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ABSTRACT

The multiple access problem is one of organizing a population of users
so that they may efficiently share the resources of a single communication
channel. This problem is examined under the modeling assumptions of a
finite user population and a time-slotted channel with limited feedback.

Techniques or schemes for coordinating the transmissions of users are
called multiaccess protocols. Simple relationships among common
steady-state measures of protocol performance (including throughput and
average delay) are derived. From these relationships it is shown that the
performance measures are equivalent in the sense that (1) each may be
expressed as a simple function of any one of the others and (2) a protocol
which is optimal with respect to any one measure is optimal with respect to
the others. The derived relationships are also used in the performance

- analysis of perfect scheduling and TDMA.

In the area of protocol development, four related classes of
multiaccess protocols are defined and examined. The most general class of
protocols is considered first, and the other three are subclasses of it,
For each class the problem of finding an optimal protocol is characterized.
The optimization problem is formulated as a Team problem for the first
class, and as a Markov decision problem for each of the other three
classes. However, only with the last class examined, the Window protocols,
does the optimization problem prove to be tractable.

Using results from Markov decision theory, optimal Window protocols
are derived for the cases of two and three users. The Window protocol
state space, however, grows exponentially with the population size and this
prevents an exact determination of optimal protocols for large user
populations. For this case, a Window protocol subclass is defined and an
approximate analysis is used to determine the performance and dynamic
behavior of protocols within this subclass, Also, with this analysis a
link is established between the finite and infinite population problems.
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CHAPTER 1

INTRODUCTION

1.1 Multiple Access Problem

A communication problem that has received much attention during the
past decade is that of organizing a population of users (also called
sources) so that they may efficiently share the resources of a single
communication channel. Although various models of the user population and
communication channel have been considered, they generally have the
following properties. The users are geographically distributed and
generate messages (i.e., blocks of digital data to be transported over the
channel) in an independent random fashion. The channel is such that only
one user at a time can successfully transmit a message, and associated with
message transmissions is some formm of feedback to the users. This feedback
has typically ranged from no feedback (e.g., TIMA [M3]) to each individual
user determining whether its own message transmissions are successful -
(e.g., Aloha [A1]) to every user determining after some given delay whether
there are 0, 1, or 2 2 messages being transmitted on the channel (e.g.,
Ethernet [M&], Tree [C2]).

The problem of organizing or coordinating the transmissions of users
for the efficient utilization of the channel is referred to as the multiple
access (or multiaccess) problem, and arises most often in the context of a
broadcast communication system. Here each message generated by a user
(e.g., terminal, computer, sensor) is to be transported via a common
broadcast channel to one or more of the other users. Although it varies
with the particular system model, it is generally the broadcast nature of

the channel that provides the feedback of information concerning message

10~
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transmissions to the user population. Examples of such channels include a
satellite channel where the satellite acts as a transponder, a ground radio
éhannel with all users within transmission range of one anuther, and a
length of coaxial or fiber optic cable to which the users are physically
attached. From these examples it is clear that "geographically
distributed®™ may imply anything from users located in an area of several
million square kilometers to users located in a small room.

The advantages of having a user population share a common broadcast
channel have been well documented in the literature (see, e.g., (41,K31).
Briefly, the desirable aspects of such a system include (1) the possibility
of utilizing efficiently a communications resource in an enviromment of
many bursty users, (2) the high connectivity of the system where any user
can directly communicate with any other user, (3) the broadcast nature of
the channel which allows a"single transmitted message to be delivered to
many users, and (4) the inherent flexibility associated with adding and
removing users and, in the case of a radio channel, with moving the users
without physically reconfiguring the system.

Al though later we will be more precise, the efficient utilization of
the communication channel basically involves avoiding two undesirable
events. One is referred to as a collision and is when two or more message
transmissions overlap in time, thus destroying each other so that none are
received successfully. The other is when nothing is being transmitted (the
channel 1is idle) and there is at least one user with one or more buffered
messages awaiting transmission (a system busy period). Both of these
events correspond to the channel being wasted in the sense that there are
one or more messages waiting to be "serviced" (i.e., successfully

transmitted) and none are actually getting service. Unfortunately,
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avoiding both events is generally impossible.

The random generation of messages coupled with the distributed nature
of the users precludes any so called "perfect scheduling™ of the messages
where both collisions and channel idles during busy periods are eliminated.
If the message generation times are random but the users are not
distributed, then perfect scheduling may be accomplished by forming a
common queue of the generated messages and then servicing them, for
example, on a first-come first-serve basis. Likewise, if the users are
distributed but the message generation times and block sizes are
deterministic, then the use of the channel could clearly be (perfectly)
scheduled beforehand to avoid both collisions and channel idles dﬁring busy
periods. With both distributed users and randomly generated messages, the
information needed to implement perfect scheduling is dispersed among the
users and the only means to exchange this information is through the
channel they wish to access in the first place.

The techniques or schemes for coordigéting the transmissions of the
users are called multiaccess protocols. Later we shall see that avoiding
collisions and avoiding channel idles during busy periods are conflicting
goals, and that designing an efficient multiaccess protocol essentially
involves trading off these two undesirable events in such a way as to

achieve the best possible system performance.

1.2 The Selected User-Channel Model

In this section we state an explicit model for the user population and
communication channel. All anpalytical work that follows is based on this
given model. In the next section we describe some of the other modeling

assumptions that have been chosen in the past and indicate why we have made
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the given selection.

We consider a finite population of N users, where the messages
generated by each user are incorporated into fixed=length blocks of data
called packets. Each packet, in addition to the message data, generally
contains control information such as source and destination addresses.
Assoclated with the fixed-length packets is a time-slotted channel. By
this we mean that packet transmissions are synchronized to occur within
globally defined time-slots, where the slot size is equal to the time to
transmit one packet. Hence one can envision the channel as a succession of
rectangular slots into which the users transmit their packets.

It is assumed that a given slot results in a successful packet
transmission if and only if the slot contains exactly one packet. A slot
occupied by two or more packets results in a collision where none are
successful, requiring each to be retransmmitted at a later time. When no
packet transmission occurs wifhih a slot, we say the slot is empty. As for
the channel feedback, immediately following the end of each slot, it is
assumed that each user can determine whether the slot contained 0, 1, or
2 2 packets, corresponding to, respectively, an empty slot, a success, or a
collision. With a typical broadcast channel, the distinction between a
success and a collision may be accomplished with the use of error detection
information included in the packet (e.g., a cyeclic-redundancy-check), and
an empty slot distinguished from the other two outcomes through the absence
of signal energy on the channel.

Finally, we assume a homogeneous population of users, where at the
beginning of each slot each user which does not currently have a packet
awaiting transmission will independently generate one with probability p.

This is equivalent to the "single buffer® assumption where at the beginning
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of each slot each user independently generates a packet with probability p,
but will only accept this packet into its transmission buffer if the buffer
is currently empty. WNote that the buffer does not actually become empty
until the end of the slot during which the stored packet is successfully
transmitted (i.e., an unsuccessfully transmitted packet remains in the
buffer). Any packets that are generated while the buffer is not empty are
assumed lost. Also, 2 packet entering the transmission buffer at the

beginning of a slot may be transmitted in that slot.

1.3 Other Possible Modeling Assumptions

The modeling assumptions given in the previous section are quite
common in the study of the multiaccess problem. However, they are by no
means unique. In this section we briefly describe and discuss some of the
other popular modeling assumptions. We shall see that many of these
assumptions are, conceptually, just simple extensions to the model we have
selected.

We begin with the carrier sense assumption. First used in the

development of multiaccess protocols by Kleinrock and Tobagi [K4], the
concept behind carrier sensing is very simple: each user is able to detect,
after some given delay, when the channel switches between being used
(carrier present) and idle (carrier absent). In an unslotted channel,
particularly one that permits variable-length packets, carrier sense has
been used to reduce the rate of collisions by having users refrain from
transmitting packets when a carrier is detected. For a slotted channel
with fixed-length packets, the usefulness of carrier sense is in allowing
all users to determine within some given delay following the start of each

slot whether that slot contains 0 or 2 1 packets. Typically this delay
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consists of the channel propagation delay. Hence for a channel whose
propagation delay is smaller than the chosen slot size (often true for
ground radio and cable systems), one can, with carrier sense, define empty
slots to be smaller than slots containing successes or collisions. In this
way the "cost"™ associated with an empty slot during a busy period is
reduced, resulting in the potential for increcased efficiency.

Further performance improvements can be realized with the addition of

the oollision detection assumption. First introduced by Metcalfe and Boggs

[M4], collision detection refers to the ability of all users to detect a
collision before the transmissions are completed, thus allowing the
interfering tranamissions to be aborted. This assumption is valid for
channels with a small propagation delay and a listen-while~t-ansmit feature
(e.g., some cable systems). Combined with carrier sense, it results in
collision and empty slots smaller than slots with successes.

Relevant to this discussion is the concept of packet reservation.

Brought into prominence by Roberts [R3], the typical approach with packet
reservation is for users to inform one another of generated messages by
transmitting over the broadcast channel smaller "reservation"™ packets
containing this information. Once all users are aware that a particular
user has a message packet awaiting transmission, they can (by following a
common algorithm) collectively reserve a future time-slot for which this
user will have exclusive transmission rights. The multiaccess problem is
still present, but now it is associated with the reservation process.
However, since these reservation packets are smaller in size, their use can
often improve the overall system performance. In any event, we see that
the reservation problem may be viewed as an extension of the basic

multiaccess problem. This is particularly apparent when one considers, for
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Cl|E|C|S | message packet |E|S| message packet Elc E|C

E - empty
S = success
C = collision

Figure 1-1 Channel usage by a reservation scheme

a small propagation delay channel, the reservation scheme whereby a message
packet is transmitted immediately following the successful reception of its
corresponding reservation packet. This process is illustrated in Figure
1=1, Note that by viewing the successful transmission as consisting of
both the message and its reservation, we again have a system whose slot
size varies according to the channel cutcome: collision and empty slots are
smaller than those with successes..

Having a buffer size >> 1 at each user to queue generated messages

before transmission may at first seem more acceptable than the selected
single buffer assumption. With a larger buffer one can generally reduce
the probability that a generated message is blocked from entering the
buffer. Also, there is more flexibility in modeling the arrival process.
For example, a multiple packet generation process (i.e., bulk arrivals to
the buffer) may be used to model variable-length messages, the length being
some varying multiple of the slot size. The single buffer assumption is

analytically more tractable and in past work it was justified by

® Within the context of an infinite population model, Humblet [K7,H8]
has generalized several results, originally derived for the case of
fixed=-length slots, to the case where the slot size is a fixed but
arbitrary function of the channel outcome {0,1,22).
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considering a very large (often infinite) population of users with
individual packet generation rates sufficiently small that a packet
arriving at the buffer would very likely find it empty. We, however, are
interested in all finite populations, starting with N = 2, and all packet
generation probabilities, 0 < p < 1.

Our justification for the single buffer assumption, as with many of
the other modeling assumptions, is that it in sone sense represents the
basic multiaccess problem. As indicated earlier, the essential difficulty
in dealing with the multiaccess situation is derived from the lack of
common knowledge as to which ugers have packets awaiting transmission.
With the buffer size larger than one, this becomes less of a problem in a
broadcast enviromment since the control portion of a user's successfully
transmitted packet may bs uszee to inform the other users of any additional
packets remaining in its buffer. This may be done in a variety of ways.
One particularly simpie method is to use a one bit field in the packet
header to indicate the presence/absence of other buffered packets at the
instant before transmission. With this information it follows that each
packet generated during a user's busy period (i.e., the continuous interval
during which the user's buffer is not empty) may be assigned a reserved
slot for transmission. The multiaccess problem is then only associated
with the first packet at the start of each of these busy periods. In
general, a higher packet generation probability p implies a longer user
busy period and hence a smaller fraction of packets without reserved slots.
It is apparent then that with a buffer size larger than one, the
uncertainty as to which users have packets awaiting transmission is
reduced. Since this uncertainty is at the heart of the multiaccess

problem, the single buffer assumption represents the problem in its most
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basic form.

The use of an infinite user pecpulation model originally came about as

an approximation to a large but finite population in the analysis of a
particular multiaccess protocol [K2]. Since then a significant amount of
work in the multiaccess area has centered around this assumption. Of
primary interest to many of these studies is the "capacity" of the
multiaccess channel, defined as the supremum of all achievable throughputs
for which the average packet delay is finite. Part of this effort has been
devoted toward devising multiaccess protocols with greater throughput
[c1,G1,M8], and part devoted to determining tighter theoretical upper
bounds on the capacity [P2,H6,M7,C6,T3]. Currently, for a channel with
{0,1,22)} feedback, the largest throughput attained by a protocol is 0.4877
(M8] and the tightest upper bound now stands at 0.5874 [T3].
Unfortunately, these results have only limited application to the more
practical case of a finite user population; for the maximum throughput of
the finite population problem is 1.0 and is achieved by TDMA (Time-Division
Multiple Access) where slots are assigned to users in a deterministic
round=-robin fashion (see Section 2.3). Hence caution must be exercised in
using the more tractable infinite population model as an approximation to a
large but finite population, as the two clearly have significant
fundamental differences.

The different modeling assumptions given in this section are only but
a sample of the possible variations that one could consider. By relaxing
the basic properties given in Section 1.1, we could even enlarge the scope
of the multiaccess problem to include such models as those used in the
study of packet radio networks [K1]. However, we believe that to

understand the fundamental nature of multiaccess, one should first examine
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the basic problem. The model of Section 1.2 represents such a basic

probl enm.

1.4 Previous Work

There has been a great deal of effort devoted to the multiple access
problem and much of this work has followed along the lines of protocol
development and analysis. The numerous protocols found in the literature
reflect nof only the fact that there are many different models of the user
population and communication channel (each possibly motivated by a
different practical situation), but also.that the problem of finding the
best protocol for any nontrival model and performance measure is as yet
unsolved. In this section we briefly describe some of the main
contributions in the development of multiaccess protocols. The attempt is
to give an overview of the various classes of protocols, particularly those
relevant to our selected model, without getting sidetracked with the
details of any one scheme. Other more complete surveys may be found in the
literature [T1,L2].

The first distinction we make is between protocols that allow
conflicts and those that are conflict-free. As the name implies, a
conflict=-free protocol requires that no more than one user transmit at any
given time. Not surprisingly, the first protocols developed for the
mul tiaccess problem were cornflict-free. One important such protocol is
TDMA (Time-Division Multiple Acceas) [M3]. Although variations do exist,
the typical TIMA protocol consists of assigning fixed, predetermined slots
to users in a round=robin fashion. In this way, with N users, each user is
glven periodic access to the channel once every N slots. Without

conflicts, the performance degradation of TDMA from that of perfect
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scheduling results only from having empty slots during busy periods.

Hence, as might be expected (and is shown explicitly in Chapter 2), TDMA
performs well for packet generation probability p near 1 and poorly for p
near 0. Where applicable, improvement in the TDMA performance can be
realized with the addition of a carrier sense assumption, since this
reduces the size of an empty slot. A discussion relevant to this situation
may be found in [K6].

A very important application of multiaccess protocols is in the
computer communications area where the generation of packets by users is
characterized as being bursty. Basically, the larger the ratio of a user's
average idle period' to average busy period, the more bursty is its packet
generation process. Hence it follows that the degree of burstiness is
related to the~packet generation probability p, the number of users N, and
the multiaccess protocol being used. Consider, for example, the TIMA

protocol. Through extensions of the results of Section 2.3, we obtain

o - 2l hme]
1=(1=p)
Now suppose p = 0.01. When N = 10, the idle to busy ratio is 17.7 and one
thus considers the user traffic to be bursty; but when N = 1000, the ratio
is 0.110 and, although the packet generation probability p has not changed,
the user traffic is no longer considered bursty. Generally speaking,
however, for a given protocol and population size N, the user traffic can

be made more (less) bursty by making p sufficiently small (large). With

® For the selected user-channel model, we define a user's idle period to
begin only when after 3uccessfully transmitting a packet in one slot it
generates no new packet at the beginning of the next slot.
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this in mind, we shall for simplicity, characterize a user as being bursty
for p (sufficiently) close to 0 and not so for p (sufficiently) close to 1.

Due to the inadequacy of such conflict-free schemes as TIMA for the
case where the packet generation process is bursty, protocols were
developed which permit more than one user to transmit in a given slot.
These protocols naturally give rise to collisions, but typically perform
very well when p is small since, compared to TIMA, the occurrence of empty
slots during busy periods can be greatly reduced.

Historically, the Aloha scheme [A1] was the first multiaccess protocol
that allowed collisions. This original version, devised and implemented in
the context of an unslotted channel, remains today the simplest of the so
called random access techniques. With it, a packet is first transmitted at
the instant it enters the transmission buffer. When there is a coliision,
each transmitting user is so informed by not receiving, within some
specified time-out period, an acknowledgement packet from the destination
user. The waiting time before a collided packet is retransmitted is then
selected at random by the user, thus avoiding continually repeated
conflicts., The largest attainable throughput for this scheme was
determined to be 1/2e = 0.18 [A1]. A slotted version of Aloha followed
shortly and resulted in an increase in the maximum throughput to 1/e =~ 0.36
[(R2]. This improvement in performance is a direct consequence of the fact
that in a slotted channel colliding packets are forced to overlap
compl etely. Both versions, unfortunately, exhibit unstable behavior.

This is manifested through the positive feedback effect of collisions
creating more transmissions which in turn may cause still more collisions
and so on, eventually driving the system throughput to zero. When this

ocecurs, a restart procedure must be initiated.
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The Aloha approach to the multiaccess problem formed the basis for
much of the work that followed in protocol development. Part of this
effort was directed toward further analysis of the Aloha protocol in terms
of its throughput-delay performance [K2,K3] and its characterization as an
unstable process [K3,C3]. Other efforts involved improving the Alocha
performance through such modeling modifications as carrier sense [K4] and
collision detection [M4]. Still other work consisted of devising packet
reservation schemes, both implicit and explicit, in which the Aloha concept
is used in the reservation process [R3,C5,J1].

Our main concern is with the basic multiaccess problem as
characterized by the slotted channel model of Section 1.2. For this
situation, Aloha only performs well when p is near 0 and in contrast, TIMA
only performs well when p is near 1. What is desired i{s a protocol whose
performance 1s as close as possible to that of perfect scheduling for all p
between 0 and 1. Some efforts along these lines have resulted in protocols
which depend on explicit knowledge of the value of p. Other protocols have
been developed which, although not directly requiring knowledge of p,
either infer this information through channel observations or require more
advanced knowledge of the state of the users.

A type of protocol which can be driven by either explicit or inferred

knowledge of p is in effect a hybrid of the TDMA and Aloha protocols. The

basic councept is to subdivide the population of N users into say L groubs
of N/L members each. Groups are then assigned slots i a TDMA fashion, and
access by the members of a group to its slots is governed by an Aloha
protocol. It is the inferred or known value of p which determines the
number of groups L. When p is near 0, L = 1 and we have ordinary slotted

Aloha. When p is near 1, L = N and we have the usual TDMA protocol. For
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intermediate values of p, 1 < L < N so that the protocol is a cross between
TDMA and Aloha with a performance better than both. Basically, for a given
py L is chosen so as to trade off the empty slots duriﬁg busy periods
generated by TDMA and the collisions generated by Aloha., Specific
protocols have been proposed, most formulated for a carrier sense
enviromment, which employ this grouping idea [H2,C4,R1].

Related to this grouping approach is the Tree protocol devised by
Capetenakis [c1,c2].' The Tree protocol employs a variable-length frame
structure on the time slots and a buffer size of two at each user. A user
is allowed to generate at most one packet per frame and all packets
generated during one frame are transmitted in the next frame. The size of
each frame is determined by the time required to successfully transmit all
packets generated during the previous frame. The problem, as usual, is one
of not knowing which users generated packets. The approach taken is that
of a deterministic tree search based on the ternary channel outcome
{0,1,22} observed by all users at the end of each slot. Specifically, at
the beginning of each frame the user population is divided into L grduns of
N/L members each, Suppose for simplicity that N/L is a power of 2.
Starting with the first group, all members with packets generated in the
previous frame transmit them in the first slot of this new frame. If the
slot contains one packet or no packets, then it is determined that at most
one user in the group had a packet and, of course, any such packet will
have been successfully transmitted. If two or more users have packets,
there results a collision. To resolve this conflict the group is divided
in half and each half is then treated as a separate group. Hence a

collision in either half causes it to be split again, and this continues

® A similar protocol in a polling context was devised by Hayes [H3].
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until the slot accessed by a group is empty or contains one packet. This
"divide and conquer™ technique will resolve all conflicts in the original
group of N/i users using at most 2N/L - 1 slots in the new frame. All
other groups are handled in an identical fashion and so tﬁe frame ends when
all packets generated in the previous frame have been successfully
transmitted aﬁd it is known that no other packets remain.

With the Tree protocol, the group size N/L is chosen at the beginning
of each frame to minimize the expected length of the frame. This optimal
group size may be expressed directly in terms of the probability that a
user generated a packet in the previous frame. This probability is denoted
by q and it follows that q = 1 = (1-p)! where p is the usual packet
generation probability and £ is the frame length in slots. When q 2 14/5,
L = N and so the protocol reduces to a form of TDMA [C2]. Also, as
expected, L decreases to 1 as q decreases to 0. Note, however, that q is a
function of p and if p is not known a priori, it must be estimated from,
for example, channel outcome observations.

An 1nportant‘property of the Tree protocol is that, unlike Aloha, it
is stable [C1]. This is the result of the increased information contained
in the channel feedback. Recall that with slotted Aloha, only a user that
transmits in a slot is informed (typically through some acknowledgement
mechanism) of whether its transmission was successful. With the Tree
protocol, all users are assumed able to determine at the end of each slot
whether that slot contains 0, 1, or 2 2 packets. Control strategies have
been proposed which stabilize slotted Aloha [L1,F1,H1]. These techniques,
however, either require additional state information such as knowing the
number of busy users (i.e., users with packets) at the beginning of each

slot (L1,F1], or require the channel outcome feedback {0,1,22} [H1]. oOf
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course TDMA requires no feedback information and is certalnly stable.
However, for an infinite population model, TIMA is not applicable and so an
interesting but unsolved problem is that of determining the least amount of
feedback necessary for the existence of a stable protocol for infinitely
many users.,

Underlying the Tree protocol is the concept of a dynamically varying
but globally defined ™access set®™. That is, at the beginning of each slot,
every user follows a common algorithm, based only on common information,
that specifies a subset of users which are given permission to access the
slot. Each user in this access set with a packet (generated in the
previous frame), then transmits this packet in the slot. With the Tree
protocol, the common information is the ternary channel outcomes from
previous slots and the common algoritim used is that of a deterministic
tree search.

Another protocol employing this access set idea (without the frame
structure of the Tree protocol) is the Urn scheme devised by Kleiarock and
Yemini [K7]. With the Urn scheme it is assumed that all N users kmow the
number of busy users n at the beginning of every slot. With this
information, the size of the access set, k, is computed (in a corrected
version of the protocol) according to k = [2N+1)/n - f] for 0z 1,...,N
where rx] denotes the smallest integer greater than or equal to x. The
common algoritim at each user which then selects the k members for the
access set way take on a number of different forms. The basic algorithm,
from which the notion of an urn is derived, is that of a pseudorandom
number generator which uses the same seed at each user. As expected, when
the traffic is light the access set is quite large (e.g., n = 1 implies

k = N) and as the traffic level increases the size of the access set
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decreases. In fact for n > N/2, the Urn scheme is equivalent to random
TIMA.

The access set selected by the Urn scheme corresponds to an optimal
solution to the problem of maximizing the probability of a successful
transmission in a slot given that the only information available is the
number of busy users (i.e., previous access sets and outcomes are not used
in the decision). This is easily proven in two steps. The first step
shows that methods for selecting an optimal access set exist within the
class of deterministic strategies. A nondeterministic strategy might be
one where, for example, each user randomly decides whether it should belong
to the access set, as is done with slotted Aloha. Any such randomized
strategy, however, may be viewed as a random selection among deterministic
strategies. That a deterministic strategy is optimal for this particular
problem is a standard result in Bayesian decision theory based on the fact
that the maximum value of a random variasleris always at least as large as
its expected value [D1, Sec. 8.5]. Next, it is necessary to choose from
among the 2“—1 possible access sets. However, due to the homogeneous
nature of the user population and the assumption that only the number of
busy users is known, it follows that only k, the size of the set, is
relevant. Once k is determined, the members may be selected arbitrarily.
The optimal k for a given n is readily determined from the element of the
hypergeometric density function specifying the probability that only one of
the k selected users is busy.

One problem with the Urn scheme is the required global knowledge of
the number of busy users at the start of each slot. Such information is
clearly not readily available. Kleinrock and Yemini [K7] have proposed

that a fixed subchannel be derived (through time-division) from the main
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broadcast channel and used in a multiaccess-like fashion in a procedure for
estimating n. This represents additional overhead to the protocol in much
the same way that a reservation subchannel is overhead to many reservation
schemes. Also, although not as catastrophic as with Aloha, the Urn scheme
has been shown to be bistable for intermediate traffic levels [M6].

The grouping approaches of the combined TDMA-Aloha, the Tree, and the
Urn protocols achieve performance improvements over both basic Aloha and
TDMA. Such improvements, however, come at the expense of additional
information required in coordinating the user transmissions. In the latter
two schemes this leads to questions of robustness which must be effectively

dealt with before these protocols can be considered practical.

1.5 Thesis Outline

This thesis is concerned with the multiple access problem as
characterized by the user=-channel model described in Section 1.2. The
results obtained relate either directly or indirectly to the development
and analysis of multiaccess protocols for this basic model, but more
generally contribute to a better understanding of the multiaccess problem
for a variety of user=channel models. In this section we briefly outline
the remaining chapters of this thesis,

In Chapter 2, several common measures of steady-state performance for
multiaccess protocols are stated and relationships among the measures are
derived. From these relationships it is shown that the performance
measures are all equivalent in the sense that (1) each performance measure
may be expressed as a simple function of any one of the others and (2) a
protocol selected to be optimal with respect to any one performance measure

is optimal with respect to all of the others. The derived relationships
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are also used in the performance analysis of perfect scheduling and TDMA.

Chapter 3 is concerned with the development and, to some extent, the
characterization of multiaccess protocols. Here four related classes of
multiaccess protocols are defined and examined. First considered is the
most general class of protocols, referred to as Team protocols, where the
determination of an optimal protocol is formulated as a Team problem.
Since general solution techniques to Team problems are nonexistent, we
place constraints on the protocol structure that allow a classical
sequential decision making formulation of the multiaccess problem.
Specifically, we examine three subclasses of Team protocols = the Access
Set, Extended Access Set, and Window protocols — where in each case the
determination of an optimal protocol can be modeled within the framework of
a Markov decision process. However, only with the last class examined, the
Window protacols, is the state space finite, and thus amenable to known
optimization techniques. The state space for this class is characterized,
and properties of the generic protocol and its Markovian structure are
derived.

In Chapter 4, Window protocols for the user population sizes N = 2 and
N = 3 are constructed. In each case the system state space is first
derived along with the associated Markovian decision formulation of the
optimization problem. Optimal Window protocols are then found using
Howard's policy iteration algorithm [HS5]. In addition, the performance of
several reasonable but suboptimal Window protocols are computed and
compared to that of the optimal.

Chapter 5 considers the problem of designing Window protocols for
large user populations. The state space characterizing this situation,

however, is enormous (it grows exponentially with N), making standard
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optimization techniques impractical. Nevertheless, based on properties of
the optimal Window protocols for N = 2 and 3, a reasonable subclass of
Window protocols is defined. The finite horizon performance and dynamic
behavior of the protocols within this subclass are then investigated.
Also, the relationship between the finite and infinite user population
problems is examined by considering the limiting behavior of this protocol
subclaas as N— o,

Finally, Chapter 6 contains conclusions and a discussion of some 6!'

the problems that remain to be solved in the multiaccess area.



CHAPTER 2

PERFORMANCE MEASURES AND SOME PRELIMINARY ANALYSIS

Up to now our characterization of the performance of multiple access
protocols has been qualitative, based on the extent to which collisions and
empty slots during busy periods are avoided. In this chapter, this
characterization is made more precise by examining specific quantitative
measures of protocol performance. Such measures not only are needed for
analytical and numerical comparisons of the effectiveness of different
protocols, but are also used in optimizing the performance of a given
protocol. In the latter case, the performance measure acts as the
objective function in the problem of selecting the best protocol parameter
values and/or operational modes for the given system conditions (e.g.,

glven p and N).

2.1 Steady-State Performance Measures

Our main concern is with the long term behavior of multiaccess
protocols, and so we restrict our discussion to steady-state performance
measures such as throughput and average delay. In this section several
common measures of a protocol's steady-state performance are stated and
relationships among the measures are derived. From these relationships we
show that the measures are all equivalent in the sense that (1) each
performance measure may be expressed as a simple function of any one of the
others and (2) a protocol selected to be optimal with respect to any one
performance measure is optimal with respect to all the others. These
results depend only on the user-channel model specified in Section 1.2

(although they are valid independent of any assumed feedback to the users),

-30~




-31-

and on the existence of limits inherent with steady-state statistics.
Since our interest is with protocols for which the given steady-state
performance measures exist, this last assumption is by no means
restéictive.

Recall that with the single buffer assumption, each user independently
generates a packet with probability p at the beginning of each slot, but
will only accept a packet into its transmission buffer if the buffer is
empty (i.e., if in the previous slot the user either had no buffered packet
or had one but successfully transmitted it). A user whose buffer is unable
to accept an arriving packet is said to be backlogged and the arriving
packet is said to be blocked. Also, each packet in a transmission buffer
at the start of a slot is counted as being in the "system" during that
slot. With this terminology in mind, consider the following typical

steady-state performance measures of a multiaccess protocol:

B = Elnumber of backlogged users]

o
"

Pr{an arriving packet is blocked]
B = E{number of blocked packet arrivals per slot]
P_ = Pr[successful packet transmission]
N = E[number of packets in the system]

D = E[delay of a packet measured in slots from the
time the packet enters a transmission buffer
until the end of its successful transmission]
Note that under steady-state conditions, Ps is equal to the system
throughput (i.e., the fraction of slots containing successful packet

transmissions). Through simple probabilistic arguments we have
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where (2.1) and

Bu/N

Ns/ps
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(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.2) follow from the independent but homogeneous nature of

packet arrivals, (2.3) follows from the equilibrium condition: E[number of

successful packet transmissions per slot] = E[number of unblocked packet

arrivals per slot], (2.4) follows after noting that a user with a buffered

packet is only backlogged if it is unable to successfully transmit this

packet, and finally (2.5) follows from an application of Little's result.

We now show that for any given p and N, by knowing any one of the

above six performance measures we can easily determining the others.

Using

straightforward algebraic manipulations on Equations (2.1)=(2.5), we obtain

B
u
Pb =
B =
a
P =
S
N =
S
D £

(1 + 1/p(D=1))
B,/N

P,

N - B

N - P, (1-p)/p

pzN/;; - 1)

(2'6)

(2.7

(2.8)

(2.9)

(2.10)

(2.11)
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From these relationships, note that Bu is written as a function of only D
and each successive performance measure starting with Pb is written as a
function of only the previous performance measure. Hence it follows that
after obtaining any one of the given performance measures, the others are
easily determined by evaluating simple algebraic equations.

Baving shown the relationship among commonly used steady-state
performance measures, we now turn to the problem of selecting one for use
in comparing multiaccess protocols and/or optimizing the performance of a
given protocol. Given p and N, it is clear that_desirable protocols would

ninimize Bu’ Py Ba’ Ny or D, or maximize P_. The surprising result that

s
follows from the monotonicity of Equations (2.6)-(2.11) is that a protocol
that is optimal with respect to any one of the six performance measures is
optimal with respect to the others.

In summary, we have found that each of the given performance measures
may be expressed as a simple function of any one of the others, and that
the choice of one as a measure for comparing protocols or as an objective
function in optimizing the performance of a given protocol is arbitr#ry.
From an analytical point of view these results are significant in that it
is often true that a multiaccess protocol is more easily analyzed or
optimized with regard to one performance measure than the others.

Moreover, we need not be concerned about any trade=off situations where a
protocol is optimal with respect to one of the performance measures but not
with respect to another.

In the next two sections of this chapter we analyze the performance of
perfect scheduling and TDMA. These results will be needed later and are

included here because they serve to illustrate the usefulness of results

derived in this section,
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2.2 Perfect Scheduliqg Analysis

Perfect scheduling, where both collisions and empty slots during busy
periods are eliminated, represents a desired but unattainable level of
performance in a system with geographically distributed users and randomly
generated packets. As such, its performance provides a useful benchmark
for comparing the effectiveness of multiaccess protocols. In this section
we analyze the steady=-state performance of perfect scheduling for the
user-channel model of Section 1.2. The performance measure selected for
analysis is Ns, the expected number of packets in the systenm.

We model the system as a N+1 state Markov chain where the state is
equal to the number of users with packets. Under the assumed packet
generation process, state transitions occur at the beginning of each slot

and are governed by the state transition probabilities

Poy = (’;) 1:‘1(1-;)')"'J J=0,...,N
(2.12)
0 320,0..,1=2
Pijy = - - . 12 1,00.,N
4 (g_i:}) pF I ep™d 5o e,

where piJ is the conditional probability of moving to state j given the
system is currently in state i. From these transition probabilities, it
follows that the Markov chain is ergodic. Hence the limiting state

probabilities "1' i=0,1,...y,N, defined by

T,o= 1lim Pr(state = i at time-slot M]
M—+c0

—
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exist, are independent of any initial state probability distribution, and

are uniquely determined by the equations

N
Ty = 1};,‘0 A §20,1,e..,N

N
1 = 2: ﬂi
i=0

Due to the upper Hessenberg structure of the state transition probability
matrix [pijl. these equations may be solved in a straightforward manner. A
numerically stable algorithm, based on the Q=R decomposition of a matrix
[B1,G2), is given in Appendix A.

After solving for the limiting state probabilities, Ns is given by

Using Equations (2.6)=(2.11), the five remaining performance measures may
be computed. In Figure 2-1, all six performance measures are plotted
against packet generation probability p for N = 10, Figures 2-2 and 2-3
are graphs of average packet delay D vs, packet generation probability p
and average packet delay D va. throughput Ps’ respectively, for various
values of the population size N.

Also plotted in Figure 2-3 is the average delay vs. throughput
performance of an M/D/1 queue with a one slot service time (see, e.g.,

{k5]1), as characterized by

Ps

D = 1*.2(—1-—?:_)- (2.13)
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This is shown because it corresponds to the limiting behavior of perfect
scheduling for our model as N—w and pN € (0,1) remains a constant. To
see this, first note that in the limit the binomial transition

probabilities given in (2.12) become

e -
pOJ * Jl J - 0’1'-0.
(2.1%)
0 3 20,0.0,1=2
pii = )\J-i""e'x i21,2,...
(3-i+1)? J =z i=1,1=2,...

where A = pN. That is, the mmber of new packet arrivals accepted to the
system at the beginning of each slot is independent of the current state
and has a Poisson density given by

Ake=2
kt

Pr(k arrivals accepted] = k =0,1,...

Also note that in the limit there are no blocked packet arrivals, so that
A9 N = P, Fimilly observe that the transition probabilities given by
(2.14) correspond to those of the imbedded Markov chain characterizing the
state of an M/D/1 queue (with unit service time and arrival rate 1) at the
departure times of the system. Hence paralleling an analysis of the M/D/1

queue, we obtain (2.13).



2.3 TIMA Analysis

The performance analysis of TIMA for the user-channel model of Section
1.2 is easily obtained. Recall that with TDMA, each user is given
exclusive transmission rights to a slot once every N slots. It follows
that Ps, the system throughput, is equal to the probability that a user has

generated a packet by the start of its assigned slot. Hence we have

P, = 1- (1-p)¥ (2.15)

Using Equations (2.6)-(2.11), expressions in terms of only p and N may
be derived for the five remaining performance measures. For example, from

(2.10) and (2.11) we obtain
D = 1+N/Ps-1/p

and thus from (2.15), the average delay for TIMA is given by

1
D = 1+ - - (2.16)
1=(1-p)¥ P

Although one may derive (2.16) directly, it is not as trivial as
determining the throughput Ps and then applying the results of Section 2.1.

In Figure 2-4, the six performance measures are plotted against p for
N = 10. Figures 2-5 and 2-6 are graphs of D vs. p and D vs. Ps,

respectively, for various values of N.
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CHAPTER 3

MULTIACCESS PROTOCOL DEVELOPMENT

This ehaptei is concerned with the development of multiaccess
protocols for the user-channel model of Section 1.2. Illustrated in Figure
3-1 are the various classes of protocols examined. The Team protocols
constitute the most general class and are so named because to determine the
most efficient protocol within this class is a Team theoretic problem. The
Access Set and Extended Access Set protocols are two restricted but
reasonable subclasses of Team protocols allowing a classical sequential
decision making formulation of the multiaccess problem. Finally, the class
of Window protocols is a subclass of the Extended Access Set protocols
whose state space is finite; and thus, as we shall see, one to which known

optimization techniques can be applied. We begin our discussion with the

class of Team protocols.

Protocols Protocols

Extended Access Set
Protocols

Team Protocols

Figure 3=1 Classes of multiaccess protocols
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3.1 Team Protocols

Consider the underlying structure of the generic multiaccess protocol
for the user-channel model we have specified. At the beginning of each
slot, based on its current knowledge of the state of the system, each user
with a buffered packet must decide whether to transmit its packet 19 the
slot. A user's knowledge of the "state of the system®™ may, in general, be
based on all the information that is available to it, including the
feedback obtained from previous channel outcomes (common information) and
the past history of its own packet arrivals and transmission decisions
{(local information). Moreover, considering the performance measures we
have selected, a user's decision to transmit or not is made unselfishly,
with the goal being to optimize some global objective function. Such a
problem of sequential decision making in an enviromment of decentralized
decision makers with distributed information and a common objective
function may be formulated within the framework of Team theory [M2,H&].

The notion of a dynamic Team problem has been around for over 25 years
[M1]. Unfortunately, the class of problems is of sufficient complexity
that little progress has been made toward a general solution techrnique or
even in finding general properties of optimal solutions. Hence its value
to the multiaccess problem, even with the relatively simple user-channel
model of Section 1.2, does not go much beyond a conceptual level.

Without established solution methodologies, one is forced to restrict
the scope of feasible solutions to those classes to which known
optimization techniques can be applied. In the next three sections of this
chapter we examine three related subclasses of Team protocols: the Access
Set, Extended Access Set, and Window protocols. Each class can be modeled

as a Markov decision process [D2,H5,R4], but only with the latter can we



-46~

generally solve for the optimal protocol.

3.2 Access Set Protocols

The concept of an access set was intro.duced in describing the Tree
{C2] and Urn [X7] protocols in Section 1.4. The basic idea is that, at the
beginning of each slot, every user follows a common algorithm, based only
on common information, that specifies a subset of users which are given
permission to access the slot. Each user in this access set with a packet
then transmits its packet in the slot. The sequential nature of the
process is illustrated in Figure 3-2 where A(J) is the access set for slot
J» T(J) 1is the subset of users in A(J) which transmit packets in slot j,
and C(J) is the common channel observation which for our model corresponds
to the ternary channel outcome {0,1,>2} observed at the end of slot j.

The above structure imposes a form of coordination among the users in
which both common and local information are employed in a user's decision
to transmit a packet. The channel outcomes are common information and are

used in selecting the access set. The local information consists of each

‘ Slot J | T(J3) Channel
Transmission Feedback

A(Y) c(y

Decision
Algorithm

Fiﬂe 3=2 Structure of Access Set protocols
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user knowing whether it has a packet and thus whether to transmit given
that it 1s in the current access set. The use of the local information is
predetermined since by definition a user in the access set is required to
transmit if it has a packet. What remains to be specified is the decision
algorithm used to determine the access set A(J) at the beginning of each
slot j. Since both the algoritim and its inputs are restricted to be
common to all users, the problem may be formulated in the context of
classical (i.e., nondistributed) sequential decision mald.ng'[BZI .

With the classical sequential decision making formulation, the
information available to the decision process for selecting A(J) are the
previous observations C(1),...,C(J=1) and decisions A(1),...,A(J=1) along
with the given initial conditions of the system. The decision A(Jj) may, in
general, be a probabilistic function of this past history of the systen.
However, we require all users to compute the same access set A(Jj) for each
J, and hence any randomization in the decision by the algorithm must have
the same outcome at each user. This may be accomplished with the use of
identical, precomputed tables of samples from appropriate probability
distributions stored at each user; or, for a more practical method, one
might consider using a pseudorandom mumber generator with the same seed at
each user. Such a "centralized" structure for randomizing decisions is in
reality more general than allow;ng users to independently randomize their
own decisions. To see this, note that one type of centralized structure
consists of choosing an independent random decision for each user; in
effect each user has knowledge of the other decisions (and thus of the
access set) but does not use this imowledge. Hence, in searching for an
efficient Access Set protocol, we may restrict our attention to the class

of centrally randomized decisions which includes as a subclass all
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deterministic decision algoritims. Later when we examine the class of
Window protocols, we shall see that there exists an optimal Window protocol
whose decision process is deterministic.

The steady-state performance measures examined in Chapter 2 correspond
to the infinite horizon average expected value problem in the sequential
decision making nomenclature. Due to their equivalence, any ome of the six
may be chosen as the reward (cost) function for our problem. One that is
easily incorporated into the problem formulation we develop is Ps' the

system throughput. Defining the immediate reward

{ 1 if slot j contains a successful transmission
r(d) =

0 otherwise

we have, assuming the limit and expectation exist,

_um o1 | &
Py ® Mo W E[J; r(.j)] (3.1)

where the expectation is conditioned on both the selected decision
algorithm and the given initial conditions of the system. Adopting
notation from sequential decision making, we shall occasionally refer to
the decision algoritm as a policy and the decision A(J) as a cc;ntrol. The
problem of interest is that of determining, for any given p and N, a policy
which maximizes (3.1).

To develop a framework for finding an optimal policy, we begin by

defining the internal state vector u(Jj) = (u,;(3),...,uy(J)) vhere

1 1if user i has a packet at the beginning of slot }

0 otherwise

ui(J) =z {
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Note that u(j) simply indicates which users have packets ready for
transmission at the beginning of slot j. For the packet generation process
specified in Section 1.2, internal state transitions can be modeled by a
2N-state discrete-time Markov chain where the probabilities governing the
transition to u(j+1) depend only on u(j) and the control A(j). To better
understand this, consider the event sequence depicted in Figure 3-3. The
first stage corresponds to the end of slot J and the last corresponds to
the beginning of slot j+1. The transition from u(j) to u(j+1) occurs
between the first and last stages and may be divided into two steps.

First, depending on the access set A(])), at most one user will successfully
transmit a packet during slot J so that for at most one {, u,(J) goes from
1 to 0. Second, each user which does not currently have a packet
(including user i) will generate one with probability p. Hence we see that

transition to state u(j+1) is a probabilistic function of only the current

end of transmission for slot j

channel outcome C(J) observed

new packets access set A(j+1)
generated computed

beginning of transmission for slot j+1

Figure 3-3 Sequence of events from the end of slot J
to the beginning of slot j+1
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state u(j) and access set A(Jj); and thus u(j) is a controlled Markov
proceéa.

Note that the internal state u(j) is not available to the decision
process at the beginning of each slot j. Clearly if it were, then the
decision algorithm could be selected to achieve perfect scheduling of all
packet transmissions. The problem of optimally controlling the Markov
process u(j) may, however, be formulated in terms of a partially observable
Markov decision process [A2,S1]. This follows since after the decision
algorithm selects an aecesﬁ set A(J), an output C(3) € {0,1,>2} is
observed, a reward r(j) is earned, and a transition is made to a new
internal state u(j+1); where the observed output, reward, and transition
depend only on the current internal state u(j) and decision A(J). As
previously indicated, in addition to the given initial conditions of the
system, the information available to the decision process for selecting
A(J) are the previous channel ocutcomes C(1),...,C(J=1) and access sets
A(1),...,A(J=1). It is a standard result that the 2N-vector n(j), where
component ni(j) is the conditional probability of being in internal state i
at the beginning of slot j given the above previous inputs, outputs, and
initial conditions of the system, is a sufficient statistic for the
complete past history of the process. Moreover, from Bayes' Rule it
follows that n(Jj) may be expressed as a function of only N(Jj-1), A(j-1),
and C(J=1) and thus computed recursively. Hence, N(J) can be viewed as the
state of a discrete-time Markov decision process upon which the decision
A(J) is based.

The difficulty we now face in determining an optimal policy (i.e., a
function mapping n(Jj) into A(J) which maximizes (3.1)) stems from both the

type of performance measure we have selected and the new state space for
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the process. It is well known that if the state and control spaces are
finite, then an optimal policy for an igpfinite horizon average expected
value problem exists and is in the class of stationary deterministic
policies (i.e., the mapping is nonrandom and independent of J).' Moreover,
techniques such as Howard's policy iteration algorithm [H5] exist for
determining such an optimal policy. However, if the state space is allowed
to be infinite, then optimal policies may not exist or, when they do exist,
they may not be stationary or deterministie [B2,D2,R4]. Now although the
internal state u(j) is from a finite state space (having 2N elements), the
state space, H, corresponding to the new problem is generally infinite. To
see this, consider the case where the decision algoritm always selects
user 1 (i.e., A(J) = {1} for all j). For this policy it follows that at

the beginning of slot j, each user i independently has a packet with

probability P1 where

sp i=1
P, =

i- '1 - (1=p)d

-
"

2,.00'“

and hence H is at least countably infinite.

3.3 Extended Access Set Protocols

It is of value to note that the class of Access Set protocols may be
extended while maintaining the classical sequential decision making
formulation of the multiaccess problem. Specifically, one might consider

controlling packet transmissions via a time interval mechanism in addition

® This is assuming that we have control over the starting state of the
system. Without this assumption we would require an additional condition
such as that every stationary policy results in an indecomposable Markov
chain (i.e., the chain contains exactly one irreducible set of states,
the rest being transient).
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to the access set. That is, a user's packet is transmitted only if the
user is in the access set and the packet was generated in some globally
defined time interval (or intervals), where both the access set and time
interval(s) are computed by each user according to scme common algorithm
based only on common infomation.'

To see how such an extension to the Access Set protocol might be
useful, consider the case of three users where u(Jj) = (0,1,1) and A(J) =
{1,2,3} so that the channel outcome C(j) indicates a collision. Now
suppose that user 1 generates a packet at the beginning of slot j+1, so
that u(j+1) = (1,1,1), and that the decision algorithm sets A(J¢1) = {1,2}.
There of course will be another collision and user 1 knows this a priori
since from the previous slot it was able to determine that both users 2 and
3 have packets. Hence, even though user 1 is in the access set, by not
transmitting it will prevent a collision and ensure a successful
transmission. This problem may be avoided with the addition of the time
interval mechanism. Specifically, by having the decision algorithm also
select [1,)] as the time interval for slot j+1, the packet generated at the
beginning of slot j+1 by user 1 would not be allowed to be transmitted in
slot Jj+1 and hence no collision would ensue.

The additional control provided by the time interval mechanism allows
further flexibility in the design of a multiaccess protocol over that of
the basic Access Set structure, without precluding a Markovian decision
formulation of the problem. One may, for example, take the internal state
to consist of the set of users with packets and how long each such user has
had its packet awaiting transmission. Then, as we did with the Access Set

protocols, the decision making may be formulated in terms of a partially

® A variation on this extension would replace "and" with "or".
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observable Markov decision process. Such an extension does, of course,
further complicate the already difficult problem of finding an optimal
protocol. In the next section, however, we examine a subclass of these
Extended Access Set protocols where the Markov decision formulation has a
finite state space, and thus one for which an optimal policy can be
determined.

Finally, it is worth noting that, aside from variations in the assumed
feedback, many of the currently proposed multiaccess protocols may be
viewed as being from the general class of Access Set or Extended Access Set
protocols. Two simple examples are TDMA [M3] and slotted Aloha [K3]. With
both protocols there is no assumed feedback of common information to the
users and so the decision process runs open loop. The decision process is
deterministic for TIMA: access sets contain one member and users are
assigned to access sets in a round-robin fashion. For slotted Aloha, the
decision process is random in the distributed sense: each user
independently decides by "flipping a biased coin"™ whether to belong to the
access set.” The Urn protocol [K7] and especially the Tree protocol [C2]
are more in line with the type of protocol we have been discussing, since
with both, the access set is selected based on the feedback of common
information to all users. With the Urn protocol the access set is selected
in a centrally randomized fashion. With the Tree protocol the decision
process is deterministic, and since, with its frame structure, packets
generated during one frame cannot be transmitted until the next, the

protocol is a member of the Extended Access Set protocolsa. Lastly,

8 If the protocol permits those users which have generated packets at the
beginning of the slot to transmit with probability one, then we may view
the protocol as being a member of the "or" version of the Extended Access
Set protocols.
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although designed for an infinite population model, Gallager's multiaccess
protocol [G1] selects users to transmit by a time interval mechanism alone,

and hence may be considered a member of the Extended Access Set protocols.

3.4 Window Protocols

The class of protocols discussed in this section use a windowing
operation for selecting the access set. Specifically, the N users are
orderea (algorithmically speaking) on a circle as illustrated in Figure 3-4
and the access set is selected by a window that rotates around the cirecle.
Tha't is, at the beginning of each slot, the access set for that slot
consists of all users within the window (e.g., in Figure 3-4, A(J) =
{35¢.056}). As for the movement of the window, if a collision occurs, the
tail of the window remains fixed and the window size decreases. After an

empty slot or a success, the tail of the window advances along the circle

WINDOW

Figure 3-4 Selection of an access set via a windowing operation
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to the head of the previous window with the window size possibly changing.
Note that the protocol is inherently fair in that for each revolution of
the window every user is given the opportunity to successfully transmit one
packet. Also, the window approach to selecting the access set simplifies
the decision algorithm, since the only decision to be made at the beginning
of each slot is the window size. As an indication of its intuitive appeal,
this basic windowing concept was independently proposed as an extension to
the Tree protocol by Gallager [G1] and the Urn protocol by Kleinrock and

Yemini [K7].

3.4.1 Protocol Description

The class of Window protocols defined in this section have additional
restrictions on how the window size changes and, using a time interval
mechanism, on which packets generated by users in the window are allowed to
be transmitted. These restrictions actually only occur after a collision,
whereupon the operation of the window protocol enters a conflict resolution
mode. It is inatructive to consider first the situation where there are no
collisions and then afterward the general case.

Suppose each access set selected by the window results in either a
successful frananisaion or an empty slot. It follows then that each user i
will independently have a packet with probability

T
Py=1 - (1-p) ! (3.2)

where T, is the positive integer number of slots since user i was last
included in the window. If we continually renumber the users so that user
1 is always the first user in the window and user 2 is the next clockwise

to 1 and so on, then clearly
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T1ZT22---ZTN (3.3)

30 that

P12P22- . czpu

Hence each user in the window has at least as high a probability of
possessing a packet as any user not included in the window. As evidence of
the reasonableness of selecting the access set through a window protocol,
it is shown in Appendix B that the subset of the N users which maximizes
the probability of a successful transmission is of the form {1,2,...,k} for
some 1 < k < N (assuming that each user independently has a packet with
probability P, and Py 2 P52 . . . 2P,

When there is a collision, the protocol enters a conflict resolution
mode (steps 2 and 3 in the description). During this phase a restricted
class of users R is specified before the start of each slot. The
restriction is that any packet a user generates while in R cannot be
considered for transmission until after the user leaves R. This constraint
on the protocol is made to maintain a tractable state space, but is also
intuitively reasonable since allowing new packets to enter the conflict
resolution process can only increase the uncertainty as to which users were
originally involved in the collision.

The generic operation of the Window protocol is given in algorithmic
form in Figure 3=5. For notational convenience we number the users from (
to N-1 (there is no renumbering in this description as the window changes),

and we define the subset of users
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step 1. W =1[1,j], R= 0
- if empty or success
d.a. selects m € {1,2,...,N}
1 — 41
J—J+nm
g0 to step 1

if collision
d.ao Selects k € {i,i‘.‘"-.- .J-1}
go to step 2

step 2. W= [i,k], R = [i,]]
if empty
1—ket
d.a. selects k € {i,i+1,...,3=1}
go to step 2

if success
1——kel
d.a. selects k € {1,i+1,...,]3}
g0 to step 3

if collision
J—k
d.a. selects k ¢ {i’i"'1,oo.,d-1}
g0 to step 2

Step 3- 'll = [i,k]’ R = [i,d]
if empty
1—k+t
d.a. selects k € {i,i+¢1,...,]3}
g0 to step 3

if success
d.a. selects m ¢ {1,2,...,N}
1—Lkei
J—kenm
go to step 1

if collision
J—k
d.a. selects k € {i,i+1,...,3=1}
go to step 2

Figure 3-5 Window protocol operation



-58-

i 1=
[1,1] s 1’1*1,000,1 1 < j
1’1"’1,.0.,"‘1,0,1,...,3 . i > J

The first line of each of the three steps denotes the control as specified
by the window W and restricted class R (# denotes the empty set).
Following this is the action taken by the decision algorithm (d.a.) for
each of the possible channel outcomes {empty, success, collision}. The
process starts at step 1 with no outstanding collisions to resolve, and all
additions (+) are computed modulo N. In reading through the algorithm, it
is helpful to keep in mind that at step 2 and step 3 there are,
respectively, 2 2 and > 1 users in R with packets. A sequence of feasible
window W and restricted class R changes is illustrated in Figure 3-6;
where, for convenience, the circle is cut between users 0 and N=1 and
extended a].oné a straight line, and packet arrivals and departures to a
user's buffer are denoted by arrows above and below the line, respectively.
Note from Figure 3-5 that an empty slot or a success always causes the
tail of the window to advance to the head of the previous window, and a
collision always causes the tail to remain fixed and the window size to
decrease. There are no restrictions on how much the window size reduces
following a collision, and the only real restriction on the selected window
size following an empty slot or a success occurs when entering step 3.
Here the protocol requires that W ¢ R, We conjecture, however, that this
restriction results in o degradation in performance for this class of

protocols.

L T e R
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USERS
0 1 2 3 45 6 7 8 9 101112 131415 * -+ - N-1
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Figure 3=6 Example of Window protocol operation
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3.4,2 Protocol State Space

The positive integer variable T;, introduced in (3.2) for the case of

no collisions, is a convenient mechanism for tracking the system state upon
which the window size decisions are based. It is updated for each user i
at the end of every slot following the observation of the channel outcome.

The update rules are given in Figure 3=7 where
T = 1 + number of slots since R last became nonempty (3.4)

Now from the protocol description it follows that each user 1 ¢ R
independently has a packet with probability Pi glven by (3.2) where Ti is
determined from the update rules given in Figure 3-7. This is true even
though, after a success or collision at step 3 when k # j or a collision at
step 2, the users in the set [k+1,Jj] = R-W are removed from R before being
processed' by the window. To see this, consider the case of a collision at
step 1 followed by another collision at step 2. Letting [i,j] > m denote

the event that the user set [1,])] has > m users with packets, we have

Pr{lk+1,J]1 2 m l (1,31 2 2, [1,k] 2 2}
Pr{lk+1,3] > m | [1,k] > 2} (3.5)

Pr{[k+1,J] 2 m} (3.6)

where (3.5) follows since [1i,k] > 2 implies that [1,3] 2 2, and (3.6)
follows from the independence of the users in the disjoint sets [i,k] and
[k+1,j]. Hence the statistics associated with users [ke+1,J] after W =

(i,k] (but before the T;'s are updated) are identical to what they were

immediately before the users entered R. A similar argument can be made for

® A user is "processed" when the tail of the window advances past the user
on the cirecle.
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1e¢W,1¢R

ieWwW,1¢ R
if empty or success

Ti‘-1

if collision
no change

i1g W, 1 €R
if success or collision at step 3 or collision at step 2
Ti‘_' Ti + T

otherwise
no change

1ie W, 1€R )
if empty or success where user i did not transmit
T
i

if empty or success where user i transmitted
T o
i

if collision
no change

.—-t

-1

Figure 3=7 ‘1'1 update rules for Window protocol

the case of a success or collision at step 3 when k £# j. This feature of

the protocol is also present in an analogous fom in the multiaccess

protocol devised by Gallager [G1], and a simpler version exists in the

group testing algorithm of Sobel and Groll [S2] which has recently been

applied to the multiacdess problem by Towsley and Wolf [T2].

Now, although the independence property associated with each user

1 ¢ R does not hold for users that are currently in R, their contribution

to the system state is easily characterized by '!'1 for each { € R, the
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current value of T (generally needed to update Ti when user i leaves R),
and whether there are > 2 (when at step 2) or > 1 (when at step 3) users in
R with packets. Hence when R is empty (i.e., at step 1 of the protocol)
the system is completely characterized by the vector (T1'T2""'TN)3 and
when R is not empty, the characterization requires, in addition to
(T44TpseeesTy), the set R, the value of T as defined by (3.4), and whether
there are 2 1 or > 2 users in R with packets,

There are two aspects of the Window protocol to be discussed before
continuing with the state space discussion. First, note in case (i) of the
Ti update rules that to compute the new value for Ti following a successful
transmission requires the identity of the user that transmitted the packet.
This 1s typically not a problem for a real communication system, but
nevertheless represents additional input to the decision process in order
for it to keep track of the system state. Second, also from case (4) note
that to maintain the ordering of the Ti's as specified in (3.3) (assuming
the remumbering of users which gives rise to (3.3)), and thus in a sense
the fairness of the protocol, requires that users be occasionally reordered
on the circle. For example, consider the case of three users where at step
1, u(J) = (1,0,1) and the following sequence of window decisions and

channel outcomes occur:
Wz{1,23}=laW:= {1} SeW=z {2,3} —S o

Note that after the second success the protocol will be back at step 1 and

(71,T2,T3) = (2,3,1). Thus, to be fair in the sense of (3.3), users 1 and
2 should be interchanged on the circle before the start of the next slot.
Both of the above complications result from the packet transmission

restrictions that stem from R.
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Let 61, GZ’ and 03 denote the three classes of states corresponding
to, respectively, steps 1, 2, and 3 in the Window protocol description. To
simplify the state space, we dynamically renumber the users so that user 1
always corresponds to the first user in W and user 2 is the next clockwise
to 1 and so on. Also, to maintain the fairness of the protocol, when

necessary we reorder the users on the circle upon entering step 1 so that

Hence, corresponding to the three steps in the Window protocol description,

we have the following three types of states:

G, state: (T1,TZ,...,TN)

G, state: (T Tz,...,TN;Z,!,T), Lef{2,3,...,N}

2 1’

G, state: (TysToreeesTyi3s2, D, 2e€{1,2,...,N-1}
where R = {1,2,...;1} and T is measured relative to the end of the slot
during which the system is in the defined state so that T 2 2. Note that
when R contains exactly two users at step 2, we have that each user
i € {1,2} has a packet awaiting transmission with probability one,
independent of the specific values of T1 and T2' Likewise when R contains
exactly one user at step 3, user 1 has a packet with probability one
independent of T1. Hence, to further simplify the state space, we denote
the state for these specific step 2 and step 3 cases by ( «, w,Ts,....TN)
and ( w,Tz,T3,....TN). respectively.

Now suppose that all users have packets, and the window size is set to

N and only reduced by 1 after each collision. From this worst case

analysis we have T1‘$ N2 for all i. Hence it follows that the state space



-54~

for the Window protocol is finite, although increasing exponentially with
N. Consequently, an optimal policy for the Window protocol exists and is
in the class of stationary deterministic policies. Furthermore, we show in
the next section that this policy exists independent of the system starting

state.

3.4.3 Protocol Properties

In this section we briefly summarize some of the important proberties
of the Window protocol. The first four properties follow from the
discussion in the previous two sections. The fifth and last property
concerns the Markov chain structure for the protocol and is accompanied by

a proof.

Property 1: The Window protocol is fair in the sense that the access set
selected by the window alwayé contains those users who have waited the
longest since last being allowed to transmit. Note that due to the
homogeneous nature of the user population, these are also the users who are

most likely to have packets.

Property 2: The Window protocol has a maximum throughput of 1.0, for it is

equivalent to TDMA when the window size is set to one.

Property 3: The operation of the Window protocol is at all times stable in

the sense that for any p € [0,1], the average delay D satiafies

D £ maximum packet delay < N2
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Property 4: The Window protocol state space is finite; hence an optimal
policy exists for the infinite horizon average expected value problem and

is in the class of stationary deterministic policies.

Property 5: (a) Not all stationary deterministic policies for the Window
protocol correspond to indecomposable Markov chains.

(b) An optimal policy exists whose Markov chain is indecomposable.

(c) If an optimal policy has more than one irreducible set of states, then
the throughput performance associated with each such set must be the same.

Hence the existence of any optimal policy does not depend on the system

starting state.

Proof: Part (a) may be verified, after reading Section 4.3, by considering

the following policy associated with the three user problem:

(1) Wy S W, =W s 3, Wg = Woq =W, S 2, Wig = Wy = Wag = 1
(2) Wy T Wg T2, Wi o=w, =1

where the window size associated with each of the remaining states is
arbitrarily chosen. After examining the tree in Figure i-5, it is clear
that the states associated with part (1) of the policy and those associated
with part (2) form separate irreducible classes.

For part (b) of Property 5, suppose that an optimal policy has at
least two sets of irreducible states. Let Pa(i) denote the system
throughput given that the process starts in a state in irreducible set i,
i=1,...,m Also, without loss of generality, let Ps(1) 2_Ps(2)‘2 . e o
2 P (m). Note that the Window protocol can remain in steps 2 and 3 for

only a finite period of time before entering step 1 and hence a G1 state.
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Furthermore, assuming that p < 1, there is a nonzero probability that there
will be no collisions for N consecutive slots, implying that each

irreducible set of states has a G1 state of the form

(T,...,T,T—1,...,T—1,...,2,...,2,1,...,1)
“mm— S — p T e . A e, ——

!

Lp Ta1 °°° L £

T
where T € {1,...,N} and 2: zd = N. Now let 11,...,!T take on the values
J=1 '

associated with such a G, state in irreducible set i. For each irreducible
set i, 1 = 2,...,m, we choose any G1 state, call it S(1,T), and set its
window size ¥s(1,1) = i1 Letting S(1,T-1) denote the G, state reached
from S(i,T) after an empty slot or a success, we set "S(i,T—T) = Ly qe
This is continued until S(i,J), 1 £ j £ T-1, is either in irreducible set 1
or 1s a transient state from which only set 1 states are accessible. It
follows that the new policy formed by the end of this procedure will have
only one irreducible set of states (that being the original class 1), and
will be optimal, having a throughput of Ps(1)°

Part (c) also follows from the above argument. Specifically, if Ps(1)
> Ps(i) for any irreducible set i € {2,...,m}, then the throughput
associated with starting the process in a state in set i could be increased
to Ps(1) through the given procedure; implying that the original policy is
suboptimal.

Q.E.D.
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CHAPTER 4

WINDOW PROTOCOLS FOR SMALL USER POPULATIONS

In this chapter we construct Window protocols for the user population
sizes N = 2 and N = 3. For each population size we begin by first
determining the system state space. Then, the associated Markov decision
structure 1s derived and Howard's policy iteration algorithm [H5] is used
to determine an opéimal policy for each value of the packet generation
probability p between 0 and 1. This is followed by an examination of the
steady-state performance of Window protocols whose policies are based on
optimizing other infinite and finite horizon objective functions. We begin

by more precisely formulating the optimization problem and specifying the

other objective functions that are considered.

4.1 Preliminaries

As shown in Section 3.4.2, the Window protocol state space is finite
for any finite N; allowing us to restrict our search of an optimal Window
protocol to the class of stationary deterministic policies. Such a policy

P consists of assigning to each state Si a window size w; where

{1,2,...,N} for Si € G1
12 ene - t 3 €
v, € {1,24000,0=1} or 8, G2

{1,2,.?.,1} for Si € G3

and R = {1,2,o0001}
Let X(N) denote the Window protocol state space for the population

size N and s(N) denote the number of states in X(N). We have associated

with each policy P = ["1’"é"“'"s(N)] a Markov chain defined on X(N) with

-§7 =

-
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stationary transition probabilities pij("i) and expected immediate rewards
ry(wy); where, given the system is in state S; and policy P specifies
window size vy, pij(wi) is the conditional probability of moving to SJ and
Pi(wi) is the conditional expected reward earned. Taking the system

throughput P, as our steady-state performance measure, we have
ry(wy) = Prlsuccessful transmission|S,, w] (4.1)

Both pij("i) and ri(wi) are rational functions of p that are easily
determined for any state Si and window size wy.

Now as indicated in Section 3.4.3, the Markov chain corresponding to a
policy P may have more than one irreducible set of states. From Markov
decision theory we have that the throughput performance of policy P =
[w1’"2""'"s(N)]' glven that the system started in a state in irreducible
set I (or started in any transient state from which only set I states are
accessible), may be written as

s(N)
PS(P,I) z 'QE; "i(P’I)ri("i) : (4.2)
where {ri(P,I)} is the stationary probability distridbution of the Markov

chain defined by P which satisfies

s(N)
WJ(P,I) = Z wi(P,I)piJ(wi)
3&?)
1 = T.(P,I)
i=1 i
and
(P I) = O for all 1 ¢ I
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If the Markov chain has only one set of irreducible states (i.e., is
indecomposable) or all irreducible sets have the same throughput, then the
performance of policy P is independent of the system starting state. If
the chain associated with P has more than one set of irreducible states
with different throughputs, then it is of course desirable to start the
system in that set I which maximizes (4.2) or to change the policy to
ensure entrance into that set. From Property 5 of Section 3.4.3, we know
that this is not a concern for any optimal Window protocol policy.

Letting f(si) denote the number of possible window size decisions

associated with state S,, it follows that there are

s(N)
]"'[ £(s,)

1=1

feasible policies to consider. With Howard's policy iteration algorithm
[H5], an initial policy is selected (e.g., the policy which maximizes the
expected immediate reward Py(wy) for each state S;), and then with each
successive iteration of the algorithm a better policy is found until
eventually no improvement can be made in the steady-state performance of
the system for any starting state. A Fortran code of the policy iteration
algorithm for the three user problem is given in Appendix C.

As mentioned, we are also interested in determining the steady-state
performance of Window protocols whose policies are based on optimizing
other infinite and finite horizon objective functions. Specifically, we
exsmine one other infinite horizon and four finite horizon performance
measures. The infinite horizon performance measure is the average rate at
which the window advances along the circle, denoted by rw. The expected

immediate reward for r" is given by

p—— -
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ry(w) = (1 - Prla collision | Syy wyl)ewy (4.3)

The performance measure I is not equivalent to the six steady-state

performance measures defined in Section 2.1, and so any policy based on

maximizing r will, in general, be suboptimal with respect to these other

measures.

The four finite horizon performance measures are related to Pa and r...
The first two correspond to a horizon of one slot and are simply the
expected immediate rewards for P, and r, as defined by (4.1) and (4.3),
respectively. That is, for each state Si € X(N), the window size wy is
chosen to maximize r,(w,;). We expect, and shall see in the next two
sections, that the policy associated with any reasonable Window protocol
will switch to TIMA (i.e., the window size associated with the G1 state
(N,N=1,...,1) switches to 1) for sufficiently large p. Using the results
of the Corollary that follows Theorem 2 in Appendix B, we have that the
value of p at which the (4.1) criterion causes a switch to TIMA satisfies
i~ (1=p)¥ = 1/2, which implies that p = 1 - (1/2) VN,

For the last two performance measures, the finite horizon is that of a

conflict resolution period (CRP). We define a CRP to be the interval of

time between two successive entrances to step 1 of the protocol, where an
empty slot or a success while at step 1 is considered a self-transition
with a CRP of one slot. The two performance measures are the system
throughput and average rate of window movement for one CRP. The throughput

associated with a CRP which starts in G1 state Si is given by

E(number of successes in CRP | CRP starts in § 4]
Elduration in slots of CRP] CRP starts in Si]

?s(i)

b v ¢
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and similarly for the average rate of window movement we have

E{number of users processed in CRP | CRP starts S, ]
?w(i) ® Elduration in slots of CRP | CRP starts in S o

11

The optimization problem is that of choosing the window size for si and

each of the G, and G, states encountered during the CRP to maximize P (1)
or ?;(1), as the case may be. This may be accomplished using the standard
finite horizon dynamic programming algorithm [B2]. However, for N = 2 and
N =z 3 we shall see that the optimal window size decision for each (}2 and 03
state remains the same for all p € [0,1]. The window sizes for the G2 and
the GB states are set to these optimal values, leaving only the window size
at the beginning of each CRP (i.e., for each G1 state) to be determined.

In the next two sections of this chapter an optimal Window protocol
and its steasdy-state performance are determined for the user population
sizes N = 2 and N = 3, and then compared to the performance of Window

protocols whose policies are derived from the above performance measures.

4.2 Two User Case

To determine the state space for N = 2, we take the system starting
state to be the generic G, state (T{,Tp). As illustrated in Figure 4-1, we
then construct the state space X(2) by first determining which states are
accessible from (T1,'r2) for each possible window size decision and channel
outcome. For any such state not in G1, we repeat the process until each
leaf of the constructed tree corresponds to a G1 state. Note from Figure

4-1 that for any given starting state (T,,T,), after at most two slot-times

the system will be in one of only four possible states:
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s1 2 (1, 1) 82

(o0, )

53 = (co, 1) Su (2, 1)

These four states are taken to comprise the system state space X(2).

Note that states 52 and Sy correspond to, respectively, G, and Gy
states; and hence, as illustrated in Figure 4-1, "2 =y = 1. Thus we have

only four feasible policies to consider:
P e {[1,1,1,1], [1,1,1,2], (2,1,1,1], [2,1,1,2]}

The transition probabilities pij("'i) and the (4.1) expected immediate

rewards Pi(wi) are summarized for each feasible Wy in Table 4=1. Note from

either Figure 4-1 or Table 4-1 that each of the four feasible policies
corresponds to an indecomposable Markov chain and, therefore, we need not

be concerned about the particular starting state of the system.

3.2.1 Optimal Protocols for N = 2

Either through an exhaustive search of the four feasible policies or
an application of Howard's pclicy iteration algorithm, an optimal policy

» s 8 ® 8
P = [w1 Wy 9W oWy ] for the two user case is found to be

o L2121 for 0<p<s

P = (4.4)
I

[1,1,1,1] or [2,1,1,1] for s <p £ 1

where s = 0.3473 is the solution to 1 = 3s + a3 = 0 for s € [0,1]. The

performance of this optimal protocol as characterized by Ps is given by

P(Z'PZ+P3)/(1+p2+p3) for 0 L p <&s

8 1 = (1=p)2 for s <p £ 1
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From (2.10) and (2.11) we obtain
D=1 +N/Ps-1/p

and thus the optimal performance in terms of the average delay D is given

by

1+P(3+p)/(2-92+p3) for 0 Lp<s

1+ 1/(2 - p) for s <p <1

Plotted in Figures 4-2 and 43 are, respectively, the D vs. p and D vs. Pa
performance of the optimal protocol. Also shown is the performance of

perfect scheduling for N = 2 where, following the development of

1w Pyy(¥y) Pial¥y) Py3l¥y) Pyyvy) ryw)
1 1 0 0 0 1 P
2 1-p2 p2 0 0 2p(1-p)
2 1 0 0 1 0 1
3 1 0 0 0 1 1
4 1 0 0 0 1 1=(1-p)2
2 1ex x 0 0 y

x = p(1 = (1-P)2) = 2p2 - p3

v = p(1=p)2 + (1=p)(1 = (1=p)2) = 3p = 5p% + 2p3

Table 4=1 Transition probabilities and (4.1) expected
immediate rewards for N = 2 state space
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Section 2.2, we have

P (perf. sch.) = p(2 - 2p+ pz)/(1 - p+ p?)

D(perf. sch.) = 1 + p/(2 - 2p + p2)

Note from (4.4) that for small packet generation probability p
(specifically, p £ 0.3473) a window size of 2 is used by the optimal Window
protocol except following a collision, whereupon the window size is reduced
to 1 for the next two slots, allowing each user to transmit alone. When p
exceeds 0.3473 the control switches to a constant window size of 1; this,
of course, is just TDMA.

Also examined for the two user case was a slight generalization of the
Window protocol structure as defined in Section 3.4.1. Specifically,
following the first successful packet transmission after a collision
(1.e., when in S;) we also permitted a window size of 2 (i.e., wy € {1,2}).
This does not change the state space X(2) and, as one might intuitively

expect, results in no change in the optimal policy as given by (4.4).

4.2.2 Suboptimal Protocols for N = 2

The average delay performance of Window protocols derived by
optimizing the five performance measures defined in Section 4.1 are shown
in Figure U4-l, along with that of the optimal Window protocol. Note in
each case that the policies given in (4.4) are also used in each of the
five suboptimal protocols, the difference is the value of p at which the

protocol switches from one policy to the other.
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4.3 Three User Case

We construct the state space for N = 3 in the same manner used in the
previous section for N = 2. Shown in Figure 4=5 is the tree of possible
state transiéiona starting at the root with the generic G1 state
(’1'1,'1'2,1'3). It follows from this tree that the state space X(3) contains
the 23 states listed in Table 4-2. The transition probabilities pij("i)
and expected immediate rewards r, (w,) are easily determined for each state

S; and window size decision Wy

4.,3.1 Optimal Protocols for N = 3

A numerical application of Howard's policy iteration algorithm to this
problem (see Appendix C) yields the optimal policy given in Table 4-3.

Note that as the packet generation probability p varies from 0 to 1, the
optimal control of the Window protocol switches among six different
policies, It 1is easily verified that each of the six policies corresponds
to an indecomposable Markov chain. The recurrent states (i.e., those
belonging to the single irreducible set) for each policy are designated in
Table 4=3 by a line under the corresponding window size decision. All
other states for each given policy are transient. The steady-state
performance of these six policies is shown in Figures 4-6 and 4-7, where
the switching points are indicated by vertical lines.

There are a few important points to note concerning the window size
decisions made by the optimal Window protocol given in Table 4-3. First
note that if there resuits a collision after the window size is set to 2,
the window size is reduced to 1 for two consecutive slots as in the case of
N = 2, Next note that if there results a collision after the window size

is et to 3, the window is reduced to size 1, allowing the first user to
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G, G, G3
s, =01, 1,1 Sg =(1,1,1;2,3,2) s17=(1, 1, 1 3, 2, 3)
S,=1(2, 1, 1) Sy = (2, 1, 1; 2, 3, 2) Sig = (201,153, 2,3)
s3 = (2, 2, 1) S,0= (202,15 2,3,2) Sig ® (3, 1, 15 3, 2, 3)
S, =032, 1 S,y % (32,15 2,3, 2 Sy = (©s2, 1)
S = (4,2, 1) S5 (42,15 2,3, 2) Sy, = (0,3, 1)
Sg = (%, 3, 1) 313 = (8, 3 ,1; 2, 3, 2) Sy, * (o0, 3, 2)
S7 = (5, 2, 1) Sﬂl = (5,2, 1; 2, 3, 2) 823 = (o, 4, 1)
s15 = (0, 0, 2)
316 = (o, o, 3)

]
w

Table 4-2 Window protocol state space for N

access the channel, and then if the first user sends a packet, the window
is increased to size 2 allowing the remaining two users to access the
channel. This holds for all p € [0,1], so that in Figure 4-5 the window
size 2 branch emanating from state ('r1,'r2,'r3;2.3 ,2), and the window size 1
branch emanating from (Ta,'r3,1;3,2,3) are never taken by the optimal
protocol.

Finally, although not shown in Table U4-3, a direct application of
Howard's policy iteration algorithm actually results in the optimal policy
switching 17 times as p increases from 0 to 1. Specifically, the window
size decision associated with each of the G1 states switches first from 3
to 2 and then from 2 to 1, and the window size decision associated with
each of the G3 states 517, 318’ and 819 switches from 2 to 1. However,
only the five policy changes indicated in Table 4-3 affect the class of

recurrent states and, therefore, result in an alteration of the

-—— -
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steady-state performance of the system. This decrease in window size as
the packet generation probability p increases is illustrated in the policx

changes in Table 4-3 for states Su and Sg. Note that this type of behavior
is expected in a system that must trade off the undesirable effects of both

collisions and empty slots during busy periods.

4.3.2 Suboptimal Protocols for N = 3

The average delay performance of Window protocols based on optimizing
the five performance measures defined in Section 4.1 are shown in Figure
3-8, along with that of the optimal Window protocol. For the most part,
each of these protocols switches among some subset of the six policies

given in Table 4-3,

4.4 Four and More Users

In theory, the optimization problem for N 2> 4 may be handled in the
same fashion as the N = 2 and N = 3 problems. The difficulty encountered
is one of computational complexity: the state space increases exponentially
with the population size N, For N = 4, the state space constructed in the
same manner as for N = 2 and N = 3 has 223 states; an order of magnitude
greater than the three user problem.

One may reduce the size of the state space by placing further
restrictions on the allowable window size decisions. From the optimal
Window protocols derived for N = 2 and 3, we have that the window size
decisions for steps 2 and 3 are independent of p and the specific G1 state
from which step 2 was entered, depending only on the optimally selected
window size for step 1 (immediately before going to step 2) and the

subsequent channel outcomes while in steps 2 and 3. Hence one might
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consider fixing the way in which conflicts are resolved, leaving only the
window size decisions for step 1 (i.e., the G1 states) to be determined.
It would, for example, be reasonable to simply divide the window in
half after a collision, and if after doing so there is a success in the
first half, to then have the window include all of the users in the second
half. Doing so for N = U4 reduces the state space from 223 to 72 states.
Given that the transition probability matrix associated with any policy is
sparse (i.e., each row has at most three nonzero elements), the 72 state
problea may be a reasonable one to solve. However, as we increase N
further, the optimization problem quickly gets out of hand. For this
reason we turn to an approximate analysis for the case of large N in the

next chapter.



CHAPTER 5

WINDOW PROTOCOLS FOR LARGE USER POPULATIONS

In this chapter we consider the problem of designing Window protocols
for the important case of a large user population. Of course, the immense
state space characterizing this situation prevents an exact determination
of an optimal policy. However, guided by what we have determined for small
user populations and by what is known about infinite user populations, we
construct and analyze Window protocols which perform quite well for large

but finite N.

5.1 A Subelass of Window Protocols

Based on the properties of the optimal Window protocols for N = 2 and
N = 3, we introduced in Section 4.4 the notion of a reasonable subclass of
Window protocols. This subclass places the following two réstEictiona on
the Window protocol structure defined in Figure 3-5: (1) the window W
selected at step 2 consists of the users in the first half of the
restricted class R (more precisely, the first Unllzj users, where |R|
denotes the cardinality of set R and ij denotes the largest integer less
than or equal to x), and (2) at step 3, W = R. The operation of this
subclass, which includes the optimal Window protocols for N = 2 and 3, is
given in Figure 5-1. Note that the window size decisions for steps 2 and 3
(i.e., the conflict resolution mode) depend only on the selected window
size for step 1 (immediately before going to step 2) and the subsequent
channel outcomes while in steps 2 and 3. Hence, the only unspecified
aspect of the protocol is that of the window size decisions for step 1. It

is through the step 1 window size w that we have control over the operation

-88-
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step 1. W =1[4,5], R=0
- if empty or success
d.a. selects w e {1,2,...,N}
1 oe—J+1
J—J+w
g0 to step 1

if collision
k—1 + L(J-1+1)/2_|
go to step 2

step 2. W = [ivk]y R= [iiJ]
E— if empty
1—k+t
k—1i + [(j=1+1)/2]
go to step 2

if success
{~—k+t
go to step 3

if collision
J—k
k—1 + L(J-i+1)/2_]
go to step 2

3tep 3. W= [igdlv R = [i,J]
if success
d.a. selects w € {1,2,...,N}
1 —Jj+1
J—Jew
go to step 1

if collision

k—1 + [(J=1+1)72]
go to step 2

Figure 5-1 Operation of Window protocol subclass
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of the protocol.

Naturally, it is important that the performance achieved by the best
protocol within this subclass is at least close, if not the same, as that
of the optimal protocol within the broader class defined in Figure 3-5.
This we know is the case for N = 2 and 3, and intuitively should also be
true for N > 3. As we have seen, designing an efficient protocol basically
involves trading off the undesirable effects of collisions and empty slots
during busy periods. Hence when there is a collision after selecting the
window size at step 1 to avoid these two undesirable events, it is likely
that only two users within the window have packets. Thus, in resolving
this conflict, it is at least reasonable to initially reduce the window
size by one=half and proceed as indicated in Figure 5-1. We shall see,
however, that although its performance is close to optimal, halving the
window size after a collision is, in fact, suboptimal for large N.

This method of dividing the conflict set in half is used by both the
Tree protocol [C1,C2] and Gallager's protocol [G1] and was proposed by
Kleinrock and Yemini [KT7] in their extemsion of the Urn protocol. In fact,
the restricted version of the Window protocol given in Figure 5-1 is
directly analogous to the protocol devised by Gallager which is employed
along the time axis for an infinite user population. The relationship

between these two protocols is examined in Section 5.3.

5.2 An Analysis for Large N and Small Windows

In this section we analyze the performance and dynamic behavior of the
Window protocol defined in Figure 5-=1., The analysis is valid when w, the
window size selected for step 1 of the protocol, is small relative to the

user population size N. We begin the analysis in Section 5.2.1 by
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determining the protocol performance over the duration of a single conflict

resolution period (CRP). Then in Sections 5.2.2 and 5.2.3 we investigate

the dynamic behavior of the protocol for, respectively, fixed and varying w.

5.2.1 CRP Performance Analysis

Recall that when at step 1 of the Window protocol, each user i
independently has a packet with probability Pi given by

T

B, = 1= (1p) i (5.1)

where p is the packet generation probability and Ti is obtained from the
update rules given in Figure 3-7. For large N and a small window size w,

we make the approximation
1=P2=...=P =q (5.2)

where q is referred to as the packet occupancy probability. As illustrated

in Figure 5-2, when w << N the difference T.I-Tw is small relative to Ti,
i=1,...,%w, and thus (5.2) is a valid approximation. For convenience we

write

q = 1= =p)T (5.3)

where using the approximation q = P1 in (5.2) vwe have from (5.1) that
T=T1.

As in Section 4.1, we define a conflict resolution period (CRP) to be

the interval of time between two successive entrances to step 1 of the
protocol, where an empty slot or a success while at step 1 is considered a

self-transition with a CRP of one slot. Hence defining



-2 =

q
Figure 5-2 Plot of q = 1 = (1-p)T for various p
E{s] = E[number of successes in a CRP]
Efu]l = E[number of users processed in a CRP]
E[t] = E[duration in slots of a CRP]

we have that 33, the system throughput over one CRP, and ?Q' the average
rate at which the window advances along the circle during a CRP, are given
by

3 _ Els
and
~ _ Efu]
r % Be] (5.5)

Now let B denote the subset of w users included in the window at the
beginning of a CRP but not processed during the CRP. Since each user in B

independently has a packet with probability q, we have
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E[number of users in B with packets|i users in B] = iq
which implies that

E(number of users in B with packets]

= qeE[number of users in B]
Hence we obtain

Els]

E[number of users processed during CRP with packets]

qw = q E(number of users in B]

q+E[ul (5.6)

so that from (5.%) and (5.5) we have
P = qr (5.7)

Thus, choosing the step 1 window size w at the beginn;ng of a CRP to
maximize either ?; or ?w for that CRP are equivalent optimization problems.
Note that this equivalence depends on the large N/small w analysis that we
are pursuing, for we found in the small N analysis of Chapter 4§ that the
performance measures ?; and ?; do not generally lead to the same policy.
Proceeding with the CRP performance analysis of the Figure 5-1 Window
protocol, let E{u]w] and E[t|w] denote, respectively, the dependence of
Efu] and E(t] on the step 1 window size w. From Appendix D we obtain the

recurrence relations

Elu|wl

E{u|w'] + E[u|w"](e(w') + s(w')) (5.8)

Elt|w] 1= e(w)(1 + s(w")) ~ e(w")(e(w') + 2s(w'))

+ E(t|w'] + E(t]w"](e(w') + s(w')) (5.9)



where
w' =
wt =
e(w)
and
s(w)

=94~

window size for step 2 following a collision at step 1

w2

Wew

= (1-q)¥

wq( 1-q) "1

Hence, having the obvious result

Elu|1]

Elt|1] = 1

we may use (5.8) and (5.9) to determine, in a recursive fashion, E[u|w]

and E(t|w] for w = 2,3,.... For w = 2,3,4,5 we obtain

Eluj2]
E[t]2]

Efu|3]
E(t|3]

Efu| 4]
ECt]y]

Elu|5]
Elt]5]

1

1

+ 2q

+

LT - 3q)
- Zqz

Q214 =14q + 3¢°]

+

- 3¢2

+ ¢?[25 - 35q + 16¢% - 3¢3]

After determining E[u|w] and E[t|w] we may, using Equations (5.5)~

(5.7), obtain expressions for ?w' Els|w], and ?;. For w =z 1,...,5, Figure

5=3 shows the CRP throughput ?; vs. packet occupancy probability q

® The recurrence relations (5.8) and (5.9) do not depend on w' = [w2].
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Figure 5-3 Window protocol performance: ?s vs., q



performance of the protocol. The switching points for the optimal window
size w. are indicated in Figure 5-3 by vertical lines and are also listed
in Table 5-1 for 0.06038 £ q £ 1.0. Note from Table 5-1 that window sizes
14 and 18 are not used in the optimal finite horizon (i.e., one CRP)
control of the protocol. That is, w. switches directly from 13 to 15 and
from-17 to 19. This occurs not because there is something fundamentally
wrong with the step 1 window sizes 14 and 18, but rather because dividing
the conflict set in half is generally suboptimal. If we were to take w' =
6 and 8 for w = 14 and 18, respectively, then w' would swifch through 14
and 18 as we decrease q from 1.0. However, the improvement in performance
is minimal (?s increases on the order of 5x10™Y). The analogous situation

for the infinite population problem is discussed in Section 5.3.

5¢2.2 Dynamic Analysis for Fixed w

In this section, under the assumption of a fixed step 1 window size w,
we examine the dynamic behavior of the packet occupancy probability q. Of
course if w = 1, then q i3 a constant since T = N in (5.3). Hence, the
interesting case is when w 2 2.

For a given w, packet generation probability p,v and user population
size N, we define the desired equilibrium operating point of the protocol

to be the smallest value of q, € {0,1] satisfying

1 - (1-p)To (5.10)

)
"

where

3
T, 2 ;{‘q—) (5.11)
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w q

1 1.0000
1 — 2 0.7071
2 — 3 0.48294
3 — 4 0.3534
§ — 5§ 0.2472
5 — 6 0.2130
6 — 7 0.1979
7 — 8 0.1691
§ — 9 0.1373
9 —10 0.1211
10 ——= 11 0.1196
11 —12 0.1051
12 —= 13 a.1047
13 — 15 0.09183
15 — 16 0.08092
16 — 17 0.07423
17 —19 0.06681
19 — 20 0.06038

Table 5-1 Step 1 window size switching points for the optimal finite
horizon control of the (Fig. 5-1) Window protocecl
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Note that 'l'o represents the expected time for a complete revolution of the
window about the circle if q is held fixed at Qe Substituting (5.11) into
(5.10Q) 'yields

-r"(qo)ln( 1-q,) = =Nln(1-p) (5.12)

Since for 0 < q, < 1, £,(q,) remains bounded and -ln(1-q,) ranges from 0
to o, we have from (5.12) that (5.10) is satisfied for at least one value

of q € {0,1]. PFrom (S5.3) and (5.10) we may write
qQ = 1- (1-q°)T/To , (5.13)

We wish to determine under what circumstances q will remain, in a
statistical sense, near the equilibrium point q,.

Initially, let us consider the case where w = 2. We assume for
simplicity that N is even, and we take the packet occupancy probability
associated with the protocol for the first revolution of the window about
the circle to be q,. At the start of the second revolution, the new value

for q is given by (5.13) where

N

N/
T =

vy
-

and the random variables ti’ i=1,...,N/2, are independent and identically
distributed with

3 with prob. qo2
ti =

1 with prob. 1 = qt’2

It follows that

BT] = T, = N1 +2q°2)/2



and the variance
o¥(m) = weg 21492
Hence we may write
T = 'l‘o + O(N) (5.15)

where O(N) is a zero mean random variable with standard deviation

ﬁz%zu-qoz). Substituting (5.15) into (5.13) yields

q = 1= (1--4;0)1 + 0(N)/Tq (5.16)

By the weak law of large numbers [F2], we have that for any €> 0,
P!‘[O(N)/To > € - 0 as N—; and thus from (5.16), q —q, in a like
manner. Hence, for sufficiently large N, after the first revolution of the
window, q will remain close in value to 9, with high probability.

To make this concept more quantitative, consider the case where w = 2

and q, = 0.5. From (5.13) we obtain
T = 'roln(1-q)/1n(1-q°) (5.17)

Letting no denote the number of conflicts in the first complete cycle of

the window, we have
T = N/2 +2n o
and thus

T/2 = N/ 4

'roln(1-q)/21n(1-q°) - N4
N(Y1n(1=q) = 1/4] (5.18)

e e e . —— 4 et - eEEEEE —oreyngEma . ~'v.;\mm:-—j
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where Y9 T°/21n(1-q°) ~ =0.5410 for q, = 0.5. We wish to determinec, the
probability that |q-q°| X 0.05, for various N. We have

a = Pr(0.45 £ q £ 0.55]
~ Pr{0.0734N < n, < 0.1820N] (5.19)

~ Q[(-0.0516N - 0.5)/ 0.09375N]
- Q[(0.0570N + 0.5)/ 0.09375N] (5.20)

where (5.19) follows from (5.18), and (5.20) follows from an application of

the DeMoivre~Laplace limit theorem [F2] with Q-function defined by

Q0
QAx) = é? /e"yz/z dy
x

Table 5-2 lists computed values of & for various N.
An analysis similar to the above may be used to show that q — qo in
probability as N—x for any finite w. However, the expected number of

independent random variables ti in (5.14) generally decreases with

increasing w. Thus a given confidence interval will require successively

N a

50 0.8616
100 0.9462
150 0.9780
200 0.990T
250 0.9960
300 . 0.9982

Table 5-2 @ for various values of N
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larger values of N as we increase w.

Now although we have shown that after the first cycle q will remain
near the equilibrium value q° (with high probability for sufficiently large
N), this does not ensure that q will remain close to q, over the infinite
horizon operation of the protocol. It is conceivable that q could
gradually drift away from qo. As we shall see, this does not happen for
w < 11, but can happen for w 2> 11,

Suppose at some time in the operation of the protocol that q = q' #£
q.. As illustrated in Figure 5-4, q' is determined from (5.13) by a unigue

(-]
value of T, say T'. We define the system drift at q' to be

d(q') = T(q') = T' (5.21)
where
4 -
- T(q) £ -;:%aj = T, forq=q, (5.22)

That is, if q is held fixed at q' for a complete cycle, then d(q')
represents the expected change in T at the end of the cycle. Or'course, q
does not remain fixed; but by dividing d(g') by N we obtain the drift per
processed user which is valid for at least the beginning of the cycle.
We wish to determine under what conditions
(1) d(q) <0 for q > q,

and
(2) d(q) >0 for q < C

From (5.12), (5.17), (5.21), and (5.22) we may rewrite (1) and (2) as

(1) -?w(q)ln(1-Q) > -Nin(1-p) for q > q
and
(2) -?;(q)ln(1-q) < -Na(1-p) for q < q
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T(q)

Figure 5-4 Plot of T and T(q) vs. q
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Hence it follows that (1) and (2) hold if and only if (5.10) is satisfied
for exactly one value of q,e A sufficient condition for this desirable

drift property is that

Pa 3
g%i-r“(q)ln(1-q)} > 0 (5.23)

for all q € [0,1]. As shown in Figure 5-5, (5.23) is satisfied for
Ww=1,...,5. However, as we continue to increase w, -?;(q)ln(1-q) will
eventually form two stationary points. This occurs when w 2 11, and is
illustrated in Figure 5-6 for w = 16. Note that, for the value of
-Nln(1-p) shown, there are three equilibrium points. The first (at q = qo)
is the desired operating point of the system and is stable in the sense
that small excursions result in statistical drifts tending tc¢ restore the
equilibrium. The second is unstable and the third is stable but
undesirable. Statistical fluctuations will cause the system to oscillate
between the two stable points. Of course this bistable behavior can be
avoided by sufficiently increasing or decreasing -Nln(1-p), or by changing
the step 1 window size w. However, the value of q, shown in Figure 5-6 is
in the range for which w = 16 maximizes ?; (see Table 5-1). This indicates
that there is an inherent bistability of the protocol when q° is small and
the corresponding (large) value of w is selected to optimize the system
performance at this point. However, as we discuss in the next section, by
dynamically varying w with q, one can force q to drift back to q,.

As indicated, for w < 11 we have that if q drifts from the equilibrium
point 9y then even without changing the step 1 window size w, q is
expected (in the probabilistic sense) to move back toward 9,. Thus one can
envision q fluctuating about q, where, from the law of large numbers

result, the range of fluctuation decreases with increasing N. In fact, if
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N is sufficiently large that q remains relatively constant over the
infinite horizon opération of the protocol, then the CRP performance
measures 53 and ;w are equivalent to their infinite horizon counterparts Ps
and r,» respectively. Moreover, from (5.7} we have that P, and r_ are
simply related, and from the results of Section 2.1, are in turn directly
related to the steady-state performance measures B Pys By N, and D. To
get an idea of the Window protocol's steady-state performance in this
situation, Figure 5-7 shows for N = 50 the average delay D vs. throughput
Ps performance for w = 1,...,5. Each curve is, in essence, parameterized
in q, where D is determined from Equation (5.25) in Section 5.3. Note from
Figure 5-7 that as we allow the largest feasible window size w to increase,
the incremental improvement in the protocol's optimal performance

decreases.

5.2.3 Dynamic Analysis for Varying w

We now examine the dynamic behavior of the Window protocol when w is
allowed to vary with q. That is, at the beginning of each CRP, q is
determined from (5.3) and then w is selected using the switching points
given in Table 5-1. For given values of p and N, the desired equilibrium
operating point of the system is defined to be the minimum q° € [0,1], over
all w € {1,2,...}, which satisfies (5.10). Graphically, q, and w are found
by following along the line -Nln(1-p) in Figure 5~5. Beginning at q = 0,
the first curve intersected by this line as q is increased determines w and
the point of intersection determines Qe

Of course it makes intuitive sense to have w vary dynamically with q.
The idea is that if during a cycle of the window there are many collisions

so that T > To’ implying q > qo, then it might be desirable to temporarily



AVERAGE DELAY D

-107-

50 =
40 -
30 |- "
- w=1 (TDMA) =T
20 |-
w=2
L
10 - i
= w=4
N w=5
PERFECT SCHEDULING
0 1 ] | ] | 1 1 | |
0 0.2 0.4 0.6 0.8 1.

THROUGHPUT Ps

Figure 5-7 Window protocol performance for N = 50: D vs. Ps

W



-108-

reduce w from the value associated with q, to better balance the collision
vs. empty slot trade-off. Similarly, if there are many empty slots during
a cycle so that T < To’ and thus q < Qs then it might be desirable to
increase w, This is, of course, precisely how the optimal CRP control of
the Window protocol (as specified, e.g., in Table 5-1) behaves. Moreover,
we expect the optimal infinite horizon control (i.e., that which maximizes
the steady-state throughput Pa) to be of the same form. The two controls
should only differ in the values of q at which the optimal step 1 window
size w’ changes, and possibly which values of w are not included in the
optimal control.

Let us assume that the window size w varies with q according to the
optimal CRP control of the protocol. The result we wish to establish is
that under this control, the drift of q is always toward the desired
equilibrium point qo. Following the development in the previous section,
it suffices to show that for any q € [0,1], (5.23) is satisfied for that w
specified for q by the control. In other words, the upper envelope for the
set of curves -?“(q)ln(1-q) vs. q, w = 1,2,..., 18 monotonically
increasing, and therefore can only intersect the line -Nln(1-p) once. The
cases W = 1,...,20 were examined numerically, and this condition was
verified. The verification was not pursued beyond w = 20. Note, however,
that an equivalent condition for this single equilibrium point is that

F (@) = max $,(q)
W
(i.e., the upper envelope for 3;(q), w=1,2,...) intersects
qNin(1-p)/1n(1-q) once in the interval q € [0,1]. Since qNin(1-p)/1n(1=q)
is monotonically decreasing over q € [0,1], it suffices to show that F;(q)

is monotonically inoreésing in this interval. This is the case for
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0.06038 < q £ 1, and from the maximum throughput results in Table 5-3
(where w = 2k and Ps(q.) is shown to decrease monotonically as k —®), we
expect that it will also be true for q < 0.06038. This is illustrated
graphically in Figure 5-8 for 0 £ q £ 0.2 and q, = 0.08. Also shown is the
expected rate at which q converges to qo from some point q'. Specifically,
for large N, we -have that q", the expected value for q at the start of the

next revolution of the window, is given by

qn = 1 - (1_9)11/?"((1')

where ?w(q) £ paximum ?w(q) over all w. This implies that

'
Hence it follows that the point at which line £ in Figure 5-8 intersects
qN1n(1=p}/1n(1-q) determines q". Thus, the expected convergence of q to q,
is as illustrated in the figure.
Note that in selecting w at the beginning of é CRP according to the
current value of q, there is no direct dependency of the control on N or p.
Moreover, it is not even necessary to know the equilibrium operating point

of the system qo.

5.3 Relationship Between the Finite and Infinite User Population Problems

In this section we investigate the behavior of the Figure S5-1 Window
protocol as we let N — ., The results obtained help establish a link
between the finite and infinite user population problems which thus far
have largely been treated separately.

We begin by examining the performance associated with succeasively

larger values of w. We assume that N is finite but as large as needed to
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make the performance analysis valid (i.e., q = qo and thus Ps z ?8) for the
particular w being ccnaidered.. To allow us to examine very large w
without incurring a computational burden, we restrict our attention to

W= Zk, k =20,1,2,.... The recursion given in Appendix D simplifies since

k=1 for w = 2“, k =21,2,.... The throughput performance for

w' 2 w" =2
K = 0y...,10 13 given in Figure 5-9. Letting q denote the value of q
which maximizes the throughput Ps for a given k, and q, denote the
switching point from one value of k to the next, Table 5-3 lists q',
Ps(q'). q.H, 9y, and P (q,) for k = 0,...,20. Note that qw is equal to the
expected number of packets held by users within the window of size w.
Observe from Table 5-3 that as k—x, P_(q") — 0.4671 and q"w — 1.266.
These are precisely the results obtained by Gallager [G1] in the maximum
throughput analysis of his protocol for an infinite user population. Evaen
though Gallager's protocol operates along the time axis and our's along the
®user circle®, in the limit as N and w — o and q —0, the two are
statistically equivalent.

In an extension to Gallager's work, Mosely [M8] found that dividing
the conflict set in half, although close to being optimal, is in fact
suboptimal. She determined that the maximum throughput could be increased
to 0.4877 by using a slightly larger initial time interval (i.e., one
equivalent to qw = 1.275) and then, if there occurred a collision, reduce
the time interval to 0.465 (rather than 0.5) of its initial value. On
subsequent reductions of the time interval due to conflicts within the same

CRP, this factor approaches 0.5. In addition, she found that when a

#® Strictly speaking, to maintain the stability of the system, w will have
to varied, as indicated in the previous section, over the infinite
horizon operation of the protocol. However, by taking N sufficiently
large, needed changes in w may be made as rare as desired.
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[ ] [ ] [ ]
k v q P(q) qw q, Pylqq)
0 1 1.0000 1.0000 | 1.000
0.7071 0.7071
1 2 Q.7071 0.7071 | t1.418
0.5024 0.60T9
2 4 0.3701 0.6090 | 1.480
0.2146 0.5544
3 8 0.1809 0.5579 | 1.447
0.1108 0.5224
4 16 0.8712x10~' | 0.5285 | 1.394
0.5633x10~' | o0.5028
5 32 0.4217x10~1 | 0.5113 | 1.349 ,
0.2840x10~' | 0.4909
6 §5 0.2060x10~7 | o.5011 | 1.318
0.1426x10~1 | 0.4837
T 128 0.1014x10~" 0.4951 1.298
0.7183x10~2 | 0.4795
8 256 0.5019x10~2 | 0.4917 1.285
0.3575x10~2 | 0.4770
9 g5 0.2494x10~2 | 0.4897 | 1.277 _
0.1788x10=2 | 0.4756
10 1024 0.12u3%10~2 | o.4885 | 1.272
0.8944x10=3 | o.8747
1 2048 0.6200x10"3 | o.4879 | 1.270
0.8473%10™3 | 0.4743
12 4096 0.3096x10~3 | o0.1875 | 1.268
0.2237x10~3 | o.4780
13 8192 0.1547x10~3 | 0.4873 | 1.267
0.1118x10~3 | 0.4739
18 16384 0.7733%x10~% | 0.4872 | 1.267
0.5592x10~% | 0.4738
15 32768 0.3866x10~% | o.u872 | 1.267 y
4 0.2796x10™ 0.4738
16 65536 0.1933x10™ 0.4872 1.267 M
s 0.1398x10™ 0.4738
17 | 131072 0.9662x10" 0.4871 | 1.266 .
_s 0.6990x10™ 0.4738
18 | 262141 0.4831x10 0.4871 | 1.266 5
0.3495x10" 0.48737
19 | 524288 0.2415x10"°> | 0.4871 | 1.266
0.1747x10~° | 0.8737
20 | 1048576 0.1298x1 0> { 0.4871 1.266 '

Table 5-3 Window protocol performance results for w = 2k
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success follows a collision, assuming that the initial time interval was
chosen properly, the protocol should select the next time interval to
correspond to the second part of the interval divided after the collision.
This 13 equivalent to setting W = R at step 3 by the Figure 5-1 Window
protocol. Hence from these results we expect that the Figure 5-1 Window
protocol, with switching points given in Section 5.2.1, has a performance
which is close to the optimal Figure 3-5 Window protocol for large N.

To complete this section, we examine how the average delay D behaves
as N—o, From Gallager's infinite population results, we have that D
remains bounded as N—ow 30 long as the throughput Ps < 0.4871. For Ps >
0.4871, we begin by writing D as a function of Py N, and q. From (2.10)

and (2.11) we have

D = 1+ ll/l’s - 1/p (5.2%)
It follows from (5.7) and (5.22) that

P = 1 - (1—q)Ps/(qm
so that (5.24) becomes

D = 1+WE - [1- (1-qfs/ (W | (5.25)

We have that for any given step 1 window size w, Ps is a rational function
of q; thus by fixing q we hold Ps constant. Now differentiating (5.25)

with respect to N and then taking the limit as N—o0, we obtain

lim 3D 1
N—odN ° P (1 * 1n(1-q5~) (5.26)

Hence from (5.26) we see that D increases linearly with N (in an asympotic

sense) for Ps > 0.4871.
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This result makes l"8 = 0.4871 an interesting threshold point as we
allow N—w, For any given Ps < 0.4871 we have that the average delay D
remains bounded, but that the average step 1 window size w increases
linearly with (i.e., 1s some fraction of) the population size N. For any
glven Pa > 0.U4871 we have that w remains fixed, but that D increasea
linearly with N.

Finally, using (5.7), we may write (5.26) as

1m 3 _ 1 /21 1
N—03N rw(q+1n(1-q)) ; (5.21)

For small q, we have that

1
(—q' + lnz1-q5) ~ %
80 that (5.27) becomes

lim aD 1 T
N 558N~ ZI’HQH for q << 1

which implies that D = T/2. This is intuitively pleasing since for small
d, the generation time of a randomly selected packet will be uniformly
distributed (in the discrete sense) over the interval of T time-slots

preceding the transmission of the packet.



CHAPTER 6

CONCLUSIONS AND OPEN PROBLEMS

6.1 Conclusions

The overall objective of this thesis has been to gain a better
understanding of the general multiple access problem for a finita uaer
population. With this goal in mind, we first selected a model of the user
population and communication channel which both typified the problem and
yet was analytically tractable. Next, it was necessary to select measures
of protocol performance for this user-channel model. After stating several
common steady-state performance measures, we proceeded to show that the
measures are both simply related and correspond to equivalent optimization
problems.

The rest of the thesis emphasized the development and analysis of
mul tiaccess protocols. Starting with the most general class, the Team
protocols, four related classes of multiaccess protocols were defined and
examined. In each case, the problems associated with determining an
optimal protocol within the given class were identified. Only the last
class examined, the Window protocols, proved to be tractable and so the
remainder of the thesis was devoted to its analysis and characterization.

Using results from Markov decision theory, optimal Window protocols
were derived for the cases of two and three users, Due to the size of the
state space, an exact analysis was impractical for large user populations.
Hence, a reasonable subclass of Window protocols was defined and an
approximate analysis undertaken which was found to be effective in
characterizing the performance and dynamic behavior of protocols within

this subclass. In addition, the analysis helped to establish a link
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between the finite and infinite user population problems.

6.2 Open Problems

The presentation of the results contained in this thesis leaves open
several avenues for further research in the multiaccess area. These range
from highly theoretical to somewhat practical in nature.

On the theoretical side, it is clearly of interest to obtain a better
understanding of the class of Team protocols. 'The goal, of course, is to
find the (or an) optimal multiaccess protocol within this, the most general
class of protocols. Results obtained by Paradis [P1] indicate that the
optimal Window protocol for N = 2 (as given by (4.4)) is also the optimal
Team protocol. Unfortunately, the analysis does not readily carry over to
larger user populations.

On a more tangible level, there is the question of the state space
eharactérization for the Access Set and Extended Access Set protocols.
Intuitively, it seems that those policies which lead to an infinite state
space may be eliminated from consideration in the search for an optimal
protocol. If so, then only the class of stationary deterministic policies
need to be considered. Of course the state space will grow with N at least
as rapidly as it does with the class of Window protocols. Hence one would
encounter the same difficulties in determining an optimal policy exactly
when N is large.

Promising areas for further research stem from the Window protocol
analysis for large N given in Chapter 5. The presentation here sets the
groundwork and indicates the type of results that are forthcoming. It is
clear, however, that further work is required. In addition, it is of

interest to extend the Window protocol, and this approach to its analysis,
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to more practical user-channel models, such as those discussed in Section

1.30




APPENDIX A

ON COMPUTING THE LIMITING STATE PROBABILITIES FOR

MARKOV PROCESSES WITH HESSENBERG TRANSITION PROBABILITY MATRICES

In this appendix we derive a numerically stable algorithm for solving
for the limiting state probabilities of a finite state, disorete-time,
homogeneous Markov process with an upper Hessenberg state transition
probability matrix. This structure for the state transition probability
matrix is encountered in the performance analysis of perfect scheduling in
Section 2.2, but more generally arises in single server systems which allow
bulk arrivals to the service facility.

For notational convenience, we assume that the Markov process has N
states which are identified by the integers 1 through K. The (one-step)
state transition probability matrix is denoted by P, where element piJ is
the conditional probability of moving to state j given that the process is
currently in state i. As indicated, P is an upper Hessenberg matrix which
implies that all elements below the lower subdiagoimi are zao (i.e., p1J =
0 for 1 > j+1). In addition, we assume that the Markov chain associated
with P is irreducible and aperiodic. Hence the limiting state
probabilities LT {=21...,N, defined by

=z 1lim Pr{state = i at time M]
M—=00

"

exist, are independent of any initial state probability distribution, and

are uniquely determined by the equations
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N
’rJ = =1 Xipij J = 1,.00,"
(s)
N
1 = T
i=1 i

It i3 the system of equation (S) that we wish to solve numerically.
Letting » denote the row vector of limiting state probabilities, we

may rewrite (S) in vector form as
TP = x
7’(1,0.-’1)T = 1

where T denotes transpose. Hence it i3 apparent that = is thé left
eigenvector of P associated with the eigenvalue A= 1, which satisfies
7l’(1,...,1)T = 1. The method we describe computes, through an application
of the Q=R algorithm .or Hessenberg matrices [B1,C2], the left eigenvector
q associated with A = 1 which has norm 1 (i.e., qu = 1). Then 7 may be
obtained by 7 = q/q(1,...,1)r. The essential features of the method for

computing q are contained in the following proposition and its proof.

Proposition: Let H = P - I, where I i3 the identity matrix, and

_1\\\ -
¢ s i
dJd = J(i,c S ) = t !
i 1" -8 e i+
i i \
1
. -
i i+1
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where e, = coa(E&) and s, = sin(ei). Suppose that for each

i € {1,...,"‘1}, 91 is cho“n 80 that g

ey Iygp’ e " 9B = R

N, s’
Q

where R is an upper triangular matrix. Then the eigenvector q is equal to

the last row Q.

Proof: First note that tpe multiplication JkA, where A is an NxN matrix,
only affects rows k and k+1 of A. Now observe that to form the upper
triangul ar matrix R, ek, k =1,0ee4N=1, i3 chosen so that the
multiplication Jk'(Jk-1" -J1)H produces a 0 in the (k+1,k) position of
(Joq® * *Jy)H. That is,

kk Pk

=
0

k| |Pket,k

where hkk is the (k,k) element of (Jk-1" -J1)H and hk+1,k

element of this product which is also equal to the (k+1,k) element of H.

is the (k+1,k)

Since by assumption the Markov chain corresponding to P is irreducible, we

have that hi+1 i #0fori=1,...,N0 Hence, since ek is selected so that
1}

Sk CkPet,k

it follows that

R "
= @ +n2. )72 5 o

kk ¥ kel k
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for k = 1,...,N=1., Now note that since the Markov chain corresponding to P
has only one irreducible set of states, P is of rank N-i. This implies
that the triangular matrix R = QH is also of rank N-1, so that for some

1 €{1,...,N}, r;, = 0. However, we have shown that ryy > 0 for

1 =21,00eyN=1; hence r_. = 0. Thus we have that

NN
qd = last rowof R = O

so that

qP

“
o

QED

From this result we obtain the following numerically stable algorithm

for computing q:

H—~Pa=1I
Fot' k s 1,..-,"‘1

x-—hkk

¥ —Bya Yk
Determine ¢, and 8y by Algorithm #

For J = ky..eyN

-

h
Bret, 3] 17% k| |Pket,

Qo1 %k

For J = 1,...,k

End
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Algorithm ®
If x =0 then
Co1
| s—0
Else
If |x| > |y| then
t—y/x
e—1/(1 + tA)V/2
s—ct
Else
t— x/y
s—1/(1 + t3)1/2

c—st

Return

Finally, determining the limiting state probabilities for a
finite-state, continuous-time Markov process involves solving the system of

equations
ﬂa = 0
”(1’0‘0’1)1‘ = 1

where 3, the infinitesimal generator for the process, is a matrix of
transition rates. If'a is upper Hessenberg and the Markov process is
irreducible, then the above results also hold for this situation by taking

Hsa.




APPENDIX B

ON SELECTING AN ACCESS SET TO MAXIMIZE THE

PROBABILITY OF A SUCCESSFUL TRANSMISSION

We consider the problem of sel