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equivalent in the sense that (1) each may be expressed as a simple function of
any one of the others and (2) a protocol which is optimal with respect to any one
measure is optimal with respect to the others. The derived relationships are alsc
used in the performance analysis of perfect scheduling and TDMN.

In the area of protocol development, four related classes of multiaccess
protocols are defined and examined. The most general class of protocols is
considered first, and the other three are subclasses of it. For each class the
problem of finding an optimal protocol is characterized. The optimization probl
is formulated as a Team problem for the first class, and as a Markov decision
problem for each of the other three classes. However, only with the last class
examined, the Window protocols, does the optimization problem prove to be
tractable.

Using results from Markov decision theory, optimal Window protocols are derived
for the cases of two and three users.,,Ye Window protocol state space, however,
grows exponentially with the population size and this prevents an exact determina-
tion of optimal protocols for large user populations. For this case, a Window
protocol subclass is defined and an approximate analysis is used to determine the
performance and dynamic behavior of protocols within this subclass. Also, with
this analysis a link is established between the finite and infinite population
problems.
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ABSTRACT

The multiple access problem is one of organizing a population of Users
so that they may efficiently share the resources of a single communication
channel. This problem is examined under the modeling assumptions of a
finite user population and a time-slotted channel with limited feedback.

Techniques or schemes for coordinating the transmissions of users are
called multiaccess protocols. Simple relationships among common
steady-state measures of protocol performance (including throughput and
average delay) are derived. From these relationships it is shown that the
performance measures are equivalent in the sense that (1) each may be
expressed as a simple function of any one of the others and (2) a protocol
which is optimal with respect to any one measure is optimal with respect to
the others. The derived relationships are also used in the performance
analysis of perfect scheduling and TDH&.

In the area of protocol development, four related classes of
multiacces protocols are defined and examined. The most general class of
protocols is considered first, and the other three are subclasses of it.
For each class the problem of finding an optimal protocol is characterized.
The optimization problem is formulated as a Team problem for the first
class, and as a Markov decision problem for each of the other three
classes. However, only with the last class examined, the Window protocols,
does the optimization problem prove to be tractable.

Using results from Marlcov decision theory, optimal Window protocols
are derived for the cases of two and three users. The Window protocol
state space, however, rows exponentially with the population size and this
prevents an exact determination of optimal protocols for large user
populations. For this case, a Window protocol subclass is defined and an
approximate analysis is used to determine the performance and dynamic
behavior of protocols within this subclass. Also, with this analysis a
link is established between the finite and infinite population problems.
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CHAPTER 1

INTRODUCTION

1.1 Multiple Access Problem

A communication problem that has received much attention during the

past decade is that of organizing a population of users (also called

sources) so that they may efficiently share the resources of a single

communication channel. Although various models of the user population and

communication channel have been considered, they generally have the

following properties. The users are geographically distributed and

generate messages (i.e., blocks of digital data to be transported over the

channel) in an independent random fashion. The channel is such that only

one user at a time can successfully transmit a message, and associated with

message transmissions is some form of feedback to the users. This feedback

has typically ranged from no feedback (e.g., TEM4A (M31) to each individual

user determining whether its own message transmissions are successful

(e.g., Aloha [All) to every user determining after some given delay whether

there are 0, 1, or >_ 2 messages being transmitted on the channel (e.g.,

Ethernet (MI!], Tree CCa).

The problem of organizing or coordinating the transmissions of users

* I for the efficient utilization of the channel is referred to as the multiple

access (or multiaccess) problem, and arises most often in the context of a

A broadcast communication system. Here each message generated by a user

(e.g., terminal, computer, sensor) is to be transported via a common

broadcast channel to one or more of the other users. Although it varies

with the particular system model, it is generally the broadcast nature of

the channel that provides the feedback of information concerning message



transmissions to the user population. Examples Of such channels include a

L

I channel with all users within transmission range of one anuther, and a

length of coaxial or fiber optic cable to which the users are physically

attached. From these examples it is clear that "geographically

distributed* may imply anything from users located in an area of several

million square kilometers to users located in a small room.

The advantages of having a user population share a coon broadcast

channel have been well documented in the literature (see, e.g., CAl ,K3]).

Briefly, the desirable aspects of such a system include (1) the possibility

of utilizing efficiently a communications resource in an environment of

many bursty users, (2) the high connectivity of the system where any User

can directly communicate with any other user, (3) the broadcast nature of

the channel which allows a ,single transmitted message to be delivered to

many users, and (4i) the inherent flexibility associated with adding and

removing Users and, in the case of a radio channel, with moving the users

without physically reconfiguring the system.

Al though later we will be more precise, the efficient utilization of

the communication channel basically Involves avoiding two undesirable

events. One is referred to as a collision and is when two or more message

transmissions overlap in time, thus destroying each other so that none are

received successfully. The other is when nothing is being transmitted (the

channel is idle) and there is at least one user with one or more buffered

messages awaiting transmission (a system busy period). Both of these

events correspond to the channel being wasted in the sense that there are

one or more messages waiting to be "servicedw (i.e., successfully

transmitted) and none are actually getting service. Unfortunately,

a .... .. .. .. .... ..
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avoiding both events is generally impossible.

The random generation of messages coupled with the distributed nature

of the users precludes any so called "perfect scheduling" of the messages

where both collisions and channel idles during busy periods are eliminated.

If the message generation times are random but the users are not

distributed, then perfect scheduling may be accomplished by forming a

common queue of the generated messages and then servicing them, for

example, on a first-come first-serve basis. Likewise, if the users are

distributed but the message generation times and block sizes are

deterministic, then the use of the channel could clearly be (perfectly)

scheduled beforehand to avoid both collisions and channel idles during busy

periods. With both distributed users and randomly generated messages, the

information needed to implement perfect scheduling is dispersed among the

users and the only means to exchange this information is through the

channel they wish to access in the first place.

The techniques or schemes for coordinating the transmissions of the

users are called multiaccess protocols. Later we shall see that avoiding

collisions and avoiding channel idles during busy periods are conflicting

goals, and that designing an efficient multiaccess protocol essentially

involves trading off these two undesirable events in such a way as to

achieve the best possible system performance.

1 .2 The Selected User-Channel Model

In this section we state an explicit model for the user population and

communication channel. All analytical work that follows is based on this

given model. In the next section we describe some of the other modeling

assumptions that have been chosen in the past and indicate why we have made

4.-
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r the given selection.

We consider a finite population of N users, where the messages

~' Igenerated by each user are incorporated into fized-length blocks of data

called packets. Each packet, in addition to the message data, generally

contains control information such as source and destination addresses.

Associated with the fixed-length packets is a time-slotted channel. By

this we mean that packet transmissions are synchronized to occur within

globally defined time-slots, where the slot size is equal to the time to

transmit one packet. Hence one can envision the channel as a succession of

rectangular slots into which the users transmit their packets.

It is assumned that a given slot results in a successful packet

transmission if and only if the slot contains exactly one packet. A slot

occupied by two or more packets results in a Collision where none are

* successful, requiring each to be retransmitted at a later time. When no

packet transmission occurs within a slot, we say the slot is empty. As for

the channel feedback, immediately following the end of each slot, it is

assumed that each user can determine whether the slot contained 0, 1, or

* I 2 packets, corresponding to, respectively, an empty slot, a success, or a

collision. With a typical broadcast channel, the distinction between a

success and a collision may be accomplished with the use of error detection

information included in the packet (e.g., a cyclic-redundancy-check), and

an empty slot distinguished from the other two outcomes through the absence

of signal energy on the channel.

1 Finally, we assume a homogeneous population of users, where at the

beginning of each slot each user which does not currently have a packet

awaiting transmission will independently generate one with probability p.

This is equivalent to the *single buffer" assumption where at the beginning

~~-***~if 4 *.,4 u*. ,*
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of earth slot each user independently generates a packet with probability p,

but will only accept this packet into its transmission buffer if the buffer

is currently empty. Note that the buffer does not actually become empty

until the end of the slot during which the stored packet is successfully

transmitted (i.e., an unsuccessfully transmitted packet remains in the

buffer). Any packets that are generated while the buffer is not empty are

assumed lost. Also, : packet entering the transmission buffer at the

beginning of a slot may be transmitted in that slot.

1.3 Other Possible Modeling Assumptions

The modeling assumptions given in the previous section are quite

common in the study of the multiaccess problem. However, they are by no

means unique. In this section we briefly describe and discuss some of the

other popular modeling assumptions. We shall see that many of these

assumptions are, conceptually, just simple extensions to the model we have

selected.

We begin with the carrier sense assumption. First used in the

development of multiaccess protocols by Kleinrock and Tobagi [K4], the

concept behind carrier sensing is very simple: each user is able to detect,

after some given delay, when the channel switches between being used

(carrier present) and idle (carrier absent). In an unslotted channel,

particularly one that permits variable-length packets, carrier sense has

been used to reduce the rate of collisions by having users refrain from

transmitting packets when a carrier is detected. For a slotted channel

with fixed-length packets, the usefulness of carrier sense is in allowing

all users to determine within some given delay following the start of each

slot whether that slot contains 0 or . 1 packets. Typically this delay



-15-

consists of the channel propagation delay. Hence for a channel whose

propagation delay is smaller than the chosen slot size (often true for

ground radio and cable systems), one can, with carrier sense, define empty

slots to be smaller than slots containing successes or collisions. In this

way the "cost* associated with an empty slot during a busy period is

reduced, resulting in the potential for increased efficiency.

Further performance isprovements can be realized with the addition of

the collision detection assumption. First introduced by Metcalfe and Bogs

[M4], collision detection refers to the ability of all users to detect a

collision before the transmissions are copleted, thus allowing the

interfering transmissions to be aborted. This assumption is valid for

channels with a small propagation delay and a listen-while-t-anmit feature

(e.g., some cable systems). Combined with carrier sense, it results in

collision and empty slots smaller than slots with successes.

Relevant to this discussion is the concept of packet reservation.

Brought into prominence by Roberts (R3], the typical approach with packet

reservation is for users to inform one another of generated messages by

transmitting over the broadcast channel smaller "reservation" packets

containing this information. Once all users are aware that a particular

user has a message packet awaiting transmission, they can (by following a

common algorithm) collectively reserve a future time-slot for which this

user will have exclusive transmission rights. The multiaccess problem is

still present, but now it is associated with the reservation process.

However, since these reservation packets are smaller in size, their use can

often improve the overall system performance. In any event, we see that

the reservation problem may be viewed as an extension of the basic

multiaccess problem. This is particularly apparent when one considers, for
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CE 'CS message packet JEJS message packet IE CIE C

E - empty
S - success
C - collision

Figure 1-1 Channel usage by a reservation scheme

a small propagation delay channel, the reservation scheme whereby a message

packet is transmitted immediately following the successful reception of its

corresponding reservation packet. This process is illustrated in Figure

1-i. Note that by viewing the successful transmission as consisting of

both the message and its reservation, we again have a system whose slot

size varies according to the channel outcome: collision and empty slots are

0
smaller than those with successes.

Having a buffer size >> 1 at each user to queue generated messages

before transmission may at first seem more acceptable than the selected

single buffer assumption. With a larger buffer one can generally reduce

the probability that a generated message is blocked from entering the

buffer. Also, there is more flexibility in modeling the arrival process.

For example, a multiple packet generation process (i.e., bulk arrivals to

the buffer) may be used to model variable-length messages, the length being

some varying multiple of the slot size. The single buffer assumption is

analytically more tractable and in past work it was justified by

* Within the context of an infinite population model, Humblet [H7,HS]
has generalized several results, origLnally derived for the case of
fixed-length slots, to the case where the slot size is a fixed but
arbitrary function of the channel outcome [0,1,.2).

Mat Or
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considering a very large (often infinite) population of users with

individual packet generation rates sufficiently small that a packet

arriving at the buffer would very likely find it empty. We, however, are

interested in all finite populations, starting with N = 2, and all packet

generation probabilities, 0 < p < 1.

Our justification for the single buffer assumption, as with many of

the other modeling assumptions, is that it in soLe sense represents the

basic multiaccess problem. As indicated earlier, the essential difficulty

in dealing with the multiaccess situation is derived from the lack of

common knowledge as to which userb have packets awaiting transmission.

With the buffer size larger than one, this becomes less of a problem in a

broadcast environment since the control portion of a user's successfully

transmitted packet may *e u3" to inform the other users of any additional

packets remaining in its buffer. This may be done in a variety of ways.

One particularly simple method is to use a one bit field in the packet

header to indicate the presence/absence of other buffered packets at the

instant before transmission. With this information it follows that each

packet generated during a user's busy period (i.e., the continuous interval

during which the user's buffer is not empty) may be assigned a reserved

slot for transmission. The multiaccess problem is then only associated

with the first packet at the start of each of these busy periods. In

general, a higher packet generation probability p implies a longer user

busy period and hence a smaller fraction of packets without reserved slots.

It is apparent then that with a buffer size larger than one, the
uncertainty as to which users have packets awaiting transmission is

reduced. Since this uncertainty is at the heart of the multiaccess

problem, the single buffer assumption represents the problem in its most

~ie
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basic form.

The use of an infinite user population model originally came about as

an approximation to a large but finite population in the analysis of a

particular multiaccess protocol [K21. Since then a significant amount of

work in the multiacoess area has centered around this assumption. Of

primary interest to many of these studies is the "capacity" of the

multiaccess channel, defined as the supremum of all achievable throughputs

for which the average packet delay is finite. Part of this effort has been

devoted toward devising multiaccess protocols with greater throughput

[C1,G1,M8], and part devoted to determining tighter theoretical upper

bounds on the capacity [P2,H6,M7,C6,T3]. Currently, for a channel with

{0,1,12} feedback, the largest throughput attained by a protocol is 0.4877

(M8] and the tightest upper bound now stands at 0.5874 [T3].

Unfortunately, these results have only limited application to the more

practical case of a finite user population; for the maximum throughput of

the finite population problem is 1.0 and is achieved by TDMA (Time-Division

Multiple Access) where slots are assigned to users in a deterministic

round-robin fashion (see Section 2.3). Hence caution must be exercised in

using the more tractable infinite population model as an approximation to a

large but finite population, as the two clearly have significant

fundamental differences.

The different modeling assumptions given in this section are only but

a sample of the possible variations that one could consider. By relaxing

the basic properties given in Section 1.1, we could even enlarge the scope

of the multiaccess problem to include such models as those used in the

study of packet radio networks [K1]. However, we believe that to

understand the fundamental nature of multiacoess, one should first examine

l--7 .. . .. "
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the basic problem. The model of Section 1.2 represents such a basic

problem.

1.4 Previous Work

There has been a great deal of effort devoted to the multiple access

problem and much of this work has followed along the lines of protocol

development and analysis. The numerous protocols found in the literature

reflect not only the fact that there are many different models of the user

population and communication channel (each possibly motivated by a

different practical situation), but also that the problem of finding the

best protocol for any nontrival model and performance measure is as yet

unsolved. In this section we briefly describe some of the main

contributions in the development of multiaccess protocols. The attempt is

to give an overview of the various classes of protocols, particularly those

relevant to our selected model, without getting sidetracked with the

details of any one scheme. Other more complete surveys may be found in the

literature CTI,L2].

The first distinction we make is between protocols that allow

conflicts and those that are conflict-free. As the name implies, a

conflict-free protocol requires that no more than one user transmit at any

given time. Not surprisingly, the first protocols developed for the

multiaccess problem were conflict-free. One important such protocol is

TDMA (Time-Division Multiple Access) (M3]. Although variations do exist,

the typical TU4A protocol consists of assigning fixed, predetermined slots

to users in a round-robin fashion. In this way, with N users, each user is

given periodic access to the channel once every N slots. Without

conflicts, the performance degradation of TDMA from that of perfect

* -
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scheduling results only from having empty slots during busy periods.

Hence, as might be expected (and is shown explicitly in Chapter 2), TDMA

performs well for packet generation probability p near 1 and poorly for p

near 0. Where applicable, improvement in the TDKA performance can be

realized with the addition of a carrier sense assumption, since this

reduces the size of an empty slot. A discussion relevant to this situation

may be found in [K6].

A very important application of multiaccess protocols is in the

computer communications area where the generation of packets by users is

characterized as being bursty. Basically, the larger the ratio of a user's

average idle period to average busy period, the more bursty is its packet

generation process. Hence it follows that the degree of burstiness is

related to the packet generation probability p, the number of users N, and

the multiaccess protocol being used. Consider, for example, the T2I4A

protocol. Through extensions of the results of Section 2.3, we obtain

iE~busy period] = p I-(1-p) N "W-

Now suppose p = 0.01. When N x 10, the idle to busy ratio is 17.7 and one

thus considers the user traffic to be bursty; but when N z 1000, the ratio

is 0.110 and, although the packet generation probability p has not changed,

the user traffic is no longer considered bursty. Generally speaking,

however, for a given protocol and population size N, the user traffic can

be made more (less) bursty by making p sufficiently small (large). With

7 For the selected user-channel model, we define a user's idle period to
begin only when after juccessfully transmitting a packet in one slot it
generates no new packet at the beginning of the next slot.

As -



this in mind, we shall for simplicity, characterize a user as being bursty

for p (sufficiently) close to 0 and not so for p (sufficiently) close to 1.

Due to the inadequacy Of such conflict-free schemes as TEM4A for the

case where the packet generation process is bursty, protocols were

developed which permit more than one user to transmit in a given slot.

These protocols naturally give rise to Collisions, but typically perform

very well when p is small since, compared to TEM4A, the occurrence of empty

slots during busy periods can be greatly reduced.

Hlistorically, the Aloha scheme [All was the first multiaccess protocol

that allowed collisions. This original version, devised and implemented in

the context of an unslotted channel, remains today the simplest Of the so

called random access techniques. With it, a packet is first transmitted at

the instant it enters the transmission buffer. When there is a collision,

each transmitting user is so informed by not receiving, within some

specified time-out period, an acknowledgement packet from the destination

User. The waiting time before a collided packet is retransmitted is3 then

selected at random by the user, thus avoiding continually repeated

conflicts. The largest attainable throughput for this scheme was

determined to be 1/2e ;% 0.18 [All. A slotted version of Aloha followed

shortly and resulted in an increase in the maximiu throughput to l/e % 0.36

* (R2]. This improvement in performance is a direct consequence of the fact

that in a slotted channel colliding packets are forced to overlap

completely. Both versions, unfortunately, exhibit unstable behavior.

This is manifested through the positive feedback effect Of Collisions

creating more transmissions which in turn may cause still more Collisions

and so on, eventually driving the system throughput to zero. When this

occurs, a restart procedure must be initiated.

VAL" *
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* The Aloha approach to the multiaccess problem formed the basis for

much of the work that followed in protocol development. Part of this

effort was directed toward further analysis of the Aloha protocol in terms

of its throughput-delay performance CUM]K3 and its characterization as an

unstable process CK3,C3]. Other efforts involved improving the Aloha

performance through such modeling modifications as carrier sense [K43J and

collision detection EM1. Still other work consisted of devising packet

reservation schemes, both implicit and explicit, in which the Aloha concept

is used in the reservation process [R3,C5,J1].

Our main concern is with the basic multiaccess problem as

characterized by the slotted channel model of Section 1 .2. For this

situation, Aloha only performs well when p is near 0 and in contrast, T124A

only performs well when p is near 1. What is desired is a protocol whose

performance is as close as possible to that of perfect scheduling for all p

between 0 and 1.* Some efforts along these lines have resulted in protocols

which depend on explicit knowledge of the value of p. Other protocols have

been developed which, although not directly requiring knowledge of p,

either infer this information through channel observations or require more

advanced knowledge of the state of the users.

A type of protocol which can be driven by either explicit or inferred

knowledge of p is in effect a hybrid of the TDMA and Aloha protocols. The

basic cokicept is to subdivide the population of N users into say L groups

of N/L members each. Groups are then assigned slots in a TDMA fashion, and

access by the members of a group to its slots is governed by an Aloha

protocol. It is the inferred or known value of p which determines the

number of groups L. When p is near 0, L = 1 and we have ordinary slotted

Aloha. When p is near 1, L =N and we have the usual TDHA protocol. For
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intermediate values of p, 1 < L < N so that the protocol is a cross between

TDMA and Aloha with a performance better than both. Basically, for a given

p, L is chosen so as to trade off the empty slots during busy periods

generated by TDHA and the Collisions generated by Aloha. Specific

Protocols have been proposed, most formulated for a carrier sense

environmient, Which employ this grouping idea tH2,C'4,R1].

Related to this grouping approach is the Tree protocol devised by

Capetenalds (Cl ,21. 0The Tree protocol employs a variable-length frame

structure on the time slots and a buffer size of two at each user. A user

is allowed to generate at most one packet per frame and all packets

generated during one frame are transmitted in the next frame. The size of

each frame is determined by the time required to successfully transmit all

packets generated during the previous frame. The problem, as usual, is one

of not knowing which users generated packets. The approach taken is that

of a deterministic tree search based on the ternary channel outcome

(0,1,>_2) observed by all Users at the end of each slot. Specifically, at

the beginning of each frame the user population is divided into L grout, of

N/L members each. Suppose for simplicity that NIL is a power of 2.

Starting with the first group, all members with packets generated in the

previous frame transmit them in the first slot of this new frame. If the

slot contains one packet or no packets, then it is determined that at most

one user in the group had a packet and, of course, any such packet will

have been successfully transmitted. If two or more users have packets,

there results a collision. To resolve this conflict the group is divided

in half and each half is then treated as a separate group. Hence a

Collision in either half causes it to be split again, and this continues

0 A similar protocol in a polling context Was devised by Hayes CH3].

j. I
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until the slot accessed by a group is empty or contains one packet. This

"divide and conquer" technique will resolve all conflicts in the original

group of N/L users using at most 2N/L - 1 slots in the new frame. All

other groups are handled in an identical fashion and so the frame ends when

all packets generated in the previous frame have been successfully

transmitted and it is known that no other packets remain.

With the Tree protocol, the group size N/L is chosen at the beginning

of each frame to minimize the expected length of the frame. This optimal

group size may be expressed directly in terms of the probability that a

user generated a packet in the previous frame. This probability is denoted

by q and it follows that q =1 - (1-p) 1I where p is the usual packet

generation probability and I is the frame length in slots. When q >- i/fl,

L = N and so the protocol reduces to a form of TDMA [C21. Also, as

expected, L decreases to 1 as q decreases to 0. Note, however, that q is a

function of p and if p is not known a priori, it must be estimated from,

for example, channel outcome observations.

An Important property of the Tree protocol is that, unlike Aloha, it

is stable [C11. This is the result of the increased information contained

in the channel feedback. Recall that with slotted Aloha, only a user that

transmits in a slot is informed (typically through some acknowledgement

mechanism) of whether its transmission was successful. With the Tree

protocol, all users are assumed able to determine at the end of each slot

whether that slot contains 0, 1, or >- 2 packets. Control strategies have

been proposed which stabilize slotted Aloha [L1,F1,H1J. These techniques,

however, either require additional state information such as knowing the

number of busy Users (i.e., users with packets) at the beginning of each

slot (L1,71], or require the channel outcome feedback (0,1,21 [Hl]. Of

VAA
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course TDMA requires no feedback information and is certainly stable.

However, for an infinite population model, TDRA is not applicable and so an

interesting but unsolved problem is that of determining the least mount of

feedback necessary for the existence of a stable protocol for infinitely

many users.

Underlying the Tree protocol is the concept of a dynamically varying

but globally defined "access set'. That is, at the beginning of each slot,

every user follows a common algorithm, based only on comon information,

that specifies a subset of users which are given permission to access the

slot. Each user in this access set with a packet (generated in the

previous frame), then transmits this packet in the slot. With the Tree

protocol, the common information is the ternary channel outcomes from

previous slots and the common algorithm used is that of a deterministic

tree search.

Another protocol employing this access set idea (without the frme

structure of the Tree protocol) is the Urn scheme devised by Kleinrock and

Yemini CKT]. With the Urn scheme it is assumed that all N users know the

number of busy Users n at the beginning of every slot. With this

information, the size of the access set, k, is computed (in a corrected

version of the protocol) according to k = F(N+1)/n - 11 for n .

where Fxl denotes the smallest integer greater than or equal to x. The

common algorithm at each user which then selects the k members for the

access set may take on a number of different forms. The basic algorithm,

from which the notion of an urn is derived, is that of a pseudorandom

number generator which uses the same seed at each user. As expected, when

the traffic is light the access set is quite large (e.g., n z 1 implies

k a N) and as the traffic level increases the size of the access set
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decreases. In fact for n > N/2, the Urn scheme is equivalent to random

TDRA.

The access set selected by the Urn scheme corresponds to an optimal

solution to the problem of maximizing the probability of a successful

transmission in a slot given that the only information available is the

number of busy users (i.e., previous access sets and outcomes are not used

in the decision). This is easily proven in two steps. The first step

shows that methods for selecting an optimal access set exist within the

class of deterministic strategies. A nondeterministic strategy might be

one where, for example, each user randomly decides whether it should belong

to the access set, as is done with slotted Aloha. Any such randomized

strategy, however, may be viewed as a random selection among deterministic

strategies. That a deterministic strategy is optimal for this particular

problem is a standard result in Bayesian decision theory based on the fact

that the maximum value of a random variable is always at least as large as

its expected value [DI, Sec. 8.5]. Next, it is necessary to choose from

among the 2N-1 possible access sets. However, due to the homogeneous

nature of the user population and the assumption that only the number of

busy users is known, it follows that only k, the size of the set, is

relevant. Once k is determined, the members may be selected arbitrarily.

The optimal k for a given n is readily determined from the element of the

hypergeometric density function specifying the probability that only one of

the k selected users is busy.

One problem with the Urn scheme is the required global knowledge of

the number of busy users at the start of each slot. Such information is

clearly not readily available. Kleinrock and Yemini [KT] have proposed

that a fixed subohannel be derived (through time-division) from the main
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broadcast channel and used in a multiaccess-like fashion in a procedure for

estimating n. This represents additional overhead to the protocol in much

the same way that a reservation subehannel is overhead to many reservation

schemes. Also, although not as catastrophic as with Aloha, the Urn scheme

has been shown to be bistable for intermediate traffic levels (M6].

The grouping approaches of the combined TDMA-Aloha, the Tree, and the

Urn protocols achieve performance improvements over both basic Aloha and

TDMk. Such Improvements, however, come at the expense of additional

information required in coordinating the user transmissions. In the latter

two schemes this leads to questions of robustness which must be effectively

dealt with before these protocols can be considered practical.

1.5 Thesis Outline

This thesis is concerned with the multiple access problem as

characterized by the user-channel model described in Section 1.2. The

results obtained relate either directly or indirectly to the development

and analysis of multiacceas protocols for this basic model, but more

generally contribute to a better understanding of the multiaccess problem

for a variety of user-channel models. In this section we briefly outline

the remaining chapters of this thesis.

In Chapter 2, several common measures Of steady-state performance for

multiaccess protocols are stated and relationships among the measures are

4derived. From these relationships it is shown that the performance

measures are all equivalent in the sense that (1) each performance measure

may be expressed as a simple function of any one of the others and (2) a

protocol selected to be optimal with respect to any one performance measure

is optimal with respect to all of the others. The derived relationships

ii i' A
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are also used in the performance analysis of perfect scheduling and TDMA.

Chapter 3 is concerned with the development and, to some extent, the

characterization of multiaccess protocols. Here four related classes of

multiacoess protocols are defined and examined. First considered is the

most general class of protocols, referred to as Team protocols, where the

determination of an optimal protocol is formulated as a Team problem.

Since general solution techniques to Team problems are nonexistent, we

place constraints on the protocol structure that allow a classical

sequential decision making formulation of the multiaccess problem.

Specifically, we examine three subclasses of Team protocols - the Access

Set, Extended Access Set, and Window protocols - where in each case the

determination of an optimal protocol can be modeled within the framework of

a Markov decision process. However, only with the last class examined, the

Window protocols, is the state space finite, and thus amenable to known

optimization techniques. The state space for this class is characterized,

and properties of the generic protocol and its Markovian structure are

derived.

In Chapter 4, Window protocols for the user population sizes N = 2 and

N - 3 are constructed. In each case the system state space is first

derived along with the associated Markovian decision formulation of the

optimization problem. Optimal .Window protocols are then found using

Howard's policy iteration algorithm (H5]. In addition, the performance of

several reasonable but suboptimal Window protocols are ccputed and

compared to that of the optimal.

Chapter 5 considers the problem of designing Window protocols for

large user populations. The state space characterizing this situation,

however, is enormous (it gows exponentially with N), making standard

how Ar"4 .' -
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optimization techniques impractical. Nevertheless, based on properties of

the optimal Window protocols for N = 2 and 3, a reasonable subclass of

Window protocols is defined. The finite horizon performanue and dynamic

behavior of the protocols within this subclass are then investigated.

Also, the relationship between the finite and infinite user population

problems is examined by considering the limiting behavior of this protocol

subclass as N-,oo.

Finally, Chapter 6 contains conclusions and a discussion of some of

the problems that remain to be solved in the multiaccess area.

I|
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CHAPTER 2

jPERFORMANCE MEASURES AND SOME PRELIMINARY ANALYSIS

Up to nov our characterization of the performance of multiple access

protocols has been qualitative, based on the extent to which collisions and

empty slots during busy periods are avoided. In this chapter, this

characterization is made more precise by examining specific quantitative

measures of protocol performance. Such measures not only are needed for

analytical and numerical comparisons of the effectiveness of different

protocols, but are also used in optimizing the performance of a given

protocol. In the latter case, the performance measure acts as the

objective function in the problem Of selecting the best protocol parameter

values and/or operational modes for the given system conditions (e.g.,

given p and N).

2.*1 Steady-State Performance Measures

Our main concern is with the long term behavior of multiaccess

protocols, and so we restrict our discussion to steady-state performance

measures such as throughput and average delay. In this section several

coon measures of a protocol' s steady-state performance are stated and

relationships among the measures are derived. From these relationships we

show that the measures are all equivalent in the sense that (1) each

performance measure may be expressed as a simple function of any one of the

others and (2) a protocol selected to be optimal with respect to any one

performance measure is optimal with respect to all the others. These

results depend only on the user-channel model specified in Section 1 .2N

(although they are valid independent of any assumed feedback to the Users),

-30-", 
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and on the existence of limits inherent with steady-state statistics.

Since our interest is with protocols for which the given steady-state

performance measures exist, this last assumption is by no means

restrictive.

Recall that with the single buffer assumption, each user independently

generates a packet with probability 9 at the beginning of each slot, but

will only accept a packet into its transmission buffer if the buffer is

empty (i.e., if in the previous slot the user either had no buffered packet

or had one but successfully transmitted it). A user whose buffer is unable

to accept an arriving packet is said to be backlogged and the arriving

packet is said to be blocked. Also, each packet in a transmission buffer

at the start of a slot is counted as being in the "system" during that

slot. With this terminology in mind, consider the following typical

steady-state performance measures of a multiaccess protocol:

B = E[number of backlogged users]u

P = Pr~an arriving packet is blocked]

B z E~number of blocked packet arrivals per slot]
a

P a PrCsuccessful packet transmission]

N z Enumber of packets in the system]s3

D a E[delay of a packet measured in slots from the

time the packet enters a transmission buffer<1 until the end of its successful transmission]

Note that under steady-state conditions, P is equal to the system

throughput (i.e., the fraction of slots containing successful packet

transmissions). Through simple probabilistic arguments we have
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Pb M Bu/N (2.1)

B a =pB (2.2)a u

P p(N- ) (2.3)

Ns =Bu + P (2.4)

D N /P (2.5)3 s

where (2.1) and (2.2) follow from the independent but homogeneous nature of

packet arrivals, (2.3) follows from the equilibrium condition: E[number of

successful packet transmissions per slot] = E[number of unblocked packet

arrivals per slot], (2.4) follows after noting that a user with a buffered

packet is only backlogged if it is unable to successfully transmit this

packet, and finally (2.5) follows from an application of Little's result.

We now show that for any given p and N, by knowing any one of the

above six performance measures we can easily determining the others. Using

straightforward algebraic manipulations on Equations (2.1)-(2.5), we obtain

N
Bu = (1 + Nip(D-) (2.6)

Pb= uI (2.7)

B a pNP b  (2.8)

P5  = pf- B (2.9)

N z N- P (1-p)/p (2.10)
5 5

D p (2.11)

D fit

* .. s
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From these relationships, note that Bu is written as a function of only D

and each successive performance measure starting with Pb is written as a

function of only the previous performance measure. Hence it follows that

after obtaining any one of the given performance measures, the others are

easily determined by evaluating simple algebraic equations.

Having shown the relationship among cowmonly used steady-state

performance measures, we now turn to the problem of selecting one for use

in comparing multiaccess protocols and/or optimizing the performance of a

given protocol. Given p and N, it is clear that desirable protocols would

minimize Bu, Pb' Bat Nat or D, or maximize Ps. The surprising result that

follows from the monotonicity of Equations (2.6)-(2.11) is that a protocol

that is optimal with respect to any one of the six performance measures is

optimal with respect to the others.

In sumary, we have found that each of the given performance measures

may be expressed as a simple function of any one of the others, and that

the choice of one as a measure for comparing protocols or as an objective

function in optimizing the performance of a given protocol is arbitrary.

From an analytical point of view these results are significant in that it

is often true that a multiaccess protocol is more easily analyzed or

optimized with regard to one performance measure than the others.

Moreover, we need not be concerned about any trade-off situations where a

protocol is optimal with respect to one of the performance measures but not

with respect to another.

In the next two sections of this chapter we analyze the performance of

perfect scheduling and TDMA. These results will be needed later and are

included here because they serve to illustrate the usefulness of results

derived in this section.
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2.2 Perfect Scheduling Analysis

Perfect scheduling, where both collisions and empty slots during busy

periods are eliminated, represents a desired but unattainable level of

performance in a system with gographically distributed users and randomly

generated packets. As such, its performance provides a useful benchmark

for comparing the effectiveness of multiacOess protocols. In this section

we analyze the steady-state performance of perfect scheduling for the

user-channel model of Section 1 .2. The performance measure selected for

analysis is N , the expected number of packets in the system.

We model the system as a N 1 state Markov chain where the state is

equal to the number of users with packets. Under the assumed packet

generation process, state transitions occur at the beginning of each slot

and are governed by the state transition probabilities

P 3=(N) i lPN-jj

(2.12)

0 j = Of,...,£i-2

Pij pJ-i 1 N I..,
(-i+1 p-p) '  j = (-12 .... N

where pJ is the conditional probability of moving to state j given the

system is currently in state i. From these transition probabilities, it

follows that the Markov chain is ergodic. Hence the limiting state

probabilities rig i x 0,1,...,N, defined by

i z lim Pr[state x i at time-slot M]
M-+00

A,

[
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exist, are independent of any initial state probability distribution, and

are uniquely determined by the equations

,j~~ ~ a 091 .~jj-o ... ,9N
ipO

N
1 Z

i=O

Due to the upper Hessenberg structure of the state transition probability

matrix [pij], these equations may be solved in a straightforward manner. A

numerically stable algorithm, based on the Q-R decomposition of a matrix

[B1,G2], is given in Appendix A.

After solving for the limiting state probabilities, N is given by

N

i=O

Using Equations (2.6)-(2.11), the five remaining performance measures may

be computed. In Figure 2-1, all six performance measures are plotted

against packet generation probability p for N = 10. Figures 2-2 and 2-3

are graphs of average packet delay D vs. packet generation probability p

and average packet delay D vs. throughput P, respectively, for various

values of the population size N.

Also plotted in Figure 2-3 is the average delay vs. throughput

performance of an M/D/1 queue with a one slot service time (see, e.g.,

CK5]), as characterized by

P
D = 1 +21P (2.13)

2 a
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This is shown because it corresponds to the limiting behavior of perfect

scheduling for our model as N-.o and pN E (0,?) remains a Constant. To

see this, first note that in the limit the binomial transition

probabilities given in (2.12) become

J = 0,1,...
Poj e j a

(2.14)

0 J =0,...,1-2

(j-i1) 
I 

I 
...

where X = pK. That is, the number of new packet arrivals accepted to the

system at the beginning of each slot is independent of the current state

and has a Poisson density given by

Pr[k arrivals accepted] = k a 0,1,...

Also note that in the limit there are no blocked packet arrivals, so that

P x = P . Finally observe that the transition probabilities given by

(2.14) correspond to those of the imbedded Markov chain characterizing the

state of an M/D/1 queue (with unit service time and arrival rate X) at the

departure times of the system. Hence paralleling an analysis of the M/D/i

queue, we obtain (2.13).

Vt.r?

I.-
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2.3 TEMA Analysis

The performance analysis of TDMA for the user-channel model of Section

1 .2 is easily obtained. Recall that with TDMA, each user is given

exclusive transmission rights to a slot once every N slots. It follows

that Ps, the system throughput, is equal to the probability that a user has

generated a packet by the start of its assigned slot. Hence we have

P = z - (-p) (2.15)

Using Equations (2.6)-(2.11), expressions in terms of only p and N may

be derived for the five remaining performance measures. For example, from

(2.10) and (2.11) we obtain

D =1 + N/P - 1/p

and thus from (2.15), the average delay for TEMA is given by

D =1 + N 1

D 1 ............ (2.16)1-( 1-p)"

Although one may derive (2.16) directly, it is not as trivial as

determining the throughput P and then applying the results of Section 2.1.

In Figure 2-4, the six performance measures are plotted against p for

N x 10. Figures 2-5 and 2-6 are graphs of D vs. p and D vs. P

respectively, for various values of N.
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CHAPTER 3

MULTIACCESS PROTOCOL DVELOPHINT

This chapter is concerned with the development of multiaccess

protocols for the user-channel model of Section 1.2. Illustrated in Figure

3-1 are the various classes of protocols examined. The Team protocols

constitute the most general class and are so named because to determine the

ost efficient protocol within this class is a Team theoretic problem. The

Access Set and Extended Access Set protocols are two restricted but

reasonable subclasses of Team protocols allowing a classical sequential

decision making formulation of the multiaccess problem. Finally, the class

of Window protocols is a subclass of the Extended Access Set protocols

whose state space is finite; and thus, as we shall see, one to which known

optimization techniques can be applied. We begin our discussion with the

class of Team protocols.

Aces Set Window

Extended Access Set
Protocols

Team Protocols

Figure 3-1 Classes of multiaCoess protocols
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3.1 Team Protocols

Consider the underlying structure of the generic multiaccess protocol

for the user-channel model we have specified. At the beginning of each

slot, based on its current knowledge of the state of the system, each user

with a buffered packet must decide whether to transmit its packet in the

slot. A user's knowledge of the "state of the system* may, in general, be

based on all the information that is available to it, including the

feedback obtained from previous channel outcomes (colmon information) and

the past history of its own packet arrivals and transmission decisions

(local information). Moreover, considering the performance measures we

have selected, a user's decision to transmit or not is made unselfishly,

with the goal being to optimize some global objective function. Such a

problem of sequential decision making in an environment of decentralized

decision makers with distributed information and a common objective

function may be formulated within the framework of Team theory [M2,H4].

The notion of a dynamic Team problem has been around for over 25 years

[M1]. Unfortunately, the class of problems is of sufficient complexity

that little progress has been made toward a general solution technique or

even in finding general properties of optimal solutions. Hence its value

to the multiaccess problem, even with the relatively simple user-channel

model of Section 1.2, does not go much beyond a conceptual level.

Without established solution methodologies, one is forced to restrict

the scope of feasible solutions to those classes to which known

optimization techniques can be applied. In the next three sections of this

chapter we examine three related subclasses of Team protocols: the Access

Set, Extended Access Set, and Window protocols. Each class can be modeled

as a Markov decision process [D2,H5,RP], but only with the latter can we
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generally solve for the optimal protocol.

3.2 Access Set Protocols

The concept of an access set was introduced in describing the Tree

[C21 and Urn [K7] protocols in Section 1.4. The basic idea is that, at the

beginning of each slot, every user follows a common algorithm, based only

on common information, that specifies a subset of users which are given

permission to access the slot. Each user in this access set with a packet

then transmits its packet in the slot. The sequential nature of the

process is illustrated in Figure 3-2 where A(J) is the access set for slot

J, T(J) is the subset of users in A(J) which transmit packets in slot J,

and C(J) is the common channel observation which for our model corresponds

to the ternary channel outcome {0,1,>2) observed at the end of slot J.

The above structure imposes a form of coordination among the users in

which both common and local information are employed in a user's decision

to transmit a packet. The channel outcomes are common information and are

used in selecting the access set. The local information consists of each

Transmission Feedback

A(J) C(J)

Decision
Algorithm

~qi

Figure 3-2 Structure of Access Set protocols
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user knowing whether it has a packet and thus whether to transit given

that it is in the current access set. The use of the local information is

predetermined since by definition a user in the access set is required to

transmit if it has a packet. What remains to be specified is the decision

algorithm used to determine the access set A(J) at the beginning of each

slot J. Since both the algorithm and its inputs are restricted to be

common to all users, the problem may be formulated in the context of

classical (i.e., nondistributd) sequential decision making CB2].

With the classical sequential decision making formulation, the

information available to the decision process for selecting Ati) are the

previous observations C(1),...,C(J-1) and decisions A(1),...,A(J-1) along

with the given initial conditions of the system. The decision ACj) may, in

general, be a probabilistic function of this past history of the system.

However, we require all users to compute the same access set A(j) for each

J, and hence any randomization in the decision by the algorithm must have

the same outcome at each user. This may be accomplished with the use of

identical, precomputed tables of samples from appropriate probability

distributions stored at each user; or, for a more practical method, one

might consider using a pseudorandom number generator with the same seed at

each user. Such a "centralized" structure for randomizing decisions is in

reality more general than allowing users to independently randomize their

own decisions. To see this, note that one type of centralized structure

consists of choosing an independent random decision for each user; in

effect each user has knowledge of the other decisions (and thus of the

access set) but does not use this knowledge. Hence, in searching for an

efficient Access Set protocol, we may restrict our attention to the class

of centrally randomized decisions which includes as a subclass all

• :- . ,-- . mm~ m -X-



-48-

deterministic decision algorithms. Later when we examine the class of

Window protocols, we shall see that there exists an optimal Window protocol

whose decision process is deterministic.

The steady-state performance measures examined in Chapter 2 correspond

to the infinite horizon average expected value problem in the sequential

decision making nomenclature. Due to their equivalence, any one of the six

may be chosen as the reward (cost) function for our problem. One that is

easily incorporated into the problem formulation we develop is P' the

system throughput. Defining the immediate reward

1 if slot j contains a successful transmissionr(j)
0 otherwise

we have, assuming the limit and expectation exist,

Ps =  i E r(j) (3.1)

where the expectation is conditioned on both the selected decision

algorithm and the given initial conditions of the system. Adopting

notation from sequential decision making, we shall occasionally refer to

the decision algorithm as a policy and the decision A(J) as a control. The

problem of interest is that of determining, for any given p and N, a policy

which maximizes (3.1). H
To develop a framework for finding an optimal policy, we begin by

defining the internal state vector u(j) z (ul(j),...,uN(j)) where

1 if user i has a packet at the beginning of slot j

u0 otherwise

' I. - I * U-- -- -- 1 U
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Note that u(j) simply indicates which users have packets ready for

transmission at the beginning of slot J. For the packet generation process

specified in Section 1.2, internal state transitions can be modeled by a

2N-state discrete-time Markov chain where the probabilities governing the

transition to u(J+1) depend only on u(J) and the control A(J). To better

understand this, consider the event sequence depicted in Figure 3-3. The

first stage corresponds to the end of slot j and the last corresponds to

the beginning of slot J+1. The transition from u(j) to u(+l) occurs

between the first and last stages and may be divided into two steps.

First, depending on the access set A(J), at most one user will successfully

transmit a packet during slot j so that for at most one i, ui(j) goes from

1 to 0. Second, each user which does not currently have a packet

(including user i) will generate one with probability p. Hence we see that

transition to state u(j+l) is a probabilistic function of only the current

end of transmission for slot J

channel outcome C() observed

new packets access set A(J+)
generated computed

beginning of transmission for slot J+1

Figure 3-3 Sequence of events from the end of slot J
to the beginning of slot J+1

- I

-2. -
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state u(j) and access set A(J); and thus u(J) is a controlled Markov

process.

Note that the internal state u(j) is not available to the decision

process at the beginning of each slot J. Clearly if it were, then the

decision algorithm could be selected to achieve perfect scheduling of all

packet transmissions. The problem of optimally controlling the Markov

process u(J) may, however, be formulated in terms of a partially observable

Markov decision process [A2,S1]. This follows since after the decision

algorithm selects an access set A(J), an output C(J) c {0,1,_2) is

observed, a reward r(j) is earned, and a transition is made to a new

internal state u(j+1); where the observed output, reward, and transition

depend only on the current internal state u(j) and decision A(J). As

previously indicated, in addition to the given initial conditions of the

system, the information available to the decision process for selecting

A(J) are the previous channel outcomes C(1),...,C(J-1) and access sets

A(1),...,A(J-1). It is a standard result that the 2N-vector T(j), where

component Ii(j) is the conditional probability of being in internal state i

*at the beginning of slot j given the above previous inputs, outputs, and

initial conditions of the system, is a sufficient statistic for the

complete past history of the process. Moreover, from Bayes' Rule it

follows that l(J) may be expressed as a function of only T(J-1), A(J-1),

and C(J-1) and thus computed recursively. Hence, YI(j) can be viewed as the

state of a discrete-time Markov decision process upon which the decision

A(J) is based.

The difficulty we now face in determining an optimal policy (i.e., a

function mapping n(j) into A(J) which maximizes (3.1)) stems from both the

*" type of performance measure we have selected and the new state space for

rr _
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the process. It is well known that if the state and control spaces are

finite, then an optimal policy for an iofinite horizon average expected

value problem exists and is in the class of stationary deterministic

policies (i.e., the mapping is nonrandom and independent of J). Moreover,

techniques such as Howard's policy iteration algorithm CH5] exist for

determining such an optimal policy. However, if the state space is allowed

to be infinite, then optimal policies may not exist or, when they do exist,

they may not be stationary or deterministic [B2,D2,R4]. Now although the

internal state u(j) is from a finite state space (having 2N elements), the

state space, H, corresponding to the new problem is generally infinite. To

see this, consider the case where the decision algorithm always selects

user 1 (i.e., A(J) = (1} for all J). For this policy it follows that at

the beginning of slot J, each user i independently has a packet with

probability P, where

Pi I - (1-p)J i - 2,...,N

and hence H is at least countably infinite.

3.3 Extended Access Set Protocols
It is of value to note that the class of Access Set protocols may be

extended while maintaining the classical sequential decision maklng

formulation of the multiaccess problem. Specifically, one might consider

controlling packet transmissions via a time interval mechanism in addition

* This is assuming that we have control over the starting state of the
system. Without this assumption we would require an additional condition
such as that every stationary policy results in an indecouposable Markov
chain (i.e., the chain contains exactly one irreducible set of states,
the rest being transient).

A:- *' *,I**
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to the access set. That is, a user's packet is transmitted only if the

user is in the access set and the packet was generated in some globally

definmd time interval (or intervals), where both the access set and time

interval(s) are computed by each user according to some common algoritbm

based only on common information.

To see how such an extension to the Access Set protocol might be

useful, consider the case of three users where u(j) a (0,1,1) and. A(j) =

{1,2,3) 30 that the channel outcome C(J) indicates a collision. Now

suppose that user 1 generates a packet at the beginning of slot J+1, so

that u(j+1) = (1,1,1), and that the decision algorithm sets A(J+) = {1,2).

There of course will be another collision and user I knows this a priori

since from the previous slot it was able to determine that both users 2 and

3 have packets. Hence, even though user 1 is in the access set, by not

transmitting it will prevent a collision and ensure a successful

transmission. This problem may be avoided with the addition of the time

interval mechanism. Specifically, by having the decision algorithm also

select [1, J] as the time interval for slot J+1, the packet generated at the

beginning of slot J+1 by user I would not be allowed to be transmitted in

slot J+1 and hence no collision would ensue.

The additional control provided by the time interval mechanism allows

further flexibility in the design of a multiaccess protocol over that of

the basic Access Set structure, without precluding a Markovian decision

Aformulation of the problem. One may, for example, take the internal state

to consist of the set of users with packets and how long each such user has

had its packet waiting transmission. Then, as we did with the Access Set

protocols, the decision making may be formulated in terms of a partially

0 A variation on this extension would replace "and" with "or".

fit,
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observable Markov decision process. Such an extension does, of course,

further complicate the already difficult problem of finding an optimal

protocol. In the next section, however, we examine a subclass of these

Extended Access Set protocols where the Markov decision formulation has a

finite state space, and thus one for which an optimal policy can be

determined.

Finally, it is worth noting that, aside from variations in the assumed

feedback, many of the currently proposed multiacces protocols may be

viewed as being from the general class of Access Set or Extended Access Set

protocols. Two simple examples are TDMA (M3] and slotted Aloha CK3]. With

both protocols there is no assumed feedback of common information to the

users and so the decision process runs open loop. The decision process is

deterministic for TMA: access sets contain one member and users are

assigned to access sets in a round-robin fashion. For slotted Aloha, the

decision process is random in the distributed sense: each user

independently decides by "flipping a biased coin" whether to belong to the

access set.* The Urn protocol (KT] and especially the Tree protocol [C2]

are more in line with the type of protocol we have been discussing, since

with both, the access set is selected based on the feedback of coon

information to all users. With the Urn protocol the access set is selected

in a centrally randcmized fashion. With the Tree protocol the decision

process is deterministic, and since, with its frame structure, packets

generated during one frame cannot be transmitted until the next, the

protocol is a member of the Extended Access Set protocols. Lastly,

0If the protocol permits those users which have generated packets at the
beginning of the slot to transmit with probability one, then we may view
the protocol as being a member of the "or" version of the Extended Access
Set protocols.
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although designed for an infinite population model, Gallager's multiaccess

protocol CG1] selects users to transmit by a time interval mechanism alone,

and hence may be considered a member of the Extended Access Set protocols.

3.4 Window Protocols

The class of protocols discussed in this section use a windowing

operation for selecting the access set. Specifically, the V users are

ordered (algorithmically speaking) on a circle as illustrated in Figure 3-4

and the access set is selected by a window that rotates around the circle.

That is, at the beginning of each slot, the access set for that slot

consists of all users within the window (e.g., in Figure 3-4, A(j) =

{3,...,6}). As for the movement of the window, if a collision occurs, the

tail of the window remains fixed and the window size decreases. After an

empty slot or a success, the tail of the window advances along the circle

N 2

10

Figure 3-4 Selection of an access set via a windowing operation L
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to the head of the previous window with the window size possibly changing.

Note that the protocol is inherently fair in that for each revolution of

the window every user is given the opportunity to successfully tranoit one

packet. Also, the window approach to selecting the access set simplifies

the decision algorithm, since the only decision to be made at the beginning

of each slot is the window size. As an indication of its intuitive appeal,

this basic windowing concept was independently proposed as an extension to

the Tree protocol by Gallager [G1 and the Urn protocol by Kleinrock and

Imini [CK7].

3.4.1 Protocol Description

The class of Window protocols defined in this section have additional

restrictions on how the window size changes and, using a time interval

mechanism, on which packets generated by users in the window are allowed to

be transmitted. These restrictions actually only occur after a collision,

whereupon the operation of the window protocol enters a conflict resolution

mode. It is instructive to consider first the situation where there are no

collisions and then afterward the general case.

Suppose each access set selected by the window results in either a

successful transmission or an empty slot. It follows then that each user i

will independently have a packet with probability

P 1 - (-p) (3.2)

where Ti is the positive integer number of slots since user i was last

included in the window. If we continually renumber the users so that user

I is always the first user in the window and user 2 is the next clockwise

to 1 and so on, then clearly

-vI
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T1 1.T 2 > .- TN  (3.3)

so that

P 1  P"2 I I PN

Hence each user in the window has at least as high a probability of

possessing a packet as any user not included in the window. As evidence of

the reasonableness of selecting the access set through a window protocol,

it is shown in Appendix B that the subset of the N users which maximizes

the probability of a successful transmission is of the form {1,2,...,kl for

some 1 _.k _e, N (assuming that each user independently has a packet with

probability Pi and P1 > P2 I > " " 2 PN).

When there is a oll zi-n, the protocol enters a conflict resolution

mode (steps 2 and 3 in the desription). During this phase a restricted

class of users R is specified before the start of each slot. The

restriction is that any packet a user generates while in R cannot be

considered for transmission until after the user leaves R. This constraint

on the protocol is made to maintain a tractable state space, but is also

intuitively reasonable since allowing new packets to enter the conflict

resolution process can only increase the uncertainty as to which users were

originally involved in the collision.

The generic operation of the Window protocol is given in algorithmic

form in Figure 3-5. For notational convenience we number the users from 0

to N-1 (there is no renumbering in this description as the window changes),

and we define the subset of users V

* ai
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step 1. W = i,J], R = 0
if empty or success
d.a. selects a c (1,2,...,N}
i -J 1

j -J+m
so to stop 1

if collision
d.a. selects k C

go to stop 2

step2. 2 = [ik], R z Ci,J]
if empty
i-k+1

d.a. selects k c {i,i+1,...,J-1}
go to step 2

if success
i -k+l
d.a. selects k c fi,i+l,...,j}

go to step 3

if collision
j--k
d.a. selects k c (i,i+1,...,J-1}
go to step 2

step 3. W a [i,k], R = [i,J]

if empty
i -k+l
d.a. selects k c{i,i+l,...,jl
go to step 3

if success
d.a. selects M c (1,2,...,N}
i - k+e1
j - k+m
go to step 1

if collision
4 1 J-k

d.a. selects k c{i,i+1,..J-1}
go to step 2

Figure 3-5 Window protocol operation
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ij

[i,j] = ii+,..., < j

iti+l,...,N-,1,~t..,j i > J

The first line of each of the three steps denotes the control as specified

by the window W and restricted class R (0 denotes the empty set).

Following this is the action taken by the decision algorithm (d.a.) for

each of the possible channel outcomes (empty, success, collision). The

process starts at step 1 with no outstanding collisions to resolve, and all

additions () are computed modulo N. In reading through the algorithm, it

is helpful to keep in mind that at step 2 and step 3 there are,

respectively, > 2 and 1 1 users in R with packets. A sequence of feasible

window W and restricted class R changes is illustrated in Figure 3-6;

where, for convenience, the circle is cut between users 0 and N-1 and

extended along a straight line, and packet arrivals and departures to a

user's buffer are denoted by arrows above and below the line, respectively.

Note from Figure 3-5 that an empty slot or a success always causes the

tail of the window to advance to the head of the previous window, and a

collision always causes the tail to remain fixed and the window size to

decrease. There are no restrictions on how much the window size reduces

following a collision, and the only real restriction on the selected window

size following an empty slot or a sucQess occurs when entering step 3.

Here the protocol requires that W Q R. We conjecture, however, that this

restriction results in no degradation in performance for this class of

protocols.
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Figure 3-6 Ezauple of Window protocol operation
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3.4.2 Protocol State Space

The positive integer variable Ti, introduced in (3.2) for the case of

no collisions, is a convenient mechanism for tracking the system state upon

which the window size decisions are based. It is updated for each user i

at the end of every slot following the observation of the channel outcome.

The update rules are given in Figure 3-7 where

T : 1 + number of slots since R last became nonempty (3.4)

Now from the protocol description it follows that each user i # R

independently has a packet with probability P, given by (3.2) where Ti is

determined from the update rules given in Figure 3-7. This is true even

though, after a success or Collision at step 3 when k 4 j or a collision at

step 2, the users in the set Ikl1,J] z R-W are removed from R before being

processed by the window. To see this. consider the case of a collision at

step 1 followed by another collision at step 2. Letting [i,jJ] > m denote

the event that the user set [i,J] has > m users with packets, we have

Pr{[kl,J3] >. m Iti, J] >. 2, [i,k] >_ 2}
- Pr{[k+l,j] > m [i,kj >. 2} (3.5)

- Pr([k+l,J] Zm) (3.6)

where (3.5) follows since [i,k] >_ 2 implies that [i,j] > 2, and (3.6)

follows from the independence of the users in the disjoint sets (i,k] and

[kel,J]. Hence the statistics associated with users [k+l,J] after W

(i,k] (but before the Ti's are updated) are identical to what they were

immediately before the users entered R. A similar argument can be made for

* A user is *processed" when the tail of the window advances past the user
on the circle.

;6i
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(1) ±€ W, i€ R
Ti - Ti + I

(2) 1 C W, i 0 R
if empty or success

Ti- 1

if collision
no change

(3) 1i0' W, i e R
if success or collision at step 3 or collision at step 2
T i- Ti + T

otherwise
no change

(s) whr W, i R
if empty or success where user i did not transmit
T i-

if empty or success where user i transitted

if collision
no change

Figure 3-7 Ti update rules for Window protocol

the case of a success or collision at step 3 when k A J. This feature of

the protocol is also present in an analogous form in the multiaccess

protocol devised by Gallager [GI], and a simpler version exists in the

group testing algorithm of Sobel and Groll (32] which has recently been

applied to the multiaccess problem by Towsley and Wolf [T2].

Now, although the independence property associated with each user

i f I does not hold for users that are currently in R, their contribution

to the system state is easily characterized byT for each ± c R, the
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current value Of T (generally needed to update Ti when user i leaves R),

and whether there are 1 2 (when at step 2) or 1 1 (when at step 3) users in

R with packets. Hence when R is empty (i.e., at step 1 of the protocol)

the system is completely characterized by the vector (TI ,T2 ,...,TN); and

when R is not empty, the characterization requires, in addition to

(Ti,T2 ,...,T,), the set R, the value of T as defined by (3-4), and whether

there are > 1 or > 2 users in R with packets.

There are two aspects of the Window protocol to be discussed before

continuing with the state space discussion. First, note in case (4) of the

Ti update rules that to compute the new value for Ti following a successful

transmission requires the identity of the user that transmitted the packet.

This is typically not a problem for a real com unication system, but

nevertheless represents additional input to the decision process in order

for it to keep track of the system state. Second, also from case (4) note

that to maintain the ordering of the Tits as specified in (3.3) (assuing

the renumbering of users which gives rise to (3.3)), and thus in a sense

the fairness of the protocol, requires that users be occasionally reordered

on the circle. For example, consider the case of three users where at step

1, u(j) = (1,0,1) and the following sequence of window decisions and

channel outcomes occur:

W = (1,2, 3 )----. w (1) -,-- s i =w (2,31-- S

Note that after the second success the protocol will be back at step 1 and

(T1 ,T2 ,T3) (2,3,1). Thus, to be fair in the sense of (3.3), users I and

2 should be interchanged on the circle before the start of the next slot.

Both of the above complications result from the packet transmission

restrictions that atom from R.
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Let G1' 02, and G3 denote the three classes of states corresponding

to, respectively, steps 1, 2, and 3 in the Window protocol description. To

simplify the state space, we dynamically renumber the users so that user 1

always corresponds to the first user in W and user 2 is the next clockwise

to 1 and so on. Also, to maintain the fairness of the protocol, when

necessary we reorder the users on the circle upon entering step 1 so that

T, - T 2 TN

Hence, corresponding to the three steps in the Window protocol description,

we have the following three types of states:

G state: (T1,T 2...,T )

G2 state: (TI,T2,.ooTN;2,I() I 2,3,...,N}

03 state: (T1,T2,...,TN;3,A, )I I CI,2#...,N-1)

where R = {1,2,...,f} and T is measured relative to the end of the slot

during which the system is in the defined state so that T > 2. Note that

when R contains exactly two users at step 2, we have that each user

i c (1,21 has a packet awaiting transmission with probability one,

independent of the specific values of T and T2 . Likewise when R contains

exactly one user at step 3, user 1 has a packet with probability one

independent of T. Hence, to further simplify the state space, we denote

the state for these specific step 2 and step 3 cases by (0, o,T 3 ,...,TN)

and C( o,T 2 ,T3 ,...,TN), respectively.

Now suppose that all users have packets, and the window size is set to

N and only reduced by 1 after each collision. From this worst case

analysis we have T i N2 for all i. Hence it follows that the state space
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for the Window protocol is finite, although increasing exponentially with

N. Consequently, an optimal policy for the Window protocol exists and is

in the class Of stationary deterministic policies. Furthermore, we show in

the next section that this policy exists independent of the system starting

state.

3.4I.3 Protocol Properties

In this section we briefly sumarize some of the important properties

of the Window protocol. The first four properties follow from the

discussion in the previous two sections. The fifth and last property

concerns the Markov chain structure for the protocol and is accompanied by

a proof.

Property 1: The Window protocol is fair in the sense that the access set

selected by the window always contains those users who have waited the

longest since last being allowed to transmit. Note that due to the

homogeneous nature of the user population, these are also the users who are

most likely to have packets.

Property 2: The Window protocol has a maximum throughput of 1.0, for it is

equivalent to TDHA when the window size is Set to one.

Property 3: The operation of the Window protocol is at all times stable in

the sense that for any p c [0,1], the average delay D Satisfies

D I~ maximum packet delay . N2

_789
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Property 4: The Window protocol state space is finite; hence an optimal

policy exists for the infinite horizon average expected value problem and

is in the class of stationary deterministic policies.

Property 5: (a) Not all stationary deterministic policies for the Window

protocol correspond to indecomposable Markov chains.

(b) An optimal policy exists whose Markov chain is indecomposable.

(c) If an optimal policy has more than one irreducible set of states, then

the throughput performance associated with each such set must be the sane.

Hence the existence of any optimal policy does not depend on the system

starting state.

Proof: Part (a) may be verified, after reading Section 4.3, by considering

the following policy associated with the three user problem:

(2) w2 zw5 = 2, w1 5 zw 2 1 w2 1

where the window size associated with each of the remaining states is

arbitrarily chosen. After examining the tree in Figure 4-5, it is clear

that the states associated with part (I) of the policy and those associated

with part (2) form separate irreducible classes.

For part (b) of Property 5, suppose that an optimal policy has at

least two sets of irreducible states. Let P (i) denote the system

throughput given that the process starts in a state in irreducible set i,

i = ,...,m. Also, without loss of generality, let P (1) 1 Ps(2) > . .

Pa(m). Note that the Window protocol can remain in steps 2 and 3 for

only a finite period of time before entering step 1 and hence a G1 state.
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Furthermore, assuming that p < 1, there is a nonzero probability that there

will be no collisions for N consecutive slots, implying that each

irreducible set of states has a G1 state of the form

IT IT-1 12 i1

T
where T E (1,...,N) and I f a N. Now let 1,... IT take on the values

j=1 iT

associated with such a G1 state in irreducible set 1. For each irreducible

set i, i = 2,...,m, we choose any G1 state, call it S(i,T), and set its

window size w (UT) = IT. Letting SU ,T-1) denote the G, state reached

from S(i,T) after an empty slot or a success, we set WS(iTI) =IT1.

This is continued until S(i,j), 1 . j -. T-1, is either in irreducible set 1

or Is a transient state from which only set 1 states are accessible. It

follows that the new policy formed by the end of this procedure will have

only one irreducible set of states (that being the original class 1), and

will be optimal, having a throughput of P3(1).

Part c) also follows from the above argument. Specifically, if P (1)

> Ps(i) for any irreducible set i c (2,...,m}, then the throughput

associated with starting the process in a state in set i could be increased

to P (1) through the given procedure; implying that the original policy is

suboptimal.

Q.E.D.

a.i



CHAPTER 4

WINDOW PROTOCOLS FOR SMALL USER POPULATIONS

In this chapter we construct Window protocols for the user population

sizes N = 2 and N a 3. For each population size we begin by first

determining the system state space. Then, the associated Markov decision

structure is derived and Howard's policy iteration algorithm [H5] is used

to determine an optimal policy for each value of the packet generation

probability p between 0 and 1. This is followed by an examination of the

steady-state performance of Window protocols whose policies are based on

optimizing other infinite and finite horizon objective functions. We begin

by more precisely formulating the optimization problem and specifying the

other objective functions that are considered.

4.1 Preliminaries

As shown in Section 3.4.2, the Window protocol state space is finite

for any finite N; allowing us to restrict our search of an optimal Window

protocol to the class of stationary deterministic policies. Such a policy

P consists of assigning to each state Si a window size wi where

I (1,2,...,N} for Sc G 1
w € {1,2,...,-1} for S C G2

{1,2,...,i} for Sic G

i 3

and R = {1,2,...,1)

Let X(N) denote the Window protocol state space for the population

size N and s(N) denote the number of states in X(N). We have associated

with each policy P = [w1 ,w2 ,...,wS(N)I a Markov chain defined on X(N) with

-67-
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stationary transition probabilities pii(w±) and expected immediate rewards

ri(wi); where, given the system is In state Si and policy P specifies

window size wi, Pjj(Wj) is the conditional probability of moving to Sj and

ri(wi) is the conditional expected reward earned. Taking the system

throughput P3 as our steady-state performance measure, we have

ri(wi) = Pr[successful transmission j Sit wil (.1)

Both pii(wi) and ri(wi) are rational functions of p that are easily

determined for any state S, and window size wi.

Now as indicated in Section 3.4.3, the Markov chain corresponding to a

policy P may have more than one irreducible set of states. From Markov

decision theory we have that the throughput performance of policy P =

[ww 2 t... ,s(N)1 ],given that the system started in a state in irreducible

set I (or started in any transient state from which only set I states are

accessible), may be written as

s(N)
P (P,I) = T (P,I)ri(w) (4.2)

where {i(PI)} is the stationary probability distribution of the Markov

chain defined by P which satisfies

l 3(N)
:7r (PI) =i= ?"  (P1Z)Pij(wi)

s(N)

and
ni(P,I) X 0 for all i f I

*...
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If the Harkov chain has only one set of irreducible states (i.e., is

indecomposable) or all irreducible sets have the same throughput, then the

performance of policy P is independent of the system starting state. If

the chain associated with P has more than one set of irreducible states

with different throughputs, then it is of course desirable to start the

system in that set I which maximizes (4.2) or to change the policy to

ensure entrance into that set. From Property 5 of Section 3.4.3, we know

that this is not a concern for any optimal Window protocol policy.

Letting f(Si) denote the number of possible window size decisions

associated with state Si, it follows that there are

1') f(Si)
is 1

feasible policies to consider. With Howard's policy iteration algorithm

[H5], an initial policy is selected (e.g., the policy which maximizes the

expected immediate reward ri(wi) for each state Si), and then with each

successive iteration of the algorithm a better policy is found until

eventually no improvement can be made in the steady-state performance of

the system for any starting state. A Fortran code of the policy iteration

algorithm for the three user problem is given in Appendix C.

j. As mentioned, we are also interested in determining the steady-state

performance of Window protocols whose policies are based on optimizing

other infinite and finite horizon objective functions. Specifically, we

examine one other infinite horizon and four finite horizon performance

measures. The infinite horizon performance measure is the average rate at

which the window advances along the circle, denoted by r. The expected

immediate reward for rw is given by1 iw
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ri(w i) = (0 - Pr~a collisionj Si, wi]).w i  (4.3)

The performance measure rw is not equivalent to the six steady-state

performance measures defined in Section 2.1, and so any policy based on

maximizing rw will, in general, be suboptimal with respect to these other

measures.

The four finite horizon performance measures are related to Pa and rw .

The first two correspond to a horizon of one slot and are simply the

expected immediate rewards for Pa and rw as defined by (4.1) and (4.3).

respectively. That is, for each state Si E X(N), the window size wi is

chosen to maximize ri(wi). We expect, and shall see in the next two

sections, that the policy associated with any reasonable Window protocol

will switch to TIA (i.e., the window size associated with the G state

(N,N-1,...,1) switches to 1) for sufficiently large p. Using the results

of the Corollary that follows Theorem 2 in Appendix B, we have that the

value of p at which the (4.1) criterion causes a switch to TWHA satisfies

-_ (l-p)N = 1/2, which implies that p = 1 - (1/2)1/N
.

For the last two performance measures, the finite horizon is that of a

conflict resolution period (CRP). We define a CHP to be the interval of

time between two successive entrances to step 1 of the protocol, where an

empty slot or a success while at step 1 is considered a self-transition

with a CRP of one slot. The two performance measures are the system

throughput and average rate of window movement for one CRP. The throughput

associated with a CRP which starts in G state S is given by

EKnumber of successes in CEP I CEP starts in S ]
s(i) - E[duration in slots of CRPI CRP starts in Si ]

I

, I
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and similarly for the average rate of window movement we have

E[number of users processed in CRPI CRP starts Si]
P w(i) - E[duration in slots ofr CR? CRP starts in Si]

The optimization problem is that of choosing the window size for S, and

each of the G2 and G33 states encountered during the CRP to maximize ps'i)

or P (i), as the case may be. This may be accomplished using the standardw

finite horizon dynamic programing algorithm [B2]. However, for N a 2 and

N a 3 we shall see that the optimal window size decision for each G2 and G3

state remains the same for all p c [0,l]. The window sizes for the G2 and

the 03 states are set to these optimal values, leaving only the window size

at the beginning of each CEP (i.e., for each G, state) to be determined.

In the next two sections of this chapter an optimal Window protocol

and its steady-state performance are determined for the user population

sizes N = 2 and N a 3, and then compared to the performance of Window

protocols whose policies are derived from the above performance measures.

4.2 Two User Case

To determine the state space for N = 2, we take the system starting

state to be the generic GI state (T 1,T2 ). As illustrated in Figure 4-1, we

then construct the state space X(2) by first determining which states are

accessible from (TI T2 ) for each possible window size decision and channel

outcome. For any such state not in G1, we repeat the process until each

leaf of the constructed tree corresponds to a G1 state. Note from Figure
4-1 that for any given starting state (T1 ,T2 ), after at most two slot-times

the system will be in one of only four possible states:

L . " . ,
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S 1 = (1, 1) = (aoco)

S 3 (00, 1) =l = (2, 1)

These four states are taken to comprise the system state space X(2).

Note that states S2 and S3 correspond to, respectively, 02 and G3

states; and hence, as illustrated in Figure 4-1, V2 = w3 = 1. Thus we have

only four feasible policies to consider:

P e {1,1,1,1], [1,1,1,2], (2,1,1,1], [2,1,1,2)1

The transition probabilities Pij(wi) and the (4.1) expected immediate

rewards ri(wi) are summarized for each feasible w, in Table 4-1. Note from

either Figure 4-1 or Table 4-1 that each of the four feasible policies

corresponds to an indecomposable Markov chain and, therefore, we need not

be concerned about the particular starting state of the system.

4.2.1 Optimal Protocols for N = 2

Either through an exhaustive search of the four feasible policies or

an application of Howard's policy iteration algorithm, an optimal policy

P [w I ,w 2 ,w 3 ,w3  ] for the two user case is found to be

* p [2,1,1,2] for 0_ p (.3
(1,1,1,1] or [2,1,1,11 for s <p . . (1.4)

where s 0.3473 is the solution to 1 - 3s + s 3 = 0 for C ([0,1]. The

performance of this optimal protocol as characterized by P is given by

p(2 - p2 + p3)/(1 + p2 + p3 ) for 0 1 P 1 sP 

U

1 -(l-p) 2  
for s < p 1

-.1 Oka-

'*1...4A
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From (2.10) and (2.11) we obtain

D= 1 + N/Ps - 1/p

and thus the optimal performance in terms of the average delay D is given

by

1 + P(3 + p)/(2 - p2 + p3) for 0 1 p 1 3

D

1 + 1/(2 -p) for s < p 1 1

Plotted in Figures 4-2 and 4-3 are, respectively, the D vs. p and D vs. Ps

performance of the optimal protocol. A1o shown is the performance of

perfect scheduling for N 2 where, following the development of

£ wi  P i (w) Pi2 (wi) p13 (w) pi4 (w) r (W)

1 0 0 0 1 p

2 1-p2  p2  0 0 2p(1-p)

2 1 0 0 1 0 1

.4 3 1 0 0 0 1 1

1 0 0 0 1 _(,_p)2

2 1-x x 0 0 y

x p(1 - (-p) 2) 2p2  p3

y = p(i-p)2 + (1-p)1 - (1-p)2) 3p - 5p2 + 2p3

Table 4-1 Transition probabilities and (4.1) expected
immediate rewards for N = 2 state spaceiF
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Section 2.2, we have

Ps(perf. ach.) p(2 - 2p + p2 )/(1 - p2)

D(perf. sch.) =1 + p/(2 - 2p + p2 )

Note from (4.4) that for small packet generation probability p

(specifically, p -< 0.3473) a window size of 2 is used by the optimal Window

protocol except following a collision, whereupon the window size is reduced

to 1 for the next two slots, allowing each user to transmit alone. When p

exceeds 0.3473 the control switches to a constant window size of 1; this,

of course, is just TDMA.

Also examined for the two user case was a slight generalization of the

Window protocol structure as defined in Section 3.4.1. Specifically,

following the first successful packet transmission after a collision

(i.e., when in $3) we also permitted a window size of 2 (i.e., w3 c {1,21).

This does not change the state space X(2) and, as one might intuitively

expect, results in no change in the optimal policy as given by (4.4).

4.2.2 Suboptimal Protocols for N = 2

The average delay performance of Window protocols derived by

optimizing the five performance measures defined in Section 4.1 are shown

in Figure 4-4, along with that of the optimal Window protocol. Note in

each case that the policies given in (4.4) are also used in each of the

five suboptimal protocols, the difference is the value of p at which the

protocol switches from one policy to the other.

11 M M
iV.
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4.3 Three User Case

We construct the state space for N = 3 in the same manner used in the

previous section for N a 2. Shown in Figure 4-5 is the tree of possible

state transitions starting at the root with the generic G, state

(T,T2 ,T3). It follows from this tree that the state space X(3) contains

the 23 states listed in Table 4-2. The transition probabilities Pij(wi)

and expected immediate rewards ri(wi) are easily determined for each state

Si and window size decision wi.

4.3.1 Optimal Protocols for N = 3

A numerical application of Howard's policy iteration algorithm to this

problem (see Appendix C) yields the optimal policy given in Table 4-3.

Note that as the packet generation probability p varies from 0 to 1, the

optimal control of the Window protocol switches among six different

policies. It is easily verified that each of the six policies corresponds

to an indecomposable Markov chain. The recurrent states (i.e., those

belonging to the single irreducible set) for each policy are designated in

Table 4-3 by a line under the corresponding window size decision. All

other states for each given policy are transient. The steady-state

performance of these six policies is shown in Figures 4-6 and 4-7, where

the switching points are indicated by vertical lines.

There are a few important points to note concerning the window size

decisions made by the optimal Window protocol given in Table 4-3. First

note that if there resuAts a collision after the window size is set to 2,

the window size is reduced to 1 for two consecutive slots as in the case of

N x 2. Next note that if there results a collision after the window size

is det to 3, the window is reduced to size 1, allowing the first user to

C m
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1) S8 (i ,1 2, 3, 2) S 17 (1, 1, 1; 3, 2, 3)

S (3,, 1 2, 1; 2, 3, 2) S (~2, 12,3

2 1  9 2  18

= (2, 2, 1) S2 (2, 2, 1; 2, 3, 2) S = (3, 1, 1; 3, 2, 3)

S (, = (3, 3, 1; 2, 3, 2) 8 = (co 3, 2)

64 =(,21) 11 22

S " (5, 2, 1) S - (5, 2, 1; 2, 3, 2) 3 = (C, 4, 1)
7 14i 23

S15 = (ot , 2)

S16 = (0, o, 3)

Table 4-2 Window protocol state space for N a 3

access the channel, and then if the first user sends a packet, the window

is increased to size 2 allowing the remaining two users to access the

channel. This holds for all p C [0,1], so that in Figure 4-5 the window

size 2 branch emanating from state (T1 ,T2 ,T3 ;2,3,2), and the window size 1

branch emanating from (T2,T3 ,1;3,2,3) are never taken by the optimal

protocol.

Finally, although not shown in Table 4-3, a direct application of

Howard's policy iteration algoritn actually results in the optimal policy

switching 17 times as p increases from 0 to 1. Specifically, the window

size decision associated with each of the Gi states switches first from 3

to 2 and then from 2 to I, and the window size decision associated with

each of the G3 states S171 $18 , and Si9 switches from 2 to 1. However,

only the five policy changes indicated in Table 4- 3 affect the class of

recurrent states and, therefore, result in an alteration of the
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steady-state performance of the system. This decrease in window size as

the packet generation probability p increases is illustrated in the policy

changes in Table 41-3 for states S 4 and S5 . Note that this type of behavior

is expected in a system that must trade off the undesirable effects of both

collisions and empty slots during busy periods.

4.3.2 Suboptimaal Protocols for N = 3

The average delay performance of Window protocols based on optimizing

the five performance measures defined in Section 41.1 are shown in Figure

4-8, along with that of the optimal Window protocol. For the most part,

each of these protocols switches among some subset of the six policies

given in Table 4-3.

41.4 Four and More Users

In theory, the optimization problem for N 1 41 may be handled in the

same fashion as the N x 2 and N = 3 problems. The difficulty encountered

is one of computational complexity: the state space increases exponentially

with the population size N. For N a 41, the state space constructed in the

same manner as for N = 2 and N a 3 has 223 states; an order of magnitude

greater than the three user problem.

One may reduce the size of the state space by placing further

restrictions on the allowable window size decisions. From the optimal

Window protocols derived for N a 2 and 3, we have that the window size

deciuionsu for steps 2 and 3 are independent of p and the specific G 1 state

from which step 2 was entered, depending only on the optimally selected

window size for step 1 (immediately before going to step 2) and the

subsequent channel outcomes while in steps 2 and 3. Hence one might
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consider fixing the way in which conflicts are resolved, leaving only the

window size decisions for step 1 (i.e., the G, states) to be determined.

It would, for exaimple, be reasonable to simply divide the window in

half after a collision, and if after doing so there is a success in the

first half, to then have the window include all of the users in the second

half. Doing so for N x 4i reduces the state space from 223 to 72 states.

Given that the transition probability matrix associated with any policy is

sparse (i.e., each roul has at most three nonzero elements), the 72 state

problem may be a reasonable one to solve. However, as we increase N

further, the optimization problem quickly gets out of hand. For this

reason we turn to an approximate analysis for the case of large N in the

next chapter.



CHAPTER 5

WINDOW PROTOCOLS FOR LARGE USER POPULATIONS

In this chapter we consider the problem of designing Window protocols

for the Important case of a large user population. Of course, the immense

state space characterizing this situation prevents an exact determination

of an optimal policy. However, guided by what we have determined for small

user populations and by what is known about infinite user populations, we

construct and analyze Window protocols which perform quite well for large

but finite N.

5.1 A Subclass of Window Protocols

Based on the properties of the optimal Window protocols for N = 2 and

N=3, we introduced in Section 4I.4 the notion of a reasonable subclass of

Window protocols. This subclass places the following two restrictions on

the Window protocol structure defined in Figure 3-5: (1) the window W

selected at step 2 consists of the users in the first half of the

restricted class R (more precisely, the first LIRI/21 users, where tR1

denotes the cardinality of set R and Li denotes the largest integer less

than or equal to x), and (2) at step 3, V = R. The operation of this

subclass, which includes the optimal Window protocols for N a 2 and 3, is

given in Figure 5-1. Note that the window size decisions for steps 2 and 3

(i.e., the conflict resolution mode) depend only on the selected window

size for step 1 (immediately before going to step 2) and the subsequent

channel outcomes while in steps 2 and 3. Hence, the only unspecified

aspect of the protocol is that of the window size decisions for step 1. It

is through the step 1 window size w that we have control over the operation
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step 1. W - [i,J], N -
if mpty or success

d.a. selects w C {I,2,...,N}
i -J+1
J --.-J+w
go to step 1

if collision
k-i + L(J-i+l)/2J
go to step 2

step 2. W - [ik], R x [i,j]
if empty
1- k+l
k-i + L(J-iel)/2J
go to step 2

if success
i- k+1
go to step 3

if collision
J -k
k-i + L(J-i+l)/2J
go to step 2

step 3. W = (i,j], R x (i,J]
if success
d.a. selects w c {1,2,...,N}

, i -J+l
J -J+w
go to step 1

if collision
k-i + L(J-i+l)/2J
go to step 2

Figure 5-1 Operation of Window protocol subclass

* ~TwT ,
• , , . * ,. ,, , . ' • . , ,'. * ,, f . , ,.
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of the protocol.

Naturally, it is important that the performance achieved by the best

protocol within this subclass is at least close, if not the same, as that

of the optimal protocol within the broader class defined in Figure 3-5.

This we know is the case for N = 2 and 3, and intuitively should also be

true for N > 3. As we have seen, designing an efficient protocol basically

involves trading off the undesirable effects of collisions and empty slots

during busy periods. Hence when there is a collision after selecting the

window size at step 1 to avoid these two undesirable events, it is likely

that only two users within the window have packets. Thus, in resolving

this conflict, it is at least reasonable to initially reduce the window

size by one-half and proceed as indicated in Figure 5-1. We shall see,

however, that although its performance is close to optimal, halving the

window size after a collision is, in fact, suboptimal for large N.

This method of dividing the conflict set in half is used by both the

Tree protocol [C1,C2] and Gallager's protocol [Gi] and was proposed by

Kleinrock and Yemini EX71 in their extension of the Urn protocol. In fact,

the restricted version of the Window protocol given in Figure 5-1 is

directly analogous to the protocol devised by Gallager which is employed

along the time axis for an infinite user population. The relationship

between these two protocols is examined in Section 5.3.

5.2 An Analysis for Large N and Small Windows

In this section we analyze the performance and dynamic behavior of the

Window protocol defined in Figure 5-1. The analysis is valid when w, the

window size selected for step 1 of the protocol, is small relative to the

user population size N. We begin the analysis in Section 5.2.1 by i4
_;1.

'e a-
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determining the protocol performance over the duration of a single conflict

resolution period (CRP). Then in Sections 5.2.2 and 5.2.3 we investigate
the dynamic behavior of the protocol for, respectively, fixed and varying w.

5.2.1 CUP Performance Analysis

Recall that when at step 1 of the Window protocol, each user i

independently has a packet with probability Pi given by

T
P : = 1 - (l-p)i (5.1)

where p is the packet generation probability and T is obtained from the

update rules given in Figure 3-7. For large N and a small window size w,

we make the approximation

P 1 = 2
= ". = w = q (5.2)

where q is referred to as the packet occupancy probability. As illustrated

in Figure 5-2, when w << N the difference T1-Tw is small relative to Ti,

i = 1,...,w, and thus (5.2) is a valid approximation. For convenience we

write

q = 1- (l-p)T (5.3)

where using the approximation q = P1 in (5.2) we have from (5.1) that

As in Section 4.1, we define a conflict resolution period (CRP) to be

the interval of time between two successive entrances to step 1 of the

protocol, where an empty slot or a success while at step I is considered a

self-transition with a CP of one slot. Hence defining

= ; ., , . , 4 . , e .' ""4 ' .*. . " . ' "
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we have that P, the system throughput over one CHIP, and ^, the average

rate at which the window advances along the circle during a CHIP, are given

by

Es] (4P x 54
3 Et]

and

rw= E t (5-5)

Now let B denote the subset of w users i.ncluded in the window at the

beginning at a CHIP but not processed during the CHIP. Since each user in B

independently has a packet with probability q, we have
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E[number of users in B with packetsli users in B] u iq

which Implies that

KEnumber of users in B with packets]

- q.Etnumber of users in B]

Hence we obtain

EEs] a E~number of users processed during CDP with packets]

qw - q Enumber of users in B]

a q-E[uJ (5.6)

so that from (5.4) and (5.5) we have

P = q.r (5.7)

Thus, choosing the step 1 window size w at the beginning of a CDP to

maximize either P or r w for that CDP are equivalent optimization problems.

Note that this equivalence depends on the large N/small w analysis that we

are pursuing, for we found in the small N analysis of Chapter 4 that the

performance measures P and r do not generally lead to the same policy.

Proceeding with the CUP performance analysis of the Figure 5-1 Window

protocol, let E[ufw] and E[tlw] denote, respectively, the dependence of

E[u] and E[t] on the step 1 window size w. From Appendix D we obtain the

2 recurrenoce relations

EL uIw] E[ulw'] + E[uIw'](e(w') + S(w')) (5.8)

E[tlw] x I - e(w')(1 + s(w")) - e(w")(e(w') + 2s(w'))

* E[tiw'] + E[tlw"](e(w') s(w')) (5.9)

* ~' ~ 4
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where

Wea window size for step 2 following a collision at step 1

a Lw/2j
w  a, w - W,

e(w) = (1-q)U
and

3(w) = wq(1-<) w -1

Hence, having the obvious result

Ezul] 2 Etjl] a 1

we may use (5.8) and (5.9) to determine, in a recursive fashion, E~ujw]

and E~tlw] for w = 2,3,.... For w = 2,3,4,5 we obtain

EI~u12] = 2

E~t2] = 1 + 2q2

E[u131 = 3

E~t13] 1 + q2 (7 - 3q]

E[ujl] =4 - 2q2

ECtIJ] 1 + q2 [114 -1llq + 3q 2 ]

ENuIS] 2 5 - 3q2

E~tl1] = 1 + q2[25 - 35q + 16q 2 - 3q 3 ]

After determining E~ulw] and Etjw] we may, using Equations (5.5)-

(5.7), obtain expressions for ^w E[sw], and Ps" For w 2 1,...,5, Figure

5-3 shows the CRP throughput P vs. packet occupancy probability q

0 The recurrence relations (5.8) and (5.9) do not depend on w' Lw/2j.

1..k
.s,.~ ,~.
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performance of the protocol. The witching points for the optimal window

size w are indicated in Figure 5-3 by vertical lines and are also listed

in Table 5-1 for 0.06038 1 q 1 1.0. Note from Table 5-1 tnat window sizes

14 and 18 are not used in the optimal finite horizon (i.e., one CRP)

control of the protocol. That is, w witches directly from 13 to 15 and

from- T to 19. This occurs not because there is something fundamentally

wrong with the step 1 window sizes 14 and 18, but rather because dividing

the conflict set in half is generally suboptimal. If we were to take w' -

6 and 8 for w = 14 and 18, respectively, then w would witch through 14

and 18 as we decrease q from 1.0. However, the improvement in performance

is minimal.(rd increases on the order of 5x10 ). The analogous situation

for the infinite population problem is discussed in Section 5.3.

5.2.2 Dynamic Analysis for Fixed w

In this section, under the assumption of a fixed step 1 window size w,

we examine the dynamio behavior of the packet occupancy probability q. Of

course if w = 1, then q is a constant since T = N in (5.3). Hence, the

interesting case is when w 2 2.

For a given w, packet generation probability p, and user population

size N, we define the desired equilibrium operating point of the protocol

to be the smallest value of q0 c (0,1] satisfying

q 1 - (1-p)To (5.10)

where

T, N 
( 5 1 1)

0 (Q-Y
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w q

1 1.0000

1 - 2 0.7071

2 - 3 0.412941

3 -40.35341

5 - 6 0.2130

6 - 7 0.1979

7 -80.1691

8 -90.1373

9 -10 0.1211

10 - 11 0.1196

11 -12 0.1051

12 - 13 0-1047

13 - 15 0.09183

15 -16 0.08092

16 - 17 0.074123

17 - 19 0.06681

A19 -20 0.06038

Table 5-1 Step 1 window size switching points for the optimal finite
horizon control of the (Fig. 5-1) Window protocol
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Note that T represents the expected time for a complete revolution of the

00window about the circle if q is held fixed at qo" Substituting (5.11 ) into

(5.10) yields

-(4olln(1-<l o )  -Nln(1-p) (5.12)

Since for 0 < qo S. 1, rw(qo) remains bounded and -ln(1-q O ) ranges fom 0

to 00, we have from (5.12) that (5.10) is satisfied for at least one value

of qoe [0,1]. From (5.3) and (5.10) we may wite

q _-(1 -qo)T/To (5.13)

We wish to determine under what circumstances q will remain, in a

statistical sense, near the equilibriu, point q.,

Initially, let us consider the case where w = 2. We assume for

simplicity that N is even, and we take the packet occupancy probability

associated with the protocol for the first revolution of the window about

the circle to be qo" At the start of the second revolution, the new value

for q is given by (5.13) where

N/2T ti (5.14)
iul

and the random variables ti, i = 1,.#.,N/2, are independent and identically

distributed with

ti 3 with prob. q 2

1 with prob. 1 -

It follows that

EIT TO  •)l + 20o2 )/2

E[T] -
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and the variance

2 (T) a N2go2(1 - q0
2 )

Hnce we may write

T = T 0 + 0(N) (.5

where O(N) is a zero mean random variable with standard deviation

vN2q02(1-qo2). Substituting (5.15) into (5.13) yields

q = 1 - (1-qo) I + O(N)/T 0  (5.16)

By the weak law of large numbers [F2], we have that for any 9 > 0,

Pr[O(N)/T0 > C] - 0 an M- co; and thus from (5.16), q -+q0 in a like

manner. Hence, for sufficiently large N, after the first revolution of the

window, q will remain close in value to q0 with high probability.

To make this concept more quantitative, consider the case where w a 2

and qo0 = 0.5. From (5.13) we obtain

T a T ln(l-q)/ln(l-q ) (5.17)

Letting a0n denote the number of conflicts in the first complete cycle of

the window, we have

T N/2 . 2n

and thus

n a T/2 - N/4

T ln(1-q)/21n(1-q o) - N/4

N(Yln(I-q) - 1/4] (5.18)
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where y To/21n(1-qo) .- 0.5 410 for q. = 0.5. We wish to determine , the

probability that q-qo1 _. 0.05, for various N. We have

a Pr[0.5 <, q 10.55]

PrO.0734N < n0 1 0.1820N] (5.19)

Q[(-0.0516N - 0.5)/ 0.09375N]
- Q[(0.0570N + 0.5)/ 0.09375N] (5.20)

where (5.19) follows from (5.18), and (5.20) follows from an application of

the DeMovre-Laplace limit theorem (F2] with Q-function defined by

Q(x) f -fey2/2 dy
x

Table 5-2 lists computed values of a for various N.

An analysis siuilar to the above may be used to show that q-* q0 in

probability as N-co for any finite w. However, the expected number of

independent random variables t i in (5.14) generally decreases with

increasing w. Thus a given confidence interval will require successively

N a

50 0.8616

100 0.9462

150 0.9780

200 0.9907

250 0.9960

300 0.9982

Table 5-2 a for various values of N
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larger values of N as we increase w.

Now although we have shown that after the first cycle q will remain

near the equilibrium value q (with high probability for sufficiently large

N), this does not ensure that q will remain close to q0 over the infinite

horizon operation of the protocol. It is conceivable that q could

gradually drift away from q" As we shall see, this does not happen for

w < 11, but can happen for w 11.

Suppose at some time in the operation of the protocol that q q' A

q06 As illustrated in Figure 5-4, q' is determined from (5.13) by a unique

value of T, say T' . We define the system drift at q' to be

d(q') : '(q') - T (5.21)

where

q(q) ) Tc forq mq (5.22)
w

That is, if q is held fixed at q' for a complete cycle, then d(q')

represents the expected change in T at the end of the cycle. Of course, q

does not remain fixed; but by dividing d(q') by N we obtain the drift per

processed user which is valid for at least the beginning of the cycle.

We wish to determine under what conditions

(1) d(q) < 0 for q > q
and

(2) d(q) > 0 for q < q

From (5.12), (5.17), (5.21), and (5.22) we may rewrite (1) and (2) as

(1) - (qlln(l-q) > -Nin(1-p) for q >q
and w

(2) -P (q)zn(1-q) < -Nln(1-p) for q < q
1 -

' * l.
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Hence It follows that (1) and (2) hold if and only if (5.10) is satisfied

for exactly one value of q A sufficient condition for this desirable0

drift property is that

) > 0 (5.23)

for all q c [0,1]. As shown in Figure 5-5, (5.23) is satisfied for

w = 1,...,5. However, as we continue to increase w, -r (q)ln(1-q) will

eventually form two stationary points. This occurs when w 2 11, and is

illustrated in Figure 5-6 for w = 16. Note that, for the value of

-Nln(1-p) shown, there are three equilibrium points. The first (at q = qo)

is the desired operating point of the system and is stable in the sense

that small excursions result in statistical drifts tending to restore the

equilibrium. The second is unstable and the third is stable but

undesirable. Statistical fluctuations will cause the system to oscillate

between the two stable Points. Of course this bistable behavior can be

avoided by sufficiently increasing or decreasing -Nln(I-p), or by changing

the step 1 window size w. However, the value of q shown in Figure 5-6 is

in the range for which w = 16 maximizes P (see Table 5-1). This indicates
5

that there is an inherent bistability of the protocol when q is small and

the corresponding (large) value of w is selected to optimize the system

performance at this point. However, as we discuss in the next section, by

dynamically varying w with q, one can force q to drift back to qo"

As indicated, for w < 11 we have that if q drifts from the equilibrium

point qo, then even without charging the step 1 window size w, q is

expected (in the probabilistic sense) to move back toward q " Thus one can

envision q fluctuating about qo where, from the law of large numbers

result, the range of fluctuation decreases with increasing N. In fact, if

' 9.- ,* ,,~ I *--
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N is sufficiently large that q remains relatively constant over the

infinite horizon operation of the protocol, then the CRP performance

measures P and rv are equivalent to their infinite horizon counterparts P5

and rw, respectively. Moreover, from (5.7) we have that Pa and r w are

simply related, and from the results of Section 2.1, are in turn directly

related to the steady-state performance measures Bu, Pb' Ba' N3' and D. To

get an idea of the Window protocol's steady-state performance in this

situation, Figure 5-7 shows for N z 50 the average delay D vs. throughput

P5 performance for w = 1,...,5. Each curve is, in essence, parameterized

in q, where D is determined from Equation (5.25) in Section 5.3. Note from

Figure 5-7 that as we allow the largest feasible window size w to increase,

the incremental improvement in the protocol's optimal performance

decreases.

5.2.3 Dynamic Analysis for Varying w

We now examine the dynamic behavior of the Window protocol when w is

allowed to vary with q. That is, at the beginning of each CRP, q is

determined from (5.3) and then w is selected using the switching points

given in Table 5-1. For given values of p and N, the desired equilibrium

operating point of the system is defined to be the minimum q 0 [0,1], over

all w c {1,2,,..), which satisfies (5.10). Graphically, qo and w are found

by following along the line -Nln(1-p) in Figure 5-5. Beginning at q a 0,

the first curve intersected by this line as q is increased determines w and

the point of intersection determines qo"

Of course it makes intuitive sense to have w vary dynamically with q.

The idea is that if during a cycle of the window there are many collisions

so that T > To, implying q > q0 then it might be desirable to temporarily

Ilei
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reduce w from the value associated with qo to better balance the collision

vs. empty slot trade-off. Similarly, if there are many empty slots during

a cycle so that T < To, and thus q < qo, then it might be desirable to

increase w. This is, of course, precisely how the optimal CRP control of

the Window protocol (as specified, e.g., in Table 5-1) behaves. Moreover,

we expect the optimal infinite horizon control (i.e., that which maximizes

the steady-state throughput P ) to be of the same form. The two controls

should only differ in the values of q at which the optimal step I window

size w changes, and possibly which values of w are not included in the

optimal control.

Let us assume that the window size w varies with q according to the

optimal CRP control of the protocol. The result we wish to establish is

that under this control, the drift of q is always toward the desired

equilibrium point q 0 . Following the development in the previous section,

it suffices to show that for any q E [0,1], (5.23) is satisfied for that w

specified for q by the control. Tn other words, the upper envelope for the

A
set of curves -r (q)ln(1-q) vs. q, w X 1,2,..., is monotonicallyw

increasing, and therefore can only intersect the line -Nln(l-p) once. The

cases w 2 1,...,20 were examined numerically, and this condition was

verified. The verification was not pursued beyond w = 20. Note, however,

that an equivalent condition for this single equilibrium point is that

P (q) = max Ps(q)

w

(i.e., the upper envelope for P (q), w = 1,2...) intersects

qNln(1-p)/ln(1-q) once in the interval q E [0,1]. Since qNln(1-p)/ln(1-q)

is monotonically decreasing over q c [0,1], it suffices to show that Ps(q)

is monotonically increasing in this interval. This is the case for

6ilk thi
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0.06038 . q 1 1, and from the maximum throughput results in Table 5-3

w =2 k and P (q ) is shown to decrease monotonically as k-.aO), we

expect that it will also be true for q < 0.06038. This is illustrated

graphiclly in Figure 5-8 for 0 1 q -1 0.2 and qo0 = 0.08. Also shown is the

expected rate at which q converges to qo from ace point q1. Specifically,

for large N, we-have that qw, the expected value for q at the start of theInext revolution of the window, is given by

qu a 1 - (1-p)N/ w(q')

where w(q) 4 mxim ^(q) over all w. This implies that

S(q') Nn(1-P)
q' =ln(-q")

Hence it follows that the point at which line I in Figure 5-8 intersects

qln(1-p)/ln(1-q) determines q". Thus, the expected convergence of q to qo

is as illustrated in the figure.

Note that in selecting w at the beginning of a CRP according to the

current value of q, there is no direct dependency of the control on N or p.

Moreover, it is not even necessary to know the equilibrium operating point

of the system q0

5.3 Relationship Between the Finite and Infinite User Population Problems

In this section we investigate the behavior of the Figure 5-1 Window

protocol as we let N-. The results obtained help establish a link
between the finite and infinite user population problems which thus far

have largely been treated separately.

We begin by examining the performance associated with successively

larger values of w. We assume that N is finite but as large as needed to

V5. 4. Y-7
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make the performance analysis valid (i.e., q q 0 and thus Ps z ?) for the

particular w being considered. To allow us to examine very large w

without incurring a computational burden, we restrict our attention to

w s 2k , k x 0,1,2,.... The recursion given in Appendix D simplifies since

wo Z w" z 2 k -1 for w a 2 k j k a 1,2,e .... The throughput performance for

k a 0,...,10 is given in Figure 5-9. Letting q denote the value of q

which maximizes the throughput P for a given k, and q. denote the

switching point from one value of k to the next, Table 5-3 lists q

P3 (q', q*w, q., and Ps(q.) for k a 0,...,20. Note that qw is equal to the

expected number of packets held by users within the window of size w.

Observe from Table 5-3 that as k--o, Ps(q*) -. 0.4871 and qw -.o1.266.

These are precisely the results obtained by Gallager [G1] in the maximum

throughput analysis of his protocol for an infinite user population. Evan

though Gallager's protocol operates along the time axis and our's along the

Ouser circle", in the limit as N and w -. o and q -0, the two are

statistically equivalent.

In an extension to Gallager's work, Mosely [M8] found that dividing

the conflict set in half, although close to being optimal, is in fact

suboptimal. She determined that the maximum throughput could be increased

to 0.J4877 by using a slightly larger initial time interval (i.e., one

equivalent to qw x 1.275) and then, if there occurred a collision, reduce

the time interval to 0.465 (rather than 0.5) of its initial value. On

subsequent reductions of the time interval due to conflicts within the same

CRP, this factor approaches 0.5. In addition, she found that when a h
• Strictly speaking, to maintain the stability of the system, w will have

to varied, as indicated in the previous section, over the infinite
horizon operation of the protocol. However, by taking N sufficiently

large, needed changes in w may be made as rare as desired.

7 ,
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k w q P (q  qw q Ps(qs)F3
0 1 1.0000 1.0000 1.000

0.7071 0.7071
1 2 0.7071 0.7071 1.414

0.4024 0.6079
2 4 0.3701 0.6090 1.480

0.21"46 0.5541

3 8 0.1809 0.5579 1.447

0. 1108 0.5224

4 16 0.8712x10"
1  0.5285 1.394 0

1 0.5633x10 1  0.5028
5 32 0.4217X10 1  0.5113 1.349 0.2840xI 0"I  0.4 909

6 64 0.2060xt1I  0.5011 1.318 0.1426x101  0.4837
0-12x1 " 0.4951

7 128 0.1011x10 1  0.14951 1.298 0.7113x10 - 2  0.14795

8 256 0.5019x10 2  0.4917 1.285
0.3575x10 - 2  O.A770

9 5 2 0.24901l 0 2  0.•4 89T 1.2772

0.1788x10 -2  0.4756
10 1024 0.123x10.2  0.14885 1.272

0.894Xx0 -3  0.14717
11 2048 0.6200x10 "3  0.4879 1.270

0.4473x10 - 3  0.7,3
12 1096 0.396x10 - 3  0.14875 1.268 0.2237x10 "3  0 .4740

13 8192 0.1547x10"3  0.4873 1.267

14 16384 0.7733X10 "-4 0.4872 1.267 .18d- OA3

0.5592x10 0.4738, 15 32768 0.3866X10"4 0.4872 1.267 .7 6 i -4 0 73
d i1 6 6 5 5 3 6 O . 1 9 3 3 X 1 0 " " 0 . 8 7 2 1 . 2 6 7 0 1 9 X O - A 3

i '17 131072 0.9662x10 " 5  0.,871 1.266 0.99.7-5 OA38

S18 262144 0.4831x10" 5  0.4871 1.266 -
•0.3495Xl 0-  0.4 737

19 521288 0.2415x10" 5  0.4871 1.266

0.1747x10"5  0.A737
20 1048576 0.12Q8x10" 5  0.4871 1.266

Table 5-3 Window protocol performance results for w : 2k

-.
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success follows a collision, assuming that the initial time interval was

chosen properly, the protocol should select the next time interval to

correspond to the second part of the interval divided after the collision.

This in equivalent to setting W a R at step 3 by the Figure 5-1 Window

protocol. Hence from these results we expect that the Figure 5-1 Window

protocol, with Switching points given in Section 5.2.1, has a performance

which is close to the optimal Figure 3-5 Window protocol for large N.

To complete this section, we examine how the average delay D behaves

as N-0o. From Gallager' s infinite population results, we have that D

remains bounded as N-co so long as the throughput P < 0.4871. For Ps >

0.4871, we begin by writing D as a function of P5 N, and q. From (2.10)

and (2.11) we have

D 1 + N/P - 1/p (5.241)
S

It follows from (5.7) and (5.22) that

p 1 1 - (1-q)Ps/(qN)

so that (5.24) becomes

1+11/P P /(qN) -1
D a I + NIP S - [1 - (1-q)s ) (5.25)

We have that for any given step 1 window size w, P is a rational function

of q; thus by fixing q we hold P constant. Now differentiating (5.25)
5

with respect to N and then taking the limit as N-co, we obtain

-8D 1 +n (5.26)N-o 811

Hence from (5.26) we see that D increases linearly with N (in an asympotic

sense) for P > 0.4871.

r +., + +. -E , , .*
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This result makes P= 0.4871 an interesting threshold point as we

allow N-o. For any given P < 0.4871 we have that the average delay Ds

remains bounded, but that the average step 1 window size w increases

linearly with (i.e., is same fraction of) the population size N. For any

given P > 0.4871 we have that w remains fixed, but that D increases

linearly with N.

Finally, using (5.7), we may write (5.26) as

11. ZD 1( 1 (5.27)

For small q, we have that

so that (5.27) becomes

1ii aD T forq<1
2r, 2Nw

which implies that D f T/2. This is intuitively pleasing since for small

q, the generation time of a randomly selected packet will be uniformly

distributed (in the discrete sense) over the interval of T time-slots

preceding the transmission of the packet.

W4

I
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CHAPTER 6

CONCLUSIONS AND OPEN PROBLEMS

6.1 Conclusions

The overall objective of this thesis has been to gain a better

understanding of the general multiple aocess problem for a finite user

population. With this goal in mind, we first selected a model of the user

population and comunication channel which both typified the problem and

yet was analytically tractable. Next, it was necessary to select measures

of protocol performance for this user-ohannel model. After stating several

coon steady-state performance measures, we proceeded to show that the

measures are both simply related and correspond to equivalent optimization

problems.

The rest of the thesis emphasized the development and analysis of

multiaccess protocols. Starting with the most general class, the Team

protocols, four related classes of multiaccess protocols were defined and

exaIned. In each case, the problems associated with determining an

optimal protocol within the given class were identified. Only the last

class examined, the Window protocols, proved to be tractable and so the

remainder of the thesis was devoted to its analysis and characterization.

Using results from Markov decision theory, optimal Window protocols

were derived for the cases of two and three users. Due to the size of the

state space, an exact analysis was impractical for large user populations.

Hence, a reasonable subclass of Window protocols was defined and an

approximate analysis undertaken which was found to be effective in

characterizing the performance and dynamic behavior of protocols within

this subclass. In addition, the analysis helped to establish a link
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between the finite and infinite user population problems.

6.2 Open Problems

The presentation of the results contained in this thesis leaves open

several avenues for further research in the multiaco0ess area. These range

from highly theoretical to somewhat practical in nature.

On the theoretical side, it is clearly of interest to obtain a better

understanding of the class of Team Protocols. The goal, of course, is to

find the (or an) optimal MUltiaccess protocol within this, the most general

class of protocols. Results obtained by Paradis3 (P11 indicate that the

optimal Window protocol for N z 2 (as given by (41.4)) is also the optimal

Team protocol. Unfortunately, the analysis does not readily carry over to

larger user populations.

On a more tangible level, there is the question Of the state space

characterization for the Access Set and Extended Access Set protocols.

Intuitively, it seems that those policies which lead to an infinite state

space may be eliminated from consideration in the search for an optimal

protocol. If so, then only the class of stationary deterministic Policies

need to be considered. Of course the state space will grow with N at least

as rapidly as it does with the class of Window protocols. Hence one would

encounter the same difficulties in determining an optimal policy exactly

when N is large.

Promising areas for further research stem from the Window protocol

analysis for large N given in Chapter 5. The presentation here sets the

groundwork and indicates the type of results that are forthcoming. It is

clear, however, that further work is required. In addition, it is Of

interest to extend the Window protocol, and this approach to its analysis,



to more practical user.-channel models, such an those discussed in Section

1.3.
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APPENDIX A

ON COMPUTING THE LIMITING STATE PROBABILITIES FOR

MARKOV PROCESSES WITH HESSENBERG TRANSITION PROBABILITY MATRICES

In this appendix we derive a numerically stable algorithm for solving

for the limiting state probabilities of a finite state, discrete-time,

homogeneous Markov process with an upper Hessenberg state transition

probability matrix. This structure for the state transition probability

matrix is encountered in the performance analysis of perfect scheduling in

Section 2.2, but more generally arises in single server systems which allow

bulk arrivals to the service facility.

For notational convenience, we assume that the Markov process has N

states which are identified by the integers 1 through N. The (one-step)

state transition probability matrix is denoted by P, where element pij is

the conditional probability of moving to state j given that the process is

currently in state i. As indicated, P is an upper Hessenberg matrix which

implies that all elements below the lower subdiagpial are z" (i.e., P

0 for i > J+1). In addition, we assume that the Markov chain associated

with P is irreducible and aperiodic. Hence the limiting state

probabilities w1 , i z 1,...,N, defined by

- I h lim Pr[state a i at time MI
M---W

exist, are independent of any initial state probability distribution, and

are uniquely determined by the equations

-* - .- * .
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N
I YiPjj 2 1,...,N

N

iz1

It is the system of equation (S) that we wish to solve mnerically.

Letting r denote the row vector of limiting state probabilities, we

may rewrite (S) in vector form as

=P = 1

where T denotes transpose. Hence it is apparent that r is thd left

eigenvector of P associated with the eigenvalue X= 1, which satisfies

S(1, ...,1)T  2 1. The method we describe computes, through an application

of the Q-R algorithm .'r Hessenberg matrices (B ,C2], the left eigenvector

q associated with I -1 which has norm 1 (i.e., qqT .1). Then r may be

obtained by 7 = q/q(1,...,1)T. The essential features of the method for

computing q are contained in the following proposition and its proof.

Proposition: Let H z P - I, where I is the identity matrix, and

"1

Ji=J(i'°±,si) -" ci  si

•'-s i  c i 1

-3 1+1 i+
i i+
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where c x cos(Gi ) and a, z sin(Gi). Suppose that for each

± e (1,...,N-1}, 6i is chosen so that

(J-J-"" "J)H z R
N-1* K-2- 1

where R is an upper triangular matrix. Then the eigenvector q is equal to

the last row Q.

Proof: First note that the multiplication JkA, where A is an NxK matrix,

only effects rows k and k+1 of A. Now observe that to form the upper

triangular matrix R, e1k, kI ,...,N-1, is chosen so that the

multiplication Jk .( k-1"" J1 )H produces a 0 in the (k+1,k) position of

(J k-1* °  O 1) H. That is,

*~ k k]L~:,k][]
where h kk is the (k,k) element of (Jk-1" ."J ) H and hk+l, k is the (k+1,k)

element of this product which is also equal to the (k+l ,k) element of H.

Since by assumption the Markov chain corresponding to P is irreducible, we

have that hil i A 0 for i - 1,...,l. Hence, since ek is selected so that

sh = hk k+1'k

it follows that

rkk a ckhkk + skhk 1,k

-2 . 2  .1/2 > 0= (h + hnk+ I ,k >

1! "a
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for k = 1,...,N-1. Now note that since the Harkov chain corresponding to P

has only one irreducible set of states, P is of rank N-1. This implies

that the triangular matrix R = QH is also of rank N-1, so that for some
± E [1,...,N), r u 0. However, we have shown that r i > 0 for

i : 1,...,N-1; hence r = 0. Thus we have that

qf = last row of R = 0

so that

qP a q

QED

From this result we obtain the following numerically stable algorithm

for computing q:

H-P- I

qI

For k 1,...,N-1

x- h kk

y - hl,k

Determine ak and 3k by Algorithm *

For j a kl hk,

[hk + 1 4. k  
:k k 1

qk+l- 0k

For j 1 ,..., k

End
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Algorithm *

If x a 0 then

[a--

If jxl > yIj then

t --- y/x

-1/( + t2) 1/ 2

Else

t- X/7

s3- 1/0 + t2) 1/ 2

L Cst

Return

Finally, determining the limiting state probabilities for a

finite-state, continuous-time Markov process involves solving the system of

equations .4

,rQ o

where , the infinitesimal generator for the process, is a matrix of

transition rates. If Q is upper Hessenberg and the Markov process is

irreducible, then the above results also hold for this situation by talkng

H=Q. 
-

-. -7



APPENDIX B

QH SLECTING AN ACCESS SET TO MAXIMIZE THE

PROBABILITY OF A SUCCESSFUL TRANSMISSION

We consider the problem of selecting an access set A at the beginning

of a slot to maximize the probability that the slot contains a successful

transmission (i.e., contains exactly one packet). That is, we are

interested in the probability of an immediate successful transmission

(i.e., a horizon of one) as opposed to the steady-state probability of a

success or system throughput P." We consider three cases. In Case 1 each

user i, i 2 1,...,N, independently has a packet available for transmission

with probability Pi. The two other cases correspond to the same situation

except that it is known in Case 2 that at least one user in the set

(1,...,N} has a packet and in Case 3 that at least two users have packets.

Let Ps(A), ps'(A), and ps"(A) denote the probability of a successful

transmission for Cases 1, 2, and 3, respectively. For convenience we

number the users in order of decreasing probability so that P1 
- P2 2 """

-> P N Moreover, without loss of generality, we assume that PI < I and

PN > 0; since if P1 1, Ps(A), ps'(A), and p3 (A) are clearly maximized by

setting A a (1), and if for any user i, Pi = 0, whether user i is included

in A or not will not affect the channel outcome in any of the three cases.

-124-
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Case 1

The main results for Case I are stated in the form of two theorems.

Both theorems are ooncerned with the problem:

maximize P (A)
A { 31,...,}

Theorem 1 gives the structure of a solution A to (I., and Theorem 2

destribes a simple method for obtaining this solution.

Theorem 1: A solution to problem (Q) is of the form A9 a (1,2... kJ for

some k C {1,...,NJ (i.e., A Consists of all users 1 to k and does not

include users k+1 to N for k < N).

Proof: It follows that

p 3(A) Pi j(A-Pj)
iCA eJA

and hence for any i c A, Ps(A) is linear in PV. Now suppose that a

solution A' to M) contains at least one "gap". That is, for at least one

i i V1,2,..o,N-I}, € A and I+I c A*. Since by hypothesis A* is optimal,

Ps(A ) must be a constant with respect to Pi,1 ; for if it were linearly

decreasing then ps(A) could be increased by removing user iW1 from A and

if it were linearly increasing then Ps (A*) could be increased by replacing

user i W with user i. However, if p (A*) is a constant with respect to

Pi .1' then the access set T obtained by replacing user i W in A' with user

i is also a solution to (P). Note that in obtaining the optimal access set

A from A*, we have moved the gap from user i to user i+1. By repeating the

above argument we can, maintaining an optimal solution, move the gap from

* __
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1.1 to the next higher nubered user in A, and this may be oontinued until

this pp disappears when it is moved to user j where users j to N are not

in the acoess set. This argiuent may be repeated for all remaining gaps in

the orig ial solution to (Ii. What we are left with is a solution to (E)

of the form

A (1,2,...,k) where k C {l,...,Nj

QED

Theorem 2 : Let K = (ki A = fl,...,k) solves (.)J and let

k P
S(k) i F= - for k = 1,...N

isi (1-'Pi) o I

The set of optimal solutions, K , is given by

(1) K = aIN) if s(N) < 1

(2) K* z (k), k C f1,...,Nl if S(N) > 1 and
1 < S(k) < I + Pk/(1-P k )

(3) K' I (kk+11j, k c {1,,,N-I) if S(N) > 1 and S(k) = I

Proof: For convenience we define S(O) = 0 and we let p (k) = ps ((1,...,k})

where k a 0 denotes the empty access set so that p8 (0) a 0. It follows

that

k k

p (k) .T(1-P) for k =1,..,N
i.1 1ul

Ps~k  = l =1

joi

whioh we may write as

9 The results of this theorem were previously stated without proof in [M51.
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k
PS(k) = S(k)YF(1-P,) for k =0,1,...,,

Renae we have that

k-i
Pa(k) - PsMk-1) E [S(k)(1-Pk) - S(k-1)]FT(1-Pj)

J=1

k-1
= P - S(k-1) -T(1-Pj) (B.1)

k~l Jul

k-1
Now since S(k) is monotonically increasing with k, and P and TT(1-P3 )

Jul

are strictly positive for all k C {I,...,N}, from (B.1) we see that Ps(k)

will only be strictly increasing with k as long as S(k-1) < 1. Hence if

S(N) 1 1, then $(N-1) < 1 and so K * (N). If S(N) > 1 and

1 < S(k') < I + Pk/(1.Pk,), then k' is the largest value of k such that

S(k-1) < I and thus ic a {k'}. Finally, if S(N) > 1 and S(k) =1 for some

k C (I,..,N-I}, then it follows that p5 (k 1) u p,(k) and K 0 (kk.1).

Corollary: If P1 - 1/2, then p5 (A) is maximized by setting A a (1).

Proof: For P1 1 1/2 we have S(N) 2 1 with equality iff P1 1/2. Thus by

Theorm 2 we have that the optimal access set is given by

)= 1} for P1 > 1/2

h11 and {1,2) for P1 1/2
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Cae 2

For the Case 2 problem we wish to determine an access set A which

maximizes p '(A), the conditional probability that exactly one user in A

has a packet given that at least one of the N users has a packet. Letting

o x (l,...,N), it follows from the definition of conditional probability

that p '(A) 
(.2)

P'  ( -p(U))

where p (U) is the probability that no user has a packet. Hence, since

- Pe(U)) is Just a constant scaling factor, we have from (B.2) that an

access set optimal for Case 1 is also optimal fo Case 2 and vice versa.

For Case 3, we wish to determine an access set A which maximizes

PSO(A), the conditional probability that exactly one user in A has a packet

given that at least two users in U = (1,...,N} have packets. Once more

from the definition of conditional probability we have

"M Pas(A)[1 - p(CA)3)pe(A = p(U) (.1

where C denotes complement and p (U) is the probability that at least two

users have packets. The denominator term in (B.3) is again a constant

scaling factor. However, note that although the term ps(A) is maximized by

selecting A as given in Cases 1 and 2, this selection is not particularly

good for the term [1 - Pe(CA)J, and hence we see the hint of a trade-off

between these two terms. In fact, through a rather tedious examination of

the four user case (N 4 I) we find that, depending on the specific P s 1

£T



-129-

satisfying P 1 > P 2 > P 3 > P4, the optimal access set A is either (11,

(1,11). (2.3), (2,1), or {3,41). This is true even for values ofPi

1 112,3,41, such that A~ a [12,3,1) in the Case 1 probleo.



APPENDIX C

OR APPLYING HOWARD'S POLICY ITERATION ALGORITHM

TO THE THREE USER WINDOW PROTOCOL OPTIMIZATION PROBLEM

The optimal three user Window protocol, as specified in Table 4-3, was

determined numerically using the Fortran code given below. The program

utilizes Howard's policy iteration algorithm [H5] to determine, for any
given p c (0,1), a policy which maximizes the system throughput P . The

s

initial policy selected corresponds to that which maximizes the expected

immediate reward ri(wi), as given by (4.1), for each state Si . Starting

with this policy, each successive iteration of the algorithm finds a policy

that is better until eventually no improvement in the system throughput can

be made. An optimal policy for a given p was typically found in only two

or three iterations, and it never took more than four.

The version of the policy iteration algorithm used within the program

is based on the assumption that all policies examined by the algorithm

correspond to indecomposable Markov chains. As we know from the proof for

part (a) of Property 5 in Section 3.4.3, not all policies for the three

user problem satisfy this condition. However, the policy given as an

example in the proof, and any others corresponding to decomposable Markov

chains that might exist, were never encountered by the algorithm.

Typically, such a policy has a performance worse than the initially

selected policy, and therefore will not be examined in any subsequent

iteration.

For any given policy associated with the three user problem, each row

of the state transition probability matrix will have at most two nonzero

elements (in general there are at most three). Only each such nonzero

-130-
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element and its position in the matrix are stored by the program. The

integer variable i typically denotes the system state and k the window

size. The subroutine leqt2f called during the value determination

operation is an Edition 7 IMSL (International Mathematical and Statistical

Library) routine which solves the system of linear equations Ax = b. The

Fortran code that follows was executed on a Honeywell Level 68/DPS using a

Multics operating system.

* Determination of an optimal 3 user Window protocol by policy iteration

real a(23,23),b(23),work(598),v(23),w(3)
integer ss(23,3),J(23,2,3),kn(23),ko(23) ,idgt,ier
double precision q(8),pe(23,3),ps(23,3),p(23,3),z,p(23,2,3)
characterfl char(23),c

I

* Parameter input
data ((ss(i,n),n-1,3),i--,7)/1,l,1, 2,1,1, 2,2,1, 3,2,1,
& 4,2,1, 4,3,1, 5,2,1/
data ((ss(i,n),n.1,3),i=8,16)/l,1,1, 2,1,1, 2,2,1, 3,2,1,
& p,2,1, 4,3,1, 5,2,1, 8,8,2, 8,8,3/
data ((ss(i,n),n=l,3),i=17,23)/1,1,1, 2,1,1, 3,1,1, 8,2,1,
& 8,3,1, 8,3,2, 8,4,1/
data (((J(i,m,k),kfi1,3),mzl,2),i=l,7)/3,2 ,1, 3,15,8, 3,2,1,
& 3,15,9, 4,2,1, 4,15,10, 4,2,1, 4,15,11, 4,2,1, 4,15,12,
& 5,2,1, 5,15,13, 4,2,1, 4,15,14/
data (((J(i,mk),k=1,2),ml,2),i=8,16)/17,20, 15,16, 17,20,
& 15,16, 18,20, 15,16, 18,20, 15,16, 18,20, 15,16, 19,20,
& 15,16, 18,20, 15,16, 21,0, 21,0, 23,0, 23,0/
data (((J(i,mk),kzl,2),usl,2),i=17,23)/5,4, 22,15, 5,4,
& 22,15, 5,04, 22,15, 4,0, 4,0, 5,0, 5,0, 6,0, 6,0, 7,0, 7,0/
data (kn(i),i=15,16)/1,1/
data (kn(i),i=20,23)/1,1,1,1/
idgtz0

• Computes pe(i,k), ps(i,k), and po(i,k)
210 write(0,1)
1 format(//' pa'$)
input, prob
if(prob.eq.0.) stop
q( 1) =I .-prob
do 50 ix2,5

50 q(i)zq(i-1)fq(1)
q(8) ,o.
do 60 is1,7

pe(i,1).q(ss(i,1))

S( ,1 )=1 .po( , K .
I.'... 'I

.* JA
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p.(i,2)=pe(i,1 )'q(sa(i,2))

ps(i,2)al .-p9(i,2)-pc(±,2)
Pe(i,3)ape(i,2)'q(ss(i,3))
Pc(i,3)=po(i,2).Ps(i,2)'(1.-q(S.S(i,3)))

60 PS(i,3)=1.-Pe(i,3)-Pa(i,3)
do T0 i=8,141

Pc(i,2) zpa(u,2)/PC(M,3)
T0 ps(iZ) =I.-Po(,2)

do 75 i=15,16
75 pa(itl)=1.

do 80 1=1,19
s=1 .-q(3a(i,1)e3s(i,2))

80 Ps(i,2)=1.-pc(i,2)
do 85 i=20,23

85 Psfi,1)=1.

*Computes transition probabilities p(i,j,k)
do 100 i=1,7
do 100 k=1,3
p(i,2,k)=pc(i,k)

100 p(i,1,k)z1.-p(i,2,k)
do 102 iz8,111
do 102 kzl,2
p(i,1,k)=ps(i,k)

102 p(i,2,k)zl.-p(i,l,c)
do 1041 i=15,16

104p(i,1,1)=1.
14p( 1,2, 1) =0.
do 106 i=17,19
do 106 Ic=1,2
p(i,1, kl) =pa(i, k)

106 pUi,2,k)=1.-pUi,1,k)
do 108 1220,23
p(i,1 ,1)x.

108 p(i,2,1).0..

*Initializes variables for policy iteration algorithm
* do 110 1=1,23

ko(i)=O
110 char(i)='

nxuO
write(0,2) (1,1.1,23)

2 format(/' n 1,2313,5x,1Ps',6x,'D1/)

*Policy Improvement routine
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230 continue
do 120 im1,7
do 130 lczl,3

130 w(k)upa(i,k)+ p(i,l,k)*v(j(i,1,k))+p(i,2,k)%(j(i,2,k))

kn(i)=1
do 1140 Jc=2,3
dzv(k)-x
if(d.gt.0.) zinw(k)

* 140 if(d.gt.O.) Icn(i)uk
Lt(kn(i).eq.2.and.w(2).eq-w(3)) char~i:aa
if(kn(i).ne.1) go to 120
±t(w(1).eq.w(2)) chwr(i)x'a'
if(w(l).eq.v(3)) char(i)='b'
if(v(l).eq.(2).and.w(l) .eq.v(3)) char(i):'cof

120 continue
do 160 i=8,114
do 165 k:1,2

165 w(k)3pa(i,c).ep(,,1)v(j(i,,k)).p(i,2,k)'v(j(i,2,k))
loi(i) :1
dow(2)-w( 1)
if(d.gt.0.) lcn(i)=2
if(d.eq.0.) char(±)='af

160 continue
do 170 W:7,19
do 175 k=1,2

175 w(k)upa(i,k).p(i,1,k)*v(j~i,1,k)).p(i,2,k)*v(j(±,2,k))
kn( i) a
dzw(2)-w( 1)
if(d.gt.0.) kn(i)=2
if(d..q.O.) ohar(i)='a'

170 continue
isuazO
do 180 jul ,23

180 iaumuisuuw~abs(kn(i)-ko(i))
±f(iuim.eq.0.and.nx.eq.1) go to 210
if(itm.eq.O.and.nx.ne.1) go to 270

*Value determination operation
do 190 ±u1,23
do 190 *u1,23

190 a(i,2)20.
do 200 121,23
do 200 mzI,2

* 200 a(i,j(i,im,koi(i))):a(i, j(i,m,kw(i)) )-p(i,m,kzi(i))
do 220 iu1,23
a(i,i)za(,i).

22a(i,2)u1.ikni
22a(1i)71.iln()

call leqt2r(a,1,23,23,b,idgt,work,ier)
* ZI I

±f(±er.sq.129) go to 260
if(i.r.eq.131) Ox.''

* -**,- * -
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do 2410 in1,22
2J10 v(i) zb(i)

V( 23) =0.-
±f(nx.eq.1) go to 270
if(nx.eq.20) go to 290

280 do 250 iz1,23
obar(i)a' I

250 ko(i) zic(i)
go to 230

260 write(0,5)

5 ormat(6x, 'error in leqt2t: matrix is algorithmuically singular')
290 write(0,Js)
41 tormat(5x,'n > 20')

go to 210

*Prints results
270 gob( 23)

Du1 ..(3./g)-( 1./prob)
vrite(0,3) nx,o,(knUi),ohar(i),s.:1,23),g,D

3 format(13,al,lx,23(i2,al),2f8.5)
if(nx.eq.1) go to 280
go to 210
end



APPEDIX D

DERIVATION OF RECURRECE RELATIONS FOR E[ulw] and E[t~w]

In this appendix we derive Equations (5.8) and (5.9) which may be

used to determine in a recursive manner EIufw] and E[tjw], the expected

number of users processed in and the expected duration of a CRP with stop 1

window size w, respectively. We begin by defining the following quantities

needed for the derivation:

wo a window size for step 2 following a collision at step I

< w

w* = window size for step 3 following a success at step 2

w- w'

e(w) = Pr[an empty slotjw users in window with step 1 statistica]

a (1-q)w

3(w) z Pr[a successlw users in window with step 1 statistics]

= l(l-q)w-l

a(w) = Pr[a oollisionw users in window with step 1 statistics]

0 E[ulw] s E~nunber of users processed in rmainder of CRPJ
w users in R of which >_ 2 have packets]

E [t1w] a E[time remaining in CRPjw users in R of which
a 2 have packets]

Shown in Figure D-1 is the probability tree from which (5.8) and (5.9)

are derived. The events of interest are boxed and to the right of each box

is the probability associated with that point on the tree. To make the
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UW elw) z elw')e(w")

E

S(- w slw) 2 s(w') e(w")+s(w") elwI)

7- Ec[ulw]

u w + W'EI[u Iw"
t =2 + Ectl" elw') C(W")

EUW

st 2 3 S W' lW'" " "

u- wc C°I.:
t 3' + + Eit I'd,] w

Figure D-1 Probability tree for B[ulw and 9[tv] derivation

=SOL. .
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equations that follow less cumbersome, we adopt the simplifying notation

* a e(w), e' x e(wt), and ew x e(w") and likewise for a and a. Fra the

first branching point on the tree we have

REuJw, a w(e + s) + E fujwjo

zCtiw] a I *RtJuc

from which we obtain

Ee[u )w] a wIUIW, -(e ) (D.1)

Ecftlwj 2 sitiw] - 1 (D.2)

Now from the leaves of the Figure D-I probability tree we have

E[uW] X W(e'e" + se +* s3 e' + sis')

+ (w' + Eoul.w])(e' + s')0 + EO[ulw' o'

x (W- w')(e' + s')(e' + s") + W'(e' + 3')

+ E0(ulww](e' + s')o" + E,[ulw']o'

and using (D.1) we obtain

E[ul-w E[ulw'] + Eu[w](e' + a') (D.3)

Similarly, we have that

E[tlwj 2 1 + (1 + 90[tlwn)e'c'

+ 2s'sw + (2 + Eo[tlw"])s''C + (I + Eftv']))O'

2I + (e' w + 2s's0 + 2s'o + o')
+ Sctlw"](e' + s')OW + SeotIv']c'

and using (D.2) we obtain after some manipulation.
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E[tw] 1 - e'(i + 3") - em(e' + 2s)

+ E[tlw'] + E[t"](e' + 3') (D.4)

Equations (Do3) and (D.) oorrespond to, respectively, (5.8) and (5.9).

I-I'
!I



REFERDCES

[A1] N. Abrason, "The ALOHA System - Another Alternative for Computer
Comunications," AFIPS Conf. Proc., vol. 37, pp. 281-285, 1970.

[A21 K. Astrom, 'Optimal Control of Markov Processes with Incomplete State
Information," J. Math. Anal. Appl., vol. 10, pp. 174-205, 1965.

(B1 ] R Bartels, G. Golub, C. Van Loan, Applied Matrix Computations, to be
published by Johns Hopkins Press, Baltimore, MD.

(B23 D. Bertsekas, Dynamic Programming and Stochastic Control, Academic
Press, New York, NY, 1976.

[CI] J. Capetanakis, "Tree Algorithms for Packet Broaacast Channels,*
IEEE Trans. on Inform. Theory, vol. IT-25, pp. 505-515, Sept. 1979.

[C23 J. Capetanaks, "Generalized TW4A: The Multi-Accessing Tree
Protocol," IEEE Trans. on Comm., vol. COM-27, pp. 1476-1484,
October 1979.

[C31 A. Carleial, M. Hellman, "Bistable Behavior of ALCH-Type Systems,"

IEEE Trans on Com., vol. COM-23, pp. 401-409, April 1975.

(C4 I. Chlantac, W. Franta, K. Levin, "BRAM: The Broadcast Recognizing
Access Method," IEEE Trans. on Comm., vol. COM-27, pp. 1183-1190,
August 1979.

[C51 W. Crowther, R. Rettbert, D. Walden, S. Ornstein, F. Heart, "A System
for Broadcast Communication: Reservation-ALCRA,' Proc. of Sixth Hawaii
Int. Sys. Sci. Conf., Jan. 1973.

[C61 B. Cruz, B. Hajek, "A New Upper Bound to the Throughput of a
Multi-Access Broadcast Channel," Electrical Engineering Dept.,
Univ. of Illinois, Urbana, IL, 1980.

[D1] M. DeGroot, Optimal Statistical Decisions, McGraw-Hill, New York, NY,
1970.

(D2] C. Derman, Finite State Markovian Decision Processes, Academic Press,
Now York, NY, 1970.

[F1] G. Fayolle, E. Gelenbe, J. Labetoulle, "Stability and Optimal Control
of the Packet Switching Broadcast Channel," Jour. of ACM, vol. 24,
pp. 375-386, July 1977.

[F23 W. Feller, An Introduction to Probability Theory and its
Applications, Vol. I, John Wiley & Sons, New York, NY, 1968.

(GIl H. Gallager, "Conflict Resolution in Random Access Broadcast
Networks," Proc. of AFOSR Workshop on Comm. Theory and Appi., *

pp. 74-76, Sept. 1978.

[02] A. Gourlay, G. Watson, Computational Methods for Matrix Elgen-
problems, John Wiley & Sons, Nw York, NY, 1973.

-139-

LA L'.



-140-

CHI] B. Hajek, T. van Loon, *Decentralized Dynamic Control of a
ulti-Acoess Broadcast Channel," Electrical Engineering Dept.,

Univ. of Illinois, Urbana, IL, 1980.

[H2] L. Hansen, M. Schwartz, "An Assigned-Slot Listen-Before-Transmission
Protocol for a Multiaccess Data Channel, IEEE Trans. on Cor., vol.
C0M-27, pp. 846-857, June 1979.

CH3] J. Hayes, "An Adaptive Technique for Local Distribution," IEEE Trans.
* on Com., vol. COM-26, pp. 1178-1186, Aug. 1978.

[H1 Y.C. Ho, K.C. Chu, "Team Decision Theory and Information Structures
in Optimal Control Problems - Part I," IEEE Trans. on Automatic
Control, vol. AC-17, pp. 15-22, Feb. 1972.

[HS] R. Howard, Dynamic Proranming and Markov Processes, MIT Press,
Cambridge, MA, 1960.

[H6] P. Humblet, "Bounds on the Utilization of Aloha-like Multiple Access
Broadcast Channels,' Report LIDS-P-1000, Laboratory for Information
and Decision Systems, MIT, Cambridge, MA, June 1980.

[H7] P. Humblet, 'Data Cofmunication Networks and Information Theory,"
NTC Conf. Rec., pp. 20.3.1-20.3.5, Nov. 1980.

[H8] P. Humblet, J. Mosely, "Efficient Accessing of a Multiaccess Channel,"
Proc. of IEEE Conf. on Dec. & Control, pp. 624-627, Dec. 1980.

[J1] I. Jacobs, R. Binder, E. Hoversten, "General Purpose Packet Satellite

Networks," Proc. IEEE, vol. 66, Nov. 1978.

[K1] R. Kahn, S. Gronemeyer, J. Burcbfiel, R. Kunzelman, "Advances in
Packet Radio Technology," Proc. of the IEEE, vol. 66, pp. 1468-1496,
Nov. 1978.

EK2] L. Kleinrock, S. Lam, 'Packet-Switching in a Slotted Satellite
Channel," AFIPS Conf. Proc., vol. 2, pp. 703-710, June 1973.

[K3] L. Kleinrock, S. Lam, "Packet Switching in a Multiaccess Broadcast
Channel: Performance Evaluation," IEEE Trans. on Comm., vol. COM-23,
pp. 410-423, April 1975.

[Ku] L. Kleinrock, F. Tobagi, "Packet Switching in Radio Channels: Part I
- Carrier Sense Multiple-Access Modes and Their Throughput-Delay
Characteristics,w IEEE Trans. on Cor., vol. COM-23, pp. 1400-1416,
Dec. 1975.

EK5] L. Kleinrock, Queueinh Systems. Vol. 1: Theory, Wiley-Interacience,
New York, NY, 1975.

[K6] L. Kleinrock, M. Scholl, "Packet Switching in Radio Channels: New
Conflict-Free Multiple Access Schemes for a Small Number of Data Users,w
ICC Con. Proc., pp. 22.1-105 - 22.1-111, June 1977.

** Vr.a Cam~



-141-

[K73 L. Kleinrook, Y. Yemini, "An Optimal Adaptive Scheme for Multiple
Access Broadcast Communication," ICC Conf. Proc., pp. 7.2.1-7.2.5,
June 1978.

ELi] S. Lam, L, Klsinrock, "Packet Switching in a Multiacoess Broadcast
Channel: Dynamic Control Procedures,' IEEE Trans. on Comm., vol.
COM-23, Sept. 1975.

fL2] S. Lam, "Satellite Packet Communication - Multiple Access Protocols and
Performance,w IEEE Trans. on Comm., vol. COM-27, pp. 1456-1466, October
1979.

M11] J. Marschak, "Elements for a Theory of Tems,* Management Science,
vol. 1, pp. 127-137, 1955.

[M21 J. Marschak, R. Radner, Economic Theory of Teams, Yale Univ. Press,
New Haven, CT, 1972.

(M3] J. Martin, Teleprocessing Network OrEganization, Prentice-Hall, Englewood
Cliffs, NJ, 1970.

[(4] R. Metcalfe, D. Boggs, "Ethernet: Distributed Packet Switching for
Local Computer Networks," Comm. of the ACM, vol. 19, pp. 395-404,July 1976.

[M5] C. Keubus, M. Kaplan, "Protocols for Multi-Access Packet Satellite
Coemuiations,w N,,C conf. Re., pp. 11.4.1-11.4.7, Dec. 1979.!

NM61 K. Mittal, A. Venetsanopoulos, "On the Dynamic Control of the Urn Scheme
for Multiple Access Broadcast Communication Systems," IEEE Trans. on
o vol. C0M-29, pp. 962-970, July 1981.

[M71 M. Molls, "On the Capacity of Infinite Population Multiple Access
Protocols," Computer Science Dept., UCLA, Los Angeles, CA, March 1980.

NM8] J. Msely, *An Efficient Contention Resolution Algorithm for Multiple
Access Channels,' Report LIDS-TH-91 8, Laborotory for Information and
Decision Systems, MIT, Cambridge, MA, May 1979.

[P1] A. Paradis, vApplication of Optimal Control to the Multiple Access
Channel," S.M. Thesis, Dept. of Eleo. Eng. and Comp. Sci., MIT,
Cambridge, MA, June 1981.

( P2] N. Pippenger, "Bounds on the Performance of Protocols for a Multiple
Access Broadcast Channel," Report RC-7742, Math. Science Dept., IBM
Thoas J. Watson Research Center, Yorktown Heights, NY, June 1979.

ER1] G. Ricart, A. Agrawala, "Dynamic Management of Packet Radio Slots,"
Third Berkeley Workshop on Distributed Data Mang. and Computer Networks,
August 1978.



-142-

CR2] L. Roberts, 'Aloha Packet System with and without Slots and Capture,'
ASS Note 8, June 1972; reprinted in Computer Comm. Rev., vol. 5,
pp. 28-12, April 1975.

[R3) L. Roberts, 'Dynamic Allocation of Satellite Capacity Through Packet
Reservation,* AFIPS Conf. Proc., vol. 12, pp. 711-716, June 1973.

ER4] S. Ross, Applied Probability Models with Optimization Applications,

Holden-Day, San Francisco, CA, 1970.

($1] R. Smallvood, E. Sondik, "The Optimal Control of Partially Observable
Markov Processes over a Finite Horizon,' Oper. Res., vol. 21,
pp. 1071-1088, 1973.

(82] M. Sobel, P. Groll, "Group Testing to Eliminate Efficiently All
Defectives in a Binomial Sample,' Bell System Tech. Journal,
vol. 38, pp. 1179-U252, 1959.

[TI] F. Tobagi, 'Multiaccess Protocols in Packet Communication Systems,'
IEEE Trans. on Comm., vol. COM-28, pp. 468-488, April 1980.

[T2} D. Towsley, J. Wolf, *An Application of Group Testing to the
Design of Multi-User Access Protocols,' Dept. of Elec. and Coup.
Eng., Univ. of Mass., Amherst, HA, October 1981.

IT3] B. Tsybakov, U. MiLkhailov, 'An Upper Bound for Maximum Throughput
of Random Access Systems,* Institute for Problems of Information
Transmission, Moscow, USSR, 1981.

I

Ii


