ANNUAL SUMMARY
OF
MOLECULAR BEAM STUDIES OF LOW ENERGY REACTIONS

ONR CONTRACT NO. N00014-81-K-0255

PRINCIPAL INVESTIGATOR: R. H. NEYNABER

Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

University of California, San Diego
La Jolla, CA 92039

November 20, 1981
The annual summary of the research performed under ONR Contract No. N00014-81-K-0255 is given. The report describes merging-beams studies of charge-transfer reactions. Included are investigations of the CI⁺-Xe and He⁺-He(2S) systems.
Annual Summary

of

Molecular Beam Studies of Low Energy Reactions
ONR Contract No. N00014-81-K-0255

1. Contract Description

Chemi-ionization and ion-molecule reactions involving metastable and ground-state atoms are studied by merging beams at low relative energies (i.e., 0.01 to 10 or 20 eV).

2. Scientific Problem

Some theories exist for chemi-ionization involving collisions of metastable and ground-state rare gases. There is very little experimental data to test these theories over a range of relative kinetic energy from 0.01 to 10 or 20 eV. We will supply such data. Theoretical work for collisions between two metastables is almost non-existent, and experimental data are scant. We will supply experimental information such as absolute and relative cross sections and branching ratios for associative to Penning ionization. This information should establish patterns to test those calculations that do exist and will stimulate further theory. Our chemi-ionization data also will produce some information on unknown potentials for the systems $A^*B$ and $C^*D$, where $A$, $B$, $C$, and $D$ are atoms and asterisks denote metastables. This information includes well depths and the dependence of the long range potential on internuclear separation.

The composition of keV neutral rare gas beams formed by charge transfer of the rare gas parent ion beam in alkalis is unknown. The beams consist of rare gas metastables (generally in two states) and ground-state atoms. The technique for generating such beams is common, and information on the composition is needed in analyzing data obtained through their use. We have developed a method for obtaining the fraction of ground-state
atoms in such beams by studying appropriate ion-molecule reactions. We will apply this method to determine unknown compositions.

No experimental information exists on low-energy resonant or near-resonant charge-transfer reactions between rare gas ions and metastables. Our experiments will supply such information. The data can be used to see if existing theories for charge transfer between ions and ground-state atoms can be extended to this case. We also will investigate energy distributions of product ions from which information on the reaction kinetics can be obtained.

Charge-transfer studies of special interest to the Navy will also be conducted.

3. Scientific and Technical Approach

Merging-beams techniques will be used for the studies. The two reactants of the process under investigation will be merged. Their velocities will be adjusted with respect to each other so that the desired relative energy in the center-of-mass system will be obtained. Product ions resulting from the reaction will be collected to give relative and absolute cross sections, and branching ratios will be obtained when appropriate.

4. Progress

A totally new contract was started on 1 March 1981. The progress on this program for a period of 8-1/2 months is discussed below.

a) We analyzed and published our results for the study of the charge-transfer reaction Cl$^+$ + Xe $\rightarrow$ Cl + Xe$^+$ in the relative energy range of 1-900 eV. The reaction is asymmetric with cross sections increasing with increasing collision energy. At 20 eV the cross section is about $1.9 \times 10^{-16}$ cm$^2$.

b) Absolute and relative cross sections were obtained for the charge transfer between ground-state helium ions and helium atoms in the first metastable state. The reaction is He$^+(1^2S) +$ He$(2^3S)$ $\rightarrow$ He$(2^3S)$ + He$^+(1^2S)$. Resonant charge transfer (RCT) preceded by capture, or orbiting,
collisions occurs for $W \leq 0.04$ eV, whereas RCT without capture occurs at higher $W$. Agreement with impact-parameter calculations is fairly good at intermediate $W$ but poor at the higher and lower ranges of $W$ covered in the experiment.

c) A paper on our study of the charge transfer between $\text{He}^+$ and $\text{He}(2^3S)$ was presented at the XII International Conference on the Physics of Electronic and Atomic Collisions, Gatlinburg, Tenn., July 15-21, 1981.

5. Publications

The following paper has been published since the new contract was begun on 1 March 1981.


6. Extenuating Circumstances

None.

7. We do not expect any unspent funds to be remaining at the end of the current contract period.

8. No graduate students or postdoctoral personnel have been associated with the contract.

9. R. H. Neynaber has not been supported by any other Federal grant or contract since the inception of this ONR contract.
# REPORTS DISTRIBUTION LIST FOR ONR PHYSICS PROGRAM OFFICE

**UNCLASSIFIED CONTRACTS**

<table>
<thead>
<tr>
<th>Address</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director Advanced Research Projects Agency</td>
<td>3</td>
</tr>
<tr>
<td>Attn: Technical Library 100 Wilson Blvd. Arlington, Virginia 22209</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research Physics Program Office (Code 421) 100 North Quincy Street Arlington, Virginia 22217</td>
<td>3</td>
</tr>
<tr>
<td>Office of Naval Research Director, Technology (Code 200) 100 North Quincy Street Arlington, Virginia 22217</td>
<td>1</td>
</tr>
<tr>
<td>Naval Research Laboratory Department of the Navy Attn: Technical Library Washington, DC 20375</td>
<td>3</td>
</tr>
<tr>
<td>Office of the Director of Defense Research and Engineering Information Office Library Branch The Pentagon Washington, DC 20301</td>
<td>3</td>
</tr>
<tr>
<td>U. S. Army Research Office Box 12211 Research Triangle Park North Carolina 27709</td>
<td>2</td>
</tr>
<tr>
<td>Defense Technical Information Center Cameron Station Alexandria, Virginia 22314</td>
<td>12</td>
</tr>
<tr>
<td>Director, National Bureau of Standards Attn: Technical Library Washington, DC 20234</td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer Office of Naval Research Western Regional Office 1030 East Green Street Pasadena, California 91101</td>
<td>3</td>
</tr>
<tr>
<td>Commanding Officer Office of Naval Research Eastern/Central Regional Office 666 Summer Street Boston, Massachusetts 02210</td>
<td>3</td>
</tr>
</tbody>
</table>
Director
U. S. Army Engineering Research
and Development Laboratories
Attn: Technical Documents Center
Fort Belvoir, Virginia 22060

ODDR&E Advisory Group on Electron Devices
201 Varick Street
New York, New York 10014

Air Force Office of Scientific Research
Department of the Air Force
Bolling AFB, D. C. 22209

Air Force Weapons Laboratory
Technical Library
Kirtland Air Force Base
Albuquerque, New Mexico 87117

Air Force Avionics Laboratory
Air Force Systems Command
Technical Library
Wright-Patterson Air Force Base
Dayton, Ohio 45433

Lawrence Livermore Laboratory
Attn: Dr. W. F. Krupke
University of California
P.O. Box 808
Livermore, California 94550

Harry Diamond Laboratories
Technical Library
2800 Powder Mill Road
Adelphi, Maryland 20783

Naval Air Development Center
Attn: Technical Library
Johnsville
Warminster, Pennsylvania 18974

Naval Weapons Center
Technical Library (Code 753)
China Lake, California 93555

Naval Training Equipment Center
Technical Library
Orlando, Florida 32813

Naval Underwater Systems Center
Technical Center
New London, Connecticut 06320
Commandant of the Marine Corps  
Scientific Advisor (Code RD-1)  
Washington, DC 20380  

Naval Ordnance Station  
Technical Library  
Indian Head, Maryland 20640  

Naval Postgraduate School  
Technical Library (Code 0212)  
Monterey, California 93940  

Naval Missile Center  
Technical Library (Code 5632.2)  
Point Mugu, California 93010  

Naval Ordnance Station  
Technical Library  
Louisville, Kentucky 40214  

Commanding Officer  
Naval Ocean Research & Development Activity  
Technical Library  
NSTL Station, Mississippi 39529  

Naval Explosive Ordnance Disposal Facility  
Technical Library  
Indian Head, Maryland 20640  

Naval Ocean Systems Center  
Technical Library  
San Diego, California 92152  

Naval Surface Weapons Center  
Technical Library  
Silver Spring, Maryland 20910  

Naval Ship Research and Development Center  
Central Library (Code L42 and L43)  
Bethesda, Maryland 20084  

Naval Avionics Facility  
Technical Library  
Indianapolis, Indiana 46218