
Distributed Intelligence
for Air Fleet Control

Randall Steeb, Stepi:-Jnie Cammarata,
Frederick A. Hayes-Roth, Perry W. Thorndyke,
Robert B. Wesson

Rand

Th{' research described in this report was sponsored by the Defense Advanced

Research Projt>cts Ag-ency under ARPA Order No. 3640/3473. Contract No.

MDA903-78-C-002~). Information Processing Techniques.

l.ibrar~ of l"unl(rt"" Cataloging in Publit·atiun ()ata

~ain entry under title:

Distributed intelligence for air fleet control.

"R-2728-ARPA."
Bibliography: p.
1. Air traffic control. I. Steeb, Randall,

1946- II. United States. Defense Advanced
Research Projects Agency. III. Rand Corporation.
TL725.;.T7D57 629.1;6•6 81-13913
ISBN 0-8330-0353-4 AACR2

The Rand Publications Series: The Report is the principal publication doc­

umenting and transmitting Rand's major research findings and final research

results. The Rand Note reports other outputs of sponsored research for

general distribution. Publications of The Rand Corporation do not neces­

sarily reflect the opinions or policies of the sponsors of Rand research.

Published by The Rand Corporation

R-2728-ARPA

Distributed Intelligence
for Air Fleet Control

Randall Steeb, Stephanie Cammarata,

Frederick A. Hayes-Roth, Perry W. Thorndyke,
Robert B. Wesson ,

October 1981

Prepared for the
Defense Advanced Research Projects Agency

Rand
SANTA MONICA. CA. 'l040b

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

PREFACE

This report summarizes the results of a nine-month investigation of distributed

intelligence for air fleet control, conducted for the Information Processing Tech­

niques Office, Defense Advanced Research Projects Agency, under Contract No.

MDA 903-78-C-0029. The work has focused on development of organizations for

cooperative problem-solving in complex, spatially distributed systems, using air

traffic control as an illustrative context. The results should interest practitioners

and researchers involved in developing systems or methods for distribution of tasks

among a team of spatially or functionally distinct processors. The research follows

some of the directions and approaches established in previous Rand research proj­

ects on situation assessment and planning. Related research is reported in the fol­

lowing Rand publications:

Network Structures for Distributed Situation Assessment, by R. Wesson

and F. Hayes-Roth, with J. Burge, C. Stasz, and C. Sunshine, R-2560-ARPA,

August 1980.

Cognitive Processes in Planning, by Barbara Hayes-Roth and Frederick

Hayes-Roth, R-2366-0NR, December 1978.

Dynamic Planning: Searching Through Time and Space, by R. Wesson and

F. Hayes-Roth, P-6266, February 1979.

ill

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

SUMMARY

This report examines several means of using distributed artificial intelligence­

heuristic methods whereby multiple processors cooperate to achieve a common set

of objectives-for commercial air traffic control (ATC). The ATC task consists ofthe

ground- or air-based coordination of multiple aircraft with different performance

parameters and destinations. The controller is responsible for maintaining separa­

tion between vehicles, environmental data-gathering, and route planning for air­

port arrivals, departures, and overflights. These activities demand complex, time­

stressed, communications-rich, and spatially distributed problem-solving. Distrib­

uted planning and control techniques may be more effective than conventional

centralized control in such environments because they offer greater speed, reliabili­

ty, and flexibility, and because they minimize the need for costly long-distance

communications.
This report focuses on the development of a number of system architectures for

distributed situation assessment, planning, and control. The design kernel of these

architectures is a model of the processing activities required for successful control

of aircraft. The model comprises processing "experts" that share a common data

base, or world model. These experts either sense the world and infer aircraft

intentions, generate plans, evaluate plans, control and monitor plan execution, or

communicate with other processors.

These functions may be distributed among multiple processors in a variety of

ways. We postulate six distinct architectures for such distribution:

• Space-centered (based on geography).

• Function-centered (based on aircraft function).

• Plan-centered (based on planning approach).

• Hierarchical (based on level of abstraction).

• Object-centered autonomous (a silent, autonomous structure based on air­

craft self-planning).
• Object-centered cooperative (a self-planning-based structure in which com­

munication is used).

To illustrate the knowledge required and the methods employed in such architec­

tural implementations, we outline a system design for the object-centered coopera­

tive structure.
The utility of these architectures in ATC or other distributed problem-solving

domains depends on environmental conditions, task characteristics and con­

straints, and available hardware. At least four factors are critical determinants of

the optimal distributed architecture for a given domain: (1) degree of communica­

tion freedom, (2) extent of vehicle clustering, (3) time stress, and (4) reliability

requirements. The first of these, communication freedom, seems to be the dominat­

ing factor. Communications bandwidth, noise, and range constrain the feasible

designs for situation assessment, conflict recognition, planning, and bargaining

methods.

v

ACKNOWLEDGMENTS

This report benefited from the important contributions of several members of

the Rand staff. James Gillogly adapted an ATC simulation for our experimental

work. Keith Wescourt participated with the project group in informal experiments

and provided many helpful suggestions. Gary Martins provided advice and man­

agement assistance throughout the project.

The ongoing research of several of our colleagues significantly enhanced our

understanding of the problems faced in distributed planning and control. This

research includes studies of situation assessment and planning by Frederick Hayes­

Roth and Barbara Hayes-Roth, studies of air engagement simulation by Monti

Callero and Philip Klahr, and the development of the ROSIE programming lan­

guage by Daniel Gorlin, Frederick Hayes-Roth, and Henry Sowizral.

vii

CONTENTS

PREFACE . iii

SUMMARY... v

ACKNOWLEDGMENTS ... vii

FIGURES AND TABLES xi

Section
I. INTRODUCTION 1

II. THE TASK OF AIR TRAFFIC CONTROL . 3

A TC and Air Fleet Control . 3

Problem-Solving Processes in ATC . 4

III. ARCHITECTURES FOR DISTRIBUTED AIR TRAFFIC CONTROL 9

Object-Centered Autonomous Architecture . 11

Object-Centered Cooperative Architecture . 14

Space-Centered Architecture . 17

Function-Centered Architecture . 20

Plan-Centered Architecture . 20

Hierarchical Architecture . 22

IV. ENVIRONMENTAL INFLUENCES ON COOPERATIVE

PROBLEM-SOLVING ~ . . 26

Environmental Uncertainty . 26

Environmental Dynamics . 27

Communication Constraints . 28

Degree of Clustering . 28

Time Stress . 29

Option Multiplicity . 29

Density of the Solution Space . 30

Situational Complexity . 30

V. AN ATC SCENARIO: THE OBJECT-CENTERED COOPERATIVE

ARCHITECTURE IN THE TERMINAL-AREA

CONTROL ENVIRONMENT . 31

VI. IMPLICATIONS AND DIRECTIONS 40

Selection of an Architecture . 40

Transitions Between Architectures . 41

Questions for Future Research . 41

Future Research . 42

Appendix: Calculations of Reduction of Conflict Tests Between

Global and Local Problem Recognition . 45

ix

X

GLOSSARY OF ATC TERMS.. 47

BIBLIOGRAPHY . 49

FIGURES

1. The structure of the kernel planner . 6

2. Architectures for distributed planning 10

3. Illustrative sequence of interactions in the object-centered

autonomous mode ... 12

4. The structure of a processor in the object-centered autonomous

architecture . 13

5. Illustrative sequence of interactions in the object-centered

cooperative mode . 15

6. The structure of a processor in the object-centered cooperative

architecture . 16

7. Illustrative sequence of interactions in the space-centered mode . . 18

8. The structure of a processor in the space-centered architecture . . 19

9. Illustrative sequence of interactions in the plan-centered mode . . . 21

10. The structure of a processor in the plan-centered architecture . . . 23

11. The structure of a local or low-level processor in the hierarchical

architecture . 24

12. The structure of a supervisory or high-level processor in the

hierarchical architecture . 25

TABLES

1. Goals for air fleet control: similarities between civilian ATC and

military cruise missile control . 4

2. Information required for separation maintenance 32

xi

I. INTRODUCTION

Distributed problem-solving is an increasingly important process by which

multiple problem-solvers cooperate to achieve their common objectives. Distrib­

uted computer systems using artificial intelligence (AI) programming methods

have been investigated for a variety of domains, including battlefield intelligence­

gathering (Cohen et al., 1979; Wesson et al., 1980), automated planning in enroute

air traffic control (Andrews and Hollister, 1980), and automotive traffic light control

(Brooks and Lesser, 1979). These domains are characterized by widely dispersed

data-gathering, communications limitations, time-stressed decisionmaking, and

natural clustering of activities. Distributed problem-solving uses separate proces­

sors to attack the problem at multiple points, exploiting parallelism for speed and

power. Distribution also frequently entails the decomposition of the overall prob­

lem into a set of loosely coupled subproblems. This allows local data aggregation

and planning and reduces the costly long-distance communications required by

centralized systems.
In this report, we propose six distinct organizations of multiple processors for

distributed problem-solving. We refer to these organizations as architectures be­

cause they serve as design frameworks for building large-scale systems. Each archi­

tecture provides a complete structure for sensing situational conditions, recogniz­

ing problems, planning cooperatively, and coordinating execution. The architec­

tures differ in the way they decompose an overall problem, the extent and content

of communications required between processors, and the type of cooperative behav­

ior they produce.
We chose air traffic control (ATC) as the principal application area for develop­

ment, testing, and implementation of our concepts, because ATC provides a com­

plex, dynamic, time-stressed, and communications-rich problem-solving environ­

ment.
Currently, humans in ground-based centers control civilian air traffic. The air­

space is divided into geographic sectors, each the responsibility of a different human

controller. The controller coordinates operations within his sector and accepts con­

trol of aircraft handed off from the adjoining sectors. He is often heavily loaded

with demands of pilot interrogation, track monitoring, flight-plan checking, plan

generation, and clearance delivery. In addition, his performance is subject to degra­

dation due to hardware failures, broadcast channel congestion, and human error

(Couluris, Tashker, and Penick, 1978; Kinney, Spahn, and Amato, 1977).

Many of these problems could be minimized through the use of distributed

problem-solving techniques. Situational sensing, conflict recognition, planning, and

replanning can be accomplished by onboard equipment, for example, thereby re­

ducing air-to-ground communications and their attendant response delays. Distrib­

uted ATC structures may also have greater reliability because the loss of a sensor,

communication link, or processor should not seriously degrade overall system per­

formance. This is true whether the distributed planning and control package is used

as the primary system or as a backup.

To apply our distributed AI concepts to a practical situation, we developed a

real-time ATC simulation and initial design specifications for a cooperative prob-

1

2

lem-solver. We chose the most interesting and intrinsically cooperative of our

candidate architectures for this demonstration effort. This structure, which we

term the object-centered cooperative organization, assigns an onboard processor to

each aircraft and provides means for these processors to communicate locally. We

describe the operation of a processor embedded in this architecture in a detailed

scenario.
This report is organized into six sections: Section II describes the ATC task by

showing its similarity to important military fleet control problems and by demon­

strating how an AI kernel planner can represent its problem-solving functions.

Section III presents six architectures for distributed planning and control and

discusses the applicability of each to different ATC environments. Section IV con­

siders in greater detail the relationships between architecture and environment,

enumerating the influences of eight task environment conditions on communica­

tions networking, problem representation, plan generation, and bargaining proto­

cols. Section V describes in detail the behavior of a single problem-solver in the

object-centered cooperative architecture. Section VI summarizes the work and

discusses our plans for future research.

II. THE TASK OF AIR TRAFFIC CONTROL

In this section we present a model of the ATC task. We chose this task to

develop, test, and demonstrate our distributed AI concepts because ATC entails

multiple objects engaged in complex situation assessment and planning. A particu­

lar portion of the airspace may contain commercial jets converging on or departing

from an airport, general aviation aircraft engaging in business or training activi­

ties, and/ or military aircraft engaged in training exercises. Successful traffic super­

vision in this environment requires the coordination of many activities: maintain­

ing inter-aircraft clearances, directing aircraft to avoid terrain and adverse weath­

er conditions, collecting and interpreting data about the environment, monitoring

system failures, and navigating to destinations.

In the following discussion, we describe the ATC functions from two perspec­

tives: First, we show the similarities between ATC and other tasks such as cruise­

missile coordination which share a number of goals that are common to all air fleet

control. Second, we present a design for a kernel planner that embodies the exper­

tise needed to perform ATC problem-solving functions.

ATC AND AIR FLEET CONTROL

In A TC, a controller must achieve four goals:

1. Error-free routing. The controller must plan safe, executable routes

across an airspace. These routes must avoid terrain obstacles, adverse

weather conditions, and the routes of other aircraft.

2. Uncertainty reduction. The controller must often gather data to track the

dynamic environment. The main forms of uncertainty in this environment

involve positions of different aircraft in the airspace and changing traffic

and weather conditions.
3. Separation assurance. The controller must monitor the locations of air­

craft and avoid inter-vehicle collisions. This requires maintenance of safe

horizontal and vertical separation standards. Depending on the airspace

sector, federal regulations dictate a minimum of 3- to 5-mile horizontal

separation and 1000-foot vertical separation between all aircraft (Andrews

and Hollister, 1980; Rucker, 1979).

4. Resource conservation. The controller must select efficient routes, sched­

ule delays, and minimize aircraft fuel consumption. To do so, he must plan

routes that contain a minimum oflarge altitude changes and course alter­

ations.

A number of air fleet control problems-e.g., coordination of cruise missiles, air

intercept fighters, and remotely piloted vehicles-share these same goals. The

correspondence between ATC goals and those in coordinating cruise missile mis­

sions is shown in Table 1. Error-free routing in both domains, for example, requires

avoidance of terrain obstacles and weather. Uncertainty reduction in military oper-

3

4

Table 1

GOALS FOR AIR FLEET CONTROL: SIMILARITIES BETWEEN

CIVILIAN ATC AND MILITARY CRUISE MISSILE CONTROL

Measurable Attributes

Goal Civilian A TC Cruise Missile Control

Error-free routing Conflicts in planned Time within detection

routes radius and acquisition
envelope

Uncertainty reduction Accuracy of weather Accuracy of weather

and traffic models and defense models

Separation assurance Inter-aircraft distances Inter-vehicle distances

Resource conservation Fuel consumed; arrival Fuel consumed; vehicle

delays attrition; weapons
utilization

ations is somewhat more complex than in civilian ATC, as it entails locating enemy

defenses and monitoring the status of the fleet's own supporting forces. Separation

assurance between aircraft is required both for civilian flight and for military

formation-keeping. Resource conservation, an economic consideration in ATC,

becomes a strategic problem of minimizing vehicle attrition and allocating weapon

expenditures efficiently in the military domain. The major difference between the

domains lies in the relative importance of the various goals. ATC emphasizes

separation between aircraft, while cruise missile missions focus on intelligence­

gathering and maximizing penetration. Nevertheless, the same types of coordinat­

ed planning activities apply in both domains. Thus, AI techniques used to improve

ATC should also apply to other areas of air fleet control.

PROBLEM-SOLVING PROCESSES IN ATC

Coordination of air traffic requires integration of a number of complex problem­

solving processes:

1. Situation assessment-generating and updating environmental and situa­

tional knowledge using sensor or communicated data.

2. Conflict recognition-identifying potential conflicts or problems requiring

resolution.
3. Plan generation-synthesizing plans, refining them through the selection

of appropriate actions, and replanning when necessary.

4. Plan evaluation-estimating probable outcomes of plan execution, aggre­

gating costs and benefits, and determining the best option.

5. Message passing-exchanging data and plans via communication.

5

6. Bargaining-cooperating to resolve conflicts in plans or differences in

situation assessments.

7. Plan execution-executing and monitoring selected plans.

To model the organization of these various activities, we adopted the "coopera­

ting experts" paradigm ofHearsay-Il (Erman et al., 1980). Figure 1 illustrates this

organization. Each box represents an independent processing module, or expert,

with its own goals and procedures for accomplishing those goals. The arrows be­

tween the boxes indicate data or results transferred between modules.

The various experts are organized around a world model, shown in the center

of the figure. The world model contains knowledge of the locations, plans, and

characteristics of the various known aircraft in the airspace. It posts requests from

the experts for processing resources, results produced by these experts, and mes­

sages received from other controllers.

All modules use knowledge in the world model to support their activities, and

they alter the contents of the model as part of their actions. The sensor receives

radar returns, detects changes in the environment, and updates the current loca­

tions of aircraft in the world model. The plan generator uses the current situation

estimate and demands for action to produce tentative plans or revisions to existing

plans. The evaluator uses tentative plans and the current situation estimate, pre­

dicts the situation after a hypothetical execution of each plan, posts the conflicts

that would result from the execution of the plans, and selects the best available

plan. The communicator selectively exchanges data and plans with the other air­

craft in the airspace. The controller then performs the tactical execution of actions

at the times or positions specified by the plan.

We shall now consider how this organization of experts can accomplish the

seven activities listed above.

Situation assessment involves updating the world model as new information

becomes available. The sensor processes radar returns, compares the information

with that in the world model, and sends updates regarding changed aircraft loca­

tions and environmental conditions. The communicator can also update the world

model by posting locations, plans, and goals received from other processors.

Conflict recognition occurs in the evaluator module. The evaluator simulates

execution of the pending flight plan and uses current situation estimates to identify

potential conflicts. The fast-time simulation necessary to identify these conflicts can

be performed in several different ways. The simplest method relies on trajectory

projection, the technique currently used in ATC conflict-detection programs, in

which straight-line extrapolation of an aircraft's current position and heading is

used to predict its future location. A more accurate method of conflict recognition,

plan-based simulation, includes planned maneuvers in the trajectory projections.

This procedure requires the receipt (via the communicator) of current flight plans

from the interacting aircraft.
Platt generation involves the synthesis of flight plans from origin to destination.

The processors must generate fuel-efficient, conflict-free plans. When processors

must share the use of the same airspace, they must coordinate their plans with one

another. Four types of planning can be used to achieve this coordination: pre­

planned protocols, iterative local planning, asynchronous cooperative planning, or

simultaneous global planning.

PLAN
GENERATOR

EVALUATOR

Environmental data

Model of
current
situation

Changes in
environment

o'~>"-1>
9\1>(\ (\ ~

~e~. o<''(('e ·~\)'<.e
~(\"''(\(\0., \~

,_ <:f\1>(\(\

~~,
&-t:

t.>cvr,·

e">"-"'
'<.eO.~

'o,
~,(/

fl1o,.
'tor·

'"u

Fig. 1-The structure of the kernel planner

COMMUNI­
CATOR

CONTROLLER

C)

• ., Other
· aircraft

7

With preplanned protocols, each processor acts according to predefined rules

known to all processors. Assuming that each processor maintains accurate knowl­

edge of the planning methods and protocols of the other processors, communica­

tions are largely unnecessary. However, such rigid individual behavior may lead

to suboptimal global solutions.

In iterative local planning, all processors sharing a local planning region initial­

ly exchange goals and constraints. For example, if two processors cooperate to

resolve a particular conflict, they may wish to share the same set of assumptions

about the plans of other aircraft. Such coordination may require time synchroniza­

tion of planning activities. Each processor then generates plans only for aircraft

under its control and communicates its intentions to the other processors. The other

processors then replan, using the new information. Deadlocks (inability to find a set

of compatible actions) and looping (repeated communications) ma~r occur because

of the individual and sequential nature of this planning technique.

In asynchronous cooperative planning, as in iterative local planning, nearby

processors exchange goals and plans. However, they also share partial plans, so

that discrepancies among intentions become known and can be acted upon quickly.

Rather than iterate individually toward a systemwide solution, the planning

processors act as a committee, sending, receiving, and revising intentions until an

overall solution is found. This technique characterizes many centralized problem­

solving architectures (Opplan, Hearsay-Il, HASP) and has been successful in dis­

tributed AI applications (Lesser and Erman, 1980).

Finally, in simultaneous global planning, processors initially exchange their

status and goals, then each autonomously works toward a single overall plan. Each

processor attempts to plan for all aircraft, rather than just those under its immedi­

ate control. Different plans are generated from the different perspectives of each

processor in the group, and bargaining or authority protocols guide selection

among alternative solutions.
Plan evaluation is closely coupled with conflict recognition. The evaluator tests

plans by simulating plan execution, noting the expected conflicts, fuel used, number

of commands issued, and schedule delays. The evaluator then aggregates these

attributes to determine an overall utility for the candidate plan, the degree of

certainty in the evaluation, and the assumptions about other aircraft used in the

evaluation. It determines whether the plans meet certain minimum standards, and

it selects the best of those that qualify. If none of the plans is satisfactory, the

evaluator posts the reasons for their failure.

Message passing then is initiated by the communicator, which may request

other processors to amend their plans, announce changes in its own plans, or

transmit sensed changes in the environment deemed important to other processors.

To accomplish these tasks, the communicator must have procedures for checking

the status of the communication channels, formatting and transmitting messages,

monitoring transmissions, receiving messages, and decoding them. Decisions about

whether to send a particular message require the use of an information value model

that considers the needs ofthe sender and recipient and the cost of communication.

Bargaining resolves disagreements concerning goals and consequences. The

processors involved in a conflict may have different goals, since they compete for

the use of limited resources (e.g., space, fuel) and desire efficient routings. When

conflicts over the use of these resources cannot be easily resolved, the processors

8

must bargain or designate an arbitrator. In addition, the processors involved in a

conflict may agree on goals but disagree in their estimates of the consequences of

actions. For example, one processor might estimate that a given set of plans will

result in 40 miles of vectoring for the group, while another processor might esti­

mate 30 miles in detours. Again, some form of bargaining or designation of an

arbitrator is necessary to arrive at a consensus.

This bargaining can impose heavy communication requirements on a system

of distributed processors. With N processors, as many as N . (N - 1)/2 communica­

tion links are necessary. If extensive bargaining is required, the process may in­

volve many rounds of iteration and message exchange. Some savings in communi­

cation can be achieved by designating an arbitrator. For example, the various

processors could send their candidate plans to the arbitrator, who would compare

plans, using a "social welfare function" (Farris and Sage, 1975), and select the

"best" plan. The arbitrator would then send the selected plan and instructions for

it back to the various processors. This structure requires at most N- 1 communica­

tions links.
Finally, plan execution involves the execution of plan commands and the moni­

toring of plan success by the controller. During plan execution, if any assumptions

on which the plan was based are violated, the controller posts a request for replan­

ning in the world model.
These activities constitute an initial set of building blocks for defining distrib­

uted problem-solving organizations in ATC. Several forms of coordination among

processors are possible. Processors may plan independently, without communica­

tion, or they may communicate to exchange data, plans, and constraints. They may

plan only for their own aircraft's actions or they may attempt to find a solution for

all interacting aircraft. They may bargain over their differences or they may defer

to the decisions of an arbitrator or decisionmaker. In the next section, we examine

a set of specific problem-solving organizations that incorporate each ofthese forms

of cooperation.

III. ARCHITECTURES FOR DISTRIBUTED

AIR TRAFFIC CONTROL

In this section, we propose six distinct organizations, or architectures, of multi­

ple processors for cooperative planning. Each provides a complete structure for

sensing situational conditions, sharing information, recognizing problems, plan­

ning cooperatively, and coordinating execution. After describing the structure and

characteristics of the six architectures, we illustrate their application in several

typical ATC environments.
The architectures, summarized in Fig. 2, use three distinct distribution mete·

ods. The first exploits a natural association of processors to the objects they control

or the data they gather. These individual-planning methods are based on objects

that develop plans for themselves and coordinate with the plans of others. The

second type of distribution takes advantage of clusters suggested by the planning

environment, such as groups of aircraft in high-density regions or aircraft clustered

during approach to an airport. The third type of distribution focuses on decomposi­

tion of the solution process, rather than the environment, to distribute planning

effort. Here a complete solution must be found by one of the processors. The

processors search different options by starting at different points or by using differ­

ent information.
The object-centered autonomous and object-centered cooperative architectures

are variants of a one-processor-per-vehicle design. This one-to-one design is impor­

tant because it has an increasing number of applications to onboard processing.

Collision avoidance systems, cruise missile guidance systems, and automated land­

ing systems all demonstrate the advantages of providing sensing, processing, and

planning capabilities in the controlled vehicle. The autonomous and cooperative

variants of the object-centered structure reflect different styles of distributing plan­

ning functions among the controlled vehicles. The autonomous structure relies on

each processor's own sensing and inference for information-gathering-planning

and plan execution occur without communication among processors. In the cooper­

ative structure, aircraft communicate to exchange data and collaborate during

planning.
The space-centered and function-centered architectures derive from situations

with natural, stable groupings of objects, most ofwhich occur along either regional

or functional lines. In a regional grouping, a processor controls all objects within

a specified spatial region. Current enroute control of civilian air traffic utilizes a

space-centered architecture. In a functional grouping, each processor controls all

objects engaged in a particular type of activity. Distribution by function frequently

occurs in terminal control areas, where different controllers handle approaches,

landings, and overflights.
The final two architectures, plan-centered and hierarchical, address problems

requiring a global solution-that is, one that considers all aircraft. A problem

requires a global solution (rather than a combination of local partial solutions) if

interactions affect all objects in the airspace, or if environmental dynamics preclude

stable groupings. The plan-centered structure assigns to each processor a different

9

Individual Planning

I
I I

Object -Centered
Autonomous

Each onboard processor
solves its own problem
through silent planning

Object-Centered
Cooperative

Each onboard processor
solves local problem
through cooperative
planning

Aggregate (Cluster) Planning

I ,---·---,
Space-Centered

Each processor solves
problem of regional
group and coordinates
with other groups

Function- Centered

Each processor solves
problem of functional
group and coordinates
with other groups

Fig. 2-Architectures for distributed planning

Global Planning

I
I I

Plan-Centered

Each processor solves
global problem from
different perspective

Hierarchical

Low -level and
high -level processors
interact to solve
global problem

......
0

11

portion ofthe search space or a different approach to the problem. The processors

work silently until one arrives at a solution. This type of organization is exemplified

by oil exploration and drilling. The hierarchical approach attempts to achieve a

global solution by decreasing the problem into high-level decisionmaking and low­

level sensing and problem-solving. The high-level processors rely on global data

aggregation and extensive communication. Low-level processors execute plans,

monitor plan execution, and perform local replanning. We describe each of these

architectures and distribution methods in more detail below.

OBJECT-CENTERED AUTONOMOUS ARCHITECTURE

The object-centered autonomous architecture is a communication-free organi­

zation in which each aircraft performs all situation assessment, conflict recognition,

planning, and control functions autonomously. Figure 3 illustrates a possible event

sequencing among three aircraft using the object-centered autonomous architec­

ture. In this case, planning is reactive and incremental, and preplanned protocols

are used for resolving conflicts. Natural organizations that exemplify this type of

autonomous planning and control include joggers, who avoid collisions by indepen­

dent prediction and response, and automobile traffic at unregulated intersections.

Figure 4 shows the organization of activities for each aircraft in this architec­

ture. This diagram is a variant of the problem-solving kernel shown in Fig. 1. The

major difference is the absence of the communicator module. The inability to com­

municate places a greater burden on the sensor to infer the plans of others from

sensed locations, altitudes, and headings. Since these estimates can be incorrect and

uncertain, plan evaluations can only be tentative and must be frequent. Replanning

may be required.
For example, suppose that a slow propeller craft in level flight is potentially in

conflict with an ascending jet, as shown in Fig. 3. Each aircraft may sense the other

and use trajectory projection to predict the time and location of the conflict. Each

aircraft may use its plan generator to synthesize possible maneuvers for avoiding

the other. The plan generator posts the selected action in the world model for the

evaluator to test using a fast-time simulation. The simulation returns the predicted

conflicts and expected effects on fuel and schedule. If the expected performance is

acceptable, the controller executes the plan. If the expected performance is unac­

ceptable, the plan generator produces a different action sequence, using informa­

tion about why the previous actions failed.

Since this architecture allows consideration of only single-aircraft actions, prob­

lems may arise when actions selected independently by the aircraft are incompati­

ble or inefficient. Incompatibility results, for example, if both aircraft decide to

detour in the same direction. The ability of the system to iterate safely to a conclu­

sion depends to a large extent on tracking delays and sensor accuracy (Andrews and

Hollister, 1980) or on a complete set of "rules of the road." Efficiency problems

result ifboth aircraft maneuver when only one needs to, or ifthe aircraft use overly

conservative separation requirements and resolution lead times. The aircraft need

such "cushions" only when they have incomplete data regarding the intentions of

other aircraft.

12

a b

m
A A

8

~-0
~~0

c

c d

4

A

~
8

~ c

Fig. 3 -Illustrative sequence of interactions in the object-centered autonomous mode

PLAN
GENERATOR

Environmental data

SENSOR

Model of
current
situation

Changes in
environment

Predicted
actions of
others

~<11}
E'-t

E>cvr,·
'oiJ

<11J(j

~OIJ'
'tor·

'IJg

Fig. 4 -The structure of a processor in the object-centered autonomous architecture
.....
c.l

14

OBJECT-CENTERED COOPERATIVE ARCHITECTURE

The object-centered cooperative architecture also has a processor associated

with each aircraft, but the aircraft communicate to plan collaboratively. Figure 5

illustrates how neighboring aircraft might plan cooperatively to resolve conflicts.

In this case, new plans are developed and agreed upon prior to execution.

The processing capabilities associated with each aircraft processor now expand

to include communication procedures, as shown in Fig. 6. If communication costs

are low, knowledge that might have been derived through inference can instead be

obtained though communication with the aircraft in question, as shown by the

activities of the communicator.
Decisions about whether to communicate or to perform computations locally

depend on the expected value ofthe information and the relative cost of obtaining

it by either method. Urrfortunately, accurate computation of communication cost

requires that the sender have accurate knowledge of the recipient's goals, world

model, and pending activities. In general, communication is more desirable than

local inferencing only if (1) the information changes the current situation assess­

ment of the recipient, (2) the new situation assessment leads to a different action

than was originally planned, and (3) the expected value of the new action is greater

than the expected value of the previously pending action plus the cost of transmis­

sion (Marschak, 1973).
The planning process changes dramatically with the addition of communica­

tions. In the example of the slow propeller craft conflicting with an ascending jet

(illustrated in Fig. 5), a new set of options emerges. The propeller plane may

generate and evaluate maneuvers for itself, for the jet, or both. If the fast-time

simulation in the evaluator indicates that a slight change in the jet's trajectory

results in the least overall fuel usage and the greatest safety, the propeller aircraft

can request such an action via message-passing.

This architecture can support either iterative local planning or asynchronous

cooperative planning. Potentially conflicting aircraft exchange goals and con­

straints and then formulate, send, revise, and receive partial plans until a global

solution is achieved. In this way, aircraft plan in parallel, occasionally sharing

information to focus their efforts and prune unpromising alternatives. Since plans

are shared, processors may use accurate plans of others in their fast-time look­

ahead. The frequent short-distance communications used in the object-centered

cooperative architecture favor the use of a flexible local-area network in which the

aircraft use broadcast transmissions to locate other aircraft and point-to-point

transmissions to make the data transfers (Clark, Pogram, and Reed, 1978).

The inherent redundancy of the object-centered cooperative architecture

should make it relatively immune to losses of individual processors or breaks in

communication links. Loss of a processor or communication link for some interval

can be detected by the other aircraft through monitoring of communication ex­

changes or from inference following unexpected behavior. The other aircraft

should be able to make plans that accommodate the degraded performance of that

processor. Needed data may be requested from other aircraft or obtained from the

degraded aircraft by rerouting transmissions through links that are still secure.

Simple data inaccuracies may be recognized and treated through comparison of

redundant data structures onboard each aircraft.

15

a b

A A

' B B

~ c

c d

4 ~-
A A

' B

Fig. 5-lllustrative sequence of interactions in the object-centered cooperative mode

PLAN
GENERATOR

Environmental data

Model of
current
situation

Changes in
environment

e'>'-"
eO....s

:_'I>~

~ 9''1>(\ <''-'1>' o'l>
~e ~,~o<'~\i~-v~e
~(\ i-'(\~

,_ ~'1>(\

~111)
e-t

ecvr·
'oi'J

«11Jq
~01).

'tor·
'I'Jg

COMMUNI­
CATOR

CONTROLLER

Other
--..~-~ aircraft

Fig. 6 -The structure of a processor in the object-centered cooperative architectur~

......
a.>

17

On the other hand, the object-centered cooperative architecture is not suited to

long-range strategic planning or complex multi-aircraft interactions because of its

small scope of view. This architecture appears most effective in situations having

range-limited communications and time-stressed decisionmaking. It minimizes

long-distance communications, each aircraft has maximum autonomy to respond to

unforeseen conditions, and planning loads are evenly distributed throughout the

group.

SPACE-CENTERED ARCHITECTURE

Current ATC facilities exemplify the space-centered architecture, in which each

processor controls a region of space rather than a particular aircraft. Figure 7

illustrates a typical interaction within this structure. A ground-based or airborne

processor monitors and controls all aircraft within an assigned region. Sensor data

collected by individual aircraft or by special equipment (e.g., ground-based radar)

are aggregated at the control site for use in planning. Since the sector center has

plans for all aircraft, this architecture (like the object-centered cooperative one) can

use the plans in its fast-time look-ahead. The planning program can plan globally

for the entire sector, or it can define independent conflict clusters and plan within

these separately.
The communications processes, shown in Fig. 8, are quite different from those

of the object-centered architecture. Control centers communicate with both individ­

ual aircraft and other control centers. Control centers receive sensor data from and

transmit commands to aircraft in their sector. Communication between centers

consists of data, plans, and action requests about activity at the sector boundaries.

Accordingly, the communication system must contain rules for prediction of the

boundary crossing point, for bargaining about the point of transfer of control, for

transfer of data and plans concerning the aircraft, and for acknowledgment of

control transfer. Occasionally, adjacent sectors will also coordinate to achieve flow

management (i.e., delay takeoffs or slow outbound flights to smooth out load peaks).

This hand-off process can be extremely complex. Typically, handoffs are gov­

erned by preplanned protocols that prescribe locations, altitudes, and bearings for

transfer of control. Preferably, however, a transfer of control should be considered

only if the receiving sector is not overloaded, if the communication channels are

reliable, and if the information-transfer time interval is shorter than the allowable

decision time. Hand-off rates and locations can be varied, using iterative local

planning to achieve load balancing between sectors. For example, where there are

large load variations between sectors, the sector boundaries could move dynamical­

ly according to the load level. Such boundary movements could be cumbersome and

could be potential sources of error, however, so such allocation of responsibility

might be best suited to long-term load shifts rather than to environments with rapid

load fluctuations.
We expect the space-centered architecture to be most effective in terminal and

enroute areas with reliable, high-bandwidth communications, complete radar cov­

erage, and relatively constant and predictable load levels. The space-centered archi­

tecture uses centralization of data fusion and planning to facilitate problem-solving

on a larger scale than is performed in the object-centered architectures. Unfortu-

18

B

Sector boundary --

~
-~7:,_ , ~

B

a

s rr
,

A A

---+--

4 sr 4
A

A

Fig. 7 -Illustrative sequence of interactions in the space-centered mode

PLAN
GENERATOR

Environmental data

SENSOR

Model of
current
situation

Changes in
environment

e<o'-.,
<~.eo..-v

~'\.$
~${\ ~ ~

~,e..,a ~ ~e{'. t(e
,~ ~\'1.0(" ft.$~-.J
~(" i--'{\~

'~ <f<.$("

·o{'.,
,oc$'-~

• ~\${\ ...

COMMUNI­
CATOR

• _., Hand-offs
Other sectors

(jl-'{'e<~.<o
Requests Plans

Actions

1 .
I
I

I
I

I
CONTROLLER

(Individual
aircraft

within sector)

Fig. 8 -The structure of a processor in the space-centered architecture

1-' co

20

nately, the architecture must be supported by extensive processing and communi­

cations networking capabilities, and it is vulnerable to communication system or

processor losses.

FUNCTION-CENTERED ARCHITECTURE

The function-centered architecture, like the space-centered approach, assigns

multiple objects to each processor. A processor may control all aircraft within a

single flight phase (e.g., takeoff, transition, enroute, or approach) or may be respon­

sible for a specific type of aircraft (e.g., private, commercial, or military). Each

processor controls several aircraft in a manner similar to the space-centered archi­

tecture illustrated in Fig. 8, with one exception: Hand-offs occur between processors

that control different functions within a geographic region rather than different

regions. As with the space-centered architecture, cooperation is achieved either

through the use of preplanned protocols or iterative local planning.

Assignment of aircraft to processors in the function-centered architecture can

occur on the basis of time, location, or load. Thus, allocation of responsibility and

coordination of effort in the function-centered architecture may be difficult to

achieve and maintain. Also, the geographic overlap of groups controlled by differ­

ent processors means that some inter-processor interactions will involve aircraft

conflict resolution, and some will involve control hand-off. As a result, the function­

centered architecture shares many of the problems of both the object-centered

cooperative and the space-centered structures.

Nevertheless, the function-centered architecture seems well suited to the coor­

dination of traffic near terminals, since current ATC operations in the terminal

areas tend to cluster aircraft into natural functional groups. This architecture

concentrates data fusion and planning responsibility at a small number of sites,

thus facilitating long-range multi-aircraft planning. However, it is not as applicable

to communications-limited situations, since it requires high-bandwidth, long-dis­

tance communications. It is also vulnerable to communication and processor losses

because of its concentration of data and knowledge at a few sites.

PLAN-CENTERED ARCHITECTURE

The plan-centered architecture, portrayed in a terminal-area ATC situation in

Fig. 9, distributes the planning process by assigning different approaches or por­

tions of the search space to each processor. This architecture is suited to domains

characterized by relatively simple problem-solving requirements and a problem

space in which solutions are very sparse. In such cases, each processor can attack

the entire problem but can explore only a portion of the entire search space. All

processors attempt to find a solution to the overall problem using simultaneous

global planning, but they do so independently. An illustrative ATC situation, shown

in Fig. 9, would be the impending convergence of several aircraft in a highly

congested airspace. Each processor, acting independently, would seek a unique

resolution to the conflict by electing, for example, to alter the routes of a different

subset of conflicting aircraft.

21

a b

~
- 4

4
A A

Planner B

'
?

9
),

B B

~)~ ~ & -t.~ ~ C' Planner A

c d

!A 4 4
m

A
A

L

!e, B~ B

j".

7: •

! c

Fig. 9-lllustrative sequence of interactions in the plan-centered mode

22

Figure 10 presents the structure of a plan-centered node. In performing simul­

taneous global planning, each processor requires accurate knowledge of the loca­

tions and intentions of all aircraft. Thus, processors exchange data via communica­

tion to perform situation assessment. No cooperative planning takes place, how­

ever, and the amended plans are transmitted only if a processor discovers a suitable

global solution.
The relatively high overhead incurred by extensive knowledge distribution

makes this architecture suitable only for complex, high-density ATC situations. The

plan-centered architecture also appears appropriate in situations with frequent

processor losses, since each processor essentially acts as a redundant element.

HIERARCHICAL ARCHITECTURE

Some problems are inherently hierarchical in structure. In a hierarchical archi­

tecture, lower-level nodes gather information and/or control objects directly. They

pass abstracted and aggregated information up the hierarchy to supervisory nodes,

which both direct their subordinates' behavior and report to their own supervisors.

A high-level decisionmaker postulates and evaluates strategic plans. A hierarchical

architecture most closely resembles the structure of a centralized problem-solver,

in that the upper-level nodes have approximately global perspectives on the prob­

lem.
Cockpit display of traffic information (CDTI) scenarios postulated by Lincoln

Laboratory (Andrews and Hollister, 1980) and by NASA-Ames Research Center

(Kreifeldt et al., 1976) exemplify hierarchical ATC operations. In these proposed

systems, the ground control center acts as the high-level supervisory controller,

while the CDTI-equipped aircraft perform self-separation and short-time-horizon

route planning.
The local and supervisory nodes in the hierarchical architecture are shown in

Figs. 11 and 12. The local processor functions similarly to a processor in the object­

centered cooperative structure. Instead of communicating only with other equiva­

lent processors, however, the local processor communicates with the supervisor.

The local processor senses and aggregates data locally, performs local planning,

sends abstracted data to the supervisor, and executes commanded actions. The

supervisor node, much like a space- or function-centered node, collects and pro­

cesses the data sent from the local processors, performs long-range planning, and

s~nds commands back to the local nodes.
This hierarchical architecture entails high overhead in communications. To

solve a problem, information and requests must always be passed up the hierarchy

to centralized decisionmakers (Parnas, 197 4). Furthermore, information exchanged

among low-level nodes must often be routed through intermediate-level "manag­

ers," thus increasing communication time and communication loads (Wesson et aL,

1980). The hierarchical architecture appears most appropriate for applications with

natural levels of abstractions (such as flow control and separation assurance in

terminal-area ATC), high-bandwidth and relatively error-free communications, and

a reliable supervisory processor.

GLOBAL
PLAN

GENERATOR

Environmental data

Model of
current
situation

Changes in
environment

~e_,..._.,

~eo:
o1> 1>

~\1>~ (\ ~
-\e-r' ~e ~e ,~ ,i,~o~ \i~.s

<(:..<" --~,~~ ·o~"·
r'b'l,."\

.,_ ~1>'' \0"
• ~\1>~.,,

,..e~" o"Q·
...........

,.) ',
:".. ~-~ ~ ~ (if o,;;;· :::_r!I/IJ/r!l

h.'- or!l,.._ 11
'7rf111 (f IJ,.. '

&~&cv;:;-.......' oc&so,. J'_ "
011r!lf1 ~

(j ~0 ':-,

'11'ro,..,
''>g

COMMUNI­
CATOR

;;I
~ I
~ 1 Plans
~ actions
a I
~ 1
.::.1

Fig. 10 -The structure of a processor in the plan-centered architecture

Other
independent
processors

~

PLAN
GENERATOR

EVALUATOR

Environmental data

Model of
current
situation

Changes in
environment

e.,.._.,
~eO..~

~~~ 0~ ... ~ 
.~9 ~ ... ~, 

-< ~c,'\.~ ~e ~e 
' \~0~ \i~~ 
~~-l \~Q, 

,_ </'~~~ 

~q, 
e-t 

e"vr.· 'o, 
q"(/ 

'tJo,. 
'for· 

''1g 

COMMUNI­
CATOR 

CONTROLLER 

Fig. 11-The structure of a local or low-level processor in the hierarchical architecture 

~ 

-. • Supervisory 
processor 



GLOBAL 
PLAN 

GENERATOR 

EVALUATOR 

Data from low-level 
processors 

SENSOR 

Model of 
current 
situation 

Changes in 
environment 

e'-'1.'­
. c.~\~(' f.eo..v 

~~ 0~ ... ~ 
"" ..... f,.~ (\ ... ~' 

~e _;,o('~e 
<(:,.(\'" 

·o(''" _ ........... 
\0..-. ~\~(''"' 

'(j--~ef,.'> 

COMMUNI­
CATOR 

low-level 
--•~•-- processors 

Fig. 12-The structure of a supervisory or high-level processor in the hierarchical architecture 

1>:) 
01 



IV. ENVIRONMENTAL INFLUENCES ON COOPERATIVE 

PROBLEM-SOLVING 

In Section III we examined general relationships between distributed problem­

solving architectures and the task environment. In this section, we consider poten­

tial task environments in more detail. In developing each of the architectures, we 

made certain assumptions about the characteristics of the task and the processors 

cooperating to perform the task. In reality, a variety of environmental constraints 

may confront designers of distributed systems. Therefore, we must evaluate the 

utility of the different architectures and problem-solving methods under a variety 

of environmental conditions. 
Our investigations of air fleet control revealed eight important environmental 

attributes: 

1. Environmental uncertainty-the prior uncertainty of environmental con­

ditions, aircraft locations, and aircraft intentions. 

2. Environmental dynamics-the variability of environmental conditions 

over time. 
3. Communication constraints-the range, noise level, and bandwidth limi-

tations of available communications. 

4. Degree of clustering-the extent of functional grouping of the processors. 

5. Time stress-the time available for decisionmaking. 

6. Option multiplicity-the number of planning options available to each 

processor. 
7. Density of the solution space-the ratio of acceptable, conflict-free plans to 

the number of potential plans. 
8. Situational complexity-the number of elements necessary for problem 

representation. 

We shall describe each of these environmental conditions and how they influ­

ence the choice of cooperative problem-solving architectures and methods. 

ENVIRONMENTAL UNCZRTAINTY 

The world model may not contain accurate or certain knowledge of crucial 

environmental states-traffic, weather, terrain, etc.-that the plan generator and 

evaluator use in formulating plans. Such situations occur, for example, in general 

aviation in mountainous areas. Methods to deal with this problem include the 

following: 

1. Data pooling. Processors may integrate sensor data at designated nodes 

to reduce data uncertainty. If situation assessment requires aggregation 

of data from most or all possible sources, a hierarchical structure may be 

optimal. Unfortunately, a hierarchical structure may result in complex 

and time-consuming calculations, since complete situation assessment en-

26 



27 

tails continuous updating of airspace conditions and aircraft locations in 

a large region. 

2. Data quality evaluation. The representation of world knowledge should 

incorporate certainty levels that reflect sensor accuracy, channel quality, 

recency of sensor reports, and reliability of the knowledge aggregation 

method. These values should be revised in successive situation updates 

and used to guide the search for either robust plans or alternative plans 

to implement in the event of possible environmental changes. 

3. Expansion of the planning function to include data-gathering options. 

When possible, the planning choices should include the option of delaying 

actions and gathering further data. This requires the use of an informa­

tion value model that weighs the usefulness ofthe information against the 

time delays and costs involved in obtaining it. 

4. Reduction of look-ahead horizons. The conflict-detection and plan-evalu­

ation routines of the evaluator must make shorter projections into the 

future. Because of the cascading ofuncertainties with time, problem rec­

ognition, planning, and evaluation based on short projections may be more 

effective than those based on long projections. 

ENVIRONMENTAL DYNAMICS 

Task conditions (e.g., geographic region, data links, traffic loads) may vary with 

time. This problem is closely related to that of environmental uncertainty, particu­

larly if the dynamics of the environment are unpredictable. Induced architectural 

refinements include: 

1. Transitions among architectures. Distribution schemes relying on sta­

tionary communication links, standard protocols, or predictable sector 

loadings may become handicapped in dynamic environments. Such 

schemes include the space-centered, function-centered, and hierarchical 

architectures. The more flexible architectures should be invoked to dis­

tribute planning and control dynamically as demanded by the changing 

situation. 
2. Maintenance of belief or confidence estimates. Situation assessments 

should have associated confidence and perishability estimates. To monitor 

the accuracy of these beliefs, the system should maintain data dependen­

cies between linked beliefs, as is done in Hearsay-II (Erman et al., 1980). 

3. Dynamic communications addressing. The architecture must support 

continuous communication between the nodes. Communication demands 

between nodes may be unpredictable, as well as non-uniformly distributed 

in time. This may require use of broadcasts to locate nodes and point-to­

point communications to pass messages. 

4. Increased inference capabilities. The situation assessment and planning 

mechanisms may have to rely on inexact pattern-matches to recognize 

conditions in the unpredictable environment. This may require inference 

systems that can partially match situation descriptions to rule antecedents 

(Hayes-Roth, 1978). 



28 

COMMUNICATION CONSTRAINTS 

The communication links between aircraft may be degraded as a result of 

bandwidth limitations, environmental interference (e.g., mountains, weather), or 

range limitations. These problems could be alleviated by the adoption of additional 

types of sophistication: 

1. Increase in local area networks. Each separable cluster of aircraft may 

have to rely more on specialized local area networks than on long-distance 

communications to remote processing centers. Clark, Pogram, and Reed 

(1978) discuss the advantages of such local-area networks in geographical­

ly limited communication tasks. 

2. Network flexibility. Because of the possibility ofblockages or losses, the 

networks must have alternative pathways for transmission. ARPANET­

like protocols may be used to check link conditions and specify back-up 

routings (Kahn et al., 1978). Network flexibility may also be increased by 

multi-hop routing, i.e., routing the data in several hops through the fleet 

members. This may reduce the individual link distances and link data 

rates, as compared to direct broadcast communications, but at the same 

time it may increase the time delays. Variable network geometries based 

on packet radio techniques, for example, timeshare digital radio frequen­

cies and are organized so that messages reach their destinations through 

varying, irregular pathways. Unfortunately, systems with many store­

and-forward relay nodes can experience high levels of contention and 

queuing during peak loading periods (Martin, 1977). 

3. Shift to autonomous problem-solving. Communication range constraints 

may force a change from global updating of situation estimates and ex­

haustive search by each node to a less data-intensive strategy. Local data­

sensing, planning, and execution should decrease the amount of long­

range high-bandwidth data exchange. This type of organization is found 

in the object-centered cooperative architecture. In extreme situations, 

requirements for radio silence may dictate the use of the object-centered 

autonomous architecture. 

DEGREE OF CLUSTERING 

The form of distribution of planning and control depends strongly on the disper­

sion of aircraft and the location of objects in the environment. When aircraft group 

naturally into clusters, with virtually all interactions within the clusters, each 

group of aircraft may be handled separately. The organization of aircraft into 

clusters significantly reduces the computation required to detect conflicts. (Calcula­

tions illustrating this reduction from an exponential problem to a nearly linear 

problem are presented in the Appendix.) Other changes that may be induced by 

clustering are: 

1. Knowledge distribution by specialization. Communication, data fusion, 

planning, and control may be replicated only within each specific group. 

This minimizes unnecessary knowledge replication across all processors. 



29 

2. Local area networks. If the environmental situation is stationary over 

time, each cluster may require its own local communication network. This 

circumvents the need for establishing costly, time-consuming procedures 

for coordinating with other groups. 

TIME STRESS 

The time available for decisionmaking depends on aircraft speed, communica­

tion constraints, and sensor ranges. In both enroute and terminal-area control 

situations, problems arise that require resolution within a few seconds. Time stress 

may require that the architecture have the following characteristics: 

1. High communication channel throughput. Transmission time in the ar­

chitectures relying on communications may be reduced through use of 

very high channel frequencies (Kahn et al., 1978), and response time may 

be improved by the use of frequency-division multiple-access (FDMA) 

techniques, in which each link uses a different channel. This avoids the 

data queues present in single-channel time-division multiple-access 

(TDMA) systems (Martin, 1977). 

2. Extensive knowledge distribution. The inclusion of comprehensive 

knowledge bases in each node processor can reduce the need for interro­

gating other nodes. Of course, the most critical knowledge may be tempor­

ally variable and local in influence. Such information cannot be preloaded 

into the knowledge bases. 

3. Emphasis on heuristic planning techniques over exhaustive search. Heu­

ristic planning techniques such as condition-action rules (Newell and Si­

mon, 1972), opportunistic planning (Hayes-Roth and Hayes-Roth, 1978), 

and simulation-based look-ahead planning (Wesson, 1977) may provide 

rapid-response capabilities by relaxing the requirement for optimality. 

OPTION MULTIPLICITY 

The number of possible actions open to each aircraft increases with the number 

of maneuver options, the sensing range, and the physical extent of the available 

airspace. The complexity of the planning problem suggests the following problem­

solving approaches: 

1. Heuristic planning techniques. Complete and exhaustive search for opti­

mal routes may be too time-consuming. Heuristic search methods can 

prune from consideration many planning options, thereby minimizing the 

number of options to be evaluated in computationally expensive fast-time 

simulation algorithms. 

2. Planning distribution. Distributing the planning tasks among a large 

number of parallel processors can exploit the availability of multiple sys­

tems. Each processor might adopt a different solution strategy or take 

responsibility for a different function or geographic area. The most ex­

treme examples of this approach are the object-centered autonomous and 



30 

plan-centered architectures, in which completely disjoint sets of options 

are considered by each processor. 

DENSITY OF THE SOLUTION SPACE 

There may be very few conflict-free solutions in a high-density ATC airspace, 

because of the large number of routing constraints. The following problem-solving 

approaches are favored in this situation: 

1. Emphasis on deep search. Determining one of a very few solutions is 

similar to finding the optimal solution. The planning program must exam­

ine virtually all possible options or use a highly discriminating evaluation 

function to prune non-optimal paths. Such an evaluation function requires 

extensive simulation-based look-ahead capabilities. 

2. Global view. Unless the problem can be decomposed into almost com­

pletely independent subproblems, the complete problem must be solved. 

If the complete problem is confronted, information and knowledge must 

be concentrated at a single processing center. Alternatively, the overall 

problem may be distributed by assigning individual branches of the search 

tree to different processing nodes, as in the plan-centered approach. 

SITUATIONAL COMPLEXITY 

Situational complexity is a function of the number of elements that must be 

represented-aircraft, navigational aids, terrain obstacles, weather conditions, air­

fields, etc.-and the amount of conflict between the goals of the participants. Both 

factors increase the demands on data fusion, problem recognition, planning, and 

bargaining. High situational complexity suggests the following architectural fea­

tures: 

1. Data distribution. The communication of sensor data may be limited to 

those nodes requesting such data. The recipient nodes may be those closest 

to or most affected by the object under surveillance. Umiting the dissemi­

nation of situation data reduces the communication requirements and 

processing demands. 
2. Designation of an arbitrator. If the different processing nodes have very 

different goals, they may have to bargain for scarce resources such as 

space and fuel. Unstructured bargaining requires communication of candi­

date plans, pairwise comparisons between all competing plans, and trans­

mission of evaluations between all affected processing nodes. Designation 

of one processor as an arbitrator for each conflict reduces the maximum 

number of communication links from N · T(N - 1)/2 to (N - 1). 



V. AN ATC SCENARIO: THE OBJECT-CENTERED 

COOPERATIVE ARCHITECTURE IN THE 

TERMINAL-AREA CONTROL ENVIRONMENT 

This section presents an in-depth analysis of the object-centered cooperative 

(OCC) architecture, in the context of terminal-area control. This architecture embo­

dies features of many distributed AI situations: multiple processors, conflicting 

goals, dynamic communication demands, and both autonomous and cooperative 

planning. We chose the OCC architecture because it exhibits virtually all of the 

forms of cooperation shown by the other architectures, and it d0es so with the 

simplest structure. Terminal-area control was selected because it exhibits difficult 

problems of communication constraints, time stress, and situational complexity. 

The terminal area is an extremely congested traffic hub. As aircraft approach 

the hub, both the frequency of conflicts and the amount of short-term tactical 

control increase. Traffic typically is funneled along certain pathways for landings, 

takeoffs, and overflights. At present, aircraft coordination is accomplished through 

a combination of ground control, pilot problem-solving, and adherence to estab­

lished rules-of-the-road. 
An object-centered architecture represents a radical departure from this tradi­

tional organization. In the OCC architecture, ground control is replaced by a system 

in which the individual aircraft perform all situation assessment and planning 

entirely through a combination of silent, autonomous planning and cooperative 

planning. 
Planning a route to maintain separation between aircraft requires a vast 

amount of knowledge and expertise. Table 2, adapted from Andrews and Hollister 

(1980), lists some of the required knowledge, portions of which may be obtained 

from a centralized database; the rest must be acquired from onboard sensing, 

computation, or communication with other aircraft. 

Our system design for the OCC architecture assumes identical processing 

capabilities in each of the aircraft in the airspace. We presume that each aircraft 

has a complete view of the the environment and engages in noise-free communica­

tions. 
Our task environment, an automated ATC simulation, provides a real-time 

control environment in which one or more air traffic controllers manage an area 

of airspace containing nine entry/exit points and two airports. The controller(s) 

must issue commands to 26 aircraft that appear during the course ofthe simulation, 

guiding each aircraft to the destination listed on its flight plan. The airspace in­

cludes airways that link the entry/exit fixes at the edges of the airspace, airports 

with designated directions for takeoffs and landings, and navigational aids for use 

as reference points for vectoring the aircraft. The simulation, implemented on a 

PDP 11170 computer, displays a controller's radar terminal on a CRT screen and 

uses alphanumeric symbols to represent aircraft. The controller(s) must issue com­

mands to the aircraft to route them to their specified destinations while maintain­

ing separation between the aircraft and remaining within fuel limitations. 

31 



32 

Table 2 

INFORMATION REQUIRED FOR SEPARATION MAINTENANCE 

Information 

Positions (relative) 

Positions (absolute) 

Terrain, airspace boundaries, 
minimum descent altitude 

Turn rate of aircraft 

Weight class of aircraft 

Performance limitations 

Destination and waypoints 

Declared in-flight emergencies 

Severe weather or icing 

Equipment failures 

Detection of own aircraft 
by other aircraft 

Additional proximate aircraft 
detected by other aircraft 

Relative data gathered by 
other aircraft 

Resolution plan which other 
aircraft is executing 

Application 

Computation of relative motion. 

Location with respect to terrain, airspace struc­

ture, or airfields. 

Identifying conflict-resolution options consis­

tent with airspace constraints. 

Flight-path estimation and prediction. 

Determination of wake-turbulence avoidance 

parameters. 

Determination of maneuver envelope. 

Flight-path planning. 

Yield right of way to aircraft with emergency. 

Planning to avoid weather or to deal with icing. 

Accommodation of degraded mode of operation 

through choice of resolution option. 

Determination of likelihood of other aircraft 

cooperating. 

Detection of multi-aircraft conflicts that may 
affect other aircrafts' options. 

Comparison of relative position data to detect 

discrepancies. 

Monitoring actions of other aircraft. 



33 

The system design presented below could control a single aircraft within an 

OCC architecture. Since the main problem faced by the aircraft is conflict avoid­

ance, most of the inference, communication, and planning deal with conflict recogni­

tion and resolution. The inputs to an aircraft are: 

Own ship navigational information 

absolute position 
positions of all airports, navaids, and 

entry I exit fixes in the airspace 

Localized situation displays 

onboard sensor derived information: 

x, y, z, heading, of all aircraft 

weather & terrain sensing · 

Structured messages from other aircraft. 

The outputs from an aircraft are: 

Commands to own aircraft. 

Structured messages to other aircraft. 

Each component ofthe design is given in a Pascal-like description followed by 

explanatory comments. We begin with the main, executive-control loop: 

Main Loop 

Main: 
begin 

end. 

create initial plan; 
repeat !look/plan/act loopl 

update-world-model (latest sensor information); 

expunge-request-list; !delete expired requestsl 

repeat !look for messages and resolve confiictsl 

if there are a new messages, process 

messages (message-list); 

if plan has not been checked against latest 

world update, then 
begin 

update a-priori plan for each goal; 

fix the plan; 
end; 
if there is a pending request and time to 

process it then process-messages 

(pending-request) 
until next update of "real world"; 

until destination is reached; 

The main loop of our problem-solver is structured according to a basic problem­

solving paradigm: sense -+ assess the situation -+ generate an initial plan -+ evalu­

ate the plan -+ replan -+ act -+ monitor execution. In this case, however, the inner 

loop fixes plan conflicts and creates appropriate actions. If this were a centralized 



34 

problem-solver, this would not be a loop, but simply a procedure to fix conflicts and 

produce a set of actions based on the latest situation assessment. However, inter­

mittent incoming messages may affect the plan-hence the iteration. After an 

initial check and resolution, the processor idles until a message arrives. A message 

triggers a new situation assessment, causing a new run through the look-revise­

plan-create actions loop. When the loop quiesces, deferred actions, such as replying 

to low-priority requests, are processed. We shall now describe the sensor activities. 

Step 1: Update World Model 

Procedure update-world-model(new information); 

begin 

end. 

parse the information, relating it to any prior requests; 

update the world model if possible; 
Compare observed actions of other aircraft with 

updated model of their intentions; 

if observations don't agree with your predictions, 

then 
begin 

try to infer intentions; 
if intentions cannot be deduced from 
present observations, 

then request intentions through communication; 

post a priority-labeled reminder; 
end; 
if a critical reply is still missing, then ask again with 

more urgency; 
if no reply at decision cut-off time, use trajectory 

projection; 

This is the first step of the main loop. Called with some new information, it 

attempts to associate the new information directly with its view of the world. 

Expected information items, such as tracking updates that match model projec­

tions, are simply incorporated in the model. Observations that do not agree with 

expectations are tagged and an attempt is made to resolve the discrepancy. Such 

resolution may involve either inferential reasoning or a request for data from the 

aircraft in question. Note that while most new information will be expected and will 

have little effect on the database, some information will spawn extensive inference. 

For example, information regarding an unseen aircraft causes the addition of that 

aircraft to the world model and a test for possible interactions between that aircraft 

and its plans or those of others. 

Step 2: Process Messages 

Procedure process-messages(message-list): 
begin 

foreach message in message-list: 
begin 

parse the message; 



end. 

case 
info-request: if response is explicitly encoded 

or easily computed 
then 

if sufficient time exists 
then reply with that 
information else post 
request for later reply; 

act-request: post requested action in tentative 
plan; 

reply: update-world-model(message); 
general info: update-world-model(message); 

end; 
delete message from message list; 

end; 

35 

This loop handles all incoming message traffic, associating an action with each 

of the four types of messages: information requests, action requests, replies re­

ceived from own requests, and general information. Messages that respond to 

requests generate updates in the world model. Requests for information either 

receive immediate replies or are posted for later reply. Requests for action are 

posted as constraints for the plan under construction. If these are low-priority 

constraints, they are the first to be eliminated during the replanning and conflict­

resolution phase. Note that these items posted for later action always contain 

expiration information, either in the form of actual time (absolute or relative) or 

conditions that negate them. 

Step 3: Evaluate Plan 

Procedure evaluate-plan(plan); 
begin 

end. 

while (create-ordered-list-of-conflicts) is not empty do 

begin 
resolve the highest-priority conflict; 
merge the resolution commands into the plan; 

end; 

This plan-correction routine embodies three important assumptions: (1) that con­

flicts vary in their importance, (2) that resolving one may resolve or create another, 

and (3) that merging disparate resolution suggestions may require an integration 

process. 
The routine operates by looking for all conflicts, ranking them according to 

priority, solving the most important, then looking for any remaining conflicts. 

Frequently, solving the most important conflict will also solve the less important 

ones. However, solving the major conflict occasionally creates others, so we must. 

allow for that possibility. 



36 

Step 4: Create Ordered List of Conflicts 

Procedure create-ordered-list-of-conflicts; 

begin 

end. 

repeat !find all conflicts} 

repeat !find a conflict} 
project ahead one time step using simulation 

that incorporates rules of "physics" with 

(incomplete) knowledge of the 

intentions of other aircraft; 

check for: 
separation violations; 
unfulfilled goals (e.g., too high when 

overflying the airport, or not 

heading in the right direction, or ... ); 

until found a conflict or looked far enough into the 

future; 
until looked far enough into the future; 

sort the list of conflicts according to rules of severity; 

communicate potential conflicts to other affected aircraft; 

This loop finds and ranks the potential airspace conflicts in terms of severity. 

Projecting ahead is done in a time-stepped fashion (an event-stepped alternative 

method is described below). Checking for conflicts can be done through a very large 

"case" or "switch" statement in which the alternative cases can be computed from 

conflict-determining predicates. 

Sorting the list of conflicts implies some criterion function. How is severity 

determined? The simplest method relies on static orderings established a priori. In 

this case, the ordering can be based on a simple table lookup. However, more 

powerful techniques might use situation-dependent information to create dynamic 

rules of ordering. The utility of this more complex procedure depends on the 

situational complexity, dynamics, and solution sparseness in the task environment. 

Step 4a: Alternate Method for Creating Ordered List of Conflicts 

Procedure create-ordered-list-of-conflicts (alternate method); 

begin 

end. 

repeat !find all conflicts} 
using analytic geometry techniques, compute 

expected time of next separation violation; 

until all conflicts before a certain time in future are detected; 

sort the list according to rules of severity; 

communicate potential conflicts to other affected aircraft; 

This alternative procedure may be used if the rules for determining a conflict 

are mathematically tractable (a situation that seldom occurs in the real world). In 

our ATC simulation, we may be able to predict easily and accurately the motions 

of aircraft because of the bounded, predictable domain. 



37 

This method is often more efficient than the time-stepped method. Routines can 

directly compute a list of "significant events" and their associated parameters­

time of occurrence, aircraft involved, etc. Equations of motion can be used to update 

directly these interesting events, without incurring the costs of step-by-step updat­

ing and searching. This event-stepped form of simulation is favored if the cost of 

identifying and finding the "interesting events" is less than the cost of stepping 

through the corresponding time intervals. 

Step 5: Resolve a Conflict 

Procedure resolve-a-conflict; 
begin 

end. 

case 
a "guaranteed" procedure for this conflict exists: 

return (that procedure); 
else 
begin 

end; 

foreach possible resolution command (from a table 

of applicable commands for this conflict type): 

begin 
Compute time interval of command issuances 

that would have prevented the conflict; 

Copy the simulated world and backdate to 

this span of time; 
Put the possible resolution commands in 
the plan; 

Fix the plan, evaluating the resulting 

look-ahead for n future time ticks; 

Save the results of that evaluation; 
end; 
return (best action according to the evaluation); 

Here we select one of the possible commands associated with the particular 

conflict type and try it out in the simulated world. Since we are assuming local, 

cooperative behavior, commands are typically limited to our own aircraft and 

possibly one other. We backdate the command as necessary to the most appropriate 

point of issuance. Trying the command out means calling the "fix plan" routine 

recursively with a new world and plan. Conflicts may occur with different frequen­

cies, resulting in widely differing times for each branch of the search tree being 

generated. This process seems to be representative of the process humans use to 

search and evaluate in this domain. For example, in a tightly connected and com­

plex conflict situation, human controllers look ahead 5 minutes or so, considering 

and resolving many potential conflicts. In a simpler situation, a controller may look 

much further ahead, with the same processing capabilities considering fewer con­

flicts. 
Some of the commands considered will involve actions by other aircraft. The 

evaluations for these options will incur added costs of communication time delays 

and response uncertainty. 



38 

The result of this resolution function is a single "best" command for resolving 

the current conflict. 

Step 6: Merge the Resolutions 

Procedure merge-the-resolutions; 
begin 

end. 

scan rules of command interaction, replacing 
the multiple commands with fewer that 
accomplish the same thing and are conflict-free; 

if another aircraft might help you reduce some of 

your non-goal-achieving actions 
then request such an action; 

if your intentions are significantly changed 
then notify neighbors; 

if your action conflicts with planned actions of other 

aircraft then bargain with the other aircraft; 

In the simplest case, the merge command merely links the set of resolution 

commands into an action sequence. The routine also notifies neighbors if any new 

actions have been added to the plan. More complex calculations are required if we 

consider replacement of the action sequence with an equivalent, smaller action set. 

Occasionally, an inefficient set of commands will be generated. The resolve routine 

finds plan modifications incrementally and considers each conflict separately. The 

merge routine may be able to look at the entire situation and prune the set of 

commands significantly. 
Cooperating with other aircraft may also significantly improve the overall 

quality of solutions. An aircraft need only communicate those intentions that may 

affect others' behavior. Here a tradeoff between channel load and plan efficiency 

arises, some aspects ofwhich are handled in the rules below. 

Step 7: Check Requested Action 

Procedure request-actions; 
begin 

end. 

compute expected time delay associated with transmission 

and processing; 
if time delay is greater than decision time limit for 

action then delete request and replan actions; 

if channel occupancy is low then state full plan and 

request actions; 
if channel occupancy is high then request actions only; 

The routine simply checks to make sure the requested action can be performed 

within an allowable time span and without undue channel load. The expected time 

delay will depend on current channel occupancy, message length, and message­

processing difficulty. The decision time limit is determined from the resolution 

routine. 



Step 8: Choose Between Inference and Communication 

Procedure infer-intentions: !observed behavior does not match 

model predictions! 
begin 

end. 

search rulesets to determine if inference is possible 

for this situation; 
estimate time of processing; 

if sufficient time exists then activate inference 

process, associate confidence with result, and 

incorporate information in model; 

else request information from aircraft producing 

discrepancy; 

39 

This is a simplified view of the inference/ communicate decision. Inference is 

chosen if appropriate rulesets are present and time exists for the deductive process. 

Otherwise the information is requested from the other aircraft. Eventually, more 

sophisticated rules that consider relative time delays, confidences, and use of com­

puting resources will be used to select between inference and communication in 

each instance. 

Step 9: Bargain with Other Aircraft 

Procedure bargain-with-other-aircraft; 

begin 

end. 

compare plan(s) received from other aircraft with own 

plan (run each in look-ahead program and determine 

differences); 
if one plan dominates for all aircraft, adopt plan and 

acknowledge; 
if stalemate, attempt to find intermediate plan that 

reduces negative evaluation; if none available, use 

resolution procedure (highest overall evaluation, else 

use arbitrary rule); 

If plans by different aircraft are incompatible, the aircraft must compare the 

effects of the two (or more) plans, agree on a resolution procedure, and if a stale­

mate still exists, find a mutually satisfactory tie-breaking procedure. 



VI. IMPLICATIONS AND DIRECTIONS 

We have examined several architectures for the distributed control of air fleets, 

and we have attempted to determine the environmental conditions that force archi­
tecture choices and influence system performance requirements. As a result of 

these investigations, we have postulated candidate architectures and distributed 
AI techniques for a number of different air fleet control environments. 

Our six architectures, from the completely silent and individual object-centered 

autonomous to the multi-level hierarchical structure, represent variants of a single 
problem-solving "kernel." The system kernel appears to require the capabilities of 

sensing, inference, communication, world modeling, look-ahead, option generation, 

and execution, along with a means for scheduling these activities. The architectures 
differ in the physical form of the processes and the relative emphases placed on 
them. Certain architectures seem to rely primarily on inference and preplanned 

protocols, some focus on extensive communications, and some depend on exhaus­
tive plan generation. 

SELECTION OF AN ARCHITECTURE 

Our investigations suggest that at least four factors are critical in the selection 
of a distributed control architecture: (1) the degree of communication freedom, (2) 
the extent of vehicle clustering, (3) time stress, and (4) reliability requirements. The 
first of these, communication freedom, seems to be the dominating factor. If com­
munications are highly overloaded, degraded strongly by distance or noise, or 
subject to countermeasures, the only alternative may be the object-centered au­

tonomous architecture. This is the only architecture that can silently perform 
situation assessment, planning, and execution. lfthe range of constraints is relaxed 
somewhat, the object-centered cooperative architecture becomes suitable. This ar­
chitecture minimizes communication distances by relying only on vehicle-to-vehicle 
transmissions within conflict groups. If the communications constraints are further 
relaxed, the local communications used in the space- and function-centered archi­
tectures are possible. Only when long-range communications are reliable and inex­
pensive can the global data fusion and planning processes of the plan-centered and 

hierarchical architectures be used. 
The extent of vehicle clustering and time stress have secondary effects on 

choice of architecture. The aircraft to be coordinated may have natural lines of 
organization by geography, flight phase, goal, or level of abstraction. Selecting an 
architecture that corresponds to the form of clustering should maximize the ratio 
of fast, cheap computation to slow, costly inter-processor communication. Time 
stress reinforces the need for minimizing unnecessary communications. Also, the 
architecture implementations emphasizing rapid, local heuristic planning tech­
niques (option pruning, abstraction, heuristic search) tend to be favored in time­
stressed situations. 

The presence of the fourth factor, reliability requirements, argues strongly for 
one of the object-centered architectures. These architectures are least affected by 

40 



41 

loss of processors or communication links. In the cooperative version, messages can 

be routed along many different pathways. Also, the communication links tend to 

be close together, minimizing the possibilities of of jamming or detection in military 

situations. 

TRANSITIONS BETWEEN ARCHITECTURES 

As aircraft progress through different phases of flight-takeoff, transition, en­

route, and approach-it may be necessary to shift architectures. The aircraft may 

need to change from a loosely controlled object-centered architecture in the high­

altitude enroute airspace to a highly structured space-centered architecture in the 

high-density terminal area. This transition may be accomplished through either (1) 

non-communicative, preset protocols, e.g., transition from OCC to space-centered at 

6000 feet, (2) cooperative, local behavior, such as iteratively generating options, 

exchanging data, and bargaining about initiation points, or (3) designation of a 

higher-level decisionmaker to coordinate the transition. The transition itself may 

involve redistribution of data, modification of the communication networks, and/ or 

shifts in the forms of planning and control. 

The coordination of control hand-offs between sectors or regions ofresponsibil­

ity presents similar problems. Distribution of control introduces "seams" or bound­

ary areas of overlapping or unspecified control responsibility. A large overlap of 

monitoring and control functions of neighboring processors will result in inefficient 

use of processing resources. Conversely, if the neighboring nodes exercise minimal 

coverage, some aircraft may "slip through the cracks." Techniques need to be 

developed for redundant processing at border areas, for synchronizing processing 

between regions, and for communicating information required for coordinating 

control hand-offs. These considerations are critical in all architectures in which a 

single node may control multiple objects. 

QUESTIONS FOR FUTURE RESEARCH 

This work only begins to define the relationships among task environments, 

system architectures, and task performance. The questions that must still be ad­

dressed in further work include the following: 

1. When should inference be used and when should communication be called 

on to update the world model? Can a single evaluation function for this 

choice adequately integrate time delays, data inaccuracies, reliability 

problems, and processing demands? 

2. Can information-seeking and planning be supported by the same type of 

representation? How can information-seeking options that change the 

environment be represented? 

3. What conflict-resolution procedures should be used when the goals of the 

different problem-solving nodes are in conflict? When should a separate 

node be designated as an arbitrator, and when should direct bargaining 

take place? 



42 

4. When should the focus of attention of a node be on search, conflict resolu­

tion, monitoring, etc.? What processes should be event-driven and what 

processes time-driven? How much scheduling responsibility should be 

given to the modules themselves? 

FUTURE RESEARCH 

Several of the above questions will be addressed in a series of system implemen­

tations now in progress at Rand. We have modified an existing ATC terminal-area 

simulation (described briefly in Section V) to operate on Rand's PDP 11/45 and 

VAX computers. This simulation includes many ofthe decision and communication 

behaviors present in a high-density approach control sector. We are using the 

simulation to exercise groups ofhuman controllers (to ascertain their heuristics for 

cooperative problem-solving) and to support demonstrations of automated distrib­

uted AI systems implemented on a DEC 2060 computer in INTERLISP. 

We chose the OCC structure for much of cur initial work, for the following 

reasons: 

1. It is the most fine-grained of the candidate architectures, having only one 

controlled object per processor. 
2. It supports the most interesting behavior (for example, autonomous, coop­

erative, and centralized planning are all possible). 

3. It allows the greatest flexibility of physical representation: the processors 

may be onboard or remote, and different vehicles may assume different 

roles. 
4. Higher levels of organization may easily be overlaid on the basic object­

centered structure. 

We are currently implementing a distributed set of kernel OCC nodes in the 

simulation. Each of these automated nodes will control an aircraft and will interact 

to produce coordinated behavior. We are implementing rulesets for: 

1. Model updating-incorporating new information in the world model. 

2. Inference-determining intentions of other aircraft through deduction. 

3. Initial plan generation-synthesizing candidate plans. 

4. Option evaluation-using look-ahead to evaluate options. 

5. Communications management-opening channels and formatting mes-

sages. 
6. Replanning-using rulesets to generate responses to potential conflicts. 

7. Bargaining-using protocols to determine precedence of aircraft. 

8. Scheduling of activities-transitioning among rulesets 1 through 8. 

Subsequent efforts will focus on expansion of this baseline distributed system 

to deal with communication range limitations, noise, and environmental uncertain­

ty. This work is essential to the identification ofproblems ofphysical realization­

processor cycle time, communications range limitations, memory constraints, etc.­

specific to each architecture. Also, we are initiating parallel efforts with human 

controllers acting in place of computer-based problem-solvers to help elucidate 

additional features of the various architectures. 



43 

So far we have concentrated on developing entirely automated distributed 

systems. Most real-world systems will be hybrid, making use ofthe special capabili­

ties ofboth humans and machines. We must integrate our work with models of the 

human cognitive processes involved in cooperative behavior and with develop­

ments in interactive display techniques and knowledge elicitation procedures. We 

also need to investigate the problems of coordinating many independent, asynchro­

nous processes, where the processes may be human-initiated or machine-initiated. 

Our findings should directly affect engineering applications and stimulate new 

areas of technology in distributed intelligent systems. 



1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 



Appendix 

CALCULATIONS OF REDUCTION OF CONFLICT TESTS 

BETWEEN GLOBAL AND LOCAL PROBLEM 
RECOGNITION 

In this appendix, we calculate the difference between the number of conflict 

tests required in global problem recognition and the number in local problem 

recognition. Both cases require monitoring several tolerance ranges, including 

aircraft separation, terrain clearance, and equipment performance. Global problem 

recognition requires tests for possible conflicts between all objects, while local 

problem recognition considers conflicts only within clusters of objects. 

Global problem recognition may be performed for an airspace by collecting 

state data from all sensor nodes and checking tolerances with respect to all objects 

and all constraints. Looking at aircraft-to-aircraft separation checks alone, the 

number of individual tests on n objects is 

The possibility of multi-party conflicts of three or more aircraft rapidly in­

creases the number of tests. Because of stricter separation criteria resulting from 

a decrease in maneuvering space (Andrews and Hollister, 1980), such conflicts may 

need to be treated differently from conflicts of two aircraft. The maximum number 

of conflict tests increases to 

f: (:) = 2n - (n+l) 
r=2 

With large n, the number of conflict tests then approximates 2n. We expect this 

exhaustive, global problem-recognition procedure to be necessary (1) ifthe aircraft 

separation requirements are large compared to the size of the airspace and (2) if 

replanning actions normally involve most of the aircraft in the airspace. 

In local problem recognition, only interactions within a cluster of neighboring 

aircraft must be considered, so the number of interactions is reduced considerably. 

For example, suppose the aircraft are clustered into m loosely coupled conflict 

groups with n(k) elements in the kth group. The number of two-body conflict checks 

required is 

i: (n(k)) 

k=l 2 

45 



46 

If higher-order interactions are possible, the number of potential conflicts 

becomes 

m n(k)( (k)) m 
~ ~ nr ~ E 2n(k)- (n+m) 

With large n, the number of conflict tests then tends to 

m 2: 2n(k) 

k=l 

This is much smaller than the 2n tests required for global problem recognition. The 

potential savings realized through clustering should increase further ifboundary, 

terrain, fuel, or weather constraints are included in the problem-recognition task. 

Formation of the clusters is basically a problem of minimizing dependencies 

between groups. We can perhaps most easily define the clusters by grouping the 

aircraft according to physical proximity. The procedure for this clustering is an 

adaptation of the nearest-neighbor algorithm used in pattern classification. We first 

define a distance metric based on some linear combination of horizontal separation 

and altitude. We specify a program to compute the distance between every pair of 

aircraft in the airspace. • The program determines the shortest distance between 

two aircraft, puts the aircraft so joined into a single cluster, then determines the 

next shortest distance, and so on. We consider each cluster to be a conflict group. 

Using trajectory projection, the method currently used in ATC conflict-prediction 

programs, we can test all aircraft within each group for possible conflicts. Potential 

conflicts across groups are not checked. 
In a similar fashion, the number of options searched by a distributed planning 

node may be considerably smaller than the number searched by a centralized node. 

The following simple example illustrates this. 
A controller must maintain clearance between 12 aircraft in a sector. For 

simplicity, let us assume that he may choose only five altitudes and five headings. 

In addition, he may activate these commands at any offour time steps. At any time, 

the number of options is 

Number of options = (N aircraft) X (K headings + L altitudes) 

X (M initiation times) 

Under the conditions of this example, this represents an exhaustive search of 

480 options, each one of which consists of a single action by a single aircraft. If a 

conflict situation requires three sequenced actions for resolution, as many as (480)3 

option sequences need to be tested. Reduction of the problem into four independent 

conflict clusters of three aircraft simplifies the problem considerably, even if each 

cluster must still perform three sequenced actions. Each cluster then checks a 

maximum of (120)3 option sequences, a reduction by a factor of 64 over the global 

procedure. Further reductions with distribution are expected from truncation of 

the time horizon because of faster local replanning and from assigning different 

portions of the planning to each of the several aircraft in a cluster. 

• Actually, more efficient means are possible for this computation (see Uhr, 1973). 



GLOSSARY OF ATC TERMS 

approach control. The ATC facility responsible for radar separation and coordina­

tion of aircraft in the vicinity of an airport. Approach control's typical jurisdic­

tion extends about 20 to 40 miles from the airport horizontally and 5 to 10 

miles vertically. 
cluster. A group of aircraft considered as a single interacting body. The clustering 

dimensions may include distance, aircraft type, and flight phase. 

conflict. A situation in which one or more aircraft violate constraints of altitude 

and horizontal separation. 
enroute cortrol. The ATC facility responsible for aircraft separation and coordi­

nation while in cruising flight between departure and destination airports. 

fix. A specified geographic location used in navigation. Usually, fixes are easy-to­

locate points formed by radio beacons. 
hand-off. Release of control of an aircraft, giving it to another ATC facility as the 

aircraft proceeds past the airspace limits of the control jurisdiction. 

link. A data communication between aircraft or between processing nodes. 

node. An individual processor which may perform sensing, situation assessment, 

planning, or execution. The node may be onboard an aircraft or may be 

ground-based. 
strategic planning. Long-time-horizon planning dealing with both local and dis­

tant aircraft interactions. 

47 





BIBLIOGRAPHY 

Andrews, J., and W. Hollister, Electronic Flight Rules: An Alternative Separation 

Assurance Concept, Lincoln Laboratory Report No. FAA-RD-80-2, Lexington, 

Massachusetts, January 1980. 

Babich, A., J. Grason, and D. Parnas, "Significant Event Simulation," Communica­

tions of the ACM, Vol. 18, No.6, 1975, pp. 323-329. 

Brooks, R., and V. Lesser, Distributed Problem Solving Using Iterative Refinement, 

COINS Technical Report 79-14, University ofMassachussetts, Amherst, May 

1979. 
Clark, D., K. Pogram, aPd D. Reed, "An Introduction to Local Area Networks," 

Proceedings of the IEEE, Vol. 66, No. 11, November 1978, pp. 1539-1548. 

Cohen, D., J. Barnett, Y. Yemini, and D. Schwabe, DSN-Distributed Sensor Net­

works, Information Sciences Institute, ISI-WP-12, Marina del Rey, California, 

April1979. 
Couluris, G., M. Tashker, and M. Penick, Policy Impacts of ATC Automation: Hu­

man Factors Considerations, SRI International and Payne-Maxie Consul­

tants, Report No. FAA-A VP-78-1, January 1978. 

Dalkey, N., Group Decision Theory, School of Engineering and Applied Science, 

University of California, Los Angeles, UCLA-ENG-7749, July 1977. 

Erman, L., F. Hayes-Roth, V. Lesser, and D. Reddy, "The Hearsay-Il Speech Under­

standing System: Integrating Knowledge to Reduce Uncertainty," Computing 

Surveys, June 1980, pp. 213-252. 

Farris, D., and A. Sage, "Introduction and Survey of Group Decision Making with 

Applications to Worth Assessment," IEEE Transactions on Systems, Man, and 

Cybernetics, Vol. SMC-5, No.3, May 1975,"pp. 346-358. 

Hayes-Roth, B., and F. Hayes-Roth, Cognitive Processes in Planning, The Rand 

Corporation, R-2366-0NR, December 1978. 

Hayes-Roth, F., "The Role of Partial and Best Matches in Knowledge Systems," in 

D. A. Waterman and Frederick Hayes-Roth (eds.), Pattern-Directed Inference 

Systems, Academic Press, New York, 1978. 

Hummel, R., and S. Zucker, On the Foundations of Relaxation Labeling Processes, 

Computer Vision and Graphics Laboratory, McGill University, TR-80-7, July 

1980. 
Kahn, R., S. Gronemeyer, J. Burchfiel, and R. Kunzelman, "Advances in Packet 

Radio Technology," Proceedings of the IEEE, Vol. 66, No. 11, November 1978, 

pp. 1468-1496. 
Kelley, J., Distributed Processing Techniques for En Route Air Traffic Control, The 

Mitre Corporation, TR-7589, July 1977. 

Kinney, G., M. Spahn, and R. Amato, The Human Element in Air Traffic Control: 

Observations and Analyses of the Performance of Controllers and Supervisors 

in Providing ATC Separation Services, The Mitre Corporation, Technical Re­

port MTR-7655, December 1977. 

Kreifeldt, J., L. Parkin, P. Rothschild, and T. Wempe, "Implications of a Mixture 

of Aircraft With and Without Traffic Situation Displays for Air Traffic Man­

agement," presented at the Twelfth Annual Conference on Manual Control, 

49 



50 

University of Illinois, Urbana, Illinois, and Ames Research Center, Moffett 
Field, California, May 1976. 

Lesser, V., and L. Erman, "Distributed Interpretation: A Model and Experiment," 
IEEE Transactions on Computers, Vol. C-29, No.12, December 1980, pp.1144-
1162. 

Marschak, J., "The Payoff-Relevant Description of States and Acts," Journal of 

Econometrics, Vol. 21, No. 4, October 1973, pp. 719-725. 
Martin, J., Developments in Tele-Communications, Prentice-Hall, New Jersey, 

1977. 
McClellan, J ., "Understanding the Future ATC System," Business and Commercial 

Aviation, September 1978. 
Mills, R., N. Aume, and R. Bachert, Summary Report of AMRL Remotely Piloted 

Vehicle (RPV) System Simulation, Aerospace Medical Research Laboratory, 
Wright-Patterson AFB, AMRL-TR-75-126, December 1975. 

Neubauer, J., "U.S. Cruise Missile Development," Astronautics and Aeronautics, 

Vol. 17, No.9, September 1979, pp. 24-35. 
Newell, A., and H. Simon, Human Problem-Solving, Prentice-Hall, New Jersey, 

1972. 
Nilsson, N., Problem-Solving Methods in Artificial Intelligence, McGraw-Hill, New 

York, 1971. 
Parnas, D., "On a 'Buzzword': Hierarchical Structure," in J. L. Rosenfeld (ed.), 

Information Processing 74, North-Holland Publishing Company, 1974, pp. 336-
339. 

Phatak, A., N. Gupta, and I. Segall, Analysis of Controller/System Dynamics for a 

Remotely Piloted Vehicle Strike Mission, Systems Control, Inc., AMRL-TR-74-
80, September 197 4. 

Ratcliffe, S., "Principles of Air Traffic Control," in A. Benoit (ed.), A Survey of 

Modern Air Traffic Control, NATO AGARDograph, No. 209, Vol. 1, July 1975, 
pp. 3-20. 

Rucker, R., Automated Enroute ATC (AERA): Operational Concepts, Package 1 

Description, and Issues, The Mitre Corporation, MTR-79W00167, May 1979. 
Sacerdoti, E., "Planning in a Hierarchy of Abstraction Spaces," Artificial Intelli­

gence, Vol. 5, No.2, 1974, pp. 115-135. 
Smith, R., A Framework for Problem Solving in a Distributed Processing Environ­

ment, Stanford University, Computer Science Department Report No. STAN­
CS-78-700, December 1978. 

Smith, R., and R. Davis, "Distributed Problem Solving: The Contract Net Ap­
proach," Proceedings of the Second National Conference of the Canadian 

Society for Computational Studies of Intelligence, Toronto, July 1978, pp. 
278-287. 

Stefik, M., Planning with Constraints, Computer Science Department, Stanford 
University, Doctoral Dissertation, January 1980. 

Uhr, L., Pattern Recognition, Learning, and Thought, Prentice-Hall, New Jersey, 
1973. 

Waterman, D. A., and Frederick Hayes-Roth (eds.), Pattern-Directed Inference Sys­
tems, Academic Press, New York, 1978. 

Wesson, R., Problem-Solving with Simulation in the World of an Air Traffic Con­

troller, University of Texas at Austin, Doctoral Dissertation, 1977. 



51 

Wesson, R., and F. Hayes-Roth, Dynamic Planning: Searching Through Time and 

Space, The Rand Corporation, P-6266, February 1979. 

Wesson, R., and F. Hayes-Roth, with J. Burge, C. Stasz, and C. Sunshine, Network 

Structures for Distributed Situation Assessment, The Rand Corporation, 

R- 2560-ARPA, August 1980. 





j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 

j 



RAND/R-2728-ARPA 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


