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ABSTRACT

The likelihood ratio principle is employed to suggest a non-
parametric test for testing equality of two distributions against

a stochastic ordering alternative. The test appears to be robust

against a wide range of alternmatives. Percentage points for
. sample sizes less than or equal to twenty are provided as well as
a comparison of power values for the Kolmogorov-Smirnov and Mann-

Whitney-Wilcoxon tests.
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A Robust Nonparametric Likelihood Ratio Test

l. Introduction.

The likelihood ratio principle for obtaining test statistics
has proven to be a popular and fruitful method in parametric
situations. It leads to such appealing tests as the Student t
test when testing for equality of means (variances assumed equal)
and the F test when testing for equality of variances when under-
lying normal distributions are assumed.

In this paper, it is proposed that the likelihood ratio
principle be used in a nonparametric setting to construct two
sample test statistics which will compare favorably with such
nonparametric tests as the Mann-Whitney-Wilcoxon and Kolmogorov-
Smirnov tests.

Exact small sample tables are provided in Section 3 as well
as a comparison of power with standard nonparametric tests.
Theorems on symmetry and unbiasedness are proven in the appendix.
2. The Tests.

Let us assume that we have independent random samples from
two discrete populations with respective survival functions
(1 - cdf's) P(t) and Q(t). (For convenience we assume that
P(0) = Q(0) = 1.) If we wish to test the hypothesis of stochastic
ordering versus all other alternatives, then our hypotheses may be

written as
H.: P >0Q (P(t) > Q(t) » t)

Hl: P > Q (P(t) < Q(t) for at least one t).
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To construct a likelihood ratio test we will need to find
mle's (maximum likelihood estimates) of P and Q subject to a

stochastic ordering restriction. Thus if our first sample contains

61 observations at Xy 62 observations at x., etc., and the second

2
sample dl observations at Yy dzobservations at Yy etc., we must

be able to maximize the expressions

1 d

1 S. .
(@yy-) - Qly,)) 3 (2.1)

L(P,Q) = T (P(x.-) - P(x.)) !
. 1 1

m
it
i =

1 ]

st
subject to the restriction P =z Q.

This maximization is discussed in Brunk, et. al. (1966) and in
more tractable form in Dykstra (1980). To obtain the desired maxi-
mal value of (2.1), proceed as follows:

a) Let S] < Sy < ... < S denote the distinct combined values
of the xi's and yi's (combined observed wvalues).

b) Now redefine Gi(di) to be the number of observations from

the first (second) sample at the point s;-

1

™3
™3

c) Let nj = (mj= di) denote the number of observa-

)
j j

i

tions from the first (second) sample at least as large as sj.

d) For l s a<b sm, define ka b+ by

’

OO RO WPHICHINp "

b b b 1

ka,b = max{(ma 261 -n, idi)(i(di + Si)) , 0}.

{Note that ka * s a weighted average of m, and -n_ if positive.)
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b

LV S, y S sninaithini et




e) For l s i < m, define

qi= ~ .
m, - ki
If k. =m, >0, q, = 0/0 is indeterminate. In these cases we must

1 h g 1

~ ~

define q, = p,. If m, = 0, we define g, to also be zero.
i i i i st
f) The maximal value of (2.1) subject to P > Q is then given

by
A A m ~ 6i A ni-di A di ’ mi-di
L(P,Q) = iEl(l - pi) P; (1 - qi) q (2.2)
b where we adopt the convention that Oo = 1.

It is well known that the unrestricted maximum of (2.1) occurs
by putting equal probability at the observations from each sample.

This is equivalent to requiring the ﬁi's in e) to be zero. Thus if

. X m, - d,
* i * i i .
p'-,:.—-__.__l.andqi:—_—'l:l’...'m'

k we have

m
] sup L(P,Q) = L(P*,Q%) = - p;)
P,Q -
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The likelihood ratio principle asserts that H, should be rejected

if
3

sup L(P,Q)
st A A

; y = P20 - _L(P,Q)
; * *
] sup L(P,Q) L(P ,Q )
f P,Q
f (2.3)
% mf1-p.¥i/p: N8/ - o.Vi/q. \"i 4
; = I 1 1 1 i
b * * *
,' =1\l - p;/ \Py t-aif \%

is sufficiently small. Equivalently, since A may become very small

with increasing sample size, we use as our test statistic
T = - 2€nA

and reject HO if T becomes too large. Since the size of such a

test with critical point t, is given by

0

sup Pr(T = to),
st
P >0Q

v it is fortunate that if this supremum is attained, it is attained

in the class of distributions where P = Q (assuming continuous

distributions).

Theorem 2.1. Assuming P and Q are continuous,

sup Pr(T > t;) = sup Pr(T: to) o

st P=Q «
Pz2Q :

for all to. J

Proof. (See Appendix.)
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If we sample from continuous distributions, then with proba- |

bility one, all the Gi's and di's will be zero or one. Since the
" ni's, mi's, Bi's and di's can all be determined from the ranks of

the combined samples, the test statistic T is a function of the
combined ranks, and hence the proposed test is nonparametric in
nature. While we realize that the test was derived under the
assumption of discrete distributions, since a continuous distribu-
tion may be approximated arbitrarily closely by a discrete distri-
bution, we feel the test is still reasonable in the continuous
setting.

Note that if we consider only continuous P and Q, the supremum
in Theorem 2.1 is attained for any P = Q. Because of this, it
seems inherently reasonable to restrict the class of alternatives

st st
to a particular subset of P # Q, namely P < Q, and use the same

test statistic for testing

HO: P=2Q
st
vs H‘1= P < Q (P(t) < Q(t) for all t and P(t) < Q(t) for some t).

Similar arguments to those used in Theorem 2.1 will suffice
to show that the proposed test is unbiased.

Corollary 2.1. For all tO' and continuous P and Q,

Inf Pr(T = to) = Inf Pr(T 2 t,.).
st P =Q

P <0Q

0
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m
There exists some symmetry properties between n, = Z 8. and J
m i=1
m1 = I di which are not readily apparent. In particular, we have
i=1
the following theorem. '

Theorem 2.2. There exists a 1 - 1 mapping between those strings

(of x's and y's) containing nlx's and mly's and those strings

containing mlx's and nly's such that corresponding strings have

@ the same value of A (and hence T).

Proof. (See Appendix.) ]

Since the number of permutations n,x's and mly's is the same

1

as for mlx's and nly's, and since if P = Q (continuous), all

permutations are equally likely, we have the following corollary.

Corollary 2.1. If P = Q (continuous), the distribution of T is

| symmetric in n, and m, .

This result halves the work of finding critical points for

the null distribution of T.

3. Distribution of the Test.

Robertson and Wright (1980) have derived the asymptotic distri-
bution of T under Ho when P = Q are of the discrete

type with only a finite number of points of positive probability.

They have shown that asymptotically the survival function of T i
(under Ho} is a weighted average of chi-square survival functions.
Wolfe and Lee (1976) have discussed a Mann-Whitney-Wilcoxon
type test based upon the restricted mle's ; and a obtained under g
the stochastic ordering restriction, but were unable to obtain the
asymptotic distribution.
To obtain the null distribution of T for the case P = Q

(continuous) for small sample sizes, we have used the computer to

enumerate all possible rankings of the samples along with the

B e




corresponding values of the statistic T. From these we have
computed the .90, .95 and .99 percentage points of the null
distribution of T. For values of n and m too large to consider

all rankings, we have simulated the percentage points based upon

4000 independent observations for each value of n and m through
20. The percentage points are displayed in Table 1.

We have been unable to determine the asymptotic distribution
of T.

4. Power of the Test.

To obtain some feeling for the power of our proposed test
compared to the power of the Mann-Whitney and the Kolmogorov-
Smirnov tests, we simulated observations from various distributions.
We considered sample sizes of (5,5), (5,10) and (5,15) and generated
1000 observations to obtain each empirical estimate of the power
curve. For each test procedure, we chose our critical points to
make the size of the test as close to .05 as possible without ex-
ceeding it. Thus if we were unable to construct a test whose size
was near .05, we would expect the power function of that test to
be lower. This happened sometimes with the Kolmogorov-Smirnov test.

We constructed our alternatives to be basically of three types.
The first type consisted of standard families of distribution which
naturally gave rise to a stochastic ordering. The families of dis-
tributions which we considered were the normal, the exponential and
the uniform distributions.

For testing normality against a one-sided shift alternative,
we know the Mann-Whitney test is very good. However, the new test

performs nearly as well. Values of the power function for the

normal distribution, as well as stochastically ordered alternatives




for the exponential ani uniform distributions, are given in Table 2.
In each of these situations, the new test is nearly as powerful as
the Mann-Whitney test, and usually more powerful than the
Kolmogorov-Smirnov test.

Of course stochastically ordered alternatives may occur in
many ways. One way is to have Lehmann type alternatives, i.e., the
alternative cdf is a fixed power of the null hypothesis cdf. We
considered this kind of alternative for cases where the null hypothe-
sis was an exponential (p = 1) distribution and the case where it
was a uniform {0,1] distribution. A Monte Carlo power study ob-
tained from 1000 independent samples is presented in Table 3. Under
these alternatives the new test performs better than the Mann-
Whitney for the sample sizes of (5,5), and nearly as well for the
sample sizes of (5,10) and (5,15). It performs uniformly better

than the Kolmogorov~Smirnov test for these alternatives.

Finally we should note that since T was derived as a test
st
against the alternatives P % Q, it will still have some power in

detecting differences between distributions whose cdf's cross.

The Mann-Whitney and Kolmogorov-Smirnov tests usually have little
power in these situations. Table 4 gives power values for uniform
and normal distributions with mean 0 when the variance is allowed to
vary. Finally, Table 5 shows power values when the coefficient of
variation (u/o) if fixed at .5, and then n is allowed to change. We
see in Tables 4 and 5 that T outperforms the other tests in this
situation.

An extensive power study of numerous situations indicates that
the test statistic ™ performs well under a wide range of circum-

stances. For small nearly ecual sample sizes, it does especially well,
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S. Appendix.
. * ok I
Proof (of Theorem 2.1). Since L(P ,Q ) = (H) (E) is free of
(xl....,xn Yl,...,Ym) a.s., T is a nonincreasing function of
sup L(P,Q) a.s. However, as discussed in Dykstra (1980),
st
P >Q
sup L(P,Q) = sup Ll(P)LZ(Q) (A.1)
st st ,st
P =2Q P2R20Q

*
where R 1is the empirical survival function of the combined sample
and Ll(Lz) is the likelihood of the first (second) sample.

Now, for fixed Yyr Yoree-o¥y

sup L2(Q) (A.2)
+« St
R 20

. * (3 0 » k3
is nondecreasing in X, Since R is nondecreasing in Xy . Consider

A

now the jump in P at the point X, = sj say. From earlier considera-

tions this is

; n, - 1l + kl 1
i<j n, + k, n. + k.
i i j j

~ *
Now P 2 R implies that

n, -1+ E. n. + m.
i Jj j
1<j nl + Ki nl + ml
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Moreover,

~ . + +

k. = min max ka p § max K. p < Mo (A.4)

J a<j33<b j <b 37 J
so that
! .1 (A.5)
n. + k n. +m

Combining (A.4) and (A.5), we see that the probability which P

*
places at x, is never less than the probability R places at x

k

Suppose now that P denotes the survival function which is

K"

identical to P except it places the probability which P puts at X,

on the value Xy + A(A > 0, X, + A # xj for all j).

k

Thus if R denotes the combined empirical survival function

with X replaced by x, + A, we must have

k

P(t) 2 R(t) for all t

~

(since P is increased by at least as much as R over the interval

[xk, X, + A) and P and R are unchanged elsewhere).

~

However, the likelihood under P and P are equivalent. Thus

sup ,Ll(P) <  sup_L, (P) (A.6)
>

P > R P 2 R 1

where the first likelihood is evaluated at xl,...,xk,...,xn andé the

e X_ .

second at YyreoorXp v X

Thus, combining (A.2) and (A.6), we see, in light of (A.l) that

T(xl,...,x p yl,...,ym) is a nonincreasing function of each X4 (all

n
other variables held constant), and hence

le...,x r er---rym)

n

I (
[T ztD]
is nonincreasing in each X Now write pP(T > to) as an iterated

integral

- cunnlatusdathe inssiontanibule it e s it ikt - o
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P(T 2t ) =E ... EEI(Xl....,Xn, Y) (A.7)
!
xng (T > to) :

and note that E I (Xl....,Xn, Y) is nonincreasing in each X;o
Y (T 2 to)

Since it is well known that for nonincreasing g and stochasti-
st
cally ordered survival functions P =Q

Ig(t)dP (t) < [g(t) aQ(t)

it clearly follows that sup P(T 2 to)
st

P >0

must occur when P = Q.

Proof (of Theorem 2.2). Since the value of A (and alsoc T) depends

only upon the ranks, we may assume that the combined sample con-
sists of the points 1 ’ 2 s7-.+1. Then, letting
nl + ml nl + ml

n = n1 + ml, we can write

A=C sup El[p(i = l) - p(%)] [Q(i ; 1) _ Q(%>] i (2. 7)

P(x) zl-szi

§, d.
_ D [o*(n —i) _ _* + 1 - i ]1[ a~i) _ 1—1] ' ‘
) :*2 :L:pxgp* iI=Il[P <n n 1) P (fl n l) Q*(nﬁl) Q*(l:—n'_—) '
{(~.7)

for a suitable constant C where

*
P (x)

l - pP(l - x), and

0% (x) =1 - 0(1 - %).
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* *
Noting that P (Q ) is a survival function iff P(Q) is, it is

apparent that (A.9) is of the exact same form as (A.8).

(1) _ 4(2)

Thus if two strings are such that ¢, n- i

alt) = 62,
n-1

and
i they must give the same value of A. This of course

happens if a particular string of x's and y's is written in reverse
order, and then the x's replaced by y's and vice versa. This then

defines the 1 - 1 mapping mentioned in Theorem 2.2.

JRTRGY Tor T Sl
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Table 3

Estimated Power of Two-Sample One-Sided Tests

P: ufo, 1)
Q: ufo, 1)
n m k K-S M-W T

5 5 1.00 .0340 .0420 .0450
1.50 .1060 .1360 .1480
2.50 .2460 .3020 .3240
3.50 .3830 .4360 .4730
5.00 .5410 .5920 .6310

5 10 1.00 .0330 .0570 .0630
1.50 .0920 .1590 .1470
2.50 .2640 .3770 .3620
3.50 .4130 .5410 .5130
5.00 .6080 .7370 .7090

5 15 1.00 .0160 .0410 .0450
1.50 .0760 .1320 .1360
2.50  .2370 .3910 .3700
3.50 .4470 .6340 .5830 .
5.00 .6360 .8030 .7800

P: exp(l)
Q: [exp(l)1X
n m k K-S M~W T

5 5 1.00 .0410 .0420 .0510
1.50 .1040 .1200 .1380 {
2.50 .2130 .2790 .2940 ]
3.50 .3890 .4420 .4740 ;
5.00 .5380 .5930 .6350

5 10 1.00 .0320 .0600 .0550
1.50 .0780 .1370 .1350
2.50 .2550 .3760 .3370
3.50 .4180 .5530 .5270
5.00 .6090 .7450 .7050

5 15 1.00 .0240 .0490 .0480
1.50 .0560 .1360 .1320
2.50 .2480 .4060 .3720
3.50 .4340 .6140 .5870
5.00 .6750 .8260 .7990
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Table 4

Estimated Power of Two-Sample One~Sided Tests

P: U[-1, 1]
Q: U["el 8]
m ] K-8 M-W T

5 1.00 .0410 .0480 .0490
.80 .0360 .0440 .0430
.60 .0580 .0530 .0640
.40 .0770 .0430 .0820
.20 .1310 .0470 .1350
.10 .1280 .0440 .1320
.05 .1570 .0280 .1570
.01 .1930 .0290 .1930
10 1.00 .0490 .0500 .0470
.80 .0460 .0510 .0570
.60 .0590 .0750 .1050
.40 .0810 .0940 .1300
.20 .0980 .1020 .1300
.10 .1700 .1720 .1950
.05 .164Q0 .l660 .1730
.01 .1690 .1690 .1690
15 1.00 .0280 .0450 .0500
.80 .0z¢~ .0540 .0880
.60 .0467 ,0990 .1640
.40 .07%t  .1140 .2360
.20 .1200 .1420 .3530
.10 .1580 .1660 .4090
.05 .1836 .1820 .4740
.01 .1930 .1960 .5080

P: N(O, 1)

Q: N(O, 9)

m e K-S M-W T

5 1.000 .0440 .0530 .0550
3.100 .0400 .0430 .0490
6.390 .0730 .0650 .0760
13.160 .0850 .0470 .0870
40.830 .1130 .0430 .1150
10 1.000 .0530 .0490 .0470
2.230 .0420 .0510 .0590
4.010 .0610 .0750 .0870
7.550 .0750 .0830 .1090
21.780 .1100 .1160 .1510
15 1.000 .0320 .0560 .0630
2.050 .0460 .0690 .0790
3.540 .0380 .0690 .0990
6.470 .0760 .1130 .1630
18.260 .1030 .1260 .2550




Table 5

Estimated Power of Two~Sample One-Sided Tests

Constant coefficient of variation = % = .5
|
2
P: N(.2,(.4)%)
2
Q: N(p, o7)
n m u K-8 M-W T

5 5 .20 .0450 .0530 .0620
.50 .2110 .1740 .2470

1.00 .6770 .5130 .6970

2.00 .9920 .9140 .9930

S 10 .20 .0260 .0470 .0500
.50 .2170 .2770 .3440

1.00 .6940 .7160 .7840

2.00 .9890 .989%0 .9920

5 15 .20 .0280 .0510 .0550
.50 .2480 .3210 .4380

1.00 .6960 .7460 .9030

2.00 .9940 .9940 .999%0
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