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ABSTRACT

Thir report presents results of measurements of unsteady
forces and moments on 4x4 and 4x5 bladed sets of contrarotating
propellars in uniform flow and in a 4-cycle wake for application to
torpedo propeller design. The uniform flov measurements were
made to check earlier results that had been in disagreement with
the resultsc from calculations based on propeller theory. The
uniform flow results confirmed the earlier resulta in showing
larger forces on the forward propeller which is contrary to the
prediction of existing theory. The results of the experiments
in the 4-cycle wake showed unsteady forcas on the forward propeller
due to the effect of the wake along with the interaction forces
between the two propellers. No theoretical calculations are available
for comparison witih the wake results.

The present procedure for conducting unsteady furce
and mouent measurements on contrarotating propellers continues
to be tedious and easily subject to error. Consequently,
it is recommended that no further experiments be conducted
using this procedure. 1t is recommended that for future
experiments on contrarotating propellers the shafts ba
locked together mechanically and that a second dynamometer be
used so that unsteady measurements can be made on both propellers

simultaneously.
ADMINISTRATIVE INFORMATION
The work described in this report was sponsored by the Naval Sea Systems
Command, Code 63R31 (formerly 03512), and fundcd under Program Element
61153N, Project No. SR 02301, David W. Taylor Naval Ship R&D Center,

Work unit 1544-170.

INTRODUCTION
Marine propellers operating in a non-uniform flow as in the wake of a
ship or torpedo experience an unsteady loading as the blades pass through
the changing velocities in the wake. Theae unsteady forces are at multiples

of shaft frequency and their magnitudes depend upon the magnitudes of the
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harmonic components of the wake and the deaign of the propeller. The
frequencies presant depend upon the harmonic frequencies present in

the wake and the number of blades on the propeller. With contrarotating
propellers, additional frequencies are present due to the intersction between
the propellers. The unsteady loading can cause a considerable amount of
vibration and noise and it is important to be able to predict unsteady

loads before selecting a propeller or set of propellers for a given
application. Such predictions can be made experimentally by model tests

or by calculations based on propeller theory.

A theory for single propsllers has been developed and programmed and
its validity has been partially confirmed by model experiments. However,

a theory developed for contrarotating propelleral'z* produced results that
were not in agreement with experimental results obtained in uniform flow.
The results of these experiments have baen reported in Reference 3.

There was a considerahle difference hetween the magnitudes of the
theoretical and the experimental results but the most disturbing difference
was that while It was expected that the after propeller would show the
greater unsteady forces due to interaction and the theoretical results
confirmed this, the experimental results showed greater unsteady forces
on the forward propeller.

Although the present experiments were planned to determine the unsteady
forces on contrarotating propellers in a 4-cycle wake, there were also

experiments made in uniform flow to check the earlier results.

*List of referznces are on page 1l




EXPERIMENTAL APPARATUS AND WAKE

The experiments were pert.,rmed in the 24~inch variable pressure
wvater tunnel using the Jynamnmeter and proceudures described in references
3 and 4. As in.the earlier experinents che one dynamometer had to be
shifted from the upstream position to the downstream position so that
‘the measurements oﬁ the two propellers had to be made at separate times.
In this case the measurements vere made about a year spart since sufficient
funding was not available in one fiscal year. As recommended in reference
3, a fairing was used to enlarge the upstream shaft when the dynamometer
was in the downatream position so that the upstream configuration was the
same for the measurements on the two propeller and the flow into the propellears
would be more n2arly the same.

The four cycle wake was produced by four thick struts ahead of the
propellers. Two existing thin struts 30 degrees apart had been used to
support the dynamometer. They were thickened and twc similar struts ware
added to form a symmetrical arrangement of four struts. A wake survey
of the flow in the plane of the propellers was made to determine the flow
produced by this arrangament. The results of this survey are shown in
Figures 1 thru 5. The flow was found to have a nearly sinusoidal 4-cycle
component of approximately four percent of the mean flow. There was
also a samall decrease in velocity radially from the propeller tip to the
hut. These wake results for the 4~cycle component are shown in Figure 6.

Not shown in this figure are some small higher frequency components. A
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second harmonic was less than 12 percent of the 4-cycle amplitude and

the third harmonic less thaan 3 percent.

UNSTEADY FORCE MEASUREMENTS
The first measurements were made in uniform flow to check the earlier

results. The dynamometer was in the downstream position to measure the

" forces on the after propeller. Both 4x4 and 4x5 bladed propeller sets

were used. The 4x4 set consisted of P;opellef 3686 forward and 3687A in
the after position. The 4x5 set used the same forward propeller with
Propeller 3849 as the five bladed after propeller. Design detalls of these
propellers are given in Tables 1,2 and 3 and their open water characteristics
are shown in Figures 7 and 8. All of the propellers had zero skew.

Both propellers were run at a constant rotational speed of.12 revolutions
per second for all experimental conditions and the water velocity was
varied to produce loadings between zero thrust &nd a total K of approximately
0.50. Advance coefficient J and water velocity were determined by using
a thrust identity betwean the total steady thrust and the total open water
thrust. These conditions resulted in Reynolds numbers between 5.1 and 5.9
x 10° at the 70% radius. The axial spacing between the propeller centerlines
was held at 1.70 inches (0.043m). Steady thrust and torque were measured
using the regular tunnel dynamometer. The 8six unsteady components of
loading were measured using the six component unsteady dynamometer and were

recorded on analog tape and later digitized.
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The same problems of holiding the propeilers at exactly the same
speed in order to prevent changes in the phase of the unstecady forces as
reported in Refefeuce 3 were experienced. In fact, the problem was
somewhat greater than during the earlier enperiments due to problems with ]
the speed control of the tunnel drive motors. As before, this problem was {
partially eliminated by marking the analog tape with pulses indicating
which revolutions of the propellers were in approximately the proper
phase relationship. After both sets were run in uniform flow the wake
producing struts were installed and the experiments were repeated in the
4=cycle wake.

The dynamometer was then moved to the upstream position (a year later)
and the experiments were repeated to obtain measurements on the forward
propeller.

The analog tapes were digitized, reading 100 of the marked in-phase
revolutions for each condition and recording them on a digital tape. A
computer program was used to average the readings, apply calibration

corrections, and make a harmonic analysis of the unsteady forces and moments.

RESULTS
Figure 9 shows the unsteady thrust coefficient amplitudes and phase

angle in uniform flow for the 4x4 propeller set at blade passing frequency

(eight times shaft frequency). This conditioa was run to check earlier

results in uniform flow.

The unsteady thrust coefficients and phase angles for the separate

forward and after propeller were obtained directly from the computer

e £ SRR S L
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output. The ccaputer output also gave the separate cosine and sine
compor.ant amplitudes of unsteady thrust, AN and BN where in this case

N = 8. To obtain total values for the propeller pair the components were

added vectorially,

A total = AForward.F AAfter

and B total = BForward+ BAfter

2 N BZ

- k! 2.4
Then K [ATotal Total ] /Pﬂ D

TTot:al

And  brotal = At‘:ta“rBTotal /ATota11

Angles are measured in the direction of forward propeller rotation
from the upward vertical position of vector Fv in Figure 10. This figure
also shows the directions for the positive values of the forces and moments.
Figure 11 shows results for the unsteady torque.

For the 4x4 set, or for any set having equal numbers of blades, the
only unsteady forces in uniform flow are thrust and torque. To observe
unsteady side forces and beuding moments certain unequal numbers of blades
must be used. For these experiments the 4x5 set was selected. A discussion
of which of the unsteady components are present and at which frequencies
for any combination of blade numbers is given in Reference 5. For the 4x5
set the lowest frequency for the side forces and bending moments is
nine times shaft frequency. Some higher frequencies for all six components

are also present but they are well above the frequency range of the

dynamometer.
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Figures 12,13,14, uird 15 show the vertical and horizcntal side forces
and bending moments and their phase angles for the 4x5 propeller set in
uniform flow. These conditions were also run to check the earlier uniform
flow experiments.

The remainder of the results are for the experiments in the 4-cycle
wake. Figures 16 through 21 show the unsteady thrusts and torques for the
4x4 set at 4,8, and 16 times shaft frequency. Figures 22,23,24, and
25 show the unsteady thrusts and torques for the 4x5 set. In this case the
4x5 set shows unsteady thrusts and torques due to the 4-bladed forward
propeller in the 4-cycle wake. Figures 26,27,28, and 29 show the unsteady

side forces and bending moments generated by the interaction hetween the

tw. propellers.

DISCUSSION OF RESULTS

The repeat experiménts in uniform flow, Figures 9,11,12,13,14,15 show
greater amplitudes for the unsteady forces on the forward propeller than
the after propeller, as they did in the earller results. The amplitudes
are in fairly good agreement in the middle range of the loading (J
values) but at zero and the greatest loads they are generally smaller
than those of the earlier experiments. The bending monents on the forward
propeller of the 4x5 set are so large in uniform flow that they appear to
be in error. However, since the forward moments were also unusually large
with the 4~cycle wake it is not likely they were in error for both conditions.

The phase angles are generally in poorer agreement with the earlier




exveriments than are

coasistent trend in these differences.

angles is in bending moments wherz the magnitude for the forwarl propeller

showed the greatest difference.

tie magaitudas.

There appears to b¢ no

The best agreement for phase

If the use of the fairing to increase the

diameter of the forward shaft when the dynamometer was in the esfter

position had any effect on the repeat experiments it would have been on

the after propeller.

However, no consistent difference in this direction

was noted. In the 4-cycle wake the results were as expected. The 4x4

set showed the same unsteady thrusts and torques due to interaction as

they had in uniform flow at the blade passing frequency of eight times

shaft frequency and at its second harmonic of sixteen times shaft frequency.
In addition there was a blade rate signal of four times shaft frequency on

both propellers of the set due to the wake.

with those in uniform flow both in amplitude and phase.

The 4x5 set showed side forces and bending moments in fairly good

agreement with those in uniform flow in magnitude although the phase

angles were not in as

good agreement.

The bending moments oun the forward

propeller were again unexpectedly high, as they were in uniform flow.

This had not occurred in the earlier experiments and no explanation has
been found. The 4x5 set also showed unsteady thrusts and torque on the
forward prcpeller at blade frequency due to the wake.

and torques also appeared on the 5-bladed aft propeller.

than those on the forward propeller, they were greater than expected.

At eight times shaft frequency the unsteady thrusts were very small as

was expected.

The interaction forces agree well

Some 4-cycle thrusts

Although lower
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It will be rioted that some of the curves are incomplete and scveral
of the phase curves are missing completely. The reason for the incompiete
curves is that some of the digital tapes were not analyzed until as long
as two years after the data had heen recorded arl some of the markers
attached to them to identify the records had become detached so that the
data could not be identified. The phase results depend critically on
the exact control of the propeller speeds and phase relationships. 1In
several cases the phase curves were obviously 1ﬁ error and to avoid
confusion, they are not shown. No results that appeared to be grossly in

error were plotted.

CONCLUSION

The unsteady force experiments on contrarotating propellers were
severely handicapped by the manner in which they had to be conducted.
Using only one dynamometer and not being able to lock the propellers
together at equal speeds and fixed phase relatjonships made it very tedious
to conduct the experiments and the results are therefore easily subject
to error. This is especially true for the side force and bending moment
results and the total values for the combined propellers sets. These
results were obtained from vector sums of two or four signals and are
dependent upon good phase values and are most likely to be in error. It
is difficult to estimate this error but it is believed that it could be
as great as 20 percent. The individual thrust and torque results are
less phase dependent and the error in these results may be as little as

10 percent.
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It is very strongly re:ommended that no further experiments with
contrarotating propellers be attempted using the existing equipment
and procedures. The prope)“ers should be locked together by a shaft
outside the tunnel extending from one drive motor toc the other. This
shaft should carry enough driving toique so that all lost motion is
taken up and a fixed phase relationship is preserved. A mechanical phase
shifter in this shaft would permit setting the desired phase relationship
each time the loading is changed. It is aiso desirable to have a second
dynamometer so that readings from both propellers can be made at the

same time to insure that the conditions are the same for both propellers.
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Figure 7 - Open Water Characteristics of Propellers 3686-87A
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Figure 8 - Open Water Characteristics of Propellers 3686-3849
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Figure 16 - Unsteady Thrust on 4 X 4 Set at "4 Times Shaft
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Figure 24 - Unsteady Thrust on 4 X 5 Set at 8 Times Shaft
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Figure 26 - Unsteady Vertical Side Forces on 4 x 5 Set at 9 Times Shaft
Frequency in 4-Cycle Wake
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Figure 27 - Unsteady Horizontal Side Forces on 4 x 5 Set at 9 Times Shaft
Frequency in 4-Cycle Wake

39

et = s

4 s i e v s
;‘-.— e e e 8




P N

[ S
.

! T T T T T 180

UNSTEADY VERTICAL MOMENT

o ' )
L_ O FORWARD PROPELLER ~{100 .
@ AFTER PROPELLER
- ~{140
- ~4120
p— -f 100 h
_ 1
— ~s0 k
(o] °
o 1
0.032 o\ o (AFTER) oo %
\ “"’(mmm 9
0.030 o) o ° =
(@)
0.028 |— - o
(o)
0.026 |— -2 ‘
0024 — —40 1
ﬁ !
0.022 }— — -60
|
. 0.020 = - -80 :
3 — Kpy (FORWARD)
‘X 0018 —
-
4
u 9016 -
Q
E 0.014
8 -
0.012 p— O ——
0.010 }— —1
0.008 |~ -
0.006 L-“\.. i
o Kuyy (AFTER)
0.004 |- cL MV _ 1‘
0.002 — . :
0 | 1 | |
07 0.8 0.9 1.0 1.1 1.2 13 14 15

ADVANCE COEFFICIENT J

Figure 28 - Unsteady Vertical Bending Moments on 4 x 5 Set at 9 Times Shaft
Frequency in 4~Cycle Wake
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Figure 29 - Unsteady Horizontal Bending Moments on 4 % 5 Set at 9 Times Shaft
Frequency in 4-Cycle Wake
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TABLE 1 - DESIGN DETAILS OF MODEL PROPELLER 3686

Position

Number of Blades

Diameter

Pitch at 0.7 R

Expanded Area Ratio

Section Meanline

Section Thickness Distribution

Forward

4

12.017 inches (0.3052 m)
15.510 inches (0.3940 m)
0.303

NACA a = 0.8

NACA 66 modified

Rotation Left Hand

r/R P/D c/D t/C fm/c

0.2 1.426 0.1075 0.2214 0.0018
0.3 1.396 0.1250 0.1688 0.0364
0.4 1.366 0.1400 0.1321 0.0430
0.5 1.336 0.1548 0.1027 0.0396
0.6 1.310 0.1695 0.0785 0.0353
0.7 1.291 0.1787 0.0604 0.0280
0.8 1.278 0.1750 0.0463 0.0249
0.9 1.269 0.1500 0.0367 0.0206
0.93 1.267 0.1220 0.0344 0.0175
1.00 1.267 — -—— -
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TABLE 2 - DESIGN DETAILS OF MODEL PROPELLER 3687A

Positien After

Number of Blades 4

Diameter 11.776 inches (0.2991 m)
Pitch at 0.7 R 15.662 inches (0.3968 m)
Expanded Area Ratio 0.324

Section Meanline NACA a =~ 0.8

Section Thickness Distribution NACA 66 modified
Rotation Right Hand

r/R P/D c/D t/C fH/c
0.2 1.289 0.1100 0.2161 0.0020
0.3 1.291 0.1335 0.1581 0.0303
0.4 1.295 0.1530 0.1203 0.0351
0.5 1.302 0.1700 0.0935 0.0339
0.6 1.311 0.1823 0.0727 0.0319
0.7 1.326 0.1898 0.0569 0.0280
0.8 1.344 0.1833 0.0442 0.0242
0.9 1.361 0.1520 0.0362 0.0216
0.95 1.369 0.1220 0.0345 0.0199
1.00 1.376 -—— — -—
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y 3

TABLE 3 -~ DESIGN DETAILS OF MODEL PROPELLER 3849 ‘ 1
Position After
Number of Blades 5
Diameter 11.785 inches (0.2993 m)
Pitch at 0.7 R 15.168 inches (0.3853 m) .
Expanded Area Ratio 0.379 [
Section Meanline NACA a = 0.8 W
Section Thickness Distribution NACA 66 modified
Rotation Right Hand
|
r/R P/D c/D t/c fM/c
0.2 1.169 0.1075 0.2214 -—
0.3 1.207 0.1250 0.1688 0.0269
0.4 1.243 0.1400 0.1321 0.0299
0.5 1.277 0.1543 0.1027 0.0290
0.6 1.288 0.1695 0.0784 0 0273 i
0.7 1.287 0.1785 0.0604 0.0238 i
0.8 1.293 0.1750 0.0463 0.0208
0.9 1.321 0.1500 0.0367 0.0182
0.95 1.349 0.1220 0.0344 0.0176
1.00 1.390 -— -— ——
]
i
!
|
}
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DTNSROC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH-
NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF
THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM.
INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE.
THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMURANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION | =
OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN-
TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE :
NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC :
MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY.CASE i

BASIS.
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