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1.2 Introduction

In many areas of science, business, industry and govermment, optimizing
techniques are commonly applied to solve routine problems. Topics on
optimization have become an important area of study in disciplines such
as Operations Research, Chemical Engineering, Electrical Engineering and
Economics. Mathematical techniques related to optimization have been
developed over the past several hundred years and with the applications
cf modern computers, these techniques are making an impact in many other
areas of science and engineering.

Statistical procedures often require optimization and in a sense
one may regard statistics as a subarea of optimization. There are many

applications of optimizing methods in the major branches of statistics

that the study of optimization becomes an important area for the statistician.

The variety and uriversality of the use of the optimization techniques
can be gauged by a cursory perusal of the contents of the two volumes
on Optimizing Methods in Statistics, Rustagi (1971, 1979). The purpose
here is to develop a logical introduction to important areas of optimization
as they are applied to statistical problems. Several examples are given
from statistical areas where optimizing techniques play a major role in
their solution. We consider examples from Estimation, Nonparametric
Statistics, Design of Regression Experiments, Sample Surveys, Multivariate
Statistics, Inference, Information Theory and Regression Analysis to
motivate the study of optimization.

The scope of optimizing techniques is fairly extensive. However,
we shall put emphasis on those areas of optimization which find

frequent applications in statistical problems. The classical techniques
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of optimization will be discussed first and numerical methods of optimization
will be discussed next. Linear and nonlinear progranming methods will

be described and variational techniques having connections with dymamic
programming and Portryagin Principle will be discussed later. Applicaticng
of other optimizing techniques such as those of Stochastic Approximation

will also be included.

1.2 Statistical examples using classical optimizing techniques.

Example: Let Xl’XQ" . ’Xn be a random sample from a population
having a normal distribution with unknown mean u and unknown variance 02.
The estimation of u and 02 by the Method of Maximum Likelihood requires
maximizing L(u,oz) where

- —1—2- z (:-ci-u)2

n 20

Lp,0%) = () e . (1.2.1)

vZno

In this problem, the solution can be obtained by simply equating the
partial derivatives of log L to zero and solving the resulting equations
to obtain the necessary conditions for an optimum.

Suppcse that there is a constraint imposed on the parameter u, say that
| is always positive. In this casé, further attention is to be paid to
the process of optimization to obtain the estimate for u.

Example: Let PysPpses P> Py > 0, and '}i;l p; * 1 be the probabilities
of a trial ending in k possibilities. A sampi; of n trials, leads to
Xq9Xgse e yX , OCCUITENCES of various possibilities. The maximum likelihood
estimates of P1sPgps---sPy are obtained by maximizing L.(pl,. e ,pk) such that

%Xy X
2
L(plapzaov-,pk) = pllpz ...p:k ’ (1.2.2)
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with constraint, P *Py ety = 1. Usual method of lagrange's multiplier
rule is used to obtain the soluticn.
Suppose that there are inequality restrictions such as
Py <Py SoS Ry

on the pi's. In that case the estimates have to use the modern methods

~D

.3)

~~
[N

T

of programming.
1 Example: Consider a normal p-variate population with mean R and
covariance matrix % let Xpoes ooy be a randem sample from the distributiorn.

The logarithm of the likelihood is a constant multiple of L(’;\{’,%) where

AR

- LGe,p) = - log IE] - tr 7Y (1.2.9)

) 1 - '
with VvV = ﬁ t' (&-%) (%—@
- Again differential calculus provides the maximum likelihood estimates of B
and % Suppose an additional sample of size M is given on the first

k(k<p), of the components. Then the problem becomes more complicated.

A recent discussion is due to Anderson and Olkin (19879) for finding
Maximum Likelihood Estimates of j and Z. Similar problems arise when
some of the components have missing observations.

Example: Bounds of serial correlation coefficient for the time

series X1sX5,. .. are needed. The serial correlation coefficient of sth order is

1 defined by
; n-S

t§l KKt

=, (1.2.5)
n-4 n 2
L Xy
t=1




Consider the upper bound of lLl for 4 = 1. This is the problem of

maximizing <l which is equivalent to
n

max L x. X
+
t=1 T t+s

subject to the constraint
12
b X = constant.
t=1
Using lagrange's method, the sclution of the above proublem can be obtained

Chanda (1962). Contrary to usual belief that correlation coefficient as

defined is between -1 and +1, the serial correlation coefficient is

defined in (1.2.5) does have higher bounds than 1.

wh

Example: (Constrained regression)

The multiple regression model generally assumes that

L4

b X8 + ¢
VAV v
é where y is nxl vector, X is a nxp matrix of known constants, B is a

Y
pxl vector of parameters and g is a ml random vectors of errors, wirth

. 2 .
means ,Q and covariance G { The least squares estimates of R are
obtained by

rn:iB_n (x-i(}%)'(x—%/%)- (1.2.86)

However, when 8 is constrained so as to be in a specified set e.g.

B > By» we have a constrained optimization problem and in most cases, such
"

an optimization problem requires the use of modern programming methods,

Exarple: (Optimal allocation in survey sampling)

B, TR T

A large number of problems in survey sampling require optimum i

allocation of resources since the surveys are constrained by total cost,

time or the sampling units. Consider for example the simple case in

[
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cluster sampling where one is interested in determining an optimal size

¥ e s bt
s

of a cluster which produces the minimum variance of the sample mean for
a given cost.

Suppese M be the number of total units to be divided among N clusters
of size MC each. Let S&, be within-cluster variance and Sg be the between-
cluster variance. Let the sample size selected be of size n. let the

. corresponding cost Cy assoclated with a cluster regardless of its size

o  domws WP W SN e

and Cw be the cost associated with each element regardless of cluster
‘ size. Then for a fixed cost C, we have

C = nCB + nMOCw

HORPR T

and we want to minimize the variance of the overall average, Y,

2 2
SYR IS
w08 (1.2.7)

=, . n
3 Vly) = (0 - &) T

The optimal solution turns out to be

C
Y - B (1.2.8)

opt ~ 2
B PR

For further details and other problems in sampling using optimization

methods, the reader may refer to Jessen (1978) and Cochran (1563).

1.3 Statistical examples using numerical techniques.
Example: Consider the problem of estimation of parameters of the

Gamma distribution

A e,x/sﬂ{a_l -

L f(x) = —a——— x>0 (1.3,1)
3 T(a)B

i =0 ) elsewhere.

The maximum likelihood estimates are given by equating the partial

Rt b
R

derivatives of log L with respect to o and B, where




-Ix.
log L = 81 + (a~-1)L log X;
- n log I'la) - na log R. (1.3.2)
The equations are
%X -aB =0 (i.2.3)
and
r log x; - rr;<§) ~-nlog B=20. (1.3.8)

These equations can be solved only through numerical methods. Tables of
the diagamma function I'(a)/T'(a) are available, Pearson and Hartley (1954), i

to facilitate the solution.

Example: (Survival Analysis) |

Suppose the times to death of an individual follow an exponential i

P B

distribution with parameter A, The number of 4 deaths observed at

R——

times tl’tZ""’tn are known out ¢f n individuals under study. The study

is to be analyzed at time a. The estimate of the parameter A is obtained

et e S A et 8

by considering the following likelihood

|
i
A i
-A ¥ t. 1
. 1 n—-A
i= - t
L=t e (1.2.5) ;
n A&

or log . = hlog A-A L Tt (n=)log(l-e™"%). The likelihood equation ,
1=1 i
for A is §
-Aa .

-3 " ae =9 -
. - Lt + T XA (1.3.6) -
A 1 l-e !

The above equation admits only a numerical solution for A. The roots of

the likelihcod equations lead to the maximum likelihood estimates.

Example: (Reliability)

1 Realistic models in reliability theory and survival analysis require

nunerical evaludtion frequently. Consider the three parameter Weibull

e e ————
T
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distribution model for the time to failure, for a given individual. The

probability density function is given by

f(1) = t> (L.3.7)
0 t o< U

I e

ks

Here B, § > 0 and w > 0.
Suppose the experiment is conducted over the period (O,to) and the times

of failures of s individuals outr of & on test are given by Tt

i
I
l
i Ll g (F-g‘i)a] ,
|
|
l

Then the likelihood of the sample is given by
' no R
{ ; - n! & 00 ti-h 8-l

! CEN TS IS .l
, A=hgdi g T8 321 € g )
. ny e R o
, exp|- = (_—8—) (1.3.8)

1=0
n-n
1 - expl- (T—-) ]

The maximum likelihood estimates of p, B and & can only be obtained
numerically., Several such procedures are available in the literature.
Mann, Schafer and Singpurwalla (1974) provide many other models in reliability

and survival analysis leading to numerical procedures.

Example: (Curve fitting problem)

Suppose measurements of neutron flux (y) are made in a nuclear

reactor at various points (x) and the curve to be fitted is

W A e e o

y(x) = A Cos (Bx+E) + C Cosh (Dx+L). (1.3.9)

s 3 ) i +4

At points, X; i=1,2,...,01, adjusted, y;» were made and using the

assumption that variance of the counts is proportional to its mean, It is of

7 P
interest to find

e g
»

=S

» By Cy, D and E such that we minimize S with

N e on Btagae ol o




.~ 2
by, = A Qos (Bx+0) - C Ooch (Ix,+D)]
4

s: 3 1.2.20)
i1 a. (A Cos (Bxi;?l) - T Cosh (Dx.¥E3)
or to simplify the problem by minimizing S$* with
n . .
& - -1 — - P4 - 5
S* = I (ai.yi) {y;-A Cos (Bxiﬂ,) - C Coshi (Dxiﬂ;)] . (Z.3.10

1=1
The nonlinear form of the function does not allow us to obtain estimates
of A, B, Cy, Dand £ in closed form. Hooke and Jeeves (1961) provide a
nunerical method by "Direct Searcn" technique for this optimization

problem.

Example: (Response surface designs)

TN AT, T B

Consider the following relationship between the mean u of a response
variable y and the independent variabies X with unknown parameters §;

R o= f(K‘,’fQ)
wher= x = (xl,... ,xp)' is a p-dimensiocnal "design" variable and

e

g = (61,.. . ,G,L) is a a-dimensional paremeter. Since the function £ is

generally unknwwm, it is estimated by polynomial of certain degree and

then the estimates of § are obtained by some method of estimation.

Let §r(,€) = estimated response at X.

The problem in response surface designs is to find that design. that is,

X,such that we minimize

[
(O3]
; -
[ae]
~r

; . :
: . J =2 S (y) - u) (
L GG - uGp e

over the class of all X

Several approaches are available in the literature. Initial impetus i

l
!

was provided by Box and Wilson (1951).

e et g -
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mathematical programming.

b e 4 e i s re sl

Mathematical optimization techniques with inequality constraints

i

most often iead to problems of mathematical propgramming. There is a
considerable literature in the appiication of mathematical programming in
statistics, for a rezent survey, see Arthanari and Dodge (1981).

Example: (Linear Regression)

Wi

A common model of linear regression is the following

v = +
A

SE
om

where v 1s a vector of n dimensions, he is a nxp masrix of known constants,

R is a p-dimensional vector of unknown parameters anc g is an n-vector
2 of residuals. Suppose 1t is assumed that
% > 0 (1.%.3)

. v

where 135 some gxp xnown matrix. It is proposed to estimate 8, in general
X : 2 g

PTIEET

L2

by least squares method so as to minimize

(x—;é%)’(x—g\(/@) 1.4.2)

subject to (1.4.1). The above problem then reduces to the problem of

quadratic programming and there are well-known algorithms to deal with
such problems. Severai authors have contribuzed to this area, see for

example Davis (1978), Judge and Takayama (19€8).

Example: (Sampling)

One of the common problems in sample survey is the estimation of the

Gk

total y, of a finite population given by

red

;\J' '*
i'i

"

. 1=1
where yl* ,yz"‘,. .. ,yT'-"‘ are the possible individual values of items in the

population; ;\fi is the number of units in the population having values y.¥*.

[ ———
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Let ng be the number of units in the sample with values yi’" s0 that under

PRI

simple random sampling, of size n, we have n = Zni, the maximua likelihood

estimate of y is obtained by maximizing the likelihood

N. {
T (ni)
L= lgl(ﬁy (l.u.u) i

with n = Ing, being the total sample size. The optimization in this case

reduces to an integer programming problem, Hartley and Rac (1969) in their

paper on A new estimation theory of Sample Curveys. TFor other problems
in survey sampling using mathematical programming, see Rao (1979),

Example: (Design of experiments)

An important class of designs is concermed with factorial experiments.
When the number of factors is large, all treatment combinations cannot

be used in a block of ordinary size and hence fractional factorial designs

G

have been developed. A recent introduction in the study of fraction

factorial is the concept of cost optimality. The problems of finding

i cost optimal fraction factorials naturally lead to programming problems,
‘i Neuhardt and Mount-Campbell (1878). |
' Example: (Least absolute value estimate in two-way classification). é
Consider a two-way classification model “
= Vig TR By e (1.4,5) f
- ! N
T 121,20 000k, 351,250 000, K=1,...,0 ‘i
ﬁ z with T,y = ZBj = 0. VijK can be regarded as kth observation at the ith }
3 level of first factor and jth level of second factor. [
?; We obtain the least absolute value estimates of u, o, Sj by minimizing ;5.
! :
g i . E ':z]‘, }}i !yijk -H-o - Bj“ (1,4.6) :j
£ ;

RO UOU Y. 9 U ST R S e T L v - . O
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This problem is equivalent to the following linear programming problem,

. AR (1.4.7)
i (dl]k + dl]k) (

£ Minimize LI
i

subject to

Btoas t B, dijk - disy = Vs, (1.4.8)

A large number of other application of programming methods to Least Absolute
Value Estimation is found in Gentle (1377).

Exampie: (Estimation of Markov chain probabilities)

A

Consider the problem of estimating the transition probabilities

pij(t) of the Markov chain Xy t=1,2...,T, and 1,3=1,2,...h. Here
.. = i = 4. = 4. (1.4.9)
pl](t) PriX_ éj[xt_l 51

1

where 355 1=1,2,...2 are the finite number of the stutes of the chain.

Here Z T p..(t) =1 (1.4.10)
- N l]
13
.
and 0 < pij < t. (1.4.11)

Suppose the chain 1s observed for N(t) independent trials. Let wj(t) be

the proportion of events which fall in jth category. The likelihood

of the sample, then, can be obtained as follows
X T
S - N(t) ! (1.4.12
L= T mNCEsw (e TONCE) - ENCEY (o 412
t=1 m K
. m k
3 L
3 ‘ N(t)wj(t)
g { . ?cwi\t'l)pij<t))
¢ | NC(t) - £ NCEw(t)
z K k
S (
o (1 - 22w (t-D)p:.(t))
: ki * =
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The problem of maximizing the likelihood in (1.4%,12) subject to (1.4.10) and (1.%.11)
is a nonlinear programming problem. This problem with other manifestations

is studied by lee, Judge and Zellner (1968).

1.5 Variational methods in Statistics.

Classical methods based on calculus cf variations have been used
extensively in applications, especially for studying physical and mechanical
system. Their use in statistics and economics has resulted in new
developments of variatiocnai methodology. Variational methods are concerned
with optimizations of functionals over a class of functions such as
minimizing or maximizing integrals of functions over a class of functions
subject to certain constraints., In statistics there are many applications
which depend very heavily on variational techniques. A recent book on the
topic is by Rustagi (1976). We provide a few examples from statistics
using classical and modern variational techniques.

Example: (Order statistics)

Suppose Xp S ¥y SeelSxy is an ordered random sample from a continuous
distribution function F(x). The expectation of the largest order statistic
X, is given by

L(F) = / x a(F(x)). (1.5,1)
An important problem in utilizing order statistics is to find upper and
lower bounds of L(F) when the mean and variance (say) of the random
variable X are given.

Similarly one may want to find the bounds of the expectation of the
range, Xn - Xl’ of the sample. That is,

min(max) f x d{1-F(x) - (1-F(x))™} (1.5.2)

PR S

suoject to certain constraints.

S, e - e wa¥BT Yo :
‘- 1 o rwentheEine e a . .‘;
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Such problems occur in nonparametric statistical inference and various
generalizations have been discussed by Rustagi (1957).

Example: (Mann-Whitney-Wilcoxon statistic).

Suppose we are interested in the bounds of the variance of Mann-
Whitney-Wilcoxon statistic for various applications such as finding
confidence intervals for p = Pr(X < Y). The integral we minimize (maximize)

reduces to

2
I(F) = J(F{x) - kddx (1.5.3

— el AR RS A e

subject to the condition

»

/ Flx)ax = 1 - p. (i.5,i)

This is a variational problem and has been treated in detail by Rustagil (1961).

Example: (Efficiency of tests).

g)
)
3
[
}. 4
o}
@
'
£
L

{

random sample from a population having a centinuous
distribution function F(x). Suppose we are interested in testing the
hypothesis

H .

L P(x) = G(x)

vs.
Hy: G(x) = F(x-6)
with 0 as some "~cation parameter. The relative asymptotic efficiency

of Wilcoxon test with respect to t-test (which will be used if T and G were

normal distributicns) is given by

it U G

T(£) = Sel(x)dx (1.5.5)
where f(x) is the corresponding probability density function of X,
g A problem of interest in nonparametric inference is to find bounds E

3 I of I(f) subject to side conditions suc. as,
l
‘.
|

. Lo P JUG T
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S Fix)adx

1

J ®F(x)dx = 0.

[}

For details, the reader is referred to Hodges and lehmann (1956).

Ixample: (Regression designs)

Consider a simple linear regression model,
y= o+ fx+e

where a, B are the uniqown paraneters, x is the Independent variable

and £ is the error with mean 0 and variance 02.. In regression design

of experiments, the investigator is interested in allocating n observations
at Xyye..5¥, SO as 1o optimize certain function of the estimated parameters.
A common criterion of optimality 1s the D-optimality where the determinant
of the covariance matirix of the estimated factor of parameters is optimized.

~

- . By r 2 2
For example, given a sample of size n the covariance of the (é) is Mo®, where

e AN 2 .
X ~LX.
1 - 1
nL( xi—x) ny (xi-§)
M= . (1,5.6)
-IX. .
i 1
— —7 EP—)
T(x. =) {x.—-x)°
1 i

Assuming that 02 is knewn, the problem of optimal regression design is

to find Kl,xz,. LN such tl.at the determinant of M is maximized. There
are many other criteria of optimality, a detailed account is availaRle in
Federov (1971).

cxample: (Robustness)

M-estimates of a location parameter, 6, for a probability density

function f(x-6), with cumilative distribution function, F(x-0), are defined

by Huber (1972). A Statistic ,, based on the random sample, ¥X;5X;,. .. 0%,
n

from £(x-0) is an M-estimate if it maximizes ¥ p(xi—Tn), for some metric p.
i=1

T, is given by tie equation (1.5.7).




B L)
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15 _
iElW(xi—Tn) =0 (1.5.7) ;
with y = p'. lkote that if p(x) = -xz, we get
least squares estimates and if p(x) = - %%g%', we get maximum likelihood

estimates. Tt has been shown by Huber under fairly general conditions

that the asymptotic variance of Tn is V(y,F), where

- § (=T - 1.5.
V(y,F) = IETET%i:TT?T3§TJ Fl{dx), ( 3)

with Tn + T almost surely as n + «, The problem is to find an FO over the
class of functions I which minimizes V(y,T), This reduces to a variational
problem. Uniqueness and existence of the solutions have been discussed

by Huber (1972). Many other problems related to robustness studies

leading to the applications of variational methods have been recently

discussed by Bickel (1965), Portnovy (1977), and Collins and Portnoy (1979),

Example; (Admissibility)

Llet p@(ﬁ) be the m-dimensional multivariate normal density of a

random vector x. Let Q(%) be an estimator of g, and let the loss function be

L(8,£) = (§-0)'D(-$)

;
i
;

with D as a known matrix.
Suppose G(g) is the prior distribution function on §, R(3,8) = Ee{L(g,é(ﬁ))},
v
and the Bayes risk is denoted by
B(G,é) = fRQQ,Q)C(dQ). (1.5.9)
Then the Bayes estimator with prior G(§), is given by
JOpL(x)G(de?
5 (o = DR (1.5.10)
G fp6Z§5bde5
v
_ AgT ()
or 6G(é) = x + ‘—""'T_)_ 3 (1.5.11)
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B i s e i

when g*(ﬁ) E fpg(ﬁ)G(dg) and Ag*(x) denotes the gradient vector of g#(x).

The sufficilent condition for an estimator 5F(§) to be admissible is

the following:

"There exists non-negative finite Borel measures, Gi i=1,2,...

G; having compact support with Gi({O}) = 1, such that

R ) 1.5.12)
B(G; ,6p) B(Gi,SGi) 50 i

as i » o, "

The above condition (1.,5.12) reduces to

a2
I(gh,£%) = fI[A(?%Eziy) 1E Fe(x)dx (1.5.13)

3 i A
Minimizing I(g®*,£*) answers the problem of admissibility of the estimator
fp(x) using techniques of calculus of variations. An elaborate account

1s in Brown (1871).

Example: (Penalized maximum likelihood estimation)

Tor various reasons, the estimation of the probability density function

f(x) based on a sample Xl,...,Xn is made using a known penalty function
e-@(f)

let the likelihood (penalized) be

n
- L(E) = T £(x e )

(1.5.14)
] i=1
ﬁ" The problem of finding penalized maximm likelihood estimates is to find j
2 1 max L(f) subject to constraints, g
i JEG)Ax = 1 a

1 and f) > 0.

This optimization problem reduces to a problem in variational methods,

VR

3 Detailed discussion of this and related problems is given by De Montricher,

Tapia and Thompson (1975).
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