
AD-AI08 253 RAYTHEON CO WAYLAND MA EGJIPIENT 0EV F EC(1R&O EQUIPMENT ZWOR04ATION REPORT. FAULT TOLERANT WEATHER RADAR --MAR 81 M J YOUNG. A J JAGODNIK F 1962M-?-C-n113
UNCLASSIFIED ERSI-4053 AFGL-TR-81-OO86 NL

Eh'1 nmmhohE-I
llll'-..~l
lllllllImmslll

iiiii ,_.Liii
111111180

11111!2 L. A11111= I ,lI~II' .

MICROCOPY RESOLUTION TEST CHART

NATIONAL BURL[A Of STANDARDS 19W A,

II

AF~rf~r Vl

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
AFGL-TR-81-0086 0 - __

4. TITLE (end Subtitle) I S. TYPE OF REPORT & PERIOD COVERED

R & D Equipment Information Report Final Report
Fault Tolerant Weather Radar Processor 78 June 1 - 80 October 16

6. PERFORMING ORG. REPORT NUMBER

ER81-4053
7. AUTHOR(e) 1. CONTRACT OR GRANT NUMBER(*)

Michael J. Young F19628-78-C-0113
Anthony J. Jagodnik, Jr.

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Raytheon Company AREA & WORK UNIT NUMBERSRatho Copn - F78100
Equipment Division

F0

Advanced Systems Laboratory - 6670064A
Wavand MA 01778

II CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Geophysics Laboratory 81 March
Hanscom AFB, Massachusetts 01731 13. NUMBER OFP AGES

Monitor/Kenneth J. Banis (LYW) 346
14. MONITORING AGENCY NAME & ADDRESS(II differen't from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified
IS.. DECL ASSI FICATION/ DOWNGRADING

SCHEDULE NA

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the aebtrect entered in Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

t9. K tLY WORDS 'C ontinue on reverse Mode if neceeeery mid identify by block number)

Weather Radar Signal Processing, Digital Signal Processing, Programmable
Signal Processing, Distributed Processing, Fault Tolerant Processing

20. ABSTRACT (Continue an 'verse eide if neceeeary end Identify by block number)

artA programmable ',ignal processor which achieves fault tolerance and modu-
larity through distribution of tasks among a number of identical programmable
ommon Elements including spares, is described. This processor's design and
sage in a meteorological Doppler radar signal processing application is discussed
at several levels of detail covering hardware firmware, operating system soft-
ware, user software, and deve.opment aids.

DD , AN 1473 EDITION O, NOV6 ,SOSSOLT' Unclassified -1
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

1u lan m lmm m i i -

ACKNOWLEDGEMENTS

The Fault-Tolerant Weather Radar Processor represents the combined

efforts of many people from a number of laboratories within Raytheon

Equipment Division. Although it is by no means exhaustive, the following

list identifies those who contributed significantly to the task:

Advanced Systems Laboratory Radar Systems Laboratory

E. M. Avery R. H. Cantwell

R. J. Bonneau J. DelRio

J. W. Burgarella M. A. Jones

H.E.T. Connell A. J. Scungio

L. L. DiMaria R. R. Smith

F. P. Eggleton

R. C. Evett

V. E. Follansbee

A. J. Jagodnik

V. A. Jelich

N. F. Lacey

J. C. Murray

H. R. Riggert

D. A. Syiek

G. A. Works Aieeshioa For

M. J. Young 5Ti-S- &I
DTIC TAB
Unannouncod

7Alstitionti

DTIC
Die-tri~bu ion/ELECTE

il andCor DEC 9 19811
lot Special S E D

~' D
3

TABLE OF CONTENTS

Section

1. BACKGROUND 9

1.1 Meteorological Doppler Radar 91.2 The Pulse Pair Processor 101.3 The Fault-Tolerant Weather Radar Processor 10

2. SYSTEM OVERVIEW 13

2.1 Achieving Reliable Systems 132.2 Features of FTSP 152.3 Fault Tolerance Philosophy and Implementation 182.4 FTWRP Hardware 192.5 FTWRP Software 212.5.1 Operating System Software 212.5.2 FTWRP Command Processor 212.5.3 Signal Processing Application Programs 22

3. FTWRP SYSTEM USAGE 28

3.1 FTWRP System Startup 283.2 IDOS-l FTWRP Command Interpreter 293.2.1 FTWRP Parameters 30
4. DETAILED HARDWARE DESCRIPTION 40

4.1 Common Element 404.1.1 General Descripti . 404.1.2 Specification - Cmmon Enement Wi1,.0,- 424.1.3 Detailed Hardware Description. , . j 444.2 Input/Output Cont oller (IOC) 584.3 Terminal Interfac6b Element 584.3.1 Outputs from TIE . . 4664.3.2 Inputs to TIE 664.3.3 Transceiver Status Word 684.4 Input Synchronizer .. . 714.4.1 Input Synchronizer Hardware"DesWptioY 764.4.2 Data Transfer Timing ' - 784.5 Output Synchronizer .r 804.5.1 Output Synchronizer Hardware DescrlptrjoA 804.5.2 Bata Transfer Timing 84

4 A

TABLE OF CONTENTS (Continued)

Section Page

5. DETAILED SOFTWARE DESCRIPTION 88

5.1 Distributed Operating System Level 0 88
5.1.1 Initialization 88
5.1.2 Task Environment 90
5.1.3 Input/Output Structure 94
5.1.4 System Call Processing 101
5.1.5 Trace Handling 108
5.1.6 Clock Handling 109
5.1.7 Exception Handling 109
5.1.8 Common Element Link Stack 110
5.2 Intecolor Resident DOS-O 111
5.2.1 IDOS-O Operation 113
5.2.2 Input/Output Operation 118
5.2.3 System Services 134
5.3 Distributed Operating System Level 1 137
5.3.1 System Configuration 137
5.3.2 FTSP Level 1 Operating System Functions 137
5.4 Pulse-Pair Application Program 144
5.4.1 Overview of FTWRP Processing 144
5.4.2 FTWRP Functional Description 145
5.5 Dual Wavelength Application Task 155
5.5.1 Range Ambiguity Resolver 155
5.5.2 Coherent Channel Formatter 157
5.6 Spare Rotation 159
5.6.1 FTWRP Spare Rotation Environment 159
5.6.2 Spare Rotation Implementation 160

6. FIRMWARE DESCRIPTION 163

6.1 New Common Element Microcode 163
6.1.1 Vector Add 163
6.1.2 Vector Subtract 164
6.1.3 Vector Multiply 164
6.1.4 Block T.'.gration 164
6.1.5 Slidirng Window Integration 165
6.1.6 Scale 166
6.1.7 Circular Vectoring 166
6.1.8 Read and Accumulate 167
6.1.9 Read and Autocorrelate Initial Results 169

5

TABLE OF CONTENTS (Continued)

Section Page

6.1.10 Read and Autocorrelate 171
6.2 IOC Firmware Development 171
6.2.1 Data Flow Overview 172
6.2.2 Exception Handling 172
6.2.3 IOC Continuous Input Mode Setup 174
6.2.4 Continuous Input Mode Functional Description 175

APPENDICES

A Intecolor/CE Support 177

B Subroutines and Data Structures in FTWRP 253

C "Notes on Circular Vectoring" 304

0 FTWRP System Timing Considerations 310

E Look-Up Tables 314

F Cables and Interconnect Specifications 334

G FTWRP Hardware and Software Configuration 344

6

.4l

LIST OF ILLUSTRATIONS

Figure Page

2-1 Efficacy of Redundant Configurations 14
2-2 FTSP Distributed Operating System 17
2-3 FTWRP Hardware Block Diagram 20
2-4 Processing Flow Diagram for Continuous Pulse Sequence 23
2-5 Processing Flow Diagram for Dual Wavelength Mode 25

4-1 Simplified Common Element Block Diagram 41
4-2 Bus Transceiver Block Diagram 45
4-3 Transmitter Timing 46
4-4 Receiver Timing 47
4-5 Common Element Detailed Block Diagram 54
4-6 Texas Instruments 74S481 Functional Block Diagram 55
4-7 Common Element Two-Phase Clock 59
4-8 IOC Module Block Diagram 60
4-9 IOC Controller Block Diagram 63
4-10 Terminal Interface Element Block Diagram 65
4-11 Distribution of Processing in FTWRP 72
4-12 Input Synchronizer Block Format 73
4-13 Continuous Pulse Scheme Timing 74
4-14 Input Synchronizer Block Diagram 77
4-15 Input Synchronizer Timing 79
4-16 Format of CE Output Buffer for NRC 81
4-17 Output Synchronizer Block Diagram 82
4-18 Output Synchronizer Input Sequencer and Buffer 85

Write Timing

5-1 DOS-O Hierarchy 89
5-2 Common Element Memory Utilization 91
5-3 FTSP Message Packet Format 95
5-4 Message Header Format 94
5-5 Text Boundary Protection 117
5-6 IDOS-O Text Message Format 124
5-7 Valid Text CharacterF. 125
5-8 Executive Message Format 127
5-9 Page Map Format 127
5-10 Look-Un i5le Load Map Page Format 147
5-11 Range Ambiguity Resolver Flow Diagram 156
5-12 Coherent Channel Formatter Flow Diagram 158

6-1 RACOR and RACORI Data Format 170
6-2 Configuration Control Message for Continuous Input Mode 173

7

LIST OF TABLES

Table Page

3-1 FTWRP Command Description 31
3-2 'SET' Parameter Mnemonics 36
3-3 Scale Constant Default Determination 38
3-4 System Limitations on NRC, TP, and NSI 39

4-1 Transmitter State 51
4-2 Last Transmit Bus 51
4-3 Receiver State 51
4-4 Block Length 51
4-5 Receiver State 69
4-6 Last Transmit Bus 69
4-7 Transmitter State 69
4-8 NRC and Tp Definitions 75

5-1 CE Task Prologue 92
5-2 Message Code Definitions 96
5-3 Message Formats 97
5-4 System Requests - DOS-O 98
5-5 FTWRP Logical Device Numbers 106
5-6 Intecolor Memory Usage 112
5-7 Intecolor User Task Prologue 114
5-8 IDOS-0 Input Buffer Packet Structure 119
5-9 IDOS-O Message Code Processing 121
5-10 Executive Message Types 128
5-11 IDOS-O Service Calls 130
5-12 Intecolor Input/Output Error Messages 132
5-13 Signal Processor Command Formats 149

6-1 CVEC Accuracy 168

8

1. BACKGROUND

1.1 Meteorological Doppler Radar

Radar has been in operational use for many years to estimate atmospheric

water content over areas of tens of thousands of square miles. Such measure-

ments are typically achieved using noncoherent, pulsed, mechanically-scanned,

pencil-beam radars capable of measuring the logarithmic amplitude of precipi-

tation echoes, followed by signal processors which average the returns over

many pulses in order to enhance signal to noise ratios. These real-time signal

processors typically fill their displays with about 10 picture elements of

data derived from perhaps 108 individual measurements on each rotation of the

antenna. But, despite the large amount of data, these systems lack the

needed capability for directly measuring the velocity of their targets.

In recent years, extensive experimental work to assess the effectiveness

of Doppler techniques which add this new dimension to the wide-area measurement

capabilities of meteorological radars has been undertaken in a number of

organizations, including the Air Force Geophysics Laboratory (AFGL). These

experiments have shown that Doppler capability is indeed worthwhile and can,

by adding velocity information to the meteorologist's repertoire of inputs,

significantly improve the lead time and correctness of tornado and other

local severe-weather advisories. But the need to make Doppler measurements

places more stringent requirements on the radar (where narrower antenna beams,

coherency, and linearity are required to permit phase measurement) and on the

signal processor, which must perform more difficult calculations at high

throughput.

Another difficulty in Doppler systems is the unambiguous range-velocity

product cX/8 for uniform-PRF systens %1,ere X is the radar wavelength. Since

X is usually fixed by antenna-size and propagation considerations (10-cm is

generally considered ;. imum), the actual range-velocity product falls short

of what is needed by about a factor of four. Thus, the PRF can be chosen to

9

cover either the desired range or velocity, but not both. Means of extending

the useful measurement capabilities by resolving these ambiguities is an

active area of research where programmable signal processors are needed.

1.2 The Pulse Pair Processor

The input to a meteorological Doppler signal processor is a series of

complex samples in the time domain, but it is the mean velocity of scatterers

(average Doppler frequency shift of the returns from the sensitivity volume)

which is of primary interest, so the first job of the processor is to estimate

that mean velocity. One algorithm consists of transforming the data record

for each range cell to the frequency domain (computing its spectrum), then

performing the moment calculations. But even the computationally-efficient

FFT requiressO(NlogN)* complex multiply/additions for an N-point transform.

An algorithm which operates entirely in the time-domain to estimate the mean

velocity was introduced by Rummler (Reference 1-1)and has become widely used

for meteorological signal processing. This pulse-pair algorithm is not only

computationally more efficient'(needing only O(N) complex multiply/adds), but

also provides better performance at low signal-to-noise ratios, as shown by

Berger and Groginsky (Reference-e) and Sirmans and Bumgarner (Reference 1-3).

A special-purpose hardware implementation of a Pulse Pair Processor (PPP)

was constructed for AFGL in 1973 under contract F19628-72-C-0293. This PPP,

as described by Novick and Glover (Referencel-4), estimates mean Doppler

velocity in each of up to 1024 range cells.

1.3 The Fault-Tolerant Weather Radar Processor

While the original PPP is still operational and has performed well,

more flexibility was needed in order to verify new algorithms, especially

those related to ambiguity resolution. It was at the same time necessary to

demonstrate that this type of signal processing problem can be partitioned

for implementation in a distributed processor for reasons of maintainability

and fault tolerance in planned future operational systems.

*O(N) is defined as "on the order of N".

10

Meanwhile, Raytheon IR&D programs to develop Fault Tolerant Signal

Processing (FTSP) systems using programmable Common Elements and related

hardware and software were underway. The application of these developments

to the weather radar processing problem promised to solve both the flexibility

and maintainability problems. Thus, development of the Fault Tolerant

Weather Radar Processor (FTWRP) was undertaken to implement the pulse pair

and other algorithms in the FTSP hardware.

11

REFERENCES

1-1. Rumler, W.D., "Two-Pulse Spectral Measurement", technical memo

MM-68-4121-15, Bell Telephone Laboratories, Whippany, NJ, 7 November 1968.

1-2. Berger, T. and Groginsky, H.L., "Estimates of Spectral Moments of

Pulse Trains", presented at the International Conference on

Information Theory, Tel-Aviv, Israel, 1973.

1-3 Sirmans, D. and Bumgarner, W.C., "Numerical Comparison of Five Mean

Frequency Estimators", Journal of Applied Meteorology, Vol. 14, No. 6,

September 1975, pp 991-1003.

1-4. Novick, L.R. and Glover, K.M., "Spectral Mean and Variance Estimation

via Pulse Pair Processing", preprint volume, 16th Radar Meteorology

Conference, April 22-24, 1975, Houston, TX.

12

2. SYSTEM OVERVIEW

With the goal of providing several levels of detail so that readers
having differing objectives in the use of this document can seek their own
level, the structure has been set up as follows. This section contains an
overview of the system architecture with enough detail and philosophy back-

,round to understand FTWRP for the purposes of operating the system and

understanding its relationship with existing equipment. Section 3 is intended
to prov~de step-by-step operating instructions. Greater detail on Hardware,
Software, and Firmware appears in Sections 4, 5 and 6 which reference other
information contained in the Appendix.

2.1 Achieving Reliable Systems

Methods of achieving reliable systems include two major approaches:
1) use of reliable components in the system, and 2) design of redundant

components into the system. The latter approach, given an effective means
of locating failed elements and replacing them from a supply of spares,

allows highly reliable systems to be built from ordinary components. As

Figure 2-1 shows, highest probability of survival results when the system is

partitioned into a large number of identical, simple modules, each of which

can perform the function of any other (Reference 2-1). For maximum effective
ness, this type of redundant system should meet the following requirements:

1. The number of module types and complexity of modules should be
minimized.

2. Each module must have internal fault-detection capability.

3. A means of replacing failed modules must exist.

4. The task must be partiti')nablo without excessive inter-module

conununicaticn bandwidth requirements.

Requirements I and 2 dre best met with programmable processors, which also

improve adaptability to mission changes.

13

z Go
44

U.4.c
0

0>

0--

0 4-

0

0 4-
0 4-

ad,

0
0

ifl * 0

'0 * 0
0o IC;

0V 31SI-
*V I-n 0

0 *.1iavQ0~d v14

The Fault-Tolerant Signal Processor (FTSP) is an example of a self-

repairing programmable signal processor and its application to a meteorological

Doppler radar, in which fault-tolerance, programmability, and expandability

are all important features. FTSP utilizes the basic concept of distributed

processing with distributed control, with the intent that total decentralization

minimizes the occurrences and effects of single-point failures.

Z.2 Features of FTSP

This subsection gives an overview of the Fault-Tolerant Signal

Processor; more detailed descriptions of hardware, software, and firmware

appear in Sectons 4, 5 and 6.

The FTSP utilizes a fully-distributed architecture with three types of

elements or modules: the Common Element (CE), the Common Memory (CM), and

the Input/Output Controller (IOC). These modules are interconnected by dual-

redundant, high-bandwidth (up to 5 x 106 16-bit words/sec) open collector

busses. Dual-redundant power busses provide fault-tolerant power to each

module.

The CE is a 16-bit, microprogrammed computer-on-a-card with an internal

architecture and instruction set which were optimized for signal processing.

All computational and network management software resides in the CE. Although

the CE has 16K words of on-board memory, in many applications a larger,

common data base is required. The CM fills this need by supplying 128K words

of random-access memory, addressable by 240-word pages. The CM has its own

intelligent microprogrammed controller for more efficient operation.

The IOC ;iay serve either of two functions: a general-purpose parallel

1/0 channel to the outside world, or a "bus extender" to connect two or more

clusters of elements. When used as an I/O channel, the IOC is capable of

interfacing up to 16 external dev'zes o each of two parallel busses. When

used as a bus extender the IOC forwards messages from one bus to another,

thus acting as a communications link between clusters of elements.

15

Each element commnunicates on a bus via message packets of up to 256
words. The first words of each packet are a header block containing infor-
mation regarding the source element (sender), destination element (receiver),
any required waypoint elements (bus extender IOCs), and the type of message.

If the communication is within a single cluster, only one header word is
required. Otherwise, the first eight words are reserved as header.

Each element has a 6-bit "virtual address" (VA) by which it is accessed
on the busses. At power-up, or after a reset operation, the module receives
a position-dependent "socket address." When the module is assigned a specific
task, it is given a new address appropriate to that function. Therefore, if
a spare must take over the task of a failed element, the executive merely

resets the faulty module and changes the spare's address to that of the

faulty one. The system looks the same to the rest of the elements; therefore

configuration information need not change. This reconfiguration method
minimizes bus traffic and overhead.

A special mechanism is provided to override control of an element, if
necessary. The bus interface on each element includes a decoder to recognize

certain special commands from the executive operating system. These commands

can automatically reset a module to its initial power-up state, or even turn
off power to an element to remove pathological faults from the system. These

commands are decoded with minimal hardware, and do not require the cooperation
of the element's controller or software.

The operating system of the FTSP is distributed throughout the CEs of
the processor. The Distributed Operating System (DOS) is a two-level

hierarchy (Figure 2-2). DOS-O, which resides in every CE, maintains local
control over operations such as 1/0 and user services. The system executive
resides in only two CEs, and actually runs as a task under the aegis of DOS-O.
The active executive, (DOS-l) resides in one CE under a dedicated virtual
address. An alternate executive (ADOS) resides in another CE, and acts as a
watchdog over DOS-l; if DOS-i fails, ADOS takes over and assigns its own task
to another CE. DOS-] handles global control functions, such as system con-
figuration, partitioning of tasks, and, in the case of faults, replacement of
failed elements. In FTWRP, DOS-i resides in an intelligent terminal.

16

0

z~ C

II.-
4z

-S.

u En

00

o U)
00

cl~

17,

2.3 Fault Tolerance Philosophy and Implementation

The philosophy of Fault Tolerance in FTSP is relaxed in comparison to

some fault-tolerant computers. If a fault occurs, it will "eventually" be

detected and removed from the system. In the meantime, erroneouq results may

be produced. Obviously, this philosophy would be unacceptable in some

applications (e.g., control processors), but is adequate for most signal

processing purposes.

Features have been built into hardware and software of the Fault

Tolerant Signal Processor to aid in fault detection. The operating system

isolates faults to a replaceable unit (which may be an element or a bus).

Since the reliability of a network is limited by that of its

branches, special attention was given to the fault tolerance of the inter-

element busses. Full handshaking (data ready, acknowledge) is performed on

each word transmitted. Word-by-word parity checking helps to insure data

integrity on the bus. In addition, various watchdog timers monitor all bus

activity to detect timing problems.

Since more than one element may attempt to use a bus at the same time,

a method of distributed arbitration is employed to decide which retains

control. The virtual address of each element determines its priority on the

bus (7 highest, 00 = lowest). Arbitration causes lower-priority elements

to yield to the highest priority elemert. If this process takes too long,

or is otherwise thwarted, a watchdog timer detects the fault condition.

Fault-detection hardware in the CPU includes automatic checks for

illegal use of privileged instructions, invalid instructions, and unauthorized

use of protected memory. In addition, an extensive set of microprograuned

diagnostics is executed at power-up and after a reset condition. Under

limited conditions, DOS-O may also invoke the diagnostics and report the
results to DOS-l

18

Two higher-level fault detection techniques are implemented by DOS-i:

1) status polling, and 2) spare rotation. At a programmable rate, DOS-I

polls all virtual addresses with a "status request" message. No response or

a reported error will cause DOS-i to reset the element controller (e.g., DOS-O).

All possible addresses are polled to help discover newly-inserted elements; this

feature allows the processor to be repaired witnout shutdown.

Spare CEs may be assigned a self-diagnostic task to thoroughly test the

hardware and firmware. By periodically rotating spares and active elements,

DOS-I insures that all CEs are checked out, providing a means for detecting

subtle faults. An algorithm has been implemented which permits spare rotation

without loss of data.

2.4 FTWRP Hardware

The block diagram in Figure 2-3 illustrates the FTWRP hardware and its

interconnection to the existing Pulse-Pair Processor and PPP Recorder Encoder.

A 30-inch rack-mounting card rack with 16 slots accommodates the three basic

fault-tolerant signal processor card types:

1) Common signal processing Element (CE)

2) Input/Output Controller (IOC)

3) Common Memory (CM)

and to interconnects them via the dual bus system. Two lOCs and six CEs (five

for processing ind one spare) are provided so that eight spare slots are

available for future expansion. No CMs are required in presently-envisioned

applications. Power supplies, mounted in the 30-inch rack on rails, provide

adequat(. + 5 . It .C fo- the eiqht cards and a test panel, and adequate

± 15 volt power for eight additional CEs. IOCs do not require ± 15 volts.

An Intecolor 8032 intelligent terminal (desk top computer), which has

built-in dual floppy disk drivcs, i interfaced through its optional 24-bit

port to the redundant 'us via a Terminal Interface Element (TIE). This

configuration allows the Intecolor, which serves as the FTWRP control console

and fault status display, to appear as an element in the same cluster as the

processing CEs. DOS-I was recoded to reside in the Intecolor, which also

has its own version of DOS-0. The terminal also serves as the system

19

ix Go - - -WS

LLU

00 I

LuL

0 10

LUL

Oo-o

-J,
04 00

LU a

LU o I

LU L _ _
0 =.z

UIA

~ IA

Y20

Common Memory (programs and tables are stored as pages on the dual floppy

disks), and has a serial port for occasional communication with a CYBER

175 on which program development is accomplished. The existing PPP is used

to provide automatic gain control and clutter cancellation. Digitized

coherent channel I and Q video and log power pass into the FTWRP through

the INPUT SYNCHRONIZER and its associated IOC which distributes data among

the processing CEs. Following processing, the output data is collected by

,nother IOC and passed through the OUTPUT SYNCHRONT/pR to nther equipment

for recording or display. Section 4 presents detail 'd descriptions of each

of the major hardware components of the FTWRP systemi.

2.5 FTWRF Software

The FTWRP software consists of three major parts: 1) the operating

system (DOS-O and DOS-i), 2) the FTWRP command processor (Intecolor-resident),

and 3) the signal processing user programs (CE-resident).

2.5.1 Operating System Software

As stated above, the signal/data processor operating system is a two-

level, distributed operating system (DOS) responsible for managing the oper-

ation of all elements within the system. The two levels of DOS correspond to

the individual element (CE) level (DOS-O) and to the system level (DOS-i).

Programs executing in a CE are referred to as tasks and are identified to all

elements of the system by virtual address. All non-CE components also possess

a virtual address to permit a uniform mechanism for communications. Tasks

form the computational resource for system execution of signal processing

functions. The two levels of DOS are concerned with managing the execution

of tasks within each CE (DOS-0) and with the assignment and fault monitoring

of tasks to available CEs (DOS-i).

2.5.2 FTWRP Command Processor

The Intecolor serves as the manual control panel for the FTWRP, by

which various system -uz..meters are communicated to the applications software.

The specific nature of these parameters is dependent on the application, and

is therefore described further in Sections 2.5.3 and 3.2.

21

' -rd,

In addition, the Intecolor software is responsible for reporting

FTWRP system status to the operator. This status includes the socket address

of each active element, its card type (CE, CM, or IOC), its current virtual

address, and status. The Intecolor itself appears in the status display as

a CE with socket address 0 and virtual address 77 (octal).

2.5.3 Signal Processing Application Programs

Two applications of FTWRP are available: one for the traditional radar

pulse sequence and another for a special "dual wavelength" sequence developed

by AFGL for range ambiguity resolution.

2.5.3.1 Continuous Pulse Sequence

In Figure 2-4, a processing flow diagram for the continuous pulse

sequence is presented. In a traditional hardwired signal processor such as

the existing PPP, this diagram would also represent the actual hardware. In

the programmable distributed Digital Fault Tolerant Signal Processor, however,

the hardware organization bears no resemblance to processing flow. Each of

the processing CEs receives the same program but uses different segments of

the range-addressed look-up tables. Each CE independently processes its

assigned group of contiguous range cells. Prior to Range Integration, a

small number of edge-cells is exchanged among CEs. The IS and input IOC

distribute data among CEs and the OS and output IOC collect data upon com-

pletion of processing.

Extensive use is made of the 16K-word memory in each CE; in Figure 2-4,

the buffers required for each processing function are sized in terms of the

number of range cells processed (Nrc) for all CEs. A total of 14 Nrc = 14,336

words is needed for N rc = 1024, but since this memory is divided among five

CEs, only about 25% of the available user memory area is filled.

The required signal processing macroinstructions, which were custom-

developed for FTWRP (except READ and SREADR) are indicated in Figure 2-4

along with their associated processing functions. Functions to the LEFT of

the dashed line ("pulse-level" processing) are especially time-critical

since they are performed following each radar pulse. For this reason, RACC

and RACOR received special attention in terms of optimization of execution

22

uolx~aul011- mptms*pl

9 0*

0

00

t-0

L

o Lo

U4 20
0S

0 0. aId .4 U

* -

Z'
hO

wb

time. Instructions READ, RACORI and SREADR are used only following the first

pulse since they eliminate all past history from the accumulators.

The SCALE instruction normalizes accumulator contents with respect to

the selected number of pulses integrated and transfers their contents to

other buffer areas. This process is analogous to the "dump" operation in

the hardware PPP which transfers information into holding loops. The re-

maining operations, also performed only once per dwell ("dwell-level" pro-

cessing) are executed using various combinations of minicomputer and signal

processing instructions. The most noteworthy of these is CVEC, which computes

the inverse tangent of the autocorrelation function for each range cell.

Though not needed for the specified outputs, CVEC also computes magnitude

which might be useful if, for example, it is decided to add a width output

alternative as a later refinement.

The user programs run in a two-level interrupt scheme. While dwell-

level processing is being executed, incoming messages are examined by DOS-O

in each CE. If the message is from DOS-i, then DOS-O takes control and

responds accordingly. For example, DOS-i may wish to sense the status of

the CE. If, on the other hand, the message is from the Input IOC, then it

must be radar data so DOS-O immediately relinquishes control to the pulse-level

user program which runs in a privileged mode and cannot accept other messages

since processing is done from the CE's receive buffer. When the buffer's

contents have all been processed, control returns to the dwell-level where

execution resumes. Another possible input message is the result of another

CE transmitting a small number of range cells for range integration. In this

case, DOS-O returns control back to the dwell-level which can then complete

all processing for that dwell.

2.5.3.2 Dual Wavelength Sequence Application

In a new dual-wavelength scheme being planned for implementation by

AFGL (see Figure 2-5), pulses at frequency F1 are transmitted at a uniform

PRF while pulses at F2 are transmitted at PRF/4. In the Dual-Wavelength

user program returns from F1 are pulse-pair processed to provide unabmiguous

velocity coverage of ±PRF/2, while F2 pulses (from a separate receiver channel)

24

U -- -- 7 V]iA

I* IL

m 4H
R

r. 1.

. i.--
f 1. Z G

1
bZ4

CJW

0 0

ul ni c eg v 0-

.3
0 V

00

LId

14-4
1 4 L I

uu 'j]! i

rw

are block-integrated to provide four times the unambiguous range coverage

fur rel lecliviLy. RinIfge Ambiguity I(esoIver drod Coherent Channel ormatLer

software then unscrambles the range-ambiguous F1 doppler data based on F2
reflectivity information. Written using the minicomputer instruction set

for maximum user flexibility, these functions use log power (reflectivity)

data which is unambiguous over four times the range of the coherent data to

format velocity and shear into an apparently unambiguous range extent. Since

this process results in far more range cells than the Encoder can handle, a

B:I block range integration is performed prior to output. Normally B is

chosen as 4, but other possibilities allow finer resolution with non-
standara range-cell scaling. Additionally, sliding window range integration

can be performed if desired, just as in the continuous pulse case.

26

REFERENCES

2-1. Stiffler, J.J., "On the Efficacy of R-on-M Redundancy", IEEE

Transactions on Reliability, Vol. R-23, No. 1, April 1974, pp. 37-43.

27

3. FTWRP SYSTIM USAGE

The followinq sections describe the use of the FTWRP system and the

command interpreter. Section 3.1 deals with system startup, and gives a step-

by-step instruction outline on how to bring up the system from a powered-down

state. Section 3.2 describes the command interpreter and required command

formats. System power-down is discussed in detail in the last section.

3.1 FTWRP System Startup

To bring the system up from a cold start, follow the simple

instructions below:

1. Turn on the Intecolor (switch located in rear of terminal).

2. Turn on FTWRP power.

3. Reset all cards by setting RESET switches on front panel of

FTWRP to down position and then returning them to their

normal (up) position.

4. Turn on power to Pulse-Pair Processor and PPP encoder/

decoder.

5. Turn on power to Scan Converter.

6. Insert diskette labelled "FTWRP" in drive 0 (lower drive) on

the Intecolor.

7. Insert disket'e labelled "FTWRPAGES" in drive 1 (upper

drive) of the Intecolor.

8. Type (ESCAPE) P.

9. Type (ESCAPE) D.

1n. Type RUN 100S0 (RETURN).

11. Type in commands as desired (see Section 3.2).

12. Type PPP to begin processing.

The Intecolor should begin accessing the drive 1 diskette repeatedly as

the Common Elements request pages to load the applications software. Approxi-

mately 16 pages per CE will be loaded before the system will actually begin to

perform the task.

28

3.2 IDOS-1 FTWRP Command Interpreter

The interpreter has a self-contained command parser and built-in error

checking to provide a simple user interface. This section describes each of

the commands currently supported, and gives specific format requirements.

After each command is a parameter list--required parameters are

enclosed in square brackets '[' and ']'. Optional parameters are enclosed

in parentheses '(' and ')'. Default values for optional parameters are

qivei. in the description that accompanies each command.

Parameters enclosed by curly brackets '{' and '}' denote that exactly

one of the values listed must be included.

Each command must be followed by at least one space. Commands are

truncated to 5 characters, and all followinq characters are ignored.

Parameters are separated by either a comma ',' or by one or more spaces

. Number parameters may be in octal, hex, or decimal, and bases may he

interchanged within commands. Numbers of different bases are entered as

fol lows:

DECIMAL NUMBER EXAMPLE: 678

-429

OCTAL NUMBER EXAMPLE: '357

'0103

HEXADECIMAL H NUMBER EXAMPLE: HA94E

In addition, some parameters require floating point format for entry.

Floating point numbers must be in decimal, and are of the form

XXXXXX.YY

where XXXXXX is any number from -32768 to +32767

and

YY is any one or two digit number up to 99. Leading and trailing zeros need

not be included. It the fractional part is zero, the decimal point need not

be included.

29

EXAMPLES:

34.67

-45.1

109

The command descriptions are qiven in Table 3-1.

3.2.1 FTWRP Parameters

System parameters are entered usinq the SET command (see Table 3-1).

The various parameters and their possible values are listed in Table 3-2.

Some parameter values are affected by others, and there are limitations on

the combinations of values. For example, the default scale constant (SCL)

is determined by the current setting of the number of pulses inteqrated (NSI)

according to Table 3-3.

If the shear flaq (SHR) is set to RADIAL, the SHRLUT parameter, which

is useful only to tangential shear computation, is iqnored. Also, many

parameters are used only durinq ranqe ambiquity resolution, which is not

performed except in the Dual-Wavelength application. These include BLW,

PRETHR, and ZTH.

Finally, there are limitations on the combination of values for the

number of range cells per pulse (NRC), the range cell size (TP), and the number

of pulses integrated (NSI). Table 3-4 lists these in detail.

30

Table 3-1. FTWRP Command Description

COMMAND DESCRIPTION

RES [VA] Reset card with virtual
address VA

DIR (DRIVE#) Display directory of disk
drive DRIVE#. Default
drive is MD1:

SAV [FILENAME](.EXT)(;VR)(MEMSPEC) Save a file onto disk
with name 'FILENAME.EXT;VR'

If the memory spec is not
included, page 0 will be
saved as 'FILENAME' onto
drive MD1:

LOA [FILENAME](.EXT)(;VR)(MEMSPEC) Same as save command, except
file will be retrieved from
disk and placed in specified
area of memory. Default
memory spec is page 0

RADIX OCTAL, HEX Sets the radix for output
to the specified value.

CYB (BAUD) Sets the baud rate as speci-
fied in BAUD, then calls

BAUD: the utility routine CYBER
0-7 = 300 baud which interfaces the In-
8 = 1200 baud tecolor

16 = 2400 baud to a modem connected to
32 = 4800 baud the RS-232 port.
64 = 9600 baud Control is regained when

the DELETE key is de-
pressed
The default baud rate is
300 baud.

ERA Erase the Intecolor Display

31

. m mmm

INI Initializes the IDOS-1
tables (PGMAP, SYSTBL, etc)
and returns IDOS-1 to the
initialization state

TSK [VA], [TSKID] Load task into CE with
address

VA. 'TSKID' is used to
compute the Load Map Page
number.

ST [VA], [NEWVA](,STARTADDR) Start CE executing task
under address 'NEWVA ° and
the specified start add-
ress.
If start address is omit-
ted, the address in the
task prologue will be used.

CLR Clear the Intecolor display,
then repaint the system
status on the screen.

PRINT ON,OFF This turns on the Integral
Data Systems printer hand-
ler and causes all output
to the screen to be printed
This handler may not work
for all printers.

DSPP [PAGENUMBER] Displays the desired page
in octal or hex format,
depending on the current
radix

DSPM [VA][,STARTADDR](,ENDADDR) Displays the contents of
CE memory, starting at
STARTADDR and ending at
ENDADDR. If ENDADOR is
omitted, 240 words will be
displayed. In any case,no more than 240 words willdisplayed.

32

MODP [PAGENIIMRER],[APDRI=DATAI](,DATA2)(,DATA3)... (ADR2=DATA1)(,DATA2).

Modifies the desired paqe
by replacinq the current
contents at ADDRI,etc with
DATAL,etc. Consecutive
addresses need not be ex-
plicitly entered. If page
0, 1, or 2 are modified,
only the RAM-resident ver-
sions are modified. Other-
wise, the new copy is
written to disk, and the

old copy is destroyed.

MODM [VA],[ADDRI=DATA1](,DATA2)...(ADDR2=DATA1)(,DATA2)...

Same as MOnP except des-
tination is the specified
memory address in CE with
virtual address VA.

MSG [DESTVA],[SRCVA](,MSGCODE)(,WORDCT) Sends the contents of
paqe 0 to DESTVA, creates
a header word with SRCVA
as the source address and
message code MSGCODE.
Exactly WORDCT words will
be sent (not includinq the
header or wordcount words)
If WORDCT is omitted, 240
words are transmitted.

SVA [VA] Changes the virtual ad-
dress of the Intecolor to
VA.

BUS {A,B,ALT} Selects the bus over which

all subsequent transmis-

sions will be sent. ALT
signifies that busses will
alternated.

33

CMR [VA],[PAENIIMBER] Sends a CM read request
to VA, for page PAGENUMBER.
The result, when it is
received, will be displayed
on the screen.

CMW [VA],[PAGENUMBER] Sends a CM write request
to VA to write the contents
of paqe 0 as paqe
PAGFNIIMBER.

SCH [TSKNO],[VA] Fnters the ,as:(in TSKNO
ont o -n .'o - task que,
ni VA onto the virtual

C(IN [VAI N ih ir
1

u

Vr

TRA LVA]j(IN,OiI i ,rf,s trace "4. rAr, ir

at VA on or o)ff. ;--r
his command to work prop-

o.riv, trace interrupts must
1,ave already been enabled
,n oser task proloque.

TSP [VA] Sends a suspend task com-
mand to the CE at VA.

TRS [VA] Sends a resume task com-
mand to the CE at VA. The
CE must have previously
been sent a suspend task
messaqe.

STO Saves the current task
queue and related variables
on drive MDI: as file 'TASK
S.0011

34

CTQ Clears the task queue and
virtual address queue.

ABORT Aborts the pulse pair
processinq tasks and returns
the system to the idle
state.

CONT Restarts the Pulse-Pair
processinq tasks after an
ABORT command.

PPP Begins the System Startup
procedure that performs
Pulse-Pair processing.

SET [PAR1=DATA1](,PAR2=DATA2)... Modifies the parameter
(PARn=DATAn) table as instructed in the

operands (see Table 3-2).
If the system is idle,
nothing else happens.
Otherwise, the modified
parameter list is sent to
each signal processing CE.

35

Tahle 3-2. 'SET' PARAMETER MNEMONICS

MNEMONIC DESCRIPTION

SHR Shear flag: R = Radial shear processinq
T = Tangential shear

SHRLOT Tangential shear Look up table load map

page number. Not applicable if shear

flaq = Radial.

NRC Number of Range Cells Processed:

256

512

768

1024

NSI Number of Pulses Integrated:

16

32

64

128

256

SLW Sliding Window Inteqration window size:

0 - 16

SCL Scale constant (if different from default):

I - 256

BLW Block Integration window size (for dual

wavelength only):

1

2

4

36

Table 3-2. 'SET' Parameter Mnemonics (con't)

MNEMONIC DESCRIPTION

PRETHR Pre Ranqe Ambiquity Resolution Reflectivity

Threshold (dual wavelength only):

O - ion

ZTH Post Range Ambiguity Resolution Reflectivity

Threshold (dual wavelength only):

0 - 100

RNORM Range Normalization processing:

ON

OFF

TP Range Cell size (in microseconds):

1

2

STPOLL Status polling frequency (in seconds):

1 - 255

SPRROT Spare Rotation parameters (2):

ON, frequency (in seconds, 1 - 2

55)

OFF

IOC Number of IOCs required for processing:

0 - 2

CE Number of CEs required for processing:

0 - 5

STPMAX Number of unanswered status polls allowed

before reconfiquration is invoked:

1 - 255

DEGRAD System Degradation flag:

ON (system will degrade)

OFF (system will do nothing)

u7

Tahle 3-3. Scale Constant fefault Determination

NSI SCL (Default)

32 8

64 4

128 2

256 1

38

Tahle 3-4. System Limitations on NRC, TP, and NSI.

('X' denotes illeqal combinations)

I I NRC

I 1 NSI 1256 1 512 1 768 1 1024 I

32 X X X -

TP= 64 X X ? -

1 usec 128 X X X - I-

256 X X

1 (32 - - 1 - -

I TP I 6 I - I - I - I
I2 usecl 128 I - I - I -

1256 I - I - I - I

See Appendix D

3.3. FTWRP System Shutdown

To shut the FTWRP system down, follow the steps below:

1. Type ARORT (RETURN) to stop the siqnal processinq tasks.

2. Hit the CPU RESET key on the Intecolor keyboard.

3. Turn off power to Intecolor, SCRM, PPP, PPP encoder/decoder,

and FTWRP (in any order).

39

4. DETAILED HARDWARE DESCRIPTION

4.1 Common Element

4.1.1 General Description

The Common Element (CE) is a complete microprogrammed 16-bit computer

on a card, including I/O ports, memory, ALU and control sequencer. Figure 4-1

is a block diagram of the CE. The CE instruction set is a superset of the

Raytheon RP-16 microcomputer instruction set with signal processing macro

instructions; e.g., complex matrix multiply, CVEC etc. Several hardware

features have been incorporated in the CE to permit 32 or more elements to

operate on common busses and to make software independent of hardware assign-

ments. This section discusses the CE in general, and gives an Equipment

Specification of the Mark I CE.

Two I/O ports connect to identical 16-bit bi-directional busses which

provide redundant paths for macro-program loading into CEs and for communi-

cation of data both among CEs and with other memory or I/O units connected

to the busses. The control lines are used for bus control and arbitration.

Bus data rates are dependent on many physical parameters, such as the distance

between source and destination. However, the average data rate is approxi-

mately four 16-bit words per microsecond (4 million words/sec).

The Random Access Memory, used for storage of data and macroprograms,

has dimensions of 16K words by 16 bits. Although it is dynamic MOS memory

and requires refresh, this requirement is made transparent to macroprograms

by inclusion of an address multiplexer and refresh timer which ensure

adequate refresh through a micro-coded routine. A basic read or write RAM

cycle requires two micro cycles, but for access to sequential addresses

within 128 word "pages", only one micro cycle is required.

The structure of the Arithmetic Unit has been optimized for signal

processing operations such as complex matrix multiplication, convolution,

Fast-Fourier Transform, etc. The ALU is a Schottky-bipolar bit slice unit

which can implement typical minicomputer operations such as addition,

4n

CONTROL
FC0' I FORT I tINIS

O/.TA DA ?A R

INPUT-OuyPvT POt Tj

16K WORIDAM

SY BUS

~L$(OLoNCE

$NTEIR4h& BUS

Figurr A-.Simplified Common Element Block Diagram

41

logical functions, shifts, and sequential multiply or divide. The ALU also

produces an address for the RAM by performing arithmetic operations on
internal registers so that various addressing modes can be accomplished.
Most operations can be performed in one micro cycle; in fact, many compound
operations such as simultaneous address and data computations are possible.
Multiplication and division, however, require about one micro cycle per bit.
For this reason, a high-speed parallel multiplier which can perform a 16 x 16

signed two's complement multiply in just one micro cycle was added. The

256-word cache memory serves as a high-speed register file for storage of

intermediate results of data processing algorithms. Read or write accesses

can be done in one micro cycle with sc jential locations accessed by an
address generator under micro-program control.

4.1.2 Specification - Common Element Mark I (Part No. 977725)

4.1.2.1 Description

The CE is a complete microprogrammed processor on a card, having ALU,
memory, dual 1/0 circuitry, and a control sequencer. The CE is designed
to function as one of many programmable elements including spares collectively
communicating via dual-independent high-speed data busses to form a fault-
tolerant signal processor wherein the failure of one bus or any CE can be
tolerated. The CE is optimized for high-speed signal processing by virtue
of its architecture which includes a hardware multiplier so that multiply/add
operations can be accomplished in one microcycle.

4.1.2.2 Specification Summary

4.1.2.2.1 Memory -

o RAM for program and data storage: 16,384 16-bit words
o RAM for register sets and file: 256 1 I

0 RAM for input buffer: 256 of I

o RAM for output buffer: 256
o ROM for DOS-O 4,096

42

o ROM for Microcode: 2,048 80-bit

o ROM for Instruction Decode 1,024 16-bit

4.1.2.2.2 ALU-

o 16-bit 2's complement arithmetic

o 2 working registers

o 2 memory address registers

o separate 16 x 16 hardware multiplier

o 250 nsec maximum cycle time

4.1.2.2.3 I/O -

o Two independent asynchronous parallel ports, each with distributed
bus-arbitration logic

o 16-bit width plus one parity bit

o Message blocks up to 256 words long

o Header string for message routing and identification

o Four MHz typical bus data rate

o Up to 32 elements per bus

o Built-in control line timing and sequence monitoring

4.1.2.2.4 Software -

0 ROM-resident element-level distributed operating system DOS-O which
coordinates CE operation and handles allocation of CE resources, I/O,
and fault monitoring

o 30 mini-computer instructions; e.g., ADD

o 24 operate instructions used by DOS; e.g., WRITE

o 12 powerful signal processing instructions; e.g., RACOR which computes
autocorrelation for many range cells and is the heart of the Pulse
Pair Processing algorithm

o Eight sets of eight general-purpose registers

4.1.2.2.5 General -

o Construction: w're-wrap, plug-in, dual-inline 0 to 700 C Integrated
Circuits

o Size: 16.3125 x 13.8125 (including connector) x 1.5 inches

o Power Requirements:

43

Typ. Max.

+ 15V ± 5% .1A .6A

- 15V ± 5% .025A .04A

+6.3V ± 5% 15A 20A

o Built-in power controller monitors and regulates voltages, provides
proper sequencing at turn-on, allows addition of redundant power sources,
and allows faulty CEs to be powered-down.

4.1.3 Detailed Hardware Description

The following sections describe the Common Element hardware and

timing in more detail. The discussions emphasize six major units of the CE:

I/O transceiver, Arithmetic Unit, Control Sequencer Unit, RAM Interface Unit,

Timing Generator, and Power Controller.

4.1.3.1 Input/Output Tranceiver

The Bus Transceiver circuit of the Common Element (CE) is used by the

CE to transmit data to and receive data from other elements in its cluster

by means of either of two 16-bit wide open collector buses. Data is trans-

ferred in blocks of up to 256 words. Transmitting and receiving are under

control of independent control circuits. Since several transceivers may

attempt to use the bus at the same time, a system of arbitration is employed

to decide which transmitter will control the bus. Figure 4-2 is a detailed

block diagram of the CE I/O and Figures 4-3 and 4-4 are timing diagrams

showing the transmit and receive operations.

4.1.3.1.1 Inputs from CE

1. IOBUFOEC

o Outputs receiver RAM to SYSBUS when low.

o RAM address advances on pos. edge of CKO.

o Must be high when receiver is idle.

2. IOSTATOEC

o Outputs status to SYSBUS when low.

3. SEL BUS

o Selects bus according to state of SBO (H = B, L = A).

o Clocks on pos. edge.

o Must stay high when transmitter is triggered.

44

91 0

:-t t ._- -*'--- ---

; ;

,,-I__ __ I

i a mid i I inI..

a

~ ~j
j

-
* 4

1 I~ K -in I

I ,~ii I IJ~

V
'a

I '7 ~ I

1*
F

~I1 HI4M r~JK

F

5' Ii

ai

C

II :ii

-. I ' 'I I
'I -,

,' ~ iii

2~

I I
~ Si

4 61
I- I

J~
~

i~ ~4

I '2
~i

I', .

9" ii i .4

'9' ~l $

ILL

I I'

411
ol

q
ZIIiof A .1 4 IF0

4. T79T
o Resets receiver to idle from any state when low.

o Block size high when receiver is idle.

6. LTA
o Loads CE address from SYSBUS on pos. edge.

o New address will be used immediately by receiver.

o Transmitter will use newly loaded address on first TST after
loading.

o Do not load new address while transmitter is triggered.

o This address does not effect the data block header word.
7. M

o Starts transmit sequence when low.
o Uses latest loaded address for arbitration.

o May be used to reattempt transmission of a block previously
loaded into transmitter RAM if no TXRST is given.

8. TfflfU

o Loads one word per CKO cycle from SYSBUS to transmitter RAM when
low.

o Loading does not have to be continuous.

o Load only when transmitter is idle.

4.1.3.1.2 Arbitration

Each transceiver has a 6-bit address loaded from the SYSBUS into
a register on command of the CE. The address is divided into two 3-bit groups
(MSB and LSB), each of which goes to a one-of-8 decoder to produce the 16-bit

arbitration code. When the bus becomes unoccupied, one or more previously-
triggered transmitters may occupy the bus simultaneously, each pulling a
pair of data lines low according to its arbitration code. The code seen on

the bus is the wired-OR of all the codes occupying the bus. The presence

of two or more transmitters on the bus necessarily implies that more than

two lines are pulled low. The presence of higher priority transmitters on
the bus causes lower priority transmitters to drop off. When a transmitter
sees that the only others on the bus are lower priority, it waits for them
to drop off. When its two bits are the only ones pulled low, it has won the

arbitration and proceeds to transmit its data block.

48

4.1.3.1.3 Destination decoding

After winning arbitration, the transmitting element outputs the first
RAM word to the bus and pulls the RAW control line low. The first word
is a block-identifying header which includes the six-bit card address of the
element which is to receive the block. At the time of the first negative-
going edge of READ in the transmit cycle, every element in the cluster
strobes the output of its destination decoder to see if the six destination

bits of the header match its card address bits.

4.1.3.1.4 Data transfer

The receiver which is the intended destination of the block may respond
in either of two ways. If it already has a data block in its RAM which has
not been serviced by its CE, it sets BUSY and ACK low. If its receiving
RAM has been released by its CE, it leaves BUSY high, clocks in the header
and sets ACK low. Transmitter and receiver proceed to transfer the data
block. The transmitter indicates the presence on the bus of the next valid
data word by the falling edge of READY and the receiver acknowledges receipt
of the word by the falling edge of ACK.

To determine when the transfer is complete, the transmitter compares

the RAM address with the output of a counter which counted the number of
write pulses during the last RAM loading period.

4.1.3.1.5 Parity

The transmitter generates odd parity on the data, and the receiver
checks this parity bit against the received word. For an er-or on any
word except the header, the receiver sets BUSY low at the time of the fall-
ing edge of ACK. Once a parity error has been received, the receiver latches
BUSY low for the remainder of the transfer. A properly operating transmitter
immediately terminates the transfer.

4.1.3.1.6 Transmitt> controller outputs

1. A - Parity generator output gate, A bus (L)
2. BX - Parity generator output gate, B bus (L)

3. A BUS ENBL - A bus data transmitter enable (L)
4. B BUS ENBL - B bus data transmitter enable (L)

A9

5. CODE OE - Arbitration code output enable to T register (L)

6. DATA OE - RAM output enable to parity gen, (T) register (L)

7. TENBL - Bus transmitter enable: Ready, Occupied, Parity (L)

8. TREGGK - Clock for T register (POS EDGE)

9. TCCK - RAM address counter clock (POS EDGE)

10. TCRST - RAM address counter direct reset (L)

11. TCLOAD - RAM address counter synchronous load (L)

12. ARB ENBL - Arbitration decoder enable, MSB's (H)

13. IOINT - Interrupt to CE (H)

14. STI thru ST4 - Transmitter state (LOW TRUE).

4.1.3.1.7 Receiver controller outputs

1. RCCK - RAM address counter clock (POS EDGE)

2. RCRST - RAM address counter direct reset (L)

3. REOBCK - Block size register clock (POS EDGE)

4. R WRITE -RAM write enable (L)

5. ST5, ST6, 7T7 - Receiver state

6. ICA - A register output enable to RAM (L)

7. MB - B register output enable to RAM (L)

8. A REG CK - A register clock (POS EDGE)

9. B REG CK - B register clock (POS EDGE)

4.1.3.1.8 Status word

The transceiver outputs a 16-bit status word to the SYSBUS on command

of the CE. Included in the status are the transmitter state, receiver state,

last transmit bus, and the length of the last received block. Tables 4-1

through 4-4 are truth tables for the word.

4.1.3.1.9 Receiver states

Idle

No data waiting in RAM
May be receiving
Do not reset receiver when it is in this state

Parity Error A

Parity error has occurred during reception on bus A
Sender is still occupying bus

50

STAhUS TRUIll TABILP

(At SYSBWS)

Table .4 TRANSMITIER S'ATE

SB4 SB3 SB2 SB STATE

H H 1! H TRI GEI
H Ii 11 H PAS FUSY*

H L It H AM FAULT*
H L L I RF23LY FAULT*
1. H I1 II ROC BUSY*
L II L II PARITY FH1MR*

L L H iI TIME FAULT*
L L L H DOW*

L L L L IDLE

* (interrupt)
No other states of SB. thru S14 occur

Table 4-2 LAST TRANSMIT BUS

SB0 BUS

L A

H B

Table 4-3 RCEIVER STATE

SB7 SB6 SBS5A1

H L L ICLE
iI t L PARITY ERROR A

H L H PARITY ERRR B

L if L FAULT A*
L L H FAULT B*
L L L FLL*

*Interruqpt
No other states of SB5 - SB7 occur

Table 4-4 Bfl LN!

SB15 SB14 SB13 S512 SBll SB10 SB9 SB8
L L L L L L L L HENM C[NY

L L L L L L L H HAM &CNE WR

L L L L L L H L HEADER& '11W IW)JS
*0 0 0 0 0 0 0 0

0 0 0 0 0 (0 0 0

H H H H 11 H H I HAR& 255 COS

51

Parity Error B
Parity error has occurred during reception on bus B
Sender is still on bus

Fault A

Incomplete block received on A
Parity error or time elapsed

Fault B

Incomplete block received on B
Parity error or time elapsed

Full

Data block received without error
Read onto SYS BUS any time before next RXRST

4.1.3.1.10 Transmitter states

Triggered

Sending or waiting to send
Will proceed to an interrupt state
TST has been received
May be reset from this state directly

Bus Busy
Unable to get bus and win arbitration in required time

ARB Fault

Too much time taken in arbitration
Reply Fault

No reply from receiver
May mean parity error on header

Rec Busy

Receiver answered "BUSY"

Parity Error
Transmission incomplete due to parity error

Time Fault

Transmission incomplete
Transmission took too much time
Receiver did reply to header

Done

Transmission completed
Must get RXRST to go to "IDLE"

52

Idle

Must get TXRST to get to this state
Load transmitter buffer only when transmitter is in this state
Counts block length: #Words written between TXRST and next TST
Goes to "TRIGGERED" on receipt of TST

4.1.3.2 Arithmetic Unit

The CE Arithmetic Unit (see block diagram Figure 4-5) consists of

the ALU, the Multiplier, Program Status word, and Register File. The

following subsections discuss each of these in detail.

4.1.3.2.1 Arithmetic Logic Unit (ALU)

The ALU used by the Common Element is the Texas Instrument SN74S481

4-bit slice, shown functionally in Figure 4-6. The 'S481 contains many

features relevent to the CE architecture, most notably four internal special

purpose registers and four major data ports. The working register (WR) and

extended working register (XWR) can be used separately or concatenated to form

a single double length accumulator. The memory counter(MC) and program

counter (PC) registers represent independent memory address generators with

separate increment-by-one and increment-by-two controls. The I/O ports of

the ALU chips include two data input ports, AI and BI/O (which doubles as

an output port), a general purpose data out port (DOP) and an independent

address-out port (AOP), permitting memory addressing without tying up the

entire ALU. The many capabilities of the 'S481 are discussed in detail in

Reference 4-1.

4.1.3.2.2 Multiplier

The on-board multiplier in the CE is a TRW MPY16AJ 16 x 16 multiplier

array, contained in a large, 64-pin dual-inline-package. The MPY16AJ per-

forms a 16-bit two's complement fractional multiply in about 200 ns. It is
connected to the ALU in such a manner so as to permit a single cycle accumu-

lated multiply.

4.1.3.2.3 Register file

The Common Element Arithmetic Unit has a 256 x 16 RAM with a single-
cycle access capability. The first 64 locations are reserved for eight

sets of eight general-purpose registers used by the data processing

53

'1] ! ,i ' I 4

F _ 1_ -! v .1 ' I ll I'l

I I C7f-' I ' 4- -" -' L ..: t- /

.. ,4 '-
+ lt I+. I

!If- -4 t

- iI. 8

Figure 4-6. Texas Instruments 74S4,31 Functional

Block Diagram

55

instruction set. The second 64 locations are reserved for internal book-

keeping in microcode, and the upper 128 locations are used as scratch-pad

RAM by the signal processing macro-instructions.

4.1.3.3 Control Sequencer Unit

The Control Sequencer Unit consists of the microprogram Sequencer, the

two mapping PROMs, the pipeline registers, and the condition code select

multiplexer. These are each described in the following subsections.

4.1.3.3.1 Microprogram Sequencer

The microprogram sequencer is an AMD Am291O chip housed in a 40-pin

dual-inline package. The sequencer generates the next microprogram address

based on various states of the machine by using a powerful set of instructions.

It uses as inputs the condition code multiplexer output (as a method of

conditional execution), the D port input (to which various constants can be

input), and internal registers such as the microprogram counter (Vpc) and

register/counter (for loop counting). The AM2910 also has an on-chip micro-

program stack which supports up to 5 levels of subroutines in microcode.

4.1.3.3.2 Pipeline Registers

The output of the 2Kx80 microinstruction PROM is registered to increase

throughput. All 80 bits are registered on the rising edge of CKO for initial

pipelining. However, to effect the two-phase operation of the CE, all bits

which control hardware that is dependent on CK1 are re-registered at the

rising edge of CKI. Thus, two-phase operation is accomplished automatically.

4.1.3.3.3 Mapping PROMs

The CE contains two sets of 512 x 8 bit mapping PROMs. The first set

is used to vector to microcode routines which compute the effective memory

address implied in the various data processing address modes which the CE

supports. Once computed, the effective address is stored in the ALU memory

counter (MC) register for later use. The second mapping PROM is then used

to vector to the microroutines which actually execute the opcode as required.

The various instructions and addressing modes are treated in detail in

the CE Programer's Handbook (Reference 4-2).

56

4.1.3.4 RAM Interface Unit

The onboard memory consists of 16K words of dynamic RAM for user

program and data storage, plus 4K words of PROM for operating system use.

The dynamic RAMs (4116-2) have two possible addressing modes. A random

memory read or write requires the row address to be latched first and then

the column address. The high to low transition of the ROW ADDRESS STROBE

(RAS) latches the row address. The high to low transition of the COLUMN

ADDRESS STROBE (CAS) latches the column address. Page mode allows successive

memory operation at any column address locations of the same row. This

increases the speed by approximately a factor of 2 without an increase in

the operating power. The only limitation on read or write memory operations

that can be performed in page mode is the length of time the row address

is valid. After 10 micro-seconds the row address must be pre-charged (i.e.

after 10 uis of page mode operations the next memory operation must be a

random access to strobe both the row and column address). The page mode

cycle is 170 nano-seconds minimum and the random access cycle in 375 nano-

seconds minimum. With tolerance for timing this makes the page mode cycle

equal to the CE cycle and the random access cycle equal to two CE cycles.

The decision to use page mode or random-access mode is made in hardware,

independently from microcode or software.

At the output of the RAM is a byte/word register which permits auto-

matic unpacking of bytes with either sign extension or zero-fill options.

A hardware timer interrupts the microcode approximately every 2 ms

for RAM refresh. The microcode then sequentially accesses all 128 row

addresses to fully refresh the entire RAM. This dynamic RAM refresh timer

also serves as the basic tick for the CE'suser clock used by software.

A memory protect circuit pr, vents writing into priveleged areas of

RAM without proper authorization. Priveleged areas of memory are the user

task prologue (see ,,.,Jon 5.1.2.2), DOS-O data memory, the unused locations
from 3FFF 16, to F7FF 16, and the PROM address space (F800-FFFF). An un-

authorized write to protected RAM is changed to a read operation and a

fault interrupt is generated.

57

4.1.3.5 Timing Generator

The Timing Generator creates the master clock signals for the entire

board. The major input to the generator is the page-fault signal from the

RAM interface, which stops the clock temporarily while a long random access

operation takes place. The clock itself consists of two phases, CKO and

CK1 (see Figure 4-7). This effectively breaks the CPU cycle into four parts,

labeled T1, T2, T3 and T4.

The first part, T1, is used primarily for data setup on internal busses,

memory address decoding, microcode instruction decoding etc, and is approx-

imately 65-71 ns in duration. The ALU accepts its inputs and decodes its

instructions during T2, which is 50-55 ns long. T4 is constrained solely

by the register file write operation, and is 34-37 ns in duration. The third

part, T3, is used to ensure that all hold times and cycle time restraints

are met, and is 73-80 ns long. The CE cycle time is therefore specified as

222 ns minimum, and 243 typical. The average speed of the FTWRP Common

Elements is approximately 240 ns.

4.1.3.6 Power Controller

The Power Controller serves three major functions: 1) as an onboard

regulator, which takes the +6V and ±15V power bus voltages and regulates

them down to +5V, +12V, and -5V required by the CE; 2) as a power sequencer,

which ensures that the CE voltages are applied in the proper order to avoid

blowing out any sensitive IC's (such as the RAMs); and 3) as the mechanism

by which the board is reset (master reset) or powered down by executive

command. The majority of the power controller is contained on the piggy-back

printed-circuit board mounted at the connector end of the card.

4.2 Input/Output Controller (10C)

The IOC module, block-diagrammed in Figure 4-8, serves as a message

center with routing, control and error-checking functions. Data enters as

word-serial packets at a rate of 4 x 106 16-bit words per secund through

one of four ports. Each packet is loaded by the Receive Controller into

one of two RAMs. Processing such as header reordering for intercluster

transfers is performed by the Block Controller,

58

-j-_r_

0

LL.

59

- . -4 L 4. -,, . ° .', , i , , ,. U,

ABPORT BU
==---#zji IrjLM ACE

21

RAM

8 PORTA256 X 1

COTOLE CONTROLLER

Fiur ADDRE. TO ~uc lc iga

60ICRE

and the data block is sent to its destination through another port by the

Transmit Controller.

The IOC implements intercluster and system I/O block transfer through

redundant channels so that failures of single IOCs or entire busses can be

tolerated without loss of performance. The A and B ports are always con-

nected to the corresponding busses in the cluster where the IOC is resident,

thereby providing dual paths to all other elements in that cluster. In

multicluster systems, the C and D ports of an IOC in an executive cluster

connect to A and/or B busses of two different slave clusters. In this way,

only N + 1 1OCs in the executive cluster are needed for reconfiguration in

the event of failures of an IOC or of either of the A or B busses in N

slave clusters. The IOC'sC and D ports communicate with peripherals in a

direct mode; two four-bit select-code outputs (See Figure 4-8) are used to

select one of up to 16 peripheral devices. The Input Synchronizer and

Output Synchronizer are used as peripherals in FTWRP; each is connected

to the C-port of its IOC.

The Bus Interfaces include bus transceivers and input registers, as

well as header decoding, bus-access arbitration, and parity check logic as

discussed in Section 4.1.3.1.2.The four interfaces are essentially identical,

except that the C and D ports interpret certain message codes which could

only have come from an executive CE as invalid; executive messages are

only allowed to enter IOCs through the A or B ports. The independent

receive and transmit controllers, implemented in high-speed logic, carry

out the arbitration, destination decoding, data transfer and parity checking

by interacting with the bus interfaces and control lines. Fast RAMs are

used as dual buffersfor simultaneous transmit and receive through separate

ports (or through the same port for test purposes). The IOC responds to

"status request" messages from the executive CE by formatting and sending

a "status return" message containing at least the following: IOC virtual

address, current mode -f operation, selected port, and current bus selected.

Error conditions, such as invalid message codes received on C or D ports,

are also included in this message.

61

The multiport architecture of the IOC uses a variety of tests on a

multitude of data paths and circuit elements in addition to the pervasive

parity checking to assess performance. Each port is directed to itself as

a destination through the various possible bus paths; for example, through the

C port of an executive cluster into a slave cluster's A bus, into an A port of

some spare device resident there, out through that device's B port, into

the D port of another executive-cluster IOC, out through its A port and

back to the first IOC's A port. This checking, under control of the

executive, exercises and tests spare data paths in the system. The control-

ler in a spare IOC is tested by commanding it to perform functional tests

such as accepting a message, modifying the contents in some unique way and

then returning the result to the executive for verification.

The IOC block controller, block-diagrammed in Figure 4-9 contains the

microprocessor controller for generating the control signals for the high-

speed receiver controller and transmit controller. The block controller

contains a Signetics 8x300 bipolar Schottky microprocessor which executes

16 bit instructions in 250 nanoseconds.

Data handling and I/O device addressing are accomplished via the

8-bit interface vector (IV) bus. The IV bus is supported by four control

lines and the 8X300-generated clock. The block controller contains fourteen

Signetics 8T32's which are 8-bit latched addressable bidirectional I/O ports.

The microprocessor addresses the port. If the address matches the 8T32's

internally-programmed address, the port is enabled, allowing data transfer.

With these ports, 16-bit words are read from the IOC outgoing bus, and

16-bit words transferred to the incoming bus. Transmit interrupt, transmit

status, receive interrupt, and receiver status bits are sampled. Bus selects,

RAM clocks, register clocks, and device select signals are generated at the

outputs of the IV registers.

The IOC firmware is discussed in detail in Section 6.2.

62

TO 12 ADDITIONAL
IV REGf3TL'RS

8X300 DATA'
& CONTROL

8T STATUS AND

CONTROL

EPROMSFOR

RECEIVER

CONTROLLER
OR 8 300AND

2) 8sigiTRANSMIT 6 CONTROLLER

PROGRAM MICROPROCESSOR

ZK X16 DUAL PORT 1/0
REGISTER

Figure 4-9. 10C Controller Block Diagram

63

4.3 Terminal Interface Element

The Terminal Interface Element (TIE) is designed to interface an

intelligent terminal to the two 16-bit open collector data buses in the

fault-tolerant weather radar system. Use of this interface permits high-

speed asynchronous data transfers independent of the relatively slow, micro-

processor-based terminal. The TIE communicates with the intelligent terminal

via a 24-bit parallel I/O port, and with other elements via an extension of

the dual 16-bit data bus. The TIE is mounted on the back of the terminal

along with its own 5-volt power supply.

A block diagram of the TIE is shown in Figure 4-10. It consists of a

Common Element Bus Transceiver with some extra hardware to permit communica-

tion with the terminal. The majority of this extra logic is devoted to

interfacing the 16-bit buses of the 1/0 transceiver to the 8-bit bi-

directional bus of the terminal. This is accomplished by placing four

8-bit tri-state registers on the 8-bit bus which alternately clock the

most-significant part (MSP) and the least-significant part (LSP). Control

of which part is loaded at each clock is performed by the LSP/RP flip-flop,

which toggles each time a read or write is ended.

The TIE's transmit capability may be disabled by raising the ITENBL

line. This permits the TIE to listen on the bus and recognize messages

without responding with acknowledges. The purpose of this feature is to allow

the TIE to "eavesdrop" on the bus by taking another elements' virtual address

and listening to all messages sent to it. The eavesdrop capability has

never been tested, but should work in principle.

The overall operation of the TIE is best shown by describing each of

the inputs and control lines in the system. The outputs are discussed in

Section 4.3.1 and inputs in Section 4.3.2. Section 4.3.3 describes the

status byte of the TIE, and the possible transmitter and receiver states.

64

VOGL

Da

IRX RST AN

1'I R f 1,11) ua
SIP- EBus

_____ _____ _____ ___ 1

* 1k{D~IBceivef

0L4

FiueS1.Tria nefc lmn lc iga

65b

4.3.1 Outputs from TIE

4.3.1.1 LSP/t599

o When high, indicates next byte transferred is least-significant
part of 16- bit word.

o Must be low at the beginning of each read or write between
terminal and TIE.

o Reset by ITXRST and/or IRXRST.

4.3.1.2 RXINT

o Signifies that the I/O receiver requires service.

o Generated upon completion of a received block or when a receiver
fault is recognized.

o Reset by IRXRST.

4.3.1.3 TXINT

o Signifies that the 1/0 transmitter requires service.

o Generated either upon completion of transmission or when a
transmitter fault is recugnized.

o Reset by ITXRST.

4.3.2 Inputs to TIE

4.3.2.1 IRIOBUF

o Outputs 8 bits of receiver RAM to data bus when high.

o LSP/MSP determines which 8 bits are output.

o When LSP/MSP is high, receiver RAM address advances on position.

o Must be left low when receiver is idle.

4.3.2.2 IRIOSTAT

o Outputs transceiver status to data bus when high.

4.3.2.3 ISELBUS

o Selects transmit bus according to state of DATAO (High = B,
Low = A).

66

o Must stay low when transmitter is triggered.

o Clocks on negative edge.

4.3.2.4 ITXRST

o Resets transmitter to idle from any state when high.

o Resets LSP/'P.

c Clears TXINT.

4.3.2.5 IRXRST

o Resets receiver to idle from any state when high.

o Resets LSP/MSP.

o Clears RXINT.

o Must stay low when receiver is idle.

4.3.2.6 ILIOADR

o Loads new virtual address from data bus on negative edge.

o New address will be used immediately by receiver.

o Transmitter will use new address on first ITXST after loading.

o Must stay low while transmitter is triggered.

o Does not affect the data block header word.

4.3.2.7 ITXST

o Starts transmit sequence when high.

o Uses latest loaded virtual address.

o May be used to reattempt transmission of a block previously
loaded into transmitter F.AM if no ITXRST has been given.

4.3.2.8 ITRBULD

o Loads one 8-bit byte from data bus into transmit register when

high.

o LSP/WP determines which byte is loaded.

o When LSP/MSP is high, negative edge of ITRBULD clocks data into
transmit RAM.

67

o Load only when transmitter is idle.

4.3.2.9 MSPDIS

o Disables loading or reading of most-significant byte from data
bus.

o LSP/MP is set high.

o LSP/MSP does not toggle when ITRBULD or IRDIOBUF are high.

4.3.2.10 ILRADR

o Loads contents of data bus into receiver RAM address counter.

4.3.3 Transceiver Status Word

The transceiver outputs an 8-bit status word to the data bus whenever

IRIOSTAT is raised. Included in this word are the transmitter state, receiver

state, and last transmit bus. Tables 4-5 through 4-7 list the various

possible states. Bit 0 gives the transmit bus, where a logic 0 denotes bus

A, and a I denotes bus B. Bits 4 through I contain the transmit status,

and bits 7 through 5 contain the receiver status. The various states of the

receiver and transmitter are described in the next sections.

4.3.3.1 Receiver States

4.3.3.1.1 Idle

o No data waiting in RAM.

o May be receiving.

o Do not reset receiver when it is in this state.

4.3.3.1.2 Parity Error A

o Parity error has occurred during reception on bus A.

o Sender is still on bus.

4.3.3.1.3 Parity Error B

o Parity error has occurred during reception on bus B.

o Sender is still on bus.

68

Table 4-5. Receiver State

DATA7 DATA6 DATA5 STATE

H L L Idle

H H L Parity Error A

H L H Parity Error B

L H L Fault A*

L L H Fault B*

L L L Full*

No other states of DATA5 through DATA7 occur.
*(interrupt)

Table 4-6. Last Transmit Bus

DATAO BUS

L A

H B

Table 4-7. Transmitter State

DATA4 DATA3 DATA2 DATAI STATE

H H H H Triggered

H H L H Bus Busy*

p L H H ARB Fault*

H L L H Reply Fault*

L H H H REC Busy*

L H L H Parity Fault*

L L H H Time Fault*

L L L H Done*

L L L L Idle

No other states of DATA1 through DATA4 occur.
*(interrupt)

69

4.3.3.1.4 Fault A

o Incomplete block received on A.

o Parity error or time elapsed.

4.3.3.1.5 Fault B

o Incomplete block received on B.

o Parity error or time elapsed.

4.3.3.1.6 Full

o Data block received without error.

o Read onto data bus any time before next IRXRST.

4.3.3.2 Transmitter States

4.3.3.2.1 Triggered

o Sending or waiting to send.

o Will proceed to an interrupt state.

o ITXST has been received.

o Maybe reset from this state directly.

4.3.3.2.2 Bus Busy

o Unable to get bus and win arbitration in required time.

4.3.3.2.3 Arbitration Fault

o Too much time taken in arbitration.

4.3.3.2.4 Reply Fault

o No reply from receiver.

o May mean parity error on header.

4.3.3.2.5 Receiver Busy

o Receiver answered busy.

4.3.3.2.6 Parity Error

o Transmission incomplete due to parity error.

70

4.3.3.2.7 Time Fault

o Transmission incomplete

o Transmission took too much time.

o Receiver did reply to header.

4.3.3.2.8 Done

o Transmission completed.

o Must get IRXRST to go to "idle".

4.3.3.2.9 Idle

o Must get ITXRST to get to this state.

o Load transmitter buffer only when transmitter is in this state.

o Counts block length: number of words written between ITXRST and
ITXST.

o Goes to "triggered" on receipt of ITXST."

4.4 Input Synchronizer

The Input Synchronizer (IS), which resides in slot T13 of the Pulse

Pair Processor (PPP), receives digital video data from the Pulse Pair

Processor A/D converters and sends it in block format to the input IOC for

distribution to the CE's. Processing in the FTWRP is distributed according

to range, as shown in Figure 4-11, where the total number of processing

CEs (n) is currently 5.

Since reflectivity and coherent-channel information must be processed

separately in each CE, they are treated separately by the IS; therefore,

for each range interval, two blocks of data (In-phase and Quadrature phase/

amplitude information, and reflecivity) are transmitted. The format for

the block is shown in Figure 4-12. The first word contains the current

radar pulse number re-ded for processing CE synchronization), and block

number. The second word contains the following PPP control settings:

radar pulse width Tp or clock speed (2 bits) and number of range cells,

NRC, (2 bits). The remaining words contain coherent channel I and Q data

(16 bits) or reflectivity data (8 bits). The NRC and Tp parameters are de-

fined in Table 4-8.

71

The IOC resets the IS by activating Select Line 2 (SEL2). When SEL2

goes inactive, the IS waits for the next radar trigger pulse from the PPP

before accepting data from the A/Ds. The IOC can request either I & Q data

or reflectivity data by activating SELO or SELl, respectively.

The timing diagram of Figure 4-13 shows an actual case of how re-

flectivity and I and Q blocks are handled. As Figure 4-13 indicates, the

IOC will input I and Q data, or "pulse pair" data (P) for the first range

interval, but allow reflectivity (power) data (Z) to stay in the synchronizer

until the fifth range interval. Thereafter, the power and pulse data are

offset by four range intervals. This built-in offset prevents bottlenecks

at the CEs, and permits processing to proceed more smoothly.

Radar Return Radar
Pulse Echoes Pulse

C E(n)h 4 CE(I)-* -CE(2)-, ... I -CE(n-1)# I*-CE(n)-, I "-CE(I)-* I <-CE(Z)

Figure 4-11. Distribution of Processing in FTWRP

72

WORD

0 BLOCK PULSE NUMBER
NUMBER-MSB MSB

0 SPARE Tp NRC

I I I I I

2i Q
I I i , I I I I I I I I

31Q

I I i I I i I I I I I I

0 BLOCK PULSE NUMBER

0 NUMBER
I MSRi i I

0 SPARE Tp NRC

a a I f l I

2 0 POWER

9I I i l i I I l I I l I

3 0 POWER
l___ __ lI___ I , I

S

Figure 4-12. Input Synchronizer Block Format

73

044

on

N N

) 0

4J

IN

[1 01

In 41

4-

I C

a 1-

US w)

- 474

Table 4-8. NRC and T Definitions

NRC Tp

00 256 00 0.5 ps

01 512 01 1.0 ps

10 768 10 2.0 ps

11 1024

75

4.4.1 Input Synchronizer Hardware Description

A block diagram of the input synchronizer is shown in Figure 4-14.

The synchronizer accepts data from the PPP and stores it in RAM. Separate

RAMs are used for I and Q data and for Log Power data, since the Log Power

buffer needs to store up to the entire 1024 cells, whereas the I and Q
buffer needs to store only one-fifth as many cells. When a block is re-

quested by an IOC, after the two radar parameter words are sent, data is

read from the RAM and put onto the bus. An input address counter and an

output address counter assure that data is stored into and read from sequen-

tial locations. A priority control circuit gives priority to the write
operation, so that all data is received from the PPP. If the synchronizer
is sending data to the IOC, and a Priority write occurs, it will finish

sending the current word, perform the write, and then continue sending to
the IOC.

After the last address in RAM is used, it will start writing at the

first address, which should have already been sent to the IOC. This memory

arrangement is similar to a FIFO. In the event that the IOC is too slow,

an address comparator warns the IOC, by dropping the parity line, that data
has been written into an address that has not yet been sent to an IOC. The
address comparator is implemented by an up/down counter which counts up for
every word read from the PPP and down for every word sent to an IOC. An

overwrite condition occurs when the counter produces a carry from the MSB.
The address comparator also prevents the IOC from reading a word twice.

This condition occurs when all the up/down counter outputs are '0'. If

the IOC has read all the current words in RAM, it must wait until a write
occurs before it can read again.

Two Block Counters, one for I and Q data, and one for Log Power data,
are used to count the number of blocks sent to the IOC. These counters are
cleared with every radar pulse. A MOD 256 counter continuously counts radar
pulses. This counter is cleared only at power on, and when requested by the
IOC. Radar parameter information, T P and N RC, is stored in a register.

,---FROM PPP

CLO LLD$~j~ r

B BLOCK
14

Mob 14PI '

'4 7'4

C~ I Ii 0

-c --O GN1 41t. EQ&A

-T~ioA 01q'M C IM'O54F

C~fC*.A1Qb5IL

cr1.14" P PWR
OiJ~v1ADi&~ 02y'a

LL M' 046K -TA 14 0o

4iFOF

Figu rt 4-14 Input Synchronizer Block Diag-r-am

77

The enable sequencer enables the correct radar parameter words and

data words onto the bus at the proper time. When I and Q data is requested
by the IOC, with a SELO, the I and Q block counter is enabled along with
the pulse count for the first word. The register, containing radar parameters,

is enabled next, and then the I and Q data words are sent. The format is
the same for Log Power data except the Log Power block counter is used.

4.4.2 Data Transfer Timing

Figure 4-15 shows timing for a typical block transfer in the input
synchronizer. After the radar trigger pulse, two range cells of data are

clocked into the buffer RAM before the IOC requests data by activating the

select line. The IS immediately drops the Bus Occupied line (U-C), and
Data Ready (RDY), signalling to the IOC that a word (the first header word)

is ready for transfer. However, by the time the Acknowledge (ACK) comes back
from the IOC, a new data word is ready from the PPP. Therefore, RDY is held
high while the data is written into the RAM.

Once the write operation is complete, the RAM address is switched back
to the output mode and R7 is lowered once more to output the second header

word. Then, the RAM is read and output consecutively until it is emptied
(3 words are output) before the next radar sample is available. From this

point on, MW is pulsed only when a new sample comes in. The transfer stops
when the IOC raises the select line to the inactive state. The next time

the same select line is activated, the IS will output the two header words

again, then start outputting data from the RAM address where it left off
before.

7R

4-:3

LA

Lu 'K

Q4

79

4.5 Output Synchronizer

The Output Synchronizer, connected within the FTWRP system as discussed

in Section 2.4 , accepts processed radar data from the C port of the out-

put IOC then performs code conversion and data buffering operations to

provide an output compatible with the PPP Recorder Encoder. As each CE

completes its processing, it formats an output buffer containing data

having the format shown in Figure 4-16. The message is made up of multiple

blocks (packets) except for the case NRC = 256 in which all data fits in

one block since

256 total cells x 3 variables =5 C~s= 154 <240 words/block.5 CEs

The buffer area corresponding to each block begins with a CCW (Channel

Control Word) which specifies Tp (radar pulse width), NRC (number of range

cells), and OSSA (Output Synchronizer Starting Address). OSSA defines the

desired location in the Output Synchronizer's buffer of the first data word

after the CCW of this block. The CCW are transparent both to DOS-O and the

output IOC, which operates in its dynamic output mode and provides the

message blocks with headers and other control words. The first word of

each block which the output synchronizer needs is the CCW; the header and

three following words are ignored.

4.5.1 Output Synchronizer Hardware Description

The output synchronizer (OS) block diagram appears in Figure 4-17

where the interface with the IOC is shown at the left and connections to

the PPP Recorder Encoder appear at the right. The heart of the OS is the

buffer where packets of the form shown in Figure 4-16 are assembled into

the 28-bit-word by 256, 512, 768, or 1024-range-cell format needed by the

Encoder. As power, Shear, and Mean-Velocity words are received at a rate

controlled by the IOC through the RY line, they are either converted to

sign-magnitude by a PROM or not before being loaded into separate power,

Shear and Mean registers. These data registers have tri-state outputs for

compatibility with the buffer RAM's bidirectional I/O pins. Which words are

to be converted is defined by jumper programming in the OS, since compati-

bility in the existing tapes having sign-magnitude mean velocity may be

desirable,

80

Also see Table 4-8

Is ,zCD

CCw TP Iv~c 50

CGLL 1o! pow I

0 IJ 15r

P, K m 11 .

1 0

P 2 35

CELL S 239L M 237

ccw i233Y(OND)[2 f(O f< L -LL V p ___. "2 37

0

054 Oitp.4 §v, ct "/ ,-,', . ,5t,,', A otrcss

Figure 4-16. Format of CE Output Buffer for NRC 512 or 768 (2 blocks)

or NC 1021 (3 blocl<q). F'or NC 256. only one block in

rjeeded.

81

LOAP+ 7~

IQt7U" 5~~{ AsTE R~4~AM 2.40T

TO fre? ACCO&O

D

0t0

0 ~ ~ ~ ~ .2 5CoP o RC

C6_ __ _ __ _ (L-xP.r4JMvM tow0

Figre -!Futu Sycro e Blc Digrm

U DV82

whereas there is no precedent for shear which will be recorded in place

of variance, an unsigned quantity. The jumpers are presently set to con-

vert shear and Mean, but not power.

Each time the three registers are loaded, a write strobe to the OS

buffer RAM stores the resulting 28-bit word, then the address is incremented.
Although the 1K x 28 buffer is matched to the current capacity of the PPP

Recorder Encoder, extra address bits are provided so that the capacity

can be extended to 2K, 3K or 4K by adding more 2114 1K-by-4 static MOS RAM

chips. More bits per word can also be similarly added. The circuit panel

is wired to accept more 2114s so that the buffer could be expanded to

4K x 32.

Addresses for the buffer are generated in a 12-bit counter both for

input, where the counter is initialized to OSSA prior to each packet trans-

fer, and for output where it is reset to zero and counts up to the appro-

priate NRC -- 256, 512, 768 or 1024. If the encoder is modified to

accept more cells, some changes in the circuitry which decodes NRC and

stops the output "dump" sequence and the counter will be needed; however,

the counter itself can handle up to 4K cells.

Operation of the OS is controlled by separate input and output

sequencers (see Figure 4-17). The input sequencer timing is related to

that of the IOC, whereas the output sequencer contains a 16 MHz crystal

controlled oscillator. Details of overall OS timing, in which the two

sequencers run mutually-exclusively in time, are presented in the next

subset Lion.

The OS is constructed on an AUGAT 8136-UG6-27 universal wirewrap

panel having 27 columns on 0.3" centers and 50 rows on 0.1" centers. Logic

is a combination of Schottky and Low-power Schottky MSI TTL, while the

,ffer memory is implemented in static NMOS. The OS is housed in a

19' x 3.5" rack-mounLin unit which must be located nearand powered by

.... noder -- about 2.6 Amperes at 5.0 volts is needed. ApplicablV

1- i1r1qs ar, listed in. Appendix G.

33

4.5.2 Data Transfer Timing

Since each CE is performing the same processing on approximately the

same number of range cells, they will all have outputs ready at about the

same time. The Output Sequencer will wait about 20 milliseconds after the

last message, to ensure that all have been received, then will begin an

output sequence to "dump" the OS buffer contents into the PPP Recorder

Encoder. During the dump, the input sequencer is disabled and would not

respond to attempts at communication by the IOC.

Timing of the Input Sequencer is illustrated in Figure 4- 18 . The

top four waveforms represent the four control lines from the output IOC's

C-port, while ACK is a handshake signal returned to the IOC by the Input

Sequencer. Cause-effect relationships are indicated in the Figure by

arrows. When a message block is about to be output from the IOC C-port,

its MEO line goes low then its U control line becomes low. These events

-'e interpreted by the Input Sequencer as indicating the beginning of a

block. A 16-bit counter keeps track of the initial sequence of words

within each packet, then cycles through three of its states as each group

of Power, Shear, and Mean words is transferred (see state diagram in

Figure 4- 17). The Input Sequencer loads the first word, the CCW, partly

into a four-bit register to contain Tp and NRC and partly into a 12-bit

counter which addresses the OS Buffer. Load strobes for the CCW and the

three data registers are decoded from the state counter states and ANDed

with the PACK signal. The timing diagram also indicates buffer write

timing and shows that considerable margins exist for the Motorola

MCM21L14-20, which has a minimum write cycle time of 200 nsec, write time

of 120 nsec, and data-to-write overlap of 120 nsec.

Output sequencer timing is much simpler and requires no diagram for

explanation. When a "dump" is initiated, the Address counter is reset to

zero, then incremented at a two-MHz rate while the memory is sequentially

read and its contents duplicated in the shift register array of the Encoder.

The "dump" is terminated and the address counter is stopped when the OC

STOP signal indicates that NRC cells worth of data have been transferred.

84

Lt n
*1ii

j.4

I U Z

ALA

011

Q I *- I

LF ROMY~ 0- d0-

The 2 M1Hz clock, derived from a 16 MHz crystal-control led Oscillator, isbuffered and sent to the Encoder along with the 28 bits of data, a bufferedDUMP gate, and four lines for T pand NRC

86

REFERENC ES

4-1. The Bipolar Microcomputer Components Data Book, Second Edition,

Texas Instruments, 1979.

4-2. K.A. Smith memo, "FTSP Programmer's Handbook Part I and 11",

dated 31 August 1979, KAS:79:1O, EM79-0521.

87

5. DETAILED SOFTWARE DESCRIPTION

5.1 Distributed Operating System Level 0 (DOS-O)

DOS-O is primarily an interrupt-driven real-time executive responsible

for the management of resources of an individual common element. Its

fundamental requirements lie in the area of message processing and as such,

it acts as a message switching mechanism for all input/output (I/O) with

the cluster on which resides the Common Element. DOS-O also assumes the

responsibilities of CE initialization, task (user) request processing,

fault monitoring, and interrupt-handling.

The structure of the DOS-O hierarchy (Figure5-1)reflects the interrupt

structure of the common element architecture, and the individual components

respresent an independent collection of processing modules. In the following

sections we present more detail on the functions of each component.

5.1.1 Initialization

Upon power-up or system restart, the initialization is invoked to

provide an orderly environment in which the user tasks may execute. This

routine provides for the following activities:

a. Memory self-test

b. Initialization of level 0 system data base elements

c. Execute a wait to permit level 1 communications

d. Request load of level I task code

e. Start level 1, if loaded properly

f. Enter an idle or wait loop, awaiting assignment by level I system.

In FTWRP, since the level I operating system resides in the Intelligent

Terminal, the request to load the level 1 task will always fail. DOS-O

will then simply enter its idle loop, waiting for communication from the

executive.

RR

L- w

-

Lo L"uU

>osj AJ

z a
0
P

0 p

z
_____ _____'0 i

00

C/)

0 Z

I--4

LUA

89j S

-r~~ b - -.-

5.1.2 Task Environment

The Fault-Tolerant Signal Processor software structure is based on the

concept of a task which is considered as that program currently executing

on a given CE or 1/O port. Tasks are identified to the system by an iden-

tification number or task address (virtual address) which is independent of

the physical a(.dress of the card on which the task is executing. Thus one
physical CE may assume, in time, any sequence of virtual addresses depending
on the system load and DOS-i task scheduling algorithms. DOS-O has the

capability to change the virtual address of the CE in which it resides, but

only at the direct or indirect authorization from DOS-i.

The following sections describe the task environment of DOS-O in detail,

while Appendix B presents a tabular form of the data structures employed.

5.1.2.1 Memory Management

005-0 is resident in PROM located at the upper 4K of the CE's main

memory address space (See Figure 5-2). It also utilizes a small block of the
16K onboard RAM for current task information, temporary storage, and a system
stack.

User task code is loaded upon request through DOS-O from a Commuon Memory,
which, in FTWRP, is provided via the intelligent terminal. Task code is
divided into two distinct sections, the pure, executable program code, and

pure data space. Data records are relocated to the upper portion of the
physical RAM address space by 005-0 at load time. The user stack is then set
up to utilize the RAM area between the user code and data space.

5.1.2.2 User Task Prologue

The first 256 words of the RAM address space are reserved for the task
prologue. The prologue supplies information about the task to D05-0, such
as starting addresses for various entry points, task ID number, data base
structures and size, etc.It must be explicitly assembled into every program at
assembly time. The format for the prologue is shown in Table 5-1.

90

tu0

C4 %0~

LUN
~nuJ LU LU I

200 f^ ~
Lu ijL

0
LU E

Lu

0 ZI

CC

z :3

0 Lu~4J CL
~~in

"A 91

Table 5-1. CE Task Prologue

Word Number Contents

0 Task Number*

I Initialization Entry Addres s

2 Starting Address - Initial Load*

3 Unsolicited Input Entry Address

4 Clock Interrupt Entry Address

5 Reconfiguration Entry Address

6 Starting S Value t t

7 Socket Addresstt

'l 0 Global Data Sixe
,*t

'I1 - 'Z7 Base Register Values

'30 Unsolicited Input Options * t

Bit 15 - Accept Data
Bit 14
" Set: Data + Headers. - Data Buffer

" Clear: Data - Data Buffer
C Headers - Header Buffer

'31 Data Buffer Address*t

'32 Header List Buffer Address * t Relative to DORG

'33 Unused

134 Clock Option * Bit 15 Set - Clock Interrupt Desired

k tI Bits 7 - 0 - Clock Interrupt Frequency
135 - '36 Clock Periodt (LSB approximately 2 ms)

(Continued on Next Page)
Set by User at Assembly Time

Modified by DOS-4 at User Request

Modified by DOS-(i for Operating System Usage

92

Table 5-1. CE Task Prologue (continued)

Word Number Contents

*. Bit 15 - Set - Start Trace

'37 Trace Indicator Clear - Stop Trace
Bits 7 - 0 - Trace Frequency

'40 Modify Virtual Address Indicator

Bit 15 1 1 Modify Permitted

- 0 No Modify Permitted

'41 PSW Values for Initialization Entry

'42 PSW Values for Starting Address

'43 PSW Values for Unsolicited Input Entry

'44 PSW Values for Clock Interrupt Entry

'45 PSW Values for Reconfiguration Entry

'46 - '47 Unused

'50 Direct I/O Entry Address Message Code 5*Q

151 Direct I/O Entry Address Message Code 6*

'52 Direct I/O Entry Address Message Code 10 s Z

'53 Direct I/O Entry Address Message Code 11*

'54 Direct i/O PSW Value Message Code 5 U

'55 Direct i/O PSW Value Message Code 6 0.

'56 Direct i/0 PSW Value Message Code 10

157 Direct i/o PSW Value Message Code I I

'60 - '77 Trap Locations */Return Addressestt

'100 Data Recording - Base Extraction Point Number*tt

'101 Data Recording - On/Off Flag Word*tt

'10Z-'377 Reserved for Expansion

Set by User at Assembly Time

t Modified by DOS-0 at User Request

tt Modified by DOS-4 for Operating System Usage

93

5.1.3 Input/Output Structure

Inter-element communication in the FTSP is packet oriented. Packets

are blocks of information which are from 1 to 256 words in length. Each

packet consists of a header of 1 to 8 words, a body word count, and a

body of 0 to 254 words (See Figure 5-3).

The header word(s) format is shown in Figure 5-4, and consists of a

6-bit destination virtual address, a 6-bit source address, and a 4-bit

message code which defines the purpose and contents of the packet. The

number of header words is determined by whether the packet must pass be-

tween clusters. For intra-cluster messages, only one header word is used.

Otherwise, 8 words are supplied, with unused words set to 0. In FTWRP,

only intra-cluster communications are supported.

Bit Number

15 10 9 4 3 0

IDestination Address I Source Address Message Code

Field Width 6 bits 6 bits 4 bits

Figure 5-4. Message Header Format

Table 5-2 describes the various message codes, their purposes, valid

uses, and message format numbers for each. The format numbers are des-

cribed in Table 5-3 which is cross-referenced back to Table 5-2. It

should be noted that the message codes as listed in these tables are des-

cribed as they relate to their usage by CEs, IOCs, and CMs. The Intecolor

intelligent terminal also accepts these message codes, but with somewhat

different formats and/or functions. A complete description of Intecolor

supported messages may be found in Section 5.2.2.1.Z.

94

WORD COUNT (1 WORD)

BODY

(0 - 2S4 WORDS)

Figure 5-3. FTSP Message Packet Format

Table5-2. Message Code Definitions

Code Definition Valid To Valid From Format

0 First Block of Multi CE CE, lOc 1
Block Messag-

I Intermediate lBlock of CE CE, lOC I
Multi Block M,.ssage

2 Last Block of Multi CE CE, lOG I
Block Message

3 Single Block Mlcssage CE CE, lOC, CM l
4 Returned Bloct CE lOC* I
5 Input Request (Fetch) lOc. CM CE. lOc Z (LOC) or 3 (CM)
6 Output Request (Store) lOG, CM CE. lOC I (lOC) or 4 (CM)
7 Status Return CE** CEl Oc, CM 1
8 Status Request CE, lOc, CM CE*** 5
9 Fault Message CJL** CE I

10 Load Control Word lOG, cM CE;** 6
11 Bus .xtcinii lOC ': CE, IOC, CM n/a
12 Load Virtual Addrc'.s lOc, CM, CE CE*** 8
13 Rcsct and Pom&er Oi lOc, CM, CE CE*** 5
14 Unassigned
15 Power Off (P" ria- IOC,CMCE CE*** 5

nently)

Bus Extend.r 10. only.

" ' Executive (E oil y.
***Only from I*xectitive CE.

96

AD-Abs8 253 RAYTH4EON CO WAYLAND MA ESUIPWEN? DIV F/ IT17R&D EQUIPMENT INFORMATION~ REPORT. FAULT TOLERANT WEATHER RADARMR6
.1T4 ,A. ASOI F12 -7- TL

UNCLASSIFIED ER61-AOb3 AFLT-81-00 86 NL24 ffffffffffff

EMonhhmhhhhhhl
EhMENMONEEhhIl-"'

-0

1111.25 1.4 _L6_

1111= III~ I I1.60

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAUI Of STANDARDS 1%3 A,

4A

00

ti ti to be -
4-> 0 IA

E, E $

0,

14 &. 9. .- 1 1
di~~ 4. 4. aIsI

x td (ia to
o 0 00

.v~t *u * * r
4~~1 0 0 094

0 'd

U

0 LA 0*

O - D

97 4 .

Table 5-4. System Requests -DOS-O

Re!Iuost # Data Packet Format

0 Write Word 0 Status Word

Bit 15 Request Queued
I Read Bit 12 1/0 Completed

Bitsll. 10 11 - 1/0 Error
10 - Data Management Error

Bits 7-0 II - Status Byte
10 - Code

Word I Device Number (or Header List Address)

Word 2 Word Count

Word 3 Buffer Address (absolute address)

Word 4 Options

Bit 15 Executive Message (output only) -

Uses Word 7
Bit 14 No Retry on Recoverable Errors
Bit 13 Device = Header List Address

(output only)
Bit 12 Scatter Read (input) (uses Bits 7 - 0)
Bit 11 System Packet (Executive only)
Bit 10 Associated Input Request (Exec only)
Bit 9 Common Memory Request
Bit 8 Multiple Input Request
Bit 7 0 -Complex Scatter Read

I -Real Scatter Read
Bits 6 - 0 Scatter Read Interval (I - I2)

Word 5 Common Memory Page # or Multiple
Input Request Parameter

Bits 15 - 8 Number of Requests
Bits 7 - 0 Address Delta

Word 6 Associated Input Entry Address
(DOS- use only)

Word 7 Executive Header Skeleton (output only)
(Must contain message code - may contain
destination V A)

98

Table 5-4. System Requests -DOS-O (continued)

Request # Data P acket Format

* 2 Trace Update Word 0
Bit 15 Clear - Stop tracing

Set = Start tracing
Bits 7 - 0 Trace frequency interval

3 Unsolicited Word 0 New Options Word (see Prologue
Input Update for Definition).

Word 1 New Data Buffer Address Relative to
Word 2 New Header Buffer Address DORO

4 Clock Inter- Word 0 New Options Word
rupt Update

Words 1 - 2 New Clock Period

5 DOS-I Task Word 0 Directive Types
Directives

1 = Schedule task
2 = Suspend task
3 = Resume task
4 = Abort task
5 =Swap tasks

For Types 1. 2, 3, 4
Word 1 Task number
Word 2 Starting Address for Task Execution

(If 0. use address in prologue)

For Type 5 (Swap Tasks)
Word I

Bits 15 - 8 Virtual Address I of Swap
Bits 7 - 0 Virtual Address Z of Swap

Word 2 Starting Address for Virtual Address 1
Word 3 Starting Address for Virtual Address 2

6 Regipter Word 0 User Fault Number (0 to 15)
User Fault

99

Table 5-4. System Requests -DOS-O (continued)

Request # Data Packet Format

7 Data Recording Word 0 Extraction Point Number
Request

Word I Number of Subrecords

Each Subrecord has Format:

Word 2 Number of Words (Subrecord I)

Word 3 Absolute Address of Data to be Recorded

Word 4 Number of Words (Subrecord 2)

Word 5 Absolute Address of Data to be Recorded

8 Update Record- Word 0 Logical Device Number (see Section 8)
ing Control Words

Word 2 Recording On Flags
Word 2 Recording Off Flags

9 Modify Virtual Data Packet Address = New Virtual Address
Address

10 Dequeue Output Data packet format same as for Request 0
Request

11 Dequeue Input Data packet format same as for Request 1.
Request

ion

Table 5-4. System Requests -DOS-O_(continued)

Request # Data Packet Format

12 Standing Output Packet format same as Request 0
Request

13 Standing Input Packet format same as for Request 1
Request

14 Direct Output Word 0 Status Word
Word 1 Header List Address

Word 2 Word Count
Word 3 Data Buffer Address

5.1.4 System Call Processing

* This portion of DOS-C responds to requests issued by user code for

certain system services best provided by the operating system. The pro-

cessing is flexible enough to provide for up to 32 unique calls, for which

the user supplies an address of a packet containing detailed information

on the desired service. There are currently fourteen distinct system

requests which are honored by DOS-C (See Table 5-4).

101

5.1.4.1 Write (0) and Read (1) Requests

When a user makes a request for 1/O, the status word of the user packet
(Word 0) must be set to 0. After the request is made, the status word must
be checked in order to verify that the request was queued. This is done by
testing Bit 15; if set, the request has been queued and the 1/O will be

attempted. If not, D05-0 was unable to find space in its data base for the
I/O request.

Once a request has been queued, the status may be checked by interro-
gating the I/O complete bit in the status word (Bit 12). Until all of the
requested I/O has been completed or an error has occurred, this bit remains
0. Thus the user should periodically check this bit. Once it is set, the
determination of correct or incorrect termination of the 1/O request is
determined through the two error bits, 11 and 10.

Bit 11 set indicates an error has occurred in the attempt to transmit
or receive data. If Bit 11 is set, the bottom byte of the status word

(Bits 7 - 0) contains the I/O status word from which can be obtained the
actual error information. (see Section 4.1.3.1.8).

Bit 10 set indicates an error has occurred in D05-0's attempt to
manage the data represented by this request. In this case, the bottom byte
contains a code indicating which type of error occurred; e.g., word count
too large, etc.

If neither error bit is set, the I/O request has been completed as
requested and the user may now reuse the packet for other requests.

If a user request for input generates an output request, and an error
occurs in that output processing, both the output request and input request
packets are set to indicate an error, which would be the same error in both
packets.

An I/O request, once queued, may be dequeued from OOS-O by issuing one
of the dequeue system requests. DOS-a responds to the user indicating that
either the request was properly dequeued (bit 14 of status word), or that
the request was not found in the DOS-O queues (bit 13 of status word).

102

Standing order I/0 (options bit 7) permits one-time registering of an

I/O request with subsequent enabling of the request with modifications to

word count, buffer address and page number. I/O overhead is reduced through

this approach. Enabling of a suspended standing order request takes the

form of either clearing the status word of the original system request packet,

or by issuing either system request 12 (output) or system request 13

(input).

5.1.4.1.1 Option Bits (packed word 4)

Executive Message (Bit 15) (Output Only)

Used for output only. This option permits the modification of the

header list of the device selected by OR'ing in the executive header word

(Word 7 of packet) into the destination header word. This skeleton must

contain a valid message code and may or may not contain a destination address,

depending on the device.

No Retry on Error (Bit 14) (Output Only)

If this bit is set and a recoverable error is encountered (e.g., bus

busy or receiver busy), the system will not retry the I/O.

Header List Supplied (Bit 13) (Output Only)

Use of this option directs DOS-0 to bypass the device-number-to-header-

list translation phase of I/O processing by using the header list address

supplied in the device word field of the user packet. Use of this option

requires that both the destination field and the message code field appear

in the header list.

Scatter Read (Bit 12) (Input Only)

If this bit is set, the operating system request performs a scatter

read of data, with each word read being separated from the next by a count

equal to Bits 5 - 0 c'f the options word. For example, to scatter read into

every 9th word, set Bit 12 and store a 9 into the lower bits. Bit 6 is

then used to indicate real (set) or complex (clear) read, i.e., complex

reads two words, skip, read two words, etc.

103-

System Packet (Bit 11)

When this bit is set, the DOS-0 system has invoked a packet from the

packet stack. In the case of 1/O message completion, the packet must be

returned to the packet stack.

Associated I/O Request (Bit 10) (Output Only)

When set, this bit indicates that the current 1/O request is related

to an 1/O request to a commnon memory or a non-bus-extender IOC. In this

case, the PAEA field of the I/O packet must contain the 1/O queue entry

address for the associated request.

Common Memory Request (Bit 9)

if set, the bit indicates that the CM page field of the packet contains a

page number to be fetched or stored.

Multiple Input Requests (Bit 8)

This option automatically regenerates the specified number of input

requests with each input buffer address incremented by the specified amount.

it uses Word 5 for number of requests and address delta.

Standing Order 1/O Request (Bit 7)

This option queues up and suspends an 1/O request, permitting efficient

enabling of the request at a later time.

Direct Output Request (Bit 6)

This option permits direct execution of an output message, where the

user supplies control information (header list) and performs error recovery.

5.1.4.1.2 Logical Devices

Under normal conditions, 1/O is logical device oriented--that is, the

user supplies (via word 1 of the I/O packet) the logical device number of

the unit to be accessed, rather than the physical or virtual address data.

This permits the user to perform I/O without considering device-dependent

problems (e.g., an input request to a commnon memory requires a message
to be output first-this is performed by DOS-O transparent to the user).

104

The logical devices as they are defined in FTWRP are listed in Table 5-5.

DOS-() maintains a configuration table (which can be updated by DOS-i at any

time) which maps the logical device number with the various physical require-

ments of each unit in the system.

5.1.4.1.3 Executive Header Skeleton

* Normally, all messages output use message code 3 (single block message).

if a non-standard message code is to be used, bit 15 in the 1/O options word

is set and the desired message code is placed in word 7. A complete des-

cription of the various message codes and their functions is given in
Section 5.1.3.

5.1.4.2 Trace Update Request (2)

This request changes the trace options words in the user task prologue

as requested in the first word of the request packet.

5.1.4.3 Unsolicited Input Update (3)

If a message is received that has no corresponding input request entry

(i.e., from a previous system request 1), it is treated as an unsolicited

input. This system request instructs D05-0 what to do with the message

before calling the user's unsolicited input service routine. If the options

word specifies that unsolicited inputs are no longer allowed, DOS-O treats

the message as an error and reports the condition to DOS-i.

5.1.4.4 Clock Interrupt Update (4)

This request is used to turn the user clock interrupt on or off, and

sets the period, which is determined by the formula

ttu = 3 1) Atr

where n is the number entered in words 1 and 2 of the packet. The refresh

period, At t may vary from CE to CE, but will be between 1.6 and 2.1 mS

(1.8 mS nominal). Turning off the clock has no effect on the D05-0 system

clock.

105

Table 5-5. FTWRP Logical Device Numbers

Logical Virtual
Device Address Definition

0 77 Program Load Device

1 77 Bootstrap Load Device

2 77 System Device (IDOS-I)

3 77 Operator Device

4 77 Trace Device

5 - Undefined

6 Undefined

7 - Undefined

8 67 Waiting Signal Processor Task

9 70 Diagnostics Task

10 51 Radar Data Source

11 - Undefined

12 50 SP Data Output

13 60 Radar Signal Processor 1

14 61 2

15 62 3
16 63 4

17 64 5

18 65 6

19 66 " " 7

106

5.1.4.5 DOS-1 Task Directives (5)

This request is used as a user interface to the DOS-I task directives

to DOS-O. The feature is supported but not utilized in FTWRP.

5.1.4.6 Register User Fault (6)

This request provides a mechanism by which a user may report faults to

DOS-1 via the DOS-O status words. The fault is reported to DOS-i at the

next status request. After the fault is reported, the condition is auto-

matically cleared. Faults 0-7 are treated as nonfatal, whereas faults 8-15

are reported as fatal (i.e., DOS-1 aborts the task upon receipt of the fault

message).

5.1.4.7 Data Recording (7,8)

These services deal with the means by which DOS-C automatically extracts

data from arrays to be output to a recording device. This feature is not

supported in FTWRP.

5.1.4.8 Modify Virtual Address (9)

System Request 9 is a special feature installed specifically for the

FTWRP system. By calling this service, a task can instruct DOS-O to modify

its own virtual address without direct intervention of DOS-I. This feature

is used in the spare rotation algorithm of FTWRP (see Section 5.6).

Authorization for DOS-C to change its address is given either by a

message from DOS-1 (which must be received before the system request can be
executed), or by a special authorization word in the user task prologue

(see Table 5-1). If no previous authorization was given, DOS-C reports a

fault to DOS-1 and drops to its idle state (i.e., aborts the task).

5.1.4.9 Delete I/O packets (10,11)

These requests allow a mechanism by which pending I/O can be aborted in

case the need has disippeared. For example, a pending input request can be

aborted if (because of a fault) the input doesn't come in within a specified

time limit, or it is no longer needed.

107

5.1.4.10 Standing 1/0 Requests (12,13)

One of the original problems associated with packet 1/O is the high
operating system overhead associated with queueing packets and decoding
logical devices, etc. By permitting standing 1/0, the packet associated with
a message is no longer deleted when 1/O is complete. Therefore, next time
the same message request is required, the old packet may be re-used, thus
eliminating a large amount of overhead processing.

5.1.4.11 Direct Output (14)

This feature provides the ultimate in overhead savings, by requiring
the user to handle all header list generation and status processing. If when
a direct output request is issued, an attempt fails, it is aborted and an
appropriate status is returned. No queue is maintained for these requests.
If the output attempt is successful, the transmitter status is returned
with no interpretation performed by 00S-0. It is up to the user to check
forconditions like bus busy, receiver busy, etc.
5.1.5 Trace Handling

The Commnon Element firmware supports a trace feature in which an in-

terrupt is generated each time a new instruction is fetched. To enable
this feature the trace bit is set in the PSW.

When the Trace interrupt occurs the DOS-O trace processing service
routine performs three checks. First of all, if the task status indicates

that the CE is idle, trace processing is aborted. If a task is indeed
executing, D05-0 checks the task prologue to see if the task trace options
are enabled. If not, trace processing is aborted. The trace options are
modified dynamically via system request 2 (Section 5.1.4.2). If the task
trace option is enabled, the trace instruction counter is decremented and
checked for zero. If nonzero, trace is aborted (this allows the user to
trace every nth instruction by setting the trace counter to n). If all of
these checks pass, D05-0 takes the interrupted task's register contents
(which were placed on the stack by firmware) and outputs the data to the
system trace device (in FTWRP, this is the Intecolor). D0S-0 then enters
a delay loop of approximately one half second to ensure that the trace data
doesn't overload the trace device.

108

5.1.6 Clock Handling

The CE hardware and firmware support an interval timer interrupt

structure which permits DOS-O to be invoked at regular intervals. The

interval is a multiple of the dynamic RAM refresh timer (which is implemented

by a one-shot, and may be from 1.6 to 2.1 ms). DOS-0 uses this feature to

regularly perform self-checking and health management. In addition, DOS-O

supports a "user clock" interrupt, in which the user supplies an interrupt

service routine which is invoked at intervals specified in the task prologue

(see Section 5.1.2.2). The interval is specified in multiples of 2 ms.

5.1.7 Exception Handling

In the event of a processor exception, the user task is immediately

interrupted, and the DOS-O exception handler is invoked. There are currently

three exceptions which are supported: illegal instruction, illegal address,

and stack overflow.

The illegal instruction exception is self explanatory; the CE attempted

to execute a nonexistent opcode, or a nonprivileged user attempted to execute

a privileged instruction (such as WRITE or RACOR). A fault message is sent

to DOS-i and the task is aborted.

The illegal address exception is caused when a nonprivileged user

attempts to access a protected memory location in a write operation. The

protected memory areas include:

The user task proloque (0-3778)

The DOS-O data base (34000-377778)

The nonexistent RAM (40000-1677778)

DOS-0 PROM area (170000-1777778)

A read operation of one of these areas does not cause an exception. If a

write exception occurs, the writ, operation is blocked by hardware (to pre-

vent corruption of data), DOS-0 sends a fault message to DOS-i, and the task

is aborted.

The stack overflow exception is invoked whenever the register set

level exceeds 7 (or goes below 0) or if the link stack overflows (or under-

flows). The following Section provides a description of the link stack and

its use.

109

5.1.8 Common Element Link Stack

On most computers, when a subroutine call is invoked the return link
information is saved on the user's stack. Unfortunately, in a fault-tolerant
system this is not always expedient, since a faulty program could destroy

its stack, and return to a nonexistent (or at least unknown) location to
continue execution. Therefore, in the Common Element, a special "Link Stack"
is maintained by the microcode for subroutine Linkage.

Each time a subroutine call is executed (via the JSUB instruction), the
return linkage information (consisting of the return address and the current
PSW) is saved on the link stack. The RETURN instruction simply pops this
information off the link stack, just as a normal computer would pop the
return address off the user stack. However, integrity is maintained by vir-

tue of the fact that the user has no access rights into the link stack (and
therefore cannot destroy it).

Each time a RESUME (from interrupt service routine) is executed, the link
stack is checked and all return links from subroutines with the same PSW are
deleted. This eliminates the need to execute multiple returns from subroutines
to get back to the "main" routine of the current "level" of processing before
the RESUME can be executed. Although this can be a handy tool for error
conditions and things, it is not recommended to resume in this manner, since
it represents a grossly unstructured method of programing, and may be
difficult to debug.

The link stack occupies the uppermost 64 locations of the 16K RAM address
space (37700-37777 octal). It therefore is contained in one of the protected
address spaces of memory, and cannot be modified by a nonpriveleged user.

5.2 Intecolor Resident DOS-0 (IDOS-O)

IDOS-0 is an Intecolor resident version of the DOS-O opprating system

which resides in the Common Element. Its main purpose is to support the basic

operations which enable the Intecolor to function as a valid element on the

system bus via the Terminal Interface Element (TIE). As such, IDOS-O is the

interface between the user and the TIE.

All user programs (such as IDOS-l) are executed as a "subtask" of

IDOS-O in much the same manner as a task runs under DOS-C in the CE. The

user program should be stored on a disk in drive 0 under the name

"IUSER.PRG". The task prologue should begin at location A10 16, and the

program must reside between A200-DFFF1 6 (Intecolor memory usage is shown in

Table 5.6).

Programs are loaded and executed under IDOS-O in the following

manner:

1) Turn on Intecolor power using switch in back of unit.

2) Insert into drive 0 (left drive) a diskette containinq

"IUSER.PRG" (the user program).

3) Insert into drive 1 (right drive) the diskette containing

any files used by IUSER, plus files of the form "PAGE.XXX"

which are used by IDOS-O as Common Memory pages (see

Section 3.1.3).

4) Type (Escape) P to initialize the Intecolor CPU Operating

System.

5) Type (Escape) D to enter the Intecolor File Control System.

6) Type RUN IDOSO (Return).

IDOS-0 will initialize its own tables including the page map (see

Section 5.2.2.1.3), and then load and cali "IUSER.PRG". Execution of IUSER

will begin at the address specified in the task prologue.

The following sections describe the operation of IDOS-O in detail.

Appendix B lists the major subroutines of IDOS-O and their functions, and the

tables and variables maintained by IDOS-O.

1II

Table 5-6. Intecolor Memory Usage

Address Usage

O000-7FFF Intecolor ROM/PROM

8000-9DFF Intecolor Display RAM

9EOO-9FFF Scratch area for BASIC, CPU and CRT OS

AOOO-AOFF Utility scratch pad and user stack

AlOO-AIF User task prologue
1

A200-DFFF User task1

EOOO-F4FF IDOS-O

F500-F5FF Configuration Table

F600-F7FF Paqe sector address map

F800-F9FF IDOS-O output buffer

FAOO-FBFF Page 0 buffer

FCOO-FDFF Page 1 buffer

FEOO-FFFF Page 2 buffer

IUser program should be stored on drive 0 under the filename

"IUSER.PRG". Any user required files must be loaded by user

program. System is started from file control system by typing

'RUN IDOSO

--. 4

5.2.1 IDOS-0 Operation

All user programs in the Intecolor which use the TIC must run as tasks

under IDOS-0. At initialization, IDOS-O loads the file "IUSER.PRG" from disk

drive 0. For proper operation, the user progrim should be assembled to load

into locations AlOO-DFFF1 6. The first 256 locations are reserved for a task

prologue.

5.2.1.1 Task Prologue Description

The IUSER task prologue, as stated above, occupies locations A1OO-AIFF 16.

The format of the prologue is shown in Table 5-7 and described in the

following sections.

5.2.1.1.1 Card Type (AlO0)

The card type is specified by the user at assembly time, and specifies

to IDOS-O whether the Intecolor is to appear on the bus as a CE, a CM (Common

Memory), or an IOC. Only the two least-significant bits are used. This code

does not affect the operation of 100S-0, it merely is used in the status words

maintained by IDOS-0 and reported to DOS-i.

5.2.1.1.2 Task Virtual Address (AlOl)

The task Virtual Address (VA) is a 6-bit number from 00-778 which

specifies to IDOS-O, the VA which is to be assigned to the Intecolor at

startup. If at any time after initialization the VA of the Intecolor is

changed (e.g., via a Load Virtual Address command from DOS-i), the Task VA

byte in the prologue will be modified accordingly.

5.2.1.1.3 Task Status (Al02-Al03)

The Status word is meant to be a means of comunicating to IDOS-0 any

information necessary to proper or€c-atior of the user task. At present, if

the most-significant bit of the status word is set (bit 15 or bit 7 of loc.

A102), IDOS-O will ex&,cute a reset or restart operation. Otherwise, the

word is ignored by IDOS-O.

113

Tahle 5-7. Intecolor User Task Prologue

, r . " rl tn. Rytr(o. Co~ntent%

AlO0 1 Card Type (1 - CE, 2 = IOC, 3 = CM)1

AlOl 1 Task virtual address2

A102 2 Task status3

Al04 2 Starting PC address1'4

A106 2 Clock interrupt service routine

address
1 ,4,7

A108 2 Initial stack value
3'4

6
AIOA 2 Clock options

Bit 15 = I --enabled

= 0 -.disabled

A1OC 2 Clock period
2'4

AlOE 2 Page 0 update interrupt address
1'4'5'7

AllO 2 Page 1 update interrupt address
1'4'5'7

A112 2 Page 2 update interrupt address
1'4'5'7

A114 2 "Unsolicited Input" interrupt address
1 ,4'5,7

A116 2 User restart adder
1'4'5

A118 1 Display protect boundary -XI

A119 1 Display protect boundary -YI

ISet by user at assembly time.
2Set by user, may be modified by IDOS-O.
3Modified by IDOS-O.
48080 address format (LO byte, high byte).
5If zero, interrupt disabled.
6When 8080 interrupts are enabled, IDOS-0 interrupts user task approxi-
mately every 9.6 is. User clock is decremented each time. User is
interrupted when user clock = 0.

7 For all interrupts, user must preserve stack address and resume with
a subroutine return ('RET') instruction.

114

5.2.1.1.4 Starting Address (A104-A105)

The starting addross word specifies to IDOS-0 the point at which exe-

cution of the user program is to begin at initialization. The value is set

at assembly time, and is stored in 8080 address format. Therefore location

A104 contains the least-significant byte of address, and A105 the most-

significant byte (e.g., address A23F is stored as 3FA2). This is done

automatically by the assembler using the DW command.

5.2.1.1.5 Clock Interrupt Address (A106-Al07)

This word specifies the starting address of the user routine which is

to be called when the user clock reaches zero. The user clock will be dis-

cussed further in Section 5.2.1.2.2.

5.2.1.1.6 Initial Stack Value (A108-A109)

This word is set by IDOS-O at load time, and specifies to the user the

first location reserved for the user stack. The stack pointer (SP) is also

set to this value before execution begins. The user should always use this

value when clearing the stack, to be sure that no unauthorized areas are

destroyed. This can be done with the instructions:

LHLD OAl0811 ;LOAD STACK VALUE

SPHL ;STORE IN SP

5.2.1.1.7 Clock Options (AiOA-AlOB)

The Options word is set by the User, and tells IDOS-0 whether clock

interrupts are enabled or disabled. This word may be modified by the user

directly during execution, or via a system service (see Section 5.2.3).

5.2.1.1.8 Clock Period (AlOC-AlOE)

If clock interrupts are enabled, this word specifies the length of time

between interrupts. is with the options word, the period may be changed

directly or via a system service.

115

5.2.1.1.9 Paqe 0, 1, and 2 Update Address (AlOE-AIOF, AllO-Alll, A112-A113)

Pages 0, 1, and 2 have special siqnificance in some systems, and are

utilized quite often. Therefore they are stored in Intecolor memory rather

than on disk, and whenever one is modified by a Common Memory write operation,

the user may be interrupted. These three words specify the starting address

of the three routines which may be called. If the starting address is zero,

the interrupt for that page is disabled.

5.2.1.1.10 Unsolicited Input Interrupt Address (AI14-AI15)

Certain incoming messages must be processed by the user. IDOS-O makes

this possible by providing a user interrupt for this purpose. This word

specifies to IDOS-O the starting address of the user routine that is to be

called. If the address is zero, this interrupt is disabled.

5.2.1.1.11 Restart Address (A116-AI17)

Upon the execution of a reset command (either externally or from the

user via the status word--see Section 5.2.1.1.3), the user may want to resume

processing at a different location than at initialization. If non-zero,

IDOS-0 will not reload IUSER, but will simply vector to the specified address.

If zero, IUSFR will be reloaded and execution will begin at the address

specified by the Starting Address word (A104-A105).

5.2.1.1.12 Display Protect Boundaries (A118-A119)

IDOS-0 has a feature which allows an external source to print text on

the Intecolor display without uiser intervention. Locations A118-A119 specify

the acceptable area of the display for this purpose. IDOS-0 will not allow

external text to overwrite protected areas of the screen. If the boundaries

are set to zero, no text will be permitted (see Figure 5-5).

5.2.1.2 IDOS-O/TIE Interaction

The software Which is supplied with the Intecolor uses seven of the

eight available interrupts. The eighth interrupt is used by interval timer

#1, and is set whenever the timer counts down to zero. IDOS-O uses this

timer to interrupt the user program periodically. The interval is set to

approximately 10 ms.

116

x
0,0 45,0 79,0

USABLE
DISPLAY
AREA

0,47 79,47

A118 - X boundary = 450

A119 - Y boundary = 3510

Figure 5-5. Text Boundary Protection

5.2.1.2.1 TIE Polling

Each time IDOS-0 is invoked by the timer interrupt, the TIE status

is polled. If the TIE is found to be idle, control returns to the user, and

little time is lost. If the receiver buffer is found to contain a message,

IDOS-O processes the message and takes appropriate action before returning

control to the user.

5.2.1.2.2 User Clock

In addition, each time ID00,-O is invoked, the user clock is decre-

mented. If the clocv value reaches zero, and clock interrupts are enabled,

the user clock interrupt routine is invoked before control reverts to the

user. This feature permits the user to perform operations at regular

intervals.

117

_ m m' .mmimmm.m"m m.m -l

5.2.2 Input/Output Operation

Because of the architectural differences between the Intecolor and

CEs, I/0 is handled differently by IDOS-O. The following sections describe

the I/0 processes and data structures.

5.2.2.1 Input Messaqe Handling

Upon completion of a TIE input operation, the TIE sets the RXINT line

(see Section 4.3). At the next interval timer interrupt, IDOS-O polls the

RXINT line, and, findinq it set, reads the TIE status byte to determine the

cause. If it finds that a successfully completed transfer has taken place,

it reads the data from the TIE into Intecolor memory and a buffer packet is

constructed. The following sections describe the packet format and the

different actions taken for each message code.

5.2.2.1.1 Input Buffer Packets

There are a total of three input buffers maintained by IDOS-O which

are used in a round-robin fashion. This is designed to allow processing

on one buffer while others are pending. A pointer (IBUFP) keeps track of

the next available buffer for input. Another point (UBUFP) points to the

next buffer available to the user. The format of the packets are shown in

Table 5-8.

The first byte (byte 0) is a flag denoting the status of the buffer

(0 = empty, -1 = full). Bytes I and 2 are a pointer to the location where

the data is stored. Byte 3 is the number of header words contained in the

message. These words are stripped off the message and stored separately

from the data in the location pointed to by bytes 4 and 5. Byte 6 gives

the virtual address from which the message originated, and bytes 7 and 8

point to the header word in which the source address occurred. Byte g

specifies the data word count (the number of 16-bit data words). Byte 10

specifies the message code, and the eleventh byte contains the Commnon

Memory Page number, if applicable (message codes 5 and 6).

118

Table 5-8. IDOS-0 Input Buffer Packet Structure

Word c No._Bytes Contents

0 1 Buffer full flag (-l -full)

2 Data buffer address1

3 1 Header count

4 2 Header list addressI

6 1 Source virtual address

7 2 Address of header containing source

9 1 Word Count

10 1 Message code

11 1 CM page number

18080 Address Format (LO byte, high byte)

119

5.2.2.1.2 Messaqe Codes and Functions

IDOS-O handles incoming messages slightly differently than DOS-C in a

CE. The following sections describe the message codes and the action taken by

IDOS-0. Table 5-9 lists them all for reference.

5.2.2.1.2.1 Message Codes 0, 1, 2, and 3

These codes are used to send messages from task-to-task in the CE

system. IDOS-0 passes the data directly to the user in the following manner:

The current buffer is constructed, and the "full" flag is set. The header is

placed in an appropriate buffer, and the data is stored in the current data

buffer. Then, if the user prologue has a nonzero value in the unsolicited

input interrupt address (A114-A115 16), the user interrupt routine is called

to process the packet. The user then requests the packet, (see Section 5.2.3),

processes the data, and releases the buffer before returning control to

IDOS-O.

If the interrupt address is zero, the interrupt is disabled, and IDOS-0

immediately returns from the polling routine to the interrupted program. The

user may poll the input buffers by requesting a packet and checking the

buffer "full" flag. Section 5.2.3 describes this procedure further.

5.2.2.1.2.2 Message Code 4 (Returned Message)

A returned message causes a fault message to be sent to VA 77 (DOS-l),

and the packet is released. The user task is not affected.

5.2.2.1.2.3 Message Code 5 (Common Memory Input Request)

Messaqe code 5 is a request for IDOS-O to fetch a specific page of

Common Memory (drive 1 of the floppy disk) and return it to the source address.

IDOS-0 performs this function regardless of what card type the Intecolor

appears to be on the CE bus. Pages 0, 1, and 2 are maintained in the

Intecolor memory itself, at addresses FAOO-FBFF1 6, FCOO-FDFF1 6, and FEOO-FFFF1 6
respectively. All ,uther pages are stored on disk and must be loaded into

RAM before output.

120

Table 5-9. IDOS-0 Message Code Processing

Message
Code Meaning Function

10 First Block Passed to user program
13 Middle Block Passed to user program
1

2 Last Block Passed to user program

3 Single Block Passed to user program

4 Returned Block Fault message sent to DOS-i

5 Input Reque',t Performs common meriory input requ.est 2

6 Output Request Performs comriion memory output request 2 , 3

7 Status Return If TSKVA = 77 or 76, passed to user proram;

otherwise, fdult messaqe is sent to DOS-1

8 Status Request If source = 77, status is sent; otherwise,

fault message is sent to DOS-1

9 Fault Message Passed to user programI

10 Text Message Message displayed on screen

11 Bus Extender Fault message sent to DOS-l

12 Load Virtual If source = 77, VA is changed in TIE and task

Address prologue; otherwise fault message sent to DOS-1

13 Reset IDOS-0 reset, control transfers to initial

entry point

14 Executive If source not 77, fault message sent to DOS-l;

Message otherwise ignored unless configuration table

update, in which case only first word is used

to derive transmit bus commands

15 Power OFF IDOS-0 reset

Passed via circular input buffers, if unsolicited input enabled, user

is interrupted.
2Regardless of card type.

3If pages 0, 1 or 2 are updated, user is interrupted (if enabled); all
other page requests are ignored.

121

To speed up access to the floppy disk, a "page map" which contains

the startinq sector of each page is constructed and maintained by IDOS-0.

This page map is discussed further in Section 5.2.2.1.3.

S.2.2.1.?.4 Message Code 6 (Common Memory Output Request)

This code is used to store a block of data into a page of Common

Memory. IDOS-0 replaces the old page with the data in the input buffer. If

the page number did not previously exist on the disk or in the page map, an

error results, and no replacement takes place. The old version of the page is

overwritten, and may no longer be used after this operatiun. Updates to

pages 0, 1, and 2 are performed in memory, and do not involve a disk access.

(At present in FTWRP, only pages 0, 1. and 2 may be modified. Any request to update
a page on disk is ignored by IDOS-O.)

If page 0, 1, or 2 is updated, and the corresponding interrupt is

enabled in the task prologue, the user is called before the packet is

released, and before processing resumes.

5.2.2.1.2.5 Message Code 7 (Status Return)

Code 7 is legal only if the VA of the Intecolor is 778 (i.e., the user

program is IDOS-l) or 768. In this case the buffer is passed to the user as

in Section 5.2.2.1.2.1. Otherwise the packet is released and a fault message is

sent to DOS-i.

5.2.2.1.2.6 Message Code 8 (Status Request)

If the source of this message is 778 or 768, IDOS-0 will output the

four IDOS-O status words with a message code 7 (Status Return). After output

is complete, the status bits are cleared and the input buffer released. If

the source is anythinq other than 778 or 768, a fault message is sent to

DOS-i.

5.2.2.1.2.7 Message Code 9 (Fault Message)

This message is always passed directly to the user as described in

Section 5.2.2.1.2.1 regardless of who the source is or what the Intecolor's VA

is. This is so that the system operator can see fault messages on the

display and take appropriate action.

122

5.2.2.1.2.8 Message Code 10 (Text)

This code is a special case in IDOS-O. Any block that comes in with

message code 10 is treated as text by IDOS-0 and output to the screen. The

user 'task is unaffected dnd is not called. The format of code 10 messages

is shown in Figure 5-6. Before the text is output, IDOS-0 compares the cursor

location on the screen with the boundaries of usable display specified in the

task prologue. Any characters which place the cursor in a protected area of

the display are suppressed. Certain special characters (such as Escape) are

also suppressed to prevent an external source from making the Intecolor go

wacky. A complete list of valid and invalid characters is shown in Figure 5-7.

5.2.2.1.2.9 Message Code 11 (Bus Extender)

This code is always illegal to the Intecolor, and IDOS-0 wil' log a

fault message to DOS-] if it is received.

5.2.2.1.2.10 Message Code 12 (Load Virtual Address)

If the source is 768 or 77,8 IDOS-0 will change the Intecolor's VA to

the value specified in the first data word of the message. The Task VA in

the user prologue is also modified. If the source is invalid, the VA is

left unchanged and DOS-I is notified.

5.2.2.1.2.11 Message Codes 13 and 15 (Reset and Power Off)

These codes are not normally seen by the CE because hardware exists to

perform the functions immediately. However, the TIE has no such hardware,

so they must be done in software. Both codes perform the same function. Upon

receipt of a 13 or 15,1DOS-0 aborts the user task, re-initializes its tables,

and, if the restart address in the user prologue is nonzero, vectors to that

address. If the restart address 's zero- the user task is reloaded and

started at the initialization address.

123

Byte Word
Number Number Contents Comments

0-1 0 Header Word

To: IDOS-O

From: Anyone

Message Code: 1010

2-3 1 Body Word Count (_ 252)

4-5 2 Text Message Character Count

6-7 3 Start Location

6 Bits 15-8 Column # (0-79)

7 Bits 7-0 Line # (0-47)

8-2n 4-n Text - 2 characters per word

Figure 5-6. IDOS-0 Text Message Format

124

~~1~~~ I I

) I 5
~Ia,4

. S . &

* 7

-v
p I *-~ * 7

C, ,,K~r7 y

~ ~s- ,tV.' ~'~" z r

.. . *0

S I
'S -t

C - N

.**,..i

- . -- 0,

* .
.4.

0 9 5 0)
* *. **. -

- S., . - - -- -? a'

I*i- I - j ! c. Li _ . 0L

"F
* -I * .,* '-S ~. ,I* 4-' 'C

0)
* - . p.. - (.

F I F * * I
4 * 5' 4 '. 5'.

**,* 'L * '~ , PIt '......&' '
0

r...

* -. 5 'V * 'U,

* - S S * -' 0)
* * * L

I. "It;. - * S O'b
* I 1 '., * . . * . La..

4 . .5 . * , S Zn 3 . .5

I. ,~ a I .>: :1 $ /$lt'5* 'i~ ~Y

-'-2;

{~j_____________ *o a'
I- -L-.-....... .. _________________________________

a I

-*- - '-I

C- 4 jjjffi'ffi ***,, I
LLjTh - a... -. *' *

12;

* . S . * .5.- .'--. -

5.2.2.1.2.12 Message Code 14 (Executive Messaqe)

This code is reserved for communication between DOS-i and IDOS-0, and

never involves the user task. The format of the executive message is shown

in Figure 5-8. The message types are listed in Table 5-10. At this time, all

message types are ignored by IDOS-0 except configuration update (type 2).

If a configuration update is received, the second data word is read for

transmit bus information. If bit 15 is set, IDOS-0 will alternate busses each

tithe a message is output (first A, then B, etc.). If bit 15 is reset, then

bit 14 is used to specify which bus is to be used (0 = A, 1 = B). At present,

the rest of the configuration update message is ignored, although in the future

the capability of using logical devices may be added.

5.2.2.1.3 Page Map

As stated before, IDOS-O expects drive 1 to contain files which are

treated as Common Memury pages. Each "page" is a self-contained file with

the name "PAGE.XXX", where "XXX" is a decimal number from 000 to 255. Thus,

PAGE.042 is the name of the file containing page 42. Each page is exactly

24010 16-bit words in length.

To speed up Common Memory operations, IDOS-0 constructs a "page map"

in Intecolor memory (F600-F7FF1 6) which contains the starting sector of each

page on the disk. The format of the page map, shown in Figure 5-9, consists of

two bytes per page. The 512-byte map permits up to 256 pages to be specified.

Nonexistent pages are entered as -l (FFFF1 6).

Upon initialization, IDOS-0 scans the directory of drive 1, looking for

filenames of the form "PAGE.XXX". The starting sector address of each page

is placed in the appropriate word of the page map. If multiple copies of a

page exist, the most recent version is placed in the map. If the disk is

modified or replaced, a new page map must be constructed to prevent loss of

files. This can be accomplished by a system service supported by IDOS-O which

may be called by the user program (see Section 5.2.3).

126

Word

15 10 9 4 3 0

0 DEST SOURCE 1 1 1 0

WORD COUNT

2 MESSAGE TYPE

3-n BODY

Figure 5-8. Executive Message Format

F60 0 LOW BYTE HIGH BYTE
OF OF PAGE

SECTOR ADDR SECTOR ADDR 0

F6 02 - -1 PAGE

(PAGE NONEXISTENT)

F604
PAGE

LOW BYTE HIGH BYTE 2

F606

F7FC 1 -1PAGE

(PAGE NONEXISTENT) 2S4

F7FT' PAGE
LOW BYTE HIGH BYTE 255

Figure 5-9. Page Map Format

127

Table 5-10. Executive Message Types

Message Type Format of the Message Body

0 Load Task Aord 1 Load Map Page Number

I Start Task Word I Task Number

Word 2 Starting Address or 0

2 Configuration Word 1 k Number of Configuration Items plus Bus
Data Update Control Word

Bit 15 0 = No Alternating
1 = Alternating

Bit 14 0 = Bus A
I = Bus B

Bits 13-0 Number of items

Word 2 1 Number of Words for Item 1 including this
word count

Word 3 d Device Number

Word 4 VA Virtual Address of Actual Card

Word 5 m Index to Final Header (0 s m s n)

Word 6 n Number of Headers

Word 7-1+1 Header(s)

Word 1+2 and on for items 2 through k

3 Task Directive Word 1 Directive

2 = Suspend Task
3 = Resume Task
4 = Abort Task

4 Memory I/C (See Reference 5-1)

Continued on second page...

128

Table 5-10. Executive Message Types (Continued)

'essaze Ty pe Format of the Message Body

5 Modify Memory Word 1 Number of Modifications (n)

Word 2 Address for Modification 1

Word 3 New value for Address in Word 2

Word 4 Address for Modification 2

Word 5 New value for Address in Word 4

Word 2 Address for Modification n

Word 2n+l New value for Address in Word 2n

6 Update Virtual Word I New Virtual Address Modification Control Word
Address Modifi- Bit 15 (Set: Modification Permitted
cation Control
Word Clear: Modification Prohibited

7 Update Recording Word 1 Recording On Flags
Control Words Word 2 Recording Off Flags

129

... ...man i INIW

Table 5-11. IDOS-O Service Calls*

Call
Number De scrition Parameters Returned Values

0 Output Message 8 = Header Count CARRY = I/O error
C = Data word count NO CARRY = I/O
DE = Header List ad- successful

dress
HL = Data buffer ad- A = Error code

dress
I Update user clock BC = New options word

interrupt DE = New clock period
2 Set virtual address 8 = New virtual address

3 Select Bus B = Bus
0 = A bus
I = 1 bus
-1 Alternate busses

4 Register Fault B = Fault number (0-7)
If bit 7 set, error set in
user fatal status word;
task aborted

If bit 7 reset, error set
in user nonfatal status
word; control reverts to
user

5 Fetch Input Buffer HL = address to which A = Buffer full flag
Packet packet is to be (word 0 of packet;

stored -1 = full, 0 = empty)
condition codes set

6 Release Input Buffer No parameters

7 Initialize Page Map Reads directory of drive
I and generates new page
map; display RAM (8000-
9DFF) is used as temp.
buffer

No parameters

Continued on next page...

130

Table 5-11. IDOS-O Service Calls* (Continued)

Call
Number Descriktion Parameters Returned Values

8 Software Interrupt Generates an I/0 in-
terrupt which polls
TIE; clock is not up-
dated.

No parameters

Executed by a subroutine call to EOO3H. A'register must have service call

number; parameters passed in registers as shown above.

131

Table 5-12. Intecolor Input/Output Error Messages

Input Error Codes

Displayed in the form:

ERROR XX DURING INPUT

Where XX is:

2x Fault on A Bus

4x Fault on B Bus

Ax Parity Error on A
Cx Parity Error on B

80 Interrupt, Receiver Idle
81 TIE Command Error - Illegal Command

82 TIE Byte Boundary Error
84 TIE Read Reset Error - Receiver Idle

8B TIE Read Error - Receiver Idle

Output Error Codes

Displayed in the form:

ERROR XX DURING OUTPUT

CALLED FROM YYYY

Where YYYY is Address from which call is made; XX is:

03 Time Out Error
05 Parity Error

07 Receiver Busy

09 No Reply

OB Arbitration Fault

OD Bus Busy

Continued on next page...

132

Table 5-12. Intecolor Input/Output Error Messages (Continued)

Output Error Codes (con't)

OF Triggered

81 TIE Command Error - Illegal Command

82 TIE Byte Boundary Error

88 TIE Select Bus Error - Transmitter Triggered

89 TIE Set Virtual Address Error - Transmitter Triggered

8A TIE Write Error - [ransmitter Not Idle

133

5.2.3. System Services

IDOS-O supports nine system services which the user may call (see

Table 5-11). System services are called by placing the service number in the A

rtgister, any oLher parameters in the B, C, D, E, H, and L registers, and

executing a subroutine call to E003 16 Some services return with a status word

in the A register and the flags modified. Each service is discussed at length

in the following sections.

5.2.3.1 Output Message (0)

Messages are output by a user program in the Intecolor via service 0.

Before the call is made, the B register specifies the number of header words

(usually 1 in a single cluster system), and C specifies the number of data words

in the message (0 - 253). DE and HL register pairs point to the memory locations

containing the headers and data respectively.

After the transfer is complete, IDOS-O returns to the calling program

with a status byte in A and the carry flag modified. If carry is zero (no

carry), output was successful. If carry is set, an error occurred, and the A

register contains an error code. All errors except No Reply (code 09) are also

reported to the operator as an error message in the lower right portion of the

Intecolor display. The error codes are defined in Table 5-12.

5.2.3.2 Update User Clock (1)

The user may change the user clock period or options at any time via a

service call 1. Before the call, the BC register pair should contain the new

options word (0 = interrupts disabled, -1 = enabled), and DE should contain the

new clock period. The period is decremented by one each time IDOS-O is invoked

by the interval timer, and thus the actual period of the user clock is a multi-

ple of about 10 msec. However, the clock is very inaccurate, and many factors

change its period.

134

5.2.3.3 Set Virtual Address (2)

Service call 2 takes the value in the B register and stores it in the

virtual address register of the TIE. The task VA byte in the user prologue is

also updated.

5.2.3.4 Select Bus (3)

Service 3 enables the user to specify which external bus the TIE should

use on output. If the B register contains a zero, Bus A is always used. If B

is u 1, Bus B is used. I ! is a -I1, the bus is alternated each time an output

is performed. This command overrides the information in a configuration update

from DOS-l (see Section 5.2.2.1.2.12).

5.2.3.5 Register Fault (4)

One of the four status words maintained by IDOS-O is reserved for user

fault reports. The upper byte is reserved for fatal errors, and the lower byte

for non-fatal errors.

Register B contains a number from 0 to 7 specifying the bit which is to

be set. If bit 7 of the B register is set, the corresponding bit is set in the

fatal error byte, and the user program is aborted. Otherwise, the bit is set in

the nonfatal error byte, and control is returned to the user. The next time

DOS-I requests status from IDOS-O, the fault will be reported.

5.2.3.6 Fetch Input Buffer Packet (5)

This service transfers the packet for the next available input buffer to

the location specified by the HL register pair. In addition, the buffer "full"

flag (byte 0 c the packet) is placed in A, and the condition codes set. If

the A register is zero, the buffer is empty, and the information in the packet

is meaningless. If A is negative '-I). the buffer is active, and the packet

information is valid. Room muL. .,e re.erved for twelve bytes of packet infor-

mation.

135

5.2.3.7 Release Buffer Packet (6)

This service takes the current buffer packet and resets the buffer "full"

flag, thus releasing it from use. In addition, the user's "current packet"

pointer which is maintained by IDOS-O is incremented to point to the next

available packet. This is the method by which a user task informs IDOS-0 that

it is through with a packet.

5.2.3.8 Initialize Page Map (7)

As stated in Section 5.2.2.1.3, in order for IUUS-U to properly perform tne

Commlon Memory functions of Input and Output, a page map must be maintained in

Intecolor memory. Whenever a new diskette is inserted into drive 1, a new page

map must be constructed. IDOS-0 can perform this operation for the user via ser-

vice call 7. This service uses the Intecolor display refresh RAM as a workspace

(8000-9DFF1 6), and thus destroys anything already on the display. The display

should be erased after this call.

5.2.3.9 Software Interrupt (8)

This service is required because of a peculiarity in the Intecolor oper-

ating system. Many times during execution of the user program, interrupts

(including that of interval timer #1) are disabled by the ISC-supplied software.

This is done without warning, and prevents IDOS-0 from polling the TIE to process

messages. Thus, at times when the user is waiting for a critical message from

the TIE, the input never seems to come. Simply re-enabling interrupts using the

8080 "El" command does not always solve the problem, and sometimes creates more

problems itself. This service permits the user to force IDOS-0 to poll the TIE

just as if a timer interrupt had occurred. The only difference between the

software and hardware interrupts is that the software interrupt does not affect

the user clock.

136

5.3 Distributed Operatinq System Level 1 (IDOS-I)

Although the Fault-Tolerant Siqnal Processor was designed to permit the

level 1 operating system to run in a Common Element, in the FTWRP, the 8080-

based Intecolor intelliqent terminal was the ideal place for it. The name

of the proqram was thus modified to "Intecolor-resident DOS-i", or IDOS-I.

IDOS-1 performs all the functions of a single cluster DOS-i, plus it

dGts as an operator's console where commands and parameters may he input and

syst-m status and command responses are displayed. The following sections

describe the system functions of IDOS-1, while the command interpreter is

described in detail in Section 3.2.

5.3.1 System Configuration

The current FTWRP system software will support a single cluster of devices

including an input IOC, an output IOC and up to 14 Common Elements, plus the

Intecolor, which utilizes socket address 0. It should be repeated here that

although the software will support a fully populated cluster, electrical power

requirements currently linit the maximum number of CEs to 6 (including the

test panel, which draws siqnificant power, and two IOCs). More elements will

require the addition of a second power source.

5.3.2 FTSP Level 1 Operating System Functions

As staled above, IDOS-1 performs all the functions of a single-cluster

version of DOS-i, including system initialization, status polling, task con-

figuration, reconfiquration, spare rotation, and fault reporting. While IDOS-1

is eer. :ina, .;e Intecolor appears on the FTSP busses as a Common Element

with virtual address 77 (octal).

5.3.2.1 IDOS-1 Data Structures

A complete list of IDOS-1 data structures and routine usage is contained

in Appendix B. The major structures maintained for system configuration

are threefold: 1) the system status table (SYSTBL), 2) the system table index

(STNDX), and 3) the various system queues. A grasp of the functions of these

structures is vital to a sound understanding of IDOS-1 operation.

1:37

--- - -

5.3.2.1.1 System Status Table (SYSTBL)

The SYSTBL is an array of status words, with one entry per physical

(socket) address in the system (includinq the Intecolor). Eachentry consists

of 8 bytes:

- The card type

0 = nonexistent

1 = CE

2 = IOC

3 = CM

- The current virtual address (0 - 77)

- The card's status (2 bytes)

- The job status (derived from status word)

- The task identification number

- The task virtual address

- The status polling count

The use of each of these words will be discussed in the description of the

routines in which they are primarily utilized.

5.3.2.1.2 SYSTBL Index (STNDX)

The STNDX is an array which maps each possible virtual address (0 to 77)

to its correspondinq socket address, by which the SYSTBL is accessed. For

example, if the CE at socket address 10 is executing a task with virtual address

60, the STNDX entry at 60 will contain a 10. This is cross referenced in the

SYSTBL via the virtual address word (byte 2), which, in the entry for socket

address 10 will contain a 60. Virtual addresses which are unused are flagqed

by a -1 in the correspondinq STNDX entry.

Whenever a card's virtual address (VA) is chanqed, the new VA entry in

the STNDX is qiven the socket address as it is specified in the old VA entry.

The old entry is then chanqed to -1. Thus IDOS-1 can keep track of a dynamic

system without undue headaches.

I a8

5.3.2.1.3 IDOS-1 Queues

IDOS-1 maintains a number of queues for system confiquration and task

loading. The major queues are the Idle list, the Task queue, the Virtual

Address queue, and the Spare list. These are all of the form of a last-in

first-out stack, that is, the last entry pushed onto the queue is the first

one popped off.

The Task Queue contains a list of the identification number of each task

wnich must be loaded next. The priority of task loadinq is determined by the

order in which they are entered into the queue. The VA queue is actually an

extension of the Task Queue, and contains the virtual addresses that each task

will assume when the task is started. These two queues should therefore track

each other exactly, and if they don't an error will be qenerated.

The Idle List is basically just a list of all the idle CEs in the system

at any one time. Whenever the Task Queue contains a task id, the idle list is

searched for an idle CE into which the task can be loaded. If one is found,

the CE is popped off the idle list, and the task id and virtual address are

popped off their respective queues. If a new card is inserted into the system

after startup or a task completes, that card's virtual address is entered onto

the idle list.

The Spare List is the same as the Idle Li-t, except that CEs which are

on the Spare list are not necessarily idle. A spare CE may be executinq a

task, namely the self-diaqnostics task. If a hiqh-priority task must be loaded

and there are no CEs on the idle list, the spare list is searched for CEs which

can be conscripted for service. If one is found, the diaqnostics task is

aborted and the card is re-loaded with the new task. Otherwise, the task is

left or the ta,k queue until a card is inserted or an existinq card completes

its current task.

5.3.2.2 IDOS-1 Functional Descrirtion

5.3.2.2.1 IDOS-1 Intidlization

At startup, IDOS-1 initializes its internal tables and pointers to the

initial state. The SYSTBL is initialized such that the only member of the

system is the Intecolor itself, which is qiven the card type of CE, and virtual

139

address 77 (octal). The STNDX is set to all -Is except the entry at 77, which

is set to 0 (socket address 0). Then the Task Queue is loaded from the floppy

disk (file name: TASKS.O01), along with the VA Queue. In addition, the defadlt

system confiquration is initialized from disk (file name: CONFIG.O01), and the

signal processing parameters are loaded into Intecolor RAM from floppy (file

name: PARAM.001). After initialization is complete, IDOS-1 enters its idle loop

(the command interpreter), waiting for commands from the operator.

5.3.2.2.2 IDOS-1 System Startup

Once the operator has entered all the desired commands (if any), the

'PPP' command is entered to begin system startup.

The first operation performed during startup is to reset all virtual

addresses (except 77 octal) to ensure that the system is in a known state. Once

this is complete, status request messages are sent to each VA (including 77) to

determine the present configuration.

Once a complete list of valid devices is obtained, it is compared with a

list of devices necessary to run the desired application. If too few IOCs are

available, IDOS-1 enters an infinite loop pollinq status, waiting for more

IOCs to be inserted. This condition is signalled by the error message

NOT ENOUGH IOCS AVAILABLE TO PERFORM TASK

WAITING FOR MORE CARDS

The loop is broken either by the insertion of a sufficient number of IOCs or by

depressing the BREAK key. If BREAK is pressed, startup is aborted and the

command pocessor is reentered.

If there are enough IOCs available, the lists are then checked for

sufficient CEs. If there are too few CEs, a warning message is displayed to

that effect and startup continues.

The next step of system startup is thus the loading of all applications

tasks. As each task load operation is complete, the task is started by executive

messaqe to the CE. In FTWRP, all signal processing tasks have certain parameter

lists which must be loaded before processing can begin. IDOS-1 takes care of

this by sendinq parameter lists to all tasks with virtual addresses between 60

140

and 67 (octal). In a deqraded system, the last entries of the task queue are

loaded first (and thus have highest priority). Tasks are loaded until the

list of idle (and spare) CEs is exhausted. Insertinq more cards will cause

the unloaded tasks to he loaded.

Once all the tasks are loaded (or as many as possible in a degraded

system), the IOCs are started. IDOS-l assumes that the input IOC is at socket

address 15 (octal) and the output IOC is at 14 (octal). If not, an error is

generated. No warning messaqe is displayed, but a fault bit is set in the

IDCS i status word.

The last operation done at system startup is the enablinq of IDOS-1

system clock interrupts, which provides the means to periodically poll system

status, etc. Once complete, the command interpreter/idle loop is reentered.

5.3.2.2.3 IDOS-i Clock Interrupt Processing

At regular intervals (at present, every 87 IDOS-O clock ticks, or about

I second), IDOS-O invokes a clock interrupt routine in IOOS-1 which performs

various functions that must be done periodically. Upon entry of this routine

(called CLKSVC) a counter is decremented and checked for zero. When zero, this

counter signals that system status polling is necessary. Another counter

determines when spare rotation must be invoked. Regardless of the states of

these counters, the task queue is checked at every clock interrupt. If the

queue is not empty, and a CE is found in the idle list (or spare list), the

task is loaded at this time.

5.3.2.2.4 IDOS-I Message Interrupt Processing

Whenever a message is received by IDOS-I, the message processor (MSGP?)

is invoked. This routine reads the messaqe, decodes its meaning and takes the

appropriate action. The three majo" -,ssaqe types that are sent to IDOS-i are

message code 3 (single block messaqe), iescaqe code 7 (status return), and

message code 9 (fault r'essaqe).

141

5.3.2.2.4.1 Single Block Messages

Most single block messages are simply displayed on the Intecolor screen

with information regarding the source of the message. However, during the

course of operation, several messages may come in which serve as synchronization

messages for IDOS-1. The meaning of these messages is encoded into the first

data word of the body (word 0).

5.3.2.2.4.1.1 No Data (word 0 = 0)

This message, if it comes from a valid signal processing CE (virtual

address between 60 and 67), signals that data is not being received from the

input IOC. The only time this message should be sent to IDOS-1 is when a CE

has been "rotated" out of the processing flow in spare rotation. All other CEs

will report this fault as a nonfatal error bit in the status return message.

If the message is invalid because of its source, or reason (e.g., spare

rotation is not in progress), the message is displayed as a normal single block

message.

5.3.2.2.4.1.2 Look Up Table Synchronization (word 0 = 1)

Whenever a signal processing task is loaded and started in a CE, a para-

meter list message is sent to it to initialize its internal tables. In addition,

a Range Normalization Look Up Table (LUT) page map is sent. The CE will then

request the required LUT pages from Common Memory (the Intecolor, via IDOS-0),

and send a message back to IDOS-1 when the load process is complete.

If this message is invalid, either because of its source (not a signal

processing task), or because processing has not hequn (the 'PPP' command was

never entered), the message is displayed as a normal single block message.

5.3.2.2.4.1.3 Task Directive Reply (word 0 = 2)

This message signifies that a CE has successfully loaded a task as pre-

viously instructed by IDOS-I, and that it is awaiting further orders. If the

task load operation was never requested by IDOS-I, the CE will be reset and

reconfiguration invoked. If signal processing has not yet begun (via a 'PPP'

command), the message is displayed as a normal single block message.

14?

5.3.2.2.4.2 Status Reply Processinq

When a status return is received, the first check is for the validity

of the message. If processinq has not yet begun (via a 'PPP' command), the

messaqe is displayed on the screen as if it were a sinqle block messaqe

(message code 3). If processinq is in proqress, hut the status was never

requested by a previous messaqe from iDOS-1, the card which sent the messaqe is

reset and reconfiquration is invoked.

nnce the validity of the messaqe is confirmed, the next check made is

whether or not the card is a new addition to the system, or one which

previnIlv existed. New CEs are queued as idle and sent the system

configuration table for future use. New IOCs are reset to ensure that they are

in a known state, and queued as idle. CMs are queued, but are otherwise

ignored.

Existinq cards are checked for chanqes in status from previous reports.

If an error has been detected, it is checked to see if it is fatal. Nonfatal

errors are loqqed, hut otherwise iqnored. Fatal errors cause reconfiquration

to be invoked.

5.3.2.2.4.3 Fault Messaqe Processinq

Fault messaqes are error reports that are serious enouqh to warrant

immediate attention. They usually are accompanied by one or two data

words to clarify the actual cause of the fault. These fault messaqes are

translated by IDOS-1 into text strinqs which are displayed on the screen along

with their associated data words. Red messaqes are fatal, and reconfiquration

is invoked after the messaqe is displayed. Yellow messaqes are nonfatal, and

no further action is taken. (At present, all fault messaqes, fatal and nonfatal,

are treated by IDOS-1 as fatal, and eisp!ayed in red.)

5.3.2.2.5 System Reronfiquration

In the event ot a system failure such as a faulty CE or IOC, etc, IDOS-1

invokes the reconfiquration routine (RFCNF). The purpose of this subroltine

is to remove the faulty card and replace it if possible with a healthy spare

in the system. The system status and configuration tables are automatically

updated durinq recnnfiquration.

143

The first item of business is to suspend all the tasks in the system to
prevent spurious messages and lost data synchronization. Also involved in

task suspension is the resetting of all lOCs (thus effectively suspending them

also). Once all tasks have been suspended, the faulty card is reset by an

executive message (message code 13), and its task placed in the task queue.

The SYSTBL and STNDX are updated to show the failure before the routine

terminates.

The actual process of re-loading the task into another card is performed

at the next clock interrupt, if any spares are available.

5.4 Pulse-Pair Application Program (FTWRP)

The heart of the Fault-Tolerant Weather Radar Processor system is the

signal processing applications task which runs in the Common Elements. This

task has the identification 60 (octal), and executes in CEs with virtual

addresses 60 through 64 (octal). The following sections describe the FTWRP
program in detail, and a list of data structures appears in Appendix B. The

processing flow diagram of Figure 2-4 provides a convenient reference for
the descriptions that follow.

5.4.1 Overview of FTWRP Processing

Processing in FTWRP is divided among the CEs according to range. In the
normal system, five CEs take equal shares of data, according to the total

number of range cells being processed. For example, in a 1024 ranqe cell

application, the processing is divided up as follows:

VA Range Cells

60 0 - 207

61 208 - 411

62 412 - 615

63 616 - 819

64 820 - 1023

1 44

5.4.1.1 Data Buffering in FTWPP

Processinq dwells are triple huffered in the FTIMRP applications software.

That is, while processing is taking place out of one data buffer, another

buffer is beinq filled with new data. Three buffers are used instead of two

to take care of peak system load, and to prevent loss of data due to transient

nrohlems in CEs (e.q., I/O problems such as busy receivers).

Each time a new block of range cell data is received, a "pulse-level"

int(,ridDt routine is invoked, which performs the required operations (either

autocorr'lation and integration or simple integration), depending on whether

the data is reflectivity or coherent channel information. The integration is

accomplished by adding the result to the contents of the current input buffer.

nnce the buffer is full (a full complement of pulses have been integrated as

determined by the NSI parameter), it is released for "dwell-level" processing

which computes mean velocity, ranqe normalization, shear, etc. Meanwhile,

a new buffer is allocated to input, and pulse-level processing can continue.

5.4.2 FTWRP Functional Description

This section discusses the functional aspects of the FTWRP applications

software. The Continuous Pulse Sequence processor is described here. The Dual

Wavelength Sequence processor, which performs all the functions of the Continuous

Pulse processor plus some complicated ambiguity resolution techniques, is

discussed in Section 5.4.3.

5.4.2.1 Task Startup/Initialization

T: ii section describes the process of bringing up the FTWRP applications

task in a CE and preparing it to run. This involves task startup,processinq

startup and initialization, parameter lording, and look-up-table loading.

5.4.2.1.1 Task Startuln

When InoS-i starts the task, FTWRP immediately enters an idle loop waiting

for a processing startup command. This enables IDOS-1 to send commands to

FTWRP without interfering with data processing, and without fear of destr(vinq

any packets or tables. Usually the commands from IDOS-1 include loading of

145

parameters and/or look-up tables. The formats for each of the possible commands

which are honored by the applications software are detailed in Section 5.4.1.3.

5.4.2.1.2 Processing Startup/Initialization

When IDOS-1 finally sends the processing startup command to FTWRP, the

first thing that is done is to initialize all the special instruction packets.

By initializing once at the beginning rather than before each use of the

instructions, the loops are made more efficient and problems caused by slow

processors are miniiized.

Once initialization is complete, the dwell processor enters a second

idle loop waiting for an input buffer to be freed by the pulse-level routines.

If this takes too long, a nonfatal error bit is set in the CE task status word.

5.4.2.1.3 Parameter Loading

Parameters may be changed at any time, either before processor startup,

or during processing. It is recommended, however, that the processor be stopped

before parameter lists be sent.

Once parameters have been changed or initialized according to the message

from IDOS-1, the processor run flag is checked to see if the dwell-level processor

is active. If so, the task initialization routine is re-executed to bring all

tables up to date. If not, nothing is done, under the assumption that IDOS-1

will be starting the system again at some point in the future. When it does,

the task will be re-initialized automatically.

5.4.2.1.4 Look-Up Table Loading

Look up tables are loaded by giving the CE a load map page number speci-

fying how the look up table is to be loaded. The CE then requests the load

Irap page from1 04 (the Intecolor), and uses it it determine which pages must be

loaded next. The format of the Look-Up Table (LUT) page map is shown in

Figure 5-10. When all the pages of the LUT have been successfully loaded,

the CE sends a "LUT load complete" message to IDOS-I. (Section 5.3.2.2.4.1.2).

146

WORD

0 PAGE COUNT (n)

1 PAGE NUMBER (0)

2 WORD COUNT (0)

3 PAGE NUMBER (1)

4 WORD COUNT (1)

2n WORD COUNT (n-i)

Figure 5-10. Look-up Table Load Map Page Format

147

5.4.?.2 FTWRP Commands From IflOS-1

The FT14RP applications software recoqnizes six different commands from

IDOS-I. Epch command is a self contained messaqe from virtual address 77

(octal) and with messaqe code 5. The format for each command is shown in Table

5-13 and described in the followinq sections. Word 0 of the message body

always contains the command code to he executed.

5.4.2.2.1 Chanqe Virtual Address (Command 0)

This command is used only durinq spare rotation (see Section 5.6), and

its purpose is to inform the CE that it will he asked to chanqe its virtual

address to the specified value as soon as the current pulse-level input buffers

are filled.

Word I of the messaqe contains the new virtual address.

5.4.2.2.2 Chanqe Parameter(s) (Command 1)

This messaqe instructs the proqram that a new batch of oarameters are to

he used in future processinq. Once the new parameters have been put in place,

the task initialization routine is called aqain.

Althouqh parameters can he chanqed at any time, even during processinq,

it is not recommended without first stoppinq the siqnal processor with a

command 4 (Section 5.4.1.3.4). If parameters are chanqed durinq processing,

some packets may be temporarily destroyed, which will ultimately result in

either bad data or the CE actually beinq reset due to a perceived fault.

Therefore, it is best to stop the processor, load new parameters, and then

restart it usinq command 5 (Section 5.4.2.2.6).

5.4.2.2.' Chanqe Look-lip Table Number I (Command 2)

This messaqe instructs the processor to load the ranqe normalization

look-up table. Word I contains the numher of the load map paqe which will

supply the required information to load the table. The format of the load map

pane is shown in Fiqure 5-10.

Once the Look lip Table has been successfully loaded from Common Memory

(the Intecolor), a messaqe to that effect is transmitted to IDOS-1. The format

of the load complete messaqe has messaqe code 3 and a I in word 0.

148

Table 5-13. Signal Processor Command Formats

Word 0 Function Parameters

0 Change Virtual Address Word 1 = new virtual address

1 Change SP Parameters Word 1 = number of parameters
(n)

2 = parameter number

2n Parameter number

2n+1 Parameter value

2 Load Range Normalization Word 1 = Load map page number
Look-up Table

3 Load Tangential Shear Word I = Load map page number
Look-up Table

4 Stop processing

5 Start (Restart) processing

149

5.4.2.2.4 Change Look-Up Table Number 2 (Command 3)

This message instructs the processor to load the Tangential Shear look-

up table from Common Memory (the Intecolor). The contents of this tahle are

the values corresponding to the tangential velocity of the beam versus the

range cell number. The method and termination of loading the table are the

same as discussed in Section 5.4.2.1.4.

5.4.2.2.5 Suspend Processing (Command 4)

This message instructs the program to halt signal processing after the

current dwell of data is processed. New buffers of data may still be processed

by the pulse-level routines, but are not passed to the dwell-level. The dwell

processor re-enters the initialization idle loop, and will not exit until a

new Start Processing command is received. There are no data words associated

with this message.

5.4.2.2.6 Start Processing (Command 5)

This command is used to start the dwell-level processi.-,g from the initial

conditions, or resume after a Suspend Processing coammand is received. The

task initialization routine is invoked immediately after receipt of this message,

and the dwell processor is entered. There are no Parameter dat., words associated

with this message.

5.4.2.3 Pulse-Level Processing

As stated above, the pulse-level processinq consists of two parts: the

coherent channel and reflectivity channel. These routines are discussed

separately in the following sections.

5.4.2.3.1 Coherent Channel Processing

The _,herent channel processing is performed in the interrupt handler

IQPULS each time a new packet with message code 10 is received. The format of

the coherent data packets is shown in Fiqure4-12.

150

The heart of the coherent channel processing is the RACOR signal pro-

cessing instruction which was developed for FTWRP. This instruction, described

in detail in Secion 6.1.10, takes the complex conjugate of the packed inphase

and quadrature data,and multiplies it with the packet data from the previous

pulse, which was stored in a delay buffer in imemory. The result is then inte-

grated over the entire dwell by being added to a cumulative I and (0 data set

maintained in memory. The actual nuriber of pulses integrated in this manner

is '-termined by the NSI parameter. The current data set is then stored in

the delay buffer for processing the next pulse when it comes in.

A pulse count is maintained by IQPULS to determine when the dwell is

complete. When a buffer is full, it is flagged as such and released to the

dwell processor for the rest of the algorithm implementation.

The pulse after a complete dwell is treated as a new dwell data set,

and therefore (since there is no previous data to be autocorrelated with) the

packet is simply read into the delay buffer with the SREADR (scatter read)

instruction.

The second pulse of data is autocorrelated with the delay buffer as

with the RACOR instruction, but instead of the results being integrated into

memory, they are simply stored there, effectively clearing the contents from

previous dwells. This is accomplished with the RACORI instruction (see Section

6.1.9).

If all three coherent channel buffers are full, the last one filled

will be emptied and refilled, and a nonfatal fault bit set in the task status

word.

5.4.2.3.2 Reflectivity Channel Processing

The reflectivity channel data processing is performed by the interrupt

,prvice routine LZPIJLS, which is nvok.d each time a packet with message code

11 is received. The format of the reflectivity data packet is shown in Figure

4-12.

As in the case with coherent channel processing, reflectivity

processinq revolves around a single instruction, RACC (Read and Accumulate).

This relatively simple instruction (described in detail in Section 6.1.8)

takes the unpacked reflectivity data and adds it to a buffer in memory.

151

A separate pulse counter is maintained by LZPULS to determine when a

dwell is complete. Once the buffer contains a complete dwell, it is flagged

appropriately and released to the dwell processor.

The new buffer is initialized by storing the next pulse of data directly

over the old data with the READ instruction.

If all three reflectivity buffers are fu' 1
, LZPJLS will re-appropriate

the buffer which was filled last, and set a fault bit in the task status word.

5.4.2.4 Dwell Level Processing

Although the Dwell level processing represents a single large routine
in FTWRP, it is functionally similar to the pulse-level processor in that it

also has two distinct emphases (reflectivity and coherent channel). To faci-

litate understanding, these will be discussed separately. The special signal

processing instructions which were designed for FTWRP and used in the dwell

processor include SCALE, CVEC, VADD, VSUB, and SLINT, and are described in

detail in Section 6.1.

5.4.2.4.1 Common Preprocessing

The FTWRP software was designed to provide maximum accuracy while

minimizing the probability of overflow errors. Therefore, the algorithm was

sized using worst case maximum data with NSI = 256 (maximum pulse integration).

However, when NSI is reduced, proper scaling must be done to prevent loss of

accuracy. Thus, the first operation performed on all data is scaling so that

as many significant bits as possible will be retained.

5.4.2.4.2 Reflectivity Processing (Dwell Level)

Reflectivity processing is relatively simple in comparison to that for

the coherent channel. The major operation which must be performed is range

normalization to account for signal attenuation with respect to range. This is

accomplished by adding (using VADD) a constant which is determined by the range

cell number. These constants are contained in a look-up table which is indexed

by range cell number.

15P

Range normalization may be turned off by the operator by typinq

SET RNORM=OFF

which sets a flag in FTWRP that instructs the dwell processor to skip execution of

the VADD instruction, typing

SET RNORM=ON

will turn the range normalization function on aqain. No other processinq is

performed on reflectivity data until the final common output processing.

5.4.?.4.3 Coherent Channel Processing (Dwell Level)

Coherent channel processing is somewhat more complicated, since a number

of operations may need to be accomplished. The first, and most visible, function

is the computation of the arctangent of the autocorrelation results from the

pulse level routine. The result of the arctanqent (computed by CVEC) is directly

proportional to the mean velocity, since it is a measure of the Doppler phase

shift of the returns. This information will be range-averaged and output to

the Output Synchronizer as the mean velocity channel.

The second major function of the coherent channel processor is the compu-

tation of the shear. Either tangential or radial shear can be obtained, depending

on the state of the SHEAR flag (set using the SET SHR command).

Radial shear is simplest, and consists of simply subtracting from each

range cell the velocity of the previous range cell; that is,

shear(r) = velocity(r) - velocity(r-1)

where r is the range cell number.

Tangential shear is, simply stated, a comparison of the velocity from

dwell to dwell; that is,

shear(,,n) = [velocity(r,n) - velocity(r,n-1)] * [1/(r*dTheta)]

where r is the range cell number, n is the dwell number, and dTheta is a measure

of the angular velocity of the antenna in degrees per dwell. Therefore, the

velocity information for each dwell must be stored in a delay buffer, to he

subtracted from the new dwell when it comes in. The 1/(r*dTheta) term is

supplied by another look-up table indexed by range. After the tangential

shear for a dwell is computed, the delay buffer is updated by copying the

current dwell's velocity buffer into the delay buffer. This is accomplished

most efficiently by using the SCALE instruction with a scale constant of one.

153

5.4.2.4.4 Common Post Processing

Once the desired data (reflectivity, mean velocity, and shear) has actually

been computed, the results must be smoothed by sliding-window range averaging.

This operation also serves to move the data into dedicated output buffers from

which the messages to the output synchronizer can be built. The averaging

process is performed b1w the SLINT instruction, unless the window size is set

to 0 or 1 (effectively turning off the averaging function), in which case the

faster SCALE instruction is used with a scale constant of 1.

It should be noted here that since the data has been partitioned among

the CEs according to ranqe, sliding window averaging becomes a bit of a problem

around the range boundaries. At present, this is alleviated by each CE sendinq

the next CE a block of data equal in size to the averaging window. This is not

perfect, however, since CEs are not necessarily synchronized with each other;

that is, one CEs dwell may be slightly skewed in time (a few pulses) from

another. In the future, it may be found to be better to solve the problem by

duplicating the first (or last) range cell in a block to fill out the average.

Further experimentation is required in this area to arrive at final

conclusions.

Once a CE has transmitted its few ranqe cells to the next CE, it waits

for a similar input from the CE which is processing the previous block. If it

takes too long, it will go ahead and average, but set a fault bit in the task

status word.

After averaging, the output packets must be built for transmission to

the output synchronizer. The actual output process may involve as many as three
packets of data (and thus, three output operations). The format of each of the

packets is shown in Fiqure 4-16. The OSSA word is used by the output synchro-
nizer to ensure that data is output to the Scan Converter in proper range

order. The data words are merged toqether (three words per range cell) for up
to 79 ranqe cells of data per packet. Thus, in the case of NRC=256, only one

packet is required per CE (maximum 52 range cells per CE), but when NRC=1024,

three packets are necessary (two packets of 79 range cells, and one of 50).

After all the packets are output to the synchronizer, the dwell buffer
is released back to the pulse-level processor, which may then refill it with a

new dwell of data.

5.5 Dual Wavelength Application Task

The Dual Wavelength processing, depicted in Figure 2-5, is basically

the same as for continuous pulse sequence processing, except for two extra

processing modules labeled "Range Ambiguity Resolver" and "Coherent

Channel Formatter." These software modules, called RAR and CCF respectively,

help to map multiple trip echo ambiguities into their proper range intervals.

This is accomplished by building a table (indexed by range) which specifies

the "trip number" into which a range cell should be placed. The RAR module

is responsible for creating the table, while CCF uses it to actually perform

the mapping.

The reflectivity information consists of four independent blocks of

range cells representing the same interval of each of four coherent channel

trips. These four blocks are treated as a single large block during the

normal pulse-level processing, since range dependencies do not exist there.

The coherent channel is processed as before also, since there is at this

point only one interval. In the dwell-level processing, the arctangent is

computed without regard to range, but range normalization and shear computa-

tion are range dependent, and therefore the range ambiguity resolution must

be performed first.

5.5.1 Range Ambiguity Resolver

A flowchart depicting the logic of RAR is shown in Figure 5-11. The

first check performed by RAR is to determine the trip which contains the

maximum reflectivity for a given range cell offset. At the same time, the

relative diff,"rence between the maximum and the second largest trip must be

computed. If this difference is less than a threshold (ZTH, set by the

operator) the information is ambiguous, since the coherent channel infor-

mation could conceivably be placeJ in either trip. In this case, an
"ambiguous data" flag is placed in the RAR table. If one trip is clearly

dominant, a trip "index" (0, 1, or 2) is entered into the RAR table. If

the maximum reflectivity is below a threshold (PRETH, set by the operator)

the reflectivity and coherent channels are all set to zero, and zero is

entered into the RAR table. Th1is process is repeated until all the coherent

range cells have been identified with a trip index, or been found abmiguous.

155

NOTES: e - Reflectivity difference
E - Index of trip in which max power is

located
RAR A a Maximum power (reflectivity)

C: D ia reflectivity (range, trip)

r r arange cell number (within trip)
TABLE -Range Ambiguity Table (range)

N

Fiue0 1.RneAbgit eovrFo iga
E x - 11

5 6

5.5.2 Coherent Channel Formatter

The CCF logic is shown in the flowchart of Figure 5-12. If the RAR

table shows that the trip information is ambiguous, the first trip (trip 0)

is assumed as the correct one, and the trip 3 range offset is given a code

denoting that ambiguous data is being reported. The ambiguous data code is

defined as (-1) times the block integration (BLINT) window size BLW, set by

the operator) for reasons which will become clear later. All other trips

(I and 2) are set to zero. If nonambiguous data is encountered (i.e., the

RAR table entry is 0, 1, or 2) the table entry is used to determine in which

trip the coherent channel data should be placed (trip 3 is always set to

zero, unless ambiguous data is encountered).

Once the entire RAR table has been processed, the coherent channel

buffers will have expanded by a factor of four. Since range dependencies

have presumably been resolved at this point, range normalization and shear

calculations can be performed.

Since the Scan Converter (SCRM) cannot accept the expanded buffers of

data, it must be reduced using the block integration instruction (BLINT).

Once BLINT is performed, the reduced buffers are of the proper size for out-

put to the existing hardware. Ambiguity information is retained, since the

fourth trip (trip 3) still contains the ambiguous flags. However, since

data reduction has taken place, resolution of which range cells were

ambiguous may be lost. Since the ambiguous flag was defined as (-1) times

the BLINT window size, the output of BLINT in trip 3 should be 0 (if no

ambiguities existed in the window), or (-1) times the number of ambiguities

encountered in the window. For example, if the BLINT window is 4 range cells,

and two ambiguities are encountered within a window, the trip 3 output should

be -2. Therefore, maximum ambiguity information is made available for

post-processing.

157

NOTES: r - Range cell Number
TABLE - RAR index table (range)
VEL a Mean velocity output (range, trip)
v = Mean velocity input (range)

CCF SHEAR - shear output (range, trip)
shear input (range)

VELrTBLEr))SHEAR(r,O) -s(r)
- v~r)SHEAR(r,3) -- 1

othr tips- 0other trips 0

IILII

SHEAR(r,TABLE(r)) VEL(r,O) - v(r)
v(r) VEL(r,3) - -1

other trips = 0 other trips - 0

r r+1 o

Figure 5-12. Coherent Channel Formatter Flow Diagram

158

5.6 Spare Rotation

One of the requirements of the Fault Tolerant Weather Radar Processor

is the ability to run comprehensive diagnostics in individual CE's while

the system is operating. Since these diagnostics cannot run concurrently

with tasks in an active CE, a separate diagnostic task which executes in a
"spare" (i.e., not used in the system at the time) CE is a good alternative.

If it is possible to "rotate" this task through different CE's in the

system without losing data or computing power, all CE's may test themselves

periodically to insure system integrity. This section describes the com-

plications of such an operation, and outlines the scheme which satisfies the

requirements.

Requi rements

The requirements associated with spare rotation are:

o No data may be lost

o DOS-1 must initiate and control the operation

o Unaffected CEs, IOCs, and CMs must not be cognizant of any
change taking place.

Although these requirements seem obvious, they are by no means trivial to

implement in FTWRP. To demonstrate this, the applicable environmental

considerations of FTWRP are repeated in the following subsection.

5.6.1 FTWRP Spare Rotation Environment

5.6.1.1 The system consists of 5 processing CEs and one spare; two IOCs

(one input, one output), and an Intecolor, in which runs IDOS-1; there are

no CMs.

5.6.1.2 Processing is distributed among CEs according to range interval

(e.g., CE #1 receives range cells 0-207, CE #2 receives cells 208- 411,

etc.), and all tasks are identical. However, constants and look-up tables

are range dependent, and are therefore different in each CE.

5.6.1.3 Data is input via an IOC in continuous input mode, and therefore

is received by CEs periodically without request. Since the IOC has a

predefined sequence of virtual addresses (VA) to which to send data any CE

159

entering or leaving the processing stream must change its VA during a

finiLe window of Limu tu prevent loss of data. Therefore, the IOC gates

the maximum time allowed for rotation, which may vary from 0.25 to 2.0 ms

in length.

5.6.1.4 A block of radar data is input to each CE every 256 - 2048 us,

upon which "pulse-level processing" (PLP) is performed. The results are

integrated into dwells of 32 - 256 pulses each, upon which the CE performs

"dwell-level processing" (DLP) before the data is output. While DLP is

going on, the PLP of the next dwell takes place. Therefore, at any point

in time two dwells of data are undergoing processing. From a spare rotation

point of view, this means that the rotation process may only take place be-

tween the last pulse of the previous dwell and the first pulse of the next

dwell. This window, 0.25 - 2.0 ms long occurs about 3 - 4% of the time. To

complicate the picture even more, this window shifts in time from CE to CE

and from dwell to dwell.

5.6.1.5 The time required to load a new task into a CE is on the order of

20 - 30 seconds, and essentially halts the execution of IDOS-1. This requires

the spare to load the application task in advance of the actual rotation

process.

5.6.2 Spare Rotation Implementation

The small window size and lack of synchronization discussed in the

previous section makes it extremely difficult for IDOS-1 to control rotation,

since IDOS-1 never really knows a CE's progress in the processing sequence.

However, with the added capability of DOS-0 to change its own virtual address

with previous authorization from IDOS-1 (see system request 9, section 5.1.4.8)

the following scheme became possible:

1. Rotation starts with CEs #1 - 5 doing signal processing, while
CE #6 performs diagnostics.

2. CE #6 finishes its task, and reports no errors to IDOS-1.

3. IDOS-I determines the next CE to run diagnostics (CE #1)

4. IDOS-i instructs CE #6 to load the signal processing task with CE #1's
tables, and begin execution under a pre-defined unused virtual
address. CE #6 is now waiting for data to work-on, but receives

160

none because of its address.

5. After CE #6 has started, IDOS-1 instructs CE #1 to change its
virtual address at its earliest convenience.

6. When CE #1 comes to the appropriate time to rotate, it informs
CE #6 to change its VA to that of CE #1, and immediately changes
its own to that of a spare.

7. CE #6 now starts receiving input and performs PLP and DLP in the

normal manner.

8. CE #1 continues DLP on its data, then informs IDOS-1 that input
has ceased (a fault message).

9. IDOS-l, expecting the message from CE #1, informs it to load and
execute the diagnostic task.

10. During steps 3 through 9, no status polling may be done.

11. This process is repeated until all CEs have run the diagnostics.

This procedure, while keeping IDOS-1 in ultimate control, gives individ-

ual CEs enough autonomy to synchronize rotation with the data. IDOS-1 is

aware of all that goes on, but other CEs and the IOCs are unaffected.

Most important, no data is lost.

161

REFERENCES

5-1. M.J. Young memo, "Intecolor-CE Communication", dated

8 February 1979, MJY-048, EM78-0104B.

162

6. FIRMWARE DESCRIPTION

This section describes firmware developed specifically for the FTWRP

system, including the special CE instructions and IOC programs. Previously

existing firmware, or firmware not developed uniquely for FTWRP will not he

discussed in the document, but may be found in Reference 4-2.

6.1 New Common Element Microcode

Ten new instructions were added to the CE repertoire to meet the pro-

cessing requirements of the FTWRP. They represent an expansion of the existing

capabilities of the CE as described in the FTSP Programmer's Handbook

(Reference 4-2).

All ten new instructions were designed to be interruptable in the midst

of execution. If an interrupt occurs, all internal workinq registers are

pushed on the user stack, and the interrupt is serviced. Upon completion of

the interrupt service routine, the registers are popped off the stack and the
instruction is restarted from the point of interruption. Any interrupt may be

honored, including refresh, memory protect violations, and I/O complete. Trace

is not a valid interrupt during execution of an instruction.

It should be noted here that the instructions described below do not

have parameter error checking capabilities. Should an erroneous parameter be

issued, the instruction may produce undefined results.

6.1.1 Vector Add (VADD)

Each two's complement 16-bit number in the first input buffer (bl) is

added to the corresponding number of the second input buffer (b2), and the

16-bit sums aie placed sequentially in the output buffer. The overflow flaq

is set if any two's complement overflow is detected during execution.

Parameters are passed in a contiqsous block of memory at the address

given in the A register:

Address Argument

(A) Starting Address of Output Buffer

(A)+I Starting Address of Input Buffer (bl)

(A)+2 Starting Address of Input Buffer (b2)

(A)+3 Number of words to be processed (0 < n < 65536)

Execution time: 14 + 6n cycles.

163

6.1.2 Vector Subtract (VSJB)

Each two's complement 16-bit number in the second input buffer (b2) is

subtracted from the corresponding number in the first input buffer (bl), and

the differences are placed sequentially in the output buffer. The overflow

flag is set if any two's complement overflow is detected during execution.

Parameters are passed in a contiguous block of memory at the address

given in the A register:

Address Argument

(A) Starting Address of Output Buffer

(A)+1 Starting Address of Input Buffer (bl)

(A)+2 Starting Address of Input Buffer (b2)

(A)+3 Number of words to be processed (0 < n < 65536)

Execution time: 14 + 6n cycles.

6.1.3 Vector Multiply (VMULT)

Each two's complement 16-bit number in the second input buffer (b2) is

multiplied by the corresponding number in the first input buffer (bl), and the

sixteen most significant bits of the 32-bit product are placed sequentially in

the output buffer. The overflow flag is unaffected by this instruction.

Parameters are passed in a contiguous block of memory at the address

given in the A register:

Address Argument

(A) Starting Address of Output Buffer

(A)+1 Starting Address of Input Buffer (bl)

(A)+2 Starting Address of Input Buffer (b2)

(A)+3 Number of words to be processed (0 < n < 65536)

Execution time: 16 + 6n cycles.

6.1.4 Block Integration (BLINT)

This instruction is used in data reduction in the dual-wavelength mode

(not yet supported), by averaging a block of numbers and outputting a single

result.

Block integration is performed in the following way: the input buffer

is divided into blocks of length m. The average of each block is then computed

by taking the sum of the quotients obtained by dividing each 16-bit number in

164

the block by the block length m. The results are then stored sequentially in

the output buffer. The length of the output buffer (n) is thus the length of

the input buffer divided by the block length. The overflow flag is unaffected

by this instruction.

Parameters are passed in a contiquous block of memory at the address

given in the A register:

Address Argument

(A) Starting Address of Output Buffer

(A)+1 Starting Address of Input Buffer

(A)+2 Length of Block (m > I)
(A)+3 Length of Output Buffer (n > 0)

Execution time: 35 +- (2m + 3)n cycles.

6.1.5 Sliding Window Integration (SLINT)

This instruction is used in FTWRP as a "smoothing" function just before

the data is output to the SCRM display.

Sliding window averaging is performed in the following way: beginning

with the first element in the input buffer, one window (length m) of data is

isolated. The average of this window is then computed by taking the sum of the

quotients obtained by dividing each element by the length of the window (in).

The window is then "slid" by one element and the new window average is computed

by subtracting (from the previous average) the first element quotient and

addinq the quotient from the last element of the new window. This is repeated

until the last element of the input buffer becomes a member of the window.

Averages for each window position are placed sequentially in the output buffer,

which will have length n-m+1, where n is the input buffer length.

The parameters are passed in a contiquous block of memory at the address

given in the A register:

Address Argumer-.
(A) Starting Address of Output Buffer

(A)+1 Starting Address of Input Buffer
(A)+2 Window Lenqth (mn > 1)
(A)+3 Input Buffer Length (n > 0

Execution time: 39 + 2m + 5(n-m) cycles.

165

6.1.6 Scale (SCALE)

As the name implies, this instruction is used in FTWRP to scale the

pulse-level results before dwell-level computation is performed. The purpose

of this scaling is to preserve accuracy while preventing overflow errors during

computation. SCALE also has a feature which permits an address increment (m)

to be included, so that only every "m'th" data element is scaled.

The two's complement 16-bit number in every m'th element of the input

buffer is multiplied by the scaling constant. The 16 least significant bits

of the 32-bit product are stored in every mth location of the output buffer.

'The overflow flaq is unaffected by this operation.

Parameters are passed in a contiguous block of memory at the address

given in the A register:

Address Argument

(A) Starting Address of Output Buffer

(A)+1 Scaling Constant

(A)+2 Starting Address of Input Buffer

(A)+3 Address Increment (m > 0)

(A)+4 Number of words to be processed (n > 0)
Execution time: 16 + 4n cycles.

6.1.7 Circular Vectoring (CVEC)

This instruction takes the vector in rectangular (x,y) coordinates and

converts it to polar (magnitude,angle) coordinates. It is used in FTWRP to

compute the average phase shift of the coherent returns, which is proportional

to the mean velocity.

Starting wih the first location of the input buffer, the two-word block

beginning at every i'th location (where i is the address increment) is taken as

an x,y two's complement coordinate pair, of 16 bits each. For each pair, the

magnitude and angle equivalents are computed and stored sequentially in the

appropriate output buffers. The angle is returned in two's complement form

with a range of +179.99450 to -180 degrees scaled over the available 16 bits.

The instruction accepts vectors In all four quadrants.

166

The algorithm used is an iterative process which increases in accuracy

with the number of iterations performed. Anqie accuracy is approximately one
bit per iteration. Empirical observation shows that maximum angular accuracy

is obtained with about 13 iterations, while maximum magnitude accuracy requires

only about 8. Table 6-1 provides accuracy information for each iteration.

For more information on the CVEC alqorithm, see Appendix C.
The magnitude outputs are automatically scaled by approximately the

square-root of 2 to prevent overflow errors.

Parameters are passed in a contiquous block of memory at the address

given in the A register:

Address Argument

(A) Startinq Address of Angle Output Buffer

(A)+1 Starting Address of Magnitude Output Buffer

(A)+2 Starting Address of Input Buffer

(A)+3 Input Buffer Address Increment (i > 1

(A)+4 Number of x,y Pairs to be Processed (n > 0
(A)+5 Number of Iterations (0 <= m <(13

Execution time: 23 + m + (7m + 26)n cycles.

6.1.8 Read and Accumulate (RACC)

This instruction takes the 16-bit numbers in the 1/0 receiver buffer and

accumulates them into a sum buffer in memory, and it is used in FTWRP as the
means by which reflectivity returns are integrated into dwell buffers. RACC

has the ability to extract a non-data "message" from the top of the 1/O buffer

before processing begins. In FTWRP, this "message" (2 words) contains infor-

mation from the, Input Synchronizer about the pulse number, block number, pulse

width, and pulse repetition interval.

On entry, RACC assumes that all heider words have been removed from the

receiver buffer, and that the next word read will be the packet word count.

This word count will he thrown away. The next m words will be extracted and

placed sequentially in memory starting at the specified message buffer address.

Then, each two's complement 16-bit number in the output buffer is replaced by

the sum of itself and the corresponding data word in the receiver buffer. The

overflow flag is set if any two's complement overflow is detected during

execution. On completion, the CE receiver is reset.

167

[dble 6-1. CVL. ALcuracy

Iteration Angular Accuracy Magnitude Accuracy
0 ±450 + 0%, -29.29%
1 ±22.50 + 0%, -7.61%
2 ±11.250 + 0%, -1.92%
3 ±5.630 + 0%, -0.482%
4 ±2.81° + 0%, -0.120%5 ±1.410 + 0%, -0.0301%
6 +.730 + 0%, -0.00753%
7 ±.3520 + 0%, -0.00188%
8 +.1760 + 0%, -<0.0015%
9 ±.08790 + 0%, -<0.0015%

10 ±'04390 + 0%, -<0.0015%
11 +.02200 + 0%. -<0.0015%
12 ±.0110° + 0%, -<0.0015%
13 ±'005500 + 0%, -<0.0015%

168

Because RACC operates directly out of the I/0 receiver buffer, it is

a priveleged instruction, that is, it may only be executed while the CE is in

the priveleged mode. Execution while in non-priveleged mode will generate an

illegal instruction exception.

Parameters are passed in a contiguous block of memory at the address

given in the A register:

Address Argument

(A) Starting Address of Message Buffer

(A)+1 Length of message minus 1 (m-1) (m > 1

(A)+2 Starting Address of Output Buffer

(A)+3 Length of Output Buffer (n > 0

Execution time: 16 + m + 3n cycles.

6.1.9 Read and Autocorrelate Initial Results (RACORI)

This instruction, along with the next (RACOR) are used in FTWRP to compute

the autocorrelation function of the coherent channel returns, and to integrate

them into a dwell buffer. RACORI is different from RACOR only in that the

results are stored in the output buffer rather than added to it.

It is assumed that the output buffer will already contain the packed

data of the previous pulse, spread out by three locations; that is, there must

be 2 empty locations after each packed data word. The format of the packed data

is as shown in Figure 6-1.

On entry, the receiver buffer is assumed to contain a word count (thrown

away), followed by m message words (as in the RACC instruction), and then n

words of packeo inphase (1) and quadrature (Q) data. The message words are

first extracted and placed in the message buffer according to the parameters.

The complex conjugate of each packed datd word is then multiplied (complex

multiplication) by the packed date in t:,e corresponding location of the output

buffer. The 8 most siqnificant bits from 16-bit I and Q products are then

sign-extended and sLored sequentially in the two locations immediately following

the packed data in memory. The packed data in memory is then replaced by the

one in the receiver buffer. The overflow flag is set if any two's complement

overflow is detected during execution. On completion, the receiver is reset.

169

Bit Bit

15 0

(DELAYED) (DELAYED)

INPHASE SUM Range
611 0

QUADRATURE SUM

(DELAYED) (DELAYED) Range

INPHASE SUM 61- 1

QUADRATURE SUM

Figure 6-1. RACOR and RACORI Data Format

170

Because RACORI operates directly out of the I/0 receiver buffer, it is a
priveleged instruction. Execution of RACORI in the non-priveleged mode will

qenerate an illegal instruction exception.

Parameters are passed in a contiguous block of memory at the address

given in the A register:

Address Argument

(A) Starting Address of Message Buffer

(A)+1 Message Length minus 1 (m-i) (m > 1

(A)+2 Starting Address of Output Buffer

(A)+3 Number of Packed Data Words Processed (n > 0

Execution time: 17 + m + 9n cycles.

6.1.10 Read and Autocorrelate (RACOR)

This instruction is identical to RACORI except that the resultant I and Q

products are added to the contents of the output buffer rather that stored.

All assumptions and constraints are the same as for RACORI, as are the para-

meters lists.

As is the case with RACORI, RACOR is a priveleged instruction, since it

operates directly out of the receiver buffer. Execution of this instruction in

the non-priveleged mode will generate an illegal instruction exception.

Execution time: 17 + m + 11n cycles.

6.2 IOC Firmware Development

Ordinarily, the IOC supports only a standard "dynamic" input and output

to peripherals, in which a CE must explicitly request input before the IOC will

respond. However, due to severe time constraints and high DOS-O overhead

associated with I/O, the need for a new, "continuous input" mode in the IOC

became apparent. This mode, designed Fpecifically for the FTWRP, is used to

distribute coherent and reflectivity channel data from the Input Synchronizer

to the respective processing CEs. This section describes the Continuous Input

Mode firmware which was developed for the 8x3OO-based IOC, and the IOC hardware

changes which were needed to accommodate the new mode. Appendix B contains a

table of major subroutines used by the Continuous Input Mode, and their functions.

171

The major difference in the Continuous Input Mode is that the IOC now

becomes an active member of the system, rather than merely passive. That is,

where before the IOC only responded to requests from GEs, it now spontaneously

sends unsolicited liessages to everyone.

6.2.1 Data Flow Overview

Fiqure 4-13 demonstrates the basic flow of data in the Continuous

Input Mode. The first line displays the range blocks into which the data is

conceptually divided (As mentioned earlier, radar returns are distributed among

the GEs according to range, as shown in Figure 4-11). The second and third

lines show the active time during which the IOC is attempting to extract data

from the input synchronizer (by activating the select lines). And finally, the

last line in the timing diagram shows the time during which the CE busses are

active, when data packets are being shipped to the respective processing CEs

(numbers depict the range block to which the data packet belongs).

In the normal system, there are 5 processing CEs, and thus 5 range "blocks"s,

numbered in Figure 6-2 as 1 through 5. At system startup, the lOC must accept

and distribute the first four blocks of coherent channel data before the first

block of reflectivity data is accepted. This "skew" in data retrieval serves

to spread out the data rates to each CE, and supply sufficient time for pulse-

level computations to take place in the receiver buffers. Since coherent

channel computations are inherently more complex than reflectivity integration,

and since the CEs receiver is busy during the entire pulse-level computation,
reflectivity packets must be delayed as long as possible. Analysis showed

four-block skew in Figure 4-13 to be optimium.

Once the built-in time skew has been created, the IOC will begin to

alternately accept and distribute coherent and reflectivity data among the GEs,

as shown in Figure 4-13.

6.2.2 Exception Handling

In order to ensure proper operation of FTWRP in a degraded mode,

certain specific requirements have been imposed on the method of exception

handling. Once the IOC has been placed in the Continuous Input Mode, all inputs

from the A and B busses (except RESET) will be ignored. This is accomplished

172

|

Bit NumbersWord NumberW r N u b r1 5 1 4 1 3 1 2 1 1 1 0 9 8 7 6 5 4 2 1 0
0 IOC VA 1 1 1 1 1 1 T 0 1 0

1- Word Count ?41

IA

2 Mode Xmt Rcv 1 0 0 0 00 m

3 -k -. Don't Care

k " 1 1 1 Don't Care 0 nstat

S O VA # m Number of Words

k+3 U 0 0 VA # m-1 Number of Words

0
* 0

0

254 O 0o VA # 1 Number of Words

25 Sub IOC VA 1 0 1 0 1 1 0 0Mode

Mode = 01 For Continuous Input

0X To Xmit on Bus A
Xmit 1 X To Xmit on Bus B

Rcv. 1 10 To Rcv. on Bus C, D Disabled

101 To Rcv. on Bus D, C Disabled

Sub Mode = O'-AT'(;'. Cntii"ous Input

A=t -0 No bus alte'-natin. in case of bus faults

1 Alternate A& B buses for bus faults

m = Nu',nber of CE' s to be sent data

nstat = Number of iterations between output of status message to DOS-I

Figure 6-2. Configuration Control Message for Continuous Input Mode

173

by setting the A and B bus receiver logic to the "busy" state. Therefore, no

status polling by IDOS-1 is permitted, since the status request message will

never be received. All fault conditions are assumed to be detected and flagged

by the CEs, which in turn will inform IDOS-1 of the nature of the problem.

6.2.2.1 I/O Exceptions

When the IOC attempts to ship data to a CE and finds the receiver busy,

it will immediately "drop" the packet on the floor by resetting the

transmitter. The same holds true for NO REPLY, ARBITRATION FAULT, and TIMEOUT

errors. The lost block will not be recovered, but will be replaced by the

corresponding block from the next pulse.

The reasoninq behind this action is that the TOC is under severe time

constraints to get the data out of the Input Synchronizer and out to the CEs

before the Input Synchronizer's buffers overflow. Appendix D has a more complete

discussion of timing considerations in FTWRP, including worst-case loading of

CEs and IOCs in various scenarios.

6.2.2.2 Input Synchronizer Overrun Faults

In the event that the Input Synchronizer's buffers overflow, it will

signal the error to the IOC by activating the PARITY line. Both IOCs have been

modified to bypass parity checking on the C-port, so that the PARITY line may

be ronitored directly. If the IOC detects the PARITY line becoming active, all

operations cease, and the IOC enters an infinite loop. The CEs, when they stop

receiving data, log the fault by setting status bits in their task status

words. When IDOS-I notices the lack of data in all the CEs, and determines

that it is not an isolated CE problem, it will reset the IOC, reco.figure the

system and attempt to restart the IOC.

6.2.3 IOC Continuous Input Mode Setup

The IOC is instructed to enter the Continuous Input Mode by a special

form of the Configuration Control Message (message code 10). The new format

is shown in Figure 6-2. The message contains a list (in reverse order) of

virtual addresses to which the data is to be sent, along with the word counts

174

for each address. The end of the list is signified by bits 15 and 14 set in

the mode field of the list. The list is stored in the uppermost locations of

both of the 1/O RAMs (X and Y RAMs), with the first address (block #1) located

at RAM address 255, the second at 254, etc.

6.2.4 Continuous Input Mode Functional Description

The following sections describe the IOC Continuous Input Mode program

logic as it relates to FTWRP.

5.2.4.1 Continuous Input Mode Initialization/Startup

Upon entry into the Continuous Input Mode, the RAM which received the

configuration control message will already contain the list of CE virtual

addresses and word counts in the form specified by Figure 6-2. Therefore, the

first order of business is to copy this information into the other RAM so that

both the X and Y RAMs will have the same data. This will save time and effort

during execution by eliminating the concern of which RAM is available for

access by the 8X300 and which one contains the list. Once both RAMs contain

the entire header list, the next step is to initialize the Input Synchronizer

by activating the number 2 select line (SEL2).

6.2.4.2 Initial Pulse Sequence

As mentioned above and shown in Figure 4-13, there is a built-in "skew"

in the transfer of coherent channel and reflectivity data in the FTWRP. Thi.

four-block delay in the output of reflectivity is effected by a special sequence

of code (the segment beginning with the label CMSTRT) which treats the first

four blocks after initialization uniquely.

Each block of coherent channel data is extracted from the Input Synchro-

nizer by activating the number 0 select line (SELO). Once a receiver interrupt

(RINT) condition is sensed, signifying that the block has been transferred to

the receiving RAM, the Receiver End (REND) status line is polled to determine

whether the interrupt was legitimate (i.e., the block transfer was successful),

or a fault condition (i.e., the PARITY line is active, signifying that the Input

Synchronizer is overloaded). If REND is not active, the IOC will enter an infi-

nite~ loop at the label INTC (a fault condition). Otherwise, the Synchronizer

is unselected, end the block is prepared for transfer to the appropriate CE.

175

Before the block can be transmitted, however, the IOC must prepare the

other RAM for input by building a new header word/word count in the first two

words of the RAM. Internal IOC bus conflicts make it impossible to do this

after the IOC-to-CE packet transfer begins. Once complete, however, the packet

transmission may begin, and is effected by the subroutine CMTN.

The IOC then re-selects the Input Synchronizer using SELO, and waits for

the new data block to be successfully received. Once the packet is in, the

transmitter status is checked to be certain that the previous packet has been

successfully transferred to the CE. If it is not yet complete, the IOC waits
for the transmitter interrupt (TINT).

The above process is repeated until four consecutive blocks of coherent

channel data have been transferred to the appropriate CEs. At that time, the

IOC enters the main loop of the Continuous Input Mode program.

6.2.4.3 Continuous Input Mode Main Processing Loop

The main loop of the Continuous Input Mode proram works essentially the

same as the initial loop, except that the decision of what gets input from the

Input Synchronizer is more complex. The procedure INPSEL determines whether

the Input Synchronizer should be selected for coherent data (SELO) or reflec-

tivity data (SELl). The decision of which CE should receive the current

block is performed by the procedure INPSEL as follows: if coherent data is

input next, the address in internal register R5 is used to access the RAM to

extract the next VA and word count. Otherwise, the address maintained in RI is

used. Throughout the Continuous Input Mode processing, these two registers

contain separate values reflecting the current position in the virtual address

list.

176

APPENDIX A

Intecolor/CE Support

A-i M. '. Young Memo "EPROM Programmer for Common Element," dated
20 December 1977, MJY-02, EM77-0570.

A- FTWRP Special Instruction Microcode Test Program.

A-3 -TWRP Test Target Generator.

A-4 V. E. Follansbee Memo, "SEEK IGLOO Common Element Cross Assembler,"
dated 22 December 1977, VEF:77:14, EM77-0571.

A-5 V. E. Follansbee Memo, "Common Element Cross Assembler Post Processor,"
dated 6 January 1978, VEF:78:01, EM78-0004.

A-6 V. A. Jelich Memo, "Cyber/Intecolor Support Software," dated
6 January 1977, VAJ:78:01, EM78-0003.

A-7 V. E. Follansbee Memo, "Intecolor Terminal Transfer Program Description,"
dated 10 January 1978, VEF:78:03, EM78-0013.

A-8 R. J. Bonneau Memo, "MODDOS - Utility Program for Inspecting and
Modifying DFTSP DOS-O Object Code," dated 2 August 1978, RJB-124,
EM78-0427.

A-9 R. J. Bonneau Memo, "NEWMOD - MODDOS Enhancement," dated 30 October 1979,
RJB-195, EM79-0632.

A-10 M. J. Young Memo, "Modifying Files on the Intecolor," dated 26 January
1978, MJY-03.

A-lI Irtecol.r Utility Routines.

177

RAYEON
I... (9,68 *o.a... Classification Unclassified

r) I V I S 10 N EQUIPMENT Contract No. 77D-209
)peration EDL
Oepartment ADL - Wayland Distrobution L)FTSP List

To G. A. Works File No. EM77-0570

From M. J. Young Memo No. MJY-02

Subect EPROM Programmer for Date 20 Decenber 1977
Common Element

The CE microcode will be stored in Intel Z716 UV Erasable PROMs.
Since, at least during the debugging stages, many changes to the microcode
will be necessary, a convenient in-house method of programming these
PROMs is desired. If program tapes had to be sent to another location
for programming each time a change was made, much time would be wasted.

The Intecolor 8051 which was purchased for use with the CE is
ideal for this purpose. The assembled microcode can easily be stored on
a floppy disk and edited using the terminal's editing commands. Since the
2716 EPROMs require only TTL level pulses during programming, a simple
routine utilizing the Z4-bit bi-directional I/O port would perform the
necessary functions.

This memo describes the operation and use of a PROM programmer
routine for Intel 2716's. Source listings of the BASIC program and the
Assembly Language I/O driver are also included.

1. General Description

The PROM programmer was written with the assumption that a file of
the proper format, containing the microcode is already resident on a floppy
disk. A program which loads an assembled microcode file from Bedford
into file slices 8 bits wide on floppy disks is being developed by Val Jelich,
and should be available shortly.

A simple "personality board" which contains the necessary +5V and
+25V power supplies is connected to the 24-bit I/O port in the rear of the
terminal. To prevent possible damage to the PROMs, a switch is provided
to turn the high-voltage supply on or off when instructed by the program.

The routine itself was designed to make programming the PROMs as
saimple as possible. Files of any length (less than Z048 bytes) may be
programmed, or an "EDIT" mode may be used to selectively alter specific
locations in the PROM. After programming is complete, the data is
verified to insure that all locations were programmed properly. If an
error occurs, a message iw printed on the console, and the faulty data is
displayed. The user may then enter (or reenter) the EDIT mode and attem
to correct the faulty location. Once the faulty location is corrected, the
entire file can be verified again (without reprogramming) using the
VERIFY option.

178

Unclassified

MJY -02
20 December 1977
Page 2

2. Operating the Programmer

The PROM programmer is stored on the Common Element floppy
disk (volume name = CESYNIII8) under the name EPROM. BAS. This
disk should always be kept next to the terminal, along with the demo disk
supplied by Bartlett Associates (volume name = 1SCM100677). The I/O
driver for the programmer is stored separately under the name EPROM. DAT
and is loaded into the RAM by the main program.

To use the programmer:

1. Enter the BASIC Operating System --

a. To initialize BASIC, type ESCAPE then W.

The terminal will respond with MAXIMUM RAM ADDRESS?
For most purposes, a maximum address of 49151 is sufficient.
When this number is typed in, BASIC should respond with READY.

b. Once BASIC has been initialized, there is no need to do it again
each time the operating system is entered. To reenter BASIC,
type ESCAPE then E. If BASIC had been initialized previously.
it will respond with READY. Otherwise, it must be initialized
as shown in step (a).

2. Insert the Common Element diskette in drive 0 (left drive).

3. Type LOADPRINT "EPROM".

The terminal should respond with READY.

4. Type RUN.

The program will load the I/O driver into RAM, then clear the
screen and type "Intel 2716 EPROM Programmer", followed by a set of
operating instructions. These are listed here for completeness:

1. Plug the programmer board into the Z4-bit I/O port in back of tIe

Intecolor 8051.

Z. Plug the board into an AC outlet. The power-on indicator should
light.

3. To avoid possible damage to the PROMa, DO NOT TURN ON THE
+Z5V SUPPLY UNTIL INSIRUCTEJ Tu DO SO.

1/9

Unclassified
MJY-02
20 December 1977
Page 3

4. When the program responds with EDIT, FILE, or READ; type
EDIT if single bytes are to be modified, FILE if an entire file is
to be programmed, or READ if the PROM is to be read and displayed.

5. The file name must be appended with a . DAT extension
(Example: PROMI. DAT).

6. If file processing is to be performed, the program responds with
OPTION: after the PROM address has been input. The options
are: PROGRAM (Program and Verify) and VERIFY (Verify only).

7. When prompted with commands like TURN ON +25V: or INSERT
PROM IN SOCKET:, respond by typing any character followed by a
carriage return. Just typing a carriage return will cause a program
exit. To reenter the program at the point of exit, type CONT.

Once programming begins, the keyboard will lock until all the data
has been processed. This will take approximately 2 1/2 minutes.. If for
any reason programming must be halted prematurely, turn off the +25V
supply, then press the CPU RESET button. This will place the terminal
in the CRT mode, but BASIC may be reentered by typing ESCAPE E.

A sample programming session is included in Attachment 1. If there
are any problems or questions, I can be reached at extension 2563.

Advanedl E4ronoic TechniquesAttachments: Wayland Box M9. x2563

1. Sample Programming Session
2. BASIC Source Listing
3. 1/0 Driver

cc: Digital Fault-Tolerant Signal Processor List (attached)

180

Attachment 1

sAPL I 'Rfll , idING SESSION-12!2/7' PAGE 1

(DATA TYPED IN BY USER IS (IJCLOSCD IN BRAC[TLS [I)

YOU ARE NOW IN THE CRT MODE
T(ESCAPE)iW)I
'ERASE SCREEN)
INTECOLOR 8(01 BASIC COPYRIGHT 177 BY CHARLES F, BUENCH
MAXIMUM RAM ADDRESS?[491I5]
READY
LLOADPRINTEPROM'3

READY
[RUN)
(ERASE SCREEN)

INTEL 2716 EPROM FROGRAM&R

INSTRUC IONS
t. PLUG PROGRAMMER BOARD INTO THE 24-BIT I/O PORT 11

BACK OF THE INTECOLOR 8051
2. PLUG THE BOARD INTO AN AC OUTLET, TIE POSER ON INDICATOR

SHOULD COME ON
3. DO NOT TURN ON THE +25V POSER UNTIL INSTRUCTED TO DO SO
4. WHEN THE PROGRAM PROMPTS WITH EDIT, FILE, OR REABI. TYPE EDIi IF

SINGLE BYTES APE TO BE MODIFIED, FILE If AN ENTIRE FILE
IS TO BE PROGRAMMED OR READ IF THE FROM IS TO BE READ AND'
DISPLAYED.

5. THE FILENAME MUST BE APPENDED WITH A .DAT EXTENSION
1., IF A FILE IS TO BE PROCESSED, THE PROGRAM RESPONDS WITH

OPTION: AFTER THE PROM ADDRESS HAS BEN INPUT, THE OPTIONS

APE PRCAM (PROGRAM AND VERIFY) AND VERIFY (VERIFY ONLY)
- WHEN F[OMPTED WITH COMMATDS LIE INSERT PROH IN SOCkET:

RESPOND B- T (PING ANY CHARACTER FOLLOWED BY A r'RIAGE PEIUTN,
JUST TYPING A CARRIAGE RETURN WILL CAUSE A PRUG R EXIT. TO
RETURN TO THE PROGRAM AT THE POINT OF EXIT. TiPE CONT.

(DIT OR FILE:(FILFI
FILENAME:[PROMI.DAT]
EFROM ADDRESS IN HEX:[oI
Oi ;Ii'N-fROGRAMJ
INSE.T fcrlm AN S'CKLT:[X)
TURN ON +2Sv:fxj

VERIF ERROR
DAT A:5
fPuM:;4E

4IiRESS AT WHICH :RROR OCCURRED=IA9

TURN OFF +25V:EXJ

MORE (f OP tirII

181

SAMIPLE PROGRAMM~ING SESSION-12/2/77 r,,Gr

[P'IT OR FILEIITJ
f'ROM ADDRESS: (1A9]

-INSERT PROMI INJ SOCET:01X
TURN ON +125Y:(X]
INPUT DATA TO HEX FORMI, ',FF TO STOP INJPUT
DIA15F]
D~A:11oG

OURE (Y OR rW8fYJ

EDiTl OR FILL:[FILEJ
FILENAIKPOli .DW

[F R FS AP I n HEX:LOJ
OPTION:rYEPIFY]
INSERT PROM I0N SOCKET:1XJ

EPRON SUCCESSFULLY PROCESSED

TALE PROM OUT OF SUCKET:CXJ

MORE (Y OR N):[N

READY

182

Attachment 2

77/12/06. 10.17.00.
PROGRAM rROIISRC

-TV DIN 91(201
11 FL=0
200 DD=PEEK-249862'j6WEEN-495:REN-SAVE POINTER TO FREE RAM
'01 1-41+10
205 CD=DD
207 IF W032767 THEN P11411-65536
210 AD=61439
220 POKE(-24986hPAD-INT(AD/256)256:REN-S(T POINTER TO FOOON
2B0 POKE(-24785) ,!NT(AD/256)
2140 LOADPRINT 'EPROM.DAT*:REN-LOAD 1/0 DRIVER INTO RAM
'50 POKE(-24575),AD41-INT((AD,1)/2'j6)*2s6:REN-SET UP START ADDR
260 POKE(-24574)pINT((AD+1)/256)
265 POKE(-24986),CD-1o-INT(C D-1o,/256)22156:REN-RESTORE POINTER
266 POl(E(-24M8)pINT((CD-10)/256)
270 PLOT 12:WRINT 'INTEL 2716 PROM PROGPAMMIER'
271 GOSU 900:REM-PRINT INSTRUCTIONS
272 PRINT:PRINT:INPUT'EDIT9 FILE, OR REAP';Al
280 IF ASZEII THEN 700
,n5 IF AS:READ THEN 5000
290 IF WS<'FILE' THEN 2170
300 INPUT 'FlL1NAME:l;As:REN-U*BEGINNING OF FILE PROCESSINW:
.3(1 PCE(-247'06,CD-INT(CD/56)256:POE(-24985)INT(C/256)
510 LnADPRINT AS:REM-LOAP IN DATA FILE
.311 FOKE(-2A498c),CD-I0-INT((CD-10)/2&56)*256REl-SET UP TICS FOR

POI (-2495),tNT((CD-10)/25c6) :REN-I/fl DRIVER

jO FIW E;[-(C[+3)-INT((CR43)/2,6)S256
W 0;,[~ TRI--7 .NT((CIi3)/2.6)
7', PQK~F 111-5.FrEII~.'s42)

'TTKT IFrii ADDRESS IN HEX' ;'GOSUB 20001:44

-W.)'~ I? rf- ~INT (CD-10/256) 256:RE-PASS l1CD ADDRESS
u~4-4Ao'4u~uD-10256):REM-AT LOC 9FEOH

:rAl.lri:-10):REN-INITIALIZE 1/0 PORT
71511T OPTIOWI;Cs
IV CSW'WfiRAM' THEN 44'
IF rs5''URIFY' THENJ 410
PONE 1l-9p2:REM-VFRIFY ONLY

412 fO 10 456o
F01.E BP OU-RGA AND vrRIFY

1' Ol RPUI T PROMi 1N0 7E~'

f ;zIPROGRAMI %EN .N'iT '1ORN ON +2e5V~~B
i'll('-o:,,r-RIS[CONTRuL TO 1/O DRIVER

~. IF r -fvOTHEN 570:REM-I/0 SUCCESSFUL?
:4o 94 ,RINT:ffllJT 'EPROM SUCCESSFULLY PROCESSED'
"OC lF C$-'rOGPAN' THEN INPUT 'TUiRN OFF +25V:1;DS

Ii :WI:T 'TAKE EPROM OUT OF SOCKW;B$
* *,lt4TUNPIJT 11WRfE (Y OR m)7*;cl

;F CW01I THEN 7999

C.: T i i 'V 7,) u 53

f ~r--fI E :1 f-C 2561EEK(PD-3)

183

?'REM-SltISSOTIt TO INPUT HEX CHARACTERSUUI*
,)00 INPUTI:I;;
:,W, %=LEH(flWiFDR 1=1 70:sIzID~sI1
.'02; IF 11$(Ii-A' THEN E'$(IW0'

Il P(I1=1' THEN 1$k'11l

I F 1:1(1% THEN WII3

IF i$(lWL' THEN DS(I):'14*
-I(iF' THEN DS(I)=*15'

ioK ILI ILI X

RE TURN
' - 01J*$*ROUTIME TO OUTPUT HEX CHARACTERSSW

;. ICR 1hO TO 15:READ D$(P
41- DATA 'Oll924
410O DATA 4 s~ p'8'%A',C,,EV
It.) NIEXT I
41^- % ESTOPE

0~.0 X4LX3O(16:X5=16t(X4-INT(X4))
'(1 XZ'=tNlrX2:X4=INT(X4):X5:INT(Xs

- F FL~1 THEN 4100
4C f-RINT '-;D1(X4);BS(XS);

4 1 Q KEINT ll'DX2)DX4)D(X5);
4:10 Ft.-0
.121) RETURN

*d --lN.i*EWWCZCVNE TO READ PROM0*0**
' f-IN1T'F'RCr A0DESS';:G0SUB2000:A=D4
;~~INfUIIN5RT PRO IN SOCKEt:I;Pl

4 l.E11-2>A EN0T(A/256)l26POE DD-1PINT(A/256)

If PEEN(BD-10)4 THEN 6000
I' Z 0 THEN 1 10536

LO KIWI ';:X:1NTcZI256) G0SU84000
A- i ~1: 1A'2047 THEN 530

(fl 'I3

~:FI~1T,;:0SUP3000

184

', 1, Ms 4tIl1/D ERROR ROUTINE*S0*$
, 07 -FTPrNT :PRINT;IF PEE((PD)-I=):2 TrIE11 PRINT 'VERIFY';
IF V CI'8D-10)zI THEN PRINT 'ADDRESS';

I(, 'F FEEK(BP-1O):I THEN PRINT'ADDRESS';:FL=t:X=Z:GOSUB 4000
• IF PE (BI-10,=2 THEN 630

10 FTI4T 'F'rPR APRESS AT WHICH ERROR OCCURRED=*;
,4,-I 1r[: 6)+PEEK4Bb-5)*256-CC.FLr1:COSUP 4000

<,(r, IF (,-9)=0 THEN INPUT 'TURN OFF +5V:';B$

' ,I~ I'ATA',,x,.-INTc, .S6,GOSU8(4000:PRINT
.RINT 'PROM';: X=INT(:,'25%):GOIJB 4000:F'RINT

GOTO 610

f[N-1t1*$$*EPIT PROCESSING*138t1
" FFINT 'Fro 5 ,IAIIESS'-:GOSUliB 2000:A=04
1i' FORTE EU-,.C,,r,,E IM'-3,,C,+2-INT((C~t+2)/,.,5,)*.56

F"t:E IN:T(Cji2.256o,,FKr BTI-6,1:rOIE BI1-5O
,,,, rFT rOm IN SOCrET'B$

1,11-I! ON 42jW: -11
" 1 ;i;T '"NUT IIATA I4 HEX FORM, Tfl TO STOP INPUT'

• - '41;)#.:6, StUP20002c=14
Fnr nLE 1-. I,2OY,2D

-I.T (A/25t)
I r (THI/4 270

. ''

;[' - "40), -- INT((C-0)/5 6)256

, L-ALL(r 20)
!r r1;40-1O)<10 THEN 830

0, , 2
.* , ... *E[u((n-4 5&*,PEE (8D-3)

.,:SUP 600

G- 0 TO 530
i. (FR IN:PR INT:FRTNT:PRINT,,,' INTRUCTIONS'

'1 INT:FRIIlT'I. PLUG PROGRAMMFR BOARD INTO THE 24-1IT I/O PORT IN'
11:: NT' BAC) OF THE INTUCOLOR 8051'
, IN1'2. FLUG TIlE BOARD INTO AN AC OUTLET. THE POWER ON INDICATOR'

;3 PFINT' Sl~lULD COME ON'
'AO FRINT'3. DO NOT TURN ON THE +25V POWER UNTIL INSTRUCTED TO DO SO'
,0 F0tr,4, WHEN THE PROGRAM PROMFT3 WITH EDIT, FILE, OR READ:9 TYPE EDIT IF'
', T RIt)T' SINLGE BYTES A P IJ E tiUDIFIED, FILE IF AN ENTIRE FILE'
v F TJT' BE. TO BE PROG6,;miE, W' 'r4D IF THE PROM IS TO PE READ AND'
,1 F'F'I II[' ISLAyrp, '

11)"o Tl!E FILENAME MUST BE APPENDED WITH A .PAT EXTENSION'

1, l4t'T'u, IF A FILE IS TO BE P'OCESSEDI, THE PROGRAM RESPONDS WITH'
Ir'$(IiIT' OPTION AFTER THE PROM ADDRESS HAS BEEN INPUT. THE OPIONS'
PRINT' ARE PROGRAM (PRORA A VERIFY) AND VERIFY (VERIFY ONLY)'
lFPJTI',WHENJ PROiPT[D 91711 ITI l IAUDS LIKE INSERT PROM IN SOCKET:'
'. 0i" RF;P0JD .Y TrING ANY CIIARATER FOLLOW[D RY A CARRIAGE RETURN.'
I'P JUST TYr'ING A CARRIAGE RETURN UIIL CAUSE A PROGRAM EXIT. TO'

-, V ;.T' RETURN TO Ili[PROGIAM AT IH[POINT OF EXIT, TYPE CONT,'

185

EPROM PROGRAMMER DRIVER

DEVICE CONTROL BLOCK Attachment 3

STATUS DB OOH ; Returned by driver (8 bits)

OPGODE DB OOH ; (8 bits)

BUFADR DW OOOOH ; Address of data (16 bits)

WDCT DW OOOOH ; No. of words to be processed (16 bits)

CTCT DW 0000H ; No. of words not processed (16 bits)

PROMAD DW 0000H ; PROM address (16 bits)

STATUS:

00 = Successful completion
01 = Address error (PROMAD Z 2048)
02 = Verify error (program does not veriiy)

CTCT:

If status = 00, CTCT = 0. If Status not equal 00, CTCT contains
number of words remaining to be processed.

OPCODE:

00 = program and verify
01 = initialize I/O port
02 = verify only

To call driver from BASIC

1. Set LOC AOOOH to JMP to driver

AOOO C300FO

2. Set LOC 9FEOH with address of DCB

(low byte) (high byte)

3. Call driver with CALL(X) statement (Example: Z = CALL(X))

If error condition results:

ADDR errror - Z (above) = address at which error occurred

VER error - Z = PROM data *256 + buffer data

186

B0eo NM ASSEJItER V 2.4 EM3RS a 0 PAG I Attachment 3
INTEL 2716 EPUN PRhA MO DRIVE

TITE 'INTL 2716 PON POGRAIVMER DRIWR'
FOD ORG OWNOO

;IUINM 2716 PRON PROGRAM RIYER WRSIWI

;Mfo DE USED ON INTECOR 6051 TERNINAL VIN OPTION 53,
MS 24-lIT 1I-SINECTIOW. /0 POIT

0060 INIIC EGU BON WO01E 0, AoDC4VTPUT
0090 PORTA EOU 90M ;ORT A ANESS
0091 PORTO EIN 91H OPORT I AUESS
0092 PORTC £I 92M PORT C ADRESS
0093 CMWI ENI 939 tCOUNW RESISTER ADNSS
0020 CINIT C[I 2o9 $CHIP SELECT NIGH
1100 TINER EI 1100N TIM£R TO GET 50 NS PULSE
0009 SETC C0I 000010013 ISET IGRA SIMGE
0008 OC IIU 000010001 CLEAR PROGRAM INE
0090 ER EOU 100100001 IYWRIF NOIK0 A=INUT
0092 TERN EQU 10010010 ;SET IlM PORT TO HIE Z
OCA CSACT IOU 000010101 ;CHIP SELECT ACTIVE
0003 CSINA Eau 000010113 OCHIP SE.C INACTIE
0001 ERR] EOU OI ERR COD I-ILLEAL AM
0002 CR2 IOU 0M lENt CO E 2-WAIFY ENR
0002 NILY E09 02K IERIFY ONL.Y WCU
0001 IOLY ECU OI lIMIT OiLY OPCODE
2C53 QUIT EO 2C53N ;ROUTIE THAT GOES BACK TO BASIC

;DRIV INITIALIZATION

F000 ES PUSH H ISAY ALL REGISTERS
F001 15 PUSH) IN STACK
F002 2AEOF LII 99FEI ;LOAD IN iiC ADM
F005 E5 PUSH H ;SAYE 12 AM
F006 23 inK N ;GET OPCOM
F007 7E NOV APN
FOE I 01 CPI IONLY IECOSE OPlC GE
r00A CACFO .JZ I IHNIT OILY
FOOD F2UO JP V ;WERIFY OILY
FOO El POP F.
FOIl I [E PUSH dl
F012 C036FO CA.L MTV ;SET IF REGISTERS
f015 CISIFO CALL PON WIDOWl PRGM
FOi El POP N
F019 ES PIIH N
F01A CIW O CALL VIFol IWYEIFY P11"
FOD AF X A
FOIE I5 PUSH S ISAVE STATIS

W1O tiE i I ROUTINE

187

SOW N ASSEBLER, Mi 2.4 um s Pa 2
INTEL 2716 URN PRGRm IRi

7017 W92 JOTERNI; NYW IPERSET PUTS TO HIM Z
F021 3393 OUT a1m ;OUTIT co n
F023 FI POP PSY ;REIEV STATUS
F024 El POP H ;RETRIEVEI KI AM3
F025 77 NOY ",A ;STORE STATUS
F026 23 INK H
F027 23 INX H
F026 23 INK H
F029 23 INK N
F02A 23 IIN N
F023 23 INK H
F02C 71 NOV IhC ;STORE NOD CM IN CTCT
F02D 23 INK N
FO2 70 N his

;RSTORE RE61S1S1 AND RETUR
I

F027 7* NOV A4D tRETUR RDTA inA An
F030 43 NOV SPE
F031 3 POP I
F032 El POP H
F033 C3532C JIF QUI

#511 UP RE6SIEI

F036 23 6ETIF: iNX N
F03 23 INK 4
F038 5(NOV EN PSET LOU BYTE
F039 23 INK N
FO3A 56 I)IN WET NIGH TE
F031 05 PUSH U ;SAE ON STACK
FOX 23 INX H ;GET CHRcow
F03 4E NOY COl ;L3 BYTE
F03 23 INK H
FO3 46 NOV BON ;HIMH BYTE
F040 23 INX H WSET P1011BOR
F041 23 INK H
F042 23 INX H
F043 5E O EON ILOU BYTE
F044 23 INK N
F045 56 NOV)IN INION YT
F046 El POP H tETIRIEVE tIIFE AI
F047 C9 RET $RETURN

;INITIALIZATION ROUTIN
I

FOG4 3E0 IiIi; WI AINITC ;UST INII CMIOUS
F04A 0393 OUT Cm ;A.I. CmT NOE 0
F04C 3E20 N I AICINIT IET CHIP SO T, AL
F04E 32 o0 PTC ;000 BITS a I
F050 C9 NET

188

800 MACRO ASSEILERt WR 2,4 am " 0 PAE 3
INTEL 2716 EPROM 11ORA9UO DRIVER

Mo PRGANE ITINE

FO5 73 PRO: NOV ArE $LOA IN LON 3YTE OF NO AD
F052 391 OUT PIRTI IOUTID LOU O1R AM 3M
F0S4 7A M V) M,3 ;OUIJT I R ERD Ai 3YTE
FOSS FEW Cg OGH ;WAm X?
F057 F21VO YP AMRR ;YESPERM
FOA F620 03 CNIT fSET CHIP SELECT
FO5C 9392 OUT PORTC
F05E 7E NOV AIN OINP DATA BYTE
FO5F 039 OUT PORTA
F061 F3 31
F062 CS pa I ;SAV 0iR CT
F063 010011 LXI 3,TIER' ;INITIALIZE TIMER
F066 109 MI ASETC ;SET P6/PPMi LINE
F068 0393 OUT cow ;OUTPUT CO m
F06 03 DEci: KX I ICREJENT CTR
F063 78 YOV APi ;IF D4=0
F06C A7 AM A ;W A ON LAST 256
FOD C26W0 JNZ ICR
F070 08 DEc32: X C THIS INSTR MVECTS FLAGS
F071 C270F0 JNZ DEC32 ;LOOP UNTIL DOE
F074 Z08 NII ACLRC ;CLEAR PG/PPM LIIE
F076 0393 OUT 0m
F078 FO El
F079 1FF ml1 ApoffN MESET DATA LINES TO OE
FO71 39 OUT PORTA
F07D Cl POP 3 IESTOIE U Si
F07E 23 IW N ;11 INFFER AIE
F07F 13 IW D IN lm AM
FO0 0 D X I CR a ClY
F061 78 MY Art MEK IF 01 M aO
r062 A7 AIM A ;TEST A
F3 C251FO JNZ PRO INO ,IIP UNTIL DONE
F086 79 O AC
F,87 A7 AIA A
FO8 C251FO JNZ PROS LOW WYK DONE
F08 C9 RET

;RIFY ROUTMiE

FOBC C336'0 VERIFT: CALL BETD ISET UP RE6ISTERS
FOO' X90 W11 AiYi ;A-II soT ,CIJ
F091 D393 OUT CHID
F093 7 VER2: NO APE ;WTPUT LON ASDI DYTE
F094 0391 OUT PORT3
F096 7A NOV AD LMOA IN HIGH AM BYTE
F097 FEO PI 0H ;ADE a?
FO9 F200FO P ANCRR ;YES, EROR
F9C F620 OR CNIT MCHIP SELECT INACTIVE

189

OW3 11*010 ASSEIIILERs VE 2.4 ERM 0 PAGM 4
INTEL 2716 EPRON PRIOMUER DRIVER

F09E D392 OUTi PORTC
FOAO 3EOA NV! AICSACT MOIP SELECT ACTIVE
FOA2 0393 OUT 0O31
FOA4 0390 IN PO3TA MEa ma
VOA6 BE CIF A ;SANE AS WFERT
FOA7 r5 e~n rsu ;SNJE Mm IN CAE OF ERROR
FOAS NO III AfCSIHM ;CIP SELECT INACTIVE
FOAA 5393 OUT DIJYD
COAC C297FO JNl VEREAR Mot0 aml
VOWF Fl POP P9W WRSTORE STACK IF NO EWAl
FOIO 23 INX Ht H11CR vUFiE AM
FOBI 13 lIX I H11CR PRMI AMi
F012 OS Ix I ;DCR 0CYR
F083 78 AM01 Avg ;DINE?
F04 A7 ANA A
FMB C293F0 Jll VER2 WFOLOIJP
FOB8 79 NOYW AIC
F099 A7 ANA A
FOBA C293F0 JIB VE? 1110, LOOP
VOID C9 BET

;VERIFY OLY

FOBE El V OP po N

FOCO CafVO CALL VEIFY MCALL. VERIFY ONU
FO3 AF 11 A iSET upCINLETIUNSTATUS
FOC4 FS PIJS PS
FOC5 C31 FF0 im JOTEhh

IINIT ONLY

FOCI CD4QI:O CALL 11111 ;CALL lINT UTI
FOCI AF VRA A ;SET UPCSIlLETION STATUS
FOCC F5 toBIPSU
FOCO C323FO Nr 10JEl44

WAJIESS EW

FODO Fl AlERt:' POP PS9 ;GET RID OF K RON CALL
Foot 3E01 Ilfl APERI WSE UP E1 STATUS
F033 VS PUSH1 PU9
FOD4 C31VFO Nr 101AMN HERMINATE

bWRIVY ERRU

F097 DI WERER: POP I IRESTORE [IlTf DATA
VOD8 Fl POP PSU M6ET RID OFPCVRONCALL
FOP? 3E02 NVI APERR2 ?SET UP ERIR STATUS
FRm F5m PUSP
FOIC aE AM0 EPA MPtACE SUMR DATA IN A

190

0 mcm ASSUERL, Wi 2.4 EOS m * PAE S
INTEL 2716 EMII PMWMEl M0I

FOM C3IFFO Ji brE I' IMIA

II) P3ll ERiO19

191

800 MAWR ASSENMP E NW 2.4 ElmS 0 PAKE 6
INTEL 2716 EP30K MOUNNIER IVER

SYL TAKE

I 01

A 0007 ASIER FODO 1 0oo c 0001
CIVIT 0020 McLE 0006 cml 003 CSACT 000*
CSINA 0003 3 0002 IECR F06A DEWR F070
E 0003 CR1l 0001 CEM 0002 GETIF F036
N 0004 1 FOCI IMIT F048 INJYC 0ow
JONLY 0001 RATER FOIF L. 000 N 0006
POETA 0090 PORTS 0091 PURI 0092 P3M F051
PSU 0006 QUIT 2C53 SETC 0009 V 0006
TURN 0092 TIDIER 1100 v FOK YEi 0090
YER2 F093 VRER F07l WIIF FOOC VOLY 0002 1

i 92

AD-AI08 253 RAYTHEON CO WAYLAND MA EQUJIPMENT DIV F A 1R&D EQUIPMENT IWOR14ATION REPORT. FAULT TOLERANT WEATHE1R RADARA
1 U. ON.A. AOMI F12 -? - ECt1

UNCLASSIFIED ER 8- 4053 AFS(TR- 1 008 6 NLE i

I hhhlhhIhlmR

muuuiuuliuu

111 - 2 132 .
U. WO Miu1DB 1.1 1 -8

11111L25 III* 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUJR[AU Of StANDARDS 1963A,

A-2

FTWRP Special Instruction Microcode Test Program

193

FTWRP SPFCIAL INSTRUCTION

MICROCOnE TEST PROGRAM

The microcode test program (FTWRTST) was developed as an aid to

debuqginq the ten special signal processing instructions which were designed

for the FTWRP program. It executes as a task in a CE with the task ID of 70

(octal), and reports the results to the Intecolor in the form of a message

packet. The proqram is not meant to he run while the Pulse-Pair system is in

operation, but as a diagnostic task to be manually loaded and started using the

TSK and ST commands.

FTWRTST performs simple tests of each instruction, and maintains

separate error counters for each instruction. Most tests are long enough to

ensure that at least one refresh interrupt will occur during execution, thus

exercising the interrupt processing microcode. I/O interrupts are not simulated

(they are handled differently than refresh interrupts), but they may he invoked

by repeatedly sendinq status request messages to the CE while the task is

executing.

The RACOR, RACORI, and RACC tests are performed by sendinq predefined

messages to itself with the proper message codes, and waiting for a flag

signifying that the interrupt service routines (RACRIN, RICRIN, and RCIN,

respectively) have completed processing the packets. Then the results are

compared with expected results to determine if the instructions worked

properly. If not, appropriate error counters are incremented and the next

instruction test is invoked.

The rest of the instructions are tested hy performing the operations on

larqe buffers of predefined data and comparinq the results to a similar buffer

of expected data. Table A-I lists the names and functions of each test

performed by FTWRTST. The extended SCALE test in Table A-i (SCLST2) is used to

test the SCALF interrupt handling, while the regular SCALE test (SCLSTR)

exercises the instruction on a simple case only.

194

Table A-1. FTWRTST Tests.

Name Test Error Counter

START RACOR RRERCT
RACSTR RACC RCERCT
VAflSTR VAflD VAERCT

VSRSTR VSUB VSERCT

CVECST CVEC CVERCT
8LNSTR BLINT BLERCT

SCLSTR SCALE SCERCT
SCLST2 SCALE(extended) SCERCT

SLNSTR SLINT SLERCT
VMSTR VMIJLT VMERCT
RISTR RACORI RIERCT
ERCOIJT (outputs error counts to Intecolor)

195

A-3

FTWRP Test Target Generator

196

FTWRP TEST TARGET GENERATOR

The FTWRP test target generator (FTWRTTG) was developed as an aid

to alqorithm design and test and was used before the Input Synchronizer was

fully interfaced to the existing Pulse-Pair Processor. Its main purpose was

to generate coherent channel data similar to that produced hy actual radar

returns so that system data flow and processing could he monitored. It does

not attempt to vary the phase shift randomly, and therefore shear calculations

are not tested (radial and tangential shear outputs should always be zero).

FTWRTTG executes as a task in a CE under virtual address 51 (octal),

and is used in place of the IOC at socket address 13 (octal). Inputs are

manually sent to the task via messaqes from the Intecolor with messaqe code 5.

The inputs sent are: reflectivity, and a phase-shift vector in rectangular

coordinates, as shown in Table A-2.

Once the parameters have been supplied, a Load Control message (message

code 10) is sent to the task with the same format as would be sent to the IOC

to enter into the Continuous Input Mode. Thus, the FTWRTTG will appear in the

system as a continuous data source similar to the IOC. The task will then send

data blocks in the same manner as the IOC, using the virtual address and word

count list supplied in the control message. Data will be generated and output

forever, until a reset messaqe is received (message code 13).

Table A-3 lists the major subroutines and their functions in the task.

Table A-2. FTWRTTG Parameter Messaqe Format

WORD ()NTENTS

0 Reflectivity value

1 Real component of phase-shift vector

2 Imaginary component of phase-shift vector

197

Table A-3. FTWRTTG Subroutines

Name Description

OUTPUT Sets up header words and outputs block to

the current CE

NEXTVA Determines the next CE to be sent data, and

whether coherent or reflectivity data is called

for.

LDRIIFF Prepares to qenerate new coherent channel data

buffer if necessary. Generates fake Input

Synchronizer "header" words to be put in front

of coherent and reflectivity data packets. Calls

NEWDAT to generate new coherent channel data.

NEWDAT Creates new buffer of coherent channel data by

performinq a complex multiply between the current

data buffer elements and the phase-shift vector

input hy the operator

CMIJLT Performs the complex multiply (X reqister has

address of data element, SPEEDI and SPPEDR have

imaqinary and real components of phase-shift

vectorl

LCW Processes the Load Control messaqe from IDOS-1

which supplies the virtual address and wordcount

list and starts the qenerator.

NEWPAR Processes the parameter messaqe from IDOS-1 which

supplies the phase-shift vector and reflectivity

data.

198

A-4

V. E. Follansbee Memo "SEEK IGLOO Common Element Cross Assembler"

go." to.oflT ts.$%I*-4 Classification UNCLASSIFIED

D I V I S I0 N EQUIPMENT Contract No.
Operation EDL - WAYLAND
Department SIGNAL PROCESSING Distribution AS LISTED

To G. A. Works File No. E-7 7-0 57 1

From V. E. Follansbee Memo No. VEF:77:14

Subject SEEK IGLOO COMMON EL.EMENT Date 22 DECEMBER 1977
CROSS ASSEMBLER

References: 1. Specification for Seek Igloo Common Element Cross
Assembler RJB-77-98

2. Selection of Operate and Systev/Date Processing
Instruction Sets for the Common Element RRS:10:77

I. INTRODUCTION

The RP-16 cross-assembler has been modified to provide Common Element assemblies

for Seek Igloo. The modified program (HICROL) assembles an instruction set which
i ncludes most of the RP-16 code as described in the RP-16 Micro-Minicomputer
Programmer's Manual (ER76-4347). This memo describes the changes made to the RP-16

cross assembler and provides a list of possible future improvements, along with the
procedure for implementing changes to MICROL on the Cyber system at Bedford. Also
included within this memo is a general program description of the Seek Igloo Common
Element Cross Assemblet.

1I. MODIFICATIONS

The following modifications were made to the RP-16 cross assembler. The

instruction set for Seek Igloo is shown in Table I.

1. The Execute instruction (EXEQ) was eliminated from the RP-16
instruction set. If this instruction is encountered, MICROL
will output an error message indicating invalid op code and

generate a NOP instruction.

2. The Shift Arithmetic Double instruction was given op code
value of 23 decimal. This value had been the op code for

an EXEQ instruction.

3. The Equivalence instruction (EQ1J) has the y ja of its
expression field printed In the object code field. There is
nothing printed in the location field for an EQU instruction.

200

UNCLASSIFIED
EM-77-0571
VEF: 77: 14

22 DECEMBER 1977
PAGE 2

4. The Operate group of instructions uses the op code value
31 decimal. The mnemonic forms and values for the second
five bit op code field are given in Table 1. The Operate
group can eventually vxpand to 32-64 instructions. The
word format for this group is shown below and described
in greater detail i.n reference 2.

Opcode Defined by instruction

5. The register values associated with the P and the S registers
has been reversed. Two new register mnemonics have been
generated such that registers 6 and 7 are now available to
programmers. The following register values are generated by
MICROL.

REGISTER MNEMONIC CODE VALUE (binary)

P 000
S 001
B 010
X 011
A 100
E 101
I 110

I 111

6. The NOP instruction is; genetrnLd whenever an error condition
i- enr,-%untered. The RP-16 crnss assembler had tried to salvage
whatever was generated when the error occurred and output that
ns the object code.

7. The address mode X+D or BA=4 was reassigned to be BAM=2. The
address mode ((P) + D) + (X) or BAM=2 was eliminated. This address
mode was replaced by a second extended address mode (EAM2). The
format of this type instruction is shown below.

15 ll10 9xH 76 15 4 3j 2 10
OP Code j I o EAM2[RI R2

201

UNCLASSIFIED
EH- 77-0571
VEF: 77:14
22 DECEMBER 1977

PAGE 3

EA2 Address Mode Coding Format

00 Register to Indirect Register (R2)
W1 Prelneremented Pointer, Indirect (*Ri)

10 Prelncremented Pointer *RI

1! Post Decremrented Pointer Rl*

t. "Th,_ .Tr), i.DD, ADP and SDP instruct ions will generate an invalid
op code error if the W register is used as R2. (i.e. STDW =LABEL)

Ill. FLTIT'RE IMPROVEMENT';

I. Allow for the option of outputting location and object code information
in hexidecimal format. Presetnly, MICROL outputs this information
in an octal format.

2. Output the object code for instructions in a field oriented format.
The various fields given in any instruction may be op code, BAM value,
EAM vnlue, displacement, RI or R2.

3. Include a double precision define constant instruction. Double precision
words for Seek Igloo have a sign bit in both the most significant and
tie least significant halves of the word.

4. Develop a macro capability.

5. Add new operate instructions as they are defined (i.e. GETCLK, SETCLK).

IV. IMPLEMENTING MODIFICATIONS

This section describes the procedure for modifying the MICROL program. This
procedure utilizes the Cyber system at Bedford and is submitted via card deck at
the Information Processing area.

2

202

UNCLASSIFIED
EM- 77-0571
VEF: 77: 14
22 DECEMBER 1977
PAGE 4

CARD COLUMNS

I...
NAME. comment area after period
USER, your user number, your password, SYSTEM2.
CHARGE, DSO to be charged.
GET(MICROL)
MODIFY (P=MICROI.,N,C,F,1.O :M)
REPLACE (NPL = MICROI.)
REWIND (COMPILE)
FTN (I = COMPILE, L = 0) remove , L=@ if want a listing produced
REPLACE (MICRO)
LOAD 'LGO) . . "
NOGO. if want to execute program
MICRO (INPUTOUTPUT) in same run as modifications are done.
6/7/8 EOR card
*DECK deck name
*IDENT date
*1 card identification Modify directives

card to be inserted
*D card identification
6/7/8 0 if requested execution
code to be assembled
6/7/8 EOR card

$$ EOI card

I
203

UNC ASSIFI ED
EM- 77-0571
VEF:77:14
22 DECEMBER 1977
PAGE 5

V. PROGRAM DESCRIPTION

This section provides a brief description of the various programs, subroutines,
and functions defined it% Lhe HICROL progrim. MICROL is an overlay program on
the CYBF.R system and hns seven overlay segments. The main overlay segment,

WCKOI, call; tht, othr :;ix overlay segments. These six segments call the various
subicul iaes and functions. A block diagram of MICROL is provided in Figures I
and 2.

1. Overlay Selments

MICROL This segment calls the remaining overlay segments in the
order listed below. It also outputs the symbol table to
rAPEI4 if the user has so specified.

Some of thte rtmaining overlay segments are executed on a
conditional basis. The conditional information is set in
the INORM segment.

INVORM his segment reads nne card with a two digit octal number
in card columns I and 2. This octal number allows for six
program options. These options are described in Table 2.

PASONE This segment analyzes card images and reduced card images
nnd builds a symbol table based on the label field and a
location counter.

IIEA)ER This. segment outputs a header page if the list option has
been set by the INFORM segment. Presently, the header is
simply a page feed.

rASTWO This segment analyzes reducec card images and builds the
object code. The object code is determined by the operation
mnemonic field (OPN) and the argument field on each
reduced card image. The symbol table is used if a label
is present in the argument field. It should be noted
thtit the argument field is also referred to as the
c ipression field.

.,;:moirr rhis segment will output a symbol table if the option has

been set by the INFORM segment.

SUOIrr this segment will output a set/used reference table If the
opt ion requesting a symbol table has not been set.

204

UNCLASS IF I ED
EM-77-0571
VEF:77:14
22 DECEMBER 1977
PAGE 5a

2. Subroutines

INPUTA This subroutine is called by PASONE to read and
analyze oae card image. If It is a /R card, then
a flng is set to indicate that reduced card images
follow. Otherwise, the label field is analyzed and
the symbol table updated accordingly. Also, the
operation mnemonic field is analyzed and the location
counter updated. A reduced card image is produced
for each card and saved in the array SECTOR for use
by PASTWO.

INPUITB This subroutine xrurds a buffer of reduced card images
and moves one card image into the working area TOKEN.
Each successive call to this routine will move the
next card image from the buffer to the working area.
The subroutine OP is called for each card image before
the return from INItlI'B.

DFINER This subroutine performs initialization before any symbol
table update. If a label exists, then the subroutine
DEFINE is called to update the symbol table.

DEFINE This subroutine saves the label and the associated location
counter in the symbol table. If the label was associated
with an EQU instruction, then the value of the expression
field is saved with the label.

REFER This subroutine analyzes the expression field of an
instruction. The set/used references in the symbol
table will be updated and the location counter updated
basvd on the analysis.

SETIUE This subroutine is called by REFER to add a set/used
reference to the symbol table for a given label.

EVALUs This subroutine initiates evaluation of the expression
field. The actual evaluation Is performed by the XPRESS
s;ubrout i ne.

XP'RESS This subro tin, evaluates the expression field and returns
a parameter which refl-cts the value of the expression
field.

NUhRAL This subroutine decodes any number sequence that may be
defined in the expression field. The value of the number
is returned to the calling routine. The types of numbers
allowed are RAM, octal, and decimal.

2
205

UNCLASS IF I ED
EK,-77-0571
VEF:77:14
22 DECEMBER 1977
PAGE 5b

Subroutines (Cont intod)

UNPACK This subroutine moves a three character sequence
from one word into three separate variables.

SitARCHI This subroutine searches the symbol table for a
label. The label is specified by pointers passed
in the subroutines parameter list. The results of
the search are returned to the calling routine in
the variable FOUND.

oi' This subroutine evaluates the operation mnemonic
field and returns an index for the operation. This

index will be used in PASTWO to retrieve the correct
object code from the array MCODE.

Rol',0R 'l'ts stIbrout ine packs three characters from a card
image into one word. This word is then saved as
part of the reduced card image format.

BLNKCr This subroutine counts the number of blanks between
the various fields on a card image. This count is
saved as part of the reduced card image format.

LiTHAl. This subroutine is called by the INPUTA subroutine
when processing a TEXT operation.

,ownt:cr This subroutine will output the object code to TAPE5
if the user has so specified through the INFORM

subroutine.

ou'lP(ia This subroutine will output the location value,
object code and associated card image if the user
has so specified through the INFORM subroutine.

i.RROK This subroutine is called by a number of the other
subroutines whenever an error is detected. The
number of errors in this assembly and information
related to the present error is saved in this routine.
If the user has requested output, then ERPRNT is
called to output the error message.

:RI'KNT bThis subroutine outputs an error message to the line
printer based on the parameter passed to the sub-
r ou t ine.

206

UNCLASSIFI ED
EM-77-0571
VEF: 77: 14
22 DECEMBER 1977
PAGE 5c

3. Functions

HSCAN (CHAR, INDEX, FIRST, LAST)

This fucntion will return a value of TRUE if the

character specified by CHAR is found within a string
of characters. The string of characters available
for the compare are defined in the common area /HSPEC/.
The actual characters used for comparing are defined by

the parameters FIRST and LAST. The position of CHAR
within the string is returned in the variable INDEX.

ISHFT (VAR, NUM)

This function performs a left circular shift on the
sixty bit variable VAR. The shift is for NUM bit positions.

LIMIT (ICHAR)

This function returns a value of TRUE if the character
specified by [CHAR is a number or an apsotrophe.

CHECK (LARG)CThis
function returns a value of TRUE if LARG has a

value between +127 and -128.

NSCAN (IDUM)

This function returns a value of TRUE if any invalid
characters are found within the label field. The
characters listed below are considered invalid.

$ C £2: -07

207

UNCLASSIFIED
EM- 77-0571
VEF:77:14
22 DECEMBER 1977
PAGE 6

I
TAB3LE I

OPCODE OPCODE

MNEMONIC OCTAl DECIMAI, MNEMONIC OCTAL DECIMAL

1. STS 00 0 34. ORG 00 0

2. STD 01 1 35. EQU 00 0

3. LDS 02 2 36. END 00 0

4. LDD 03 3 37. JUMP 20 16

5. LDC 04 4 38. JOVF 25 21

6. LDN 05 5 39. JSUB 26 22

7. SWP 06 6 40. EXEQ 00 0 NOP

8. ADD 07 7 41. ISEZ 30 24

9. ADP It) A 42. DSEZ 31 25

10. SUB 11 4 43. EHII 27 23

it. SDP 12 1O 44. ELOI 27 23

12. AND 13 II 45. DLOI 27 23

13. 1Ok 14 12 46. SOVF 27 23

14. XOR 15 13 47. ROVF 27 23

15. MPY 16 14 48. REXT 27 23

16. DIV 17 15 49. HALT 27 23

17. JPZ 21 17 50. CALL 26 22

IR. JNG 22 18 51. EXIT 20 16

*19. JEX 23 19 52. TEXT 00 0

20. JNZ 24 20 53. END$ 00 0

21. CSL 32 26 54. EJCT 00 0

22. CSE 33 27 55. IDEN 00 0

23. ASZ 34 28 56. HOLD 00 0

24. OSF 35 29 57. BLOK 00 0

25. RSP 36 30 58. BASE 00 0

26. SAS 27 23 59. DATA 00 0

27. SAD 27 23 60. DS 00 0

28. SET 14 12 61. DC 00 0

29. CLR 13 II 62. STB 10 8

30. SBZ 34 28 63. LDB 30 24

31. SBS 35 29 64. ADB 10 8

32. NOP 00 0 65. SBB 12 10

33. 00 0 66. CEB 17 15

208

UNCLASSIFIED
EM. 77-0571
VEF:77:14
22 DECEMBER 1977

PAGE 7I
Table I Continued

INSTRUCTION SET

OPCODE
DECIMA. MNEMONIC

0 SELINS
I SETVAD
2 TRAP
3 DROP
4 TRACE
5 RETURN
6 SYSREQ
7 AVAILABLE
8 INrERR
9 WRITE
10 READ
it RESUME
12 SELBUS
13 READR
14 WRITER
i5 REQIOS
16 CLOCK
17 LOGTST
18 MEMI ST
19 SENDIN
20 STARTU
21 'rRPRElr
22 AVAILABLE
23 AVAILABLE
24 RESTRA
25
26
27

2
209

Unclassified
EM-77-0571
VEF:77:14

22 December 1977
Page 8

Set up 9 binary digits

MSB LSB

-T -T - -5- -6- T T

BIT EFFECT IF SET EFFECT IF NOT SET

I Symbol table output to the Symbol table cannot be used
file TAPE14 at the end of again
assembly

2 Outside input for symbol Symbol table generated by
table is used from TAPE15 program

3 Errors listed during first No errors listed during first
pass pass

4 Plain symbol table Set/Used reference table

5 No object code file Object code file generated and
saved to TAPE5

6 No listing Listing

7 One fill on BLOK statements Zero fill on BLIK statement

8 Storage blocks allocated by Storage allocated will be Os
DS instructions will be ls filled
filled

9 Next line of input will have Number of lines per listing page
decimal number specifying defaults to 51
number of lines per page of
listing output

210

(J,

F-j

LO

LLLa

CAi~

-44

o oe

-i

U21

I-

0
21J

I21

UNCLASSIFIED
EM- 77-0571
VEF:77:14
22 DECEMBER 1977
PAGE 10

V. E. Follansbee
SIGNAL PROCESSING DEPARTMENT
Extension 5340, Wayland
Box F-27

/sjg

Distribution

P. C. Barr
R. J. Bonneau
R. H. Daly
J. M. Class
J. P. Hepp
M. A. Jones
R. A. Kudlich
D. C. Schleher
R. R. Smith
M. J. Young
Document Control.(2)

213

A- 5

V. E. Follansbee Memo, "Commnon Element Cross Assembler Post Processor"

214

RA>EON

Clossificotion tJNCI.ASS I IF I I:)

o I IS I 0 N I I I I'MF"II Contro(t No.

Operation EDL - WAYLAND

Department SIGN,%L PROCESSING Distribution AS LISTED

To G. A. Works File No. EM#78-0004

From V. E. Follansbee Memo No. VEF:78:01

Subject COMMON EI.EMENT CROSS ASSEMBLER Date 06 JANUARY 1978

POST PROCESSOR

Keferences: 1. Seek Igloo Common Element Cross Assembler VEF-77-14

2. Common Element Cross Assembler Post Processor

Specification, RJB:77:102

A post processor program (CEPOSTP) is available for Seek Igloo assemblies. This

pi ,ij mt, cenvrts the binnry output from the Cross Assembler progrAm (MICRO)

to a lormat required by the Lntecolor terminal transfer programs presently being

developed. The binary output from the Cross Assembler is written on TAPE5 and

must be saved to a permanent file at the completion of a MICRO execution. This

permanent file is then assigned to TAPE5 as an input to the CEPOSTP program.

An example of the job stream required when the MICRO and CEPOSTP programs are

executed separately is given in Figure 1. The two programs may be executed in

the same job stream and this sequence is shown in Figure 2.

There are two types of assembled programs that the CEPOSTP program may process.

These are DOSO type programs and CE software programs. For DOSO programs, two

output tapes are generated by CEPOSTP. The first tape (TAPE8) co,'tains one

record representing the 8 MSBs of all the assembled code. The second tape

contains the 8 LSBs of all the code and is saved to TAPE9. These tapes should

be saved to permanent files for access by the Intecolor terminal transfer program.

I(.i CK software programs, all output is written to TAPE8 and should be saved to

pl-rmnnent file at the completion of CEPOSTP.

lt. CEPOSTP program requires three inputs from the user. These inputs are the

ID number of the program being processed, the type of program, and a comment

field. The ID must be specified in the first three columns of the first input

card. rhe type of program is specified in column five of the first card.
Th,. types presently defined are 0 = CE program, and 1 = DOSO program. Column

seven of the first card is an opt'onal parameter. If a one is set in this

column, the character sequence written to TAPE8 (and TAPE9 if DOSO program)

is dumped to the line printer. The comment field is read from the first 70
columns of a second Input card. This comment field is output to the line

priater before any error or processing messages.

215

UNCI.A;S I FI ED

I:M# 78-()4
VEF: 78: 01
06 JANUARY 1978

PAGE 2

JOB CAD

USER CARD
CHARGE CARD
GET (,MICRO/UN=R589201)
MICRO (INPUT'', OUTPUT, TAPES)
REWIND (TAPE5)
SAVE (TAI'E5=NAME 1)

EO)R CARD
(O1[IN CARD
CODE' TO BE ASSEMBLED
EOI

JOB CARD

USER CARD

CHARGE CARD
GET (CEPOSTP)
GET (TAPE5=NAME 1)
('EI'OSTP (INPUT, OUTPUT, TAPE5, TAPER, TAPE9)
REWIND (TAPER)
SAVE (TAPE8=NAME2) ly need these 2 if DOSO code
R%.WIND (TAPE9) On
SAVE (TAIIE9-NAME3)

EOR CARD
ID/TYPE/DUMP OPTION (INPUT CARD)
COMMENT INPUT CARD
EOI CARD

FIGURE I

216

S
m

UNCLASS IF I ED
f,M#7H-0t)04
VEF: 78: 1

06 JANUARY 1978
PAGE 3

JOB CARD
USIR CARD
CHARGE CARD

GET (MICRO/UN=R589201)
MICRO (INPUT, OUTPUT, TAPE5)

GET (CEPOSTP/UN=R589201)
CEPOSTP (INPUT, OUTPUT, TAPES, TAPEM, TAPE9)
REWIND (TAPEH)
SAVE (TAPE=--NAME!)
REWIND (TAPE9) only need these 2 if DOSO code
SAVE (TAPEq= NAME2)
EOR CARD
OPTION CARD

CODE TO BE ASSEMBLED
EOR CARD

ID/TYPE/DUMP O("'ION/INPUT CARD
LABEL OR COMMENT INPUT CARD
EOI CARD

FIGURE 2

S
217

UNCLASSIFIED
EM#78-0004
VEF:78:01
06 JANUARY 1978
PAGE 4

V. E. Fo! ln'bee

SIGNAL PROCESSING DEPARTMENT
Extension 5340, Wayland
Box F-27

/sjg

Di st riut ion

See Attached Shet

218

A-6

V. A. Jelich Memo, "Cyber/Intecolor Support Software"

COMPANY PRIVATE

219

A-7

V. E. Follansbee Memo

"Intecolor Terminal Transfer Program Description"

220

.' 1, ,C *09,, 1 * .. Classification UNCLASSIFIED

DIVISION EQUIPMENT Contract No.

Operation EDL - WAYLAND

Department SIGNAl, PROCESSING Distribution AS LISTED

To G. A. Works File No. EM#78-0013

From V. E. Follansbee Memo No. VEF:78:03

Subiect INECOLOR TERMINAL TRANSFER Date 10 JANUARY 1978
PROGRAM DESCRIPTION

Reference: FTSP Common Memory Organization, RJB-77-1OO

A program is required to transfer a file from the CYBER system to the Intecolor

terminql. This transfer program must handle three types of input files from

the CYBER. These types are:

1. 8-bit PROM programs

2. 16-bit DOSO PROM programs

3. 16-bit CE software programs

The formats for these files are shown in Figures 1, 2 and 3 respectively.

A program presently exists which transfers the first and second types of files

to the terminal. When initiated, this program requests a CYBER file name from

the user. The program will transfer each record on the CYBER file into the
terminal memory at the address specified in the record. The transfer program

recognizes the lost record by a zero byte count. Orce this has been detected,

a request is made for a disk file name. The data in the terminal memory is
then saved to that file name. The save to disk is executed via a File Control

System command. The transfer program is written in BASIC and uses various 8080
programs along with the FCS command.

When CE software programs are transferred from the CYBER, more than one disk

file needs to be saved. Instead of transferring all the records into memory

and then performing a save to disk, the save must be executed after each record.

The data saved after each record is the 240 16-bit words. Also, two disk files

must be generated which contain information about the program transferred and
what disk filcs were used to save the program. This disk structure differs

enough to require a separate transfp- program for CE software programs. The

disk structure used will conform with the Common Memory page format description

in the above referenced memo. To accompl'sh this, all disk files will be given

names of PAGE.### where ### is greater than ten and determined by the transfer

program. The disk file PAGE.003 will be the directory page and its format is

shown in Figure 4. The directory page provides a list of the various CE software
programs that may have been transferred. The status and ID parameters in each

t 221

.."- : ; - . _ L - .

EM#78-0013
VEF:78:03
10 JANUARY 1978
PAGE 2

'ntil nie defined A I innsfer lime (see Figure 3, 12-15). The Load Map Page
par,,meter is the numbr in the IPAGE.##i# of a disk file name. This disk file
contains information about the program transferred and a list of disk files
that the program was saved to. The information contained on a Load Map Page
disk file and its format is shown in Figure 5. The header words on the Load
Map Page are set by the transfer program. The last three parameters in each
segment of this disk file are defined at transfer time. The Page No. (###)
par.ineter is computed by the transfer program. To determine which page
numbers have been used, a disk file must be maintained with a list of free
and used numbers. All saves of the various types of disk files is controlled
by the transfer program. There is no requirement that the user know what
files are available. The Load Map Page disk file number will be output to
the user when the program has completed.

V. E. Follansbee
SIGNAL PROCESSING DEPARTMENT
Extension 5340, Wayland
Box F-27

/sjg

Distribution

R. J. Bonneau

R. H. Daly
G. A. Sarafinas

M. J. Young
Document Control (2)

222

ASCII Characters on a record of the CYHER file

2.
3. byte count

4.

7 starting address
8.
9.

10. 0

11. 012. }
13 first byte
14.

n-2 last byten- I
n+l checksum*

*The checksum is the twos complement of the sum of all the data after the

colon and before the ascii conversion.

FIGURE I

223

ASCII Characters on CYBER file TAPE8 after CEPOST

2.

3. byte count
4.

5.

7. ' ;tarting address

10.

II. 2

2. 8 MSBs of first 16 bit word *1
13.

4. |8 MSBs of second 16 bit word
5.
16.

17.

n-2 W ;.Bs of last 16 bit word
n-1

n Checksum *2r+ I

*2 l'his checksum is the twos complement of the sum of everything after the

colon an6 before the ascii conversion was made.

*1 The 8 LSBs of avery 16 bit word are saved on TAPE9 at the end of a CEPOSTP
execution. This tape is formatted the same as above.

FIGURE 2

16-Bit DOSO Program Format

224

ASCII Characters on each record of the CYBER

|.

2-5. byte count = 4M8

6-9. starting address
10. 0
11. 1

12-13. status
14-15. id
16-19. , starting address
20-23. word count (= 240)
24-27. 16-bit checksum *1

28-31. first 16-bit word
32-35.

980-983. 239th 16-bit word
984-988. 240th 16-bit word

989-990. 8-bit checksum *1

t "*
*1 Twos complement of the sum of all the 16-bit words on this record.

*2 Twos complement of the sum of everything after the colon. The sum

is computed before the ascii conversion is implemented.

FIGURE 3

16-Bit CE Software Program Format

22

o .

225

_ - *.. '. ,,. , , . . . L U _ _ __

Ent ry

Ward 0 Word I

IStatus/ID Load Map Page

2 Status/ID Load Map Page

3

12h

FIGURE 4

Directory Page

Word 0 Word 1 Word 2 Word 3

Map Number of 1
Hedr Type Segments Identifier Spare

SegentI Pge o. Start INumber of ChecksumSegent1 Pge o. Address Words

Segment Z

Segment 3

Semn 4

Segment 63

Figure 5. Load Map Format

227

A-8

R. J. Bonneau Memio

"'INODDOS-Utility Program for Inspecting and Modifying DFTSP DOS-O Object Code"

COMPANY PRIVATE

228

A-9

R. J. Bonneau Memo, "NEWNOD-MODDOS Enhancement"

229

*o.o5? St.O6b O.ft Classification Unclassified

L) I V I S IO N EQUIPMENT Contract No. 790-320
Operation EDL - Wayland
Department Advanced Development Laboratory Distribution EDL-94 "S" List

To A. Bachman File No. EM79-0632

From R. J. Bonneau Memo No. RJB-195

Subject NEWMOD - MODDOS Enhancement Date 30 October 1979

Reference 1: EM78-0427, RJB-124, "MODDOS - Utility Program for Inspecting

and Modifying DFTSP DOS-O Object code", 2 August 1978.

I. Introduction

MODDOS (See Reference 1) is a program used to inspect and modify the

format for DOS-0 programs used in the Fault Tolerant Signal Processor (FTSP).

NEWMOD is an enhancement of that program which is compatible with MODDOS but

includes the extra function of a 4K checksum algorithm. This memo describes the

checksum algorithm, the usage within NEWMOD and also provides a current listing

of the NEWMOD program. NEWMOD shall replace MODDOS on the utility disks.

I. Checksum Algorithm

The Algorithm (See Figure 1) consists of the sequential summing of

4096 16-bit 2's complement values which constitute the 4K address space for the

DOS-0 PROM's. In addition, for each sum which results in an overflow condition

(e.g. 2 positive numbers added, resulting in a negative number), an overflow

counter is incremented. After all 4K words have been summed, the overflow

counter is also added in to yield the full checksum value. This value is now

2's complemented (i.e. negated) and stored into the location

177727 (octal) - the checksum location.

The net effect is that the sum of all words, including the checksum

location, and the overflow counter, should be exactly 0.

I1. Usage

NEWMOD operates exactly as MODDOS as far as DOS-0 memory accessing and

modifications are concerned. Once the user has indicated that all changes have

230

C e C ~ v ? 4 I V I OR J B -1 9 5
30 October 1979

Page 2

plow. /tP44m

CI.

e ,
LI

e. CA4

7boS-4 C.94e

~~A~aJ,&of
SO.%M 4pc

23

Ar c

Unclassified
RJB-195
30 October 1979
Page 3

been entered and that the updated files shall be saved, NEWMOD now asks:

DO YOU WANT THE CHECKSUM UPDATED?

If the user enters N (for No), NEWNOD will zero the checksum location, then proceed

to store the updated files. If the user enters Y, NEWNOD then asks:

DO YOU WANT A WORD-BY-WORD LIST?

Answering Y to this question permits the user to receive a word-by-word listing

(on the screen) of each location being summed, its address, the value stored

at the location, the current accumulated checksum, and the current overflow

counter.

As the checksum Is being performed, NEWMOD outputs a message after each 100

words:

XXXX WORDS SUMMED...

After the complete checksum is performed, NEWMOD prints out the following infor-

mation:

OVERFLOW COUNTER = nnnn (octal)

ACCUMULATED CHECKSUM VALUE = nnnnnn (octal)

NECATIVE ACCUMULATED CHECKSUM = nnnnnn (octal)

UPPER BYTE = uuu (decimal) LOWER BYTE - 111 (decimal)

After this output has been performed, NEWMOD prints out the message:

IF YOU WISH TO CONTINUE, TYPE CONT

and types READY.

The user now enters CONT to continue the processing which results in the stor-

age of the checksum value and the saving of the 4 DOS-0 object files.

IV. Current Listing

See Figure 2 for a complete listing of the current NEWMOD program.

Advan el Electronic Techniques

Wayland Box M9 x5172

RJB/ema

cc: EDL-94 "S" List 232

NEWMOD UnclassifiedON RJB-O Figure 2 RJB-195
10/11/79 30 October 1979VN9

Page 4

I t'LU; I.,2.LL.L.., .'uoJJl i I$(16)

1 i,.th N t'l" .I.N I LUMMUN LL..Lt i NI IUIAI I, ' k) f,;L;i l

PR L-'IN I1.
t) 1UR 1=0 IU it): . (l5 - I1 ,(I):N-XI

F R IN I P R (I-4 FN . " IN I " IH I. f t. l.'Am f'E R M .I ; I .-IF - I- lw 11 11 1 '1
F HR1NI LLI-IMUN K i L- l 1 I. N 1 I I Nb L' UR LIL t --0 F"IU(1I,'CA I " 1.1 0 I0

Y riH1Nr -k 1. 1i I *,, A MI : '2. . I JB i I CA-N1 B'Y11-) NII ~ I t-f I ' ';I [;(.IiI I4I

)-I LL"
10 INLI'tI I L . N I L i- M -it 0 1I- I. " 1NA(L: " A$: $=A $+" . "Al

12 INPJI LN I LN Lb V I II ..L. NA-HW C 3, (.1 - 1i - 11A (

i@ IN'tI I .,NitL< La,-) t 1 J.i.IN~ ti L1'l1-l: $ + . IA f
2d F-LU I /; 'N I f; (i!IL ;A .1 W. P,,01 PI (I I

" ' FLUi , './ 1',I f i "ill -,1 I;" L 4" I.1 06 1 L(I -'/ II 0I1(
'0 ir4FI I 'I -IE ., I I '2 , 14 -4 , I.L. I I) N : M U0(' ,l t

31 L -W J.1W 1.I1 -I I 001 0 I0 l 1 W1 4;:.400, IilL O'

54 li- W .;.:4,.)00 I HEN . j W '-Wil I

3t 6USjUbL '000: K: M LO;UNVL. I. .I .I. I ;i Ilo. C: J.i :L i (I !,',I r Ik
36 I-kiN I " HI1Ik, hL~b LAJi t 1- f1 Mi: 'AIl (U I l , }1AN(if' -.1 "

4U AV:--. - .6,u2+4J1;RL , ,i* ;I I N,.: 1;1, 1 h -m •)I W; j
4 b AL- i2 .', t W.VIP L M .* ,*: 1 1 1 I i L'I.i !'(Ii. I- :U i (P)WI(HO 4 i WII
4d I P !k:((f)Z L .i (A)"

60 FKi I I b ,
6z G'Ru -I i : t "' 0 0

65 If f4V= 'I I Hl.N 80

/0 I 1- i.!' .. ; III.i N) Q
/2 N1:-. f I ' Vi . ;'6 PLURl: 1LI ,N1
/ Y w)-, ' .:,', * I N NV/-j.") ; F'W :.: iL.v N,
dO AUI= ti ; , Hr ..AL.. I I i * : I L Lr I JNI. i:tUl ILI,: JI.'WI I:;I k ,11,
do, wit -. w I I ri ,.4 4 :. NLIIl L.f4 NG Il.:LI' .IliIl. ..

u.6 X=WI.I . I' i Wit -, : 'i', W; ,.,4'*):-C() WiIM.. N 1.L
5/ WDJ=WIJ+.. A X . 2
8B A=W 1.11 W1 i.: .") V 1 11. N V'Q
49 X:X 2
YO 60S (J 5i 0U
'91 LL= V--I/00(,, I0 ti 41J

100 INF 'IJ "ANY MORLL Lii-if,,iL. U Lt 0,1 ;. , UKIf N)"; 1/,

110 IF 1 . "Y" I ILN 61,
115 If /$:. "N" MI-L.(.4 C,

120 INFUT "WK.. IL oI 1 li1.. LJ'I-.Iifl[F. I.F.LL.. ' " (Y 1.1< N)" Id.J1

122 IF L$ "Y" IHLN 1*-',,
123 IF Z$:> " N" I HI.LN 1.,.U
124 I U 2 e200
125 IE.m GL.4IJI :)UO : 1[M (.f-11 I I l LI Ji CII ;i,'iIfl I I .It
1SO X=I'LE -(-163184 MiP1.iL M '. 2, ;

233

Unclassified
RJB- 195
30 October 1979
Page 5

.14V N 1, N~ *I'I. itV 'IA . I~% A~.~~Q~ 1, lb ?/
I tP 1-1(121 I-IN J. N '. it ") A; ,'1,.If 11ou4 , ;j .'0 U '(0n 0 0i 'i. 11 1 1

160 PLu 1 2 PK .1 Ni I.'SAV I~ I LA~ 1, JL " v GLJ u 0L , 11,

200 ftk 2C .1 N * S* A V *1 Nil UF MI1Q.;U"pd' I v". 1 'Lir .I JI

2000 1I[,U I "iv
2003 IF- 'JAiL(v$) I mI.A 20M.,
2004 NV=-2' '. kL I N
2005 I F Lk.Nl .1 r' 'H-0 IEIN Z.0 10
2008 NV=-1
2009 RLIN Wr
2010 Qt.4=WLI WLi-I- A Lip I,,Lj,ULk YO(4VWAW!MtU11 I(
4000 RIM *****'huU iiNL. I LJ LONW.R' IUA I 1i0 .
4050 X2.=X/256: '*~ ~ x IN NI (;,'!))
4060 X4=X3/16X** XWx4. Ji~(1''4))
4070 X2=INT(X2):X4= INK I 4)'fX,)JN i Ali.
4080 PIRIAT uX2; $ 4 9;4(x,
4085 PR INT
4090 RLTIUkN
tP000 FOR 1=1 10 6*611(I)XI,-dtUM I(N X, x X- iN I "A' aL X
'Au10 V=O:F0RI=l TO 66:V= 10* V Xi", ~ :J~i
"b020 KL.TURN
buoOO 1<1 t **$$L,0S-0 CHILCKSUM CUPIPW;II(MUN ~iJ ;i<Al Nl*
uu02 Hl I I" FROM CHECKSUM BE2INL. GL~U11 LL. .

600~ UI. =0; L2=0
8010i -uk I 2 (0 2047
8U0 LI1 : L! 4P-LILM-163841)#C2=L2+VL~k(- i~~

234

Unclassified
RJB- 195
30 October 1979
Page 6

Io/ R1 B LU6.I i

6dCs Y" 1,.N -6 5'A36X 3 ,X2

L;4 C, : 6 f4 ,j YIII 2 '4 6*I Y .3:1

jO/O I-i - 235

I

A- 10

M. J. Young Memo, "Modifying Files on the Intecolor"

236

RA ON
.... ,0os ,,..-, .Classification U nclassified

r)IV IS I ON EQUIPMENT Contract No.
Jpe rat ion EDL - Warland

Department Advanced Development Laboratory Distribution As Listed

To R. J. Bonneau File No.

From M. J. Young Memo No. MJY-03

Subject Modifying Files on the Intecolor Dote 26 January 1978

To aid the debugging of CE microcode and DOS-0 EPROMs, a program
to modify floppy disk files has been written. With the use of this program, data
can be modified on the disk without the need for re-assembly and transfer from
the Cyber.

The program, called "MODIFY", resides on the CE system disk
(CESYSI1I8) as a BASIC file. To run the program:

1. Enter Basic by typing ESCAPE E

2. Place the system disk in drive 0 (left drive)

3. Place the disk on which the file resides in drive I

4. Type LOAD?"MODIFY"

5. When the system responds with READY, type RUN.

The program will then ask for the name of the file to be modified. The
full name must be specified (Example: CGEMI.DAT). Once the file is read into
-XM, the program will ask for the word address to be modified. Words are
numbered from 0 to (2047)10. Therefore, if the fourth word of a file is to be

modified, the word address is 3.

The program will respond by displaying the data in the word specified
in hexadecimal notation, and wait for new data. If the word is not to be changed,
simply type in the same number. Otherwise, enter the new data in hexadecimal
notation. The word will be changed, and the next sequential word displayed as
before. When all the changes are complete, enter a hexadecimal number greater
than FF (e. g., 100).

The program will then ask if there are any more locations in the current
file to be modified. If a "Y" is Lyped in, the program will ask for another word
address, and the process starts all ove again. If the response is an "N", the
file is re-written onto the disk. The original file is preserved intact, and the
updated file is given the same name with a different version number.

237

nn na Ia -

Unclassified
MJY -03
26 January 1978
Page 2

This program is designed to modify only those files which are in
the form of an EPROM data file, which will subsequently be used by the
EPROM Programmer.

If there are any problems or suggestions, I can be reached at
extension 2563.

Advanced & tronic Techniques
Wayland M-9, x2563

cc: V. Follansbee
J. Hepp
G. Sarafinas
R. Smith
G. Works

238

A-1l

Intecolor Utility Routines

239

INTECOLOR UTILITY ROUTINES

Several utility routines were developed for the Intecolor to help

support the I0OS-1 and IOS- proqrams. Many were already resident in the ISC

supplied software packaqe and contained in ROM. Those which were desiqned by

Raytheon were also placed in an FPROM and are contained in locations 1800

throuqh IFFF (hex). These routines are varied, and are used extensively by the

Intecolor software. To aid in usinq the utilities for future software

development, or in modifyinq existinq code, a table of available routines,

startinq addresses, inputs, outputs, the function of the routine, and reqister

usaqe has been compiled (see Table A-4).

Some of the utility routines have little or no useful purpose to normal

proqrams. Others, however, (e.q., GNIIM, SPNOR, GCMA, etc) are very useful in

desiqninq a command parser and other interactive proqrams. I/0 routines are

also useful, and are described in detail in the Intecolor Users Manual

(refPrence A-1)in the CP) peratinq System section.

240

('Li

0-. LaL
I.- I. ct- F

mc(I s--V It .s

a-L.

=t c.). s- .L.1U.

at L.A I.- -L a' CAc a--

U)~. (). upS .~ LI - c .S
a ~ I - C.lA I I . ~ H L L s , -

T7 -J

-a 4w.mLttoa O .s ,~' . 'a
IL a) yaa O.C

oI ca. doh LU U. iU .. to .a
a- = .- I-. 5-(, a(' -

a-a 06.' - Z -V aL 0 In (a 4m
I. (m (S Ift 110f cs at

In (IN S I a- l

a. V-i tG - I ,. M o
Li a.c " C #-a e -

c c - . C t

-0- li Lii ot as.aL jI3 r
Is 01- ic - a,

:it A- M L. FA CL. a) Go c 51a- C aaE W. 4p- -. 5 ." LI
u C. A = <c £ l.U .

Maa - a,. c-S~ (%aC L. - -
- . LA 05 c- C Is Ga.S.4C

4. Li-0L L.15 C -9. 1".- Mk

Larala~ 0 cm ft- -Go :a*(-- C (IL,.:A I : L.(c.-wGA ac Li bC3 0 Ua U c ii r- Us

t .4 -En C CA It- csn 4 .n a
S. L p C A4 . . .-0 - - mS -. 41 r ., C

19 Cce -C~ 0a LCD u 3u i .- QCR:c

41 CO,4s L. a.-. LA00W5La - a J c "l O..01, 4-3 Lra 04s L,.... j CM~ ca OaOIJ P. m4- aO. tC)-..- m fa -4 1
.-. ~ ~ ~ ~ ~ ~ ~ ~ - -6 -tCJ ~ (~ *L) I .(. 5 a -V- cm c a Co CIP (m .to caf Qia 4-. us C-

a.. '0 S .. ITA 5. a.0~ &. US gS241L

"J~

L71, I.- L~~-D L C 'r .- M

UI IJ . _

*i3 7A . I-- - -..- L~ cnlL

48 +C 44 44 LAIX.C -ZJ~ 1- *+ + I- +

CD jC c I. -j I 'i1 j It u:L)> - uI - -1 0 .

fr :a A' f4 rZ

(In. L r=1 L A D LN: ce (f. Ifi . (tI.

Li.. ~ a 'r ~ G- c x 8-)L

CD1.4 . L I . - - A cop -~ or Li . i . ., I- . .'

CA (.III <s''fuL iU W' A if) .-.. Zi -DW 0~
En cn G Z t :-(.AI LA Z i I) 0 A .(1) W . - " t(.

L L L l. -- -L0 I- I4 LA LAO) w U)(o L,
=. .lae Mi s-L~ miLA at Al ... I dl.i AS ..

mC 6=11 CALiL. - C
7.rC -- - C.L 1.- .1-. Li a

-T 0i' a to .0 t s too 1 It 1 ' c3 1
I.$ #IUI - 0 -j .I ' t __ C -. II--~~~ ~~~ caw 1'a.ba E=

C~~~~t 4-0 30Li " - L
Go -L X,* - aCa.a .

ON 9- in -
-4 .0 L- In. -a I

1- ~ap Ii L 0 a@ C.-
L- i in. I A CI.C c

L, Js. m ."l LA~ - C, Cb X.-a
LA0 JIM C"3.) ~ 0U s-a 0-- C .

16" - tit -n 0 L. 4- 4-6 (A 06 CL. t-
.1 at, L 4 A3 90 w5 .0 W0 (4. L. w- m

do at. C- Go 6. -A m III
cc . IA.. -9 1. Ili C, ob 5 4- - 4at Go4 a. 4, v. U a Li c w. cC ISOa

I)rn c c Go 41 op S 4- III-4 - 1.1. C.'c
C-) Li CLi a2 = a =1 Go .%. 6 . Its LL.ik.I.4

oz 1.8 " LA. I-C I . L3 Lj tj Uli -4 CL. C.L0. A0. n CA

o0 cj -C 90 0 9Cl .

I 3 w. 1:A .3 1.-~ L.A ". C0 ti (A WA c (j,) or
Cie L C..:~ :c wic ... OnoJ U . .3 ~. a. a. Q.

Lo:c in in) LA UM Li Li. LCI LA caLi ~
go co La IcmfL f .11 m0 111 '0 0 C.. cm 'l-.CcaC. I=I..-

242

LAJ

-L m:l 02

a Ia -
2: 5 2 ac LU ':1 u, I :

-j Lan 11 LI to. *0 -f I2aM LJ .

o-- p'. (- ?I- O Z~ a c "3". ,
+ . $~- ilz - = + I .a 4411, .. J-Lr a
-1 Z.l Z la.JZ3. -j La a .-j C CI J.J -J-J£IlJ -j(fn>-

:a, It C. I W 14 or2 T
11 it 11 to 01 .- It 4 It I& it 11 It 11 It 11 ifi s _j .3

Lm

(A

LD

L. j n(-1 I

U.1 LA L.

~ .- ~ a--

U) L Ln Ln 04 wz2W

s- c, I.- aaI 0

cm c- Q

u a

xj u
m .1 L" -u . in3

-a (M *i - Ga G c lt .1.. C
'a' 2a at -i C -

Ga aE Col

.0 Ga- 0- *fl 'to =~~a 11 . m s &A,1 oil t
Ca) . G =1a U.L, 6Wk =ma0a

.0 i CY .Ic
CO w4 wU c c - .4 = c- Ila q - l

In m.. 661 do ~ U oC1 j J
1- = ~ z_- X~ @A .4 4- (' - p =1 .1 ADo

M.. ICU Alto kA Ca tokll- 0 ac a
16 a ll VLE2-1x=a a it. 0--L5 -a "_ _j =J -aL .,, o Go

- - I e ol0 CI4c In o' C. 4c .- -. a- GO ,~ 4-

La ' -M AD' Go 42 tx .0 o0 .. 4-I a - .

5- Ga1 9W C Lal -i -1 (MjW 4 .r.0 w-'U a Ga 10C n .
1% 'U9='r. dim ='... =G . L . 4 X = ciibcbi s m .s Ao " 1.cc 5 '" - 4-, 1- 2- 62 m ~ Cj 4- all Ia Mx4x-Aj

%. . I. _3 (. C)G .3.J G (4z'UZ C o n c C 5-. a.i 5: &o"c

o'o.4 Co.' LL. 4 i .. j a). ..J a.U1,.. VCibM oc LOL ~ n(2m
_4 4- a g -M*J -4.4~*~

01 ~ a G1rja 4211 al '-4 -. c C~ W

Cook 1= m 2~ 'AD. oft 4111 C% M. C3. 1, 't 1M

('. .6. C.I P. CJ ~~ar.1.~.~243'a

I~k .bi W~

I" L AJ L.1
Irt .,% L.J Li L.

cw- CA) w f-3 ort 0
fm C.) C) <CV

=3 4_3 C)*) LC CC X C.)C C-

7_)I n sg i IIk X('AICQ &LM4 -' r

nr it rt toA exA if-.
Ad~-~4S" LA LAL3AIi J

L.Al
W'i

.7, ZZ 7

C:)

In - Li

Li

4. IA Go GoA Aj I

La) X L.

-IA toL.X

-9 A- 0. I C _ a 9 .

a c C16

&_ n ." C1-G J- C

duV ' C. -Cu

In a,. .c r.. Vlu It
A=0 A. '- ofi -Va4 4 . 1A

ap C 0 m .0 tA 0" It Z -V.,, 0M
'D aA E- * GA 10 4.
6C1&Ito - u K

0- In -V eU _1 Go 11 C
40 40 VII 9- Z

Id GA @4 V c c tn T2 -
'a so III 'GAn G GA l A - 4 L

0 14 CGA L.QV -- a- 4, 4 a, 'M

wV cm L4 416. - .0 " o I m- G, LA c. 10 gU

MA c4 CAP * I~I l L.) C.) n LA o.
I - -U 4CC ~La Gla at La Gb aW : I

I4'% 0N 44L)a CA _jAV , 1A A .1 ma4 U ca@ I~. IGr, t Jr.7 a
C.3 uI ac. I.I. I&. AlD -0 Li fll ni * M eL L C . 04C- a m) atV u

60 43 I& tjtA 'a CC Of W t C% - 46 'l Ua *I LA q-" .. 0
'I IA (ID 0 '- -.M CM 0- A ~ .VA a @

- -j %1 I.) ") M -' .0 to T4 . GAA
% p IPe 0 a .01 GA IAIA q0 L,:P4 0@- In

-.b cm -AD *j .A Is -b f= *CaALA 0b AUa GD mA

- A 4 K '- - .4 G 11 @ 0 a- A4 AGA14 AW A 24-4

9 IL

LA1 I- ~ t

.- 7)2

m. L... a)
m,. I, I

it v C'6 tw) I.. ~C LUL._...LAS
Ci Z, C I- " W 4 :

SZ >K. i * n- +U j4 A . __< + ,i

to 4J.A.J I ~-i itL J~i~. %I i
It 11

IC,

Cc-i

C-1: L.J f
In Ln.f

. uJ Is) . 4) - .1 1 1.. U. *Z

_3 _3 In u -i CI. -
U, ~ ~ ~ ~ ~ I 7I- i..J t,2 I, . Z i :aa1 * i ett*~ *'1 csii a x

i~~~~-
C. I~r~

.- a . ,-i _..e :1 :7,. Lfltc i P .ia ~ ~ ~ ~ ~ _ Ct .-j Z) * ~ 'T i . ~. . . ~ ~ ~ ~ ~ ~ ~ < : r Vi i i i i . i i* I . i

'U 0'

'.tL
1.1 1

ILI Im g- .' i
a# in Ii C, C i'

u* I. C-4~I
C

- -i~uiI.

aj a. It-a 0-~ C36 -~. ~ . 07 3J .-

CL i. -- CC --i. @1 Z C . %: L. II I

g- c" -- +, ~ . ~C C.
.4~~T C .. C wUC- 4 - ~ CL L

00 S..4 '4 iC of) C - ~ i ~ c s - i 5

11 - C2. = -5 " i~'ta u C' Cti CS..

X3 440 -0 C16 L). .- C.n 'C.,~c *i C C X
It i-i -3 C-LU n 0A toC -..

U

t a.i. 9-t oj M. La j i. ~ ~ , iC...
j-.. %71 so 0) GiQ.C I" OIU .c c, -c. Co. Ct

C. L(.J (vi ti. i 4.i~.. C VA-) j i 'C,

_J-

kZ (..~ 2 LU -4' cc LscCJ tf,,q W 7 1.1

Co Co.
0w..

Co. CA. Cat,) 'J. U_ ii) 4

245

In
I-

=:I

Ca La~ In

Q9l I.-C C

ft Cie Ci
"ACXi Lja Lii "A X r

101 ac t - ;;_ w. Lai
w- l.A cX 0 Of . CK Ca cw

ac w - I- t-
o :: z .L.j l 0. Ca :

it 11I- Lu II LX: rj I IA

Ca I-

(- CXk
En (r) Ij Ca C)CaL
La Ii Da I t

l a Lia 6=1 ii
O CCC CXI.- In

~il.i =1~LiC Ca I

- cc t-cCi ~-)
in (, .- It C.1 I-t Y

I. -zC: ru cct X
CU3 9= ChItLI LaiiI el91Ujla L 61 " -MJ i- tI-t j

it it-. I 2. Z.-L)4I C- L-)
toA I" It I f C-3 CIr)-) f It

2. 01)1- ~ 1))C)a04

Z - i.-I .3 X)CIIC
Cl)C sf i ()fC Iju WI LJ 4 I -. j IIJ ILI .

kr4- G.D4

CX GD .a 0 wi
.n c- Il : Q

. 4- -K r- g-L.GDA

aa10 uua k = I-. GD -

2.I m o 'C -CA aI L .t - Zf .

GDi Z T g DC 9- 1) 9- zJ 9- .- 3
- £ Go t kA4- O- C- ., IL

c a >c xu4 ~ ~ - ~ i

=D c at - 6- L. Ifl. 0. A w &-

.4 1, 11 'C , - GD 0, GD mi cA u V, I

:. cD D CX 4- D as-02. m LGDLo 1 .0 =A w IL
00 C 0- a Lir .0 D L- '.-*

-G. -% 6 4 mD LGD44 -1A 4- D CC 0

Li 40 .0 L. GD 0. .JA a4 -IG 164 - ' a 3

4- - n L. m as It4 -- 9-m uj GD IMI. D D ~ -

C) DC~Ar- a - Gi D C u III c, c r-..G L C'

-M C IA 0/I 04 CO) u ca Go wO.L~ D

0-i U&. aA Rm '1 1caZi-It 4. n.

inG Ci Z ai =L A ~ La GDA an t

2a, C C 1 a- r- I~~ 4% & 4. =-

vo 4- lr45 G CAI m it w I"6~4G 6-..C

aUiC 's orC c' a I I II Il I11 I1I I 1 .0

0 -1 Ck to L. r)C)C

C)C.) 'Cm M WLr t Ss : : ~

Ca LaiC
3 L 0 C 2L.

Cb c

Z46

a-
0.-

I...

U,)-

LJ C3 CDC) C3

En~ V) ul CID

Lf U) (nLw
LAI M c cl) ex

c:: "4 o=L

LM u

aca

#- -

ILI

C3. LI

to c

Of in a cb

UL..-
of - %

L*~ CL CA -0 -L (L

2 4.0-
I c 4 0 IsOf c-4

- S' e c w3,- ft

CL, -W Cl Is . 4 4

-& U) LJ4c L 3

64
clic

LaA LA'AU

-W CI, IA

247

.0- O 9-9, , . Clossif;ction Unclassified

10 I V I S IO N EQUIPMENT Contract No. IDP 79D-320
Operation EDL - Wayland
Department Advanced Development Laboratory Distribution EDL-94 S,M Code

To File File No. EM79-0498

From R. J. Bonneau Memo No. RJB-185

Subject FTSR CE Diskette Utility Programs Dote 24 August 1979

L Introduction

Two new BASIC utility programs (PGCOPY, PGCOMP) have been
installed on the Intecolor Support Program disks (13 and 1 3A) at the Sudbury
Test Site. The purposes of these programs are to facilitate the copy of CE
disk pages from one disk to another, and to perform a page comparison
between two CE disks. This memo briefly describes the operational use of
these programs, and other CE diskette maintenance programs.

IL PGCOPY - Copy Pages

PGCOPY is a program to automate the process of copying a set of CE
pages (i. e. , files with name of the form Page. nnn) from drive I to drive 0.
The program accepts up to 20 input page numbers (3 decimal digits), then
automatically copies these pages from Drive I to Drive 0. The program isinvoked by executing, in BASIC, the following two commands (with the program
disk in drive 0):

LOAD?"PGCOPY"

RUN

After RUN is executed, the user should insert in drive I the from diskette,
remove the utility disk from drive 0, and insert the to disk a-d then proceed
to respond to the program request:

ENTER 3 DIGIT PAGE NUMBER?

The user types in a 3-digit number (e. g. , fi3l or +27, or A5) and hits the
return key. The program continues to request pages, up to 20, until thesequence *** is entered for a page number. This terminates the entry phaseand begins the copying phase. When all the requested pages have been copied,
the entire sequence may be repeated. Note that this program copies only the
highest numbered version of the page file.

II. PGCOMP - Compare CE Pages Proram

PGCOMP performs a word by word comparison of CE page files on twodiskettes and displays any discrepancies. This program is useful for verifying
master CE disks versus working CE disks.

248

U nclass ified
RJB-185
24 August 1979
Page 2

The program is invoked by inserting the support programs disk (13 or 13A)
onto drive 0, entering BASIC (ESC W and return), then entering:

LOAD?"PGCONMP" (return)

RUN (return)

At this point, the utility diskette should be removed from drive 0, replacedwith one of the two CE disks, with the other disk going to drive 1. Then the
program requests:

ENTER NAME OF FILE?
The user enters a file name (of the form PAGE. nnn) and hits return key. (The
user may optionally specify version number; vv). The program now reads
t.,is file, from both disks and does a byte by byte comparison of the 480 bytes
on a page file. Any discrepancies are listed on the display in the form:

BYTE # xx DRIVE 0 yy DRIVE I zz
After the entire file has been checked, the total number of discrepancies is
output and the program loops back to request another file name spec.

IV. Suggested Improvements for Support Programs

These two programs, along with the LOADCE, GET, RETURN, and
MERGE programs, constitute CE diskette file maintenance programs. There arc
a number of areas in which we can improve these support tools.

A. PGCOPY should be updateO to facilitate copying of a complete task
of pages from one disk to another. This would involve accessing
a load map page and use it to drive the pave number inputs.

B. PGCOMP should also be updated to include comparison of a complete
task from one disk to another.

C. LOADCE, GET and RETURN programs need updates to extend the
page numbering limit from 99 to around 150 or more.

D. An additional program to enable the automatic printing of a task
(load map page and all its object pages) is also very desirable for
documentation phases.

E. Similarly, a program to analyze a CE diskette's directory and
produce a listing of page allocation on a task by task basis would be
very useful for maintaining automatic inventory of CE diskettes.

F. Finally, it would be most productive to gather together, into one
master program, all of the cE diskette maintenance programs and
provide a menu approach to user interaction. This can be donequite easily inasmuch as the Intecolor BASIC supports executing
of the LOAD? and RUN commands as BASIC commands.

R. Jk. E onneau
Advanced Electronic Techniques

RJB/lc Wayland Box M9, x5171

Attachment: PGCOPY Listing 249
PGCOMP Listing

I TI iik(1) 'THF1 N.1. 0

PITT 27:F ra

250

I. (if NT(1 MV" V!: .NM F r.r:;:tn lI Wg, (::0 F4:M ItiIM:*r DI-

I '1 1 V1 OT2

f.1 N'(+

'T G 0 1.0 0

251

REFERENCES

A-1. Intecolor 8001 Users Manual, Intelligent Systems Corp.,
Norcross, Georgia.

252j

APPENDIX B

Subroutines and Data Structures in FTWRP

B-1 DOS-O Data Structures

B-2 IDOS-O Hierarchy and Subroutine Usage

B-3 IDOS-1 Subroutines

B-4 IOC Continuous Input Mode Subroutines

253

DOS-a Data Structures

LEVEL 0 SYSTEM DATA STRUCTURES

STRUCTUR E USED BY

1. INPUT/OUTPU F QUEUES DOS-0

2. FREE ENTRY STACK DOS-0

3. LEVEL 0 REQUEST STACK DOS-0

4. SYSTEM REQUEST DATA PACKETS USER PROGRAM

4-a. PHILOSOPHY OF USER LEVEL I/O

4-b. SYSTEM I/O PACKET STACK DOS-0

5. TASK LOAD MAP PAGE DOS-0

5-a. COMMON MEMORY DIRECTORY PAGE

6. SYSTEM STATUS BLOCK DOS-0 & DOS-i

6-a. PHILOSOPHY OF TASK SUSPENSION AND

7. CONFIGURATION TABLE DOS-0

8. LOGICAL DEVICE LIST USER PROGRAM

9. TASK PROLOGUE AREA USER PROGRAM

9-a. UNSOLICITED IN1UT - BUFFER FORMATS USER PROGRAM

10. EXECUTIVE MESSAGE FORMATS DOS-0

10-a. DOS-i TO DOS-0 MESSAGES

10-b. DOS-0 TO DOS-i MESSAGES

10-c. DOS-0 TO TRACE DEVICE

11. I/O HARDWARE STATUS WORD FORMAT USER & DOS-0

12. DOS-i FAULT MESSAGES/FAULT BITS OPERATOR & DOS-1I

13. CE PROGRAM STATUS WORD DOS-0

14. SYSTEM STATUS RETURN MESSAGE FORMAT DOS-0 & DOS-i

255

-' .'S,.Ig I, I II I~

UPDATI*: SUMMARY "OR REVIION A

Section 4 System Requests

" Corrected specification of multiple input requ est parameter

words.

" Added three more system requests:

7 - Data recording request

8 - Update data recording control words

9 - Modify virtual address

Section 5 Task Load Map lage

* Included definition for an entry to be used as a patch page.

Section b Conmnion Element System Status Block

o Defined Bit 9 of Word 0 as Bus Alternation Indicator

Section 9 CE Task Prologtie

" Added separate PSW values for unsolicited input and clock
interript entries

" Added modify virtual address indicator wor,'

" Added entry addresses and PSW' s of direct I/O of message
codes 5, 6, 10, II

" Added data recording control words.

Secfion 10 DOS-1 to DOS-O Messages

" Added bus control bits to configuration update message

* Added two new types-

6 - Update virtual address modification control word

7 - Update data recording control words

Section 10-B DOS-0 to DOS-I Messages

• Schedule task request uses indicator word of 8

Section 12 Fault Messages/Fault Bits
o Added four more faults; three for data recording, one for

PROM checksum testing.

256

UPDATES TO THE SYSTEM DATA STRUCTURES DEFINITIONS

Section 4 System Requests

e Added a new action to the task directives - Swap Tasks

* Added a new request (6) for registering a user detected fault
into the task status return message. Allowed up to 16 different
fault indicators.

Section 8 CE Logical Device List

* Added Device 9 - CE Diagnostic Task. This task is loaded by
each CE prior to tactical operations and may be loaded at a
later timew for detailed testing. The task number is 74 (octal).

Section 10 Executive Messages

Section 10A DOS-l to DOS-0 Messages

*Added a new message type (4) - Modify Memory. This message
type permits real-time patching of user programs with the aid
of DOS-O. The message specified the number of patches,
followed by the address-new value pair for each patch.

Section 10B DOS-0 to DOS-l Messages

o Added the swap tasks message to the task directives type. The
information supplied consists of the virtual addresses to be
swapped along witia starting addresses of each task when started.

257

INPUT/OUTPUT QUEUES (I/OQ)

" Separate double-linked lists for the input requests and the output
requests.

* Used to keep track of pending or ongoing I/O activities of the CE.

" Each entry consists of 24 words in the format below.

Word Mnemonic Description

0 IOFP Forward link (0 if at end of list)

1 10 BP Backward link (0 if at head of list)

2 IOPA Packet address of request

3 IOHW Header word list address (points to IONMHD)

4 IOCWC Current word count

5 IOCBA Current buffer address

6 X)STAT Entry status word

7 IOOPTS Entry options word (see packet option word)

8 IOCMPG Common memory page number

9 IOEA Entry address for associated I/O request

1 0 IOVA Virtual address of eventual destination

Ll IOVANM Index of virtual address in header word list

12 IONMHD Number of header words in following list

13-20 IOHDRS Header words

21 IOIDLT Multiply input request - Address Delta

zz IOICNT Multiply input request - Number of Requests

Z3 - - - Spare Word

* The status word (IOS AT) contains the following information:

Bit Number Description

I S Entry in use

g I/0O request completed

R EST Unde fined

258

1. INPUT/OUTPUT QUEUES (I/OQ) (Continued)

" Each queue has a number of pointer and counting variables

Variable Usage

ITOP, OTOP Indicates I/O entry at the top (front) of queue

IBOT, OBOT Indicates 1/0 entry at the bottom (tail) of queue

ICURNT, OCURNT Indicates I/O entry currently being processed

ICOUNT, OCOUNT Number of entries currently in the queue

* Currently, 20 entries available for use for both input and output.

2. FREE ENTRY STACK (FS)

* This stack contains addresses of available i/O queue entries.

* As I/O queue entries are requested (through the r, . e DOPOPF)
.1 -!-'i'''',,, (thr ... f!- O' '), thc free stack.gros ,nd shrinks.

* There are several pointer ind counting variables related to FS:

Variable Contents

FST Free Stack Top

FSB Vr,e Stack Bottom

FSC Free St-ck Current

FCOUNT Count of free entries

259

3. LEVEL 0 REQUEST STACr (LORS)

" Used by level 0 to respond to requests from higher level (interrupt)
routines.

" Each entry in stack contains four words:

Word Contents

I i--(quest Number - I No request

1 - 3 SuLpplemeintal data

" Typical requests currently envisioned are:

- Load user task (Request Number 0)

Data = User task load map page number

- Start user task (Request Number I)

Data = Task number, start address (or)

- Send fault message (Request Number 2)

Data = Fault identifier, 2 words of fault data.
See Section 12 for fault identifiers and
message data.

* Currently, five entries available

" There are several pointer variablcs:

Variable Usage

LORST Top of LORS

LORSB Bottom of LORS

LORS;C Current entrv of LORS

260

4. SYSTEM REQUESTS - DOS-(/

Request Data P1ackcet Format

0 Write Word 0 Status Word

Bit 15 Request Queued
I Read Bit 12 I/O Completed

Bits 11, 10 11 - I/O Error
1 0 - Data Management Error

Bits 7-0 11 -Status Byte
10 - Code

Word I Device Number (or Header List Address)

Word 2 Word Count

Word 3 Buffer Address (absolute address)

Word 4 Options

Bit 15 Executive Message (output only) -
Uses Word 7

Bit 14 No Retry on Recoverable Errors
Bit 13 Device = Header List Address

(output only)
Bit 12 Scatter Read (input) (uses Bits 7-0)
Bit 11 System Packet (Executive only)
Bit 1(0 Associated Input Requeet (Exec only)
Bit ') Common Memory Request
BiL 8 Multiple Input Request
11it 7 0 -Complex Scatter Read

1 -Real Scatter Read
Bits 6 - 0 Scatter Read Interval (1 - 127)

Word 5 Common Memory Page # or Multiple
Input Request Parameter

Bits 1 5 - 8 Number of Requests
Bits 7-0 Address Delta

Word 6 Associated Input Entry Address
(DO7-0 use only)

Word 7 Executive Header Skeleton (output only)
(Must contain message code - may contain
destination V A)

Zbl

4. SYSTEM REQUESTS -DOS-0 (Continued)

Request D Iata Packet Format

Z Trace Update Word 0

Bit 1 5 Clear - Stop tracing
Set =Start tracing

Bits 7 - 0 Trace frequency interval

3 Unsolicited Word 0 New Options Word (see Prologue
Input Update for Definition)

Word I New Data Buffer Address Relative to

Word 2 New Header Buffer Addes DORG

4 Clock Inter- Word 0 New Options Word
rupt Update

Words 1 -2 New Clock Period

5 DOS-I Task Word 0 Directive Types
Directives

I1 Schedule task
2 = Suspend task
3 = Resume task
4 = Abort task
5 :-Swap tasks

For Types 1, Z, 3, 4

Word I Task number

Word 2 Starting Address for Task Execution
(If 0, use address in prologue)

F or T, pe 5 (Swap Tasks)

Word I

Bits 15 -8 Virtual Address I of Swap
Bits 7 - 0I Virtual Address 2 of Swap

Word 2 Starting Address for Virtual Address I

Word 3 Starting Address for Virtual Address 2

6 Register Word 0 User Fault Number (0 to 15)
User Fault

?62

4. SYSTEM REQUESTS - DOS-0 (Contiu,!d)

Request Y Data Packet Format

7 Data Recording Word 0 Extraction Point Number
Request

Word 1 Number of Subrecords

Each Subrecord has Format:

Word 2 Number of Words (Subrecord 1)

Word 3 Absolute Address of Data to be Recorded

Word 4 Number of Words (Subrecord 2)

Word 5 Absolute Address of Data to be Recorded'

8 Update Record- Word 0 Logical Device Number (see Section 8)
ing Control Words

Word I Recording On Flags

Word 2 Recording Off Flags

9 Modify Virtual Data Ilacket Address New Virtual Address
Address

263

4-A. PHILOSOPHY OF USER LEVEL I/O

When a user makes a request for I/O, the status word of the user packet

(Word 0) must be set to 0. After the request is made, the sLatus word must be

checked in order to verify that the request was queued. This is done by testing

Bit 15; if set, the request has been queued and the i/O will be attempted. If

not, DOS-0 was unable to find space in its data base for the i/O request.

Once a request has been queued, the status may, be checked by interro-

gating the I/O complete bit in the status word (Bit 12). Until all of the requested

I/O has been completed or an error has occurred, this bit remains 0. Thus the

user should periodically check this bit. Once it is set, the determination of

correct or incorrect termination of the I/O request is determined through the

two error bits, 11 and 10.

Bit 11 set indicates an error has occurred in the attempt to transmit or

receive data. If Bit 1l is set, the bottom byte of the status word (Bits 7 - 0)

contains the i/O status word from which can be obtained the actual error. (see

Section I I).

Bit 10 set indicates an error has occurred in DOS-0' s attempt to

manage the data reprebented by this request. In this case, the bottom byte

contains a code indicating which type of error occurred; e. g. , word count too

large, etc.

If neither error bit is set, the I/O request has been completed as re-

quested and the user may now reuse the packe,,t for other requests.

1i a ,Ascr requ.test for input generates an output request, and an error

occurs in that output processing, both the output request and input request

packets are set to indicate an error, which would be the same error in both

packets.

264

4-A. PHILOSOPHY OF USER LEVEL VO (Continued)

Option Bits

Executive Message (Bit 15) (Outp4t Ony)

Used for output only. Permits the modification of the header list of the

device selected by OR'ing in the executive header word (Word 7 of packet) into

the destination header word. This skeleton must contain a valid message code

and may or may not contain a destination address, depending on the device.

No Retry on Error (Bit 14) (Output Only)

If this bit is set and a recoverable error is encountered (e. g. , bus busy

or receiver busy), the system will not retry the /O.

Header List Supplied (Bit 1 3) (Output Only)

Use of this option directs DOS-CA to bypass the device number to header

list translation phase of /O processing by using the header list address supplied

in the device word field of the user packet. Use of this option requires that both

the destination field and the message code field appear in the header list.

Scatter Read (Bit 12) (Input Only)

If this bit is set, the operating system request performs a scatter read

of data, which each word read being separated from the next by a count equal

to Bits 6 - 0 of the options word. For example, to scatter read into every 9 th

word, set Bit 12 and store a 9 into the lower byte. Bit 7 is then used to indi-

cate real (set) or complex (clear) read, i. e. , complex reads two words, skip,

read two word, etc.

System Packet (Bit 11)

When this bit is set, the DOS-0 system has invoked a packet from the

packet stack. In the case of I/O message completion, the packet must be re-

turned to the packet stack.

?b5

4-A. PHILOSOPHY OF USER LEVEL i/O (Continued)

Associated Input Request (Bit 10) (Output Only)

When set, this bit indicates that the current output request was generated

to an input request to a common memory or a non-bus-extender IOC. In

this case, the PAEA flied of the 1/O packet must contain the I/O queue entry

address for the associated input request.

Common Memory Request (Bit 9)

If set, the bit indicates that the CMv page field of the packet contain page

number to be fetched or stored.

Multiple Input Requests (Bit 8)

Automatically regenerates the specified number of input requests with

each input buffer address incremented by specified amount. Uses Word 5 for

number of requests and address delta.

Com.-non Memory I/O Reqlests

Output Requests

Device # (18, 19) - Device Field (Word 1)

Set Bit 9 iii Options Word (CM Request) (Word 4)

Set Page /I - M i.Page # Field (Word 5)

Data in Data Buffer Address - Buffer Address (Word 3)

Word Count Z40 (Word Z)

Input Request s

Device # (18, 19) - Device Field (Word 1)

Set Bit 9 in Options Word (CM Request) (Word 4)

Set Page 4 - CM Page # Field (Word 5)

Buffer Area - Buffer Address (Word 3)

Desired # Words Word Count (Word Z)

26b

4-B. SYSTEM i/O PACKETS AREA (SYSPA)

* Composed of five entries puintiny to a packet plus 5 words of

message area (SYSPA)

* Stack used to point to available packets (PASTK)

* Pointer into stack for currently available packet (PASTKC)

* Two routines to pop and push packets

* Counter, to indicate number of available packets (PASTCT)

0 Use,' by system routines for fault messages and DOS-i messages

0 Buffer Address Field points to message area of the entryl

5. TASK LOAD MAP PAGE

* Used by the DOS-0 loader Q)OLOAD) to control the loading of user
programns

0 Each user task is broken down into segments which represent up to

240 contiguous words of the task.

a Header words of thc load map page tell the type of load map

(currently always zero) the number of segments (1 to 59), an
identifier (i. e. , task number 27).

* Each segment is specified by 4 words:

- Common memory page number for the bodv nr fi,_* =egment

- Start address of where to load body

- Number of words to load

. Checksum of words to be loaded

0 Format is given on the next page

* Number of words to load entry may contain Bit 15 set. This indi-
cates a relocatable load of a data segment. DOS-0 responds by
loading the segment using the start address specified plus the start
address of global data.

* A Load Map Page entry consisting of a stack address and word

count both = 0 indicates a patch page and will be handled by the
loader as a patch page rising format of executive message type 5
(see Section 10).

267

Word 0 Word I Word 2 Word 3

'Number of,

Header Map Type Segnert f Identifier Spare

S Start Number of

Segment I Page No. [Address Segments Checlsum

Segment 2 U I,I III
Segment 3 I I

* I.Segmet 4 1,

* . I I

* I I

1 T I

Segment 59 I I

Load Map Format

268

5-A. COMMON MEMORY DIRECTORY PAGE

* For Common Memories containing stored programs, the directory
resides on page 3.

* Two words per entry, one entry per possible virtual address.

0 Entry contains an entry status word and a load map page number.

* If entry status word equals the virtual address, then a task with
the specified virtual address may be loaded using the load map
page number.

* Format:

Word 0 Word I

VA 0

VA 1 0 or 1 Load Map Page Number for Task 1

VA 177 0 or '77 Load Map Page Number for Task '77

z69

6. COMMON ELEMENT SYSTEM STATUS BLOCK (SYSTAT)

* Four word block of summary system status data to be sent to DOS-I
upon status request.

* Word 0 gives state of CE:

Bit Meaning

1 5 Initializing

14 Loading a task

1 3 Task loaded and not executed

1 Z Task in execution

11 Idle

10 Task Suspended (see next page)

9 Bus Alternation Indicator (0 = Disabled, I = Enabled)

8 Summary Error Bit - (If set, error bit(s) set in words
Z, 3, or 4)

7-6 01 Card Type = CE

5-0 Virtual Address

* Words 1, 2 describe a number of possible DOS-4 error situations:
where word I contains fatal errors and word 2, non-fatal errors.
See Section 1Z for assignment of error indications.

Word 3 - reserved for User Task Fault Indicator from 0 - 15.

2?o

6-A. PHILOSOPH1Y OF TASK SUSPENSION & RESUMPTION IN DOS-O

Suspension consists of a loop executed in the Irput Handler of DOS-O.

The loop is terminated by the receipt of an Executive message requesting

either task resine or task abort.

While a task is si ,:;perded, ro oul put inessages are transmitted; input

messages are accepted and processed. Any output complete interrupts re-

ceived will be proce'ssed, but no new miessages will be initiated. Also, while

a task is suspended, user clock interrupts are not honored.

Task resumption is caused by the receipt of the Executive message to

resume the task. In detail, the input pending handler clears the suspended

bit in the CE status word, upon whirh an "earlier" instance of the handler is

polling. Before this level is exited, the output routine is called to initiate any j

output which may have been queued while in the suspended state.

A task abort request is processed by setting up information in the level

0 request stack (I ORS) and performing a drop to level 0 to send an error

message to DOS-i and enter into the idle loop awaiting further directions from

DOS-i.

2/1

7. CONFIGURATION TABLE (CONFIG)

* Ccntains header lists and supplementary information pertaining to

the translation of logical device numbers into virtual addresses.

" For each device in the system, this table contains a 12-word entry

in the following format:

Word Number Mnemonic Contents

0 VA Virtual address of the final element
designated as the logical device.

I VAIN Index into the header list for the header
list for the header word containing the
virtual address of word 0; i. e. the
index to the destination header word.
Value lies between 1 and 8.

2 NID Number of header words in the follow-

ing list

3 1IIDRS 1 to 8 header which form the header list
used for all communications to the
specified logical device.

11 - - - Spare word

0 Part of this tablv is siet with diufault device assignments at start-up

time by DOS-0; bitt mnay be updated with new configuration data

received front DOS-I. Currently, the CONFIG table is initialized

for the following logical devices at start-up:

0 System Load Device

1 Bootstrap Load Device

2 System De!vice

3 Operator and Trace Device (used for pages 0, 1, 2)

4 Fault Display Device

272

8. COMMON ELEMENT LOGICAL DEVICE LIST

Device # Description Seek.Igloo Demonstration

0 Program Load Device '40 through '54

1 Bootstrap Load Device '17-Device 1-Port D

2 System Device (DOS-l) '77

3 Operator/Trace Device (Pages 0, 1, 2) 140 through '54

4 Fault Display Device Page 1 '40 through '54

5 General Device - Master Cluster 0

6 General Device - Slave Cluster 1 N/A

7 General Device - Slave Cluster 2 N/A

8 General Device - Slave 6luster 3 N/A

9 CE Diagnostic Task '74

10 Radar Data Source 150 - Device 1-Port C

11 Radar Data Collector 160

12 Radar Data Processor '61

1 3 Radar Data Post Processor 175

14

15

16

17

18 Clutter Map - Area 1 '44

19 Clutter Map - Area 2 145

Also, 173 - intermediate virtual address used during task swap.

273

..r

9. USER TASK PROLOGUE AREA

* Occupies the first 256 words (octal .100) of the RAM area.

0 Supplies information for Etarting user execution at various entry points

* Maintains the status of task execution

* Format as on next page

* Must be assembled into every program to be run on a CE.

274

9. CE TASK PROLOGUE (Continued)

Word Number Contents

0 Task Nurnber

1 Lnitializati.on Entry Address

2 Starting Address - Initial Load
*

3 Unsolicited Input Entry Address

4 Clock Interrupt Entry Address

5 Reconfiguration Entry Address

6 Starting S Value t

7 Socket Addresstt

'10 Global Data Size*

'11 - '27 Base Register Values*tt

'30 Unsolicited Input Options

Bit 15 - Accept Data
Bit 14

o Set: Data + Headers - Data Buffer

I Clear: Data - Data Buffer{Headers - Header Buffer

131 Data T3uffer Addrss*t

'32 lleaocr List Buffer Address RelativetoDORG 9

'33 Unused

134 ClockOtio * Bit 15 Set - Clock Interrupt Desired
CBits 7 - 0 - Clock Interrupt Frequency

'35-136 Clock Period t (LSB approximately Z ms)

(Continued on Next Page)

Set by User at Assembly Time

Modified by DOS-0 at User Request

Modified by DOS-0 for Operating System Usage

L7

9. CE TASK PROLOGUE (Continued)

Word Number Contents

* Bit 15 - Set - Start Trace
'37 Trace Indicator Clear - Stop Trace

Bits 7-0 - Trace Frequency

'40 Modify Virtual Address Indicator

Bit 15 = I Modify Permitted

= 0 No Modify Permitted

'41 PSW Values for Initialization Entry

'4Z PSW Values for Starting Address

143 PSW Values for Unsolicited Input Entry

'44 PSW V alues for Clock Interrupt Entry

'45 PSW Values for Reconfiguration Entry

346 - 47 Unused

'50 Direct I/O Entry Address Message Code 5*

'51 Direct I/O Entry Address Message Code 6* .

'52 Direct I/O Entry Address Message Code 10 Z

'53 Direct I/O Entry Address Message Code 11*o ;:j

'54 Direct /O PSW Value Message Code 5 N ~

'55 Direct I/O PSW Value Message Code 6 .1 .

'56 Direct 1/0 PSW Value Message Code 10S

'57 Direct I/O PSW Value Message Code I I

'60 - '77 Trap Locations */Return Addressestt

'100 Data Recording - Base Extraction Point Number*tt

'101 Data Recording - On/Off Flag Word*tt

'102-'377 Reserved for Expansion

Set by User at Assembly Time

Modified by DOS-0 at User Request

t$ Modified by DOS-0 for Operating System Usage

276

9-A. UNSOLICITED INPUT BUFFER FORMATS

0 Unsolicited input messages are available to the user task in two

portions; the header area and the message area. Below, we pre-

sent the structure of these two areas.

HEADER BUFFER:

Word Number Desig~nation Description

0 N Number of header words (1 or 8)

1 - N Hn Received header words

N + 1 M Message word count

MESSAGE BUFFER:

0 - M - 1 Words of the message

& The user may request these buffers to be stored in separate areas

or to be located in one area, in which case the header buffer pre-

ceded the message buffer.

0 Because of thie unknown nature of unsolicited input, the user should

reserve ten v'ords for the header buffer areas and 256 words for the

message buffer area.

* The user hat; the option of altering the unsolicited input options in

real time through a systemi request (number 3 - see Section 4).

277

10. EXECUTIVE MESSAGES

10-A. DOS-i to DOS-0 Messages

" All use a message code of 14.

* All the DOS-I to DOS-0 messages have the following format:

Word 0 Message type

Words 1 - n Body of the message

* The various message types and the structure of the body of the

message is given below:

Message Tye Format of the Messae Body

0 Load Task Word 1 Load Map Page Number

1 Start Task Word 1 Task Number
Word Z Starting Address or 0

2 Configuration Word I k Number of Configuration Items plus

Data Update Bus Control Word

Bit 15 0 = No alternating
1 = Alternating

Bit 14 0 = Bus A
1 = Bus B

Bits 13 - 0 Number of items

Word 2 1 Number of Words for Item 1 including
this word count

Word 3 d Device Number

Word 4 VA Virtual Address of Actual Card

Word 5 m Index to Final Header (1 - m n)

Word 6 n Number of Headers

Word 7-1+1 Header(s)

Word I + 2 and oi for items 2 through k

3 Task Word I Directive
Directive i Suspend Task

3 Resume Task
•4 Abort Task

278

10-A. DOS-i to DOS-O Mcs.,at!s (Continued)

MessageTyL_ T'rr)al ot tlie Messaga Body

4 Memory I/C (See M. J. Young Memo MJY-04A)

5 Modify Memory Word I n Number of Modifications

Word 2 Address for Modification 1

Word 3 New value for Address in Word 2

Word 4 Address for Modification 2

Word 5 New value for Address in Word 4

Word Z Address for Modification n

Word Zn+1 New value for Address in Word Zn

6 Update Virtual Word 1 New Virtual Address Modification
Address Modi- Control Word
fication Control Set: Modification Permitted
Word Bit Is 5 Clear: Modification Prohibited

7 Update Record- Word I Recording On Flags
ing Control
Words Word 2 Recording Off Flags

279

10-B. DOS-0 to DOS-1 Messages

All have format of:

Word 0 - Message Type

Word I - n - Message Body

Message Type Body Format

1 Error Messages Word 1 Fault Number t Message Code = 9
Word 2 - n Subsidiary Data

2 Task Directives Word I Action

0 Task Loaded as Requested

8 Schedule Task
2 Suspend Task

3 Resume Task
MC 3

4 Abort Task

5 Swap Tasks

Word 2 Task ID(s) for 8, 3, 4, 5*

Word 3 Start Address ** (1)

Word 4 Start Address (Z)

*Swap Task - Virtual Address I in bits 1 5 - 8, Word 2

Virtual Address 4 in bits 7 -0, Word Z

Start Address for Virtual Address I in Word 2

Start Address for Virtual Address Z in Word 4

**Schedule Task - Start Address - If g, DOS-O uses address in

prologue. Word 2.

NB uses 73 as an intermediate VA during swap.

280

10-C. DOS-0 to Trace Device (Page 1 of Common Memory, 140)

Word Number Contents

0 Page Sequence Number

1 Test Number = Z for Trace Message

S0 Register Dump
I Registers and Memory

3 Word Count (n) for memory dump option,
must be less than Z22 words.

4 Starting address for memory dump

5 - 9 Spare words

10 - 18 Register contents: M = Instruction, P, S, B,
X, A, E, I, W

19 - (n + 17) Memory dump

281

1i /0 STATUS WORD FORMAT

The 1/0 status word is divided into four fields: receive word count,

receive status, transmit status, last transmit bus.

Receive word count Receive status Transmxit status Bus

Bits Status Field Definition

15 - 8 Receive word count for last block received. Does
not include the initial header word.

7 - 5 Receive status Octal

100 -Idle 200
110 -Parity Error on Bus A 300 n nerp
101 -Par ity Error on Bus B 240jniterp
010 -Incomplete Block A 100
001 -Incomplete Block B 040
000 Receive Buffer Full 000
All others - Illegal

4 -1 Transmit Status octal

1111 - Transmit Triggered 036
1101 - Bus Busy 032
1 011 - Arbitration Fault 026
1001 - Reply Fault 022
0111 - Receiver Busy 016
0101 - Parity Error 012
0011 - Timing Fault 006
0001 - Done 002
0000- Idle 000
All others - Ill egal

0 Last Transmit Bus

0 - Bus A

I - Bus B

282

12. FAULT MESSAGES/FAULT BITS 'PO DOS-I

Imp. No. Fault Fault Data Routine

X 1 Illegal Instruction Address, Instru DOILLI

X 2 Illegal Address Address, DOILLA

X 3 Stack Overflow Overflow Indicator DOSTAK

X 4 Invalid System Call Call #, Packet Addr. DOSYSC

5 System Call I/O Error P.A. , Status DOSYSC

X 6 Input Error Status Word, Header DOIN

7 Unable to Queue Input

8 SPARE

9 Unable to Queue Input DOLOAD

10 I/O Error or Checksum Error DOLOAD

11 Unable to Queue Input Request Packet Address DOUR

12 Unable to Queue Output Request Packet Address DOUR

1 3 Unable to Queue Output Request Packet Address DOIOR

X 14 Incorrect Header List First Header DOIIN

X 15 Invalid Message Code Code, Header IOIN

16 Task Abort DOPIM

X 1 7 i/O Trace Error Status Word Status Word DOTRAC

X 18 Undefined Execute Message Message Number DOPIM

X 19 Unwanted Unsolicited Input Header Word DOPUNS

X 20 Execute Message not from Exec. Header DOPIM

X 21 Returned Message Header DOPIM

X 28 1/0 Error in Data Rcording N/A DOSYS 7

X 29 Buffer Overflow in Data Record. N/A DOSYS 7

X 30 Faulty Extraction Point Number N/A DOSYS 7

X 31 DOS-0 PROM Checksum Error N/A DOCLCK

Cur rently Implemented

283

,a, -' . #S dI al l •neml mn I I

12. FAULT MESSAGES/FAULT BITS TO DOS-i

_ No. Fault Fault Data Routine

X 1 Illegal Instruction Address, Instru DOILLI

X 2 Illegal Address Address, DOILLA

X 3 Stack Overflow Overflow Indicator DOSTAK

X 4 Invalid System Call Call #, Packet Addr. DOSYSC

5 System Call I/O Error P.A. , Status DOSYSC

X 6 Input Error Status Word, Header DOIN

7 Unable to Queue Input

8 SPARE

9 Unable to Queue lrpput DOLOAD

10 1/0 Error or Checksum Error DOLOAD

11 Unable to Queue Input Request Packet Address DOIIR

12 Unable 1o Queue Output Re-ttest Packet Address DOTTR

13 Unable lo Queue Output Request Packet Address DOIOR

X 14 Incorrect Header List First Header DOIN

X 15 Invalid Message Code Code, Header DOIN

16 Task Abort DOPIM

X 1 7 I/O Trace Error Status Word Status Word DOTRAC

X 18 Undefined Execute Message Message Number DOPIM

X 19 Unwanted Unsolicited Input Header Word DOPUNS

X 20 Execute Message not from Exec. Header DOPIM

X Z1 Returned Message Header DOPIM

X 28 I/O Error in Data Recording N/A DOSYS 7

X 29 Buffer Overflow in Data Record. N/A DOSYS 7

X 30 Faulty Extraction Point Number N/A DOSYS 7

X 31 DOS-0 PROM Checksum Eror N/A DOCLCK

Currently Implemented

284

13. COMMON ELEMENT PROGRAM STATUS WORD (PSW)

15 14 13 1Z 11 10 9 8 7 6 5 4 3 2 1 0

.. . Unused 4. RS OiF 7 _ _ i Dr.

Bits Field Name Description Values

7 - 5 RS Register Set Number 0 - 7

4 OF Overflow Indicator 0 - No overflow
I - Overflow

2 T Trace Indicator 0 - No trace
1 - Trace

1 M Program Mode 0 - User (non-private)
1 - System (private)

0] Interrupt Enable 0 - Dfsabled
I - Enabl ed

3 1 Instruction Set No. 0 - Set 0
1 - Set I

*Interrupts include:

i. Output complete

ii. Input pending

iii. Clock interrupt

iv. Trace interrupt ?

285

14. SYSTEM STATUS RETURN MESSAGE FORMAT (CE/IOC/CM)

Word Number Format/Contents

0 Bits 15 - 9 Status of Card

Bit 8 Error Summary Bit

Bits 7 - 6 Card Type

00 Illegal
01 CE
10 lOC
11 CM

Bits 5 - 0 Virtual Address

I - 2 - 3 Error Indicators - I bit per error

NOTE: Error summary bit in word 0 is set whenever one or

more error indicator bits are set in words 1 through 3.

See Memo H. E. T. Connell HETC-04 for more details

on stattis return messages.

286

Release of DOS-0 Version 22

Version 22 of DOS- was released on March 15, 1979 into

all CE's in the Sudbury Test Facility. The only major update item

for this version is that two new system requests have been added

to the list of scrvices provided by DOS-,).

These new system requests are:

System Request 10 - Dequeue an output request

System Request 11 - Dequeue an input request

Both of these requests require a packet address in the A

register at the time the request is issued. Upon return from the

request, bits 13 and 14 of the status word of the racket (word)

may be interrogated in order to obtain some inform tion about the

dequeuing request. In-particular,

Bit 13 set implies that the specified packet address
was found in the queue and that the request
was properly dequeued

Bit 14 set indicates that the packet address was not
found in the queue and that no action was
taken

These system requests have been implemented to alleviate the problem

of 10 request entries (in DOS-) becoming exhausted in the case where

a user "time's-out" on an 10 request and reinserts another request into

the queue.

Thus, the following sequence should be used for maintaining

maximum 10 entries in DOS-0:

Issue system request to read/write

Check status of queued 10 request

If request not complete, issue system request to

dequeue (and set on error indicator)

Perform processinq

Any problems relating to these new system requests should

be reported to me.

287

B-2

IDOS-O Hierarchy and Subroutine Usage

288

AD-AIDS 253 RAYTHEON CO WAYLAND NA EGUIPNENT DIV /9 17RGD EGUIPMENT INFORMATION REPORT. FAULT TOLERANT WEATHER RADA E/ 1TC()N
MAR1 & I j YOUNGA JJAOODI FI962ARm-TRl-1

UNCLASSIFIED ER8I1AO 3 AFL-TR-B1-0086 N

4.'4 m hhhm""III'."'.M

hillEMM~i

160

1.1 L1.8

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUR[AU 01 StANDARDS 1963 A,

ULJ a)
C> -t)
m L c

E 4J/- 4 c

'.0 .4- 0 W

.D .- to

V) a)M MS-

4-) (A

cx'

~4 I- 0-

ko 4J a 9= S.-

LL- Fra
S, -,' ______ z UoZ - I-

I-- 4--) (ULJ 4- 4

4-' 4-- +0 U
o c L- c t

CCU
-&-oSI
CL a) V)

= u u289

Table B-2. IDOS-O Subroutines and Functions

Name Function Parameters Returned Values

DOINI IDOS-0 Initialization
starts Interval timer
interrupts, sets up tables,
calls IUSER

DOIDL IDOS-O Idle Loop Entered
From Fatal Errors

IDOSO Interval Timer Service
Routine - Polls TIE,
Updates User Clock

IOMRI Input Message Processor

PORES Reset Function Handler

PASIT Passes Buffer to User

FMSG Outputs Fault Message to
DOS-i

SRTND Status Return Processor

TEXT Text Message Processor

LOPROT List to Protected Screen HL = Address of None
character

D = Y Boundary

E = X Boundary

LVA Load Virtual Address
Handler

RTND Returned Block Processor

EXEC Executive Message Handler

FETCH Buffer Fetch - Constructs HL = Buffer Packet
Pointer

Buffer Packet

290

Table B-2. IDOS-O Subroutines and Functions (Cont'd)

Name Function Parameters Returned Values

ICC Checks for Inter-Cluster HL = Header List Carry = Yes
Communication (multiple No Carry = No
Headers)

CMINP Common Memory input Handler

CMOUT Common Memory Output

SWTHD Updates Headers to Return DE = Address to
a Message which Headers

will go

SWITCH Switches Sourse & Destin- BC = Header
ation in a Header

STATUS Status request Processor

DECODE Determines if CM Page is BC = Page No DE - Buffer ADDR
on Disk or in RAM sets up
FCS Command and Buffer

IOMOR System Service Handler A = Call Number

DE Service Parameters
HL

DOOUT Message Output Handler B = Header Count A = Status
C = Word Count
DE = Header List ADOR
HL = Data Buffer ADOR

DOCLK User Clock Update BC = New Options

DE = New Period

DOSUA Set Virtual ADOR B = New VA

DOSEL Select Bus B = New Bus Option

DORFL Register Fault U = Fault Number

Z91

Table B-2. IOOS-0 Subroutines and Functions (Cont's)

Name Function Parameters Returned Values

NEWBF Fetch New Input Buffer HL = Address to A Status of

Packet Store Packet Packet

RELBF Release Packet

DOPGM Initialize Page Map

SWINT Software Interrupt Handler

FLTMSG Output Fault Message A = Fault Number

SCALL Invalid System Call E = Sys Call No.

ISERR 1/0 Status Error Handler

IVAMC Invalid Message Code
Handler

TABRT Task Abort Handler

UDIDO Invalid Exec Message E = MSG Type

EXNDI Exec MSG Not From DOS-i
Handler

DOIER Input Message Error - Hard Drop to Idle Loop
Failurle

DOLOR Output Error - Hard Failure Drop To Idle

292

IDOS-0 Major Variables and Data Structures

Variable Size Starting
Name Bvtes Address- Description

C NTBL 512 F400 Configuration Table, Not Used

At Present

PGMAP 512 F600 Page Map

PGBUF 512 F800 Temporary Page Buffer
(Available to User)

PGOOO 512 FAOO Page 0 Buffer
PGOO1 512 FCOO Page 1 Buffer

PGO02 512 FEOO Page 2 Buffer

STATO 2 E008 IDOS-0 Task Status Words,
STATI 2 EOOA Sent to DOS-i

STAT2 2 EOOC Upon Status Request
STAT3 2 EOOE/ Message

NCLK 2 E006 User Clock, Current Value

IBUFP 2 EOlO IDOS-O Input Packet Pointer
CBPTR 2 E012 Current Buffer Pointer

CHDRCT 1 E014 Current Header Count

CHADR 2 E015 Current Header Address

CSRC 1 EO17 Current Source
CSRCPT 2 E018 Current Source Address

CWDCT 1 EO1A Current Word Count
CMSGCD 1 EOIB Current Message Code

CCMPG 1 E01C Current CM Page Number
BUFOF I EOID Packet 0 Buffer Full Flag

PTRO 2 EO1E Packet 0 Buffer Pointer

HDCTO 1 E020 Packet 0 Header Address

293

IDOS-O Major Variables and Data Structures (Con't)

Variable Size Starting Description

HDADO 2 E021 Packet 0 Header Address

SRCO 1 E023 Packet 0 Source

SRCPO 2 E024 Packet 0 Source Address

WDCTO 1 E426 Packet Word Count

MSGO 1 E027 Packet Message Code

CMPGO I E428 Packet 0 CM Page No.

BUFIF 12 E029 Packet 1

BUF2F 12 E035 Packet 2

TEMPO 1 E042

TEMP1 1 E043 Temporary Storage

TEMP2 1 E044

SRETF I E045 Status Return in Progress
Flag

SBUSF 1 E046 XMIT Bus Option

ALTBF 1 E047 Output Failure Retry in
Progress

RETRF 1 E048 Retry Authorization on
Output

SVCFG I E049 Software Interrupt in
Progress

UBUFP 2 EO4A User Input Packet Pointer

RESET 1 E04C Reset in Progress

OSTK 2 EO4D User Stack Pointer Save
Area

INDRO 16 EO4F Header Buffer - Packet 0

294

IDOS-0 Major Variables and Data Structures (Con't)

Variable Size Starting Description

IHDRI 16 E24F Header Buffer - Packet I

IHDR2 16 E44F Header Buffer - Packet 2

IBUFO 496 EO5F Data Buffer - Packet 0

IBUF1 496 E25F Data Buffer - Packet I

IBUF2 496 E45F Data Buffer - Packet 2

BUFAD 480 E661 Output Buffer for CM Input
Handler

L

B-3

I DOS-i Subroutines

296

Table B-3. IDOS-1 Subroutines

Name Description

IDOSI Main entry point--performs initialization

DIENT Pulse-Pair processing entry point

RESTART Restart entry point (after RESET)

SYSIN Entry point for processing CONT command

STARTUP Loads all tasks in preparation for system startup

CLKIN Inits all clocks (system clock, spare rotation clock, etc)

ERSCR Erases the screen, then enters the command processor

CMDPRO Command processor

CMDER Illegal command entry point

PARER Illegal Parameter entry point
HL = position of error

NOPAR Missing Parameter entry point
HL = position of error

ERPOS Outputs position of error in command line
HL = position of error

CLKSVC Clock interrupt service routine

RECNF Reconfiguration routine
A = VA to be reset

STPOLL Status poll routine entry point

CLEAR Erases screen, then repaints status on display

LSTAT Paints status on display (without erasing first)

MSGP? Message input interrupt handler

MSCD3 Message Code 3 handler

STPRO Status return (message code 8) handler

DSPMSG Displays message to screen

FAULT Fault message (message code 9) handler

RLBUFF Release input message buffer to IDOS-O

STNUP Updates STNDX table

A = old VA

B - new VA

291

Table B-3. IDOS-1 Subroutines (con't)

Name Description

0 ='card type

1 = VA
2 = Status byte 1

3 a Status byte 2

4 = job status
5 = task ID

6 = task VA

7 = status poll count
C = entry number (SA)

DEHL modified
SYSLD Fetch SYSTBL entry (value returned in A)

B = word in entry

C = entry number (SA)

DE,HL modified
FSTNX Fetch STNDX entry (returned in A)

A = VA

DEHL modified
BREAK Checks for keyboard (BREAK) key depressed

Z = break is detected
RILST Remove VA from idle list

(SP+2) = VA
TASK A,B,DE,HL modified

CARRY = error in task load
CESRT Starts all loaded tasks

CARRY = error in task start
CESPR Checks spare list for loadable CEs

CARRY = none found
TSKER Task load e-ror (fatal

298

I

Table B-3. IDOS-1 Subroutines (con't)

Name Description

IOCER IOC failure (nonfatal)

SYSER System error (fatal)

TSKLD Loads a task

DE = task ID

TSRL = task VA

SUSTK Suspend all tasks

RESTK Resume all tasks

ABRTT Abort all tasks

ABRT Abort a task

A = VA to be aborted

C = SA of card to be aborted

IOCST IOC startup routine

SNPAR Send signal processing parameters to CE

A = VA

STPSP Stop signal processing in CEs

A = VA

CARRY = not stopped due to error

SPROT Performs spare rotation

P1UPD Page 1 Update interrupt handler (displays CE memory
dump or trace data)

The following routines perform the command processor functions

RES Performs RES command

DIR Performs DIR command

CLR Performs CLR command

SAV Performs SAV command

LOA Performs LOA command

PRNT Perform PRINT command

RADIX Performs RADIX command

299

Table B-3. IDOS-1 Subroutines (con't)

Name Description

CYB Performs CYB command
INIT Performs INI command
TSK Performs TSK command
ST Performs ST command
DSP Performs DSP command
POMOD Sets up Page 0 for DSPM and MODM commands
MODFY Performs MOD command
MSG Performs MSG command
SVA Performs VA command
SBUSS Performs BUS command
CMR Performs CMR command
CMW Performs CMW command
CMREQ Common processing for CMR and CMW
SCH Performs SCH command
CON Performs CON command
TRA Performs TRA command
TSP Performs TSP command
TRS Performs TRS command
SETT Performs SET command
STQ Performs STQ command
CTQ Performs CTQ command
ABOTR Performs ABORT command
CPP Performs CONT command

300

Table B-4. FTWRP Subroutines and Functions

Name Description

START Initialization entry point

DWELL Main processing loop and dwell-level entry point

FORMAT Formats and outputs data to OS

OUTDAT Outputs a message to OS

OSLINT Outputs SLINT data to next CE

IQPULS Coherent channel puse-level processor

LZPULS Reflectivity channel pulse-level processor

DOS1DR DOS-i directives handler

CHGPAR Changes signal processing parameters

CHGVAD Sets up CE to change VA for spare rotation

CHGLT1 Loads Range Normalization look-up table

CHGLT2 Loads Tangential Shear look-up table

SUSPEN Suspends signal processing

RESTRT Restarts signal processing

CHGLUT Common processing for CHGLT1 and CHGLT2

SLNTIN Inputs new SLINT data from previous CE

TSKINI Initializes all packet addresses and constants

301

B-4

IOC Continuous Input Mode Subroutines

302

IOC Continuous Input Mode Subroutines

NAME DESCRIPTION

RECVIN Determines the wordcount of the next block of data
and places it in R6

RFCBLK Used in "pinq-ponqinq" X and Y RAMS by setting one
RAM in input mode, while preparing other for output.

PRETRN Assumes wordcount is in R6. Writes the header word
and wordcount in RAM in preparation for transmission
to a CE.

TRANSM Starts transmission in one RAM, then prepares other
RAM for receiving from Inout Synchronizer. Waits until
transmission is complete, and checks transmitter status.

SWRAM Used in copying virtual address and wordcount list from
oriqinal RAM to other RAM.

INPSEL Determines whether coherent chanel or reflectivity channel
data is to be input next, and places value of RI or R5
into R2 accordingly. R2 will thus have the address of
the next virtual address and wordcount to be used.

ADDRAM Addresses the proper RAM at the address contained in
register R2.

CMTN Sets tIn receiver to begin receiving at the third word
in the current RAM (leaves two words for header and
word count). Starts receiver, then the transmitter
is started.

303

APPENDIX C

"Notes on Circular Vectoring"

(D. A. Syiek memo #DAS-02)

304

'1 o.o, , 10 .0$, .1 o, C lossiic ti n U n cla s sifie d

D I V I S I0 N EQUIPMENT Contract No. F196Z8-78-C-01 13
Operation EDL
Department ADL - Advanced Electronic Techniques Distribution cc

To A. J. Jagodnik, Jr. F;ile No. EM78-0422

From D. A. Syiek Memo No. DAS-02

Subject Notes on Circular Vectoring Date 2 August 1978

ABSTRACT

One of the concluding steps in the algorithm implemented by the
FTWRP being developed for AFGL to replace existing hardware, is the
calculation of tan-1 (y/x). In the present system, special-purpose
hardware utilizes a ROM look-up table to find this number. However,
with the proposed new system, such an approach represents an un-
necessary cost increase, as the processor itself is capable of being
programmed for this calculation. This paper is a short treatise on the
method used to implement this operation.

Initially, traditional Cordic was explored as a possible solution.

This method visualizes x and y as coordinates of a vector, the angle of

which is equal to tan- 1 (y/x). If one rotates this vector about the origin

until its y component is zero and its x is max. positive, then the original

angle of the vector is found by summing the amount of rotation required to

reach this state. The angular rotation is performed by rotating towards

the positive x axis a little at a time, using fixed angles of decreasing magnitude.

Any series of angular rotations is acceptable provided the sum of the re-

maining series at any point is at least as large as the amount yet to be rotated.

This condition necessitates that the sum of the entire series be k 1800 in

order to accommodate the entire range of -1800 to +1800. This also means

that the sum of the remaining series at any point must be at least as great as

the current angle of rotation. In more formal terms:

Theorem:

Given a vector of angle 6, in the range -180" to +1800, any series of

rotations (_.+a, ±(%2 ' ±(Z3" +--n made towards the positive x axis will
n n

cau'o y to converge to zero if: (1) i 1800 and (2)

for j - , 3...

305

Unclassified

DAS-02
2 August 1978
Page 2

,"Proof:"

(1) Obvious if allowed to range f!,m -1800 to +1800. (2) Suppose

that at rutation i, ei Z 0, (the proof of the case of e i< 0 is identical) and

we want to rotate Li degrees. Then 8i + 1 = 9i - Mi. el+ 1 is either 2 0 or

<0 depending on the relative magnitudes of ei and ai" If 8 is <0, then
+ an be as negative as -"i (since ei was as small as zero) and the sum

of the remaining rotations must be a2i to correct for this error. If ei + I is

> 9, then the sum of the remaining rotations must be 2 ei+ I for the same

reason. Since the fastest converging series usually rotate at least half the

remaining angle at each step, we shall assume that if 9i+ 1 a 0 then it is also

!C" Thus in both cases, the sum of the remaining rotations must be Z 2i"

One can see that given these requirements, the fastest converging

series of angular rotations is the one given by Li = 180. 2 i where i = 1, 2, 3...

Cordic chooses its series as follows. The first rotation is chosen

as 900 and new x, y coordinates are computed directly:

x 2 = Yl'

Y2 Xl) (for clockwise rotation)

Succeeding rotations are chosen based on the following:

y
(x i , y)

Yi J k. . (Typical clockwise rotation.
Argument is the same for counter-
clockwise rotation, only signs change.)

Yi+ I (xi+ 1, Yi+l)

x = r. cosO9

yi = ri sin 9i

306

Unclassified
DAS -02
2 August 1978
Page 3

x i+ 1 = X. + kiri sin 0i

Yi+ I -Yi - kiri cos ei
(2)

Substituting equation (I) into (2),

x i+ I x i + k iyi(3

Yi+ I = Yi - k.x.
(

k.r.
tan i - k i (4)

Cordic chooses k. such that all math can be done by shifts and adds:

k 2 - (i - l) , i=2,3,... Sotan i = 2"(i1l) andL tan1 (2i l)) The

resulting series of angles is [90o, 450, 26.50... tan (2) and can be

shown to fulfill the two requirements set down in the theorem. When imple-

menting a Cordic routine, these angles must be kept in a table and added (or

subtracted, depending on direction of rotation) from the rotational sum at

each step of rotation.

Cordic has the disadvantage of being a "growing" algorithm in the sense

that the length of the vector increases at each step of rotation. In the limit,

the final vector may be as much as 1.65 times as long as the initial one. If

this disadvantage is coupled with the fact that a non-growing rotation naturally

results in a final x coordinate which may be N-2 times as great as the largest

initial coordinate (case of 450 vector), it means that in order to avoid overflow,

x, y inputs, which are allowed to range over the entire precision of the

computer, mustbe scaled downby a factor of/(NG. 1.65) or .43. With

traditional machines this would be done by right shifting arithmetically two

places and would mean a loss of two bits of precision.

33(17

Unclassified
DAS-02
2 August 1978
Page 4

An algorithm similar to Cordic which converges faster can be discovered

by re-examining equations (3) and (4). Choose mi to be that of the fastest

converging series mentioned earlier. Thus ai = 180 • 2"i and ki solves to be

equal to tan (180 - 2-i). Note now, that this approach requires more than just

shifts to do its rotations. The equations for xi+ 1 and y are now:

=i1 x i + tan (180. 2-1) Y 1
(clockwise rotation) (5)

Yi+1 = Yi - tan (180 2 -) xi)

In the FTWRP, however, such divisions are made easy using the TRW MPY-16AJ

multiplier.

When implementing an algorithm of this type, a table of tan (180 • 2-i

must be kept and referenced for each rotation. Angles of rotation may be

calculated by shifts since each angle is half its predecessor.

Growth on this algorithm limits to a factor of about 1/(/7 • 1.58) or .45.

This algorithm has the advantage of fast convergence with only two uses

of the multiplier per iteration. Also since only a tan table need be kept,

memory usage is at a minimum.

A third algorithm uses the fast convergence and a non-growing rotation.

Non-growing rotation is possible through the use of the standard trigonometric

rotation equations:

= + xi COS a + y1 sin cx
(clockwise rotation) (6)

Yi+l = Yi cos i xi sin i

Where mi is again determined by ai = 180 • 2-i = 1,2,3...

308

Unclassified

DAS- 02
2 August 1978
Page 5

In this case, tables of coo Mi and sin Xi must be kept and referenced

at each rotation. Again angles of rotation can be found by shifts since each

is half its predecessor. Note also, that the TRW multiplier makes possible

the divisions on which this algorithm is based.

Scaling problems are limited to the V-2 factor 4it ,.ussed earlier. Thus,

inputs must be scaled by 1//- or . 707 before implementing the algorithm.

This is a loss of 1 bit of precision if a single rig.,it shift arithmetic is done.

Conclusion:

After a careful study of the relative speeds of execution on the FTWRP,

it was found that the second algorithm ran the frstest but was closely followed

in speed by the third. It was decided to ir.;plement the third algorithm due

to its increased accuracy.

D. A. Syiev
Advanced Electronic Techniques
Wayland Box M9, x2737

DAS/lld

cc: K. Glover (3) AFGL
K. Banis
G. Armstrong

P. C. Barr
G. A. Works
M. J. Young

309

APPENDIX D

FTWRP System Timing Considerations

310

A...................

There are two major considerations involved in determining the

maximum capabilities of the FTWRP system. The first of these is the IOC

Continuous Input Mode timing, and the other is the speed of the CE-resident

pulse-pair algorithms.

While in the Continuous Input Mode, the IOC must receive and transmit

two packets of data for every block of range cells (in the normal system,

5 blocks). Therefore, there must be 10 packet transfers for each radar

pulse interval.

The maximum time the select lines (SELO and SELl) may remain inactive

(that is, the time when neither is active and switching from one to the

other is taking place), is determined by the following formula:

Tsel(usec) = Tp * (Nrc/Nce) - 2 * Ef * (Nrc/Nce)]
2

where Nce is the number of processing CEs (normally 5)

Nrc is the number of range cells processed per pulse repetition
interval

Tp is the time per range cell (in Useconds)

and f is the FTSP bus data bandwidth in psec/word.

Table D-1 enumerates various values for Tsel with all possible values

for Nrc, Tp, and bus bandwidth. Empirical analysis shows that the actual

inactive select time in FTWRP is approximately 32-38 usec. The bus band-

width is somewhat greater than 4 Mwords/sec, but less than 5 Mwords/sec

(the actual value must still be determined). Therefore, according to

Table D-I, depending on the actual bus bandwidth, 1024 range cells @ 1

usec is certainly possible, and 768 range cells @ 1 usec is probable.

Other combinations, such as Nrc - 256 @ 1 usec, are clearly unrealizable.

The CE timing is affected by four major components of processing:

1) the reflectivity pulse-level processing, 2) the coherent pulse-level

processing, 3) the dwell-level processing, and 4) the output formatting

operation. These times are determined by the following formulae (all

values are in number of microcycles):

311

Reflectivity:

Tr = [(Nsi - 1) (129 + 3Nrc)] + (247 + 3Nrc) + 1OONsi

Coherent:

Tc = [(Nsi - 1) (139 + 1lNrc)J] + (245 + 11Nrc) + 1OONsi

Dwell Processing:

Td = 614 + 111Nrc

Format and Output:

Tf = 1521 + 9693(Nrc/79) + 106(Nrc mod 79)

where:

Nsi number of pulses per dwell

Nrc = number of range cells per CE

/ = integer divide (truncated result)

The total time required to perform on a dwell of information is thus

T = Ttic(Tr + Tc + Td + Tf)

where Tpc is the CE microcycle time (for ease of computation, 250 nsec

is used here, but actually it is closer to 240-245 nsec).

Using the above formulas, assuming Nrc = 768, the worst-case maximum

PRF of the radar transmitter is determined to be:

PRF = 1236 Hz (Nsi = 64)

1358 Hz (Nsi = 128)

312

Table D-1. Maximum Allowable Inactive Select Times

Tsel

Nrc Tp f = .25 f = .30

256 1 12.5 9.9

512 1 25.0 19.8

768 1 37.5 29.7

1024 1 50.0 39.6

256 2 38.0 35.4

512 2 76.0 70.8

768 2 114.0 106.2

1024 2 152.0 141.6

313

APPENDIX E

Look-Up Tables

314

Listing E-1. Range Normalization Table Generator

10 B=120:C=100
20 P1=1/(LOG(10)):P2=6/(F'I*LOG(2)*0.4)
30 FOR C=100 TO 101
40 A=53248:M=O
45 A=A-65536
50 D=15
60 IF C=101 THEN D=31
70 POKE A,0:POKE A+195
80 A=A+2
90 FOR L=1 TO 5
100 Z;=49152-65536
101 PO:E zO:POKE Z+l,0:Z=Z+2
110 FOR N=MTO M+239
111 IF i-.0 THEN 150
112 IF N=1024 THEN 155
120 X=INT(F'I*LOG(N)*P2)ID
130 POKE Z,O:F'OKE Z+I,X
131 PR1NTNX
140 Z=Z+2
150 NEXT N
155 E$="SAVI :PAGE."
160 PLOT27?:FLGT4
170 PRINT $+IGI-NT$(STR$('),3)+" 0000 11O"
180 PL0fl2>:FLU 2/
190 B= o-;1
200 M=i1+240
210 POKE AO:POKL L A+IB-1
220 POKE f-42,0*:FOK A-1,39240
230 A=A-f4
240 NEXT L
250 POKE A-1,64
260 PLOT27:PLOT4
270 PRINT E$+R[IGHIT$(s:'mt: h),3)+" DO00 lEO"
280 PLOT27:*PLOT2.7
290 NEXT C
300 END

Table C-I. Range Normalization Tables kTp = 1PS)

1 53 100 105 115
2 29 54 101 106 115
3 38 515 01 107 1164 44 56 102 108 116

5 49 57 102 109 116
6 53 58 102 110 116
7 57 59 103 111 116
8 60 60 103 112 117
9 62 61 1.03 113 117
10 64 62 104 114 117
11 66 63 104 115 117
12 68 64 105 116 117
13 70 65 105 117 118
14 72 66 105 118 118
15 73 67 105 119 118
16 74 68 106 120 118
17 76 69 106 121 118
1 77 70 106 122 118
19 78 71 107 123 119
20 79 72 107 124 119
21 80 73 107 125 1192 81 74 108 1. 119
23 82 75 108 127 119
24 83 76 108 128 120
25 84 77 109 129 120
26 85 78 109 130 120
27 86 79 109 131 120
28 87 80 109 132 120
29 87 81 110 133 120
30 88 82 110 134 120
31 89 83 110 135 121
32 90 84 110 136 121
33 90 85 111 137 121
34 91 86 111 138 121
35 91 87 ill 139 121
36 92 88 111 L40 121
37 93 89 1.12 141 122
38 93 90 112- 142 122
39 94 91 112 143 122
40 94 92 112 1.44 122
41 95 93 113 145 122
42 95 94 113 146 122
43 96 95 113 147 122
44 96 96 113 148 123
45 97 97 113 149 123
46 97 98 114 150 123
47 98 99 114 151 123
48 98 too 114 152 123
49 99 101 114 153 12350 99 102 115 154 124
51 100 103 115 153 124
52 100 104 115 156 124

316

Table E-1. Range Normalization Tables (Tp= IS)

CELL CONTENTS CELL CONTENTS CELL CONTENTS

157 124 187 128 217 131
158 124 188 128 218 131
159 124 189 128 219 131
160 124 190 128 220 131
161 124 191 128 221 131
162 125 192 128 222 131
163 125 193 128 223 132
164 125 194 128 224 132
165 125 195 129 225 132
166 125 196 129 226 132
167 125 1.97 129 227 132
168 125 1.98 129 228 132
169 126 199 129 229 132
170 126 200 129 230 132
171 126 201 129 231 132
172 126 202 129 232 132
173 126 203 129 233 132,
174 126 204 130 234 133
175 126 205 130 235 133
176 126 206 130 236 133
177 127 207 130 237 133
178 127 208 130 238 133
179 127 209 10 239 133
180 127 210 130
181 127 211 130
182 127 212 130
183 127 213 131
184 127 214 131
185 127 215 131
186 128 216 131

317

Table E-1. Range Normalization Tables (Tp = 1S)

CELL CONTENTS CELL CONTENTS CELL CONTENTS

240 133 290 137 340 141241 133 291 137 341 141242 133 292 137 342 141243 133 293 137 343 141'44 133 294 137 344 14124'
134

246 134 295 138 345 141S4-Z 134. 296 138 346 141134 297 138 347 141248 134 298 138348249 134 299 138 349 141934 300 138 340 141134 301 138 351 14152 134 302 138 352 141
134 303 138 353 141254 134 304 138 354 142134 303 138 355 142256 134 306 138 356 142257 135 3 13 138 357 142258 135 308 139 358 142259 135 309 139 359 142260 135 310 139 360 142261 135 311 139 361 142262 135 312 139 362 142263 135 313 139 363 142264 135 314 139 364 142265 135 315 139 365 142266 135 316 139 366 142267 135 317 139 367 142268 135 318 139 368 142269 136 319 139 369 142270 136 320 139 370 142271 136 321 139 371 143272 136 322 139 372 143273 136 3823 140 373 143274 136 324 140 374 143275 136 325 140 375 143276 136 '326 140 376 143277 136 327 140 377 143"..78 136 328 140 378 143279 136 329 140 379 143280 136 330 140 380 143281 137 331 140 381 143282 137 332 140 382 14327 137 333 140 383 143284 137 334 140 374 143

8 137 33 140 385 14328 137 336 140 386 143287 137 337 140 387 143288 137 338 141 388 143289 137 339 141 389 144

318

Table E-1. Range Normalization Tables (Tp =iS)
CELL CONTENTS CELL CONTENTS

390 144 440 146
391 144 441 146
392 144 442 146
393 144 443 146
394 144 444 146
395 144 445 146
396 144 446 147
397 144 447 147
398 144 448 147
399 144 449 147
400 144 450 147

401 144 451 147
452 147402 144 45s 147

403 144 454 147
404 144 455 147
406 144
406 144 456 147
407 145 457 147
408 145 459 147409 145 49 147

410 145 460 147
411 145 461 147
412 145 462 147

413 145 463 147
414 145 464 T47
415 145 465 14.7
416 145 466 147
417 145 467 148
418 145 46e 148
419 145 469 148
420 145 470 148
421 145 471 1.48
422 145 472 148
423 145 473 148

424 145 474 148

425 145 475 148
426 146 476 148

427 146 477 148
428 146 478 148

429 146 479 148
430 146
431 146
432 146
433 146
434 146
435 146
436 146
437 146
438 146
439 146

319

Table E-1. Range Normalization (ccnt)

CELL CONTENTS CELL CONTENTS CELL CONTENTS
480 14 530 150 580 152
481 148 531 150 581 152482 148 532 150 582 152483 148 533 150 583 152484 148 534 150 584 152485 148 535 150 585 152486 148 536 150 586 152487 148 537 151 587 152488 148 538 15*. 588 152489 149 539 15. 589 153490 148 540 151 588 153491 149 541 151 591 153
492 149 542 151 592 153493 149 543 151593 1.53494 149 544 151 594 153495 149 545 151 593 153496 149 546 1.1 596 153
495 149 547 151 597 153

548 151 598 153499 149 549 151 597 153500 149? 550 151 600 153501 149 551 1.51 601 153502 149 552 151 602 153503 149 553 151 603 153504 149 554 1.51 604 153505 149 555 151 605 153506 149 556 151 606 153507 149 554 151 607 153508 1495 558 .5 . 608 153509 149 559 151 609 153510 149 560 151. 610 153511 149 561 151 611 153
512 150 562 152 612 IS513 150 563 152 614 153514 15 564 1 5 611 153
515 150 565 t52 15]5
516 150 566 152 616 154
517 150 567 1 617 154
518 150 568 152, 618 154519 150 569 5: 619 154520 150 570 t52 620 154521 150 571 152 621 154522 150 572 152 622 154523 150 573 152 623 154524 150 574 152 624 154525 150 575 152 625 1.54526 150 576 152 626 154522 150

62524 150 577 152 628 154528 150 578 152 629 154

529 150 579 152 629 154

320

Table E-1. Range Normalization (con't)

CELL CONTENTS CELL CONTENTS# #

630 154 680 156
631 154 681 156
632 154 682 156
633 154 683 156
634 154 684 156
635 154 685 1.,56
636 154 686 .56
637 154 687 156
638 154 688 156
639 154 689 156
640 1.54 690 156
641 54 691 156
642 1.54 692 156
643 .54 693 156
644 154 694 156

645 154 695 1 56
646 155 696 156
647 1.55 697 156
648 1.55 698 156
649 1.55 699 156
650 155 700 11
651 155 701 1.56
652 I5 702 156
653 155 . 703 156

654 155 704 156

655 155 705 156
656 1.55 706 156
657 155 707 156
658 155 708 157
659 155 70Q9 157
660 155 710 .57
661 155 711 15'
662 155 712 157

663 155 713 1,57
664 155 714 151
665 1!15 715 157

666 155 716 157

667 155 717 157

668 155 714 157

669 1.55 719 157
670 155
671 155
672 1.55
673 55
674 1.55
675 1.55
676 156
677 156
678 156
679 1156 321

Table E-1. Range Nomalization (con't)

CELL CONTENTS CELL CONTENTS CELL CONTENTS# # #

720 157 770 1.I8 820 160721 157 771 158 821 16072)2 157 772 158 822 160723 157 773 158 823 160724 i5/ 774 158 824 160725 .5 775 158 825 160726 157 776 15 826 160727 15/ 777 159 827 160
729 15 778 159 828 160730 15 779 159 829 160731 15/ 780 159 830 160731 157 781 159 831 160732782 159 832 160733 157 783 159 833 160
734 157 784 159 834 160735]5/ 785 159 835 160136 157 786 159 836 160737 15/ 787 159 837 160738 1b/ 788 159 838 160739 15/ 789 159 839 160740 157 790 159 840 160741 157 791 159 841 160742 158 792 159 842 160743 158 793 159 843 160744 158 794 159 844 160745 158 795 159 845 160746 158 796 159 846 16074/ 158 797 159 847 160
748 158 798 159 848 160
749 158 799 159 849 160750 158 800 159 850 160751 158 801 159 851 160752 158 802 159 852 161753 158 803 159 853 161
754 158 804 159 854 161
755 158 805 159 855 161756 158 806 159 856 161757 158 807 159 857 161/8 .1.58 8O8 159 858 161759 158 809 159 . 859 161760 1]58 810 159 860 1617612 5f- ll 158 861 161762 158 812 159 862 1617 158 813 160 863 161
764 1.58 814 60 864 161
765 158 815 160 865 161766 158 816 160 866 161767 .15.8 817 160 867 161768 158 818 160 868 161769 158 819 160 869 161

322

Table E-1. Range Nomalization (con't)

CELL CONTENTS CELL CONTEMTS

870 161 921 162
871 161 922 162
872 161 923 162
873 161 924 162
874 161 925 162
875 161 926 162
876 161 927 162
877 161 928 162
878 161 929 162
879 161 930 162
880 161 931 162
881 161 932 162
882 161 933 162
883 161 934 163
884 161 935 163
885 161 936 163
886 161 937 163
887 161 938 163
888 161 939 163
889 161 940 163
890 1.61 941 163
891 161. 942 163
892 162 943 163
893 162 944 163
894 162 945 163
895 162 946 163
896 162 947 163
897 162 948 163
898 162 949 163
899 162 950 163
900 162 951 163
901 162 952 163
902 162 953 163
903 162 954 163
904 162 955 163

905 162 956 163
906 162 957 163
907 162 958 163
908 162 959 163
909 162
910 162
911 162
912 162
913 162
914 162
915 162
916 162
917 162
918 162
919 162
920 162

323

Table E-1. Range Normalization (con't)

CELL CONTENTS CELL CONTENTS

960 163 1010 164

961 163 1011 164

962 163 1012 164

963 163 1013 164

964 163 1014 164
965 163 1015 164
965 163 1015 164
966 163 1016 164

967 163 1017 164
968 163 1018 164

969 163 1019 164

970 163 1020 164

971 163 1021 164

972 163 1022 164

973 163 1023 164

974 163
975 163
976 163

977 163
978 164

979 164
980 164
981 164
982 164
983 164
984 164
985 164
986 164
987 164
988 164
989 164
990 164
991 164
992 164

993 164
994 164
995 164
996 164
997 164
998 164
999 164
1000 164
1001 .164
1002 164
1003 164
1004 164
1005 164
1006 164
1007 164
1008 164
1009 1.64

324

Table E-2. Range Normalization Tables (Tp= 211S)
CELL CONTENTS CELL CONTENTS CELL CONTENTS

1 31 50 1152 45 51 116 101 1303 54 52 116 102 1314 0 7102 131
5 60 53 116 103 1315 65 54 117 104 1316 69 55 117 105 13176

118
106 13157 118
107 1329 78 58 118 108 13210 80 59 119 109 13211 82 60 119 110 13212 84 61 119 111 13213 86 62 120 112 133

14 88 63 120 113 13315 89 64 121 114 13316 90 65 121 115 133
17 92 66 121 116 13318 93 67 121 117 134
19 94 68 122 118 13420 95 69 122 119 I3421 96 70 122 120 13422 97 71 123 121 13423 98 72 123 122 13424 99 73 123 123 13525 100 74 124 124 13526 101 75 124 125 13527 102 76 124 126 13528 103 77 125 127 13529 103 78 125 128 13630 104 79 125 129 13631 lob 80 125 130 13632 106 81 126 131 13633 106 82 126 132 136
34 107

83 126
133 13635 107 84 126 134 136

36 108
85 127

135 13737 109 86 127 136 137
38 109 87 12/ 137 137
39 110 88 127 137 13740 110 89 128 139 13741 il1 90 128 140 13742 i11 91 128 141 13843 112 92 128 142 138
44 112 93 129 143 13845 113 94 129 144 13846 113 95 129 145 138
47 114 96 129 146 13848 114 97 129 147 13849 115 98 130 148 13999 130 149 139

3?5

Table E-2. Range Normalization Tables (con't)
CELL CONTENTS CELL CONTENTS

150 139 200 145151 139 201 145152 139 202 145
153 139 203 145154 140 204 146155 140 205 146
156 140 206 146157 140 207 146158 140 208 146
159 140 209 146
160 140 210 146161 140 211 146
162 141 212 146
163 141 213 147164 141 214 147
165 141 215 147
166 141 216 147167 141 217 147
168 141 218 147169 142 219 147170 142 220 147
171 142 221 147172 142 222 147173 142 223 148
174 142 224 148
175 142 225 148176 142 226 148177 143 227 148
178 143 228 148179 143 229 148
180 143 230 148181 143 231 148
182 143 232 148183 143 233 148184 143 234 149
185 143 235 149186 144 236 149
187 144 237 149188 144 238 149
189 144 239 149
190 144
191 144
192 144
193 144
194 144
195 145
196 145
197 14:
198 145
199 149

326

Table E-2. Range Normalization Tables (con't)

CELL CONTENTS CELL CONTENTS CELL CONTENTS?I # #
240 149 290 153 340241 149 291 153 341 15724229

153 34 157
24 19292 153 342 157243 149 293 1.53 343 157244 149 294 153 344 157245 150 295 154 345 157246 150 296 154 346 157247 150 297 154 347 15/248 150 298 154 348 157249 150 299 154 349 157250 150 300 154 350 151251 150 301 154 351 157252 150 302 154 352 157253 150 303 154 353 157254 150 304 154 351

255 150 304 154 354 158256 150 305 154 355 158
306 154 356 158a257 151 307 154 357 158258 151 308 155 358 158259 151 309 155 359 158260 151 310 155 360 158261 151 311 155 361 158262 151 312 155 362 158263 151 313 155 363 158264 151 314 155 364 158265 151 315 155 365 158266 151 316 155 366 158267 151 317 155 36 1268 151 15B318 155 368 158269 152 319 155 369 158

270 152 320 155 370 158271 152 321 155 371 159272 152 322 155 372 159273 152 323 156 373 15'9274 152 324 156 374 159275 152 325 156 375 159276 152 326 156 376 159277 152 327 156 377 159278 152 328 156 378 159279 152 329 156 379 159280 152 330 156 380 159281 153 331 156 381 159282 153 332 156 382 159283 153 333 156 383 159284 153 334 156 384 159285 153 335 156 385 159286 153 336 156 386 159287 153 337 156 387 159288 153 338 157 388 159289 153 339 157 389 160

327

Table E-2. Range Normalization Tables (con't)

CELL CONTENTS CELL CONTENTS

390 160 440 162
391 160 441 162
392 160 442 162
393 160 443 162
394 160 444 162
395 160 445 162
396 160 446 163397 160 447 163
398 160 448 163
398 160 449 163
400 160 450 163
401 160 451 163
402 160 452 163
403 160 453 163
404 160 454 163
405 160 455 163
406 160 456 163
407 161 457 163
408 161 458 163
409 161 459 163
410 161 460 163
411 161 461 163
412 161 462 163413 161 463 163
414 161 464 163
415 161 465 163
416 161 466 163
417 161 467 164
418 161 468 164
419 161 469 164
420 161 470 164
421 161 471 164
422 161 472 164
423 161 473 164
424 161 474 164
425 161 475 164
426 162 476 164
427 162 477 164
428 162 478 164
429 162 479 164
430 1624716
431 162
432 162
433 162
434 162
435 162
436 162
437 162
438 162
439 162

328

Table E-2. Range Normalization Tables (con't)

CELL CONTENTS CELL CONTENTS CELL CONTENTS

480 164 530 166 580 168
481 164 531 166 581 168482 164 532 1.66 582 168483 164 533 166 583 168484 164 534 166 584 168485 164 535 166 585 168486 164 536 166 586 168
487 164 537 167 587 168488 164 538 167 588 168489 165 539 16/ 589 169490 165 540 167 590 169491 165 541 16/ 591 169492 165 542 167 592 169493 165 543 167 593 169494 165 544 167 594 169495 165 545 1.67 595 169
496 165 546 167 596 169497 165 547 167 597 169498 165 548 167 598 16?
499 165 549 167 599 16Y500 165 550 167 600 169501 165 551 167 601 16Y502 165 552 167 602 169503 165 553 167 603 169504 165 554 167 604 169505 165 555 167 605 169506 165 556 167 606 169507 165 557 1.67 607 169508 165 558 167 608 169509 165 559 167 609 169510 165 560 167 610 16?511. 165 561 167 611 169512 166 562 168 612 169513 166 563 168 613 169514 166 564 168 614 169515 166 565 168 615 169516 166 566 168 616 170517 166 567 168 617 170518 166 568 168 618 170519 166 569 168 619 170

520 166 570 168 620 170521 166 571 168 621 170522 166 572 168 622 170523 166 573 168 623 170524 166 574 168 624 170525 166 575 168 625 170526 166 576 168 626 170
527 166 577 1.60 627 170528 166 578 168 628 170529 166 579 168 629 170

Table E-2. Range Normalization Tables (con't)

CELL CONTENTS CELL CONTENTS4 #

630 170 680 172
631 170 681 172
632 170 682 172633 170 683 172634 170 684 172
635 170 685 172636 170 686 172
637 170 687 172638 170 688 172639 170 689 172640 170 690 172641 170 691 172642 1/0 692 172643 170 693 1.72644 170 694 172645 170 695 172
646 171 696 172
647 171 697 172
648 171 698 172
649 171 699 172650 171 700 172
651 171 701 172652 171 702 172653 171 703 172654 171 704 172655 171 705 172656 171 706 172657 171 706 172658 171 707 172

65 11708 173659 171 709 173660 171 710 173
661 171 711 173662 171 712 173663 171 713 173664 171 714 173665 171 715 173666 171 716 173667 171 717 173668 171. 718 173
669 171 718 173
670 171 719 173
671 171
672 171
673 171
674 171
675 171.
676 172
677 172
678 172
679 172

330

Table E-2. Range Normalization Tables (con't)

CELL CONTENTS CELL CONTENTS CELL CONTENTS
720 173 770 174 820 176
721 173 771 174 821 176722 173 772 174 822 176723 173 773 174 823 176724 173 774 174 824 176725 173 774 174 824 176726 173 775 174 825 176728 173 776 174 826 176727 173 777 175 827 176729 173 778 175 828 176730 173 779 175 829 176731 173 780 175- 830 176732 173 781 175 831 17(6733 173 782 175 832 176734 173 783 175 833 176734 173 784 175 834 176
735 173 785 175 835 176736 173 786 175 836 176737 173 787 175 837 176738 173 788 175 838 176739 173 789 17b 839 17674 173 790 175 840 176741 173 791 175 841 176742 174 792 175 842 176743 174 793 175 843 176744 174 794 175745 174

844 176746 174 795 175 845 176747 174 796 175 846 176748 174 797 175 847 176749 174 798 175 848 176750 174 799 175 849 176751 174 801 175 850 176752 174 801 175 851 176
753 174 802 175 852 177
754 174 803 175 853 177
755 174 804 17 1 854 177
756 174 805 175 855 177
757 174 806 175 856 177
758 174 807 17 857 1/7
759 174 808 175 858 177760 174 809 175 859 177761 174 810 175 860 177762 174 811 175 861 177763 174 812 175 862 177764 174 813 176 863 177765 174 814 176 864 177766 174 815 176 865 1U7767 174 816 176 866 177768 174 817 176 867 17769 174 818 176 868 17'

819 176 869 177

331

Table E-2. Range Normalization Tables (con't)

CELL CONTENTS CELL CONTENTS

870 177 920 178
871 177 921 178
872 177 922 178
873 177 923 178
874 177 924 178
875 177 925 178
876 177 926 178
877 177 927 178
878 177 928 178
87i 177 929 178
880 177 930 178
881 177 931 178
882 177 932 178
883 177 933 178
884 177 934 179
885 177 935 179
886 177 936 179
887 177 937 179
888 177 938 179
889 177 939 179
890 177 940 179
891 177 941 179
892 178 942 179
893 178 943 179
894 178 944 179
895 178 945 179
896 178 946 179
897 178 947 179
898 178 948 179
899 178 949 179900 178 950 179901 178 951 179
902 178 952 179
903 178 953 179904 178 954 179
905 178 955 179
904 178 956 179
907 178 957 179906 178 958 179
908 178 959 179
909 178

910 178
911 178
912 178
913 ;78
914 178
915 178
916 178
917 178
910 178
919 178

332

Table E-2. Range Normalization Tables (con't)

CELL CONTENTS CELL CONTENTS

960 179 1010 1130
961 179 1011 180
962 179 1012 180
963 179 1013 180
964 179 1014 180
965 17? 1015 180
966 179 1016 180
967 179 1017 180
968 179 1018 180
969 179 1019 180
970 179 102 0 180
971 179 1021 180
972 179 1022 180
973 179 1023 180
974 179
975 179
976 179
977 179
978 180
979 180
980 180
981 180
982 180
983 180
984 180
985 180
986 180
987 180
988 180
989 180
990 180
991 180
992 180
993 180
994 180
995 180
996 180
997 180
998 180
999 180
1000 180
1001 180
1002 180
1003 180
1004 180
1005 180
1006 180
1007 180
1008 180
1009 180

333

APPENDIX F

Cables and Interconnect Specifications

334

Table F-1. Intecolor-TIE Interconnect

Intecolor TIE

Signal Intecolor Connector Connector TIE
Name Port (24-Bit I/O) Pin# Pin#

DATAO AO 2 J3-2 AE52

DATA1 Al 14 J3-16 AF51

DATA2 A2 3 J3-3 AE53

DATA3 A3 15 J3-15 AF52

DATA4 A4 4 J3-4 AE54

DATA5 A5 16 J3-14 AF53

DATA6 A6 5 J3-5 AE55

DATA7 A7 17 J3-13 AF54

ITXRST BO 10 J4-2 AG52

IRXRST B1 9 J4-1 AG51

ISELBUS B2 21 J3-9 AF58

ILRADR B3 8 J3-8 AE58

ILIOADR B4 20 J3-10 AF57

MSPDIS B5 7 J3-7 AE57

(SPARE) B6 19 J3-11 AF56

ITENBL B7 6 J3-6 AE56

ITRBULD CO 12 J4-4 AG54

ITXST CI 23 J4-15 AH52
IRDIOBUF C2 11 J4-3 AG53

IRIOSTAT C3 22 J4-16 AH51

* TXINT C4 I J3-1 AE51

RXINT C5 13 J4-5 AG55

LSP/MSPC C6 24 J4-14 AH53

(SPARE) C7 25 J4-13 AH54

GND GND 18 J3-12 AF55

335

Table F-2. TIE-CE Interconnect

Pin# Pin#
Signal (Bus A -> JI) Signal (Bus A -> Ji)Name (Bus B J2) Name (Bus B -> J2)

(SPARE) 26 GND 01
(SPARE) 27 02
(SPARE) 28 03
OCCN 29 04
RDYN 30 05
OPARN 31 06
BUSYN 32 07
ACKN 33 08
DATAOON 34 09
DATA0IN 35 10
DATAO2N 36 11
DATAO3N 37 12
DATAO4N 38 13
DATAO5N 39 14
DATAO6N 40 15
DATAO7N 41 16
DATAO8N 42 17
DATAO9N 43 18
DATAION 44 19
DATA1IN 45 20
DATA12N 46 21
DATA13N 47 22
DATA14N 48 23
DATA15N 49 24
(UNUSED) 50 GND 25

336

Table F-3. CE Bus Cable Definitions

Pin# Pin#
Signal (Bus A -> J2) Signal (Bus A -> J2)
Name (Bus B -> J3) Name (Bus B -> J3)

(SPARE) 26 GND 01

(SPARE) 27 02

(SPARE) 28 " 03

OCCN 29 " 04

RDYN 30 " 05

OPARN 31 " 06

BUSYN 32 07

ACKN 33 " 08

DATAOON 34 " 09

DATA0IN 35 " 10

DATAO2N 36 " 11

DATAO3N 37 " 12

DATAO4N 38 " 13

DATAO5N 39 " 14

DATAO6N 40 " 15

DATAO7N 41 " 16

DATAO8N 42 " 17

DATAO9N 43 " 18

DATAON 44 " 19

DATA1IN 45 " 20

DATA12N 46 " 21

DATA13N 47 22

DATA14N 48 " 23

DATA15N 49 " 24

(UNUSED) 50 GND 25

337

Table F-4. IOC-Input Synchronizer Interconnect

Signal IS Pin# Signal IS Pin#
Name (slot T13) Name (slot T13)

SELON 46 +5V 37

SELIN 47 " 38

SEL2N 48 39

OCCN 49 " 40

RDYN 50 " 78

OPARN 51 " 79

BUSYN -- " 80

ACKN 53 " 117

DATAOON 54 " 118

DATAOIN 55 " 119

DATAO2N 56 +5V 120

DATA03N 57 GND 1

DATAO4N 58 " 2

DATAO5N 59 o 3

DATAO6N 60 s 4

DATAO7N 61 " 41

DATAO8N 62 " 42

DATAO9N 63 " 43

DATAON 64 81

DATAIIN 65 " 82

DATA12N 66 " 83

DATA13N 67 GND 84

DATA14N 68 (SPARE) 5

DATA15N 69 "1 6

SEL3N -- 7

338

Table F-4. IOC-Input Synchronizer Interconnect (con't)

Signal IS Pin# Signal IS Pin#
Name (slot T13) Name (slot T13)

GND 86 " 8

87 9

88 10

89 11

90 12

91 13

92 14

93 15

94 16

95 (SPARE) 44

96

97

98

"I 99

100

"m 101

102

" 103

104
"o 105
It 106

"I 107
"f 108

109

GND 110

339

Table F-5. Input Synchronizer - PPP Interconnect

Signal Name Pin (Slot T13) Slot Number Pin Number

LP08 17 R4 18LP07 18 R4 17
LP06 19 R4 16
LP05 20 R4 15
LPO4 21 R4 14
LPO3 22 R4 13LP02 23 R4 12
LPOI 24 R4 11
QCO8 25 F9 18QC07 26 F9 17QC06 27 F9 16
QC05 28 F9 15
QC04 29 F9 14
QCO3 30 F9 13
QC02 31 F9 12
QCOl 32 F9 53
IC08 33 FlO 18
IC07 34 FlO 17
IC06 35 FIO 16
ICO5 36 FlO 15
GND 37
GND 38
GND 39
GND 40

(UNUSED) 71
NRCO 72 R7 7
ICol 73 F7 13
IC02 74 FlO 12
IC03 75 FIO 13
IC04 76 F1O 14
PHI3SP 77 ---(Not yet used) -----
(UNUSED) 78
(UNUSED) 79
(UNUSED) 80

(UNUSED) 111
NRCI 112 R7 9TPO 113 R7 20
TPI 114 R7 19
PHI3SIQ 115 R7 116
RDRTRIG 116 R7 32
(UNUSED) 117
(UNUSED) 118
(UNUSED) 119
(UNUSED) 120

340

Table F-6. Output Synchronizer - PPP Interface Interconnect

Output Synchronizer PPP Interface

Signal Name Connector Pin Signal Name Connector Pin

GND AJ1-14 GND J3-14

GND AJl-13 GND J3-13

(SPARE) AJ-12 --- J3-12

MO(Sign) AJi-Il MEANSIGN J3-1l

MIO(LSB) AJ-l0 MEANLSB J3-10

M9 AJ1-9 J3-9

M8 AJ1-8 J3-8

M7 AJ1-7 J3-7

M6 AJ1-6 J3-6

M5 AJ1-5 J3-5

M4 AJ1-4 J3-4

M3 AJ1-3 J3-3

M2 AJ1-2 J3-2

Ml(MSB) AJ1-1 MEANMSB J3-1

GND AJ2-10 GND J2-10

GND AJ2-9 GND J2-9

S8(LSB) AJ2-8 VARLSB J2-8

S7 AJ2-7 J2-7

S6 AJ2-6 J2-6

S5 AJ2-5 J2-5

S4 AJ2-4 J2-4

S3 AJ2-3 J2-3

S2 AJ2-2 J2-2

Si (Sign) AJ2-l VARMSB J2-1

341

Table F-6. OutptSnhoie
PPP Interface Interconnect (Continued)

Output Synchronizer
PPP Interface

(SPARE)
AJ2-13

J1-13(SPARE)
AJ2-12

JI-12(SPARE) AJ2-11
0l1IGND

AJ2-23
GNO

01-10P9(LSB)
AJ2-22

POWERLSB 01-9P8
AJ2-2 1

01-8P7
AJ2-20

J1-7P6
AJ2-19

01-6P5
AJ2-18

01-5P4
AJ2-17

JI-4P3
AJ2-16

01-3P2
AJ2-15

J1-2Pl(MSB)
AJ2-14 PUWERIISB 0I1(SPARE)
AJ2-26

J1-14
GND

802-13
GriD J4-1311CC BJ2-12
VCC J4-12VCC

B02-11
11CC J4-11VCC B02-10 VCC J4-10GND

B02-14
GNO J4-9GND 802-17 GND J4-8tGND

802-7
GND A4-7NRCB

B32-6
NRCB J4-6NRCA

802-5
NRCA J4-5DUMtP PULSE 842-4
DUMP PULSE J4-4CLKWIDTHB B02-3 CLKWIDTHB 04-3CLKWIDTHA 802-2
CLKWIDTHA J4-2

80lLB2-1 PHIlL J4-1(SPARE)
BJ2-26

04-14

342

Table F-7. IOC -OS Interconnect

Signal Name OS Pin Number Signal Name OS Pin Number

SELON Cil-l GND CJI-14

r SELIN CJ1-2 CJI-15

SEL2N CJ1-3 CJ1-16
A OCCN CJ1-4 CJ1-17

RDYN CJ1-5 CJ1-18
OPARN CJ1-6 CJ 1-19
BUSYN CJI-7 CJI-20
ACKN CJI-8 'UCJI-21

DATAQON Cil-9 "CJI-22

DATAOIN CJ1-lo CJ1-23
DATA02N CJl1H1 CJ1-24
DATA03N CJ1-12 "CJI-25

DATA04N CJ1-13 "CJI-26

DATA05N CJ2-1 "CJ2 -14
DATA06N CJ2-2 "CJ2-15

DATA07N CJ2-3 "CJ2-16

DATA08N CJ2-4 "CJ2-17

DATA09N CJ2-5 "CJ2-18

DAM~ON CJ2-6 "CJ2-19

DATA11N CJ2-7 "CJ2-20

DATA12N CJ2-8 "CJ2-21

DATA13N CJ2-9 CJ2 -22
DATA14N CJ2-1O CJ2-23
DATA15N CJ2-l1 CJ2-24
SEL3N CJ2-12 GND CJ2-25
(UNUSED) CJ2-13 (UNUSED) CJ2-26

343

APPENDIX G

F1WRP Configuration

344

Table G-1. List of Schematics

Drawing No. Title Size Sheets

SD062804 Input Synchronizer Schematic Diagram E 2

LY977725-D Common Element Layout E 1

SD977725-D Common Element Schematic E 8

LY977728 Input/Output Controller Layout E I

SD977728 Input/Output Controller Schematic Diagram E 6

LY1062802 Output Synchronizer Layout D 1

SDI062802 Output Synchronizer Schematic Diagram D 1

Table G-2. FTWRP Software Configuration - Source Tapes

Tape No. Description Title

STG123419 9-Track Labelled 1600 BPI Tape FTWRP Applications

STG123421 9-Track Labelled 1600 BPI Tape FTWRP Support Programs

STG123423 9-Track Labelled 1600 BPI Tape Intecolor Programs

STG123426 9-Track Labelled 1600 BPI Tape DOS-0 Source

STG123427 9-Track Labelled 1600 BPI Tape FTWRP CE Microcode Source

345

Table G-3 FTWRP Softwdre Configuration - Supporting Documents

Drawing No. Title Size

PSG123419 Program Summary for FTWRP Applications A

SMG123419 Methods Sheet for FTWRP Applications A

PSG123421 Program Summary for FTWRP Support A
Programs

SMG123421 Methods Sheet for FTWRP Support Programs A
PSG123423 Program Summary for Intecolor Programs A

SMG123423 Methods Sheet for Intecolor Programs A

PSG123426 Program Summary for DOS-O A

SMG123426 Methods Sheet for DOS-O A

PSG123427 Program Summary for FTWRP Microcode A

SMG123427 Methods Sheet for FTWRP Microcode A

MLG123427 Maintenance Log for FTWRP Microcode A

Table G-4 FTWRP Program Listings

Listing No. Size Title

PRG123426 B DOS-O Listing

PRG123427 B FTWRP Microcode Listing

PRG123477 B FTWRP Listing (Continuous Pulse
Sequence)

PRG123478 B Dual Listing (Dual Wavelength)
PRG123479 B FTWRTTG Listing (Test-Data

Generator)
PRG123480 B FTWRTST Listing (Microcode Test

Program)
PRG123481 B IDOS-O Listing

PRG123482 B IDOS-1 Listing
PRG123483 B Utility Listing

346

DAT

FILMEI

DTI

