes of a distributed system. Finally, it
is not yet oclear what "good™ behaviors are reasonable to expect from a
distributed system. As a result, a multitude of alzorithms may exist for
solving a single problem, but without more experience and anulysis, their
behavior cannot be well understood or compared.

This report deascribes an approach to providing the experience neces-
sary for understanding the behavior of these algorithms,

ot AL s e) sk s i

U TR S TR T

Georglia Institute of Technology Simulation Too. for Distributed Databases

I L[ORI

]
1

oA e b e o AR

TABLE OF | CONTENTS

Chapter 1 Introduction.scccsesesceccccestsssosossvensssnasscsacscnsns 1 %
1.1 Th‘ Problem....‘...‘.........'......'..................‘.'.... 1 E
1.2 ObJectiV”...'itto..O...QQQ..l.'!'l.l.Q.oo.!l..l!l..n.oluococ. 2 E
1.3 Th‘ Appro.ch...'.‘.'....'.............".‘.............'...... 3 ?
1'“ Sianirio‘nce..'.'..........................'.....'........'... u

ch‘pt.r 2 B‘oksround...........'..'......."..."...........'....‘.. 6
2.1 G‘n‘r‘l R.n.rka.......'......'."....‘.......‘................ 6 ;
2.2 conourr‘ncy control..‘.'..‘.....“........'........'.......... 6 i

2.2.1 Concurrency Control AlgorithmS..ceseeetcscscccscnsscnnnen 8 i
2.2.2 Deadloek H‘n‘g‘ment'..............'...................... 10

-t
-—b
Ao

2.2.3 conrliot Reaolution.......‘....Cl..'.....O\.*l..‘.'..."l
2.3 Reliability in a Distributed Database....csesese tetsesntane
2!301 Reoonrisuration......l..Q..OIO..l.l!..‘.!!'l!.....t...lﬁ|
2‘3.2 Atomicity.l.ll..l...!..l....l.l...‘..l...‘l...C...'.t....
B 2.3.3 Information RequirementS..ccesssssassscsctocssssssnsssans
[: 2.3.4 Recovery Prott.Ol. ccecesssncsscscsssssssssssssssnssssatsns
: 2.” Perforﬂancﬁ Studiea.0.0......!.l.......000..0......0..'...!...
2.5 Siuulation Techniques..".........l.............i..lll...'l...

-l
anb

- b h b b b
AELEWMNON

-
-3

Chapter 3 The Simulation Tool........l'......‘..'I......I...‘.......

-—lb
-3
ds

3.1 Introduotion.l.l..'Q...Q...Q..l...!....".l'l..ll..l..ll.l'.‘l
3.2 The Distribut‘d D‘t.b‘ae Hod.llI.'Qlll..!.l.‘!...ill.l....."'
3.2.1 The Communication System Submodel...cccceccrsccennsnncssee
3.2.2 The Distributed System SubModel...sceeesssasacssscscncncs
3.2'3 The Dﬂt. Systen Submodel.!...l‘.ll...!....l.!....'."0!'0
3.2.4 The User Interface Submodel..csescsccaacersscscsccsonnsnns
3.3 System Archnitecture and SpecificationsS.iccesscccccccccsscconnse
3.3.1 output Analysiall..l'.l...'!l....'...I..Q..I..l.....l.‘..

Bibliography..l..-llol.l.l....u.!..olQQQ.Cl.t.oo.olt.oo...o".tl.i..- 21

- d b b b g =
VOOV OO-I

Georgia Institute of Technology Simulation Tool for Distributed Databases

e e i : -

LIST OF ILLUSTRATIONS

Figure 1 A Schematioc of the Distributed Database System Model...ssee 19

il s

ibs et

o A s (M i, o s

Georgia Institute of Technology Simulation Tool for Distributed Databases

Chapter 1 Introduction Page 1

CHAPTER 1
Introduotion

1.1 Iha Froblem
The basic problem to be addressed by this research project is the

development of a methodology for analyring and comparing distriouted
database asystem design alternativea. This problem is both general and
- spscific. In general, we may ask whethar there are rules or guidelines for
a choosing one database design alterrative over another. For specific
§ : databases, we may ask which design alteinative works best according to the

] requirements of the database, The approach taken addresses both questions,
é,g in that studies will be done to determine the general guidelines, but the
: tool developed for thsse studies will also be usable in designing specific
databases. The dssign alternatives to be addressed by the studies in this
P project are the choice of the following algorithms: oconcurrency control,
] é reliability, and query processing. These algorithms have been chosen

because of their central importance to database processing and also because
a number of alternative algorithms have alreadr been developed for each
problenm.

The difficulties of studying any distributed database algorithms are
numerous. First, only a few of the proposed alternatives have been
implemented at any single site. Thus there is little experience with their
performance in general. As a result intuition about their behavior is
unreliable. This makes it very difficult even to develop reasonable
hypotheses about their behavior. Second, the behavior of a distributed
system is much more complex than the behavior of a centralized system. It
is necessary to consider not only the behavior of a single system 1in
isolation, but also its intecactions with the other nndes of the system.
For this reason, it can be exceptionally difficult to prove anything about

- a distributed algorithm, even that it works corrsctly. Third, the alter-

R

natives designed t¢ solve a given problem make different assumptions about
the system on which they are run. They may assume different topologies,
different protocols, and different process structures, Even correctness
criteria may vary. Finally, few analytical tools for studying distributed

systems have been developed zo far.

Georgia Institute of Technology Simulation Tool for Distributed Databases

cathr et

P - —

PUR P p— DN

T T TR T YT 2840

Page 2 Introduction Chapter 1

1.2 Qhjsgtivea
The objectives of this project are:

e development of a software tool for analyzing and studying the
design alternatives;

e application of the tool to diatridbuted database design alter-
natives; '

e development of new solutions to distributed database prodlems using
the resultz of the above study; and

e development of experimental and analytiocal techniques for studying
distributed algorithma in general.

The first objective of thias project ia the development of an experimental
tocl for the study of distributed systems, eapecially distributed database
systems. The central experimental tool will be a combination testbad and
simulation system. It will allow an algorithm to be coded in as a module
of the system. The algorithm can then be tested in this environment. Sub-
sequently, the behavior of the algorithm can be studied with the aid of the
simulation facilities provided by the system.

The second objective is to apply the tool to a study of distributed
databases. The goal of applying this experimental tool will be to
determine how the atructure of an system relates to its expected behavior,
The assumption is that reasonable structural properties will correspond to
good (or bad) behavior in a predictable way. For example, using the clas-
sification of concurrency control mechaniams into locking algorithms and
timestamping algorithms, we may ask which is more efficient, more robust,
or more fair. This should not be taken to imply that only this clas-
sifications will be used, In fact, one part of this objective is to
determine which classifications provide the most information about
behavior.

The third objective is to use the results of the above studies to
develop new solutions to distributed database problems, where it is clear
from the previocus work that existing solutions could be improved con.

The final objective is to develop experimental and analytical tech-
niques for studying distributed algorithms. New techniques to be developed
obviously cati't be predicted, but the tool itself provides one experimental
technique for studying distributed algorithms. Also, experience with the
tool should suggest refinements. In addition, the usefulness of various

Georgia Institute of Technology Simulation Tool for Distributed Databases

S RV D G T ST OTOU U VAR O V)

; kil e, ot skl _amatidin

PUITIPPN WIS P

pooter Bt 4

ARttt

|
;
l

Chapter 1 Introduction Page 3

. L

ik i,

classifications of distributed database algorithms (e.g., BER80, BAD81,
HSI81) will be tested. This testing will suggest connections between the
classifiocation of an algorithm and its performance that may be wused in

analysis,

ks s il

1.3 Iba Anoroach 3
The approach will include the following ateps: .
e development of a goneral model of distributed database processing;
o development of the testbed/simulation model;
£ & validation of the correctness of the ayatem with each design alter-
X native to be tested; P

b Lo oo el

£ bl s inia s i

I

- e implementation of the design ulternatives for concurrency control
fi and reliability mechanisams as modules of the system;

"

e asimulation experiments to collect empirical data abo.. the behavior]
; ' of the system with various design alternatives;

f e development of hypotheses, on the basis of the experimental data,
; . concerning the behavior of the distributed system with varicus
: types of designs; and

ey

R e]

e development of analytical proofs of these hypotheses if possible,

:
]
i
¥

{
3
1
]

The model of distributed database processing will be based on that of Ber-
nstein and Goodman [BER80]. It will be more general in that reliability of
the communication system will not be assumed; transaciion managers and data

managers will be allowed to communicate with either transaction managers or &
data managers; and in fact a transaction may be passed around to multiple ;3
transaction managers for processing, as described in [ROS78]. i

A central decision to be made in the development of the testbed/
simulation model is the choice between a distributed simulation and a
centrelized simulation. The advantages of distributed simulation are that g
the testing feature will be wore convincing if the simulation system is
itself distributed and that it will be more efficient if the communication
system is sufficiently fast. The disadvantages are increased hardware cost

and overhead the problems of dealinrg with time; and the need to develop the
software for it. Most of the software for a centralized simulation has
been written and tested on an existing "tickaet-sales" database.

While the number of potential algorithms to be implemented seems

:

E 1

prohibitively large, two factors reduce the problem to manageable size:

Georgia Institute of Technology Simulation Tool for Distributed Databases

et T Y iU U A

|
!
i

i

|

-

| !

|

\

(RN Al i e El

LR R Ul B I (0 LA

Page & Introduction Chapter 1

first, the essential parts of the algorithms are relatively amall programs,
and second, not all algorithma need to be dmplemented, Jjust those
representative of important classes of algorithmas., The plan of attack, in
the area of conocurrency ocontrol, is to build on the work of Bernatein and
Goodman [BER80); Badal [BAD81); and Haiao and Ozsu [HSI81). Each of these
papers contains a classification of concurrency control algorithms by their
structural properties (e.g., voting or locking; ocentralized or
decentralized). Such classifications will be usel as a starting point for
analyzing the behavior of the algorithms,

For the experimental resultas to be of any use, the algorithms must
first be verified. Several techniques can be applied: traditional proof
techniques, mutation analysis [ACR79]), and traditional testing. Also, the
data supplied to the system describing the data processing requirements
must be realistic., Some possible sources of data for systems which are
either partially distributed or reasonable candidates for distribution are
banks (e.g., automated teller systems), airlines (ticketing systems); and
the military (e.g., personnel and inventory systenms).

Some of the measures of system performance to be used in anulyzing

the results are:

Average user waiting time;

Throughput ;

Average queue length at each node; and
Utilizatinn.

Other measures that need to be considered, to determine whether they are
reasonable to look at in a distributed system, are fairness, avoidance of

starvation, blocking, degree of concurrency, and so ferth,

1.4 Significange

The work done on this project y;ll contribute in a number of ways to
the understanding of distributed database systems and to the methodology
for designing them. First, the testbed and simulation toocl will be ussable
not oniy for the duration of this project but will be avallable for
additional work on distributed database systems. Furthermore, it should be
sufficiently general to be used for other Aistributed systea projects at
Georgia Tech, Secord, the ¢tool will be applicable to the design of
specific distributed database systems. The use of the tool to test the

Georgia Institute of Technology Simulation Tool for Distributed Databases

P SO WA 1 e ot SRR Y

A itk i i, gl ———

Chapter 1 Introduction Page 5

behaviors of various Jistributed database algorithms will serve as a
thorough test of lts cu.rrectness and perforrance. Third, the study of
design alternative. for c¢istributed database systems, using the tool, wiil
provide hetter understanding of the range of alternatives whick are
reasonable for any particular case, and thus reduce the design problem.
Fourth, improved understanding of the behavi = of dlfferent algorithms for
concurrency oonirol, query processing, and reliabllity may suggest better
algorithms. Finally, extensive empirical studies of a Jdistributed database
system will provide sxpsrience on which to base principles of behavior that
any reasonable distributed database system ought to obey.

Georgia Institute of Technology Simulation Tool for Distributed DPatabases

i
3

Page 6 Background Chapter 2

CHAPIER 2

Beokground

2.1 General Remarks

The two problems to be studied are concurrency control and
reliability. Solutions to these problems will be interdependent, since
reliability mechanisms are required to gnarantee that concurrent transac-
tions appear atomic to system users in spite of site failuresa., There are
also inveractions between the choice of a concurrency control algorithm and
the techniques used to provide a reliable system. For example, some
concurrency control algorithms are designed to continue functioning correc-
tly in spite of site failures. Others require system reconfiguration when

a site fails.

2.2 Concurrency Control

Concurrency control in a database (distributed or not) is a means of
guaranteeing correct behavior while allowing maximal concurrency. As an
example of the problems that c¢an arise if uncontrolled concurrency 1is
allowed, consider a bank automated teller‘ system. Suppose that a
customer's balance is stored redundantly at each of several locations.
Then, with uncontrolled concurrency, a customer could arrange to have with-
drawals of the entire balance initiated simultaneously at two remote sites;
but the balance after these transactions would reflect only one of the
withdrawals. This would be nice for the customer, but disastrous for the
bank,

The solution to this type of problem is to use a concurrency control
algorithm, which prevents this type of behavior. The standard criterion of
correctness in a database was developed by Eswaran, Gray, Lorie, and
Traiger in [ESW76]. Their model of a database includes gntities, each of
which has a name and a value, and Jjntegritv constraints, which may be
expressed as predicates and restrict the set of values that may be taken on
by the entities in the database. For example, in the bank database, we
would require that an entity representing a balance be nonnegative and that
any two entities representing the saue balance (perhaps at different sites
of a distributed database) be equal in value. A database state which

satisfies all of the integrity constraints is a gonsistent database state.

Georgia Institute of Techinology Simulation Tool for Distributed Databases

. 4
Sl e il s

ot R Bt R bk ik

it bk St et A Rt Al 2o 8L e

e b a1 3

Chapter 2 Background . rage * {

The unit of activity on a databas= is the Lransaction. A transaction A
consists of a set of basic database actions, usually reacds and writes, A 3
consistent transaction changes a consistent database state to another

idafaet i

consistent database state. The database state need not be consistent while

a transaction is in progress, but it must be consistent when it terminates.
A schedule for a set of transactipns is an ordered 1list of the
database actions specified by the transactions, preserving the order within

e Sl

individual transactions. If all database transactions are consistent when
i run alone, then clearly any serial schedule of transactions (i.e., a ,
}¢ schedule in which each transaction terminates before the next begins) will i
;‘; be vonsistent. Thus in [ESW76] a database is defined to be serializable if
3 it can be transformed to a serial schedule by successively interchanging
i database actions that cannot affect each other, and it is shown that any

TR

serializable schedule is consistent. Subsequently, Stearns, Rosenkrantz,
and Lewis [ROS80] have shown that serializability is not only a sufficient
but a necessary condition for consistency, if we assume "full func-

tionality" (i.e., no restrictions placed on the interpretation of the
operations in a transaction) and all entities are read before they are {
written.]
Concurrency control algorithms are thus wused to enforce F
serializability of schedules of transactions. Actually, one class of
algorithms (the timestamp algorithms) may produce schedules which are not
strictly serializable but whose effects are exactly the same as some
serializable schedule, Serializability of the schedules allowed is thus
the standard criterion of correctness of a concurrency control algorithm,
Several authors [LYN81,RIE81,GAR81] have proposed various

generalizations of serializability as an alternative criterion for correct-

R AT TR ety s

ness of concurrency control algorithms. Lynch's generalization provides j
for the user (or application system) to specify a set of interleavings of '
actions which are correct. The set may include nonserializable as well as

serializable interleavings. Garcia=Molina proposes two levels of locking,
local and global. Local locking is used to guarantee that a sequence of
actious is atomic at a single site. Global locking is used in the usual

wvay for detection of concurrency conflicts. The advantage of his method is

that knowledge of the database semantics may be used to allow a non~local

transaction to release local locks as soon as its local activity is com-

Georgia Institute of Technology Simulation Tool for Distributed Databases

agrs e S T SRR /I, = RN s L eyt R Tk Rl 2 W P I E DRI TR TR Y5

Page 8 Background Chapter 2

plete. For example, a transfer of money t'rom one bank branch Lo ancther
may be conslidered completed as it has been determined that there is enough
money in the source branch to perform the transfer. Ries and Smith discuss
"nested transactions", in which one transaction system uses transactiona
provided by a second transaction system. The nested transactions may bte
serializec with each other in any order, not necessarily in the seame order
as the calling transactions. For example, if two database transactions
regquest the file system to allocate space, it is not necessary to serialize
the space allocations in the same order as the database transactions.

2.2.1 Concurrency Control Algorithms

Bernstein and Goodman categorize concurrency control algorithms as
either twu-phase locking algorithms or as timestamping algorithms [BER80].
Two-phase 1locking algorithms ensuvre consistency by prohibiting a transac-
tion from requesting more locks if it has released any locks. Each
transaction has a ‘"growing" phase during which it requests locks and a
"shrinking® phase during which it releases the locks it has set. Between
these two phases is a "lockpoint"™; the execution behaves as if all entities
were updated at the lockpoint. Locking schemes are prone to deadlocks and
require a policy for avoiding or breaking them.

Timestamp ordering algorithms depend on assigning a unique time to
each transaction as it arrives, and guaranteeing that the effect of ' .aning
a group of transactions is the same as if they had been run serially in
arrival order, A transaction must not perform updates on the basis of data
which is out-of-date. That is, it must not overwrite an update created by
a later transaction. Also, it must not read data written by a later
transaction.

Centralized concurrency control algorithms are all locking schemes,
in which locks are controlled centrally and must be requested from a
designated site. One variant of this is Stonebraker's "primary copy"
scheme for INGRES [STO079], in which the site may vary from one data entity
to another., A decentralized algorithm which wutilizes 1locking i1s called
f"basic 2PL" by Bernstein and Goodman [BER80]. In this technique, the lcck
on an entity is grarted by the site at which it 1is stored. They also
describe a technique called "voting 2PL", which requires only that a
transaction obtain a majority of the locks for each data item it requires.
Since only one transaction at a time can have a majority, this is

Georgia Institute of Technology Simulation Tool for Distributed Databases

i;
|
|

Tk ddan Lk

b e bt o

a1

el Lt s A . a1, e O it e At bl e 3 e

Ui Gt n | e

L

Chapter 2 : Background Fage 9

sufficient to prevent consistency violations.
Timestamping approaches to concurreanvy control including voting
schemes, a multi-version database algorithms, and the SDD-1 protoccls., The

: best-known voting scheme is probably Thomas! majority voting elg rithu
X ' [THOT9] (also called the distributed voting algorithm by Garcla=tt.lina
- " "[GAR78]), in which a majority of the sites must approve any transaction.
This idea has been genaralized by Gifford [GIF79] to allow assignment of
any number of votes to each site, and require only that a majority of votes
be collected by a transaction. This reduces to a centralized algorithm if
one site has all the votes., As Thomas noted in [THO79], any rule will work
i which requires that two conflicting transactions both get permission to
i proceed from some single site.

g Reed's multi-version algorithm [REE78] requires that multiple ver-
} sions of each entity be maintained 1in the database, with each version
‘ includirg the range of times for which the value is known to have applied.
Each action on the database has a time associated with it, If it is a read
i ‘ and the entity has a value for some range of times including the read, then
g the value is returned; if no such value exists, the range of times for some
value is increased to include the time of the read. If the action is a
write, it must not change a value which already holds for the time of the
write; if it tries to, the transaction is aborted.

The SDD=1 protocols [BER7T] also utilize timestamps to guarantee
different levels of synchronization of transactions. The idea is that many
groups of transactions will require only 1limited synchronization with
respect to each other. To take advantage of this fact, the transactions
must be analyzed beforehand to determine the types of synchronization
required. Of course, this requires that the transactions to be used are

L known beforehand. Four types of synchronization are identified. P1 synch-

ronization is purely 1local; no global synchronization is attempted. P2
: synchronization can be used to guarantee that reads are consistent,
‘ although they may be out-of-date. The largest local entity timestamp at
the site initiating the transaction is used as the time of the read. P3
synchronization guarantees that reads are up-to-date as of the current time
of the transaction; this is used for potentially conflicting updates. P4
synchronization is used for unanticipated transactions and for P2 or P3
transactions requiring so many entities they night be subject to star-

Georgia Institute of Technology Simulation Tool for Distributed Databases

P

-gj
i
-
~
|
|
|

Page 10 Background Chapter 2

vation.
The classification into locking and timestamping algorithms refers to
‘the method used to prevent consistency violations. The locking algorithms
require that a transaction must reach a lockpoint, when it has exclusive
} control of all data-items, before it may complete. The timestamping;
algorithms require that actions on data-items be performed in timestamp
order of the transactions requesting the actions. But it is also necessary
: to decide what to do with transactions that never reach their lockpoints
éi (due to deadlo-ka) and with transactions that discover a timestamp conflict

PEUPTIE

& with other active transactiona.

ke i, it b1t st 4

: 2.2.2 Deadlock Management
Deadlocks may be handled either by deadlock detection or deadlock
prevention. Deadlock detection requires maintaining a graph of active

ik TR

TR R

m,\ T
i e o W= e

= b il

transactions. The nodes of the graph represent transactions and the arcs
represent the "waits-for"™ relation. Deadlock prevention requires

guaranteeing that no deadlocks ever occur.

Centralized deadlock detection could be used with a centralized lock-
ing algorithm. However, it would be extremely expensive with a
decentralized algorithm. Two methods for decentralized deadlock detection
are described in [MEN78]. One method imposes a hierarchy on the network
and detects deadlocks at the lowest possible node of the tree., This method 3
was designed to reduce the communications cost incurred with centralized
deadlock detection. The second method requires recursively sending
notification of new "blocking transactions™ to the originating sice of each
transaction thus blocked. This meth>d was desighiwea to continue functioning

in a system prone to failures.

If a deadlock prevention methed is to be used, one way of
guaranteeing that no deadlocks occur 1s to guarantee that locks are
assigned in the same order to all transactions for all entities referenced

e e e e

at all sites. This can be done by assi_ 1ing sequence numbers to transac-
tions and granting lock requests to the lowest pending sequence number.
This technique 1s wused in Garcia-Molina's "hole list™ (MCLA-h) scheme
[GAR78, GAR79]. In this scheme, instead of requiring each action on a
database entity to wait at the central site for a lock, a sequence number

is assigned to the transaction, and the action proceeds immediately to the
distributed sites. The "hole list" refers to a list of sequence numbers of

Georgia Institute of Technology Simulation Tool for Distributed Databases

pores

i abe |, ki o L L

Chapter 2 Background Page 11

transactionz the sitos need not wait for. Another technique using sequence
numbers is Lelann's token-passing scheme [LEL78], in which the site with
the "right" to grant sequence numbers is the site having possession of a
token, which is passed around a ring. 7Two other lock ng algorithms using
sequence numbers are the centralizea WAIT-DIE and WOUND-WAIT algorithms of
Rosenkrantz, Stearns, and Lewis [ROST78].

2,2.3 Conflict Resclution

Finally, with either locking or timestamping algorithms, it is neces-
sary to decide how to resolve conflicts (i.e., deadlocks, potential dead-
locks, and timestamp conflicts). This can be done by using a sequence num-
bering scheme such as the "valid numbering schemes" described in [ROS78] or
by voting, as in [THO79] and [GIF79]. Timestamps qualify as a valid num-
bering scheme. Algorithms which avoid conflicts by assigning a number or
timestamp to each trunsaction and then forcing each transaction to wait

until all previous transactions have executed will be classified as resolv-
ing conflict using a numhering scheme,

2.3 Reliability in & Diatributed Database

The goals of a reliability mechaniam in a distributed database syster
are to guarantee that:

e the active sites can continue to function ir the presence of
failure; and

@ a failed site can be restored to the system when the cause of the
failure is corrected.

The first goal, to permit the system to continue to function in the
presence of failure, requires (1) detection of the failure; (3) pnssible
reconfiguration of the system after the failure is detected; and (2)
preserving the atom.2ity of transactions that may be active both before and
after the failure. The second goal, restoring the failed site after the
cause of the failure is corrected, requires (1) sufficient information to
determine what the current state of the site should be; (2) a protocol for
reintroducing it into the system; and (3) possible reconfiguration of the
system after the falled site has recovered.

In this project, it will be assumed that faillures are detected by
some means (e.g., as in the "local status layer"™ of RELNET [HAM81]). The

Georgla Institute of Technology Simulation Tool for Distributed Databases

3
4
A

ke atbh) e, - Lot it

et b S bt b

b ot tvolbiblladr ek e s

ot iy e

ol e el i

Il o

s U bk, Lk i i (Ul it

L b ¢ Hositane DL tl o itan Lo, 1J Lin w ot

Page 12 Background Chapter 2

remaining problems are reconfiguration; atomicity; information
requirements; and the post-failure protocol,

2.3.1 Reconfiguration

Reconfiguration may not be requircd if the site algoerithms are writ-
ten so ;hat the system continues to function in the ssme way in soite of
failures. In many cases, however, there are "special-purpose" sitec
(primary sites, in [ALS76] and INGRES [STO77,STO79); spoolurs and commit
backup processes, in SDD-1 [HAM81]) whose funsotiuis must be reassigned tc
otbher sites when the special-purpose site fails. The reassignment may be
fixed before the site failure, as in [ALST6] and [HAMB1] cr it may be
determined after the site failure (e.g., by a vote of the 1live sites
[GAR81]). Reconfiguration following a site recovery would then involve
reassigning a special function to the recovered site or possibly assigning
it as a backup for such a function.

2.3.2 Atomicity

A transaction is defined as a set of primitive database operations.
It is required to be an atomic unit of action, that is, either all
operations of the transaction are performed or none are. In a distributed
system, this means that if any site decides to "coumit™ itself to the
transaction, then all sites must. Also, if any site decicdes not to perform
the transaction, then the remaining sites must agree.

Site failure raises the possibility that the failed site may never
know what decision the other sites came to. Conversely, the other sites
involved may not know what the failed site decided to do. But the
atomicity requirement means that all sites must agree on the decision, 1in
spite of failures.

The standard solution to this problem is the “two-phase commit"®
protocol [GRAT8]. 1In the first phase, changes to the database are aade in
a reversible way. In the second phase (the "commit"™ phase), when it is
known that all sites making changes are agreed to make them, then changes
are made permanent, If any site decides not to make the changes, then the
transaction is aborted. The basic choices are how {0 make the changes
reversible and how to decide to make the changes permanest.

Changes may be made reversible in two ways: by writing an UNDO log
entry before making the changes or by changing copies only until the

Georgia Institute of Technology Simulation Tool for Distributed Databases

!

sl

RIS TN R

kit

L] bt | - o sl

Chupter 2 Background : Page 13

decision to make the changes permanent has be made. The logging techniaue
is discussed in .uRAT8]. Updating of copies orly 1is used in I'ZLTA (1..31..
Reed's multiversion system [REE78] may aiso be viewed as updsating only
copies until the commit is made,

k. The decision to make “he changes permanent may be mtde by a vote of
3 all involved sites [GRA78,LEL81] or by reaching the "normal®™ or "“abnormal"
end of a transaction [REE78,R0S78]. Which technique is usec is related to
the underlying model of transaction execution, If a transaction is
executed by a "transaction manager" (SDD-1) or a "producer™ (DELTA), waic..
sends a sequence of read, write, and commit commands to the other sites,
then there is a natural choice of site to initiate and count the vote, 1If,

b alibec ki ke

ik it

BRI A S it U D S R L
i n

however, the transaction is viewed as a process which migrates from site to

IREEEEE. i o B

site, then it is more natural to let the site at which the transaction

R L B

terminates (either normally or abnormally) meke the decision to commit or
abort it, depending on the type of termination.

A problem with the two-phase commit protocol is that the final
decision to commit or abort a transaction may be delayed until afcer a
failed site has been recovered. For example, if the failed site is the
"transaction manager" in SDD-1 or the "producer®™ in DELTA, then the count

. ——— .

of the vote would be delayed. The system can correctly wait for the site
to recover, but the delay may be intolerable.

The alternatives are to abort the transaction immediately when a com-
ponent fails; to tolerate the delay; or to introduce a now protocol for
committing transactions. The third approach is taken in [SKE81], in which
sites seek a concensus on committing or aborting; and in SDD-1 [BER80)], in
which only a transaction may be aborted only on a read, so that once all
update messages have been passed to the guaranteed delivery layer of the
message system, the transaction may be committed in spite of site failures,

R 2.3.3 Information Reguiramenta

?7 A useful classification of the information used in restoring a failed
site to the system is given in [GAR81]. He identifies three possibilities:
no Iinformation is used, a log is used, or "persistent messages' are used.
If no information is used, then the current state of the failed site must
be determined from the states of the active sites in the system. Thus
there must be enough redundancy in the system to allow determination of the
state of one site from some subset of the other sites, If a log is used,

R

Georgia Institute of Technology Simulation Tool for Distributed Databases

Page 14 Background Chapter 2

as in ([GRA78], the failed site recovers by performing all of the missed
actions. If "perasistea! messagesa" are used. then the communications system
must remember all the missed actions and guareitse that the {ailed site
raceives thr 1 [HAMB1].

2.3.4 Regovery Protocol

When a failled site recovers, it is first brought up-to-date, as

discussed in the preceding paragraph. Subsequently, it rejoins the system,
possibly with reconfiguration of the system. For example, in [ALS?746], the
site must first request teo rejoin the system. This request must be trans-
3 ; mitted, either directly or through or sites, to the primary aite, which
% . informs all sites to add the ™new" mite o their tables. In [LEL81), when
5‘ a node wants to rejoin the system, it must get a checkpoint and all sub-
7 i sequent actions to bring it up-to-date. Then it may rejoin.

2.4 Performance Studies
To date, there has been little published work on the performance of

concurrency control algorithms. Three major exceptions are the work of
Garcia~Molina [GAR78,GAR7T9], Gelenbe and Seveik [GEL78], and Bernstein and
Gondman [BER80]. Garcia~Molina's work haa focussed primerily on simulating
certain algorithms., Gelenbe and Sevcik have suggested a queuing network

approach to determining two measures of internal database performance (as
opposed ‘o external measures such as response time and throughput). Ber-

nsteir and Goodman have also analyzed many concurrency control algorithms,
comparing them according to several intci'nal measures, The underlying
taesis of the prcposed work is that the above-mentioned work can be
rignificantly extended by combining the approaches. The simulation
experiments can suggpeést theorems to prove and provide exarples of system
behav.ior ¢o explain by analytic methods, When analytic methods fail,
simulation c¢za be used to clarify the behavior of the algorithms. This
é i echnique was usad with success in the work on "ticket asystems"™ discussed

in section IV.
Garcia-Molina has done extensive simule*ion of 3 algorithms (and some
variants): centralized locking, distributed voting, and Ellis' ring
1 algorithm, Other, significantly different algorithms not covered in his
. work 1include Reed's multiversion algorithm, the WAIT-DIE and WOUND-WAIT
Jz algorithms, and the SDPD-{ algorithms. His simulations were based on a
!
I

Georgia Institute of Technology Simulation Tool for Disiributed Databases

et] ke o e |

v e e~

——— e e a B —

Chapter 2 Background Page 15

model tha® allowed only updates on a fully redundant distributed databause
syastem. His results show that the centralized version has lower response
tiwe for » . but vary heavy loads; lowes I/0 utilization, probably because
of the redundant I/0 required in a fully redundant system; and slightly
fewer messages per update, The crucial parameter in determining the
differeice seemed to be I/0 utilization, suggesting that less redundancy in
the database might produce more favorable results for decentralized
algorithams., An important factur of the response time in either case is the
load, as reflectad in the transaction interarrival time. The simulation
- model used in the work proposed here would have to include aignificantly
more detail thun Garcia=Molina's, in order to detearmine why a concurrency

Ukt o it i i

TR Ty

control algorithm caused observed behavior patterns. For the same reason,

i some additional performance measures would be of interest, such as conges-

tion at a node, blocking, restarts, etc.

_ Gelenbe and Sevcoik have developed a quouing analysis technique for

] | evaluating distributed database systems. Their measures of database per-

formance are the ggherenge (i.e., the degree of agreement of the sites on

X the value of an entity) and the promptness (i.e., the average time required 7
: to update an entity at a site). Their techniques are illustrated in !

[GEL78] on two rather special-purpose database systems but would alsoc apply
to more general databases. The analytical'technique can be used to help
validate the simulation results. The measures defined by Gelenbe and Seve
cik apply to the internal database behavior rather than to a database
user's external view of its performance. The intention of the proposed
work is to relate the performance of the database, as seen by a user, to
its internal behavior, and to relate the internal behavior to the operation
of the concurrency control algorithm in the particular distributed database
system. This will relate the design of the distributed database to the
output of the database and not Jjust to its internal appearance.

% ; Bernstein and Goodman have discussed the performance of a huge
: variety of concusrency control algorithms in [BER80]. They use four
measures which they regard to be important in the total cost of concurrency
control and which can be determined analytically from the algorithms them-
selves. These measures are: communication overheac¢ (represented by number
of messages), local processing overhead, blocking, and restarts., The
relationship of these measures to response time and throughput depends on

Georgia Institute of Technology Simulation Tool for Distributed Databaseas

o n g

Page 16 Background Chapter 2

assumptions about how a distributed system behavea.

At present, such assumptiona must neceasarily be generalizations of
exparience with single-computer systems, sings trere has been a0 1little
experience with distributed ayatems. Unfortunately, it is hard t. reason
about syastems with which we have had little experience. 43 a resuit, many
seemingly obvious assumptions and hypothases about diatriduted syatems may
prove wrong. The work to be desoribed in ssotion IV mentiuns two examples
of this problem. The simulation experiments that I am proposing provide
one way to gain experience with distributed database systems.

2.5 Simulation Techniguea
The simulation of a diatributed database system ocan be done using

conventional simulation techniquea. Such an approach was taken for the
"ticket system™ work disoussed beiow. However, primarily for reasons of
performance, the use of distributed simulation may be preferadle. A number
of papers have appeared recently on thia topic [BRY79,CHAT9,PEAT9]. The
primary problem with using a distributed syatem for simulation is the
management of simulation time when no shared variable "“clock™ is available,
Chandy [CHAT9] has proposed a “time-exchange™ aystem which requires each
process to maintain a time on each of its output lines, and to take the
next event from the input line with the lowest time. Peacock, Wong, and
Manning [PEA79] have extended the method of Chandy and devised other
methods as well, including a "scaled real-time®™ method in which simulation
time is simply scaled real time. In the terminology of Pearock, Wong, and
Manning, the simulation methods most likely to be of use in this project
are the "loose event-driven" methods (because they should rrovide the best
performance) and the "scaled real-time™ method (to assist in developing
intuition).

Georgia Institute of Technology Simulation Tool for Distributed Databases

MJ
el st s il il

i onal by, 1

aflos ol

PRI T ST

et Sl ez, Wil by e bt

bl

i

i,

AT St e i e

)
]
’
-
H

Chapter 3 The Simulation Tool Page 17

CHAPTER 3 :
The Sin lation Tool

3.1 Jukredunticn

The objectives of this project are (1) to develop an experimental

software tool for testing and simulating distributed aystems; (2) to apply
the tool to distributed database aystems; (3) to develop new solutions to
) distributed database problems using the results .f the experiments; and (u)
i to develop both experimental and anslytical techniques foi atudying
: distributed algorithms in general.
; The first two objectives require development of a model of
| distributed database systems. This model will of necessity include a sub-
model of a distributed system. The first objective -=- that the tool be
applicable to diatributed systems in general -- requires that the submodel
be separable from the model and that it be sufficiently general to allow
study of a wide range of distributed system problems. Problems i.zely to
be addressed at Georgia Teoch (in addition to database problems) are
distriduted compilation and distributed resource allocation.

£ s oliukdaiiadl a0l

i id bt s b e T

i

TR
*ald

T e ey

3.2 Iha Diatributed Databaae Model

There are four parts to the distributed database model: the com-
munication system submodel the distributed sysatem submodel, the data §
system submodel), and the user interface submode..

i e ld G

3.2.1 The Communication Svatem Submodel

In the communication system submodel, it will be assumed that point-
to-point communication can be described by the following parameters:

the delay time distribution function;
the mean delay time; ;
the variance in delay time (if applicable); and :
the sirobability that a message i lost.

These par :seters may change dynamiocally, to simulate 1line fallures while
the sysiem is running. The communication system submodel simulates the

data link and physical layers of the ISO reference model of open asystems
interconnection [IS081].

Georgia Inatitute of Technology Simulation Teol for Distributed Databases

- Iiiiiiﬁ!ﬁﬂn.u-u:.!lqsglallill

Page 18 The Simulation Tool Chapter 3

3.2+2 he ulatributed Syatem Subnodsl

The distributed system (ubzodel will contain any rsquired routing and
sreor racovenv techniquea, I[v simuvlates tha tranoport ane network layers
of the IS0 -eference wadvi. Tor meny topoiogien Lo be tested (e.g., star
tree, and 1loodp), che rcuiing algorithma should be trivial. Severs! star-
dard ones can be supplied as part of the software too)., The distributed
system submodel will alac contain the charactusriatica of the aystem nodes.
! These will include the following Jarameters:

the node atep time;

the access time to secondary menory;
the node memory size; anJ

the secondary memory size,

T . 5
= et T g - v

- 3.2.3 The Data Syaten Submodaa

? The data svstem submodel will contain "data managera®™ and the user
g ' interface submode. will contain "vransaction managers®™, aa in the Bernstein
' and Goodman model of distributed dacahase systems [BER80]. Operations per-
formed by the data system sutmodel are:

i

read a data granule (item, record, page, etc.);
write a data granule;

lock a data granule;

unlock a data granule;

read a timestamp for a data granule;

set a tiliesiamd for a data granule;

comit a data granule,

The definition of data granule is similar to the definition of Ries and
Stonebraker [RIE7TT]. It specifies the smallest unit of data that can be
locked and unloll. . (for concurrency .control), read and written (for query
processing), or written to secure storage (for reliability). To permit
study of algorithms in which the transaction managers do not know where
data may be stored -- unly the data managers know where it is -- the data
managers will be allowed to communicate with each other. To permit study
of algorithms assuming that transactions may be passed from site to aite,
3 the transaction managers will also be allowed to communicate.

Georgia Institute of Technology Simuiation Tool for Distributed Databases

Chapter 3 The Simulation Tool Page 19

3.2.4 Ihe User Interface Submodel

The user interface submodel will process the transactions. Transac-
tions are identified by special delimiting statements at the beginning and
end. The statements inside a transaction may be any sequence of data
manager operations.

Node A " Node B
User {emwmcecwecaw. >User User (mmmwmnn—— >User
Interface Interface
| !
v v
Database {---==>Data Data {mmmmmm——— >Database
Subsystem Subsysten
| !
v \'f
Distributed Distributed
Subsystem Subsystem
! |
v v
Communication{=eew==- >Communication
Subsystenm Subsystem

Figure 1. A Schematic of the Distributed Database System Model

3.3 System Architecture and

The proposed experimental tool will contain a module corresponding to
each of the submodels discussed in the preceding section. Parameters may
be specified independently for each module and algorithms may be plugged
into the appropriate module.

3.3.1 Qutput Analysis

In addition, the results of the simulation must be tabulated. To
accomplish this purpose, each system action (i.e., message or access to a
database) will be logged. The log will be used to compute the following
basic measures:

® expected response time;

s throughput;

e utilization; and

& queue length at each node.

Expected response time, throughput, and queue lengths can be computed on

Georgia Institute of Technology Simulation Tool for Distributed Databases

P A .)
” '";‘éé,i{éﬂﬁin‘i‘-}ﬁﬂﬁi.’-ﬂi’?ﬂ”u”'”""'; B i

b A o £ iAot 13

E
=

Lt bl

vartd 48, . okl .

aciemn

eyl ay L

Page 20 The Simulation Tool Chapter 3

the basis of the user interface module ocutput. Utilization must be conm-
puted from information recorded by the communication system, distributed
system, and data system modules,

Secondary measures whose relationship to the primary measures will be
of interest are:

number of messages;

number of bits sents

number of errors in transmission;

number of nodes (dispersion) required by a transaction or query;
number of nodes actually used in responding to a transaction or
query;

1local procecsing overhead; and

I/0 time,

Georgia Institute of Technology Simulation Tool for Distributed Databases

PPN

i
1

N ok

s nii

R N U B

bl

[ACR79]

[ALST76]

[BAD79]

[BAD78]

[BAD81]

[BER77]

[BER80]

[BRY79]

[CHAT9]

[ELL77]

[EPST8]

[EPS80]

Georgia

Page 21

BIBLIOGRAPHY

Acree, A. T., T. A. Budd, R. A, DeMillo, R. J. Lipton, F, G,
Sayward, "Mutation analysis"., Technical Report GIT-ICS-79/08.

Alsberg, P. A., and J. D. Day. "A principle for resilient sharing
of distributed resources." Proceedings of the 2nd International
Conference on Software Engineering, San Francisco (1976), 562-570.

Badal, D, Z. "On efficient monitoring of datuhase assertions in
distributed databases™, Proceedings of the Jth Berkeley Conference
on Distributed Data Management and Computer Networks (August,
1979). 125-135.

Badal, D. 2., and Popek, G, J. "A proposal for distributed
concurrency control for partially redundant distributed data base
systems", Proceedings of the 3rd Berkeley Workshop on Distributed
Data Management and Computer Networks (1978). 273-285.

Badal, D. Z. "Concurrency control overhead or a closer 1look at
blocking vs. nonblocking concurrency control mechanisms".
Proceedings of the 5th Berkeley Conference on Distributed Data
Management and Computer Networks (June 1981).

Bernstein, P. A., Shipman, D. W.,, Rothnie, J. B., and Goodman, N.
"Concurrency control in a system for distributed databases (SDD-
1)". ACM Transactions on Database Systems 5, 1 (March 1980), 18-51.

Bernstein, P. A., and Goodman, N, "Fundamental algorithms for
concurrency control in distributed database systems". CCA Technical
Report (Feb. 1980).

Bryant, R, E., "Simulation on a distributed system". Proceedings of
the First International Conference on Distributed Systems, (Oct.
1979), 544-552.

Chandy, K. M., Holmes, V., and Misra J. "Distributed simulation of
networks". Computer Networks 3, 2 (1979). 105-83.

Ellis, C. A. "A robust algorithm for updating duplicate databases".
Proceedings of the 2nd Berkeley Workshop on Distributed Data
Management and Computer Networks (1977). 146-158.

Epstein, R., M. Stonebraker, and E, Wong. "Distributed query
procesesing 1in a relational data base system". Proceedings of the
ACM-SIGMOD International Conference on the Management of Data (June
1978). 169-180.

Epstein, R., and M. Stonebraker. "Analysis of distributed data base
processing strategies™. Proceedings of the Sixth International Con-
ference on Very Large Data Bases (1980). 92-101.

Institute of Technology Simulation Tool for Distributed Databases

TRV

Lebb a7 b b

A bl e s tocaai s

Page 22

[ESW76] Eswaran, K. P., Gray, J. N., Lorie, R, A., and Traiger, I, L. "On
the notions of oonsistency and predicate 1locks 1in a database

‘! [FIS80] Fischer, M. J., Griffeth, N. D., and Lynch, N, A. "Optimel i
¥ placement of resources in a distributed network™. To appear in k
%' Proceedings of the Second International Symposium on Distributed 3
P Computer Systems (April, 1980). E
i ' [GAR78] Garcia-Molina, H. "Performance comparison of two update algorithms ?
i

for distributed databases", Proceedings of the 3rd Berkeley Con-
ference on Distributed Data Management and Computer Networks
(1978). 108-89.l_ .

o [GARB0A] Garcia=-Molina, H. "Reliability issues for completely replicated
! Jdistributed databases"™, Technical Report 266, Department of EECS,
Princeton University (April, 1980).

e e o sttt it it

[GAR80OB] Garcia-Molina, H., and Wiederhold, G. "Read-only transactions in a
distributed database®™. Technical Report 267, Department of EECS,
Princeton University (April, 1980).

e st orbdon

; [GART9) Garcia-Molina, H. "Performance comparison of update algorithms for
i distributed databases". Progress Report 8 (February, 1979).

i sisiad i

LA

; [GAR81] Garcia-Molina, H. "Elections in a distributed computing systenm".
- Panel discussion, IEEE Symposium on Reliability in Distributed p
: Software and Database Systems (July 1981), 4

[GRA78] Gray, J. N. "Operating systems: an advanced course", ed. by R.
Bayer, R. M. Graham, and G. Seegmuller. Springer-Verlag, New York,

1978, 393-481.

T e T
T P, .

[GRD80] Gardarin, G, and Chu, W. W. "A distributed control algorithm for
reliably and consistently updating replicated databases". IEEE
Transactions on Computers C-29, 12 (Dec. 1980). 1060~1067.

{GEL78] Gelenbe, E., and Sevcik, K. "Analysis of update synchronization for
- multiple copy data-bases". Proceedings of the 3rd Berkaley Con-
o ference on Distributed Data Management and Computer Networks
5[(1978). 69-90.

[ETIRN T TRECT TP

?i [GIF79] Gifferd, D. K. "Weighted voting for replicated data". Xerox Palo
Alto Research Center Technical Report CSL-79~14 (Sept. 1979).

(HAMBO] Hammer, M, and D. Shipman. "Reliability mechanisms for SDD-1: a
system for distributed databases™. ACM Transactions on Database
Systems 5, 4 (Dec. 1980), 431-466.

(HEV78] Hevner, A. R., and S. B. Yao. "Query processing on a distributed
database®™. Proceedings of the Third Berkeley Workshop on
Distributed Data Management and Computer Networks (August 1978).
91-107.

1 Georgia Institute of Technology Simulation Tool for Distributed Databases

b PSS RRe A P

Page 23

[H518t] Hsiao, D. K., and T. M. Ozsu. "A survey of concurrency control
mechanisms for centralized and distributed databases." Technical
Report 0SU-CI3RC-TR-81-1 (February 1981).

[ISO81] ISO/TC97/<r1¢ wpata processing -- open systems intsrconnection ==
basic refi.>. > model™, Computer Networks 5, 2 (April 1981). 81-88.

e e 2

[KIM76] Kimbleton, S. R., and Schneider, G. M. "Computer Communication
Networks: Approaches, Objectives, and Performance Considerations".
ACM Computing Surveys 7,3 (1976). 129-173.

YA T

L [LAM76] Lamport, L. "Towards a theory of correctness for multi-user data
base systems®., MCA Technical Report CA-T610-0T12 ‘- 376).

= [LAMT8] Lamport, L. "Time, clocks, and the ordering of events in a
distributed system™, Comm. ACM 21, T (July 1978). 558-565.

data storage system."™ To appear in CACM.

]
3 j [(LAM79] Lampson, B. W., and H. E. Sturgis. "Crash recovery in a distributed
|

[LEL78] Lelann, G. "Algorithms for distributed data-sharing systems which
use tickets", Proceedings of the 3rd Berkeley Workshop on

i Distributed Data Management and Computer Networks (1978). 259-272. E
[LEL81] Le Lann, G. "A distributed system for real-time transaction proces- i

sing." Proceedings of the 14th HICSS Conference, Hawaii, USA (Jan., g

1981). '

[LIN7T9] Lindsay, B. G., et. al. "Notes on distributed databases", IBM
Research Report RJ2571 (July 1979).

[MEN78] Menasce, D. A., and Muntz, R, R. "Locking and deadlock detection in
distributed databases". Proceeding: of the 3rd Berkeley Workshop on
Distributed Data Management and Computer Networks (1978). 215-232.

[MENB0O] Menasce, D. A., Popek, G. J., and Muntz, R, R. "A locking protocol ¥
for resource coordination in distributed databases"™, ACM Transac- :
tions on Database Systems 5, 2 (June 1980). 193-138,

[PAX79] Paik, I.-S., and C. Delobel. ™A strategy for optimizing the
distributed query processing". Proc’sdings of the Fifth Inter- i
national Conference on Very Large Datu Bases, 1979. 686-698.

[PWM79] Peacock, J. K., Wong, J. w., and Manning, E. G. "Distributed E
simulation using a network of processors", Computer Networks 3, 1 !
(1979). 44-56. '

[REET8] Reec, D. P. "Naming and synchronization in a decentralized computer
system", Ph.D. Thesis, MIT, Department of EECS (Sept. 1978).

[RIEB1] Ries, D. R, and G. C. Smith. "Nested transactions in distributed
systems"®. Proceedings of the IEEE Symposium on Reliability in
Distributed Software and Database Systems (July, 1981), 117-123.

Georgia Institute of Technology Simulation Tool for Distributed Databases

e
|
!

Page 24

{ROST8] Rosenkrantz, D. M., Stearns, R, E., and Lewis, P, M, "System level
concurrency control for distributed database systems", ACM Transac~ 2
tions on Database Systems 3, 2 (1978). 178-198. i

{KOS80] Rosenkrantz, D, M., Stearns, R. E., and Lewis, P. M. "Consistency ;é
and serializability in concurrent database systems", SUNY at Albany
Dept. of Computer Science Technical Report 80-12 (Auguat 1980).

[ROT80] Rothnie, J. B. et. al. "Introduction to a system for distributed
databases (SDD=-1). ACM Transactions on Database Systems 5,1 (1980).

T T o

. 1"17.
[ROT7T] Rothnie, J. B., and Goodman, N. "A survey of research and develop- !
ment in distributed database management". Proceedings of the 3rd b

International Conference on Very Large Databases (1977).

[SCH78] Schapiro, R. M,, and R. E, Millstein. "Failure recovery in a
distributed data base system." Proceedings of the 4th International
Conference on Very Large Databases (1978), 66-70.

DO oram S

[AARMALERE | 3 s dahil il i A
— T

P i [SKE81] Skeen, D, "A decentralized termination protocol", Proceedings of %
E the IEEE Symposium on Reliability in Cistributed Software and ;
E Database Systems (July, 1981), 27-32.

i [STE81] Stearns, R. E., and D. J. Rosenkrantz. "Distributed database
concurrency controls using before-values." Technical Report 81-1
(February 1981).

o it st b B 1L

[STO77]) Stonebraker, M., and Neuhold, E, "A distributed data base version
of INGRES". Proceedings of the Second BRerkeley Workshop on
Distributed Data Management and Computer Networks. May 1977, 19-36.

[t

P

[STO79] Stonebraker, M. "Concurrency control and consistency of multiple
coples of data in distributed INGRES". IEEE Trans. Software

Engineering SE-5, 3 (May 1979). 188-194,

e L O TRV

[THO79] Thomas, R. H., ™A majority consensus approach to concurrency control
for multiple copy databases™. ACM Transactions on Databases 4, 2

(June 1979).

[TOAT9] Toan, N. G. ™A unified method for query decomposition and shared
information updating in distributed systems". Proceedings of the
Fifth International Conference on Very Large Data Bases. 1979, 679-
685.

-

[WONTT7] Wong, E. "Retrieving dispersed data from SDD-1: a system for
distributed databases". Proceedings of the Second Berkeley Workshop
on Distributed Data Management and Computer Networks (May 1977).

271=235.

el

[YOU79] Youssefi, K. and E. Wong. "Query processing in a relational
database management system." Proceedings of the Fifth International
Conference on Very Large Data Bases. 1979, U09-41T.

Georgla Institute of Technology Simulation Tool for Distributed Databases

