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ABSTRACT

The likelihood ratio principle is employed to suggest a non-

parametric test for testing equality of two distributions against

a stochastic ordering alternative. The test appears to be robust

against a wide range of alternatives. Percentage points for

sample sizes less than or equal to twenty are provided as well as

a comparison of power values for the Kolmogorov-Smirnov and Mann-

Whitney-Wilcoxon tests.



A Robust Nonparametric Likelihood Ratio Test

1. Introduction.

The likelihood ratio principle for obtaining test statistics

has proven to be a popular and fruitful method in parametric

situations. It leads to such appealing tests as the Student t

test when testing for equality of means (variances assumed equal)

and the F test when testing for equality of variances when under-

lying normal distributions are assumed.

In this paper, it is proposed that the likelihood ratio

principle be used in a nonparametric setting to construct two

sample test statistics which will compare favorably with such

nonparametric tests as the Mann-Whitney-Wilcoxon and Kolmogorov-

Smirnov tests.

Exact small sample tables are provided in Section 3 as well

as a comparison of power with standard nonparametric tests.

Theorems on symmetry and unbiasedness are proven in the appendix.

2. The Tests.

Let us assume that we have independent random samples from

two discrete populations with respective survival functions

(1 - cdf's) P(t) and Q(t). (For convenience we assume that

P(O) = Q(O) = 1.) If we wish to test the hypothesis of stochastic

ordering versus all other alternatives, then our hypotheses may be

written as

st
H 0: P > Q (P(t) ' Q(t) V t)

st
H P > Q (Pt) < Q(t) for at least one t).

p . . -
t
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To construct a likelihood ratio test we will need to find

mle's (maximum likelihood estimates) of P and Q subject to a

stochastic ordering restriction. Thus if our first sample contains

61 observations at x1 , 62 observations at x2 , etc., and the second

sample dI observations at yI, d2 observations at y2' etc., we must

be able to maximize the expressions

nl 6 ml d.

L(P,Q) =1il (P(xi-) - P(x)) i1 =(Q(yJ-) - Q(y j)) (2.1)

i=l 1 j=l

st
subject to the restriction P >- Q.

This maximization is discussed in Brunk, et. al. (1966) and in

more tractable form in Dykstra (1980). To obtain the desired maxi-

mal value of (2.1), proceed as follows:

a) Let sI < s 2 < ... < s denote the distinct combined values

of the xi's and yi's (combined observed values). f

b) Now redefine 6i(di) to be the number of observations from

the first (second) sample at the point s..

m m
c) Let n. = . (m.= E d. ) denote the number of observa-• =. j

tions from the first (second) sample at least as large as s..
+)

d) For 1 : a !5 b _5 m, define kab by

+ b b b
ka,b max(ma S a Ed i )((d. + i ) ) - I 0).a a a

(Note that ka,b  is a weighted average of ma and -na if positive.)

a~b a a
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e) For !5 i _ m, define

k =min max k a,b+

a<i isb

^ n. - 6. + k.
Pi ^ , and

n. + k.

m. - d. - k.
1 1 1

1 m i - k.1

If k. = m. > 0, q. = 0/0 is indeterminate. In these cases we must1 11
A% A A

define qi =Pi. If mi = 0, we define qi to also be zero.st

f) The maximal value of (2.1) subject to P _> Q is then given

by

A A m ^ . ^ n.-6. ^ d. ,,m.-d.
L(P,Q) = TI (1 - pi) i 1 1 (l qi) 1 qi 1 1 (2.2)i=l

where we adopt the convention that 00 .

It is well known that the unrestricted maximum of (2.1) occurs

by putting equal probability at the observations from each sample.

This is equivalent to requiring the k.'s in e) to be zero. Thus if
1

ni-6. * mi - di
P= and qi , i = 1,...,m,n. m i

we have

m 6i *ni- i di *mi-di
sup L(P,Q) iL(P Q p (I ( *
pp.)i

plo q
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The likelihood ratio principle asserts that H0 should be rejected

if

sup L(P,Q)
st

P= p a Q  L(PQ)

sup L(P,Q) L(P ,Q
P,Q

(2.3)

= ik~ q:)i(ini
is sufficiently small. Equivalently, since X may become very small

with increasing sample size, we use as our test statistic

T = - 2Zn

and reject H0 if T becomes too large. Since the size of such a
0l

test with critical point t0 is given by

sup Pr(T -> t)
st

P >_ Q

it is fortunate that if this supremum is attained, it is attained

in the class of distributions where P = Q (assuming continuous

distributions).

Theorem 2.1. Assuming P and Q are continuous,

sup Pr(T> t0) sup Pr(T_ t
st 0P Q 0

P- Q

for all to.

Proof. (See Appendix.)

- ' .
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If we sample from continuous distributions, then with proba-

bility one, all the 6 .'s and d.'s will be zero or one. Since the

ni's, mi's, 6i's and di's can all be determined from the ranks of

the combined samples, the test statistic T is a function of the

combined ranks, and hence the proposed test is nonparametric in

nature. While we realize that the test was derived under the

assumption of discrete distributions, since a continuous distribu-

tion may be approximated arbitrarily closely by a discrete distri-

bution, we feel the test is still reasonable in the continuous

setting.

Note that if we consider only continuous P and Q, the supremum

in Theorem 2.1 is attained for any P = Q. Because of this, it

seems inherently reasonable to restrict the class of alternatives
st st

to a particular subset of P ; Q, namely P < Q, and use the same

test statistic for testing

H': P=Q

0

st
vs H': p < Q (P(t) Q(t) for all t and P(t) < Q(t) for some t).

Similar arguments to those used in Theorem 2.1 will suffice

to show that the proposed test is unbiased.

Corollary 2.1. For all t0 , and continuous P and Q,

Inf Pr(T to) = Inf Pr(T t 0 ).
st P =Q

P
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m
There exists some symmetry properties between n = 5. andm i=l 1

m= Z d. which are not readily apparent. In particular, we havei=l 1

the following theorem.

Theorem 2.2. There exists a 1 - 1 mapping between those strings

(of x's and y's) containing n1 x's and mly's and those strings

containing m1x 's and nlY's such that corresponding strings have

the same value of X (and hence T).

Proof. (See Appendix.)

Since the number of permutations n x's and mIy's is the same

as for mIx's and nly's, and since if P = Q (continuous), all

permutations are equally likely, we have the following corollary.

Corollary 2.1. If P = Q (continuous), the distribution of T is

symmetric in n I and m 1 .

This result halves the work of finding critical points for

the null distribution of T.

3. Distribution of the Test.

Robertson and Wright (1980) have derived the asymptotic distri-

bution of T under H when P = Q are of the discreteo

type with only a finite number of points of positive probability.

They have shown that asymptotically the survival function of T

(under H ) is a weighted average of chi-square survival functions.
0

Wolfe and Lee (1976) have discussed a Mann-Whitney-Wilcoxon

type test based upon the restricted mle's P and Q obtained under

the stochastic ordering restriction, but were unable to obtain the

asymptotic distribution.

To obtain the null distribution of T for the case P = Q

(continuous) for small sample sizes, we have used the computer to

enumerate all possible rankings of the samples along with the

if.
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corresponding values of the statistic T. From these we have

computed the .90, .95 and .99 percentage points of the null

distribution of T. For values of n and m too large to consider

all rankings, we have simulated the percentage points based upon

4000 independent observations for each value of n and m through

20. The percentage points are displayed in Table 1.

We have been unable to determine the asymptotic distribution

of T.

4. Power of the Test.

To obtain some feeling for the power of our proposed test

compared to the power of the Mann-Whitney and the Kolmogorov-

Smirnov tests, we simulated observations from various distributions.

We considered sample sizes of (5,5), (5,10) and (5,15) and generated

1000 observations to obtain each empirical estimate of the power

curve. For each test procedure, we chose our critical points to

make the size of the test as close to .05 as possible without ex-

ceeding it. Thus if we were unable to construct a test whose size

was near .05, we would expect the power function of that test to

be lower. This happened sometimes with the Kolmogorov-Smirnov test.

We constructed our alternatives to be basically of three types.

The first type consisted of standard families of distribution which

naturally gave rise to a stochastic ordering. The families of dis-

tributions which we considered were the normal, the exponential and

the uniform distributions.

For testing normality against a one-sided shift alternative,

we know the Mann-Whitney test is very good. However, the new test

performs nearly as well. Values of the power function for the

normal distribution, as well as stochastically ordered alternatives
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for the exponential anr uniform distributions,are given in Table 2.

In each of these situations, the new test is nearly as powerful as

the Mann-Whitney test, and usually more powerful than the

Kolmogorov-Smirnov test.

Of course stochastically ordered alternatives may occur in

many ways. One way is to have Lehmann type alternatives, i.e., the

alternative cdf is a fixed power of the null hypothesis cdf. We

considered this kind of alternative for cases where the null hypothe-

sis was an exponential (p = 1) distribution and the case where it

was a uniform [0,1) distribution. A Monte Carlo power study ob-

tained from 1000 independent samples is presented in Table 3. Under

these alternatives the new test performs better than the Mann-

Whitney for the sample sizes of (5,5), and nearly as well for the

sample sizes of (5,10) and (5,15). It performs uniformly better

than the Kolmogorov-Smirnov test for these alternatives.

Finally we should note that since T was derived as a test
st

against the alternatives P 4 Q, it will still have some power in

detecting differences between distributions whose cdf's cross.

The Mann-Whitney and Kolmogorov-Smirnov tests usually have little

power in these situations. Table 4 gives power values for uniform

and normal distributions with mean 0 when the variance is allowed to

vary. Finally, Table 5 shows power values when the coefficient of

variation (pl/) if fixed at .5, and then p is allowed to change. We

see in Tables 4 and 5 that T outperforms the other tests in this

situation.

An extensive power study of numerous situations indicates that

the test statistic T performs well under a wide range of circum-

stances. For small nearly equal sample sizes, it does especially well.
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5. Appendix.

Proof (of Theorem 2.1). Since L(P* ,Q (1) ( m is free of
__ ~n m

(X l"...'Xn YI'' Ym) a.s., T is a nonincreasing function of

sup L(P,Q) a.s. However, as discussed in Dykstra (1980),
st

P >Q

sup L(P,Q) = sup L1 (P)L2 (Q) (A.I)
st st ,st

P > Q P >- R Q

where R is the empirical survival function of the combined sample

and L1 (L2 ) is the likelihood of the first (second) sample.

Now, for fixed yl' Y2'"'Ym

sup L2 (Q) (A.2)
* st

R -Q

is nondecreasing in xk since R is nondecreasing in xk . Consider

now the jump in P at the point xk = s. say. From earlier considera-

tions this is

n. -1 + k. 1iI n,

i<j n + k, n. + k.

Now P z R implies that

n - 1 + k. n. + m
1 (A.3)

i<j n i + ki n + m

,__ _ _ _ _ _-_-__ _ -*. ---
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Moreover,

k.= min max k + ! max k.+ m., (A.4)
a s j j j b j,b

so that

1 - 1(A.5)
n. + k. n. + m.

J J J J

Combining (A.4) and (A.5), we see that the probability which P
.

places at xk is never less than the probability R places at xk'

Suppose now that P denotes the survival function which is
A A

identical to P except it places the probability which P puts at xk

on the value xk + A(A > 0, xk + A xj for all j).

Thus if R denotes the combined empirical survival function

with xk replaced by xk + A, we must have

P(t) _ R(t) for all t

(since P is increased by at least as much as R over the interval

[xk" xk + A) and P and R are unchanged elsewhere).

However, the likelihood under P and P are equivalent. Thus

sup ,L1 (P) s sup~L 1 (P) (A.6)
P ? R P -R

where the first likelihood is evaluated at xl ,...,xk,. .. x n and the

second at Yl.''''Xk+A'''xn'n

Thus, combining (A.2) and (A.6), we see, in light of (A.1) that

T(xl,...Ixn , y1 ,...,ym) is a nonincreasinq function of each xi (all

other variables held constant), and hence

[T (Xl''''...xn' YI'''''Ym)

is nonincreasing in each xi. Now write P(T _ tO ) as an iterated0
integral

- f '_ _ - ~ * - - }
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P(T > to ) = E ... E E I(XI... ,X, y) (A.7)X1 X Y (T t0 )
n 0Y

and note that E I (X 1 ... ,X, Y) is nonincreasing in each Xi,

Y (T - t
0

Since it is well known that for nonincreasing g and stochasti-
st

cally ordered survival functions P > Q

W gtd P Mt !5 g (t) d Q(t)

it clearly follows that sup P(T - tO)
st

P Q

must occur when P = Q.

Proof (of Theorem 2.2). Since the value of A (and also T) depends

only upon the ranks, we may assume that the combined sample con-

sists of the points 1 2 1. Then, letting
n1 + m n1 + m

) = n 1 + ml , we can writeI1
6. d.

X = c sup 0 p) - 1 o 1 (I [')

P(x) -- x >Qil

6d.
S= C su i[:I( i) p* (n + 1l- i) [*( _O*(n + i- )

Q*_ i- xP*
(-.. ,))

for a suitable constant C where

P (x) = 1 - P(l - x), and

Q (x) = 1 - Q(1 - x).

..
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Noting that P {(O) is a survival function iff P(Q) is, it is

apparent that (A.9) is of the exact same form as (A.8).

Thus if two strings are such that = (2)

d( I ) = 6 ( 2 ) they must give the same value of X. This of course

happens if a particular string of x's and y's is written in reverse

order, and then the x's replaced by y's and vice versa. This then

defines the 1 -1 mapping mentioned in Theorem 2.2.

- -i
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Table 3

Estimated Power of Two-Sample One-Sided Tests

P: U[0, 11
Q: U10, I] k

n m k K-S M-W T
5 5 1.00 .0340 .0420 .0450

1.50 .1060 .1360 .1480
2.50 .2460 .3020 .3240
3.50 .3830 .4360 .4730
5.00 .5410 .5920 .6310

5 10 1.00 .0330 .0570 .0630
1.50 .0920 .1590 .1470
2.50 .2640 .3770 .3620
3.50 .4130 .5410 .5130
5.00 .6080 .7370 .7090

5 15 1.00 .0160 .0410 .0450
1.50 .0760 .1320 .1360
2.50 .2370 .3910 .3700
3.50 .4470 .6340 .5830
5.00 .6360 .8030 .7800

P: exp(i)

Q: [exp(1) k

n m k K-S M-W T
5 5 1.00 .0410 .0420 .0510

1.50 .1040 .1200 .1380
2.50 .2130 .2790 .2940
3.50 .3890 .4420 .4740
5.00 .5380 .5930 .6350

5 10 1.00 .0320 .0600 .0550
1.50 .0780 .1370 .1350
2.50 .2550 .3760 .3370
3.50 .4180 .5530 .5270
5.00 .6090 .7450 .7050

5 15 1.00 .0240 .0490 .0480
1.50 .0560 .1360 .1320
2.50 .2480 .4060 .3720
3.50 .4340 .6140 .5870
5.00 .6750 .8260 .7990

2*



Table 4

Estimated Power of Two-Sample One-Sided Tests

P: Ut-i, 1]
Q: U[-e, 01

n m 0 K-S M-W T
5 5 1.00 .0410 .0480 .0490

.80 .0360 .0440 .0430
* .60 .0580 .0530 .0640

.40 .0770 .0430 .0820

.20 .1310 .0470 .1350

.10 .1280 .0440 .1320

.05 .1570 .0280 .1570

.01 .1930 .0290 .1930
5 10 1.00 .0490 .0500 .0470

.80 .0460 .0510 .0570

.60 .0590 .0750 .1050

.40 .0810 .0940 .1300

.20 .0980 .1020 .1300

.10 .1700 .1790 .1950

.05 .1640 .1660 .1730

.01 .1640 .1690 .1690
5 15 1.00 .0280 .0450 .0500

.80 .02fr" .040 .0880

.60 .046A .0990 .1640

.40 .072^. .1140 .2360

.20 .1200 .1420 .3530

.10 .1580 .1.660 .4090

.05 .1820 .1820 .4740

.01 .1910 .1960 .5080

P: N(0, 1)
Q: N(0, 0)

n m 0 K -S M-W T
5 5 1.000 .0440 .0530 .0550

3.100 .0400 .0430 .0490
6.390 .0730 .0650 .0760
13.160 .0850 .0470 .0870
40.830 .1130 .0430 .1150

5 10 1.000 .0530 .0490 .0470
2.230 .0420 .0510 .0590
4.010 .0610 .0750 .0870
7.550 .0750 .0830 .1090

21.780 .1100 .1160 .1510
5 15 1.000 .0320 .0560 .0630

2.050 .0460 .0690 .0790
3.540 .0380 .0690 .0990
6.470 .0760 .1130 .1630

18.260 .1030 .1260 .2550



Table 5

Estimated Power of Two-Sample One-Sided Tests

Constant coefficient of variation = .5

P: N (.2,(.4)
2 )

Q: N(p, a2

n m 11 K-S M-W T

5 5 .20 .0450 .0530 .0620
.50 .2110 .1740 .2470

1.00 .6770 .5130 .6970
2.00 .9920 .9140 .9930

5 10 .20 .0260 .0470 .0500
.50 .2170 .2770 .3440

1.00 .6940 .7160 .7840
2.00 .9890 .9890 .9920

5 15 .20 .0280 .0510 .0550
.50 .2480 .3210 .4380

1.00 .6960 .7460 .9030
2.00 .9940 .9940 .9990

'g




