Test Results Of A Flotsam Shedder For The Grundy Model 9021 Current Meter

NOAA's National Ocean Survey uses the Grundy Model 9021 recording current meter (with rotor type speed sensor) in circulatory surveys of estuaries and rivers. In some instances the instrument is exposed to large amounts of trash and debris, i.e. flotsam, which have completely immobilized the rotor while deployed in the Hudson and East Rivers of New York. A flotsam shedder was designed and fabricated specifically for the Grundy Model 9021 current meter to prevent rotor fouling and the resulting loss of data. Pictured in Figure 1 with the current meter, and alone in the inset, the shedder is constructed from stainless steel with twenty 2.4 mm diameter spokes, 42 cm long, radiating 30 degrees from the horizontal axis of the current meter. When bolted to the 9021 rotor guards, the hub of the shedder is located approximately 28 cm directly in front of the rotor.

The following tests were conducted by the Engineering Support Office (ESO) to qualify the effects of the flotsam shedder on the current meter speed calibration and hydrodynamic stability.

Test Apparatus

A steady flow calibration was conducted at the David Taylor-Naval Ship Research and Development Center (DT-NSRDC) Number 1 Tow Carriage Facility. A current meter, with a swivel-gimbal assembly, was attached to the tow carriage. The tow carriage speed was monitored by an HP 5328A Universal Counter taking period average measurements of pulses generated by a magnetic pickup; the pickup senses the teeth of a precision gear coupled to a tow carriage wheel. The Grundy rotor was monitored with an identical counter taking period measurements of pulses generated by an external photodiode sensor; this sensor was used to determine the time between the passing of two consecutive rotor blades.

November 1981
An HP 9825T calculator was used to accumulate and process the measurements from both counters. The carriage and rotor measurements were converted to cm/s and r/min, respectively.

Rotor Calibration

The rotor r/min was converted to velocity using the following equation:

\[
V = 1.267 \times 10^{-5} N^2 + 5.412 \times 10^{-1} N + 1.046
\]

where \(V\) is the indicated flow speed and \(N\) is the rotor rotation rate in r/min. Figure 2 displays the percent speed error of the rotor with and without the flotsam shedder as a function of tow carriage speed. The residual error is plotted as the percent difference between the indicated flow speed and the true speed of the tow carriage. Each data point is determined from the average of 60 consecutive samples of rotor revolution and carriage speed. The results show a reduction of the rotor gain by approximately 4 percent due to hydrodynamic blockage caused by the flotsam shedder. The shedder also limits the speed measurements of the current meter to 250 cm/s. Flows above 250 cm/s cause the shedding rods to bend in towards the rotor stopping its rotation.

Tests indicated that the stability of the current meter under tow was not affected by the flotsam shedder. The 9021 pivoted smoothly and aligned itself without hesitation. There was no pitch or yaw observed during the test.
GRUNDY 9021 SN#81 ROTOR CALIBRATION
NSRDC Carriage #1 7/1/81

Figure 2.

PERCENT SPEED ERROR

CARRIAGE SPEED (CM/S)

Figure 3.

Plessey 9021 SN#52 Rotor
Horizontal Directivity Response
Horizontal Response To Steady Flow

Tests were conducted with the flotsam shedder and compared to previous data\(^1\) taken without the shedder. The objective was to determine if the shedder would change the known horizontal cosine response of the rotor significantly to warrant further investigation.

Results displayed in polar form are seen in Figure 3. The outer circle represents the constant tow carriage speed; the inner two circles (seen as a figure eight) represent a perfect cosine relationship. The data collected with the shedder (the dotted line) is plotted next to the original data without the shedder (the solid line). Each data point represents the measured flow speed at the angle between the meter heading and the true flow heading. Good agreement exists between the two sets of data about the forward axis of the current meter, which is the critical area for accurate flow measurements\(^1\).

Summary

The results of the steady flow tow tank show the flotsam shedder creates flow blockage which results in a four percent reduction in flow sensitivity of the rotor. In its present configuration, interference by the shedder rods limits the current meter speed range to 250 cm/s.

The current meter horizontal cosine response and stability is not significantly affected by the flotsam shedder. However, the current meter in-water balancing points are changed and should be re-established prior to deployment.

Acknowledgment:

CDR John Callahan, the Commanding Officer of the NOAA Ship FERREL, was responsible for the design and provided the initiative for the development of the flotsam shedder during the N.Y. Harbor Survey. Field tests conducted on the effectiveness of the flotsam shedder by CDR Callahan during the N.Y. Harbor survey were reported to be successful.

REFERENCE:

FOR FURTHER INFORMATION, CONTACT:

David Crump
NOAA/OTES/ESO TE31
Bld 160 Rm 118 WNYA
Rockville, MD 20852

Telephone: (202) 426-9090

David Crump serves as a task leader at the Engineering Support Office of NOAA's Office of Ocean Technology and Engineering Services located in the Navy Yard, Washington, D.C. He is involved in the test and evaluation of oceanographic instrumentation, and is currently evaluating a new portable CTD system recently procured for NOAA's Circulator, CTD, Project. He holds a BSEE degree from Purdue University.
Continuous Shipboard Measurements Of Surface Salinity

The Air-Sea Interaction Group of the School of Oceanography, Oregon State University, has recently constructed a portable system to measure and digitally record the temperature and conductivity of seawater pumped to the ship’s laboratory from a subsurface intake. The construction was prompted by the need for a system to continuously measure and record surface salinity to an accuracy of 0.01%. Commercially available units were rejected because they were too expensive, did not have digital recording capability or did not have the desired accuracy.

The system consists of: 1) an oceanographic thermometer and conductivity meter manufactured by Sea-Bird Electronics; 2) SAIL (Serial ASCII Instrumentation Loop) counter modules; 3) a microprocessor computer including an interface, CRT display, and cassette recorder; 4) a flow-through box housing the thermometer and conductivity meter; 5) a flow-through water filter; 6) power supplies; and 7) PVC plumbing. A schematic diagram of the system is shown in Figure 1 and a photograph is shown in Figure 2. Components, manufacturers, and costs are listed in Table 1.

The outputs of the thermometer and conductivity meter are 0.7 V rms sinewaves, the frequencies of which vary between 7 and 11 kHz as a function of temperature (0 to 25°C) or conductivity (2 to 5 siemens/m). The SAIL counter modules were set to average frequency over a period of 10 s with a resolution of ± 0.1 Hz. The microprocessor computer is connected to the SAIL ASCII loop through an interface. The sampling rate, recording, and CRT display are controlled by software. The box housing the thermometer and conductivity meter was constructed of PVC plastic, 1/2-inch thick. The top of the box is removable and the outside dimensions are approximately 16x6x9 inches. The box has nine 3/4-inch PVC pipe fittings through which water can be circulated or conductors passed. A flow-through filter designed for drip irrigation systems is placed in advance of the input to the box. The filter contains a 0.1 mm mesh screen which can be cleaned. The box, filter, and associated plumbing are opaque to prevent the growth of marine organisms. It is important to note that additional sensors having either d.c. or frequency outputs can be recorded simultaneous to temperature and conductivity with additional SAIL modules. SAIL modules have also been designed for recording navigational information.

The absolute accuracies guaranteed by the manufacturer of the thermometer and conductivity meter are ± 0.01°C and ± 0.001 siemens m⁻¹, respectively, with typical accuracies one-third as large. These guaranteed accuracies correspond to an uncertainty in salinity of ± 0.01% at 35%.
Figure 1. Schematic diagram of the system used to continuously measure surface salinity.

Figure 2. Photograph of components of the system used to measure surface salinity. The components are: 1) Pet computer; 2) filter; 3) box; 4) conductivity meter; 5) thermometer; 6) SAIL counter modules; 7) cassette recorder; 8) SAIL interface; 9) SAIL power supply; 10) instrument power supply.

The least count uncertainty of the recording system (± 0.1 Hz) corresponds to uncertainties in temperature and salinity at 15°C and 35‰ of ± 0.0006°C and ± 0.0014‰, respectively. The system was used at sea on the R/V OCEANUS during a cruise across the Gulf Stream in September 1981. The system ran continuously for 9350 days at a digitizing rate of once per minute. During this period, 68
water samples were taken which were subsequently analyzed for salinity. The difference between salinities from the water samples and salinities computed from the nearly simultaneous digital measurements of temperature and conductivity is shown in Figure 3. The mean difference is 0.025%o with a standard deviation of 0.012%/o. The systematic differences between the two independent sets of measurements can be ascribed to uncertainties in the absolute calibrations of the sensors and the recording system. The trend in the difference is consistent with the observed drift of the salinometer used to determine the salinities of the bottle samples. Random fluctuations of the salinity differences can be ascribed to least-count uncertainty, lack of simultaneity of bottle samples and in situ measurements, intermittent contamination of the conductivity cell, and possible degradation of the bottle samples. The filter appeared to effectively remove biological contaminants from the seawater. If needed, additional filters could be added.

Table 1. Components, Manufacturers, and Costs (1/1/81)

<table>
<thead>
<tr>
<th>Component</th>
<th>Manufacturer</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Oceanographic thermometer</td>
<td>Sea-Bird Electronics, Mercer Island, WA</td>
<td>$1000</td>
</tr>
<tr>
<td>1 Conductivity meter Model SBE-3</td>
<td>Sea-Bird Electronics, Mercer Island, WA</td>
<td>1400</td>
</tr>
<tr>
<td>2 SAIL counter modules</td>
<td>Technical Planning and Development Group, OSU</td>
<td>750</td>
</tr>
<tr>
<td>1 SAIL power supply</td>
<td>Technical Planning and Development Group, OSU</td>
<td>250</td>
</tr>
<tr>
<td>1 Interface</td>
<td>Technical Planning and Development Group, OSU</td>
<td>375</td>
</tr>
<tr>
<td>1 PET Computer, Model CBM5001</td>
<td>Commodore</td>
<td>1400</td>
</tr>
<tr>
<td>1 Cassette recorder</td>
<td>Commodore</td>
<td>100</td>
</tr>
<tr>
<td>1 Flow-through bath</td>
<td>Technical Planning and Development Group, OSU</td>
<td>500</td>
</tr>
<tr>
<td>1 10-V Power supply for</td>
<td>Acopian</td>
<td>100</td>
</tr>
<tr>
<td>thermometer and conductivity meter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous: Jumper and connectors</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$5975</td>
</tr>
</tbody>
</table>
The system appears capable of continuous digital measurements of surface salinity to an accuracy of ± 0.01‰, provided that bottle samples are occasionally taken to correct for systematic errors.

REFERENCE:

Mesecar, R., "Serial ASCII Instrumentation Loop," EXPOSURE VII (4)

FOR FURTHER INFORMATION, CONTACT:

Rick Baumann
School of Oceanography
Oregon State University
Corvallis, OR 97331
Telephone: (503) 754-2568

Rick Baumann has worked for the last 3 years as a research assistant for the Air-Sea Interaction Group, School of Oceanography, Oregon State University. He specializes in data analysis from instrumentation used in upper-ocean research. He holds a BA degree from Willamette University and an MS degree in Physical Oceanography from OSU.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
<th>Article</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Test Results of a Flotsam Shedder for the Grundy Model 9021 Current Meter</td>
<td>Crump</td>
</tr>
<tr>
<td>5</td>
<td>Continuous Shipboard Measurements of Surface Salinity</td>
<td>Baumann</td>
</tr>
</tbody>
</table>

Dr. Rod Mesecar, Editor
EXPOSURE
School of Oceanography
Oregon State University
Corvallis, Oregon 97330
754-2226

FIRST CLASS MAIL

811211165
Title: EXPOSURE
A newsletter of ocean technologists

Author(s): Dr. Roderick Mesecar (Ed.)

Performing Organization Name and Address:
School of Oceanography, Oregon State University, Corvallis, OR 97331

Contract or Grant Number(s): N00014-79-C-0004

Program Element, Project, Task Area, Work Unit Numbers: NR 083-103

Distribution Statement (of this Report):
Approved for public release; distribution unlimited

Distribution Statement (of the abstract entered in Block 20, if different from Report):

Supplementary Notes:
Published every two months by the School of Oceanography, Oregon State University, Corvallis, OR 97331

Key Words: Ocean technology; instrumentation

Abstract:
Test Results of a Flotsam Shedder For The Grundy Model 9021 Current Meter
Continuous Shipboard Measurements Of Surface Salinity.