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PREFACE

The evaluation of the stability of Pine River Dam was conducted
for the U. S. Army Engineer District, St. Paul, by the Structures Labora-
tory (SL) of the U. S. Army Engineer Waterways Experiment Station (WES).
Authorization for this investigation was given in Intra-Army Order for
reimbursable services No. NCS-1A-78-75, dated 23 July 1979.

The contract was monitored by the U. S. Army Engineer District,
St. Paul, with principal assistance from Messrs. Jerry Blomker and
Roger Ronning. Their cooperation and assistance were greatly appreciated.

The study was performed under the direction of Messrs. Bryant Mather
and William Flathau, Chief and Assistant Chief, respectively, SL; and
John Scanlon, Chief of the Concrete Technology Division, SL. The struc-
tural stability analysis was performed by Dr. Carl Pace and Mr. Roy Camp-
bell. The core logging and writing of the petrographic report was per-
formed under the technical supervision of Mr. Alan Buck by
Miss Barbara Pavlov and Mr. Sam Wong. The testing was performed by
Mr. Mike Lloyd. The computer programming by Miss Alberta Wade, Automatic
Data Processing Center, was appreciated. The core drilling was under
the direction of Mr. Mark Vispi, Geotechnical Laboratory, WES. Dr. Pace
prepared this report,

Commanders and Directors during the conduct of the program and the
preparation and publication of the report were COL John L. Cannon, CE,
COL Nelson P. Conover, CE, and COL Tilford C. Creel, CE. Mr. F. R.

Brown was Technical Director.
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CONVERSION FACTORS, INCH-POUND TO METRIC (SI)
UNITS OF MEASUREMENT

Inch-pound units of measurement used in this report can be converted to

metric (SI) units as follows:

Multiply By To Obtain
acre-feet 1233.489 cubic metres
feet 0.3048 metres
inch-pounds (force) 0.1129848 newton ° metre
inches 0.0254 metres
kips (force) 4448.222 newtons
kips - feet 1355.818 newton ° metre
miles (U. S. statute) 1.609347 kilometres
pounds (force) per 0.2714 megapascals per metre
cubic inch (psi/in.)
pounds (force) per 6.894757 kilopascals
square inch
pounds per inch 175.1268 newtons per metre
square miles 2.589998 square kilometres
b
I
3
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STRUCTURAL STABILITY EVALUATION
PINE RIVER DAM

PART I: INTRODUCTION

Background

1. The background material presented below is taken mainly from
two publications on Pine River Dam by the U. S. Army Engineer District,
St. Paul (1973, 1977) to give pertinent facts in this report concerning
Pine River Dam and its construction.

2. The headwaters reservoir system, Figure 1, is one of the oldest
projects in the St. Paul District. The initial surveys and investiga-
tions were begun in 1867, at a time when the country was being opened up
for development and settlement. The projects are old and were designed
almost completely on the site., Based on the available data, it appears
that the original construction was almost entirely a practical field ap-
plication in basic engineering., The physical design was performed in the
field, and very little documentation was retained. Documentation prior
to construction was limited to the amount required to develop the engi-
neering feasibility and requirements for construction, authorization,
and funding. Postconstruction documentation was generally limited to re-
porting quantities, costs, and justification for additional work or study.
Construction data since 1915 generally amount to the repair or rehabili-
tation of existing structures. The data are available, but generally
are limited to construction drawings, with little theoretical data. The
construction plans give a minimum of data, but they are adequate back-
ground for the evaluation of the stability of the structure.

3. Pine River Reservoir (Figures 2 and 3) is one of six Federal

reservoirs located in the headwaters region of the Mississippi River,

*
about 120 miles nporthwest of Minneapolis, Minnesota, and 90 miles west

of Duluth, Minnesota. Four of the reservoirs, including Winnibigoshish,

* A table of factors for converting inch-pound units of measurement to
metric (SI) units is presented on page 3.
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Leech Lake, Pokegama, and Pine River, were placed in operation in the
1880's; Sandy Lake Reservoir was placed in operation in 1895; and Gull
Lake Reservoir became operative in 1912, All six headwater dams were
subsequently replaced by concrete or concrete and timber structures in
the period from 1900 to 1915.

4. Pine River Reservoir controls the runoff from a 562-square mile
drainage area and encompasses about 15 natural lakes, including Cross,
Daggett, Little Pine, Rush, Island, Ox, Upper and Lower Whitefish, Big
Trout, Arrowhead, Pig, Clamsheel, Bertha, and Upper and Lower Hay Lakes.

5. Originally the headwaters reservoirs were authorized to pro-
vide supplemental flow during periods of low flow in the interest of
navigation on the Mississippi River at and below the Twin Cities.

6. With the canalization of the Mississippi River below Minneapo-
lis, Minnesota, the demands for storage releases from the reservoir sys-
tem for navigation have been greatly reduced. Thus, in recent years the
reservoirs have been operated primarily for other purposes, including
flood control, recreation, fish and wildlife conservation, water supply,
water quality improvement, and other related uses. With the exception
of Gull Lake, Pine River is the southerunmost reservoir. The dam is lo-
cated at the outlet of Cross Lake on the Pine River about 15 miles above
its junction with the Mississippi River, and about 150 river miles above
Minneapolis. The dam is at the village of Cross Lake, Minnesota, and is
often referred to as the Cross Lake Dam. General reservoir data are

presented in Table 1 and pertinent dam data in Table 2.

Control Structure

7. The control structure, Figure 4, is a 150-ft-long, reinforced
concrete structure supported on round timber bearing piles. The original
structure, which was a rock-filled timber crib structure, deteriorated
so quickly that starting in 1905 portions of the superstructure had to
be replaced by a concrete and timber structure. The only portion of the

original timber crib structure presently remaining is the timber
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diaphragm sheeting and round timber bearing piles in the footing and
the 23-ft-wide timber apron at the upstream face of the dam. Pine River
Dam was originally constructed between 1884 and 1887.

Reconstruction of 1905

8. The reconstruction of 1905 consisted of removal of the timber
crib superstructure and replacement with a multiple-bay concrete arch
structure on new piers and abutments. New caps were put on the old tim-
ber bearing piles and additional new timber piles were driven to support
the new and heavier concrete piers and abutments. Mass concrete sections
were constructed on new timber pile footings at both abutments. The
structure had eleven 6-ft-wide sluiceways that were fitted with hand-
operated, low flow control gates, having a maximum opening on each gate
of 1.6 ft. Next to the left abutment are two additional 6-ft-wide bays
for sluicing logs and to serve as a fishway. Prior to 1972, stop logs
located in the 11 bays above the gates and those included in the two left
bank sluiceways were used to regulate high flows. The 1905 reconstruc-
tion also included removal of the apron floor and replacement with a new
timber apron.

Other modifications

9. In 1911, the timber fishway was replaced with a reinforced con-
crete fishway built on the existing timber piling. In 1948, a contract
was awarded for apron and gate repair. Under this contract the timber
was removed and all bad pile caps were replaced. At this time voids
were found to exist around the pile caps of the entire structure (under
piers, abutments, and the apron). Gravel fill was used to fill the voids
in the readily accessible areas such as the apron; and hydraulic cement
grouting was used to fill inaccessible areas around and under the piers
and abutments. The floor areas of the apron between piers were then
capped with a 16-in.-thick reinforced concrete slab. A gravel under-
drain system with a 6-in. v.c. perforated collector pipe was placed at
the underside of the slab. Also, the 32-ft-wide apron downstream of the
piers was redecked with a new timber floor in this contract. The slide
gates were repaired with new timbers and hardware. In 1971, the timber

apron lo’ ited on the downstream side of the concrete structure was




replaced with a new 34-ft-wide reinforced concrete apron. The timber
piling and timber pile caps remained in place and provided support for
the new apron. In 1972, a contract was awarded to remove 12 timber slide
gates, hoists, and supporting beams, and to install 11 new 54- by 60-in.

sluice gates with operating stands and supporting beams.

Objective

10. The objective of this study is to evaluate the stability of

the concrete control structure.

Scope

11. This study was limited to a structural stability evaluation
of the concrete control structure with consideration given to foundation
and concrete properties. To aid in this evaluation three cores were
drilled through the dam into the foundation. One extra core (15.4 ft
long) was taken from pier 3 to check the extent of the poor quality con-
crete. The foundation material was tested in situ in order to determine
its supporting capabilities. The concrete cores and foundation material
were examined and tested, and the structural stability of the dam was
evaluated. The stability analysis was performed in accordance with

current Corps of Engineers criteria.




PART II: CORING PROGRAM

12, Since Pine River Dam falls into the classification of a low-
head dam, limited coring was performed to obtain properties of the con-
crete and to obtain an access to the foundation material in which in situ
testing was performed.

13. Four core holes were drilled. Four-inch and NX concrete cores
were obtained (Part III).

14, Cores PR-P3, PR-P6, and PR-P9 were NX cores taken all the way
through the pier.

15. Poor quality concrete was encountered when coring PR-P3 in
pier 3; therefore, a second ccre hole (PR-P3A) of 4-in. size was drilled
to check the extent of the poor quality concrete. Core PR-P3A was
drilled farther upstream and to a depth of 15.4 ft into the concrete.

It was not drilled all the way through the pier. Core PR-P3A was of a
better quality concrete; therefore, it is concluded that the concrete in
the pier varies in quality.

l6. The piers are numbered from right to left looking from up-
stream to downstream. The location of the core holes in piers 3, 6, and
9 are presented in Figure 5.

17. The core holes were drilled by using a truck-mounted drill rig
to core through the roadway and pier. A typical drilling setup is pre-
sented in Figure 6.

18. Diamond core bits and 5-ft-long, double-tube, swivel-head
core barrels were used to obtain core from the concrete. Holes were
drilled into the foundation material; a 60-mm pressuremeter probe was
inserted to the desired depths, and pressuremeter tests performed. Alter-
natively, a split-spoon test was performed and then the hole drilled for
a pressuremter test. Two main problems were encountered when trying to
perform the pressuremeter test. Gravel continued to fall into and block
the core hole. Additional piling had been driven when the concrete piers
were constructed, and they were not shown on available drawings, causing
some of the tests to be performed too close to a piling to give accurate

results. These tests had to be voided.




19. The coring program was oriented toward

a. Depth of deteriorated concrete.

!

b. Uniformity of concrete with depth.
c. Unconfined compressive strength of
d. The foundation material properties

using the core holes as the access

20. The in situ strength of the foundation

determining:

the concrete.

by in situ testing,
to the foundation.

material is an impor-

tant factor in the analysis of the stability of the dam, which is sup-

ported on timber piles. The drill rig was used to perform pressuremeter

tests, standard penetration tests, and to obtain disturbed samples of the

foundation material.

21. The coring program was considered a minimum for obtaining

representative information on the concrete and foundation material but

is adequate for this particular dam. The core holes were not grouted,

but capped pipes were used to seal the top openings in order that the

core holes could be used in the future for obtaining piezometric data.

22. Pictures of representative concrete cores and of cut sections

are presented in Figure 7.




IS

PART III: PETROGRAPHIC REPORT AND CORE LOGS

Samples

23. One 4-in.~diam and three NX size concrete cores were received
at the U. S. Army Engineer Waterways Experiment Station (WES) on
29 October for tests and examination. The concrete in Pine River Dam was
placed in 1906.

24, All cores were from vertical holes. The cores are described

and identified below.

Core Depth
No. Location El* ft Material Size
PR-P3 Pier 3 1236.32 21.8 Concrete, mortar NX
PR-P3A Pier 3 1235.82 15.4 Concrete 4 in.
PR-P6 Pier 6 1236.2 22.1 Concrete, wood, NX
mortar
PR-P9 Pier 9 1236.2 21.0 Concrete, wood, NX
mortar
Test Procedures

25. The four cores were logged at WES. Samples for petrographic
examination and for unconfined compressive strength tests were chosen
from typical concrete at or near the top, middle, and bottom portions of
each core. In some instances the concrete in a certain length of core
was highly fragmented, which prevented sampling for physical tests in
that area.

26. A piece of core PR-P3 from about the 19.5-ft depth was se-
lected to represent all of the concrete. It was sawed along its axis,
and one surface was ground smooth. This surface was then examined with
a stereomicroscope. In addition, pieces of different cores were broken,
and the fresh fracture surfaces were also examined using a

stereomicroscope.

* Elevations (el) cited herein are in feet referred to mean sea level
(msl), 1929 adjustment.
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27. A cement paste concentrate was prepared from a piece of con-
crete core PR-P6 at about the 3.5-ft depth. This was done by crushing
some of the core and passing it over a 150-uym (No. 100) sieve. The mate-
rial passing this sieve is considered to be a concentration of cement
paste. This paste concentration was then ground to pass a 45-um (No. 325)
sieve and was examined by X-ray diffraction. This was done with an X-ray
diffractometer using nickel-filtered copper radiation.

28. Samples of the usually white reaction product found in voids
and coating aggregate surfaces in the concrete were collected. The re-
action product was examined using a stereomicroscope and as an oil im-
mersion mount using a polarizing microscope.

29. An unusual appearing occurrence of pinkish alkali-silica reac-
tion gel was found in an air void that was adjacent to a granitic coarse
aggregate particle when a piece of core PR-P6 was broken. This was from
a depth of about 19.7 ft. This material was examined by a scanning
electron microscope (SEM) and micrographs were made. The sample was not
coated to make it electrically conductive, so a low power setting of
6-kv accelerating potential was used. Therefore, some charging of the

sample did occur, but it was kept to a minimum by this procedure.

Results

30. The concrete of core PR-P3 was badly fragmented (Figure 8),
while the concrete of the other three cores, PR-P3A, PR-P6, and PR-P9Y,
was generally much more intact (Figures 9-11). Since the larger diameter
(4 in.) core (PR-P3A) resampling of pier 3 was more intact than the
smaller diameter NX (2-1/8 in.) core (PR-P3) from pier 3, this may mean
that much or all of the fragmentation was due to the small NX core size.
All of the cores except PR-P3A showed that the original concrete had
been overlaid with several inches of nonair-entrained concrete containing
smaller aggregate; the contact surfaces of old and newer concrete were

loose (Figures 8, 10, and 11). Cores PR-P6 and PR-P9 had been drilled

deep enough to recover the wood and mortar base supporting the concrete

piers as shown in Figure 8 and 11.. Some wood pieces were found as part

11 'g
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of the material recovered below the 21-ft depth in core PR-P6 (Figure 10).

Drilling may have destroyed the wood as it did much of the concrete at

that depth.

31. Most breaks in the cores were believed to be due to the drill-

ing operation. A stained break at 15.8 ft in core PR-P9 (Figure 11)

1 was the only break believed to predate drilling. Tight cracks at the
3.6-ft depth in core PR-P6 (Figure 10) and the 18.3-ft depth in core
PR-P9 (Figure 11) may be old.

32. The original concrete in all of the cores was the same mate-
rial. It was nonair-entrained concrete containing aggregate of mixed
composition and 1-1/2- to 2-in.-max size. The coarse aggregate appeared
to be gravel that had some degree of crushing. It was composed of gran-
ite and fine-grained, dark, igneous rock particles with lesser amounts of
gneiss and quartzite particles. The composition ot the fine aggregate

: was like that of the coarse aggregate except that there were more grains
‘ of individual minerals.

33. There was porous portland cement mortar present beneath the
wood piling in borings PR-P6 and PR-P9 (Figures 10 and 11). Similar
material but with coarser aggregate was present near the bottom of core
PR-P3 (Figure 8). This porous mortar and concrete was made of the same
or similar materials, except for the absence of coarse aggregate in the
mortar, as in the rest of the cores.

34. Material recognized as alkali-silica reaction gel was found
in some air voids and on some aggregate surfaces in all four of the cores.
Since this gel was most often found associated with the granitic rock
particles, this could mean that the granitic particles were, or at least
one of, the reactive rocks. The gel appeared as a bluish white, glassy
or milky material when examined with a stereomicroscope. It often ex~
hibited shrinkage cracks. As mentioned earlier, some pinkish gel show-
ing an unusual development of layered structure was found in an air void
adjacent to a granitic particle of coarse aggregate in core PR-P6 at a
depth of about 19.7 ft. The appearance and structure of this gel is
shown by the SEM micrographs in Figures 12 and 13, Am immersion mount

of some of this gel showed it as fibrous, brownish material with a

12
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refractive index below 1.498 when examined with a polarizing microscope
in plane polarized light. Some granitic aggregate particles showed reac-
tion rims. The presence of this gel and the reaction rims on aggregates
showed that alkali-silica reaction had occurred.

35. X-ray diffraction of the cement paste revealed compounds that
are normally found in hydrated portland cement. These compounds included
calcium hydroxide and probably ettringite and tetracalcium aluminate
carbonate-ll-hydrate (monocarboaluminate) and calcite. Aggregate con-
stituents present as contamination were quartz, potassium and plagioclase

feldspar, mica, and possibly amphibole.

Discussion

36. All breaks in the cores appeared to be new except for a break
at the 15.5-ft depth in core PR-P9. The closely spaced breaks and frag-
mentation found in the three NX-size cores were believed to be due
largely to the drilling of such small size (mostly NX) cores. The 4-in.-
diam (PR-P3A) core showed no signs of fragmentation and only widely
spaced breaks even though it was drilled in the same pier as the core
that was in the poorest physical condition (PR-P3). While there was
clear evidence of alkali-silica reaction in all four cores, it did not
appear that this reaction had damaged the concrete, at least not seriously.

37. Although the concrete was not air entrained, it had not been
damaged by frost action, which indicated that freezing and critical satu-

ration had not occurred simultaneously.

13
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PART IV: FOUNDATION AND CONCRETE PROPERTIES

In Situ Foundation Testing

38. An estimation of the foundation supporting characteristics
for an in-place structure supported by piling is usually based on mate-
rial properties determined from the sampling of foundation material,
transporting and preparing the samples for testing, and testing the sam-
ples. The in situ supporting characteristics of the foundation material
obtained in this manner are at best approximate. Soil conditions and
stress fields can be controlled in the laboratory, but just how faith-
fully they represent in situ conditions is a matter of conjecture. A
further complication at Pine River Dam was that the foundation material
was composed mainly of saturated gravel, sand, and silt, which reduced
the ability to obtain representative undisturbed samples.

39. For the above reasons, it was considered best to test the
foundation material in situ in order to determine the resistance of the
soil to horizontal deformation. The pressuremeter method was used to
measure foundation deformation properties and obtain a rupture or limit

resistance of the foundation material.

Pressuremeter Tests

40. In situ testing to determine the supporting characteristics
of a foundation material for a pile substructure has been considered for
many years. In 1933 Kégler (Baguelin, Jiziquel, and Shields 1978) wrote
about a pressuremeter for obtaining in situ foundation properties. Since
before 1965, the pressuremeter has been used in France for the design of
building and bridge foundations. Various types of pressuremeters are now
being used in the United States; a self-boring pressuremeter shows great
promise for future use.

41. 1In situ testing to determine the resistance of the soil to
horizontal displacement is an ideal way to estimate the supporting capac-

ity of material for a pile foundation.

14




42. The pressuremeter probe was placed within a previously drilled
borehole at the desired elevation for testing. Pressure was applied in
equal increments and the corresponding volume variations noted at 15, 30,
and 60 sec. The data were corrected for calibration, waterhead, etc.

The pressuremeter data were used to calculate parameters to be used in

analysis to obtain the supporting capability for the pile foundation.

Pressuremeter Field Tests and Results

43, To test the material that supports the pile foundation under
Pine River Dam, an access to this material had to be obtained. This was
done by coring three NX holes through the dam piers and down to the
foundation material. Below each pier, a properly sized hole was drilled
in three separate drilling operations. After each drilling operation,
the pressuremeter probe was inserted to the desired elevation, and a
test was performed. In this manner, three pressuremeter tests were per-
formed at various depths into the foundation material for each test hole.

44, The locations of the probe below the bottom of the pier are
presented in Table 3 for each pressuremeter test.

45. Standard penetration (split spoon) tests were also performed
in the test holes, and the results are presented in Table 4. The stan-
dard penetration values except those for test 1 in hole PR-P3 indicate
that the foundation material is compact. Test 1 in hole PR-P3 was at
the foundation surface, which was very loose. The second standard pene~
tration test beginning at 5.3 ft below the base of the pier indicated
that the material in hole PR-P3 has become compact.

46. Disturbed samples of the foundation material were obtained
and transported to WES, Structures Laboratory, for classification. The
foundation material under Pine River Dam is made up of silt, sand, gravel,
and some clay (Figures 14-23).

47. The main characteristic of the foundation material, which
indicates its supporting capability for a pile foundation, is the sub-

grade modulus and its variation with pressure and depth into the

15




the foundation. The pressuremeter tests were used to obtain these data.
Plots of data from the test holes are presented in Figures 24-37.

48. The recorded pressure had to be corrected to compensate for
hydrostatic waterhead in the tubing and for the probe calibration, which
gives the resistance to expanding of the rubber membrane. The corrected
pressure curves are presented in Figures 24-26 for hole PR-P3 and
Figures 31-33 for hole PR-P6.

49. The limit pressure was obtained by plotting pressure versus
1/volume and extrapolating the curves to the pressure at 1/volume = 0.
The limit pressure determinations are presented in Figures 25 and 32.

50. The shear modulus (G) (Bagueline, Jiziquel, and Shields 1978)
depends not only on the slope of the pressure-volume curve but also on
the volume of the probe. The average volume is used in calculating tle

shear modulus as follows:

B V(1) + V(I + D)]ap
G, = [}35 + 5 AV (1)

V(I) + V(L + DIMPQL + 1) - PQ)
[535 * 2 ][WI ¥ T V)

51. The deformation modulus, which is something roughly equiva-

lent to Young's modulus, is obtained from the well known relation:

E
= e B
MT I+ W) (2)
52. Poisson's ratio is used as 0.33, and the resulting deforma-

tion modulus is called the Ménard modulus, EM .

71
L]

2(1 + v)GM (3)

L}

2(1 + O.33)GM = 2.66GM

The Ménard modulus is presented in Figures 28 and 35.
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53. The subgrade modulus (k) is obtained from the following

equations:

1 2 B a o]
—=1—3B [=— x 2.65 +{—8B (B > 2 ft) 4)
k9B 0<Bo ) (GE‘M)
[0 ]
or 1 _ B (4(2.56) " + 3a (B < 2 ft) (5)
k E 18
M
where
B = rc2renc pile diameter, 2 ft

B = pil>: diameter

a = rheological coefficient given in Figures 3-48 of Baguelin,
Jiziquel, and Shields (1978).

54. Tuae subgrade modulus (k) is presented in Figures 30 and 37.

55. After a representative value of k has been determined, it
can be multiplied by the pile diameter to obtain the horizontal modulus
of reaction for the pile-soil system. The horizontal modulus of reac-
tion of the soil can be used in the piling analysis to obtain deflec-
tions, forces, and moments to use in evaluating the adequacy of the pile
foundation.

56. At intermittent times gravel fell into the test hole, which
caused difficulty in obtaining properly sized holes and pressuremeter
data. Some data were too close to piles and were voided. All data are

presented in Figures 24-37.

Piling and Concrete Data

57. The 12-in.-diam Norway Pine pilings, which support the mono-
liths at Pine River Dam, are approximately 15 ft long. The properties
of the Norway Pine are as follows:

Modulus of elasticity (E) = 1.32 x 106 psi

Shear modulus (G) = 0.45 x 106 psi

Allowable compressive stress parallel to grain = 1100 psi
Allowable tensile stress parallel to grain = 775 psi

Allowable average shear stress = 75 psi

17
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Allowable compressive load on a pile = 124 kips

Allowable tensile load on a pile = 0 kips

Average allowable lateral load per pile = 8.5 kips

Allowable moment in a pile = 131,000 in.-1b or 10.9 kip-ft
The properties of Norway wood can be found in many handbooks. One such
is presented (Southern Pine Association 1954).

58. The unconfined compressive strengths (average unconfined com-
pressive strength = 5600 psi (Table 5)) are adequate, and since the in-
terior concrete has performed so well for over 70 years, the structure,
with some maintenance, can be expected to perform well for many more years.

59. Since the interior concrete is of good quality, the deterio-
rated surface concrete should be repaired to keep water from entering
cracks and accelerating the deterioration of the interior concrete.
There are a number of methods of repair that might be used; but, the
Upper Mississippi River Headwater Structures are ideal for an economical
repair such as:

Clean surface concrete.

o Im

Fill cracks.

Paint on a cementitious coating to rehabilitate the sur-
face concrete.

o

This type repair can be performed rapidly and economically. It is analo-
gous to cleaning, filling cracks, and painting a room in a house. Any
local labor could do the work with only common tools.

60. Under some conditions an acrylic-polymer coating of such a
composition as listed in Table 6 and Table 7 might be used. Certain
acrylic polymers have exhibited good bond and noncracking characteristics
when used in ordinary environments. They have also shown good resistance
to freezing and thawing environments. The particular polymer to be used
should be tested as follows before being used to rehabilitate the sur-
face concrete of the Upper Mississippi River Headwater Structures:

a. Determine the resistance of the coating to cracking during
extreme temperature changes.

b. Determine its ability to retain bond capability in freez-
ing and thawing environments.

18




c.

- X

Determine its ability to "breathe,'" thus allowing water
to escape from the interior concrete through the coating,
preventing critical saturation of the concrete.

19
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PART V: STABILITY ANALYSIS

Introduction

61. Conventional stability analysis assumes that the base of a
structure is rigid in determining the loads on the piles. Conventional
stability analysis does not consider the load redistribution due to the

pile and structure deformations with consideration being given to the

strength characteristics of the soil on the piling system. The monoliths
at Pine River Dam are of such size and shape that the assumption of a }
rigid base is adequate. However, the supporting characteristics of the
soil, translation movement of the base, and the deflections of the piles
are taken into account by using a modulus of subgrade reaction, which

b was obtained from in situ test results of the foundation material

I (Part IV) and used in a direct stiffness analysis. !

62. A schematic presenting the geometry of a particular interior

e

i monolith of Pine River Dam is presented in Figure 38.

63. Five load cases as follows were analyzed.

a., Normal operation.

b. Normal operation with truck loading (H15-44).
c. Normal operation with earthquake.

d. Normal operation with ice.

e. High-water condition.

64. A section view through the pier is presented in Figure 39.
A significant fact concerning the pile foundation, as shown by this sec-
tion, is that three bents (six piles) close to the center of the pier
from upstream to downstream are not shown to be in direct support of the
bottom of the pier. A plan view of the piling layout for the interior
piers is presented in Figure 40. The piling along the center of the
interior piers are new piles in relation to the others by the fact that

they were added when the timber structure was replaced by a concrete

superstructure. The six interior piles will be considered effective in

one analysis and ineffective in another. This total analysis will

20




present a range of values for piling suppport, which will widen one's
concept of the stability of the dam monolith of Pine River Dam.

65. There are two other options that will be considered in the
analysis of the monoliths.

a. The applied loads will be taken to el 1215.99 and also
to el 1214,32.

b. The tailwater elevation will be considered at el 1215.12
and also at el 1220.12.

Condition a. considers applied loads to an elevation of the base of the
structure (el 1215.99) and also considers the loads to the greater

depth of the top of the original piles. Condition b. allows one to con-
sider the effect of a greater tailwater elevation on the uplift pres-
sures, and its effect on monolith stability.

66. If the monoliths are stable under the worst conditions, the
elevation is complete; otherwise, some evaluation and decisions will
have to be made.

67. The applied loads and moments on the pile system are presented
in Figures 41-62. A summary of the forces and moments on the piling sys~
tem obtained by conventional stability analysis is presented in Tables 8-
15. At this point, the adequacy of the pile foundation could not be
evaluated because the allowable vertical and horizontal loads based on
the supporting capabilities of the foundation material must be known to
judge the adequacy of the piles. These allowables were not known for
Pine River Dam.

68. To determine the adequacy of the stability of the pile founda-
tion, in situ testing was performed to determine the supporting charac-
teristics of the foundation material. The variation of the subgrade
modulus with depth and deformation was obtained. Only three tests were
valid (Figures 30 and 37), but the soil under the dam is fairly uniform,
and the three tests will allow a conservative subgrade modulus to be se-
lected and used in the analysis of the pile foundation. A conservative
constant value, 2000 psi/in., was selected. Due to close pile spacing,
the value was reduced to 1500 and 1000 psi/in. for the 8-pile and l4-pile
layouts, respectively. The reduction factor was calculated by the

following formula.
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reduction factor

center-to~center pile spacing from upstream to downstream

pile diameter

If the piling layout is adequate for this analysis, the total dam can be

considered adequate in stability.

69.

The following guidelines were considered the most efficient

and economical to evaluate the adequacy of the piling foundation at Pine

River Dam.

70.

16
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Core through the monoliths and obtain samples of concrete
for evaluation and in the process gain access to the
foundation material.

Perform in situ pressuremeter tests, as described in
Part IV, and use the data to determine the supporting
capability of the foundation material.

Use the pressuremeter test results to obtain a modulus of
subgrade reaction for the foundation material to use in
the stability analysis of the pile foundation.

Axial, shear, and moments in the pile should be less than
allowables based on the properties of the Norway Pine
materijal.

The connection of the piling to the structure is assumed
to be capable of carrying as much shear load as the pile.

The adequacy of the piling, considering the strength
characteristics of the foundation material, is

based on deflections at the top of the pile. If the de-
flection of the pile in either a horizontal or vertical
direction is less than one~quarter inch, the piling sys-
tem 1is considered adequate.

Pile Foundation Analysis Using In Situ
Soil~Foundation Properties

A general, direct stiffness analysis for a three-dimensional

pile foundation was used as has been presented by Saul (1968), which ex-

pands the Hrennikoff (1950) method from two dimensions to three. The

general solution using this stiffness analysis follows.
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follows:

.th
1t pile as:

by
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b33
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66

bis

{b}i ==

71. The forces on a single pile can be equated to the pile dis-

placements by the expression

{F}i = {b}i{x}i (6)

The {b}i values are the individual pile stiffness-influence coeffi-

cients, called the elastic pile constants. The positive system is as

The {b}i matrix for a three-dimensional system can be defined for the

o T o o O
o o v o U o

- -—

The elastic pile constants have meaning as follows:

the force required to displace the pile head a unit
distance along the Uj-axis, FORCE/LENGTH.

the force required to displace the pile head a unit
distance along the U2-axis, FORCE/LENGTH.

the force required to displace the pile head a unit
distance along the U3j-axis, FORCE/LENGTH.

the moment required to displace the pile head a unit
rotation around the Uj-axis, FORCE-LENGTH/RADIAN.

the moment required to displace the pile head a unit
rotation around the Up-axis, FORCE-~LENGTH/RADIAN.

the torque required to displace the pile head a unit
rotation around the Uj-axis, FORCE/RADIAN.

the force along the Uy-axis caused by a unit rotation
of the pile head around the Ujp-axis, FORCE/RADIAN.

23
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-by, = the force along the Ujy-axis caused by a unit rotation
of the pile head around the Uj-axis, FORCE/RADIAN.
(NOTE: The sign is negative.)

b5y = the moment around the Ujp-axis caused by a unit of dis-
placement of the pile head along the Uj-axis, FORCE-
LENGTH/LENGTH.

~b42 = the moment around the Uj-axis caused by a unit dis-
placement of the pile head along the Ujy-axis, FORCE-
LENGTH/LENGTH. (NOTE: The sign is negative.)

72, Pile i may be located in the foundation with axes through
its origin parallel to the foundation axes. The foundation loads {Q}
and displacements {A} are located with respect to the foundation axes.

73. The forces {F}i due to the pile loads on the pile cap are
in equilibrium with a set of forces {q}i at the coordinate center of
the pile cap.

74. Equilibrium yields

{q}i = {c}i{F}i N

in which {c}i , the statics matrix for a three~dimensional system, is

1 o 0 0 o

1 0 0 0

{c}i = 0 0 0 0 OpF
-uj3 us 1 0 0

uj 0 -uy 0 1 O

_~uz up 0 0 0 1]

where
u; = Uj coordinate of the pile, LENGTH.
uy = Uy coordinate of the pile, LENGTH.
u3 = U3 coordinate of the pile, LENGTH.

Foundation stiffness analysis

75. If the piling cap is assumed rigid, then the deflection of
the pile cap can be related to the deflection of the piling in the foun-

dation axis coordinates by
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(x}, = {C}'].I:{A} (8)

76. The foundation load {Q} 1is distributed to each piling so
that
{Q} =

i

{q}, 9)
1 1

t o2

where n = number of piles. The relationships between the foundation

load and the pile cap deflections are

{Q} = {s}{a} (10)

in which {s} 1is the stiffness influence coefficients matrix for the
foundation as a whole. The {s} matrix is found by introducing the con-
tribution of each individual pile toward the stiffness of the pile cap.

This yields

(a}, = ('} (8} (11)
in which
{s'}, = (e} {a}, (b} {a}i{c}] (12)
and finally n
(s} = T 1{s'}, (13)
i=1

where {a} 1is the transformation matrix of force and displacement of
the pile (rotated and/or battered) axis to the foundation axis.

77. Once the stiffness matrix is known for the total foundation,
the problem is essentially solved and only requires back substitution to
find the distribution of loads to the individual piling. It can be noted
that the foundation stiffness matrix {s}] is independent of the external
loads.

Loads and displacements

78. The displacements of the pile cap can be found by inverting
the foundation stiffness matrix {s} and multiplying it by the external
load matrix (Q} or

(8} = (s1” Q3 (14)
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79. Once the foundation deflections are known, the deflections of

pile 1 about its own axes can be found by
_ T, \T
{x}i = {a}i{c}i{A} (15)

80. Finally, the forces allotted to each pile about its axes can

be found from Equation 6 where

{F}i = {b}i{x}i (6bis)

Forces and Deflections of Individual Piles

81. The approach followed in obtaining the forces and deflections
on the individual piles was as follows. The modulus of subgrade reac-
tion, the material properties of the pile, and the pile length were used
to determine the pile-head stiffness matrix for a single pile, assuming
a linear elastic pile-soil system. This pile-~head stiffness matrix was
obtained by using a finite element computer code (Martin, Jones, and
Radhakrishnan 1980) which is a one~dimensional finite element analysis
of a beam on an elastic foundation.

82. The pile-~head stiffness matrix was then used as input in
another computer program that uses the direct stiffness analysis to ob-
tain the forces and deflections of the piles. A beam on an elastic foun-
dation analysis was also performed and the pressures, moments, and de-
flections along the length of the most critically loaded pile were
determined.

83. The analysis assumed that the top of the piles are pinned to
the base of the monolith, and that the monolith base is rigid. These
assumptions are adequate for the dam construction of Pine River Dam.

84. The results of the three-dimensional, direct stiffness pile
foundation analysis are presented in Tables 16-~19. The allowable loads on
the pile are presented in Part IV.

85. The pressures, moments, and deflections along the length of
the pile for the most critical load cases (normal operation with ice and

high-water condition) are presented in Figures 63 and 64. The maximum
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and minimum stresses in the pile due to the applied loads and moments
are 1413 and 1236 psi compression and 724 and 618 psi tension, respec-
tively, for normal operation with ice and the high-water condition,
respectively,

86. For only eight piles to effectively support the Pine River
Dam monoliths the maximum compressive loads, tensile loads, and deflec-
tions of the piles are adequate. The shear load at the top of the piles
and the stresses in some individual piles are excessive. To eliminate
these overstresses it is suggested that posttensioning anchors be placed
in the monoliths.

87. In the posttensioning process, the main cost will be the
drilling through the concrete piers and the placement of the tendons;
therefore, the maximum lateral load of 20.7 kips minus 8.5 kips allowable
per pile will be provided. The 20.7 kips per pile is for the case load-
ing of normal operation with ice with the reference elevation at 1216.2.

88. The main concern with this posttensioning construction is to
make sure that it does not overstress any of the piles for normal opera-
tion cases. The resultant loading for the normal operation case, normal
operation with truck loading, and normal operation with earthquake
already is upstream of the centroid of the pile layout. The assurance of
no overstress will be accomplished by not posttensioning the tendons to
their maximum capacity. Only enough posttensioning will be stressed in
the tendons to give some restraint to the monolith; and if the case
loading of high~water condition or normal operation with ice do occur,
the ability for posttensioning will be present and the steel tendons will
take up the stress with very little strain. In this way the posttension-

ing will only be used to a substantial degree if it is needed; otherwise,

the stress will not be induced in the monolith.
89. The posttensioning is figured as follows:

a. Tendons 2 ft apart and 2 ft from each side of pier as
shown in Figure 65.

b. Posttensioning per tendon =

Vi 7
(8)(20.7 - 8.5)Y6.5° + 19.13
2 6.5

a0

152 kips per tendon.
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Posttension only 75 kips into each tendon.

o 10

The component additions are:

(1) Reference el 1217.87

- = (85 - kips
Fy FH (20.2)(150) 48.27 pier
_ o L (19.13 _ kips
F,= ¥ (20.2 )(150) 142.05 ;;g;
M_ = (142.05)(13.75) + (48.27)(19.13) = 2876.60 k§§;§£

(2) Reference el 1216.2

F = F, = 48,27 KBS

y H pier
F F, = 142.05 KPS

z A pier
M= (142.05)(13.75) + (48.27)(20.8) = 2957.21 5§§;§5

90. The conventional stability analysis is accurate enough to
check and determine that the posttensioning does not overstress the piles.
The results are presented in Tables 20-23.

91. With the posttensioning, adequate resistance to shear at the
top of the piling and the stresses in the piles will be adequate. This

will make the piling system at Pine River Dam adequate in stability.
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PART VI: CONCLUSIONS AND RECOMMENDATIONS
Foundation

92. The foundation material has reliable in situ supporting capa-
bilities. The pilings have been continuously submerged and therefore
should be nondeteriorated and adequate. During the drilling program for
the Upper Miésissippi Headwater Structures, pieces of planks, beams, and
piling were obtained at various locations that supported this conclusion.

93. The piling layout is not adequate because the shear stresses
at the top of the piles and stresses in some piles are excessive. It is
recommended that the dam monoliths be posttensioned to the foundation
as explained in Part V and in Figure 65. The design of the anchor length
for the slant-hole soil anchor system and the system itself is somewhat

dependent on the anchors used and is left to be designed by the contractor.
Concrete

94. The concrete is of good quality with the only deterioration
caused by surface freezing and thawing. Core PR-P3 indicates that the
concrete in the piers does vary in quality and any poor concrete found
during posttensioning should be evaluated in relation to its performance
after posttensioning. It is recommended that within the next 5 years an
acrylic-polymer coating as discussed in Part IV be investigated and, if
adequate, be used to rehabilitate the deteriorated surface concrete.

It is necessary to rehabilitate the surface concrete in order to stop
water from entering cracks and accelerating the deterioration of the in-
terior concrete as the freezing and thawing process continues at Pine
River Dam. If the deterioration is allowed to continue until major re-
placement of the concrete is required, the rehabilitation could be very
expensive.

95. After the remedial measures and surface concrete rehabilita-
tion, it is expected that this structure will be adequate for many more

years of service.
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Table 1

General Resrvoir Data

Location in miles above Ohio River
Located on river
Drainage area (square miles)

Original operating limits

Stage
Storage in 1000 acre-feet

Present operating limits

Stage
Storage in 1000 acre-feet

Ordinary operating limits

Stage
Storage in 1000 acre-feet

Flowage rights to stage

Maximum stage of record (1916)

Number of times upper operating limit exceeded
Number of times flowage limit exceeded

Maximum stage in 1950

Maximum discharge of record
and year

Elevation of gage zero: U.S.E. datum
Elevation of gage zero: msl (1929 adj.)
Year of first operation

Normal spring stage drawdown

Normal summer range

Desirable bridge clearance, 9 ft
above reservoir stage of

1038.3
Pine

562

3.18%-20.38 ft
179

10.88 to 20.38 ft
80.6

12.88-15.88 ft
41

24.38
20.12
0
0
16.97

2250 sec-ft
1896

1218.20
1216.32

1886

12.88 ft
14.63-15.13 ft

16.88 ft

* All stages in this table are referred to msl, 1929 adj.




Table 2

Pertinent Dam Data

Dam
Type Earth fill with timber diaphragm
core filled with puddled clay
Crest height 24.38% ft
Length 1265 ft
Height (maximum) 25.98 ft
Freeboard above maximum stage 4.0 ft

Control Structure

Type

Sill height

Net length of spillway
Height of piers

Sluiceways

Width

Number of bays

Number of sluice gates (54 by 60 in.)
Number of stop log sections

Height of stop logs at normal pool
Discharge channel capacity

Spillway Apron

Type

Length

Width (between abutments)
Floor height

Bridge Over Control Structure

*%
Height of roadway

Roadway width (for pedestrian use only)

Reinforced concrete

2,21 ft
78 ft
21.38 ft

6 ft

13

11

2

14.88 ft

Not determined

Concrete
86 ft
150 ft
2.2]1 ft

22.38 ft
8 ft

* All heights or stages are referred to msl, 1929 adj.
** No longer a public roadway. The highway was relocated; a new highway

bridge crosses Pine River about 450 ft downstream from dam.
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Table 3

Pressuremeter Probe Location

Below Pier Bottom

Hole

PR-P3

PR-P6

PR-P9

Test

Test
Test
Test

Test
Test
Test

W= WN -

Probe Location, ft

§4.22
Test Void
16.12

7.92
12.52
16.92

No Pressuremeter Data.

Table 4

Split-Spoon Test Results, Pine River Dam

‘ Depth from Bottom Number
‘ Hole Test of Concrete, ft of Blows
PR-P3 1 0.0 - 1.0 1
$ 1.0 - 1.5 2
1.5 - 1.9 1
2 5.3 - 5.8 4
J ¢ 5.8 - 6.3 14
[ 6.3 - 6.8 15
PR-P6 1 0.6 - 1.1 6
‘ 1.1 - 1.6 5
1.6 - 2.0 50
2 9.5 - 10.0 9
‘ 10.0 - 10.5 18
10.5 - 11. 24
& 3 13.5 - 13.9 50
PR-P9 1 0.5 - 1.0 11
l 1.0 - 1.5 9
1.5 - 2.0 6
2 15.2 - 15.7 41
\ ¢ 15.7 - 16.0 50
»
|
|
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Table 5

Unconfined Compressive Concrete Strengths

Core Unconfined Compressive
Hole Specimen Strength, psi
PR-P3 PR-P3M 5800
PR-P3B 5800
PR-3A PR-P3AT 6000
PR-P3AM 3800
‘ PR~-P3AB 4000
PR-P6 PR-P6T 7000
PR-P6M 5300
‘ PR-P6B 5900
PR-P9 PR-P9T 7080
L PR~P9M 55060
PR-P9B 5600
NOTE: Average compressive value = 5600.
Table 6
Patching Material for Cracks,
Spalled Joints, and Holes
Material Parts by Mass
Cement 100
Water = 18 (adjust as needed)
Acrylic Polymer 27
Fine Sand (Passing 150
No. 30 Sieve)
Table 7
Overlay Material for
Surface Concrete Rehabilitation
Material Parts by Mass
Cement 100
Water ~ 20 (adjust as needed)
Acrylic Polymer 30
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Project map of Mississippi River headwaters reservoirs

Figure 1.
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Figure 2. Vicinity map of Pine River area
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a. Concrete core

b. Core and cut section

‘ Figure 7. Typical views of concrete core
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7.49 to 11.81 Fragmented concrete

11.81 to 20.52 Breaks every 0.2 to 0.3 ft.

20.5 to 21.78 Mortar with igneous aggregate
20.9 to 21.78 Fragmented concrete and wood shavings
21.78 End of core

Nonair-entrained concrete

2-in. maximum size
aggregate composed of
igneous and metamorphic
rock particles.

Good consolidation.

Some alkali-silica gel was
found in voids and
coating aggregate.

Ettringite was found in
voids.
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Figure 8, Vertical NX concrete core, PR-P3, Pine River Dam
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and metamorphic rock
particles.

Good consolidation.
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Ettringite was found in
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Although not shown, breaks
due to drilling occur
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15.4 Bottom of core
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Figure 10. Vertical NX concrete core, PR-P6, Pine River Dam
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Figure 11, Vertical NX concrete core, PR~P9, Pine River Dam
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Figure 38,

6" PAVED SLAB FROM
EL 1236.32 TO 1235.82

Schematic presenting geometry of interior monolith
Pine River Dam ’
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F F Arm Arm M

_ltem Factor y z Y | S
(kips) (kips) (ft) (fv) (ft-k)
"(‘nnc (0.IS)(lZl‘).?-lZ')S.BZ)(Z)(IZ) 12.89 13.00 167.6
: (0.15)(1236.32-1235.82)(10)(12) 9.00 13.00 112.0
(0.15)(1235.82-1234.32)(12.44) (6) 16.79 1t2.78 214.6
(0.15)(1234.32-1231.32)(11.37)(6) 36.10 12.32 444.8
-(0.lS)(l/Z)(n)(])Z(ll.JT) -28.35 12.32 -349.1
(0.15)(1235.82-1215.99)(14.38)(6) 256.64 14.06 3608.4
(0.15)(1/2)(1235.82-1219.82) (6.62)(6) 47.66 4.66 222.1
(0.15)(1219.82-1215,99)(6.87)(6) 23.68  3.44 8L.5
-(0.15) (1/2) (m) (1) 2(8) -1.88 10.04 -18.9
-(0.15)(1233.32-1219.82)(8)(2) -32.40 7.56 -244.9
340.13 4242.9

- 2 - -
Pllomdwa(er -(0.0625)(1/2)(1231.12-1215.99)°(12) 85.84 5.04 432.6

= (0.0625)(1231.12-1215.12) _ ~
Uplife 1643, 751f 16429+16 1¢21.25)¢(6) 41.28 10.6) 438.8

_ (0.0625)(1231.12-1215.12) _ ~
-(1/2)[29-4-3.7511 16429416 1(21.25)(6) 22.21 1417 314.7
-63.49 -753.5

3056.8
e = 276 64 11.05 ft

Total -85.84 276.64 3056.8

< &b

I

’

l 3'75'f _—.'Z—?;..—_/%‘/Ts./z
i

UPLIFT

Figure 41. Pine River Dam, applied loads and moments, normal
operation, reference el 1215.99, tailwater el 1215.12
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J M
ftem Factor F F Arm Arm

J— X ¥z X _
(kips) (kips) (ft) (ft) (ft-k)

Loads From normal opfratlon calculations -B5.84 276.64 3056.8
- 4. . 312.0
PTruvk H15-44 truck loading 24.00 13.00 \
3368.8  _
e 300.64 11.21 ft
Total -85.84  1300.64 3368.8

TRUCK LOROING

EL
——=1231.12
Y 21.25° 3.751’ L ___EL2IS2
,‘.* SHEET P/L/NG\t /6’
29"

g TN T

UPLIFT

Figure 42, Pine River Dam, applied loads and moments, normal
operation with truck loading (H15-44), reference el 1215.99,
tailwater el 1215,2




F F Arm Arm
Item Factor y z Yy z X
(kips) (kips) (fv) (fv)y {ft-x)
Loads From normal opevration calculations -85.84 276.64 3056.8
Earthquake:
PeI (0.025) (340.13) -8.50 10.49  -89.2
Pcz (2/9)(51)(0.025) (15.13)2(12) (17 1000) -2.33 6.05 -14.1
2953.5
e = T376.64 10.68 ft
Total -96.67 276.64 2953.5
EL
=g X ¥
’ ’ ’
4 21.25 3.75 ELILISI2
?

UPLIFT

Figure 43. Pine River Dam, applied loads and moments, normal
operation with earthquake, reference el 1215,99, tailwater
el 1215,12
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LOCATION OF CENTER OF GRAVITY OF PIER IN XZ PLANE

(Bottom of pier at elevation

1215.99)

(12.89)[(1/2)(1239.4 - 1235.82) + 1235.82 - 1215.99]

(9)[(1/2)(1236.32 - 1235.82) + 1235.82 - 1215.99]

(16.79)[(1/2)(1235.82 -

(36.10)[(1/2)(1234.32 -
4
(-28.35)[(3;)(1234.32 -

(256.65)(1/2)(1235.82 ~

(47.66)[(1/3)(1235.82 -

1234.32) + 1234.32

1231.32) + 1231.32

1231.32) + 1231.32

1215.99)

1219.82) + 1219.82

(23.68)(}/2)(1219.82 - 1215.99)

-(1.88)[%; +1233.32 - 1215.99]

1215.99]

1215.99]

1215.99]

1215.99)

-(32.4)[(1/2)(1233.32 - 1219.82) + 1219.82 - 1215.99

§ - 35672
340.13

= 10.49 ft

278.7
180.7
320.4

607.6

470.7

2544.6
436.7

45.4

-33.4

~342.8

3567.2

Figure 44, Pine River Lake Dam, normal operation with
earthquake, location of center of gravity of pier in

XZ plane




F
Item Factor F z Ar.v Al""z “x

y R 4
(kips) (kips) (ft) (ft) (fe-k)

L,oads From normal operation calculations -85.84 276.64 3056.8
P (N (5012) -60.00 14.63 -877.8
Tce
2179.0
e 37664 7.88 ft
Total -145.84 276.64 2179.0

XcE EL
— - ______; 723772

4 21.25° 3.15’ __Q__gL. 121512

l SHEET P/L/NG\ /6’

!

__.-._...—.’—'—-—'——'—J

Figure 45. Pine River Dam, normal operation with ice, reference
el 1215.99, tailwater el 1215.12
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b giinas

Item Factor __':y__ Fz Arm! Armz X
(kips) (kips) (ft) (ft) (fe-k)
wCom‘ From normal operation calculatiaons 340.13 4242.9
- - 2 - -
Pueadwater (0.0625)(1/2)(1235.12-1215.99)%(12) 137.23 6.38 -875.5
. 2

Pratlvater ~(0-0625)(1/2)(1219.12-1215.99)7(12)(0.6) 2,20 1.04 2.1
Uplift -{0.0625)(1219.12-1215.99)(21.25)(6) ~24.94 10.63 ~265.1

(0.0625)€(1235.12-1219,12) N
-11643.75]( 16420116 1(21.25)(6) 41.28 10.63 ~438.8

- - (0.0625)(1235,12-1219.12) R
(1/2)[29-4-3.75}1 T6+29+16 J(21.25)(6) 22.21 1412 ~314.7
~88.43 -1018.6

23511
e 3517 9.3 ft
Total -135.03  251.70 2351.1
EL 123,
, QD ELI2/9.42
’ -—
¢ 21.25 3.1s’

SHEET P/L//VG\ f 76’

Figure 46,

UPLIFT

Pine River Dam, high-water condition, reference

el 1215.99, tailwater el 1219.12




R T R
ltem _ Factor VF Fz :TX. _Arsz V_H_x__

(kipa) (kips) (ftr) (ft)  (ft-k)
Yeone (0.15)(1239.4-1235.82) (2)(12) 12.89  13.00 167.6
’ (0.15)(1236.32-1235.82)(10) (12) 9.00 13.00 117.0
(0.15)(1235.82-1234.32)(12.44)(6) 16.79  12.78 214.6
(0.15)(1234.32-1231.32)(13.37)(6) 36.10  12.32 444.8
-(0.15) (1/2 () (H2(13.37) -28.35 12.32 -349.3
(0.15)(1235.82-1214.32)(14.38)(6) 278.25 14,06 3912.2
-(0.15)(1/2)(1235.82~1219.82) (6.62) (6) 47.66 4.66 222.1
(0.15)(1219,82-1214.32)(6.87)(6) 34.01 3.44 117.0
-(0.15)(1/2) (m) (1)2(8) -1.88 10.04 -18.9
-(0.15)(1233.32-1219.82)(8)(2) -32.40 7.56 ~244.9
372.06 4582.2

- - 2 - -
Pheadwater (0.0625) (1/2)(1231.12-1214.32)°(12}) 105.84 5.60 -592.7

2
P ilwater (0.0625) (1/2)(1215.12-1214.32)°(12) 0.24 0.27 0.

_ (0.0625)€1231.12-1215.12) N ~
Uptife f16+3.75]] 16479416 1(21.25) (6) 41.28  10.63 438.8

~ he €0.0625)(1231.12-1215.12) - ~
(1/2)129-4~3.7511 16429416 }(21.25)(6) 22.21 14.17 ,_{'f..j,
-63.49 -753.5

- 3236.1
* o8 57 10.49 ft
Total -105.60 308.57 12361
2__EL
——=/23/.12
’
4 21.25 3.7

Figure 47.

/6’

- -

21"

SHELT P/L//VG‘\

S

!

L—.———“—-—.——&——.-——.’—"J

UPLIFT

5’ Q EL 121512

e

/6’

el 1214.32, tallwater el 1215.12

9

I'ine River Dam, normal operation, reference




_ Item _Factor Fx Fz Amx A""z Hx

kipm) (kips) (ft)y (foy  (fr-k)
Loads From normal operation calculatfons -105.60 308.57 3236.1
P H15-44 truck loading 264.00 13.00 312.0
Truck

1548.1_ |
e~ 335 - 10.67 ft

e __,_.*______.__‘____,___._————-\-—-—A———-"‘,—_M

—— e

Total -105.60 332.57 1548.1

e ———————————— e ———

TRUEA LOAOING

EL
==T23.R
4 2/.25" 3.75’ Q EL1215.12

—

16 SHEET PILING

"1

b
t
A

UPLIFT

Figure 48. Pine River Dam, normal operation with truck loading
(H15-44), reference el 1214. 32, tailwater el 1215.12




F F Arm Arm M

Leem Factor y 2 y z_ %
(kips) (kips) (ft) (ft) (ft-k)
lLoads From aormal operation calculations -105.60 308.57 3236.1

Earthquake:
Pcl (0.025)(372.06) -9.30 it.19 -104.1
Pe2 (2/3)(5[)(0.025)(!6.80)2(I2)(l/l()00) -2.88 6.72  -19.4

3112.6
e 30857 10.09 ft

Total -117.78 308.57 3112.6

- s

¢ 21.25° 3.7.51’ Q ELI1215.12
,4'* ~SHEET p/u/va\T /6’

UPLIFT

Figure 49. Pine River Dam, normal operation with earthquake,
reference el 1214.32, tailwater el 1215.12




LOCATION OF CENTER OF GRAVITY OF PLER IN XZ PLANE

(Bottom of pier at elevation 1214.32)

(12.89)[(1/2)(1239.4 - 1235.82) + 1235.82 - 1214.32] = 300.2
(9 [(1/2)(1236.32 - 1235.82) + 1235.82 - 1214.32) = 195.8

(16.79)[(1/2)(1235.82 - 1234.32) + 1234.32 - 1214.32] = 348.

s

(36.1)[(1/2)(1234.32 - 1231.32) + 1231.32 - 1214.32) = 667.8
(-28.35){%;(1234.32 ~ 1231.22) + 1231.32 - 1214.32] = -518.0
(278.27)[1/2]){1235.82 - 1214.32] = 2991.4

(47.66)[(1/3)(1235.82 -1219.82) + 1219.82 - 1214.32] = 516.3

(36.01)(1/2}[1219.82 - 1214.32] = 9315
(-1.88)[%; +1233.32 - 1214.32] - -36.5

(=32.4){(1/2)(1233.32 - 1219.82) + 1219.82 - 1214.32]) = -396.9

4162.0

. 4162.0

372.06 11.19 ft

Figure 50. Pine River Lake Dam, normal operation with
earthquake, location of center of gravity of pier in
XZ plane




e e

el 1214,32, tailwater el 1215.12

F F F Arm Arm M
_______ S . _Factor DU Yy oz Y @z X
(kips) (kips) (ft) (ft) (ft-k)
loads From normal operation calculations ~105.60 108.57 3236.1
P“e (3 (12) ~60.00 16.30 -978.0
2258.1
e = 30857 = 7.32 ft
Total -165.60 308.57 2258.1
ICE EL
= — 123712
& 21.25° 3.75{ Q EL 121512
A SHEET P/L//VGN T /6’
UPLIFT
Figure 51.

Pine River Dam, normal operation with ice, reference




UPLIFT

1 . F F Arm Arm M
tem Factor z z
’ (kips) (kips) (ft) (ft) (ft-%)
HConc From normal operation calculations 372.06 4582.2
- - 2 - . -
PHeadwhter (0.0625) (1/2)(1235.12-1214.32)%(12) 162.24 6293 -1124.3
- 2
anllwater (0.0625)(1/2)(1219.12-21214.32)%(12)(0.6) 5.18 1.60 8.3
-(0.0625)(1219.12-1215.32)(21.25)(6) -30.28 10.63 -321.9
(0.0625)(1235.12-1219.12) _ -
-{16+3.25}§ 16429416 1(21.25)(6) 41.28  10.63 438.8
~ e (0.0625) (1235.12-1219,2) _ ~
(1/2)(29-4-3.75}1 16429426 1€21.25)¢(6) 22,21 14.17 314.7
-93.77 -1075.4
2390.8
e =374 39 " 8.59 ft
Total -157.06 278.29 2390.8
v, EL1235.12
1219.
, h—o
4 2/.25 3.75’
T 76’

Figure 52. Pine River Dam, high-water condition, reference
el 1214,32, tailwater el 1219.12
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.

F
Ttem Factor y Fz Ara Ar.z

yr __z _x
(kips) (kips) (ft) (fe) (fe-k)

Weone (6.15)(1239.4-1235.82) (2)(12) 12.89  13.00 167.6
~(0.15)(1236.32-1235.82) (10) (12) 9.00  13.00 117.0
(0.15) (1235.82-1234.32) (12.44) (6) 16.79  12.78 214.6
(0.15) (1234.32-1231.32) (13.37) (6) 36.10  12.32 444.8
-(0.15)(1/2) (x} (3)*(13.37) -28.35  12.%2 -349.3
(0.15) (1235.82-1215.99) (14.38) (6) 256.64  14.06 3602.4
(0.15) (1/2)(1235.82-1219.82) (6.62) (6) 147.66  4.66 222}
(0.15)(1219.82-12) 5.99)(6.87) (6) 23.68  3.44 81.5
~(0.15) (1/2) (n) (1)*(8) -1.88  10.04 -18.9
-(0.15)(1233.32-1219.82)(8) (2) -32.40  7.56 -244.9
340.13 4242.9

- - 2 - -
Peadwater ~(0:0625)(1/2)(1231.12-1215.99)2(12) 85.84 5.06 -432.6

- 2

Pattvater  (0-0625)(1/2)(1220.12-1215.99)2(12) (0.6) 3.84 1.38 5.3
Upl1fe (0.0625) (1220.12-1215.99) (21.25)(6) -32.91  10.6) -149.8

_ €0.0625) (1231.12-1220.12) _ _
[16+3.75]] TIITE 1(21.25)(6) 26.63  10.6) 283.1

. - (0.0625) (1231.12-1220.12) R )
(1/2)129-4-1.7511 TR 1(21.25)(6) 14.33  14.17 203.1
-73.87 -836.0

2979.6
oo g = 119 fe

Total -82.00 266.26 2979.6

4 21.25° 3.75°

i SHEET PMWG\?T /6’
, 9
e 29 - l‘“’

UPLIFT

Figure 53. Pine River Dam, normal operation, reference
el 1215.99, tailwater el 1220,12




F F Arm Arm L

Item Factor . z Yy z x
(kips) (kips) (fe) (fv) (fe-k)
Loads From normal operation calculations -82.00 266,26 2979.6

-4
p’l‘ruck H15-44 truck loading 24.00 13.00 312.0
3291.6
e 29026 1).34 ft

Total -82,00 290.26 3291.6

TRULK LOADING

Lt

S Ecrzzorz

=
3 21.25° 3.751_’
1\:~sﬁ£n PILING—— | T 76’
) - ry
—— i — ——J >3

UPLIFT

Figure 54. Pine River Dam, normal operation with truck loading
(H15-44), reference el 1215,99, tailwater el 1220.12




F F Arm Arm M

{tem Factor Y z y .z X
(kips) (kips) (ft) (ft) (ft-k)
lLoads From normal operation calculations -82.00 266.26 2979.6

Earthquake:
Pe‘ (0.025)(340.13) -8.50 10.49 -89.2
l‘ez (2/3)(SI)(0.025)(15.l])z(IZ)(l/IOOO) -2.33 6.05 ~14.1
2876.3
e = 626 - 10.80 ft

Total -92.83 266.26 2876.3

Lk

4 21.25° 3.75

,yl SHEET PILING———_, | !
f 2 all

L—’——————.—-—’-—.—-—-’——J

UPLIFT

76’

— _Qgrazosa

r——
’

r'y

X

Figure 55. Pine River Dam, normal operation with earthquake,
reference el 1215.99, tailwater el 1220.12




SR

P

F F Arm Atm M
z x

item Factor y z y
(kips) (kips) (fr) (fr) (fe-k)
Loads From normal operation calculations -82.00 266.26 2979.6
3 (1 (5)(12) ~60.00 14.63 -877.8
lce
210t.8
e 26626 7.89 f¢e
Total -142.00 266.26 2101.8
ICE < EL
- —123.12

SZ EL1220.12

—
E—

4 21.25° 3.75

-]

/e’ SHEET PNJNG\; 16
29’ -— I v
L—» —— - —— —— —-»—-—v——J %

———

UPLIFT

Figure 56, Pine River Dam, normal operation with ice,
reference el 1215,99, tailwater el 1220,12




S ) _l- —v—v—ﬁ
Item Factor F l"z ﬁrm A“‘z Mx

(kips) (kips) (ft) fv) (fe-k)
"Conc (0.15)(1239.4-1235.82)(2)(12) 12.89 13.00 167.6
(0.15)C12%.22-1235.22)(18)(12) 9.00 13.00 117.0
(0.15)(1235.82-1234.32)(12.44) (6) 16.79 12.78 214.6
(0.15)(1234.32-1231.32)(13.37)(6) 36.10 12.32 444.8
-(0.15) (1/2) (n)(H2(13.37) -28.35 12.32 -349.3
(0.15)(1235.82-1214.32)(14.38) (&) 278.25 14.06 3912.2
-(0.15)(1/2)(1235.82-1219.82)(6.62) (6) 47.66 4.66 222.1
(0.15)(1219.82-1214.32)(6.87)(6) 34.01 3.44 ur.o
-(D.IS)(l/Z)(w)(l)z(B) -1.88 10.04 -18.9
-€0.15)(1233.32-1219.82)(8) (2) -32.40 7.56 -244.9
372.06 4582.2

- - 2 - -
P"Md‘mt" (0.0625)(1/2)(1231.32-1214.32)“(12) 105.84 5.60 -592.7

- 2

P,m“uat" (0.0625)(1/2)(1220.12-1214.32)4(12)(0.6) 2.57 1.93 14.6
Uplife (0.0625)(1220.12-1214.32)(21.25)(6) -46.22 10.63 ~491.3

_ (0.0625)(1231.12-1220.£2) _ _
fLe+3. 7511 16429416 1€21.25) (6} 26.63  10.63 283.1

_ . (£0.0625)(1231.12-1220,12) . R
(1/2)[29~4-3.75]1 16429416 1(21.25)(6) 14,33  14.17 203.1
-87.18 -977.5

. J026.6_ _
784 B 10.62 ft
Total ~98.27 284.88 3026.6
EL
/23112
QL EL1220./2
’ 1
¢ 2.25 3.75

16’ SHELT I’/l.//\/G‘\‘N t
f 29 At

L—’—b—-——.—-—..—’_'_'}

UPLIFT

Figure 57.
el 1214.32, tailwater el 1220.1

76’
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Pine River Dam, normal operation, reference




ltem Factor ¥ Fz Ar?y Amz Mx

. X
(kips) (kips) [§13] (ft) (ft-k)

Loads From normal operation calculations -98.27 284.88 3026.6
P H15-44 truck loading 24.00 13.00 312.0
Truck s
3338.6
368 88 10.81 f¢e
Total -~98.27 308.88 3338.6

TRULK LOADING

EL
13312
7 EL1220:2
¢ 21.25° 3.15’

-

/‘,* SHEET PILING——— | \ 16’
29’

{____., e - — - P '.__'j x

UPLIFT

Figure 58. Pine River Dam, normal operation with truck loading
(H15~44), reference el 1214,.32, tailwater el 1220.12




reference el 1214,32, tailwater el 1220.12

_ltem Factor Fy Fz Arm Amz M
(kips) (kips) {fe) (ft) (fe-k)
Loads From normal operation calculations -98.27 284.88 3026.6
Earthquake:
Pel (0.025)(172.06) -9.30 11.19 -104.1
Pe, (2/3)(51)(0.025) (16.80)2(12) (1/1000 -2.88 6.72  -19.4
2903.1
» S84 as - 10-19 ft
Total ~110.45 284.88 2903.1
EL
==
AV EL 1220./12
Y 21.25° 3.75’
/ ‘,+ SHEET PILING——___ T 6!
29" - l"‘*ﬂ
UPLIFT
Figure 59. Pine River Dam, normal operation with earthquake,




F ¥ Arm Arm M

ltem Factor Yy z ¥y z X
(kips) (kips) (fr) (ft) (fr-k)
Loads From normal operation calculations -98.27 284.88 3026.6
Plce (N((5)(12) -60.00 16.30 -978.0
2048.6 _ _
e 84 88 7.19 ft
Total -158.27 284.88 2048.6

rd<d

V2 EL1220.12

UPLIFT

Figure 60. Pine River Dam, normal operation with ice, reference
; el 1214.32, tailwater el 1220.12




_ 2{1.75 4 17.25] + 3,75+ 7.75 + 11.5 + 14.75
8

Il

Y = 9,47 ft
X o= (1/2)(6) = 3 ft

MOMENT OF INERTIA OF PILE CROUP ABOUT CENTROID OF PLLE GROUP

Al
1 = 1 + Ad”
(8]
. 2 2 2
Uom 210947 = 1.79)7 ¢ (9,47 - 17.29)%] + (9.47 - 3.75)
+(9.67 - 7798 4+ (9.47 - 11.5)% + (9.47 - 14.75)2
{ = 307.93 1"
XX
L= [
vy
1= 36.00 1"
yv

- e}
L)

D D
2l o
3.25
—1 O
’i’, O | FLOW
4.00

2.004 >

# ~Fa

Figure 61. Moment of inertia of pile group (8 piles)
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LOCATION OF CENTROLD OF PILE GROUP

¢ o 2175+ 5.75 + 9.5 + 13,25 + 17.25] + 3.75 + 7.75 + 11.5 + 14.75
T4

-
[l

9.52 ft
X = (/)6 = 3 1t

MOMENT OF INERTIA OF PILE GROUP ABOUT CENTROLD OF PLLE GROUP

I =1 + Ad2
o

L= 20¢9.52 - 1.75)% + (9.52 - 5.75)2 + (9.52 - 9.75)
+(9.52 - 13.25)% + (9.52 ~ 17.25)2%) + (9.52 ~ 3.75)2

+ (9.52 - 7.75)2 + (9.52 - ll.S)2 + (9.52 ~ 114.75)2

! = 364.31 th
XX

) 2
Ly = L0 (H7)
1 = 90 ftA
yy

18’

o
LD
W/

\y

FLAW
— O

?1 4 ° o

-

Figure 62. Moment of inertia of pile group (14 piles)
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POSTTENSIONING TENDON
CAPALITY 40 nirs ON8 TENDON )
N CENTLR OF JILR BOSTYEN S 10V
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