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Though formal specifications of software modules offer much
toward the design problems of large software systems, creating

formal specifications is very difficult, requiring much upfront

effort. This paper examines a common idea for dealing with the R —
high cost of software, but in the context of specificatioen.
That idea is a pool or "library" of specificatinns, sn that it
is easy to build on the work of others. Unlike other efforts
that have concentrated on technical problems in having such a
library, this paper identifies and studies several common sense
regquirements on such a library being effectively used. Such
issues are closer related to human factors than te technical
problems; yet these are clearly as critical in use as technical

issues.

Our conclusions have arisen from two studies. In one, we
wrote several module specifications in the form that might ap-
pear in a library. The mndules varied in complexity from a
stack to the kernel of a text editor; the text editor specifica-
tions ranged in length from 9 to 28 pages including copious com-
ments as in-line documentation. The second study compared por-
tions of the English and formal specifications of KSOS (Ford
Aerospace, 1978), the Kernelized Secure Operating System.
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1. 1Introduction

The technique of formal mndule specifications seems to
offer much toward alleviating many problems of Jlarge software
systems (those sysiems requiring at least 25 pragrammers for
development and at least 30,000 lines of soﬁtcé cnde). The high
cnst of software maintenance, the predominance of design errors,
the difficulty in modifying software, and the difficulty and
cnst of diagnoesing and correcting design errors are some of the
problems addressed by £formal specifications based on the
infermatinn-hiding principle. Yet, the creating of formal
specifications is very difficult, requiring much upfront effort.
For instance, Parnas (1976, p. 7) states, "Experience has shown
that the effort invnlved in writing the set of specifications
can be greater than the effort it would take to write one com-
plete pragram.”

An onft proposed idea for reducing consts in creating
snftware is to have a library so that specificatinns, programs,
etc. may be reused from previous projects, rather than being
created from scratch. Naturally, the mechanism nf hierarchical-
ly constructing larger and larger mndule specifications from
smaller ones is available in the fnrmal languages (e.g. Guttag,
et al., 1978 and Roubine and Rabinson, 1976). Furthermonre,
Conprider (1979) has investigated what information must be
recorded to store a family of versions of a hierarchically de-
fined sfstem.

However, we have found that several practical issues arise

if a snftware designer is tn draw nn a cnllection of modules

written Dby others in the course o~f their designing other
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systems. For example, if several general types of text editors
exist in the cnllectinn, the designer must be able to

a) retrieve the specificatinns relevant to the need,

b) understand the alternatives guickly to identify which,
if any, best suits the current need, and

<) modify the clnsest alternative, if necessary, to meet

the specific needs at hand.

Consequently, not anly must each specification in the cnllection
be highly understandable and modifiable, but alsc the number of
lagical alternatives for a given task such as text editing must
be fairly small. These conditinns must hnld for effective,
timely use of previcusly written specificatinns compared to sim-
ply_creating them from scratch.

We have found in our examples that only a handful of alter-
natives are necessary tn cover a given need, if several princi-

ples we fnund are follnwed.

1.1 Our Print nf View and Use nf Terminology

Since the meaning of module, design, specification, and

library is often in the eye nf the bennlder, we outline mur use
of them here. By module we mean a system or subsystem. This is
not the same as an abstract data type (Guttag, 1980), since a
compiler is a mndule but dones not define a data type. Hence,
all abstract data types are modules, but a mndule is mnrre gen-
eral than an abstract data type.

By design we mean the decnmposition of a large system intn
precisely defined modules. 1In the design methodnlngy advoacated

(Parnas (1972), Robinson, et.al. (1977) and others), a mndule
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specificatinrn defines precisely the interface of a mndule by

T——

detailing exactly what each functinn at the interface o~f a
module dnes without committing oneself to any particular imple-
mentation.

The kind of library considered here would be a reference
collection of medule specifications for designers to browse
through. For any given need, such as a file management module,
the library would contain a number of alternative specifications
ranging through the spectrum of functinnal capabilities a file
management mndule might offer. Ideally, sophisticated tonls
would be available for a designer to easily knit specifications
of varinus modules tngether inten a complete system specifica-
tion; however, we have not addressed develnpment nf such tools.

Our interest in formal specificatinns in this paper 1is in

their use as a precise, unambigunus design document detailing

the interfaces nf modules of large systems. Therefore, our

interest here is in their communication aspects among people

since designers must select intelligently among alternative

specifications in the library.

-..2 Basis fnr Suggestinns

Our suggestinns arise from twn studies. The first invelved
creating a cnllectinn of specificatinrns as might appear in a
library. Several data structures including twe kinds of stacks,
four kind{ nf gueues, and binary trees were specified. 1In addi-
tinrn, the functinnal capabilities nf three classes nf text edi-
tnrs were specified by |us. The text editor specifications
ranged from 9 tn 28 pages including cnpinus comments documenting

them. In additinn, implementatinns were written for each of the

e
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mndules specified except one of the text‘éditors.
The second study has inveolved comparing sections of the
English specification and the formal specification of KSOS (Ford

Aernspace, 1978), the kernel nf a secure operating system. One

Ll emphasis here has been comparing the means of conveying informa-
tion, its nrganizatinn, and the type nf informatinn in the for-
mal language and in English. KSOS was chosen, since it is one
nf the largest, most complex systems that has ever been formally
specified and since bnth types of specificatinns are available

3 for it.

2. Prospects far a Library of Formal Specificatinns
There are six issues to consider in the feasibility of such
a library. Understandability is so critical that we consider it

separately in section 3. The others are discussed in sectiens

20 1-2'5v

Appendix II presents a definition of a stack module (called
stackl) which will serve as an example in nur discussion. They
are written in SPECIAL (Rrubine and Robinson, 1976); a brief

descriptinn of that language appears in Appendix I.

2.1 Mndifiability nf a Specificatinn

:; Given that the mnst appropriate specification is found, it f
may not be a perfect match tn the designer's needs. In that .
case, the mnre easily the specification can be mndified to suit

thnse needs exactly, the better. Twe commonsense techniques are

impoartant.

1) The first is to structure the definitions of each

function at the interface'nf a module so that each particular

T e T e TR T TR e TR TR
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detajl that might need mndification is 1localized in only one

subdefinition, Then only one subdefinition need be changed

rather than the changes being spread throughout the -specifica-

tion, {(This is just the notion of abstraction.) PFor instance,

3 suppose nne is defining a search operation fnr_ a text editor,

where the search pattern is a limited form of regular expres-
sion., By abstraction, one can give a toplevel definition, lo-
calizing the definitions of the syntax and semantics of patterns
in a way that makes them very mndifiable. The details of this
3 example appear in Weischedel (1979).

2) The author of the specification should 1list the

decisions that are arbitrary and depend on the environment in

which the module will be used. As an example in the mndule

[ stackl, only the top stack element can be removed; the dncumen-

tation describes the change tn make any stack element retriev-

able. Section E of the documentation in Appendix II lists this
information.
These twn well-known principles will make the protntypes in

the library rather mndifiable.

2.2 Number of Protntypes
For any particular type of module needed, the ideal wonuld

be that a handful nf protntypes would cover the major pnssibili-

ties for a given need, so that the designer can quickly ascer-

! tain which, if any, fits best. If there are many prototypes

T TN N T ] T St AT TR Gy n oy B ——

necessafy for each application, then the time spent analyzing
each nne will make using the library prnhibitive.
In nur study of data structures and text editors, a handful

nf protntypes seem adequate. Even if the instances below are
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nff by a factor nf twn in the number of variations needed, the
fact that only a handful suffice means that the number nf proto-
types to be examined is not prohibitive.

For a stack, ¢twn versinns seem necessary: nne from which
one can read only the last item stqred, and one permitting any
value designated by a movable pointer to be read, but not modi-
fied.

For a qgueue, we suggest four variations: one where reading
nccurs at only the front, a priority queue, and twn character
streams. In a prinrity queue, the first entered of the largest
values (highest prinority) is read or removed from the segquence
before any onthers; no other values can be read. Character
streams enable the details of synchronizing input/output opera-
tions to be hidden in the mndule rather than forcing all pro-
grams to be aware of the means nf synchrenizatinn. One of the
character streams is character oriented; the other is oriented
to lines or variable-length blocks of characters.

FPor trees, we suggest two variations: the binary tree and
the general tree with arbitrarily many branches. We do not con-
sider a threaded tree a third logical variatinn, since it is an
implementation nf a fast means of perfrnrming tree traversal, an
operatinn specified at the interface of the module. Therefonre,
though implementatinns using thread 1links affect performance,
they do nnt change the functinnal capability.

For. text editnrs, we fnund three lngical alternatives. One
has operatinns onriented to adding, deleting, or moving charac-
ters. Another has onperations oriented ¢tn lines and liné

numbers. The third example is an editor whnse nperatinns are

5
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nriented tn moving a cursor on a CRT screen and editing via

changing the screen.

Three principles which emerged from specificatinns we wrote
! should cut down on the number of alternatives necessary for any
given application, if the principles are fnllowed in writing a
new entry for the library. - . |

l) Select a consistent set nf decisions for those details

that depend on the module's use in practice and make those

decisinns easy to mndify using the twn suggestions in section

g.l'

2) Avnid issues that are not fundamental to the 1logical,

functinnal capabilities of the module. Those differences would

multiply the number of entries for a given application in the

library without adding any new abilities. For instance, in

specifying text editors, we did not define a user command

language, £or there are many legitimate syntactic variations,

[ each nf which will be of varying value to different user commun-
ities.

! 3) Specify many fundamental, primitive operations to ive

each protntype a maximal number of basic features. A designer,

after selecting a specificatinn from the library, can delete ‘
operations from the interface nnt needed in his/her environment, ?
assuming that each operation was defined using information- !
hiding as stated in principle (l). Por instance, our specifica- ?
tion of a line-nriented editnr was patterned after a subset of {
the functinnal capabilities of SOS (Natinrnal Institute of t
Health, 1977). Operations c¢nrresponding to the alter mnde,

where the user can mndify a range nf lines using character-

:
{4
!

| .
t
)
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oriented operatinns relative to a prninter, can easily be re-

moved, A second example is in Appendix II, the stack module

with a movable printer for retrieving values at that position.
Six poninter movement operatinns are included; any may be re-
moved.

- In conclusinn, we have insufficient évidence to extrapnlate
beyond the domain of data structures and medium-sized software
tools such as text editors. As the size of the mndule grows, it
is not clear that only a handful of prototypes will be suffi-
cient. Nevertheless, the fact that so few sufficed in those two

domains is quite encouraging.

2.3 Contents nf a Library Entry

First, we consider the type of dncuhentatinn for any given
formal specification in the library; then we consider whether
impleméntations can be stored as well,

The documentatinn with the entry is critical, not only for
understandability, but also for the designer tn be able to
guickly eliminate entries that are not clase to his/her need.

. Then, the designer can focus attention on twn or three that are
most promising. Otherwise, the library would bng designers down
on issues that shnuld be resnlved guickly. Five types nf infor-
matinn seem valuable for quickly deciding on the relevance of a
module specification. (Appendix II contains this documentation

‘ as well as the formal specification.)

1) Oﬁe is a description of the purpnse of the module and

the kinds of needs it fills.

[

2) A second is a summary descriptinn of each class of

} functinnal capabilities the system has. Notice that this kind
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of infoarmation is not stated explicitly in formal specification
languages, but is implied. Fnr instance, in Appendix II the
English summary "Descriptinn®" states explicitly that the first
pointer nperatinn must be either set_pointer_top or
set_poninter_bottom. This is implied by the formal specifica-
tion, though not stated explicit1§, sinéé nthérwise the pointer

is undefined (the "?2").

3) Third, the kinds of decisions not made by the module

should be described; these are implementatinn issues which would

have ¢to be decided after selecting a module specificatinn, when
the cnding phase begins. Tris will reinforce the fact that
answers to thnge issues have nnt already been given. The sec-
tion labelled "Hidden Information™ in the appendix c¢orresponds
to  this. Por instance, in specifying a text editor, we would
write in this section, that a decision to use array storage,
linked 1lists, or other alternatives to store the file being
edited, would have to be made when programming o~f this module

begins.

4) Specific references, such as texts and journals, if

available, sghould be given describing various implementations,

algorithms, and analyses of them for use when programming

begins.

5) As discussed in sectien 2.1, the author of the

specification must include all ways foreseeable that the

specificatinrn might require madification to tailor it o

specific needs. The "Mndifications" sectinn in the examples

covers this.

In addition tn the documentatinn identified above, stnring




implementatinns wnuld be highly desirable. Even f£for a mndule
which has a very simple specificatinn, there may be many dif-
ferent implementatinns. For instance, Horowitz and Sahni (1976)
presents a specification of a symbnl table:; yet, that text
spends the majnrity of two chapters describing and analyzing
alternatives €for implementation,'such as linear search, binary
search, fibonacci search, various hashing techniques, trie in-
dexing, etc. Even a single operatinn can have many competing
algorithms; consider sorting with gquicksart, heapsort, bub-
blesort, and insertinh sort as alternative implementations.

As one considers larger and larger modules, the number of
ponssibilities could grow dramatically. For the kernel of an
nperating system, one would have varinus hierarchical decomposi-
tiorns of the kernel (as a mndule) into many smaller modules.
For each nf the smaller mndules of each of the decompositions,
there wnuld be alternatives in implementation. Some reprogram-
ming may be necessary, since the mndule specification may nften-
times need slight mndification due to varying environments in
which the module is to be used. This will require each program
stored to be very well structured and very well documented so
that it may be easily modified.

It should be technically feasible in the foreseeable future
tn include with the functional specificatinn of the mndule's
interface varinus hierarchical decompositions and corresponding
programs implementing the mndule. Cooprider (1979) presents a
technigue for defining and maintaining a family nf software sys-

tems., His Snftware Constructinn Facility (SCF) provides a

madule intercrnnection language which defines module
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interconnections nf entire systems, the shared aspects (and
differences) amnng versinns nf thnse systems, and the seguence
of nperatinns for assembling versinns of modules intn a complete
system. Parts of the interpreter for SCF have been implemented.
This technique might be adapted to enable a family of implemen-
tations tno be stored in the 1ibraty éven for large systems.
Such tnnls would be invaluable in a program suppnrt environment
(Buxton, 1980), since bnth system specification and system con-
structinn would be greatly facilitated.

However, since the number of implementatinns that may need
te be stored for any module could be relatively large, develnp-
ing a reasonably complete library including implementatinns as
well could take many years. BHowever, the library would be of
great value to designers just with the module interface specifi-
catinrns as the alternative programs for each module are added

slowly.

2.4 Retrieval

Clearly, facilitating retrieval from the library is a cru-
cial issue for the library to succeed; however we have no con-
clusions here. It is not clear what assumptions one should make
regarding the designer. Should one assume the need will be
clearcut, such as needing a specification for a symbnl table
that is suitable for a blnck=-structured language? Or is it more
likely <the case that the designer will have nnly a vague notion
of the need and will have tn browse amrong many wide-ranging

classes onf modules? When it is clear what assumptions can be

made about the designer, nne can determine whether existing

retrieval techniques can be used or mndified.

%98 :shiveo 3
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As a practical issue in retrieval, some modules returned
for a given request are likely to be rather distant from the
true need. The design of the data base of modules and onf the

retrieval language should minimize this for effective use nf the

library.

2.5 Correctness

Obvinusly, the specificatinns in the 1library should be
correct. A program is correct if it fulfills its specificatinn.
One checks program correctness by comparing what the program
dnes against what the specification says it should do. What
then dnes one mean by correctness of a formal specification of a
module? By what standard is it deemed cnrrect? Liskov and
Zilles (1975) views the specificatinn prncess as a translation
from the concept in snrmecne's mind of what a module should do to
a formal specification. In general, it must conform ta our
intent for the module.

One could define correctness nf specifications in terms onf
writing two different specificatinns and proving them
equivalent, but this misses the pnint of the difficulty of writ-
ing specificatinns. Rather, we prefer an informal notion of
cnrrectness nf a specificatinon. To be correct, it must conform
tn the intent for the mndule, it must be internally consistent,
it must leave no cases unspecified, and it should rule nut im-
plementations that dn not conform to the intent for the mndule.
Guttag and Horning (1978) presents formal definitians nf c¢con-
sistency and completeness. Thnugh their definitinns are given
for languages based on algebraic axioms, it is easy tn define

similar notimns for other types of specificatinn languages.

T TTIT T .-
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Gerhart and Yelowitz (1976) presents twn examples of formal

specifications which were incorrect in that they left nut a cru-

cial feature; therefore, programs conuld be written that ful-
filled thnse specificatinons but which did not satisfy the
person's intent.

Three onbvious techniques proved a s}gnificant aid to us in

checking the correctness of specificatinns.

1) Software tonls should perform as many checks as

possible. Development of such tonls is an active area of
research, and several examples exist. (e.g. Roubine and Robin-
son, 1976; and Musser, 1980). We used the SPECIAL specification
handler (Roubine and Rebinson, 1976) which verifies syntactic
correctness and performs type checking on all expressions in
SPECIAL, a strongly typed language.

2) Peer review uncovers many errors, as well as offering

valuable c¢rmments £or improving understandability. If one

creates documentation according ton onur guidelines in section 3,
the dncumentatinn will provide much detailed insight regarding
the intent nf the specificatinn, and therefore will provide a
basis for judging correctness.

3) If one is not using an nperational specification
language, and if the software tools available cannnt simulate

the mndule specified, then a guick implementation in a very high

level language will provide a concrete system for testing the

functional capabilities of the mndule in guestinn. In general,

we wrote implementations in INTERLISP (Teitelman, 1975) for our

SPECIAL specificatinns. This often uncovered specificatinn

errors not detected by peer review or the specification handler.
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The implementations, since they were in such 2 very high 1level
language, tonk remarkably little time, for using the very high

level language enabled us to trade performance characteristics

of the test mndule for programmer time. Fnr instance, the final
mndule checked in this way took only twn to three days £or one
pragrammer to implement, even though it'wés A kernel providing
the functional capabilities of a character-oriented text editor.
Furthermore, we found significant regularity in the implementa-
3 tion nf most types of expressinns in SPECIAL, suggesting that
much of each implementation cnuld be done automatically by a

saftware tool.

3. Understandability
Researchers in the area of formal mnodule specifications and

- abstract data types generally agree that they are difficult to

understand, though the degree of difficulty is argued.

The formal specification nf a mondule must be understandable

if it is to achieve its purpese, for it acts as a contract
between designers and programming team, stating exactly what the
programming team's product must dn (Parnas, 1977). Unless they
are understandable, 1) programmers will not know what the
module they are to implement is tn do nor how to use other
mndules, and 2) designers will not be able to detect design
errors nor easily confirm that their design satisfies user re-
quirements. Also, if one is tn use a reference library of for-

mal specificatinns, they mus* be understandable, for if the

designer cannnt understand the alternative specificatinns, how
can an intelligent chnice be made among the alternatives? If

farmal specifications of mndule interfaces are tn become widely
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used, they must be understandable.

In 3.1 we 1list several reasnns why formal specificationsg

seem difficult tn understand. In 3.2 we make concrete sugges-
tinrns, particularly regarding documentation of the library en-

tries, which will aid understandability.

3.1 Causes nf lack nf understandability
We have found several reasons for the difficulty of under-

standing formal specifications, particularly as compared to

natural language specificatinns. These obéetvatinns arise pri-
marily from our study (described in section 1) of the English
and formal specifications of KSOS.

Two of the observatinns are well-known, dealing with the
nature of formal specification languages.

1) Formal specifications wusually contain far more detail

than natural language cnes do. Attention tn detail, of course,

is requisite in specification. Liskov and Berzins (1977) aéree,
stating on p. 13-5, "Rignrous informal specifications are pronb-
ably 3just as difficult o cnnstruct as formal ones; informal
specificatinns appear easier to construct because they are usu-

ally incomplete."

2) The semantics of specification languages is nften guite

different than programmers are used to. Formal specificatinns A

nf modules are tn be implementatinn independent. Proagramming
languages are designed to define implementation detail. Thus,

the purpnse and focus nf attentirn nf specification languages

are often quite different from programming languages. (The

nperatinnal specificatinn languages are an exceptinn, since they

have semantics similar to programming languages. However,
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Guttag (1980) argues that they have additional handicaps for
understandability: the irrelevant implementation detail and the
need to infer the relatinns between functions at the interface.)

Observations 3 through S concern the nature of natural
language.

3) Natural lanquage has myriads of chncepis already defined

and familiar to us for succinctly stating what a module does,

but formal specifications do not as yet. For example, the con-

cepts of a snrted sequence, a peinter, a line of text, and a
shared segment nf memory are all well-known and are referred to
without further explanatinn., (Yet, this is simultaneously a

serinus drawback tn natural language specifications, since the

notion raised in each person's mind may not be standard.) There

is no corresponding body of defined concepts which have been

taught us and which we have frequently used. Therefonre, con-

cepts such as sorted order must be defined in the specification,
thus adding to what must be understnnd. To the reader onf a
specification, English may appear 1like a very high level
language, whereas the formal language appears like an assembly
language without any significant conllectien of macros or
subroutines tn draw on. Of cnurse, a library of formal specifi-
cations would provide a bndy nf past experience to study and use

as in natural language.

4) Natural language sgpecifications can draw on known

cnncepts through analngy; ne formal specifications allow this.

In the English descriptinn nf KSOS, frequent analngies are made

tn UNIX, both tn explain features that are similar and to draw

specific contrasts; it seems tn be a very effective tonl there.

e e e omt T st o et o e Pt o2
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Annther example is in Bnrnwiti and Sahni (1976). After a
lengthy definition of an "nrdered list", which is their term for
a finite sequence, they intrnduce stacks by stating (p.77), "A
stack is an ordered list in which all insertions and deletinns
are made at one end, called the top." Some attempts have been
madé to include analogy in artificial.inteiligence languages
(Bobrow and Winngrad, 197?), but nr attempt has been made in
specificatinn languages.

S) A person's congceptual view of a module is onften stated

in much different terms than that of present specification

———

languages. An example «~ zhis is a spatial view of modules.
The statement intranducing a stack in the previnus paragraph uses
the terms 'end' ard 'tap', clearly indicating a spatial view of
a stack, rather than a purely mathematical view in terms of
sequences. Hnbbs (1977) states that many descriptions of algn-
rithms use a spatial view.

Observatinns 6 and 7 deal with the different organization
of informatioen in formal specifications c¢ompared to natural
language.

6) English specificatiorns often provide summaries of

detail, whereas formal ones have not, as yet, tending to provide

detail in an isolated way. For instance, in the KSOS specifica-

tion (Ford Aernspace, 1978), the following summarizing statement
appears on page 9, "A SEID shall be returned as the result of
new object creations (i.e. K_create, K_build_segment,
K_create_device, K_fork, and K_spawn)." This summarizes several
things: 1) that the five functinns listed are the ones that

create new onbjects and 2) that all of them return a SEID as a
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value. In the formal specification of KS0S, for each function,
the type nf the value returned, the inputs, input assumptions,
and side-effects are given with each of the functions individu-
ally. However, there is no summarizing of either nf the two
facts as in the English; nne must infer this information from
the particulars. Understanding ‘Seems to reéuire a "cognitive
framewnrk"™ around which to nrganize particulars; ﬁhis can be
stated in English, but formal languages provide nn such organiz-
ing conceptual view.

7) English specifications oaften explicitly state facts

which are only mathematically implied in formal specifications.

For instance, the English specificatinn of the operation
K_build_segment in KSOS goes beynnd the description of only that
functinn by spelling out the sequence nf ather KSOS functions tn
call to set up shared segments nf execute-only code. While one
may be able to infer all of the steps from the formal specifica-
tion, the need to determine so much that is implicit decreases
the understandability of the formal specification. Similarly,
in the documentation of stackl (Appendix II), we state that the
pointer into a stack for arbitrary retrieval of elements must be
set initially by one nf two cperations. This is implied by the
formal specification but nnt stated explicitly. Algebraic ax-
iorms might appear nnt to have this problem, since they focus
attention on the relations between nperatinns at the interface
nf a mndple. Yet, examples specified using algebraic axioms can
lack understandability also by leaving crucial facts implicit.

Fnor instance, a key tn understanding the specification of a

stack in Guttag (1980) 1is recngnizing that any time that the
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stack is empty is equivalent to the time when it was first
created. The axioms do not state this explicitly, though cne
cnuld presumably add one nr more axioms to do so, Rather, one
must first hypnthesize the fact and then prove it true from the
axioms.

These observations lead us to our pt;cﬁicél suggestions for

writing more understandable formal specificationns.

3.2 Practical Suggestinns for Understandability

The first two suggestinns come directly £from proagramming
methndolngy. It is interesting that principles develnped for
structured programming apply equally well to nonprocedural
specificatinn languages nf the axiomatic type. This means that
the principles deal nnt so much with managing contrnl flow as
with managing detail.

1) Complex definitions should be broken up into short

definitions which can be analvzed and reviewed in a top-down

wa!‘
2) Long, descriptive mnemonics, such as

"max_number_of_stacks,” are critical to understandability.

Regarding specification languages, we make the fnllnwing
suggestinn,

3) The specification language should provide a rich set of

primitive nbjects and nperatinns. This will alleviate the lack

nf previnusly defined concepts. PFor instance, suppnse we are
specifyiné a2 mndule which amnng other things, sarts a sequence.
The definition would be much shorter and clearer if a concept
permutatinn{a,b) were already defined in the language or in a

library. For that matter, the concept ~nf a sorted sequence is

[ P ST
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so commen, that its precise definition should be primitive to
the specificatinn language. Unless the languages have a rich
set of structures fnr designers to draw on, the amount nf detail
cnuld be overwhelming.

Suggestions 4 through 8 deal with doncumentation. Though
English will be vague, incnmpleté, and Embigﬁnus, it conveys a
toplevel view arnund which the complete, unambiguous, precise,
frrmal description can crystallize into understanding in the
reader's mind. Of course, the formal specificatinn alone is the
arbiter of all questinns about the module.

4) An English description of the purpose of a module and of

each function available at the interface of the module provides

a general notion or conceptualization for understanding the

formal specification. Such a high level descriptinn is essen-

tial documentation for management personnel.

S) The principle for deciding whether to include a comment

for a line of the formal specification is whether its purpose

and implicatinns would be obvious to the average reader without

a comment. (We are indebted to David Croncker for stating this
criterimn regarding our use of comments in the specifications we
had written.) Not nnly will following (4) and (5) make formal
specifications more understandable, but alse following them
gives each reader nf the specification the ability tn verify
that every aspect and subformula onf it correspends to the
authnr'g intent. This is an informal means of design valida-
tion; for a library of such specifications, the means is very

powerful since mnre and more designers will be reading and veri-

fying a specification as time gnes by.
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6) Certain English constructions can be very difficult ¢to

understand and should be aveoided. The English specification of

KSOS is generally well-written and well-organized. Bowever a
cryptic style of omitting words in defining variables or of
nverusing parenthesized descriptinns makes understanding diffi-
cult on certain points. An exampie exhiﬁiting both features is
the fnllowing definition (p. 27 of Ford Aernspace, 1978) of an
exception conditinn of nne nof the functinmns: "unable to create
new prncess (prssible information channel)®. It is unclear to
us whether a new process cannnt be created because nf a pnssible
infrrmation channel or a new proncess which is a pnssible infor-
mation channel cannot be created or whether something altongether
different is intended. One can avnid these twn features simply
by stating everything as complete thoughts in complete sen-
tences. For the example, this cruld be "A new process cannat be
created because nf a pnssible informatioen channel”.

7) All but very small specificatinns need an index. To

pick an arbitrary figure, formal specifications whose complete
hierarchical definitimn is at least six pages need an index.
The parser for the formal specification can easily create this.
English mnes at least twelve pages in length alsn need an index.

8) If an English description accompanies the formal

specification, as opposed to being embedded within the body of

the formal one as comments, then a cross-reference between the

two is needed. The crnss-reference will not only aid understan-

dability by relating the twn but will also provide an infnrmal
means for penple to check that the formal specificatinn dnes

what its authors claim.
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These suggestions are nnt new ideas, but rather are merely
common  sense. We have concluded that entries for a library of
frrmal module specifications should be prepared with so much
care for understandability that casting away the first attempt
at a specificatinn to create a more understandable one is not
frowned upon. Peer review can be ver& valﬁable to check not
only the correctness of a specification but also its understan-~

dability.

4. Conclusions

Qur preliminary analysis shows that a library of formal
specifications is guite promising. It is particularly enconurag-
ing that for elementary data structures and for text editonrs, a
handful of alternatives cnvered the major variations.

Several research topics are called for. One is a charac-
terization of the kinds of requests a designer might have, sn
that approoriate retrieval techniques c¢ould be develnped.
Secnnd is the implementation af software tonls that wnuld make
the library part of a comprehensive design envirenment. A third
is develnpment nf snftware tonols for integrating stored alterna-
tive implementatinns for a specification intn a program support
environment (Buxton, 1980). A fourth is in the area of formal
specification languages. Since analngy plays such a useful role
in natural language specificatinns, a form of analogy in formal
specificatinrn languages would be a powerful aid in shortening

specificatinns withnut sacrificing detail.

wun-—nn-n-qnvq
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Appendix 1

Brief Description of SPECIAL

This brief introductinn is provided because of the example
in Appendix II; it is nnt intended as a comprehensive descrip-
tion. We will use all capitais wheh referring to reserved
words.

SPECIAL uses preconditions and pnstennditions to specify
each nperatinn which is available at the interface nf a module.
Operatinns are called FUNCTIONS. There are three types of func-
tinns: OVFUN functinns return a value and have side-effects.
OFUN functions have side-effects but return no value. VFOUN
functinns have no side-effects, but do return values.

Por each functinn, preconditions are implied by the se-
guence of EXCEPTIONS. The exceptinns are to be checked in the
order given; if any are true, the functinn exits without wuxecu~-
tion, but with an indication aof which exception is true. There-
frre, the precondition is that none of the exceptions are true.

For each functimn, postcnnditions are listed as EFFECTS.
There 1is nn order to the effects; they are simply true state-
ments. For a function that returns a value, nne nf the effects f

is, of course, the statement nf the value returned. The "s=" f

symbnl means equality, not assignment. Oftentimes one must dis-
o tinguish between the nld value that a secnnd functinn returns
3 and the new value that it returns as a result of the side-
effects nf the first functinn. One can refer tn the new value
by placing an apnstrophe befrre the secnnd £function's name.

That 1is, the expression 'f(a)=f(a)+l in the effects onf a
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function g means that executing g changes £ on the particular
value a; f will return a value mrne greater than what it used to
when called with a as its argument.

The arguments nf a value-returning function are given by a
form such as

function_name (type arg,arg ; tyée arg ;...) => type value.

The types nf course declare the argument types and the type of
the value.

Sometimes it is convenient to define auxiliary functions
which are used in the specification but are not part of the
mndule's interface (and pessibly will never appear in the imple-
mentation). These are defined as HIDDEN. Some VFUNS return a
value which is totally defined as an expression nf other func-
tinns; these may have a DERIVATION stating the expression rather
than an EFFECT defining the value returned. All other VFUNS
must have an initial value in their definition; this folloaws the
word INITIALLY.

Though the section FUNCTIONS is central to the specifica-
tion, there are several additional sections., If an expression
(pr several clnsely related expressions) appear frequently in
the specification, one may state the expression in one place as
a DEFINITION as a means ~f abstraction. The form is

name (typed_arguments) IS expressinn.

The name and argument list may be used anywhere that the expres-
sion should appear.

Though ~ne can give type declaratinns with the fnrmal argu?

ments themselves, nne may declare a type assnciated with an
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identifier throughrut the specification. This is accomplished
using the DECLARATIONS section, which contains a line of the

form:

type identifierl,identifier2,...,identifiern.

One may define new types in terms of. others using the TYPES

sectinn., This has the form

user_type: definition.

Defining a new user type as a DESIGNATOR is a means nf getting a
set of names to uniquely identify objects. In our example the
type stack is defined as a designator, since we are specifying a
module to dynamically manage a set of stacks, and since a name

for each stack is necessary.

Oftentimes in defining a module, nne needs a constant; yet,
that system constant may differ from one system (when actually
assembled) tn another. One can declare such system constants in
the PARAMETERS section. 1In a specification, only its type need
be given.

Expressinns include the normal arithmetic and boolean
types. A guestion mark represents the special value UNDEFINED.
Expressinns may be guantified. For instance,

(EXISTS INTEGER j | ¢{(3) : p(3))

means that there exists an integer j with c(j) being true such

that p(j) is true, The contents nf a vectnr may be defined by

an expressinn such as

VECTOR(FOR m FROM initial TO stop : f£(m)).

That expressinn defines a vectnr c¢ontaining (stop-initial+l)

T N e——
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elements, The first elemeﬁt of the vector is given by
f(initial), and the last by f(stop). The empty vector is writ-
ten as VECTOR(). The ith element of a vector v is referred to
by v[i]. Only two nperatinns of the expression language can be
performed on DESIGNATORS. One is the equality check. The
seénnd is the nperation NEW(4), which wili give as a value nf a
new designator from the class @ of designators.

Comments are enclosed by parentheses and preceded by a dnl-

lar sign.
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Appendix II
The Library Entry for One Stack Module

Stackl

A. References

Chapters 3 and 4 nf Fundamentals of Data Structures, by

Ellis Horowitz and Sartaj Sahni, Computer Science Press, Inc.,
1976 give three implementatinns of the basic features of a
stack. These would have to be extended to allow the pointer

nperations nf module Stackl.

B. Hidden Information

Users nf the mndule cannot answer the following questions:
Are the stacks implemented using an array nor linked list? Do
all stacks share nne array nr dnes each have its own array? How
many wnrds, bytes, or bits are used per data element in the
stack?

cC. Description (an aid to understanding the definition, thnugh
the definitimn is the arbitrater of all issues onr guestions
raised)

The fnllowing twn paragraphs mention features that this
module has in common with the module "stacks". The last para-
graph deals with features not found in the simpler alternative,
"stacks".

This mndule manages any number of stacks up to the imple-
mentation . constant "maxstacks". The data structure represented
by a stack maintains a sequence nf items. "Push®" adds an item

tn the seguence at ~ne fixed end nf the sequence. An item may

be remnved from the sequence at that same fixed end using "pop,"

IO, AP 2 - Tor e A SIS WA et
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which additinnally gives its value as the value of the procedure
call. One may nbtain that value without removing the data item
from the sequence via "top". One can ask whether there are any
elements in the sequence or not, via "empty". The maximum
length onf any sequence is "maxsize". The data items are in-
tegers whose absolute value is bndnded by "maxelement”. New
stacks may be created and nld stacks released via "create_stack”
and "delete_stack".

The function “stack(s)"” is HIDDEN. Therefnre, it can never
be called, nor does it imply an implemenfatinn using arrays or
sequential memory. It merely indicates the effects of "push" or
"pop" on the sequence of items. The specification implies that
only the element mnst recently entered may be removed; this pro-
perty has led to the phrase "last-in-first-out” or LIFO.

One can retrieve values from any pnsition in the sequence,
using "printer”, a HIDDEN function indicating which 1is the
current position, "Value_pointer" retrieves the value at that
location. One can move the current position via any of the
nperations "find_element_up", "find_element_down",
"move_pointer_up", "move_pointer_down", "set_pointer_top", and
"set_pointer_bottom". Initially, £for any stack, there is nno
current pnsition; the only way tn initialize the current posi-
tirn is with "set_pointer_tnp" or "set_pointer_bottom". One may
delete all elements that were added after a certain item by
first gnsitinning the printer to the first element after the

item and by calling "upper_delete".

D. Mndificatinmns

Stacks of course do nnt have tn be sequences of integers.
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The declarations which must be changed for REALs, CHARS, etc.
are marked by comments in the specification,

One may wish tn retrieve any element in the seguence, re-
gardless nf the pninter's current pnsition. Por this, one may
add annther functinn:

VFUN value (s;INTEGER j)=->i;
$(random access read nf data
items in stack)
EXCEPTIONS
stack(s)=?;
j<1 OR j>size(s);
DERIVATION
stack(s) [j]:
$ (Note that value(s:;l) is the
first element added to the
sequence, not the last one.)

E. Alternatives
In some applications nne may not need the notien of a

“current poasition® and retrieving the value there. Refer tn the

specificationn "Stacks” for a module not having this feature.
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MODULE stackl
TYPES

stack_name: DESIGNATOR:
stack_content: INTEGER; $( This is for a stack of integers. The
type specification must be changed for a

different type of data element)

DECLARATIONS

stack_content i;
stack_name s;

VECTOR_OF stack_content q;
INTEGER p, k:

BOOLEAN b;

PARAMETERS

INTEGER maxsize, §$( This is the maximum size of any stack)
maxstacks, $( This is the maximum number nf stacks
permitted)
maxelement; $( This gives the maximum absnlute value
storable in any stack. For a stack of data
type other than INTEGER, this must be

changed)

DEFINITIONS

INTEGER nstacks
IS CARDINALITY({ stack name s | stack(s) "= ? });

INTEGER size(s) IS LENGTH(stack(s)):

FUNCTIONS

VFUN stack(s) -> gq; §( This represents stack s)
HIDDEN;
INITIALLY
q=2;

VFUN pointer(s) => p: $( Pointer(s) defines a current element in
stack s) ;

HIDDEN; 5
INITIALLY ;

P =2 :

VFUN empty(s) => b; $( The functinn returns true, if stack s
contains no elements, ntherwise, false)

EXCEPTIONS
stack(s) = ?;

DERIVATION
size(s) = 0;

P e e v
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VFUN top(s) => i;
$( This returns the value most recently pushed onto

stack s. Annther derived VFUN, which is just the
macro size(s), might be added)
EXCEPTIONS
stack(s) = ?;
empty(s);
DERIVATION
stack(s) {size(s)]:

OFUN find_element_up(s; i);
$( The pointer for s is moved to the element, whose

value is i and which was the first such pushed onto s
after the current element)
EXCEPTIONS
stack(s) = 2;
empty(s):

1 pninter(s) = 2;
NOT (EXISTS INTEGER j | j > pointer(s) AND j <= size(s):

stack(s) [j] = i)

EFFECTS
'pointer (s)
= MIN({ INTEGER j | j > pointer(s) AND j <= size(s)
AND stack(s) [j] = i });

OFUN find_element_dnwn(s; i);
$( The printer for stack s is set tn the element, whnse

value is i and which was the last such pushed ontn s
befnre the current element)
EXCEPTIONS
9 stack(s) = ?;
empty(s);
pointer(s) = ?;
: NOT (EXISTS INTEGER j | j >= 1 AND j <= pninter(s):
. stacks(s) [j] = 1i);
i i EFFECTS
P 'pointer (s)
= MAX({ INTEGER j | j >= 1 AND j <= pointer(s)
AND stack(s) [j] = 1 });

OFUN move_pninter_up(s; k);
$( The pointer for stack s is set tn the element, which

’ was pushed onto the stack k elements after the current

element)

EXCEPTIONS

stack(s) = ?;
\ empty(s) ;
‘ pointer(s) = 2;
- k ¢ 0;
: ‘gsize(s) < pninter(s) + k;
EFFECTS

'pninter (s) = pointer(s) + k;

R AR TR AN . TNV i # e ———
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OFUN move_pninter_dawn(s; k):

$( The prninter for s is set to the element, which was
pushed ontn stack s, k elements before the current
element)
EXCEPTIONS
stack(s) = 2?;
empty(s);
printer(s) = 2;
k < 0;
k >= pointer(s);
EFFECTS
‘pointer(s) = pointer(s) - k;

OFUN upper_delete(s):;
$( All elements which were pushed onton the stack s,
on or after the current element, get deleted. The
pointer for s will still point to the top of the stack,
unless upper_delete empties the stack (in which case
the perinter becrmes ?.))
EXCEPTIONS
stack(s) = ?;
empty(s) ;
pointer(s) = ?;
EFFECTS
IF pointer(s) = 1
THEN ‘'stack(s) = VECTOR() AND 'pointer(s) = ?
ELSE 'stack(s)
= VECTOR(FOR j FROM 1 TO pointer(s) - 1
: stack(s) [j])
AND 'pointer(s) = pointer(s) - 1;

OFUN set_pninter_top(s); $( The pointer for s is set to the ele-

ment most recently pushed onto stack s)
EXCEPTIONS

stack(s) = ?;
empty(s);

EFFECTS
‘pointer (s) = size(s);

OFUN set_pninter_bottom(s); $( The pointer is set to the element

least recently pushed ontn stack S)
EXCEPTIONS

stack(s) = ?2;
- empty(s):
EFFECTS

‘pointer(s) = 1;

VFUN value_peointer(s) => i; §$( The value returned is the one the
LT printer currently references)

EXCEPTIONS

stack(s) = ?;

empty(s);

pointer (s) = ?;
DERIVATION

stack(s) ([pointer(s)]);
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OVFUN create_stack() -> s; $( This initializes a new stack
which will be named s.)
EXCEPTIONS
nstacks >= maxstacks:
EFFECTS
s = NEW(stack name);
'stack(s) = VECTOR():;

OFUN delete_stack(s); $( This removes everything from stac.. .
Afterwvards .s cannnt be referred to.)
EXCEPTIONS
stack(s) = ?;
EFFECTS
‘'stack(s) = ?;

OFUN push(s; i):
§$( Push adds i to stack s, making i the element returned
by tep(s))
EXCEPTIONS
stack(s) = ?;
size(s) = maxsize;
i < (- maxelement OR i > maxelement;
$( This must be changed for a data type other than
INTEGER)
EFFECTS
'stack(s)
= VECTOR(FOR j FROM 1 TO size(s) + 1
: IF j <= size(s) THEN stack(s)[j) ELSE i);

OVFUN pop(s) => i;
$( This removes the item most recently pushed ontn s and
updates the pointer for s so that if it did peint to the
element being popped, it will then ponint to the new top)
EXCEPTIONS
stack(s) = ?;
empty(s) ;
EFFECTS
i = top(s):
'stack(s)
= VECTOR(FOR j FROM 1 TO size(s) =~ 1l: stack(s)[j]):
IF pninter(s) = size(s)
THEN 'pointer(s) = pointer(s) -1
ELSE 'printer(s) = pointer(s);

END_MODULE
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