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ABSTRACT&

A computer-based method for formulation and efficient solution

of nonlinear, constrained differential equations of motion is

developed for planar mechanical systems. Nonlinear holonomic con-

straint equations and differential equations of motion are written

in terms of a maximal set of Cartesian generalized laoordinates, to

facilitate the general formulation of constraints and forcing fun-

tions. A Gaussian elimination algorithm with full pivoting

decomposes the constraint Jacobian matrix, identifies dependent

variables, and constructs an influence coefficient matrix relating

variations in dependent and indepen t variables. This information

is employed to numerically construct a reduced system of differential

equations whose solution yields the total system dynamic response.

A numerical integration algorithm with positive-error control,

employing a predictor-corrector algorithm with variable order and

step-size, is developed that inte-ates for only the independent

variables, yet effectively determines dependent variables.

A general method is developed for dynamic analysis of systems

with impulsive forces, impact, discontinuous constraints, and dis-

continuous velocities. This class of systems includes discontinuous

kinematic and geometric constraints that characterize backlash and

impact within systems. A method of computer generation of the
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Impulse-momentum relations that define jump discontinuities in system

velocity for large scale systems is developed. An event predictor

employing logical functions of system state and working in conjunction

with the new numerical integration algorithm efficiently controls

its progress and allows for automatic equation reformulation.

Numerical results are presented for planar motion of a tracked

articulated vehicular system with twenty-four degrees of freedom. A

mechanism with discontinuous forces and velocities is simulated

to demonstrate the capabilities of the method. The examples were

selected to demonstrate program generality and improved efficiency

over previous modeling methods. An order of magnitude improvement

in efficiency has been demonstrated.
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CHAPTER 1

INTRODUCTION

1.1 Introductory Comments

Analysis of machine and mechanism problems prior to 1960

relied upon various (and often quite complex) graphical techniques.

These techniques were based on geometrical interpretation of con-

straints and a large body of literature evolved which classified

constraints and linkages [1, 23. In the 1950's digital and analog

computers began to appear, making it possible to formulate and

repetitively solve moderately sized systems of equations [3, 4j.

This prompted the development of mathematical software support

packages and the possibility of mathematical analysis of machines

and vehicular systems became a reality. The early programs, written

specifically for given applications, used geometrical interpretation

of constraints to define relative position coordinates, thus helping

to reduce problem size. These programs were generally limited in

scope, requiring extensive modification for different applications

[5, 6].

As computer speed and capacity increased, larger programs

were developed, along with data handling routines. It was recognized

that mechanical systems are composed of a number of "standard"

elements and that they can be combined as building blocks to define



2

large classes of mechanisms. Again, geometrical interpretation of

constraints allowed for the reduction in the number of independent

variables, so that considerably larger, more sophisticated models

could be established. However, the methods developed required top-

ological analysis associated with identification of independent con-

straint loops, which added to program complexity.

Several general purpose computer programs were developed along

these lines in the late 60's and early 70's [7-91. These programs

are satisfactory for many mechanisms applications, but incorporation

of user supplied constraint and forcing functions is rather difficult.

An alternate method of formulating system constraints and

equations of motion, in terms of a maximal set of coordinates, by-

passes topological analysis and provides for convenient user supplied

constraints and forcing functions [10]. This leads to a more

general computer program, with practically no limitation on mechanism

type. The penalty, however, is a larger system of equations to be

solved, which may require greater computer capacity or time.

1.2 Program Efficiency Versus Program Generality

The first general purpose computer codes capable of performing

dynamic analysis of large scale, nonlinear, constrained, rigid body

mechanical systems appeared around 1970. The earliest programs

having major impact in this area were DYMAC (1970) [7], DAMN-DRAM

(1971) [8], IMP (1972) [9], and ADAMS-3D (1973) [103. Numerous

programs have since been developed but they generally represent

variations o,, the above algorithms [ll-l14. These programs are



similar in some respects and are quite different in others. Table

1.1 lists some of the major features of the above four programs.

In the design of algorithms it is intended that program

efficiency and generality be maximized. Efficiency is easy to

measure. Generality, however, is highly dependent upon the needs of

the user and a program that is ideally suited for certain applications

may be completely inadequate for others. Therefore it is difficult

to assign ratings tc generality of a given code.

Many codes are developed using linkages as subelements of

mechanical systems. Since linkages generally form loops (closed or

open) a minimum number of linkage relative position coordinates

(designated as Lagrangian coordinates by Paul [153) are defined,

allowing loop constraint equations to be formulated. Complex systems

may have many loops (not all independent) so graph theory or user

preprocessing is required to avoid unnecessary formulation of redun-

dant loop constraint equations [16, 17]. Loop constraint

formulation and topological preprocessing requirements add an order

of magnitude of complexity to codes when the user desires to incor-

porate constraint relations that are not provided in the standard

formulation. A definition of program generality might then be a

measure of how easily one supplements the standard code to provide

for unanticipated constraint or forcing elements.

Constraint loop formulations, with topological preprocessing,

are desirable from a numerical standpoint since they allow formula-

tion of a problem using a minimum number of state variables. They
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lead to a corresponding minimum number of highly coupled constraint

equations. The constraint Jacobian matrix resulting from lineari-

zation of constraint equations will generally be small, even for

relatively large problems. Well established fuLll matrix manipulation

algorithms can be efficiently applied. The small number of state

variables thus yields a small number of differential equations of

motion, which is a definite advantage for numerical integration

algorithms [28].

The programs DYMAC, DRAM, and IMP employ loop methods, as

described above. A different approach, however, is taken in ADAMS

[10, 193 whereby constraint equations are formulated between

bodies connected by given joints. The concept of line,- is not used

in this development. Elements of the system are treated as rigid

bodies each with a Cartesian coordinate system attached. One does

not think in terms of element type, i.e., slider, crank, rocker,

etc.; but in terms of joint type, i.e., revolute, translational,

cylindrical, etc. Since each system element has an identical coor-

dinate system, arbitrary user-supplied constraints and generalized

forcing functions can be formulated without regard to element type.

Thus, equation formulation and computer programming are simplified.

A major disadvantage of this method arises from initially

assigning a maximal set of generalized coordinates (degrees of

freedom) to the system. Nonlinear algebraic constraint equations

are then imposed to remove system degrees of freedom. This results

in a maximal number of differential and algebraic equations, which



traditionally have been solved iteratively and simultaneously by

stiffly stable implicit numerical integration algorithms [20].

Solving large systems of equations iteratively, even when advantage

is taken of matrix sparsity, is time consuming. In addition, the

corrector equations thus obtained contain variables related to

accelerations, on which error control cannot be maintained. Poor

prediction of these variables results in an excessive number of

corrector iterations (up to five or more), forcing even smaller time

steps than would otherwise be necessary.

In summary, the loop method of constraint formulation gains

program efficiency at the expe e of program generality, whereas the

joint method of constraint formulation in ADAMS gains program gener-

ality at the expense of program efficiency. The objective of the

research reported in this report is development of a numerical

analysis method that contains the strong points of both these methods.

1.1 Obtaining Efficiency Without

Sacrificing Generality

The main objective of this research is to develop numerical

and analytical methods to improve the efficiency of general purpose

analysis programs that determine dynamic response of large scale,

constrained, rigid-body mechanical systems. A planar dynamic analysis

code [10, 19, 21], similar to ADAMS, formulates nonlinear holo-

namic constraint equations and differential equations of motion,

written in terms of a maximal set of Cartesiarn generalized coordi-

nates, to facilitate the general formulation of constraints and
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forcing functions. A maximal set of coupled algebraic and differ-

ential equations are then solved iteratively and simultaneously by

an implicit numerical integration algorithm [20]. As noted earlier

the method is inefficient (even though sparse matrix manipulation

algorithms are employed), because an excessive number of equations

are involved in the iteration process within the numerical integra-

tion algorithm.

A modified approach developed in this report maintains program

generality by keeping the above method of constraint and equation of

motion formulation. An intermediate numerical processing step is

introduced that effectively eliminates the constraint equations and

dependent equations of motion, before each numerical integration

step. Iteration is then limited to solving only the set of constraint

equations. The time saved in the iteration step and in the numerical

integration step far outweighs the overhead introduced by the inter-

mediate numerical processing step. This method has demonstrated an

order of magnitude increase in speed, when highly constrained systems

are simulated.

A Gaussian elimination algorithm with full pivoting [22]

decomposes the constraint Jacobian matrix and identifies dependent

and independent generalized coordinates. For small systems, the

algorithm constructs an influence coefficient matrix relating varia-

tions in dependent and independent variables. ror large systems, in

which matrix sparsity becomes a significant factor, th,, algorithm

provides information necessary to set up a modified sparse matrix
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that relates variations in dependent and independent variables. In

either case, this information is employed to numerically construct a

reduced system of differential equations of motion, whose solution

yields the total system dynamic response.

A pieced interval analysis concept is also developed to

further the enhancement of program efficiency. When rapidly changing

or "intermittent" events occur within a simulation interval, it may

be desirable or necessary to break the time interval into subintervals.

Different equations or analysis techniques may then be incorporated

at these subintervals. For example, numerical integration algorithms

employing high order polynomial predictors become inefficient or fail

near abrupt or discontinuous variations of state variables. When

event times are known in advance, time stepsize control can be placed

on the integration algorithm before encounter, to avoid lengthy

search for correct reduced time step sizes. Momentum balance is

performed to determine jump discontinuity in velocity if bodies

impact or impulsive loading occurs.

Event occurrences, such as impact between bodies, are

generally functions of system state or time. Therefore an event

predictor is incorporated into the integration algorithm. Logical

functions of state and time are formulated such that, as each given

function passes through zero, it defines a logical time at which

other actions may be taken. Logical functions are extrapolated ahead

before the system state is advanced, so that significant events may
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be detected before being encountered by the system. The logical time

corresponding to a zero of a logical function is determined and the

system solution is forced precisely at this time.

1.4 Scone of the Renort

Both planar and three dimensional rigid-body dynamic analysis

programs, employing Cartesian coordinates and a simple constraint

formulation, have been developed [10, 19, 21, 23, 24]. In addition,

flexible beam linkage elements [25] have been incorporated into

the two dimensional program to extend its range of applications.

The analysis methods developed in this research apply equally well

to each of the above programs. In the interest of economy only the

planar rigid-body analysis method is developed here. This is suf-

ficient to illustrate the analysis procedure, without introducing

unnecessary complexity.

In Chapter 2, the planar rigid-body dynamic analysis algorithm

is developed. An implicit, stiffly stable numerical integration

algorithm is employed to simultaneously and iteratively solve

algebraic constraint equations and differential equations of motion.

In addition, it is shown that this method of solution results in a

sparse Jacobian matrix of maximal dimension, and that sparse matrix

manipulation algorithms must be employed to gain efficiency, even for

small problems. Further, it is shown that the method requires an

excessive number of corrector iterations, employing the above matrix

at each time step.



10

In Chapter 3 the "inverse dynamics problem" is presented

[261. That is, assuming that motion of certain generalized coor-

dinates (equal in number to system degree of freedom) is specified,

the entire system state, including all external, inertial, and con-

straint forces can be determined. This is done by an iterative

algebraic procedure, requiring no numerical integration. Methods

for reducing problem size by numerical elimination of constraint

equations and dependent variables are more easily demonstrated for

the inverse dynamics problem. However, these methods are equally

applicable to the dynamics problem of Chapter 4.

It is shown that the Jacobian matrix formed by linearizing the

constraint equations expresses relations between variations in the

generalized coordinates. The above matrix also expresses similar

relations between higher order derivatives. A Gaussian elimination

procedure is employed to identify a submatrix of maximal rank and it

is shown, by the implicit function theorem, that generalized coor-

dinates corresponding to certain columns of this matrix depend

entirely on the remaining coordinates and possibly time, hence they

are designated dependent variables. These dependent variables may

be evaluated if the independent variables are known, since this

submatrix is nonsingular. Likewise, dependent velocities and accel-

erations are evaluated, when corresponding independent velocities

and accelerations are known. Constraint reaction forces, included

in the equations of motion, are given by the product of the transpose

of the above matrix and a vector of scaler multipliers. Eliminating
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the scaler Imaltipliers, employing nonsingularity of the above sub-

matrix, yields a minimal set of equations of motion, involving only

independent variables and excluding all constraint reaction forces.

A significant number of intermediate matrix products are

involved in the above procedure. For large systems, efficiency would

be lost when carrying out the indicated sparse matrix products.

Therefore, an alternate sparse matrix method is developed that

requires no intermediate matrix products, yet effectively arrives at

the same minimal set of equations of motion.

An additional problem arises when solving nonlinear equations

by an iterative procedure, such as Newton's method. If the initial

estimate of roots of a system of nonlinear equations is poor, con-

vergence will be slow or may fail. While the methods developed in

Chapter 3 minimize the effect of errors in dependent variables (on

convergence rate), better estimates will result in fewer or quite

often no iterations. When advancing a constrained system from one

position to another, if dependent velocities and accelerations are

determined, they may be used to arrive at better extrapolated values

for dependent position variables. Alternately, a variable order

polynomial extrapolator fitted to dependent variable history will

yield even better results. Newton's backward divided difference

formula is very convenient and efficient for this application [27].

The numerical procedures of Chapter 3 are extended to the

direct dynamics problem in Chapter 4 [26]. Here it is assumed

that one or more of the system generalized coordinates are not given
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as functions of time. Therefore, the equations of motion must be

solved by numerical integration to determine system response to

forces. The minimal system of differential equations of motion may

then be converiently solved by explicit predictor/implicit corrector

multistep methods, such as the Adams Bashforth/Adams Moulton method

[281.

Additional problems arise as a result of identifying optimal

sets of independent variables. The sets generally change as system

configuration changes. Therefore, the minimal set of differential

equations also changes. To allow for the possibility that any vari-

able may become independent, polynomial extrapolators are maintained

for all dependent variables. A given polynomial extrapolator auto-

matically changes to a predictor if the corresponding variable

becomes independent, and a predictor reverts back to an extrapolator

when a variable becomes dependent. This procedure provides accurate

estimates for the Newton iteration described earlier for solution of

constraint equations and avoids interruption of the numerical inte-

gration procedure caused by lack of variable history.

The concept of pieced interval analysis is introduced in

Chapter 5. In the interest of efficiency and simplicity a given

simulation may be divided into two or more time intervals for which

different governing equations or analysis procedures may apply.

Boundaries of such intervals may correspond to instances where

violent actions such as member impact, impulsive loading, mass cap-

ture, mass release, member breaking, etc. occurs. Such events,
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when treated in a continuous manner, create serious problems for high

order predictor/corrector integration algorithms, when their presence

is not known in advance [29]. The ability to force small step sizes

and/or relax error requirements just prior to event encounter is an

effective means of improving program efficiency. If member distortion

is significant, a temporary flexible model may be implemented. Times

at which such events occur are usually not known in advance, since

they depend on system state. Therefore, logical functions of system

state and time, supplied by the user, are employed by the integration

algorithm to predict event occurrences before encounter. These

logical event occurrences define logical times that mark the interval

noundaries.

A logical events monitor is developed in Chapter 5. In addi-

tio!, momentum balance equations for general planar constrained rigid

body systems andergoing impulsive loading or impact are derived.

Incorporation of flexible degrees of freedom into the model has

'eer, dealt with [25], and will not be included in this report. It

is irnteresti%, to note that if a flexible model is required on an

interval for which small angular rotations occur, the problem is

essentially linear arid efficient modal analysis techniques may be

employed.

Numerical examples are presented in Chapter 6 to demonstrate

efficiency and generality of the method. However, a detailed descrip-

tion of the operational and data requirements of the computer program

is not presented in this report. This information will be available
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in a theoretical and user's manual that will allow periodic update,

since much of the program is still in a developmental stage. Examples

are presented in enough detail to demonstrate the contributions of

this research. In addition, they suggest applications not found in

general purpose mechanical systems analysis programs.

The first example treated investigates dynamic pitch response

of an articulated vehicle, consisting of two tracked-vehicles that

are coupled together by an articulation joint and a hydraulic

actuator. A representative model of the mechanical vehicular system

is developed, primarily from the standard program element formula-

tion. Additional user supplied generalized forcing functions and

constraints are formulated to incorporate major contributions to

system dynamic response. An electro-mechanical-hydraulic control

system, with position and force feedback, is formulated and coupled

to the mechanical system through extensions of a standard element in

the program. This system controls relative vehicular pitch attitude

by monitoring hydraulic actuator extension rate and system pressure.

The control system differential equations and mechanical system

differential equations of motion are solved simultaneously by the

same integration algorithm. Thus, no iterative procedures or

approximations are required to obtain the coupled system dynamic

response.

A second example illustrates the pieced interval analysis

capability of the program. Recoiling dynamics of a weapon system,

subject to discontinuous and impulsive forces, impacts, and mass
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capture and release is investigated. In addition, the system con-

tains a cammed loading mechanism that affects barrel dynamics.

Logical functions are developed for this intermittent motion problem.

It is shown how various programmed actions are taken, in response to

each active logical function. For this problem, three actions in

order of complexity are:

1. Remove or add forces to the system. Restart the integra-

tion process.

2. Apply impulsive loads to the system. Perform momentum

balance to determine jump discontinuities in velocity.

Restart the integration process.

3. Impact, mass capture, or mass release occurs. Introduce

restitution equations and perform momentum balance to

determine jump discontinuities in velocity. Impose or

remove constraints for mass capture or release, respec-

tively. Restart the integration process.



16

CHAPTER 2

THE PLANAR RIGID BODY MODELING METHOD

FOR CONSTRAINED SYSTEMS

2.1 Introduction

The term "Rigid Body Systems" distinguishes the intent of the

analysis method and program developed in this chapter. Many of the

analysis programs existing today are based on the traditional notion

of "machines and mechanisms," in which the ideas of "links" and

"closed loop analysis" are embedded in the "geometry of mechanisms".

This limitation complicates an orderly approach to general constrained

dynamic system analysis.

Lagrange may have been the first to recognize the limitation

of the geometrical approach, as evidenced by the statement found in

the preface of his Mecanique Analytique [30]: "No diagrams will be

found in this work. The methods that I explain in it require neither

constructions nor geometrical or mechanical arguments, but only the

algebraic operations inherent to a regular uniform process. Those

who love Analysis will, with joy, see mechanics become a new branch

of it and will be grateful to me for thus having extended its field."

The concept of constraints in physical systems is not unlike

the concept of circuits in electrical systems. Kirchhoff stated

two basic laws that: (1 - voltage law) "The voltages with their
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proper signs, taken completely around a mesh, add up to zero", and

(2 - current law) "The currents at a node, with due regard to

direction, add up to zero." From these laws and Ohm's law, two basic

methods of circuit solution have developed as follows:

(a) the mesh method of solution, characterized by the sum-

mation of voltages around meshes, is an application of

the voltage law.

(b) the nodal method, characterized by the summation of

currents at nodes, is an application of the current law.

Loop-closure methods of mechanism analysis are analogous to

the mesh method, (a). An alternate and more direct approach, first

developed on a large scale by Orlandea [10] for general three

dimensional analysis, is based on the nodal method, (b). He called

this method "the Node - Analogous Formulation" for mechanical systems,

derived by considering that D'Alembert's Principle for forces and

Kirchhoff's law for currents are analogous. He further identified a

finite number of standard components of mechanical systems (linkages).

While his method easily allows all of the constraints associated with

linkages, there need be no connotation of linkages in its development.

The analysis method presented here is developed according to

the nodal representation, as introduced by Orlandea. Since this

method is nearly devoid of geometrical and topological concepts, it

is adapted to a broad class of mechanical systems. These systems

may range from the most complex linkage mechanisms to articulated

tracked vehicles with electro-hydraulic control systems.
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In this chapter, a general system of constrained equations of

rigid body planar motion is formulated. An implicit numerical inte-

gration method for automatically solving the system equations and

sparse matrix techniques are also discussed. Generalized coordinates

are defined to locate each individual rigid member of the system and

to express kinetic energy for each member. Constraints between

elements are taken as friction-free standard constraints, with pro-

visions for additional, non-standard constraint formulation, as

needed. In addition to standard constraints, springs, dampers, and

actuators connecting any pair of points on different bodies of the

system are included in the model. These standard force elements,

together with allowance for arbitrary non-standard forcing functions,

make the formulation quite general.

Implicit numerical integration and sparse matrix algorithms

[31, 32] were initially used in numerical integration of the

equations of motion. After considerable numerical experimentation,

it became apparent that implicit simultaneous solution of algebraic

and differential equations create artificially stiff [20] problems

and the integration of large systems of equations increases the

spectrum of frequencies with which integration algorithms must cope.

This prompted a search for new methods of solving the system equa-

tions of motion, which forms the basis of the method presented in

the following chapters. The implicit method is presented in this

chapter, for comparison purposes only. The basic constraint
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formulation and equations of motion presented in this chapter are

used as the basis for developments in the following chapters.

2.2 Constrained Equations of Planar Motion

(a) Generalized Coordinates and Energy Equations

In order to determine the configuration or state of a planar

mechanical system, it is first necessary to define generalized

coordinates that specify the location of each body in the system. As

shown in-Fig. 2.1, let the x-y coordinate system be a fixed inertial

reference frame. Define a body-fixed . - fi coordinate system

embedded in a typical body i. The location of body i is specified

by the global coordinates (xi, yi) or the vector . of the origin of

its reference frame and the angle i of rotation of the body fixed

li-axis, relative to the global x-axis.

The center of mass of body i is located by a vector r inm.
1

the body fixed coordinate system, with - components gM. and
1

7M." In terms of the ger ralized coordinates x., Yi' and etp and the
1

parameters m. and M. , the center of mass is located globally by
1 1

X mi  xi + gm. cos - m. sin Yi
1 2.

mi = Yi + !m sin i+ nm. cos i (2.1)
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Thus, the kinetic energy of body i is

T12 + .2 (2.2)Mi\. rn.1  2. .

where m. is the mass of body i and J. is its centroidal polar moment1 2.

of inertia.

(b) Equations of Constraint

Figure 2.1 further depicts an adjacent body j, with body-

fixed coordinate system located by the vector .. Let arbitrary3

points pij on body i and pji on body j be located by vectors j
-4

and r.., specified in the body fixed coordinate systems by coordi-

nates % ci. .i, and j... These points are in turn connected by

a vector r,

p 1 ij 3 j

The vector condition for a rotational joint between bodies i

and J, at points Pij and Pji' is simply r p yielding the follow-

ing pair of scaler constraint equations:

xi + ij cos 9, - ij sin 9, - xj - 9Ji cos p

+ ji sin cj =0
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Yi + ij sin c0i + Tij cos y, yj -ji sin j

- Iji cospj= 0 (2.4)

If r in Fig. 2.1 is taken as a nonzero vector of fixed lengthP

rp a "massless link" of length rp connects points pij and Pjj" A

single scalar equation for this constraint can then be written as

4 2 2Ip I- r = +x i-1 1 x - " J cos cj
11 p11- p =(x i + ij cos cpi - ij sin t i -x j CsY

+ 'ji sin yj)2 + (Yi + gij sin yi + Jij cosi

Y - 9ji sin 9 - T ji cos -2 _ r (2.5)

For a translational joint shown in Fig. 2.2, let points pil

and pi2 on body i, and points Pjl and pj2 on body j lie on some line

parallel to the path of relative motion between the two bodies, such

that the specified body fixed vectors and are of nonzero mag-

nitude. Since i and I are parallel, X. x - with zero z

component yielding the scalar equation

[(gi2 - 9.1) cos 'i - ( i2 - 'il) sin pi]

[( J2 - jl) sin cj + (Tj2 - ljl) cos
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Figure 2.2. Rigid bodies connected by a translational
joint.
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- [(J2 "jl ) Cos j - ijl ) sin Vj]

[ sin (p + ( - cos i= 0 (2.6)

Likewise, raji and are parallel, so ji ×  i yields a zero z

component and the second scalar equation

[x. + " cos n- ysni - xj il cos j+ i

(j2- 9jl ) sin cj + (ij 2 - cjl Cos tj]

- + l sin i+il cos cp. - YJ - !jl sin j - Tjl Cos C j

[(j2 " %jl) cos Yj - (TJ2 -'jl) sin Tj = 0 (2.7)

The parameters (gil' il ) and (1i2' i2 ) locate points Pil and pi2

in body i coordinate system, and (Cjl' mJl ) and (gj2' Tj2 ) locate

points Pjl and pJ2 in body j coordinate system.

Other constraints may be formulated by a similar process.

Denote by q = [ Y , y , T the vector of ganeralized coordinates

of body i and by q = [q , q , ... , q ] the composite vector of

all system generalized coordinates. In this notation, the holonomic

constraints of Equations 2.4 to 2.7 and other (perhaps time dependent)

holoiomic constraints can be written in vector function form as
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(q,t) 0 (2.8)

where (q,t) = (qt), ..., Im(q,t)]T and the functions §V,

i = 1, ..., m, are assumed to be independent, i.e., the Jacobian

/aq E [M i/ q.] has full row rank.

(c) Equations of Springs, Dampers
and Actuators

Internal forces due to other types of elements acting between

bodies may be obtained by a process similar to the constraint

equation development. For example, since springs, dampers, and

actuators shown in Fig. 2.3 generally appear together, they are

incorporated into a single set of equations. The equation for

spring-damper-actuator force is

=- + ck ()iJ + FO] ijsi (2.9)

where ij is the resultant force vector F 1 + Fy ij in thexij xij

1 -4
element, s is the vector Iii cos Ce 1 + A ij sin a J between points

ij

s and s.., k.. is an elastic spring coefficient that may depend on

generalized coordinates and time, cij is a damping coefficient that

may depend on generalized coordinates and time, L0  is the undeformed

spring length, Iij is the deformed spring length, Iij is the time

derivative of Iii, and F0  is an actuator force applied along the
ij

element that may depend upon generalized coordinates and time. The

unit vectors and I are parallel to the x and y axes, respectively.



26

TS..

x

Figure 2.5. Rigid bodies connected by a spring-damper-
actuator combination.
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(d) Conservative and Nonconservative
Generalized Forces

Contributions of forces acting on body i to the system equa-

tions of motion are determined by employing a virtual work concept.

The virtual work of externally applied forces and spring-damper-

actuator forces acting on body i is written as

8 Q (qqt) 8x + Qy(q,q,t) 6y i + Q (qqjt) 8y. (2.10)Qx~ , xi  y 8%

T1

The vector Qi [Qi Q1 , Q1] of generalized forces on body i is
X defiT e 2 T n T

thus defined and Q = I , Q I is the vector of system

generalized forces. Typical generalized forces are calculated to

illustrate the procedure. Consider here the spring-damper-actuator

element of Fig. 2.3 where point sij on body i is located by the

vector . + r . A virtual change in the location of point s.. is

given by

( + = + r 8 + 3+ r 8y i

+P + r~ 8Ci(.1ay s ij i

Forming the dot product of i with 8 ( + determines contri-

butions to the generalized force expressions for body i as
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iQx = F
Q xij

Qi S F sin 9, -sj COS i )

'Ps x ij sij i

+ Fyi YU 9sii Cos (Pi" -s'j sin y i (2.12)

Generalized force contributions are summed for all externally and

ii

internally applied forces acting on body i, to arrive at Q.

(e) System Equations of Motion

Virtual displacements 8q that are consistent with constraints

(i.e., with time fixed) satisfy

q 8q = 0 (2.13)

where § q = /bq a [ati/aqj mx3n using subscript notation for dif-

ferentiation with respect to a vector.

The variational form of Lagrange's equations of motion, with

workless constraints, is [331

+(T) -T -QT 8q 0 (2.14)

dt q q

inenlyaple-ocsatigo -oyi to ariv atI-Q
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which must hold for all 6q satisfying Equation 2.13. By Farkas'

Lemma [343, there exists a vector X E Rn of multipliers (called

Lagrange multipliers) such that

d T:T )TT

d (T) (T Q - jTq = 0 (2.15)
q q q

which with Equation 2.8 form the constrained equations of motion of

the system. For planar systems treated here, Equations 2.1 and 2.2

yield

d (Ti)T _ (Ti)T M i (qi) qi A i (q.i i (2.16)
dt A -(

q q

where

M4 0 - i + 761 cos i
)

M,0 3-MiC soi in 4pn,)

si C o + 1 co + sin 9,) 1 2 +, 2

(2.17)
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and

M. cos i - Tm sin ti)i.2

Ai = mi(, sin yi + 1 cos y, ) 
2

1 2.

0 (2.18)

1 2
Using matrix notation, M = diag(M , M, ... , M3n3 n and

JT ,-T T3nn
A = [A , A , ... , A Equation 2.15 becomes

T
M(q)q = A(q,j) + Q(q,j,t) + q (q,t)X (2.19)

Initial conditions for system motion are given as

q(t0) = q
0

4(t 0 ) = q (2.20)

0 .0 0
where q and q are consistent with constraints, i.e., q satisfier

Equation 2.8 and 0 satisfies

I q q + Ot = 0 (2.21)
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2.3 Integration of Constrained Equation
of Motion by an Implicit Method

(a) Numerical Solution of Algebraic and

Differential Equations

The method of numerically integrating differential equations

presented in this and following chapters requires that they be

reduced to first order form. This is accomplished by introducing

the vector

wzq (2.22)

into Equation 2.19 to obtain

M(q)*- A(q,w) - Q(q,w,t) T (qt)X 0 (2.23)
q

with initial conditions

q(t0 ) = 
q0

W(t0 ) = q (2.24)

where

q(qO,t 0 ) w (t0 ) + t(qO,to) 0 (2.25)
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In order to solve the differential equations of motion,

numerical integration theory is used to obtain a set of approximations

that is suitable for digital computation. Integration of the equa-

tions of motion is accomplished as a simultaneous solution of

algebraic and differential equations. Standard approaches, however,

are designed to solve systems of differential equations of the form

= f(y,t) (2.26)

where y is an m-vector variable and f is an m-vector of functions.

A modified approach is taken here that allows for the simultaneous

solution of mixed algebraic and differential equations of the form

g(yt) = 0 (2.27)

where may not appear in some of the equations. Before introducing

the method to be used, it is instructive to review the standard

approach applied to solving Equation 2.26.

The basic method of constructing approximate solutions is to

place a grid of time points t., i = 1, ..., on the interval [0,T],

where h = t i+ - t is the grid spacing. One then approximates the

Lution y(t) of Equation 2.26 at the time grid points as yi 't Y(ti) "

The basic approximating equation for stiff differential

equations [35 and 36] is the Gear algorithm
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n+l n4- ly-~

n- 0 n k n-j+l (2.28)

j=l

where the constants 0 and 0j, j=l,...,k, called Gear's coefficients,

are determined so that Equation 2.28 is exact for any polynomial

solution of Equation 2.26 of degree up to k. Gear's coefficients

[ 35 and 36] also have the property that the algorithm tends to be

stable, even for stiff differential equations; i.e., differential

equations with widely split eigenvalues.

A multistep formula that is used to solve Equation 2.27 is

derived from Equation 2.28. One progresses from tn to t n+1

solving Equation 2.28, together with

g(yn+l Y' n+l, tn+l ) = 0 (2.29)

Using the Newton formula to solve Equations 2.28 and 2.29, simul-

taneously, leads to

(in) Ay(in) + (m) .(m) 9(mn) (2.30)

(m). (m) g (m)m) gm

gy ay +g • y = -g(.0

where Ay(m) = y(mil) - y(m) and m represents the iteration number.

The time-step counter has been dropped here for notational simplicity.

Substitution of Equation 2.30 into Equation 2.28, noting that the

summation term of Equation 2.28 remains constant at each iteration,

yields the corrector formulas
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k + 1j () _(i) (2.31)

A(m) _ 1 y(i) (2.32)

In the corrector formulas of Equation 2.31, the Jacobian

matrix J is defined as

1 = g(m) + g (mn) (2.33)

If Equation 2.27 is of the form -(y)k + f(y,t) = 0, which is

the case here, then Equation 2.31 is of the form

i lP (m) +P(m)(m) + f (m) A(m) g(m) (2.34)

The iterative corrector procedure is continued at each time
step until all of the Newton differences Ay (m ) ae below a specified

tolerance level. At each iteration, y and k are updated as

y(m+l) = y(m) + Ay(m)

k(m+l) = .(m) + &k(m) k (m) 1 Ay(m)

h 0
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It is interesting to note that every element of # is obtained at each

time step, even though many elements of y may not appear in any of

the equations.

Since Gear's algorithm uses the Nordsieck vector representation,

the predicted Nordsieck vector at the present time step is obtained

by multiplying the Pascal triangle matrix times the Nordsieck vector

at the previous time step [35]. Details of convergence criteria,

error control, and procedures for this technique are discussed in

references 20, 35, and 36.

(b) Sparse Matrix Algebra

The system of nonlinear algebraic and differential equations

defined in the previous sections is loosely coupled. For two reasons,

however, no attempt is made to obtain a smaller system of equations

by reducing the number of equations through elimination of general-

ized coordinates. First, the Jacobian matrix formed by linearization

of the coupled equations and used in iterative solution by Newton's

method is sparse and can be very efficiently stored and decomposed.

Secondly, the repetitive nature of the loosely coupled equations re-

sults in compact and efficient computer routines for evaluating the

nonlinear equations and nonzero matrix entries. Recently developed

sparse matrix algorithms [37] make both of these operations prac-

tical and desirable. It has been shown [37] that is is usually

more efficient to solve large systems of sparse equations, rather

than smaller systems with a greater percentage of nonzero entries.
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Consideration of matrix sparsity is important to the speed of

computation in problems of dynamic system analysis [351. When less

than 30 of the matrix entries are nonzero, it is inefficient to

store the matrix as a two-dimensional array. Instead, the nonzero

entries are stored in compacted form. The method most commonly used

for compacting the data is to store the row and column indices of

each nonzero-valued entry in the matrix in two vectors i and J, and

its value in a third vector A. This is called "i-J" ordering and is

a method of initially storing data from a user-supplied list of

physical system elements.

Sparse matrix algorithms are most efficient when the nonzero

matrix entries are stored in an organized manner. This usually im-

plies that they are evaluated row-by-row or column-by-column. The

previously mentioned repetitive matrix evaluation scheme is defeated

by this requirement, since it usually results in the evaluation of

small submatrices located at various positions throughout the matrix.

To overcome this difficulty, a special permutation vector is generated

from the row and column vectors describing the nonzero-valued posi-

tions. As each matrix entry is generated, it is directed to a

specific location in the "A" vector by a permutation index. At

completion of the matrix evaluation, all entries are stored exactly

as if they had been evaluated in column order. A sparse matrix

decomposition algorithm is then applied to the column-ordered matrix

and the standard LU factorization [551 is accomplished. Lull pivot-

ing is not achieved, but the algorithm chooses, among the acceptable
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pivot elements, the pivot that results in a minimum number of fills

in the resulting L and U matrices. This is important for efficient

execution of the forward and backward substitution phases, since an

increased number of fills destroys the original matrix sparsity and

results in excessive computer time.
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CHAPTER 3

KINEMATIC ANALYSIS AND GENERALIZED COORDINATE

PARTITIONING FOR DIMENSION REDUCTION IN

ANALYSIS OF CONSTRAINED RIGID BODY SYSTEMS

3.1 Introduction

The impliciL meth, d of simultaneously solving systems of differ-

ential and algebraic equations of motion described in Chapter 2 is

not desirable for sevci-al reasons. Implicit methods employ iterative

techniques requiring a Jacobian matrix of the combined system of

Equations 2.8, 2.22, and 2.23. For large systems, analytical expres-

sions for derivatives of Equation 2.23 are required if program

efficiency is to be achieved. Generalized forces, possibly discon-

tinuous, may be represented by digitized data, from which it is

difficult or impossible to provide derivatives, either analytically

or numerically.

In the implicit method, the coordinates q, velocities w, and

Lagrange multipliers X of Equations 2.22 and 2.23 are treated as

state variables, which are determined iteratively by the integration

algorithm. The algorithm obtains q and w by integration, allowing

it to maintain error control and accurate prediction of these vari-

ables. The algorithm uses the same predictor for Lagrange multipliers.

Since generalized forces may be highly irregular or discontinuous,
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irregular and discontinuous joint reaction forces are reflected in

f i, lafranre multipliers. The net result is a poor prediction of

Lagrange multipliers, requiring more iterations to achieve conver-

gence (or quite often divergence) in the corrector step. A reduction

in time stepsize is then required to achieve better predicted values.

Stepsize reduction in the implicit algorithm is undesirable

since it requires more computer time and often leads to failure of

the algorithm to achieve a solution, even when extended precision

computer arithmetic is used. The reason for corrector divergence is

as follows: The time step h appears in the denominator of the
(min Euto .3 n shgt

expression multiplying the term gy in Equation 2.3, and as h gets

smaller, these terms get larger and dominate the Jacobian matrix.

The Jacobian matrix may thus become badly conditioned or singular.

A badly conditioned matrix results in erroneous Newton differences

associated with Lagrange multipliers, leading to divergence of the

corrector.

The numerical method developed in the following chapters offers

significant improvement over the implicit method of Chapter 2.

Iterations are limited to the solution of constraint equations, thus

requiring a much smaller Jacobian matrix. Since iteration only

involves predicted variables with error control, convergence is much

faster. In fact, the iteration step is frequently bypassed, because

the constraint equations are satisfied by the predicted variables.

Badly conditioned matrices, as described earlier, are avoided and

single precision computer arithmetic can be used.
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Another advantage of the proposed method is that a minimal set

of differential equations is identified by the program and solved by

an explicit integration method. This avoids a Jacobian matrix

involving derivatives of generalized forces.

3.2 System Constraints

(a) Classification of System Coordinates

The ultimate goal of this research is to develop analysis

techniques that use system constraints to improve numerical effi-

ciency and accuracy, while at the same time reducing the preprocessing

requirements of the user. To this end, an understanding of what

constitutes a constraint is essential. According to Webster [38] a

constraint is confinement; restriction; force; compulsion; or

coercion. In the tradition of mechanics, a constraint is any condi-

tion that reduces the freedom of a system. Another notion is

"something that limits motion".

In the development of Chapter 2, a system was assumed to be

composed of n rigid bodies in a plane, each with three degrees of

freedom. Algebraic constraint equations were also formulated and

reaction forces at the constraint surfaces were introduced into the

system differential equations of motion, through a vector of Lagrange

multipliers. The equations of motion and constraint equations were

solved iteratively and no account was taken of the number of system

degrees of freedom. Mathematically, this system has 3n degrees of
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freedom and the algebraic constraints/constraint reaction force

system represents a restriction on admissible movements.

The formulation of Chapter 2 treats every coordinate as inde-

pendent, hence the system has 3n generalized coordinates. A

formulation reduces the number of degrees of freedom when the alge-

braic constraints/constraint reaction force balance is used to

eliminate generalized coordinates from the system equations of motion.

Application of constraint relations to mathematically reduce the

number of degrees of freedom introduces a new problem of identifying

independent and dependent variables. If constraint equations mathe-

matically eliminate r degrees of freedom, there are (3n-r) independent

generalized coordinates and the remaining r coordinates become

dependent position coordinates. For notational purposes, let the

symbol u designate dependent variables and let v designate independent

T T Tgeneralized coordinates. With this notation, q = [u , v I .

Partitioning of q into u and v must be done in a manner that

does not degrade program efficiency or increase numerical errors. If

the partitioning were done on a random basis, there are 3n'/r!(3n-r)!

possible combinations, most of which would be mathematically unaccept-

able. Wells [393 stated, when discussing the selection of

independent coordinates for simple problems: "It is a well known

fact that certain coordinates may be more suitable than others.

Hence the quantities chosen in any particular case are those which

g ill Il
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appear to be the most advantageous for the problem in hand. The final

choice depends largely on insight and experience." This approach is

also taken in another well developed and documented planar rigid body

modelling program [13]. However, in this case, steps are taken to

circumvent some of the numerical difficulties associated with bad

choices of independent variables. When systems become large and

complex, geometrical insight and experience quite often fail and

mathematical techniques must be employed.

To the author's knowledge, the first organized method for

selection of a good, and possibly best, set of independent generalized

coordinates for large scale systems was developed by Sheth [40, 16].

Although he does not prove that the selected set is best, he does

provide numerous arguments, based on geometrical considerations and

example test problems, that indicate the set has desirable features

of a properly driven kinematic mechanism. This approach has sound

mathematical appeal and will be developed as the tool for efficient

dimension reduction of constrained systems.

(b) Iterative Solution of System
Constraint Equations

The system constraint equations developed in Chapter 2 are

written symbolically in the form

O(q,t) = 0 (3.1)
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where all equations may not be independent, but they are consistent.

That is, the Jacobian matrix q with m rows and 3n columns has row

rank 0 : r g m and r ! 3n. There are one or more nonsingular sub-

matrices of q of rank r. Gauss-Jordan reduction of the matrix Iq)

T T T
with double pivoting, defines a partitioning of q = [u , v ] such

that §u is a submatrix of q of rank r, whose columns correspond to

elements u of q, and Iv is a submatrix of §q whose columns correspond

to elements v of q. Furthermore, the matrix §u has ideal numerical

properties associated with double pivoting.

The subprogram described in Appendix A determines the rank of '

q and its linearly independent rows and columns. It performs

Gaussian elimination with row and column permutations that bring

independent rows and columns to the top and left of the matrix, until

the remaining submatrix in the lower-right corner is null (all of its

elements are less than some specified tolerance). In addition, the

matrix is decomposed into factors of the form

- and - I -
LR 0 0 , 0

which are superimposed onto the original matrix. The factor products

L. U L I UR

represent, in permuted form, the original matrix 0 ; specifically,

L.U = @u and L.UR = *v" The columns of U and UR determine a



permutation of q into dependent (u) and independent (v) variables,

respectively. The rows of L and LR determine a permutation of con-

straint equations § = 0 into independent 1 and dependent §2 equations,

respectively. In addition, the respective lower and upper triangular

matrices L and U are nonsingular.

In the following chapters it is often convenient, for clarity,

to express matrix equations in the above permuted and factored forms,

rather than in terms of the original matrix §q'

Some additional comments can be made concerning the matrix §
q

and its corresponding submatrices. First of all, 0q may be null.

That is, there may be no constraints in the system, in which case

v = q and u is null. This special case requires no further analysis

and need not be considered here.

If 0v is null there are no independent generalized coordinates

and u = q. In this case, in view of Equation 3.1, the system is

either a structure @ = O(q) or its geometry is completely determined

as a function of time, § = (qt).

If roots of Equation 3.1 are to be found, an iterative procedure

such as Newton's method is required. With an initial estimate q(O)

of the system configuration at time to, the matrix q(q(O),to) is

evaluated. The iterative equation is then

Oq[q(j),t 0] [q(j+l) - q(j)] = - §[q(J),to], J = 0,1,... (3.2)
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where j is an iteration counter. The solution of Equation 3.1

requires the determination of q(j+l) in Equation 3.2. If Equation

3.1 is consistent, there is at least one solution. If the rank is

less than 3n there are an infinite number of solutions.

Assume that the matrix has been decomposed by the subprogram

described in Appendix A. Equation 3.2 may then be written in per-

muted form, in terms of the previously mentioned matrix factors and

partitioning, as

L U [u(j+1) - u(j)] + L . uR [v(j+l) -v(j)]

[q(j),t O] (3.3)

IF U [u(j+l) - u(j)I + I • U - [v(j+l) - v(j)J

2 q(j),t
0 ]

Noting that v are independent generalized coordinates, one may set

v(j +l) = v(j) and Equation 3.3 reduces to

L U . [u(j+1) - u(j)] = - 1 (3.5)

Since matrices L and U are nonsingular and triangular, simple

forward elimination and back substitution determines u(j +1).

Equation 3.4 is not required in the intermediate steps of
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determining roots of Equation 3.1, but may be used to test for con-

sistency of constraints at the final step. That is, 1 f21l must be

less than a specified tolerance, if redundant constraints are to be

satisfied.

Kinematic analysis of constrained systems requires that bodies

move consistent with constraints. If the system is moved from posi-

tion qI at tI to a nearby position q
2 at t2, consistent with

constraints, then i(q1 t1 ) = §(q2,t2 ) = 0. If (q2 ,t2 ) is expanded

in a Taylor series about q and t one has

§(q2,t2= I(ql,tl) + t qAq + 1

+ . 0 (3.6)

where Aq = q - q1 and At =t 2 - t I . If Aq and At are small, second

and higher order terms of Equation 3.6 can be neglected, yielding a

2
linear predictor of q , of the form

Sq(q 2  ql) = - 0tAt (3.7)

Comparing Equations 3.7 and 3.2 and noting the permuted form of

Equations 3.3 and 3.4, one can express Equation 3.7 as

L - (u2 - u1) + L •UR (v2 - v) = - 1 At (3.8)
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LR •U (u2 -u1 ) + LF • U (v - v) =- t At (3.9)

Since L and U are nonsingular and with v2 and t2 specified, Equation

23.8 determines u . It is most efficient to solve Equation 3.8 in two

steps, since the matrix product L • UR is not calculated by the sub-

program. First, solve

L U - i At (3.10)t

by forward elimination and back substitution and then use the pre-

calculated matrix H to obtain

2 1 2u1 *

u -u =H.(v2  v) +u (3.11)

Equation 3.3 is then used to iteratively correct u2, to satisfy

Equation 3.1.

The matrix product L • UR of Equation 3.8 is never evaluated,

since the matrix

H U-1 . L-1 . L , UR = U-1 UI

is required in Equation 3.1. In fact all subsequent equations in-

volving the matrix L • UR ultimately require the matrix H for

solution, so for convenience, H is calculated and stored in the space

riginally occupied by UR.

I
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To avoid excessive corrector iterations, it is desirable that

Equation 3.1 predict u 2 with small error. Since Aq was assumed small

and Av is fixed, Au should be small. Gaussian elimination, using

full row and column pivoting to partition q into u and v, accomplishes

this. Equation 3.1 may be written simply as

Au = H Av + u

As noted in Appendix A, the largest matrix element is permuted to the

diagonal position at each intermediate step, when performing Gaussian

elimination with full row and column pivoting. This process tends to

maximize the magnitude of diagonal elements of U and to minimize the

-1
magnitude of elements of UP. Noting that H = - U . UR, one would

expect that the magnitude of elements in H will be substantially less

than 1 and that the magnitude of elements in Au will be substantially

less than the magnitude of elements in Av.

This argument could be strengthened if a reliable estimate for

the condition number of U, cond(U), were available. In general,

Gaussian elimination with full row and column pivoting yields well

conditioned matrices [41]. However, one can find examples in which

it does not. If cond(U) and the norm of U are known, the norm of

-l is
U Is

I Il = ond(U)/I Ilul(l12
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The norm of U is, by construction, large since the largest elements of

0q were permuted into it. If cond(U) is small (on the order of 1),

then by Equation 3.12, lU-11 I i/I lul I.

Since the elements of U dominate those in UR, it is reasonable

to expect that 1IIUI >> I URII and JIU-111 I IURII << 1, by the

assumption of a well conditioned U matrix. Finally,

IIHII = II- U -1  URII < IIU- 1 II IIJURII << 1, supports the contention

that 1 IAqj is reduced by proper selection of u and v.

3.3 Kinematic Velocity and
Acceleration Analysis

(a) Velocity Analysis

For kinematic analysis, if one specifies independent general-

ized coordinates as functions of time, independent velocities and

accelerations can also be expressed as functions of time.

The remaining dependent velocities and accelerations can then

be determined by differentiating the constraint equations with respect

to time. Differentiating Equation 3.1 with respect to time yields

q j + t 0 (3.13)

Comparing Equations 3.13 and 3.2, equations similar to Equations 3.3

and 3.4 can be expressed as

L U + • = - 1 (3.14)

nmu
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E U + L 2 (3.15)

The solution of Equation 3.14 determines i and Equation 3.15 is auto-

matically satisfied by the consistency requirement of Equation 3.4.

Similar to the method of solving Equation 3.8, first solve

L . *= - 1 (3.16)

by forward elimination and back substitution and then use the pre-

calculated matrix H to obtain

= H - + a* (3.17)

Inspection of Equation 3.17 reveals that the matrix H relates

dependent velocities to independent velocities and this matrix is

generally referred to as an influence coefficient matrix. From a

geometrical point of view, a properly driven mechanical system is one

in which the ratios of output to input velocities are minimized

[40, 16] . In addition, the system is driven with the greatest

mechanical advantage.

Recall that the method of decomposing § determined H, such
qI

that Au was reduced in Equation 3.11, hence i is also reduced in

Equation 3.17. A further advantage of minimizing velocity ratios is

that errors in independent velocities are not amplified when calcu-

lating dependent velocities. This will be important when solving the

system differential equations of motion in Chapter 4.
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(b) Acceleration Analysis

Having determined all system position and velocity variables,

one may proceed to determine dependent accelerations. Equation 3.13

may be differentiated with respect to time to obtain

q q ( )qq q + 2 qtq + =tt 0 (3.18)

For convenience, denote the three known terms in Equation 3.18

as

C(q,j,t) = (0qd)q j + 2 qt4 + tt (3.19)

and partition Equation 3.18 as

L • U • U + L U • = - C1  (3.20)

LR • U • U + LR ' UR = - C2  (3.21)

The independent generalized accelerations V are presumed known, so

Equation 3.20 determines U and Equation 3.21 is automatically satis-

fied by the consistency requirement of Equation 3.4.

Similar to Equation 3.8, Equation 3.20 is solved in two steps

L " U = - (3.22)
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by forward elimination and back substitution. Also,

U =H (3.23)

where the precalculated influence coefficient matrix H is used. Note

that errors in independent generalized accelerations V are reduced,

in calculating the dependent accelerations U, because of the small

norm of H.

3.4 Kinetostatics of

Constrained Systems

The analysis method of Section 3.2 allows one to identify an

ideal set of independent generalized coordinates, from which to drive

an arbitrary, constrained multiple-degree-of-freedom system. Kineto-

static analysis may then be applied, using the method of Section 3.3,

to determine all forces in the system, including inertial forces,

generalized joint reaction forces, and the generalized driving forces

required to achieve the specified system dynamics. One could then

envision the same system reacting to this set of generalized driving

forces. In this case, a system of differential equations of motion,

solved by the methods of Chapter 4 will determine the same dynamic

response. The first system is displacement driven, requiring speci-

fied generalized coordinates, and the second system is force driven,

requiring specified generalized forces. The two examples demonstrate

a duality between specified generalized coordinates and specified

generalized forces.
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Using the permutations of the previous sections, equations of

motion for constrained systems derived in Chapter 2 may be partitioned

into

UT • T I +UT •LT • 2 uu Mtf+Muv
U L 1X +J LR T.x =M u ~+M

- (Au + Qu) (3.24)

T T 1 T T 2 -
UR LT .X + UR . LR /J = MVU + Mv

- (Av + Qv) (3.25)

Lagrange multipliers X and X2 are associated with independent con-

1straint equations § = 0 and redundant or dependent constraint

equations 2, respectively. The multipliers X 2 are not determined by

Equations 3.24 and 3.25, but must be obtained from other methods,

such as local body deformation models that specify relations between

1 2
X and 2

Let

Fu=u L x1+ RT 2 (3.26)

and

Fv = RT L T x1+U TQ .*R T x 2 (3-27)

r. 2U,.ZN~....'
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Then, by combining Equations 3.26 and 3.27 with H = - U UR, it is

easy to show that

Fv = HT F1  (3.28)

1 2
holds for any value of X and X . Assuming that redundant constraints

are consistent, they can be eliminated without effecting the system

dynamics, which is then equivalent to setting X 2 to zero in Equations

3.24 and 3.25.

A displacement driven system with specified generalized coor-

dinates has corresponding unknown generalized forces. In this case,

let the generalized force vector Qv be composed of known Qv* and

unknown Rv forces

v V* v (329)= Q + R(-9

Generalized constraint reaction forces become

Fu = 1T LT . X = Muu + MuvV - (Au + Qu) (3.30)

and the unknown generalized driving forces become

Rv = Mv"U + Mv - (Av + Qv*) + HTFu (3.31)
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It is not necessary to evaluate X to determine the generalized con-

straint reaction forces.

Equations 3.30 and 3.31 may be made more tractable by substi-

tuting Equation 3.23 to eliminate dependent accelerations, thus

F1 = (MUUH + MUV - (Au + QU - MU'.) (3.32)

Rv = (MvuH + Mw)V - (Av + Qv* - Mvu*) + HTF u  (3.33)

If forces Fu are not desired, one may combine Equations 3.32 and 3.33

to eliminate F u , obtaining

RV = [MW + MVH + HT(Muv + MuH)jV - (Av + QV* - Mv"U*)

SHTu + Qu _ MU (3.34)

Equation 3.34 thus relates generalized driving forces Rv to specified

generalized coordinates v, where velocities and accelerations are

assumed known.

The kinetostatics problem with full consideration of all

forces in the system may now be solved. The basic steps are, pre-

suming equations and initial coordinate estimates have been given:

Step 1. Identify dependent and independent variables.

Decompose the matrix I q. using the method of Appendix A, to determine

a partitioning of q into u and v.

- ~ -- - O
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Step 2. Solve the constraint equations. Specify v and iter-

atively solve Equation 3.1, using Equation 3.5. Check consistency of

2
equations I = 0.

Step 3. Calculate system velocities. Specify -r and determine

-d from Equations 3.16 and 3.17.

Step 4. Calculate system accelerations. Specify V, evaluate

C , and determine U from Equations 3.22 and 3.23. Dependent acceler-

ations U are not required if Equations 3.32, 3.33, or 3.34 are used

in Step 5.

SteP 5. Determine generalized constraint reaction forces Fu

and system driving forces Rv. Evaluate A and Q and determine Fu from

Equation 3.32 and Rv from Equation 3.33 or Equation 3.34. Individual

constraint reaction forces are obtained by first solving

UTLT 1 = Fu

(obtained from Equation 3.26 with X' = 0) for X 1 . Note that

Fu = T l
u

and

F v =Til
v
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Each colunmn entry in a given row of T (fT) times the corresponding

row entry of KI determines the generalized constraint reaction force

contribution to the generalized coordinate associated with the given

row of 0T ( T) . Hence, one may calculate reaction forces at any con-

straint in the system.

3.5 Sparse Matrix Considerations

As noted in Chapter 2 the nodal method of constraint formula-

tion yields loosely coupled equations with a corresponding sparse

Jacobian matrix. If the system has a large number of constraints,

sparse matrix manipulation algorithms will be efficient. While the

equations derived in previous sections still apply, they may be

expressed in different forms to avoid unnecessary calculation of

sparse matrix products.

Sparse matrix algorithms that factor matrices are not suitable

for determining the partitioning of coordinates q into u and v. They

employ a partial pivoting strategy and to maintain efficiency, usually

do not select the largest pivotal elements. The matrix u so identi-

fied will have a smaller norm than the corresponding matrix identified

by full pivoting. The corresponding matrix H = - f -lv will thenu v

have a larger norm. Therefore, Gaussian elimination with full pivot-

ing is periodically applied to the full matrix representation of q

solely for the purpose of determining the ordering of q into u and v.

Once established, a matrix I is appended to q to form a modified

matrix T of rank 3n such that when q is permuted, corresponding to

q qi e I
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the permutation of q into u and Iv it is of the form
q u

_ I V

where I is an identity matrix. The matrix I is readily constructed

from the permutation vectors generated by 'he algorithm described in

Appendix A.

An algorithm employing sparse matrix techniques for a dis-

placement driven system with full consideration of inertial and

externally applied loads is given in the following steps:

Step 1. Periodically identify dependent and independent

variables by decomposing the matrix §q, using the method of Appendix

A. Construct the matrix 0q by appending the matrix I to 0q'

Step 2. If a first order prediction of dependent variables

(u ) to an adjacent position (u 2 ) is desired, append to Equation 3.7,

*q Aq I t At

the equation

2 1
AV =vV -V

which in matrix form becomes

t At 1

SqAq v 2 -v (3.35)



59

The matrix q of rank r = 3n is then factored by sparse matrixq

algorithms and Aq is determined by Equation 3.35.

S . The predicted dependent variables u are now corrected

iteratively until the constraint equations are satisfied by appending

to Equation 3.2,

1 Aq = -q

the requirement that independent variables remain fixed

AV= 0

which in matrix form becomes

qAq=[ ] (3.36)

Dependent variables are iteratively corrected until the independent

constrinats are satisfied and any dependent constraint equations are

then checked for consistency.

Step 4. Analysis of displacement driven systems requires that

independent velocities be specified. Denoting these as v , write

Equation 3.13 as

q q = -t
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and append the equations

v= vS

which in matrix form becomes

Si= (3.37)

Equation 3.37 then determines q.

Step 5. Combine Equation 3.18 and 4 = Vs to form the matrix

equation

q ] = (3.38)

where C (q, , t) is given by Equation 3.19. Solve for accelerations

SteP 6. Using Equation 2.23 and noting from Equation 3.29

that unknown generalized forces Rv associated with independent

generalized coordinates must be determined, one has

q v

which in matrix form becomes

1 T v = M- (A + Q) (7 *9)
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As noted in Section 5.4, Lagrange multipliers corresponding to

redundant constraints, arc not; determined by Equation 5.39. However,

if redundant constraints are consistent, their corresponding multi-

pliers can be set to zero. The remaining multipliers and unknown

forces Rv are then determined by Equation 3.39 and all forces in the

system are determined.

Equations 3.35 to 3.39 employ the same sparse matrix q orq

q, thus only one matrix factorization is required for each execution

of steps 2 to 6. Matrix and vector products are also indicated for

evaluation of the right hand side of Equations 3.38 and 3.39. How-

ever, these matrices are very sparse and analytical expressions are

written directly for the indicated products requiring no additional

matrix manipulation.

To maintain program efficiency the full matrix decomposition

of Step 1 should not be performed too frequently, yet often enough

to avoid numerical problems associated with nearly singular 0u

matrices. Available methods for monitoring the condition number of

Ou require more time than is required for its original determination.

Monitoring velocity ratios, however, may be an inexpensive, though

not entirely reliable, technique for determining the need for a new

matrix. Equation 5.15 may be partitioned and written as

-I

U v t ~Rnn
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To approximate the amplifying ability of 1-1 one could evaluate the

number

t

following the initial determination of u, (i = 0) and at each

successive application of the sparse matrix code (i > 0). When the

estimate of increase in matrix norm K i/K0 exceeds a specified level,

a need for a new partitioning of q is then indicated.q

II
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CHAPTER 4

CONSTRAINED EQUILIBRIUM AND DYNAMIC ANALYSIS

4.1 Introduction

In Chapter 3, differential equations of motion are developed

for a general constrained planar rigid body system. It was demon-

strated that the complete system state is determined when all

independent generalized coordinates, velocities, and acclerations

are specific functions of time. These equations, however, must be

numerically integrated when independent variables are allowed to move

under the influence of applied force. Therefore, this chapter is

devoted to development of an efficient numerical integration

algorithm utilizing kinematic properties of constraints to obtain

a minimal system of differential equations of motion.

Efficiency is achieved by minimizing the number of differential

equations to be solved, which improves numerical integration perfor-

mance. Paul [ 42 ] has indicated that the minimum number of first

order differential equations formulated by any of the existing

general purpose programs is 2 dof (degree of freedom). Only 2 dof

first order equations are required by the method described in this

chapter.
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4.2 Equilibrium Analysis

Transient, dynamic analysis of complex constrained mechanical

systems is often initiated from a position of partial or complete

equilibrium. Static equilibrium analysis is often required prior to

initiation of transient analysis of vehicular systems, because the

nonlinear characteristics of suspension elements make it difficult

to estimate equilibrium configurations. Partial equilibrium analysis

is required when one or more of the bodies in a system have no

equilibrium position or when internal forcing elements such as springs,

are to be given initial lengths differing from their equilibrium

lengths. In this case, temporary constraints are placed on or

between bodies prior to equilibrium analysis and released prior to

transient analysis.

Various methods may be employed to solve equilibrium equations.

Since they are highly nonlinear, iterative techniques are required.

One iterative technique that is often employed is Newton's method

for finding roots of nonlinear algebraic equations. Newton's method

may converge to unstable equilibrium configurations, or diverge, if

poor initial estimates of configuration are given. However, it is

easy to implement and has been used to find equilibrium of systems

with many degrees of freedom.

The implicit numerical integration method for transient

analysis of Chapter 2 requires the Jacobian matrix of the equations

of motion for solution of Equation 2.23. Noting that velocities and
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accelerations are zero for static equilibrium, Equation 2.23 expresses

equilibrium equations as

T (q, to) X + Q(q, to) = 0
q 0 0

(4.1)

(q, t) = 00

and the corresponding matrix iterative equation is

T T Aq(j)T
q q q q

- -(4.2)

q0 AX(j)

This method, requiring the simultaneous determination of q

and X, is undesirable because it involves the repetitive solution of

a large system of equations and a reasonable estimate of the vector

% must be given, since it appears in the matrix. Poor estimates of

X may lead to a badly conditioned or singular matrix in Equation 4.2

and divergence of Newton's method. For this reason, iterative

techniques that do not involve Lagrange multipliers are desirable.

In Chapter 3 a method for identifying the independent gener-

alized coordinate vector v was developed and a reduced system of

differential equations of motion, Equation 3.34, was derived. Noting
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that velocities and accelerations are zero for static equilibrium,

Equation 3.514 yields

R - H(q, t 0 )T Q(q, to)U - Q(q, t (4.3)

where

t(q, t 0 ) 0 (4.4)

The forces R must be applied to the independent or specified

coordinates vs in a displacement driven system. In an equilibrium

situation the variables v are free and the forces Rv must be zero.

A condition for static equilibrium is then

R 0 (4.5)

Equations 4.4 and 4.5 may be solved iteratively, by noting that

Rv = RV(u, v). Therefore, with du = Hdv, the iterative equation

dR v  AV == .p (14.6)
dv v u

determines the solution of Equation 4.5. The matrix in Equation 4.6

is evaluated by numerical differencing, because 1) the matrix H and
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,reneralized forces appear in Equation 4.3, 2) analytiral expressions

for their partial derivatives are difficult to obtain, and 3) the

derivatives are not required for subsequent transient analysis.

4.3 Initial Conditions

Obtaining suitable initial conditions for transient analysis

poses problems when constrained mechanical systems have many degrees

of freedom. Often one desires to specify initial conditions on

various coordinates and their first derivatives or initial conditions

on first derivatives of other coordinates. The independent variable

set identified by factoring the constraint Jacobian matrix may not

agree with the above selected variables so some initial conditions

would be changed when satisfying constraints. The method described in

Section 3.6 allows one to hold selected coordinates and velocities at

their specified values by appending temporary constraints. The only

requirement is that these constraints be consistent with other con-

straints. This method is employed below. The following seven steps

outline an algorithm for achieving suitable initial conditions, from

a starting configuration that is consistent with constraints or from

a partial or lull equilibrium configuration:
0

Step 1. Specify an initial estimate q of the constrained

system configuration. This estimate must be near the expected final

configuration to insure convergence. If static equilibrium is to be

obtained, the estimate must be near the desired equilibrium
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configuration to avoid convergence to alternate stable or unstable

0
configurations, or divergence. Set q = q

Step 2. If some elements of q are to remain fixed during

initial assembly of the constrained system or during static equilib-

rium, for example in partial equilibrium, append to Equation 4.4
0

additional algebraic constraints of the form q, - qj 0= , where j

identifies the variables to be held fixed. Other types of algebraic

relations between coordinates can also be formulated as needed. These

constraints will be removed prior to step 6.

Steo 3. Evaluate the modified constraint matrix *q (including

constraints of step 2) and factor, as described in Appendix A, to

determine a submatrix I u of maximal rank and to determine a partition-

ing of q into u and v (dependent and independent coordinates,

respectively). If q does not have full row rank, then too manyq

constraints or inconsistent constraints are specified. Therefore

some equations are dependent and they can be temporarily ignored in

the iterative procedure of Step 4.

Step 4. Keeping the independent variables v fixed, iterate

with Equation 3.5 to solve the independent constraint equations of

step 2, until 1)§11 < E, where E is a specified closure tolerance

level. If there are dependent constraint equations, check them for

violation. When dependent constraints are violated, inconsistent

constraint conditions have been specified and a meaningless solution

may result. If static equilibrium is not desired, go to step 6.
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Step 5. Determine a new estimate for v from Equation 4.6 that

reduces UIRvJJ. if lpRvfl >6, a specified force unbalance tolerance,

return to step 3. If the iteration in steps 3 to 5 diverges, either

inconsistent constraints have been imposed or initial estimates of

system configuration are in error.

.0
Step 6. Specify initial estimates for velocities q and set

.0
0= . The velocities 4 are adjusted to satisfy Equation 3.13,

0
evaluated at q from the above steps. If some elements of i are to

.0
remain fixed at q0 , append to Equation 3.13 additional equations of

.0
the form k 0 k 0, where k identifies the variables to be held

fixed. Other types of relations between velocities can also be form-

ulated as needed. These constraints will be removed prior to step 1

of transient analysis.

Step 7. Factor the modified matrix of Equation 3.13 as

described in Appe,dix A, to determine a partitioning of 4 into i and

v (not necessarily the same partitioning as in step 3). Calculate

using the above partitioning in Equations 3.16 and 3.17. If the

above matrix lacks full -ow rank, some equations are dependent and

must be checked for consistency. If dependent equations are not

satisfied, inconsistent constraints on velocity are specified and a

meaningless solution may result. Otherwise, a consistent set of

initial conditions is now available for transient analysis.

4.4 Numerical Integration of the

Equations of Motion

The reduced system of differential equations of motion,

derived in Chapter 3, were expressed in the form

*,w~m~m nmm~~m -- '-
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Rv =[M7 + M7 H + H'(Muv + M u H) N- (Av +Q -M U*)

_ HT(AU +QU Muu u*) (47)

Noting that the independent variables v are free, the driving forces

Rv are zero in Equation 4.7. Therefore Equation 4.7 can be written

as

[M + HTMUV + (M + HTMU)H]V = Av + Q + HT(A +Qu)

(vu + HTuu) (4.8)

In order to integrate Equation 4.8, it is helpful to write it

in first order form. To do this, define the vector s of independL I
velocities as

= s (4.9)

and write the total vector 4 of generalized velocities in terms of

s, using Equations 3.16 and 3.17, as

v~) +(s u (4.10)

where L • U • u - • With this notation Equation 3.19 becomes a

function of w,

.4.
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= qw + 2 qt w+

Equation 5.22 is used to evaluate u , and Equation 4.8 becomes

[M' + HTMuv + (MVU + HTMuu)HA = AV + QV + HT(Au + Qu)

(Mv u + HTMuu){ (4.11)

Decomposing the above mass matrix as described in Appendix A, one

may solve Equation 4.11 for . Equations 4.9 and 4.11 now form a

system of 6n - 2r = 2 dof first order ordinary differential equations

where n is the number of bodies in the system and r is the number of

dependent variables in u.

The selection of numerical integration algorithms for dynamic

analysis should be based on the type of differential equations to be

solved. Since most mechanical systems are non-stiff, an explicit/

implicit-predictor/corrector method may be employed [ 28 ]. Pre-

dictor/corrector algorithms require fewer function evaluations than

Punga-Kutta methods and allow interpolation between solutions with no

additional function evaluations. This is important, since the com-

putational overhead in evaluating the reduced system of differential

equations is significant. The explicit/implicit-predictor/corrector

algorithm DE/STEP, INTRP [ 28 ] is used, since it is well developed

and easy to adapt to the equation requirements. In addition, the
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integration algorithm DE estimates relative stiffness and terminates

execution if the system becomes too stiff.

A numerical integration algorithm based on the development in

previous sections and the explicit integration method is now pre-

sented. The following steps outline the numerical integration

algorithm.

Let i, initially 0, be an indicator for the current time step;

i.e., i = 0 implies t = t . Steps 1 to 5 are satisfied when start-

ing, from results of the preceding algorithm, so start with step 6.

SteP 1. Check HjiIj < c. If satisfied, the extrapolated

dependent variables u are satisfactory, therefore go to step 4.

A polynomial extrapolator is maintained for u by the integra-

tion algorithm at little additional overhead. The term extrapolator

is used rather than predictor, because the program does not maintain

full error control on the variables u. Since this extrapolator may

be of any order up to 12, the constraints (u, v, t) will usually

satisfy the above closure test, thus avoiding the following steps 2

and 3. In addition the partitioning of q into sets u and v depends

upon q and t because q is a function of q and t. Since the extra-

polator for u and the predictor for v have the same form, it is not

necessary to interrupt the integration process to account for dif-

ferent sets u and v. Error control within the integration algorithm

is maintained only on v since steps 1 to 3 are equivalent to main-

taining error control on u.
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Step 2. Evaluate q and perform L-U factorization to determine
q

u'l V' H and the partitioning of q into u and v.

Step 3. Iterate to determine u, using Equation 3.5, until

Step 4. Evaluate t , factor, and calculate d from Equations

3.16 and 3.17.

The partitioning of j into A and s E 4 depends upon q and t,

because is a function of q and t. Since all elements of 4 areq

candidates for s, a polynomial extrapolator for -a and a predicator

for s are maintained by the numerical integration algorithm, with

error control only on s. This facilitates smooth transition of

elements of q into and out of s within the integration algorithm,

with no interruption of the integration process. Error control

within the integration algorithm is maintained only on s since

Equations 3.16 and 3.17 are equivalent to maintaining error control

on U.

Step 5. Calculate from Equation 4.11.

If required, calculate U from Equations 3.22 and 3.23, ard k

T T T
from Equation 3.30, where j = [-d , s ] and V = s. These calcula-

tions are not required for the integration steps that follow, however

U may be used to improve the extrapolator of -a [28].

Step 6. Using the numerical integration PECE algorithm [28],

predict q and 4 at the (i + 1)st time step. That is, predict vi+l

i+l i+l .i+l
and s and extrapolate u and u

Step 7. Execute steps 1 to 5 to evaluate , 4, , and U.
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Step 8. Using -d, , , and U from step 7, correct u, v, s,

and u.

Correcting u and A is done only to improve the extrapolators

of u and -d for the next step which reduces predictor error if

elements of u and ,. are subsequently picked up by v and s at the next

step.

Step . Estimate integration error on v and s. Adjust the

current time step and integration order to suit integration error

requirements. If integration error is too large, go back to step 6,

otherwise, step 10.

Step 10. Execute steps 1 to 5 again to obtain updated values

for , q, and k and report the solution if at or past the desired

reporting times. Increment i and return to step 6 or stop, if the

final time is reached.

4.5 Sparse Matrix Considerations

(a) Initial Conditions

As noted in Chapter 2 the nodal method of constraint formula-

tion yields loosely coupled equations, with a corresponding sparse

Jacobian matrix. If the system has a large number of constraints,

sparse matrix manipulation algorithms will be efficient. The various

equations in Chapters 3 and 4 can be expressed in different forms to

avoid unnecessary calculati' of sparse matrix products. The pro-

cedure for establishing initial conditions, similar to Section 4.3,

is described in the following steps:
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0
Step 1. Specify an initial estimate q of the constrained

system configuration. This estimate nust be near the expected final

configuration to insure convergence. If static equilibrium is to be

obtained, the estimate must be near the desired equilibrium config-

uration to avoid convergence to alternate stable or unstable

0
configurations, or divergence. Set q = q .

Step 2. If some elements of q are to remain fixed during

initial assembly of the constrained system or static equilibrium,

append to Equation 4.4, additional algebraic constraints of the form

0
qj - q. = 0, where j identifies the variables to be held fixed.

Other types of algebraic relations between coordinates can also be

formulated, as needed. These constraints will be removed prior to

step 6.

Step 3. Evaluate q(q) (including constraints of step 2) and
qI

factor, as described in Appendix A, to determine a submatrix Iu of

maximal rank and to determine a partitioning of q into u and v

(dependent and independent sets, respectively). If q does not have

full row rank then too many constraints or inconsistent constraints

are specified. Therefore, some equations are dependent and they

can be temporarily ignored in the iterative procedure of step 4. A

matrix F of rank 3n is constructed by appending the matrix f to §q,

as done in Section 3.5. The matrix 7 has l's in columns corresponding

to elements v of q. This matrix is then factored using sparse matrix

algorithms.
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Step 4. Iterate using Equation 3.36 to solve the independent

constraint equations of step 2, until JI 11 < e, where c is a spec-

ified closure tolerance level. If there are dependent constraint

equations, check them for violation. When dependent constraints are

violated, inconsistent constraint conditions have been specified and

a meaningless solution may result. If static equilibrium is not

desired, go to step 6.

Ste . Determine a new estimate for v that reduces j IRVJ.
From Equation 3.39 expressed as

i qT[RV] = -

evaluate Rv and bJ numerical differencing evaluate dRV/dv. Using

the method of Appendix A, factor the above matrix dRV/dv and solve

the equation

dR v .A-- Av= - Rv

dv

for Av. If J RVI > 8, a specified force unbalance tolerance, return

to step 3. If the iteration in steps 3 to 5 diverges, either incon-

sistent constraints have been imposed or initial estimates of system

configuration are in error.

.0Steq 6. Specify initial estimates for velocities q and set

q .Oq The velocities 4 are adjusted to satisfy Equation 3.13,
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evaluated at q from the above steps. If some elements of 4 are to

.0
remain fixed at qj , append to Equation 3.13 additional equations of

.0
the form qk 'k = 0, where k identifies the variables held fixed.

Other constraint relations between velocities can be formulated as

needed. These constraints will be removed prior to step 1 of tran-

sient analysis.

Step 7. Factor the modified matrix of Equation 3.13 as

described in Appendix A to determine a partitioning of 4 into A and

(not necessarily the same partitioning as in step 3). Append to

0
Equation 3.13 additional equations of the form r - V 0 to form

+ j-t = 0. This is equivalent to appending a matrix I to §q

with l's in columns corresponding to elements ' of q. Factor q asq

in step 3. Calculate i using the above partitioning in Equation 3.39.

If the above matrix lacks full row rank, some equations are dependent

and must be checked for consistency. If dependent equations are not

satisfied, inconsistent constraints on velocity are specified and a

meaningless solution may result. Otherwise a consistent set of

initial conditions is now available for transient analysis.

(b) Numerical Integration of the
Equations of Motion

The steps in Section 4.4, modified to incorporate sparse

matrix techniques, are as follows (See Section 4.4 for additional

comments):

Let i, initially 0, be an indicator for the current time step;

i.e., i = 0 implies t = t . Steps 1 to 5 are satisfied when starting
f0
from results of the preceding algorithm.
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Step 1. Check I < E. If satisfied, the extrapolated

dependent variables u are satisfactory, so go to step 4.

Step 2. Periodically evaluate 0q and perform L-U factoriza-

tion to determine the partitioning of q into u and v. Append to

Equation 4.4 additional equations of the form v - vp = 0 to form

= 0 where vp are the predicted independent variables. Factor the

matrix §q using sparse matrix algorithms and go to step 3.

Step 3. Iterate to determine u, using Equation 3.36, until

<.

SteP 4. Evaluate 0 q, factor and calculate j from Equation

T T T
3.37. Noting that = [:' , s I , this step is equivalent to evalu-

ating the differential equations v = s.

Step 5. Combine Equations 2.19, 3.18, and 3.19 in matrix

form as

M O +Q

0q 0 C

This sparse matrix is factored, using sparse matrix algorithms, and

the accelerations and Lagrange multipliers are determined. Since

= jT , TT this step is equivalent to evaluating the differential

equations for s.

Step 6. Using the numerical integration PECE algorithm, pre-

dict q and j at the (i + 1) s t time step. That is, predict vi +l and

i+l i+l I+Is and extrapolate u and
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Step 7. Execute steps 1 to 5 to evaluate A, , , and U.

Step 8. Using ii, , 1, and U from step 7, correct u, v, s,

and .

Step 9. Estimate integration error on v and s. Adjust the

current time step and integration order to suit integration error

requirements. If integration error is too large, go back to step 6,

otherwise, step 10.

Step 10. Execute steps 1 to 5 again to obtain updated values

for , c, and X, report the solution if at or past the desired

reporting times. Increment i and return to step 6 or stop, if the

final time is reached.

Em
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CHAPTER 5

PIECED INTERVAL ANALYSIS

5.1 Introduction

Dynamic systems characterized by one or more events of short

duration, relativc to total system response time, that have signifi-

cant effect on the state are analyzed. Apart from these events, the

system response is smooth. Numerical integration algorithms that

descretize the time domain may miss events such as impulsive loads

or may search inefficiently for abrupt state transition regions. As

transition regions approach distinct event "logical times", discon-

tinuities occur and the algorithms will fail to find a solution. The

alternative is to sense logical times and handle each in the most

efficient and accurate manner possible.

Pieced interval analysis implies division of the time domain

into discrete intervals or stages. Stages may represent discon-

tinuous logical events of zero time duration, such as momentum

balance, continuous abrupt transition regions of short time duration,

or long smooth regions. Each stage may require a different set of

state equations, initial conditions, and analysis technique.

The points in time that separate stages are called logical

times. They are determined by the occurance of well-defined events.
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Since these logical times are usually functions of the system state,

it may be impossible to specify them in advance. At best, one may

write logical functions of the state that analytically define the

occurance of important events. From these events the corresponding

logical times are obtained. A logical events monitor built into the

numerical integration algorithm is most effective in locating events

and obtaining solutions at the logical times.

Associated with the logical events monitor, hence logical

times, is user selectable programmed control logic that controls the

analysis in the following stage(s). Actions taken depend upon the

characteristics of each given problem and the type of analysis per-

formed within each stage. Such actions may be as simple as imposing

limits on integration time stepsize or relaxing error tolerances

during short duration events, such as impulsive loading, or they may F
be as extensive as obtaining new initial conditions through momentum

balance, redefining the system by adding or deleting bodies and con-

straints, selecting the most appropriate integration algorithm, and

restarting the integration process.

An important application of pieced interval analysis arrises

when dynamic analysis techniques are used in conjunction with design

sensitivity analysis and optimal design algorithms. The basic

optimal design problem with fixed starting and terminal end points,

no state discontinuities, and no intermediate constraints is readily

solved by existing techniques [ 34]. Design sensitivity analysis
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and optimization of problems with discontinuities at logical times

requires that one relax these restrictions and allow for variation

in logical times and discontinuities that occur there. Such methods

have been used for small scale problems [43 ]. The objective here

is to extend and apply these methods to large scale systems with

automated equation generation and solution.

5.2 Logical Events Monitor for

Pieced Interval Analysis

Logical events, defining predictable points in time and state,

are employed to facilitate efficient and orderly analysis of complex

dynamic mechanical systems. Boundaries (marked by logical events)

of successive stages in analysis often must be located before they

are encountered in order to avoid numerical difficulties associated

with the prediction of system state variables through abrupt or

discontinuous transition regions. Therefore a "logical events

monitor" is developed that utilizes the polynomial predictor of the

numerical integration algorithm, to solve for logical times before

predicting system state variables. Having identified one or more

logical times, the monitor forces a solution precisely at the first

such time, interrupts execution, and returns control to the user or

user supplied subroutines for further action.

To define the boundaries of successive stages in the analysis

of a mechanical system, a set of logical times ti, i = 1,..., k", is

defined by equations
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= - (q, 4, t) - 0, j 1,..., m' (5.1)

The ordering of logical times is defined by the dynamical system

state and time.

To utilize the polynomial predictor of the numerical integra-

tion algorithm, Equation 5.1 is differentiated with respect to time

=j  q + ' 4 l,. ., (5.2)q q

and integrated along with the system equations of motion. This

allows freedom in the selection of integration algorithms, because

the form of predictor is not involved in the formulation of Equation

5.2. Polynomial predictors use past history of state variables or

their derivatives to extrapolate or predict them ahead in time. The 7
logical variables J are thus predicted ahead in time before the

system state variables are predicted. If one or more logical vari-

ables should pass through zero, corresponding logical times have been

passed. Each logical time is then found by solving for the zero of

its corresponding polynomial predictor. The event corresponding to

the smallest time step is thus chosen and becomes the point in time

at which a solution is forced. If no logical variable passes through

zero in a given time step, the integration algorithm proceeds as

usual.

The success of this method relies on locating the zero crossing

of each logical variable J, and on determining a reduced stepsize
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that forces a solution at the associated logical time. It is expected

that logical functions are smooth enough so that no more than two

zero crossings occur within any time step. It is possible, for

example, when a logical function defines the starting and ending

times of a very short impulse, that a logical function passes through

zero twice within a single time step. Each zero crossing must be

located in succession for the algorithms to work properly.

Presume that the integration algorithm has successfully

reached time station t and the jth logical variable has the valuen

AJ- and time derivative s j . The logical variable 1i and slope s aren n n n

predicted to time station t as L and s n Figure 5.1 illus-
n+l n+l n+l*

trates various possible combinations of j- and sj . First, if

n . n+l > 0 and s sl > 0 there are no zero crossings. Second,
n ~ln n+l

if 1J • I > 0 and s . s < 0, there are either no, one, or two
n n+l n n+l

zero crossings. Third, if J < 0 and s si is positive
n n+l n n+l

or negative there is one zero crossing. Case 1 requires no further

action. Case 2 requires interval reduction until either case 1 or

case 3 is achieved. Case 3 requires finding the zero crossing of 1J

and taking necessary action according to the programmed logic assoc-

iated with that event.

Finding the time step corresponding to the zero crossing of

IJ requires finding a root of a k t h order polynomial, where k is the

order of the predictor employed in the numerical integration

algorithm. The form of this polynomial depends on the integration

algoritbm's internal representation of the system state history. Two

m s m m m.•1 ~ m mmm mmm mm
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methods are employed in many predictor-corrector integration algor-

ithms: 1) a Nordsieck vector representation, which stores k deriva-

tives of the state variables at time station tn [ 44 ], and 2) a
th

divided difference table, based on the t and previous k values ofn

the state variables [ 45]. Root finding techniques for each method

are straight forward and will not be elaborated upon here.

5.3 Intermittant Motion in Constrained Systems

The phrases "discontinuous forces", "impulsive loads", and

"discontinuous motion" appear often in the literature. In a micro-

mechanics sense, such phenomena do not exist. However, to an

observer who is interested in the dynamic response of systems over

long periods of time, the idea of "discontinuous" or "impulsive"

may be quite satisfactory. On the other hand, an observer interested

in system dynamic response over short periods of time, specifically

during significant events, will treat them in a continuous manner.

Discontinuous and impulsive are thus labels that may be placed on

continuous events, which in a macro-mechanics sense are effectively

represented as discontinuous or impulsive in the observer's time

frame. This illustrates the desirability of pieced interval analysis

for certain applications, where entirely different mathematical

models (and possibly analysis techniques) may be employed during

different intervals of system motion.

In this section momentum balance equations are developed from

Lagrange's equations of motion, assuming that discontinuous external

forces or impulses are applied to a constrained system. The equations
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are initially written for the case in which these events occur in a

finite amount of time. It is assumed that the time interval -, 'r2)

is small enough that the system configuration does not change

appreciably, that is, q(T2) (q(T). In addition, the constraints

in Equation 3.1 are continuous fur, ,ions of q and t.

I I I
T1 ti T2

Figure 5.2. Event interval

Let t° be a point in time at which a "violent event" occurs,

which is to be approximated by a discontinuity. In reality, the

event occurs over a time interval T < t i < T2Y as shown in Figure

5.2, and behavior is smooth except possibly at t. Integrate

Equation 4.8 to obtain

T 2 [m w + H T Mu v + (M vu + HT M UU)HIV dt
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f [A + Q' + HT(AU + Qu)

-(M v u + HTMUU)'*]dt (5.3)

Since H is differentiable, integration by parts and using the

mean value theorem gives

T 2

[Mw + HTMuv + (Mvu + HTMuu)H] I
T

v2 d [Mvv + HTev + (kvu + HTMuu)Hj-

+ Av + H TAu _ (Mvu + HTMuu)'U*]dt

r Qv dt + TfQu dt (5.4)

T1 1

Where H is a matrix whose elements are those of H evaluated at points

in (TI 1'2).

Treating Q as impulsive at t, the integrals of generalized

force are "generalized impulse",

p Qvdt and Pu = 2 Q Udt

T
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Taking the limit in Equation 5.4 as T 4 ti and -2 4 ti' noting from

Equations 3.19 and 3.22 that U is bounded so A + H A - (Mvu

+ HTMUU )U* is bounded, yields the "impulse momentum" equation at t.1

as

M + HTMu v + (Mvu + HT M UU)HI [(ti+) - -(ti-)]

=pV + H TP u (5.5)

This prescribes the velocity jump in v due to impulsively applied

loads.

It is important to note that Equation 5.5 involves impulse

and momentum of all elements of the mechanical system. This is

crucial, since the bodies making up the system interact through con-

straints, so an impulse-momentum balance relation involving only the

bodies on which the impulsive force acts is impossible. Deriving the

relation of Equation 5.5 by manual calculation would be extremely

difficult and time consuming. One of the strongest points of the

method presented here is the automatic assembly of the coefficient

matrices of Equation 5.5.

i

(+f(t)

j

Figure 5.3. Impacting bodies
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For impact of bodies i and J, as shown in Figure 5.3, a
coefficient of restitution e provides the relative velocity relation

in direction i7 (where !T is taken as a row vector) as

[ (ti +) qJ(ti+)J = " e- [4 (t-) - (t.)] (5.6)
Ti 3n i

or with NTE R~ , u N , NV . Equation 5.6 may be written

Nv v(ti+) + NU i(ti+) =- e Nv  + Nu .
1 N (ti-) N u(ti~)

or using Equation 3.17, this is

[NV + NU H (ti+) + Nu  *

= - e [NV + Nu (ti-)-e Nu u*(t -)(57)

Equation 3.16 implies that u* is a function only of q and t and con-
straints are continuously differentiable in q and t. Therefore,

(ti+ )  A(ti- ) and Equation 5.7 reduces to

[Nv + NU H] 4(t.+) = - e [Nv + Nu H] i(ti-)

(e + ()Nu (t)8)
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The generalized impulse of the force f(t) in Figure 5.3 is

t i+
P f(t)NTdt = pNT (5.9)

where

t.+E

p J ff(t)dt (5.10)
t.-C

T T
Defiingthe partitioning P"pV N p

Defining pNv  and P pN , Equation 5.3 gives

[M' + HTMuv + (vu + HTMuu)H][,(ti + ) -(t -)A

T T
=p [Nv + HTN ] (5.11)

The above equations are put into matrix form for solution as

follows. Subtract the identity

[Nv + NUH] (ti-) = [NV + NuH] -(ti-)

from Equation 5.8 and define

A-i = - (ti+) - (ti-) (5 12)
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The matrix equation thus becomes

[jv + HM + (vu +HTMuu)H (NV + H * [:: I
(N Nu H)0

~0

+ l) (Nv + Nu H)(ti-) + Nu i* (t1-) 1  (5.13)

whose solution yields the desired velocity jumps and magnitude of

impulse at the body surfaces.

5.4 Pieced Interval Computational Algorithm

The development in this and previous chapters is combined into

a general pieced interval analysis algorithm. In the discussion to

follow, for notational convenience, assume that logical variable

J identifies ti, the end of the ith stage. Associated with ji is a

set of system state equations for the (i + 1)st stage (which may be

dynamic equations of motion or momentum balance equations). In

addition, a different set of constraint equations 0i+l (which may

include boundary constraints .n velocity) may be used at this stage.

i+l
A different set of logical functions 0? , compatible with the above

constraint and state equations, may also be introduced.
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Prior to implementing the algorithm, 
it is assumed that all

possible system events have been anticipated and appropriate logical

event predictors and corresponding constraint and state equations

have been formulated. Knowledge of the sequence of events is unneces-

sary, unless this knowledge can be used to reduce the complexity of

equation formulation. Further, it is assumed that no event takes

place prior to achieving the initial static equilibrium configuration

or appropriate initial conditions at time t = to.

The computational algorithm is as follows:

Step 1. Obtain initial conditions consistent with constraints,

using the algorithm of Section 4.3.

Step 2. Select the appropriate set of state equations, con-

straints, logical functions, etc., based on the current active logical

events monitor flag or continue with previous equations.

Step 5. If a momentum balance is required, solve for velocity

jumps as in Section 5.3 and return to Step 2.

Step 4. Using the techniques described in Section 5.2 check

for active logical variables (one or more 2J passing through zero) in

the next time step to be attempted by the numerical integration

algorithm. Solve for time steps corresponding to the zeros of poly-

nomial predictors of active tJ (if any), set the integration time

step to the smallest step (first occurring 1J) and set the corres-

ponding logical events monitor flag. Advance the solution to this

point in time by executing Step 5.
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Step 5. Perform dynamic analysis using the algorithm described

in Section 4.4. If the solution is advanced by the above time step

return to Step 2, unless the end of the simulation interval is

reached, in which case stop. If a smaller time step is taken to

meet integration error requirements, reset the logical events moni-

tor flag (since the event has not yet been reached) and return to

Step 2.

5.5 Sparse Matrix Considerations

To maintain program efficiency when mechanical systems become

large, sparse matrix algorithms should be employed and matrix

products avoided. The methods of sparse matrix computations described

in previous chapters will replace the corresponding full matrix

operations in the algorithm of Section 5.4. It is possible to show

that Equation 5.13 can be expressed in a form suitable for sparse

matrix computations by first writing it in permuted form as

Mum Muv nT NT Ai
M uu M uV vu Tv

vu M T NV

Ou 0V 0 0 -Nu Nv

N NV 0 - p
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0

0

n

[ ],U NV

e ' (ti-) + N' (ti-)3 (5.14)
1 L

where . is a vector of Lagrange multipliers. This equation is

equivale'i to the unpermuted matrix equation

T NT .
M I q Aq

0 0
q

N 0 0 -p

0

= 0

-fe + 1)[N 4(ti-)) (5.15)

To show the equivalence between Equation 5.13 and 5.14 carry out

the matrix products in Equation 5.14

T
Ai + M - Nu p= 0 (5.16)

..- -------
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Mv u Av + i - v x - Nv Tp = 0 (5.17)

=u Ai +  0v i = 0 (5.18)

Nu A + NV (e + 1[Nu u(ti') + Nv v(ti-)1 (5.19)

Since

Ou Aui(t i " + § v i(t i-) + @t(t i" = 0 P

Ou A, (ti+) + 0v i(ti+) + t (ti+) = 0 P

and

§ t(ti-) = t(t i+ )

then

uUI(ti+) - ui(ti-)) + Iv1ti(ti+) - 'i(ti-)] : 0

and Equation 5.18 is satisfied. Equation 5.18 also implies that

Ai = -u1 Ai =H A i  (5.20)

i v



T

Equation 5.19 is simply the second equation of Equation 5.13

where Equations 3.17 and 5.20 are employed.

Since u T is nonsingular in Equation 5.16, solve for Z and

substitute into Equation 5.17, thus

Mvu  . Mw A~ i + T u-T . u i _ v .
+ v i

T T
+ Nu p) - Nv p 0

Combining terms and using Equation 5.20 yields

T HT

fM + HTMu v + (Mv u + HTM )HA V- (Nv  +H )p = 0

which is the first equation of Equation 5.13. Equation 5.15 is thus

solved to determine changes in velocity due to impact between bodies.
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CHAPTER 6

NUMERICAL EXAMPLES

6.1 Introduction

Numerical examples are presented to demonstrate generality

and improved program efficiency, resulting from the analytical methods

developed in previous chapters. Generality is demonstrated by the

ease of representing models of complex dynamic mechanical systems.

Efficiency is demonstrated by contrasting computer simulation times

for the various solution methods.

The analytical methods developed In Chapters 3 and 4 demon-

strate the greatest improvement in program efficiency when mechanical

systems are heavily constrained. The integration algorithm of

Chapter 2 iteratively solves (6n + r) differential and algebraic

equations, whereas the algorithm of Chapter 4 solves 6n - 2r dif-

ferential equations; n being the number of system rigid bodies and

r the number of independent algebraic constraint equations. Defining

system degree of freedom as

dof = 3n - r

the ratio of number of equations for the two methods is
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(6n - 2r)/(6n + r) = (2 dof)/(9n - dof)

For systems with many bodies and a few degrees of freedom, this ratio

is small.

The three degree-of-freedom link gear multiplier consisting

of twelve bodies, shown in Figure 6.1, has an equation ratio of

0.057. The one degree-of-freedom Peaucellier Lipkin mechanism in

Figure 6.2 consists of 8 bodies and has an equation ratio of 0.028.

A significant reduction in matrix and numerical integration opera-

tions is expected. Increased efficiency also results from the use

of single precision computer arithmetic, reduced number of corrector

iterations, and larger time step sizes.

Operations count for solution of sparse matrix problems is

of the order N. where N is the matrix dimension [46 1. The ratio

[(3n)/(9n - dof)]1.6 is a rough estimate of the reduction in opera-

tions count. When dof << 3n this ratio approaches 3( 1.6) = 0.17.

As dof -+ 3n the modified constraint matrix (see Equation 3.36)

corresponding to the numerator of this ratio approaches an identity

matrix, requiring substantially less than (3n)1 .6 operations. More

than a 10 to 1 reduction in simulation time for the above mechanical

system simulations was observed.

As the equation ratio increases, one expects less gain in

program efficiency. For example, the mechanical system described

in the next section, consisting of 12 bodies with 24 degrees of

freedom, has an equation ratio of .596 and a corresponding 4 to 1
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Figure 6.1. Link gear multiplier.



Figure 6.2. Peaucellier Lipin mechanism.
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reduction in execution time. Note that the above equation ratio for

both methods includes 5 additional differential equations that

describe control system dynamics. Another mechanical system (not

presented in this report) consisting of 8 bodies and 13 degrees

of freedom, has an equation ratio of .44 and a corresponding 7 to 1

reduction in execution time [21]. Matrix operation counts also

play important roles in reduction of computer time.

6.2 Two Articulated Army M-113
Armored Personnel Carriers

(a) Vehicle Pitch Position and

orce Feedback Control

A research test vehicle shown in Figure 6.3 was built by the

Army for the purpose of investigating off-road performance of

articulated tracked vehicles [47, 48]. This vehicle is selected

for simulation here, because most of its parameters are known, some

field test data is available for comparison purposes, and its pitch

articulation (while negotiating terrain and obstacles) can be

adequately represented by a planar model.

The test vehicle consists of two identical M-113 Army armored

personnel carriers, coupled together by a spherical ball socket that

allows relative vehicle pitch, yaw, and roll. This connection is

located close to the rear of the front vehicle, to give the rear

vehicle an increased moment arm, thus allowing it to remain nearly

horizontal as the front vehicle is elevated. This allows the

articulated vehicle to negotiate step obstacles up to 5 feet in height.
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Relative pitch and yaw motion; of the ::ystem is controll,i by

two hydraulic cylinders acting between the veiclo.m a!- :;ho!

Figure 6.3. Yaw motion occurc when one cylinder ex ten&. an, th,

other simultaneously contracts. Yaw will not be considercd ii this

investigation. Therefore, equal actuator lengths, thu. -quQ u-

ator exter~ion and contraction rates, will be assumed. The hy.rauli,

control system is capable of maintaining equal actuator extensin

rates, while negotiatinq various obstacles.

Relative pitch and yaw can be controlled by the vehicle

operator, via a control stick. If the stick is pushed to the right

or left, the front vehicle yaws to the right or left, respectively.

If the stick is pulled back or pushed forward, the front vehicle

pitches up or down, respectively. Combinations of stick movemnents

yield general yaw and pitch motions. It is assumed that only pitch

command signals are given in the following planar simulations.

For the operator to relate control stick displacement to

relative vehicular pitch displacement, a proportional control is

required. That is, pulling the stick halfway back causes the vehicle

to pitch up to 50 of its maximum allowed displacement, etc. Pro-

portional control is provided through positional feedback to the

control system by monitoring the hydraulic actuator extension or

contraction. Proportional yaw control is obtained by a similar

process.

Typical operator actions for negotiating a terrain obstacle

might be as follows: To negotiate an obstacle pull the stick back
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fax enough such that the front unit can mount the obstacle. Gradu-

ally drive forward while adjusting stick position so that the vehicle

maintains maximum conformity to the terrain and obstacle. This

technique generally gives the smoothest ride and better vehicle

traction and control. However, the operator must uontinually observe

the vehicle's position relative to terrain, in order to make these

adjustments. This requirement may limit his ability to perform other

tasks.

Maximum terrain conformity is achieved if the hydraulic

actuators are removed from the vehicles. Since this isn't possible,

the alternative is to maintain zero pressure within the actuators.

This is accomplished by providing force feedback from the hydraulic

actuators to the operator, via the control stick.

Suppose the operator pulls back on the control stick and the

vehicle begins to pitch up. Pressure builds up in the rod end of

the cylinder and a voltage from a pressure transducer is generated.

This signal is amplified and applied to an electro-mechanical device

that pulls forward on the control stick, thus increasing its resist-

ance to the operator's applied force. This gives him a feel for the

pressure within the hydraulic actuator. He has simply to move the

control stick in the direction it wants to go. In fact, he may

remove his hand and the control stick will automatically position

itself for minimum pressure and best terrain conformity. Therefore,

force feedback allows the operator to devote more of his attention

to other duties.
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The control system cannot respond to system pressure changes

instantaneously, because of inertia and hydraulic system compliance.

Thus, at best, it can only maintain a zero average pressure over some

time interval when the vehicles experience rapid relative pitch

displacements. In fact, pressure transients may become quite high,

as evidenced in results of simulations. A complete description of

the electro-mechanical-hydraulic control system model is given,

following a description of the vehicular system model.

(b) Elements of the Articulated

Vehicle Mechanical Model

The primary components of an M113 APC are the chassis and ten

roadwheels, five per side. The roadwheels are connected to the

chassis by roadarms that are rigidly attached to torsion bars that

provide chassis suspension. Each vehicle has two front drive and

two rear idler sprockets. Segmented tracks, as shown in Figure 6.3,

pass beneath the roadwheels and around the sprockets to form contin-

uous loops. Power is transferred from the engine to drive sprocket

and then to track that propels the vehicle. The roadwheels simply

roll along the inner track surfaces. Shock absorbers provide damping

in the front and rear suspensions.

A representative planar model is established from the above

description. It is cost prohibitive to establish a model that

minutely simulates the actual system. Therefore, various simpli-

fications can be made where minor effects are ignored. Since motio!1

in a plane is considered, model symmetry is employed to reduce
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problem size. It is supposed that opposing roadwheels experience

equal displacements, hence can be combined into single bodies having

double mass and rotational inertia. Suspension stiffness and damping,

track properties, etc., are doubled.

Track dynamics is not being studied here, so the mass and

rotational inertia of the track segments beneath roadwheels is equally

distributed among them. That part of the track supported by the

chassis is lumped with the chassis mass and moment of inertia. Track

supportive effects on chassis and roadwheels are significant and will

be included in the model.

An outline drawing of the nodel is shown in Figure 6.4. This

model consists of 12 bodies, two chassis (B11 and B12) and ten road-

wheel pairs (BI to B1O). Roadarms, represented by massless links

described in Chapter 2, connect roadwheels to the chassis. To

simplify a track model, roadw'heels are free to rotate, but only small

rotations about initial angular positions are considered. Large

rotational displacement of roadwheels is prevented by the track model.

Vertical force versus vertical roadwheel-displacement-suspen-

sion curves and vertical force versus vertical roadwheel-velocity-

damping curves were determined experimentally (Figures 6.5 and 6.6).

These forces are incorporated into the model employing features of

the standard spring-damper-actuator elements described in Chapter 2.

Elements S1 to S10, connected between chassis and roadwheel centers,

are given arbitrarily long lengths; i.e., 1000 inches so that their

forces relative to chassis remain essentially vertical for all
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roadwheel positions. Vertical roadwheel displacement relative to

chassis is given by (Ioij Iij ), where 9,j is the current element

length and tc0 is a constant reference element length. Vertical
ij

roadwheel velocity, relative to the chassis, is given by (- ij).

These standard variables are available to user supplied subroutines

in the program. Taking k i and cij as zero in Equation 2.9 yields

an actuator element force of

ij = F O i j (%slj /I j)

Suspension and damping force functions Fs (oi j - ij) and Fd(- iij )

are supplied by cubic spline curve fits [49, 501 to the data

(straight line approximations have been successfully employed as

well) [ 51]. The actuator force, evaluated as

Fo = Fs(Oj - LI .) + Fd( " Ai )
0i ij oij ij 1i

is automatically added to the system generalized forces.

(c) Elements of the Track and

Terrain Interaction Model

Track forces on the chassis and roadwheels are included

through spring-daper elements S11 to S22 (Figure 6.4). It is assumed

that roadwheels remain in contact with the track throughout the simu-

lation. Therefore, elements are connected directly to the bottom of

the roadwheels. Elements Sll, S16, S17, and S22 are also connected



directly to the chassis at the approximate points of track tangency

to the drive and idler sprockets. These elements provide track

interaction forces between the chassis and roadwheels. Each element

segment has an effective stiffness determined by its approximate

length and a track stiffness per unit length. Internal track damping

is included to account for rubber bushing, rubber track pad, and

ground dissipation. These coefficients depend nonlinearly on track

displacement, since track segments cannot support compression.

Tracks are given a pretension so they will remain tight in

various dynamic situations. Each element SI1 to S22 is thus given

an initial pretension of 10000 pounds. In order to determine changes

in track tension (from equilibrium preload levels), due to dynamic

loading, it is necessary to have reference track lengths 10i j = Iij

at equilibrium for each of the above elements. These lengths cannot

be determined when the model is established, because the equilibrium

configuration is unknown. They can be evaluated directly by the

program as equilibrium is established as follows: Set k.. = c.. = 0

and F0  = 10000 lbf in Equation 2.9 for each element S11 to S22.

Constrain angular rotation of each roadwheel, using initial condition

flags on input data cards to keep element attachment points at the

bottom of the wheels. Solve for equilibrium and set each element

e0 to it., which then becomes the reference length for dynamic

analysis. Equation 2.9 for the lynamic track model then becomes

Fij = [kij(Aij)(Iij - t0 + cij(Iij)iij + F0  
] [ S

ii i~j
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where k.i( ti) and c. (YC.) are determined to prevent the coefficient

of [i /.e i from becoming negative.

Roadwheels must be prevented from penetrating the terrain

surface. That is, penetration should be no greater than that achieved

by local wheel, track, and ground deformation. Support generally

occurs at one or more points on the lower arc of a wheel, due to

direct terrain contact or indirect track support. Support reaction

forces may not act vertically. The general model for arbitrary

terrain is rather complex. For the current discussion, assume a

level terrain (a more representative model for irregular terrain is

presented later), hence roadwheel support reaction forces remain

vertical. These forces may then be moved to the wheel centers with-

out changing the model. Since roadwheels are circular, the terrain

reference elevation can be shifted up to the wheel centers for deter-

mination of relative wheel-terrain elevation. Global location of the
•th
i roadwheel center is given by coordinates xi and y (see Chapter 2).

If gi is global terrain elevation and rw is roadwheel radius, then

wheel penetration into level terrain is

Pi = (gi + rw - Yi)

If wheel reaction force is developed according to the curve in

Figure 6.7, the force Fw(Pi) is then added to Qvi (see Equation 2.10).

If pi 0, F w(P ) = 0 and the i t h wheel is not touching the terrain.

A damping force DW(Pi, G, with hi= - is also added to
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i
Qy to include roadwheel rubber-, track rubber-, and ground-damping

effects. Damping force Dw reduces to zero as pi decreases to zero.

When vehicle pitch displacements are large, other points on

the chassis may contact ground. The most likely places are the drive

and idler sprockets, labeled A to D in Figure 6.4. Sprocket centers

are located by global points x and y . With sprocket radii r
P pi cione may obtain support and damping forces as above. These forces

are then included in generalized forces Q and Q ,'for the proper

bodies.

As noted in earlier discussion, the usual procedure for

representing wheel-terrain interference is to monitor the distance

between the bottom point on the wheel and the point on the terrain

directly below it. If, as in Figure 6.8, the terrain slopes or is

irregular, other points on the wheel may make first contact. Thus,

the wheel will be at an incorrect height and the support force on the

wjel will act incorrectly. A modified wheel trajectory may be

.bbtained by moving a rigid wheel of a given radius, say that of the

roadwheel, along the terrain surface to obtain a trajectory of the

lowest point on the wheel [52 3. The wheel trajectory for the terrain

in Ft gure 6.8 is shown in Figure 6.9. As the lowest point on a

wheel follows this trajectory, th're will always be some point on the

wheel just touching the terrain, but there will be no terrain penetra-

tion. This is illustrated in Figure 6.10. For the purpose of this

simulation, it is sufficient to assume that the resultant support

force vector acts along a line passing through the point of
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y

Figure 6.8. Terrain contour of 36 inch step obstacle.
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I

FIgure 6.9. TraJectory of 12 inch wheel rolled over a 36 inch step
obstacle.
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x

Piure ,.i0. Wheel trajectory defined by lowest points on wheel withno terrain penetration.



118

wheel-terrain contact and wheel center. Thus, there will be a com-

ponent of force tending to impede leftward motion of the wheel and,

if not otherwise supported, the wheel will move down the slope. The

angle that this force makes with respect to the positive y axis is

shown in Figure 6.11. The curves of Figures 6.9 and 6.11 are pro-

vided to the program in the form of cubic spline functions.

The normal and frictional components of force acting on the

wheel remain to be determined. As noted earlier, if global

coordinates xi and Y locate the center of a roadwheel and if g(x.)

is the trajectory height beneath the wheel, as in Figure 6.9, then

wheel penetration may be approximated by

Pi = [g(xi) + rw - Yi]  (6.1)

where r is the roadwheel radius. Normal force angle, from the

function h(x) of Figure 6.11, is

(I = h(xi) (6.2)

Figure 6.7 illustrates a typical nonlinear force-displacement rela-

tion between a roadwheel and ground. Let this curve be represented

by the function f(xi), so the total vertical force acting on the

wheel, as shown in Figure 6.12, becomes

FS = Fny + Ffy = f(p) (6.3)
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0 radians

x _ -14 radians

Figure 6.11. Direction of a line passing through point of wheel-
terrain contact and wheel center.
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where Fny and Fly are the vertical components of the normal, Fn a 0,

and frictional Ff forces, respectively. The subscript i has been

dropped for convenience. In terms of the angle Ce and the sign con-

ventions of Figure 6.12, the following expressions hold:

F = - F sin a
nx n (6.4)

F = F cos tny n

F fx = Ff cos 0 sgn (slip)fx f(6.5)

Ffy = Ff sin c sgn (slip)

fy fX

F

nx

Figure 6.12. Terrain-wheel contact forces.
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where positive slip occurs if the wheel slides to the right. The

wheel may not slide, in which ease there is some force F' such that
f

JF4j < IFf1 (6.6)

If the coefficient of sliding friction is p, then the resulting

frictional force is

F f mn (IF.t or 4Fn) s (slip) (6.7)

Equations 6.3 to 6.7 can be combined to derive an expression for the

frictional force, in terms of the vertical force FsP

Ff = min [1Ffl or (pF )/fcos a - . sin ce sgn (slip)}]

x sgn (slip) (6.8)

The vehicles propel themselves along the terrain, so driving

forces are applied to the track and roadwheels to achieve this goal.

For simplicity, it is assumed that the vehicle is to travel at a

constant velocity across the terrain. Denote this velocity as v
r

and the desired lateral displacement as S rj = SOj + vr t, j = 11,12,

where SOj is the global location of a reference point 
on the j th

vehicle at time, t = 0. Locating this point at ground level and at

the center of the vehicle will secure an approximately constant
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ground speed. Let v. be the actual velocity of this point on body j

at any instant t, then the actual displacement of this point is

t
Sj sOD + 1 v.dt (6.9)

0

Track tension is developed according to error in the desired

vehicle position and velocity as

T = K d(S - S rj) + Kv (vj - v r) (6.10)

where the constants Kd and K are chosen to characterize the vehicled r

power train. Observe that T. may be positive (vehicle lags behind

desired position) or negativ (vehicle is ahead of desired position).

If T. > 0, T. is applied to track elements S16 and S22. If T. < 0,

- T. is applied to track elements Sll and S17. The maximum tractive

effort is limited to the maximum force developed by a slipping track.

The sequence of steps to evaluate track driving forces for the

front vehicle are described. If T > 0, set F' = T . Find F for

sprocket C, as shown in Figure 6.4, using Equation 6.3. Assume slip

> 0 (Figure 6.12), since the vehicle is being propelled to the left.

If Fs = 0, the sprocket is not in contact with the terrain. Therefore,

no frictional tractive force is developed beneath the sprocket, so

the entire force F' is transferred to track element S16.

If sprocket C is in contact with ground, F > 0. Therefore,
s

determine the frictional tractive force Ff acting between sprocket

fm, mnm = = mmn mmm u dm m nm l ll ml nm l l
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and ground, using Equation 6.8. Apply Ff to the sprocket at the

point of sprocket-terrain contact, directed along the tangent to the

terrain surface at this point. The track driving force F" is now

reduced by Ff and is applied to track element S16. The procer is

then repeated in a similar manner for each successive roadwheel,

rear to front. Calculate F for roadwheel (B5) from Equation 6.3 and

Ff from Equation 6.8. Apply Ff to roadwheel (B5) at the point of

roadwheel-terrain contact, directed along the tangent to the terrain

surface. Again reduce F' by Ff, and apply this force to element S15.

Continue this process until F' has been reduced to zero, or until

sprocket D has been passed. If F' becomes zero, the vehicle is not

traction limited. If F' > 0, the track is slipping and the desired

reference position, S r in Equation 6.10, cannot be attained; so set

S = S. - v rt and S = Si, the attained vehicle displacement.

If T. < 0 in Equation 6.10, the process is reversed. That is,

drive forces are applied from front to rear. First check sprocket

!, roadwheel (Bl), etc. for contact and apply appropriate forces.

The vehicle is bei. g driven to the right in this case and slip is

assumed to the left (Figure 6.12), hence it is negative.

The significant feature of this model is that track slippage

at each wheel is allowed if there is enough force differential in

the track to overcome local friction pF.. The remaining road wheels,

once F' becomes zero, are assumed to have zero frictional forces

acting. This will not be true for the actual system, especially on
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rugged terrain. However, these forces will be directed randomly,

some forward and some rearward, due primarily to terrain irregularity,

and will not contribute significantly to vehicle dynamics.

(d) Elements of the Articulation
Control Model

The hydraulic actuator is modeled by using the actuator of

element S23. Actuator force (F0 23), displacement 123' and velocity

v2 3 are standard state variables. These variables are coupled to the

control system equations to complete the model.

Figure 6.13 contains the block diagram representation of the

electro-hydraulic control system [47, 48] and depicts the inter-

relationship between the servo control system and the dynamic

mechanical model, where:

F R(S) = operator supplied fore and aft force to the control

stick, lbf

d = length of control stick, inches

eR(s) = angular displacement of control stick, radians,

leRI < .436 radians

T L(S) = control stick limiting torque, in-lbf

T e = control system time constant, sec

K RP = potentiometer gain, volts/radian

P(s) = reference voltage signal from control stick

potentiometer, volts

K = amplifier gain, volts/volt

z(s) = actuator displacement, inches
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1 23(s) = total actuator length, inches

t 0 23 = reference actuator length, inches

v 23(s) = actuator velocity, in/sec

K 4 = actuator potentiometer feedback gain, volts/in

E(s) = error signal voltage, volts

K2  = amplifier gain ma/volt

I(s) = amplifier current, ma

K = servo valve flow gradient, GPM/mav

K3 = pump stroke mechanism velocity gradient,

% stroke/see

T1 = servo valve time constant, sec

Y(s) = pump yoke displacement, 1, stroke

Fy(s) = pump yoke limiting force, lbf/in

Q% = pump flow gradient, (in 3/sec)/(% stroke)

Ir = pump flow, in 3/sec

QA = load flow, in 3/sec

QL = leakage fiow, in 3/sec

Q= flow due to compressibility, in 3/sec

A1  = actuator area - rod end, in 2

A2 = actuator area - cylinder end, in2

e = effective bulk modulus including system compliance,

psi

VO = entrained volume of hydraulic fluid

L = combined system leakage coefficient, (in3 /sec)/p
si

P(s) = system pressure at the actuator, psi
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p0 = force developed in the actuator, lbf

K = pressure transducer gain, mv/psip

= control stick force feedback gain, in-lbf/mv.

The articulated vehicle control system may be divided into

three major blocks. As shown in Figure 6.13, block 1 generates a

reference voltage that ultimately leads to a given hydraulic actuator

displacement. The major component in this block is the mechanical

hardware that interfaces with the operator. Block two contains the

hydraulic pump yoke and servo valve control system. In response to

an error signal from block 1, this system controls direction and

fluid flowrate in the hydraulic pump. Block 3 characterizes dynamic

response of the hydraulic system, including the actuator connected

to the articulated vehicle model.

The control stick, showii iii Figure 6.14 P17 ], rotates about

a fixed point. A direct current linear actuator, shown in its neutral

position, is coupled to an extension of the control stick d2 by

springs K1 and K . These springs provide restoring moments to main-

tain the control stick in its neutral position. In response to

pressure buildup in the hydraulic actuator, a voltage is developed

across the linear actuator, causing springs K1 and K2 to shift either

left or right. An increased moment is then developed on the control

stick to oppose the operator supplied force, thus providing force

feedback to the operator. In addition, mechanical stops prevent

more than t 250 rotation of the control stick. The dynamics of this

system, including inertial effects, is included in block 1. Control
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stick response is determined by three moments: operator's moment,

(FR * dI ); pressure feedback moment, (-Kp KLA P); and mechanical

stop limiting torque, [- T L(e)].

A rotary potentiometer connected to the control stick develops

a reference voltage that is proportional to angular rotation R .

This signal is then amplified and combined with a hydraulic actuator

displacement signal (- K 4 z) to obtain an error signal E. This

error signal is then amplified and passed to the pump yoke control

system.

Servo valve and pump yoke characteristics are illustrated in

block 2 of Figure 6.13. Significant nonlinear effects in the system

B (t)

forward

d
I1

rotary potentiometer

K 1  d2 c onnecting cable

" sprigs 2- D.C. linear

. . .. I actuator

+ x(t) >- X(t)

Figure 6.14. Contro] stick and force actuator.
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are saturation of the servo valve flow control K and mechanicalV

limitations on pump yoke displacement F . Inertial effects in this
y

block introduce additional delay in overall system response.

Block three outlines the hydraulic flow model. Flow rates

within the system are moderate, so pressure drop within the lines

is small. This simplifies the model significantly. The pump

supplies fluid volume flow rate Qp, to make up for leakage losses

QL' compressibility QC' and actuator volume displacement rate ,A'

The system contains a significant amount of flexible tubing,

which results in reduced system compliance, hence a small effective

bulk modulus. Pressure limiting is obtained by further reduction of

the effective bulk modulus, as relief valve blowoff begins. Actuator

flow rate from the pump is determined by the product of actuator

cross-sectional area A and velocity v. The area A on the rod end

of the actuator is smaller than the piston end area A . Thus, area

is adjusted appropriately as a function of actuator velocity to

achieve the proper flow rate. Force developed in the actuator also

depends on which side of the piston pressure is developed. Thus,

area is adjusted as a function of pressure, for the purpose of

calculating actuator force. The controller consists of two identical

hydraulic systems, each driving an actuator. In this simulation,

only one hydraulic system is modeled, so the effective actuator

force is doubled to account for two actuators.
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(e) Crossing a Three-Foot Obstacle
Numerical Results

The three-foot step obstacle shown in Figure 6.8 is selected

to test the program's ability to adequately describe system dynamics.

In addition, the effect of force and position feedback on vehicle

performance, while negotiating a significant obstacle, is to be

investigated. A velocity of 40 inches/second (2.27 miles/hour) is

selected as the obstacle crossing speed. This is close to the

design specifications of minimum 2.5 miles/hour over a 2.5 foot

obstacle.

Contrary to usual practice, the vehicle is not put into an

initial pitch up attitude before encountering the bank, but is forced

to propel itself up the side of the bank. The vehicle is run in a

hands off mode, because it is difficult to program operator response

to the complex dynamic environment.

Three simulations of obstacle crossing are performed. The

first case is with force and position feedback active, the second is

with force feedback deactivated, and the third is with the entire

control system deactivated. In the last situation the control system

is passive, except that the hydraulic pump is providing enough fluid

flow rate to replace leakage losses. A sequence of computer generated

line drawings of vehicle position at one-second intervals for the

three cases is shown in Figures 6.15-6.17.

The following observations can be made from these figures.

Force and position feedback in Figure 6.15 tend to minimize actuator
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Fifpure 6.15. Obstacle crossing with force and position feedback
active - ten second simulation at 40 inches/second.
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t =0 t =6

t 1 t =7

t 2 t =8

t 3 t =9

t 4 t =10

t 5

Figure 6.16. Obstacle crossi'Og with force feedback deactivated -
ten second simulation at 40 inches/second.
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Fivure 6.17. Obstacle crossing with the control system
deactivated - ten second simulation at 40
inches/second.
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stiffening of the coupled vehicle system. This will be the most

comfortable and stable situation since the vehicles tend to conform

to the terrain.

Position feedback alone in Figure 6.16 tends to maximize

vehicle rigidity in the hands off mode because the control system

continually works to maintain minimum departure from the zero

relative pitch position. With operator assistance, however, one

might exoect vehicle response approaching that of case 1.

The -assi model in Figure 6.17 is slightly more flexible

than case 2, because of system compliance. An ideal passive system

for large obstaile crossing would be one that allows free or

partially restricted fluid flow in the actuator, through a simple

bypass.

To understand more clearly how force feedback works to

minimize actuator pressure, it is shown plotted versus time in

Figure 6.18. Note that positive pressure implies that pressure acts

on the piston end of the cylinder and is zero on the rod end.

Negative pressure implies that pressure acts on the rod end of the

cylinder and is zero on the piston end. This is a convenient way

to mathematically represent system pressures. Pressure is generally

positive for the first 3 to 4 seconds (pressure on piston end), as

the front vehicle is forced up and over the step. It then remains

negative between 4 and 10 seconds for case 2, since the front vehicle

is now being supported by the actuator. Pressure is essentially

negative between 4 and 8 seconds and positive between 8 and 10



seconds, when force feedback is active. it is clear that force

f,,,edback substantially reduces actuator pressure, as is r-xpected.

LEQENO
0- FORCE ANO POSITION FEEODACK
0- FORCE FCIRICK DISt8LED
A- CONTROL SYSTIM OISABLED

Vi) 0

CL

Lii-

0

2.0 4.0 6.0 8.0

TIME (SECONDS)

Figure 6.18. System hydraulic actuator pressure.

The reason for reduced pressure is made clear by looking at

Figure 6.19, angular displacement of the control stick, and Figure

6.20, hydraulic pump yoke displacement. When actuator pressure

initially goes positive, the control stick is driven into the full

pitch up position (- 25°). The control-stick signal then induces a

large pump yoke displacement, causing hydraulic fluid flow from the

high pressure end. When pressure switches to the opposite side of

the piston, control stick and pump yoke displacements quickly switch

to their opposite extremes, again to compensate for large actuator

pressure.
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Figure 6.19. Angular displacement of' the control stick
(negative =pitch-up).
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Figuire 0.20). Hydraulic pump yoke displacement (percent
full stroke).
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(f) Model Verification and Discussion

The articulated vehicular system simulated in this study was

assembled and tested by the Army in the early to mid 1970's [47,

4- 3 . A large amount of field and design test data was accumulated.

Upon termination of the project, the vehicles were disassembled and

returned to regular service. Several years later the DADS computer

program was developed and it was recognized that this vehicle would

make an excellent test model to demonstrate DADS analysis and design

potential. Unfortunately, some important system parameters were not

mcasured or were not documented. Therefore, it was necessary to

estimate some parameters in order to complete the model.

Several tests that were documented [47, 48 ] measured tran-

sient pitch response to various pitch-up and pitch-down command

signals. The test vehicles were stationary and on a level surface.

Simulated vehicle pitch rates and hydraulic pressures under identical

conditions compared favorably with field test data 1 53 ]. Discrep-

ancies, however, did provide suggestions for improvement in the

initial model, i.e., the need for increased hydraulic system

compliance, track supportive effects, and frictional effects. It is

believed that these initial simulations, for' which field test data

was available, have resulted in a more representative mathematical

model.

Unfortunately, such extensive test data has not been recorded

for obstacle crossing experiments. However, 16 mm filmed records

were made of various obstacle crossing tests. One such test involved
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a three foot step obstacle where the vehicle was placed in an initial

pitch-up attitude allowing the front end to negotiate the obstacle.

The vehicle then propelled itself onto the step with some operator

assist. Test vehicle velocity was comparable to the velocity in

this simulation.

A 16 mm computer generated, animated, film of the dynamic

simulation (composed of images similar to those in Figures 6.15-

6.17) was compared to the filmed test results mentioned above. The

agreement was significant. Dynamic response of the vehicles as the

roadwheels encountered the step was very similar. The time lag in

the vehicle's ability to conform to terrain was apparent in both

cases, but not as significant in the field test results. This could

be due to operator assist or to less inertia in the actual control

system than was modeled, allowing faster system response.

This example is presented in detail to emphasize the many

important considerations one must make in order to have even a simple

representative model of a complex system. It is shown that most of

the nonstandard effects are conveniently introduced by modifying

existing standard program elements and employing standard state

variables. Thus, the magnitude of equation development and pro-

gramming effort has been kept to a bare minimum. Even more

significant than the efficiency gained by the analysis methods

developed herein is the fact that derivatives of generalized forces

are not required. The program described in Chapter 2 requires
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derivatives of generalized forces, which substantially increases the

amount of program preparation and debugging effort.

The independent generalized coordinates identified by the

program for the above simulations are xl, x5 , Yl to Y1 2' and y, to

9lO" One could make intuitive arguments based on mechanical or

mathematical principles as to why certain variables are selected

over others. However, since the selection process depends so strongly

on constraints, one must thoroughly understand each constraint type

and how it interacts with others, if an acceptable set is to be

selected. This emphasizes the importance of automatic variable

selection.

It is emphasized that various vehicle and control system

parameters are estimated, because measured values are not available.

Thus simulated response will vary somewhat from actual system

response. The primary purpose of this research is to demonstrate

that DADS can be effectively employed to obtain dynamic response of

complex mechanical systems. Therefore, it is demonstrated to be

an invaluable analysis and design tool.

6.3 A Mechanism With Intermittent Motion

(a) Introduction

A precision weapon mechanism was selected for simulation to

illustrate use of the pieced interval analysis methods developed in

Chapter 5. Previously, methods of intermittent motion analysis have

used pieced interval analysis, in which the analyst writes the
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equations of motion between times at which discontinuous events occur

[43]. Momentum balance equations were also written to account for

velocity discontinuities that occur in various system configurntions.

Numerical integration was halted at points of discontinuity, new

initial conditions were formulated, and integration was then con-

tinued. A limitation of this method of analysis is the level of

effort required to write system equations that are valid in intervals

between events whose ordering is not generally known before the

analysis is begun. Thus, the analyst is required to write equations

and computer code for all ordering of logical events that may con-

ceivably occur.

One method that has been used to alleviate the foregoing

difficulty is to use Heaviside step functions that define logic

associated with the events occurring during intermittent motion.

These discontinuous functions may then be smoothed to provide a set

of governing differential equations of motion [54]. This pro-

cedure can be justified on the basis of distribution theory [55,

56] and has been successfully employed in weapon mechanism dynamics

[57]. The distribution theoretic method has been used in conjunc-

tion with the DADS computer program to automatically generate the

sysber equations of motion [58], by defining "logical spring-

dampers" that account for certain aspects of intermittent motion

[21]. These analyses are plagued by integration failure and

inefficiency, while integrating through abrupt transition regions.

This deficiency has now been eliminated by employing the logical
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events predictor developed in Chapter 5 to locate such events before

they are encountered. Thus, the integration algorithm can be pre-

pared to handle the events or alternate integration methods can be

employed.

Alternately, one may choose to replace (or supplement) the

smoothed continuous events by discontinuous events, in which momentum

balance is employed. Costly numerical integration through transition

regions is then replaced by efficient algebraic solution of momentum

balance equations. Following momentum balance, one may elect to

retain the continuous elements, if desired, to represent interference

between adjacent bodies.

(b) Description of an Automatic Cannon System

An automatic weapon mechanism shown in Figure 6.21 consists

of four main masses; the receiver R (assumed rigidly attached to the

inertial reference frame), the barrel assembly B, the sleeve S, and

the sear SR. The sequence of system operation for a cycle is as

follows:

The barrel assembly is initially moving to the right at 40

inches per second at the instant shown in Figure 6.21. A round is

inserted into the shaded region of the chamber as the barrel is

moving forward. A link pq is connected at point q to a sleeve that

slides along the outer surface of the barrel and to a pin p located

at the intersection of the two cam slots to control sleeve position on

the barrel. The receiver-cam is attached to the receiver and the
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barrel-cam is attached to thr barrel. As the barrel moves, the point

of eam -,lot iiitcrset;ion Vha,e:, iorcini the' pii, to mov.,.

Figure 6.22 shows the configuration when the pin just begins

to move upward as the barrel is moving to the right. This upward

motion drives the sleeve to the left, relative to the barrel, hence

encasing the round. Eventually (Figure 6.23), the pin reaches the

highest point on the receiver cam, and the sleeve in its rearmost

position relative to the barrel, securely locks the sleeve in posi-

tion to form the chamber of the weapon. The sleeve now moves with

the barrel.

Next, as shown in Figure 6.04, the barrel contacts a front

buffer. This buffer is designed to bring the barrel safely to rest

in the event of a round misfire. Shortly thereafter (Figure 6.25)

the round is fired, developing an impulse on the barrel that reverses

its direction of travel.

The sequence of operations is then reversed (Figures 6.24,

6.23, and 6.22). After the sleeve has been retracted, the spent

round is ejected and the barrel impacts the sear (Figure 6.21). The

sear and barrel, moving rearward together, are then brough to rest

by a rear buffer (Figure 6.26). The sear and barrel are then driven

forward by the buffer spring until the sear impacts a stop on the

receiver (Figure 6.21). The barrel separates from the sear and a

cycle is complete (ready for the next round in the automatic fire

mode), or the barrel remains attached to the sear to terminate

execution.
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(c) Elements of the Model

The weapon mechanism consists of five rigid bodies: receiver,

barrel, sear, sleeve, and pin, numbered in this order. The sear and

barrel each move on the receiver, along translational joints, and

the sleeve moves on the barrel along a translational joint. Mass

of the barrel, sleeve, and sear are taken as 2.919, .2368, and .2044

slug-feet/inch, respectively. Other masses and rotational inertias

are ignored or are not important, since no rotation is allowed. The

sleeve is connected to the pin by a massless link pq. For the barrel

position shown in Figure 6.21, the link is initially at a 450 angle

and it moves to a horizontal position in Figure 6.23, as the pin

rides up the cam slots.

The pin-cam constraints are represented by cubic spline curve

fits to digitized data taken from the mechanism. The vertical

position of the pin relative to the receiver is written as a function

of the horizontal position of the pin relative to the receiver as

yp - YR - fR(§ - ,c) = 0 (6.11)

where fR is the functional spline representation of the cam path on

the receiver. Likewise, a cam path on the barrel is written as

P "B " fB(xP - XB) = 0 (6.12)
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These equations and their first and second time derivatives are

appended to the standard constraint formulation, to complete the

model.

Two forces, Ff and Fb, drive the barrel during its forward

(counter recoil) and rearward (recoil) motion, respectively. A front

buffer Bf and a rear buffer Br slow the barrel assembly during

extreme displacement. Both front and rear buffers are designed to

produce constant retarding forces.

(d) Logical Events

Logical times t. at which impact or other irregularities of
1

intermittent motion occur are introduced as an integral element of

the dynamic model. Between these times, the motion and acceleration

of the system is continuous. At these times, discontinuities in

velocities and acceleration, changes in system constraints, and mass

capture or release can occur. These logical times are functions of

the system state and are determined as the simulation progresses.

Logical times will now be defined for the firing from run-out mode

of weapon operation:

(1) t o = 0 (Figure 6.21): The barrel assembly B, in auto-

matic fire, passes the sear position with velocity x 2

40 in/sec. Initial starting point is not considered as

a logical event. A forward driving force Ff = 1600 lbf

acts on the barrel.
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(2) t1 (Figure 6.24): The barrel B contacts the front butter

and Bf = - 6900 lbf becomes active. Restart integration

because of discontinuous acceleration.

(3) t2 (Figure 6.25): The charge is ignited. An impulse of

- 880 lbf -sec acts on the barrel B. Perform momentum

balance to obtain new velocities. Ff is deactivated and

drive force Fb = 2000 lbf is activated. Restart inte-

gration.

(4) t3 (Figure 6.24): The barrel B breaks contact with the

front buffer and Bf = 0 lb f. Restart integration.

(5) t4 (Figure 6.21): The barrel B impacts and captures the

sear SR which was locked to the receiver. The rear

buffer Br = 12100 lbf acts against the sear. Release

constraint between sear and receiver, perform momentum

balance with coefficient of restitution e = 0, activate

constraint between barrel B and sear SR, and restart

integration with new velocities.

(6) t 5 (Figure 6.26): The barrel B and sear SR come to rest.

The barrel drive force Fb is deactivated, the drive force

Ff is activated, and the rear buffer force Br is deacti-

vated. Restart integration.

(7) t6 (Figure 6.21): If automatic fire is to terminate, the

barrel B and sear SR return to the initial sear position.

The sear impacts the receiver, and the sear and barrel

are captured by the receiver. Perform momentum balance
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with coefficient of restitution e = 0 and activate the

constraint between sear and receiver. The cycle is

complete with sear and barrel locked to receiver.

(7') t (Figure 6.21): If automatic fire is to continue, the

barrel B and sear SR return to the initial sear position.

The sear impacts the receiver and is captured by the

receiver, while the barrel is released from the sear.

Release the constraint between sear and barrel, perform

momentum balance with coefficient of restitution e = 0,

activate the constraint between sear SR and receiver, and

restart integration with new velocities. The cycle is

complete and the barrel is in the runout configuration

for another round.

Logical times t to t 6 depend upon the state of the system;

the relative horizontal displacements and relative velocities between

bodies of the system. Since the horizontal position, velocity, and

acceleration of body centers-of-mass are state variables, logical

times are expressed as functions of these variables.

The logical events are defined as follows:

1(1) tl: x2 - 34.26 = l = 0

2(2) t 2 : x 2 - 36.75 = = 0

(3) t3: x2 - 34.26 = = o

(4) t 4: x2 - x3 - 16 =3 = 0

14(5) t: = = 0

(6) t6: x2 -x 3 16 t =
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The six events t to t6 are thus defined by 
the four logical

14

variables I to A . In order to incorporate these event predictors

into the numerical integration algorithm, the derivatives of the

above equations, with appropriate initial conditions, are formulated

and integrated along with the system equations of motion. Thus,

l =k 2  , 1 (o) = -18.26

.2 2
= k 2 A (0) = - 20.75

A3 = x 2 - 3 3 (0) 0

.4 =K2 4 (o) 4o

The procedure for determining the complete system state

precisely at logical times t1 to t6, identified by logical variables

1 4
1 to I , is as follows. An appropriate time step is determined by

the numerical integration algorithm based on the previous system

state, polynomial predictor order, and error tolerance. Each logical

variable in succession is predicted ahead in time, using this time

step. If no logical variable is found to have passed through zero,

the program advances the solution by the desired time step and the

process is repeated. If one or more logical variables have passed

through zero, the precise times at which the corresponding logical

variables are zero are calculated by interpolation, using the poly-

nomial predictor. A solution is then forced at the earliest logical

time, indicating occurance of the first event. Control is then

returned to user supplied subroutines so that actions can be taken

according to the intent of the active logical variable.
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Discontinuous events can be categorized according to the order

of increasing difficulty as follows:

(1) Those requiring restart of the integration process only,

such as when discontinuous forces act on or within the

system. These forces are not considered to be impulsive

in nature, thus only discontinuous accelerations result.

(2) Those requiring momentum balance due to impulsive external

loads (impact between bodies and mass capture or release

is excluded) with no supplemental restitution equations

or constraint equation modification.

(3) Those requiring momentum balance due to impact between

bodies and mass capture or release. Supplemental

coefficient of restitution equations are appended to the

momentum balance equations to achieve the desired

velocity changes. Constraints are added or deleted, as

needed to facilitate mass capture or release.

The six events t to t6 fall into the following three

categories:

(1) tl, t 3 , t5 - These events define discontinuous forces of

relatively small magnitude, therefore only a restart of

the integration procedure is required.

(2) t 2 - This event defines an externally applied impulsive

load requiring a momentum balance and restart of the

integration procedure.
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(3) t4, t6 - These events define impulsive loading, due to

impact between bodies of the system, and mass capture and

release. Supplemental equations are required for momentum

balance and a restart of the integration procedure is

required.

The effects of the various events at logical times t to t6

on the position, velocity, and acceleration of the barrel are shown

in Figures 6.27 to 6.29, respectively.

The logical events are clearly marked by discontinuities in

acceleration of the gun tube as shown in Figure 6.29. At t2, an

impulse of - 880 lb f-sec is applied to the barrel, resulting in a

discontinuity in velocity and a change in barrel direction. The

applied loads are changed at this instant, resulting in a net change

in acceleration.

Impact between barrel and sear occurs at t4 , resulting in a

second discontinuity in barrel velocity. Buffer action on the

combined sear and barrel mass results in an acceleration of

4500 in/sec 2 in the time interval t 4 to t5. The dynamic response

curves of Figures 6.28 and 6.29 clearly indicate the intermittent

nature of weapon mechanism motion. It is emphasized that one

standard set of equations of motion and one standard set of momentum

balance equations are generated by the program. At the various

logical times, one simply appends or removes constraints, restitution

equations, forces, impulses, etc., as directed by programmed control

., w n -.-. - - .. n- -mi am m mm m unll m nniNnn
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logic, determined by the active logical variables. Thus, an entire

simulation can be completed in a single computer run.

......
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this report, two methods are presented to improve efficiency

of a general purpose dynamic analysis and design system computer

program. The first method employs Gaussian elimination in the con-

straint Jacobian matrix to identify independent and dependent

generalized coordinates, thus defining a minimal set of differential

equations whose solution yields total system response. The second

method employs pieced interval analysis with a logical events monitor

and momentum balance capability to efficiently handle intermittent

motion problems.

The analysis techniques have demonstrated an order of magni-

tude improvement in program performance. Since these methods require

no change in equation formulation, generality of the program is

maintained.

The methods developed are effectively applied to kinematic,

kinetostatic, and dynamic analysis of constrained planar and three-

dimensional systems. In addition, current investigations have

demonstrated that performance of an analysis program that includes

body flexibility is significantly improved when a minimum number of

equations of motion are solved.
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7.2 Recommendations

The method of coordinate partitioning has potential in

other areas where coordinates are related by algebraic constraint

equations. For example, Heltne [59] makes the following statements

in his thesis when discussing techniques for solving large-scale

nonlinear programming problems:

(1) "Luenberger [60] in his proof of the convergence rate

of the GRG algorithm [59 ] shows this convergence rate to be

coordinate dependent. That is, the convergence rate is a function

of which variables are selected to be basic (dependent) and which

nonbasic (independent)."

(2) "A second theoretical problem is the use of (matrix)

structural considerations for selecting the basis. For example, the

use of a relation such as maximizing the trace or the product of the

diagonal elements of a matrix."

He further states that, "a nonzero diagonal does not imply a

nonsingular matrix, but some relation based upon the elements of the

Jacobian matrix may be a feasible alternative."

The method of Gaussian elimination with full row and column

pivoting for coordinate partitioning accomplishes all of the above

requirements. Furthermore, as discussed in Chapter 3, the resulting

matrix will generally have the largest determinant of all possible

submatrices, it will generally be well conditioned, and it has the

largest elements on the diagonal.
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The coordinate partitioning method has pitfalls when the

constraint Jacobian matrix is sparse. To maintain program efficiency

sparse matrix algorithms employ a partial pivoting strategy that

generally does not select the largest pivotal elements. Thus,

coordinate partitioning by this method will not be optimum. This

may cause problems when attempting to maintain error control on

dependent variables.

The approach taken in this study is to periodically construct

a full matrix version of the constraint Jacobian and factor using

the algorithm of Appendix A. This step, requiring O(r3 ) operations

and m x 3n memory locations, is undesirable for large sparse systems.

Following this, the sparse matrix is then augnented to force zero

changes in independent variables at each iteration step. When

systems experience large angular displacements the independent

variable set changes frequently and correspondingly the sparse matrix

structure changes. Costly symbolic sparse matrix refactorization

are then required [61 3.

Heltne [ 59 ] has recently developed sparse matrix manipulation

algorithms employing block lower triangular factorization. This

technique is also employed by the sparse matrix code in DADS.

However, he has further developed an algorithm for ordering

matrices after a rank-one update. That is, when the matrix has been

put into block lower triangular form and the independent and dependent

sets change, generally a new symbolic factorization can be obtained

at a fraction of the cost of a complete matrix refactorization. He
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has demonstrated an order of magnitude reduction in computer cost.

When the variable sets change often, which is the case when bodies

experience large angular displacements, the savings will be signif-

icant.

Additional research required in this and related areas is:

(1) Investigate the most efficient methods of Gaussian

elimination employing sparse matrix techniques solely

for the purpose of identifying optimum coordinate

partitioning, thus eliminating full matrix factorization.

(2) Implement Heltne's matrix ordering rank-one update

algorithm into the sparse matrix code.

(3) Investigate methods for determining when Gaussian

elimination is required for the purpose of redetermining

the partitioning of variables into dependent and inde-

pendent sets.

(4) Investigate methods of analyzing coordinate velocities

and accelerations as an alternate procedure for deter-

mining the need for applying Gaussian elimination in 3.

Or as a complete replacement for 3. One such technique

might be to compare differences between extrapolated

dependent variables (provided by the integration

algorithm) and the corrected dependent variables (pro-

vided by Newton iteration to satisfy constraints). A

large discrepancy between a predicted and a corrected

dependent variable is an indication that it should become
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independent. Correspondingly an independent variable

having a reduced or minimum velocity and an acceleration

indicating that it may remain small for some time should

then be made dependent. The reverse process of looking

at maximum dependent velocity and corresponding accel-

eration could also be employed to identify a variable

for the independent set.

(5) Investigate methods for relating constraint closure

tolerance to numerical integration error tolerance.

Tight constraint tolerance results in excessive Newton

iterations with no gain in accuracy. Loose constraint

tolerance results in poor dependent variable prediction

which again results in additional corrector iterations

or excessive dependent variable error. Methods that

dynamically adjust constraint tolerance to minimize the

number of corrector iterations should be investigated.
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APPENDIX A

RANK DETERMINATION AND DECOMPOSITION

OF SINGULAR MATRICES

A.1 Introduction

The technique and basic structure of the subprogram described

here are patterned after the subroutine MGR of the Scientific

Subroutine Package, an IBM application program [ 22]. Consider a

system of equations of the form

A(m x n) ' X(n x 1 ) = b(m X l) (A.l)

where in general the matrix A may lack full row and/or column rank.

The task is to determine if one or more solutions to Equation A.1

exist, and to find at least one efficiently and accurately.

The following calculations can be performed on a general rec-

tangular matrix which allows one to obtain solutions to Equation A.1

if such exist:

(1) Determine matrix rank and linearly independent rows and

columns.

(2) Express a submatrix of maximal rank, as a product of

triangular factors.



166

(3) Express nonbasic rows in terms of basic rows.

(4) Express basic variables in terms of free variables.

A.2 Theoretical Background

Basic variables, taken here as dependent variables, will be

denoted by the vector u and free variables, taken as independent

variables, will be denoted by the vector v.

Calculation (1) is most critical. Matrix rank is determined

using the standard Gaussian elimination technique, with complete

pivoting. Therefore, the rows and columns of the m by n matrix A

are generally interchanged at each elimination step to bring the

largest element to the pivot position. The interchange information

is recorded in two integer permutation vectors IROW and ICOL.: The

•th
i row (column) of the interchanged matrix corresponds to the IROW

(I) th row (ICOL (I)th column) in the original matrix A. Initially,

IROW(J) = J and ICOL(J) = J.

The notation Ai is used for the interchanged matrix implied

at the ith elimination step. Superscripts do not mean powers. They

indicate the current elimination step at which the result is obtained.

A.2.a First Elimination Step

Let ajk be the absolutely greatest element of matrix A, which

is found firrt in a columnwise scan. The internal tolerance TOL is

set equal to IEPS - aJki. The parameter EPS is a specified error

level whose magnitude should be of the order of the existing computer

round off error level.
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If ja kl< TOL, further calculation is bypassed. Otherwise

rows 1 and j and columns 1 and k of matrix A are interchanged, giving

1
A . The same interchanges must be applied to TROW, interpreted as a

column vector, and to ICOL, interpreted as a row vector.

A is uniquely expressed as the product L • D • U by

imposing the following conditions:

(I) L1 is the m by m identity matrix, except for the first

column. The first diagonal element has a value of one.

(II) D is an m by n matrix with first diagonal element equal

to one, while all remaining elements of the first row and

column are equal to zero.

(III) Ul is the n by n identity matrix, except for the first

row.

21 1 1

1 L . D1 . UI

ML t D 

More explicitly,



168

1 1
a = U1

1 -A12 12

(A.2)
1 1 :1

A = L U
21 21 11

1 1 1 + 1
22 21 12 22

Capital le- ers are used as notation for matrices in this

appendix. Small letters represent scaler or vector quantities. The

symbol 0 means zero matrices and I means identity matrices, where

dimensions are implied by compatibility. The terms in Equation A.2

are further described as follows:

The elements of the first column of L1 are

1 1 1  
.. 1 = 1 1

1ii = 1 21 = a21 /all' " ml aml/all

1 1fD
The elements of submatrix D of D are

22

1 1
1 1 1i 1 a *a

ik Aik il k ik 1al1 k =2, ..., n

The elements of the first row of U9 are

2. 1 1 1 1 1U1l1 a1l, u12 =a 1 2, ..., Uln =aln
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Note that iL is possible to record all nontrivial cntri., uP I I)1

and Ul compactly in the storage locations occupied by the original A,

storing only:

A.2.b. Second Elimination Step

Let d1  j _ 2 be the absolutely largest element of D2 2 . ifjk', k 5 222

Idk1 TOL, D is interpreted as being the zero matrix.

If D is not zero in the above sense, it may be decomposed22P

analogously. In the compact scheme of above, rows 2 and j, and columns

2 and k are interchanged, obtaining

U1l Ui2

L21 D22

The same interchanges must be performed with IROW (interpreted as a

column vector), with ICOL (interpreted as a row vector), and with A
1

giving
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A2 = 1 01 ULU2
2 112

L 21 1 D22I

Now D22 may be expressed uniquely as the product of the form L*DU,
22

imposing conditions I, II, and III. The result is

Then A2  L 2  D2 U2, with

1 0 0

2 2

21 21

2 2

L- L

21 L32

1 0 0

21

D = 0 1

22
0 0 D2
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1 2 2
U11 u12 U13

2 2 2
= 0 u2 2  U2 3

0 0 I

where

2 2 2 2
21 LLlI ' U1 2 = 12' U 13

A.2.c. Final Result of Elimination Process
2

At the next elimination step D is factorized, and so on.
33

Now assume that finally r r equals zero in the sense that all

its elements are absolutely less than TOL. This means that A has

the rank r and the end result is the factorization Ar = Lr Dr ;

that is,

1 0 ... 0 0

221 1 . 0 0

Ar=

r r • 1 0
rl r2 '"

r+l,l L .. Lr I
L l r+l,2* r+l,r -
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1 O...0 0

o 1. 0 0

o o ... 0

0 0...I Dr

L. 0 Dr+l,r+l

1 2 r .)
1 12 " ir l,r+l

2 r0 u2 . . U r-
22 2r 2,r+l

0 r urS 0 Urr r,r+l

o 0 • • (A.3)

Neglecting the small elements in Dr this may be written more
r+l,r+1

compactly as:

Ar  L I[,RA= [U] [u,UR]

1 0... 0

2A21  1 0

with L=

r r
ri r2

R Lr r r[r+l r+1,2 "'''Lr+l,r



173

1l U2 r

~]

U ,rl22
0 0 . . .r

r,r+l

The matrix L is of dimension r by r and unit lower triangular and U

is of dimension r by r and upper triangular. The matrix LR is of

dimension m - r by r; if the given matrix A is row regular (that is,

m = r) LR is absent in the final factorization. The matrix UR is

of dimension r by n - r; if the given matrix A is column regular

(that is, n r) UR is absent in the final factorization.

A.2. d. Further Calculations Performed

The problem of matrix factorization arises in connection with

the solution of systems of equations Ax = b. Three different cases

must be distinguished, as follows:

() r = m = n;

A is nonsingular, so Ax = b has a uniquely determined

solution.
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(2) r < m;

A is not row regular, so solutions of Ax b exist only

if linear combinations among the rows of A are also valid

among the rows of b

(3) r < n;

A is not column regular, so Ax = 0 has nontrivial

solutions.

The cases (2) and (3) may occur combined.

The solution, if it exists, is uniquely determined if r = n.

Otherwise, it contains n - r free parameters. Often one requires the

linear combinations among the rows of a given matrix A and the linear

forms expressing basic variables in terms of free ones. Therefore,

instead of LR and UR, matrices C and H are returned, containing

linear combinations and homogeneous solutions respectively.

Observe that the above calculated factorization belongs to the

interchanged matrix Ar . Therefore, Arxr = br is dealt with instead
] i x~1 CICOL(I) thI

of Ax = b, where [b r  ist obtained from [b] , using the I OL(j)thI
br th bIROW(J) th

element of [b] as the jhI element of

br  J ,.

r rbI
Let xr , b be partitioned into [u] and 2]. Then,

b 1 b

II u, URI ] ~ 21
• 1),
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or explicity,

L * U u + L UR v =b

LR * U u + LR • UR • v = b2

Since L and U are nonsingular, this implies that

= U-1 L-1 bI  -Ul
uU L. .b . . UR •v

LR L l  b b 2

For convenience, LR is replaced by LR L-  = C and UR is

replaced by - U-1 • UR = H, while L and U remain untouched. Consis-

tency requires that b 2 = C • b , and homogeneous solutions are given

by u = H * v. In case of a consistent system of equations A
r - xr

br, the general solution is xr = [u], with u = U-1 . L-1  bI1 + H

v, while the values of the free variables contained in v may be

chosen arbitrarily.

A.2.e. Format of Results

The subprogram returns matrices L, U, C, H, and D in the

storage area originally occupied by the input matrix A, in the com-

pact scheme shown in Figure A.l.

__ _ _ _ __ _ _ _ __ _ _
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~n

L H

C D

Figure A.1. Format scheme of the processed matrix.
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