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I.  INTRODUCTION 

A protuberance in a boundary layer whose height is of the order of the 
boundary layer thickness would be expected to cause large changes in the 
neighboring flow field. Experimentally it has been found that significant 
perturbations in the flow are also induced downstream of the protuberance for 
hundreds of protuberance heights. As determined by flow visualization and 
supported by hot wire measurements, these perturbations take the form of 
streamwise vortices or concentrations of streamwise vorticity. A theoretical 
model for this persistent effect does not exist; in this report numerical 
modelling is employed. 

There are other flow fields where the persistence of streamwise vorticity 
has been found. In wind tunnel experiments on flat plates, non-uniformities 
in screens far upstream of the plate have caused significant spanwise velocity 
components. Small non-uniformities on the leading edge of plates or on steps 
of bodies of revolution also induce persistent streamwise vortices. Such 
vortices are also formed in the boundary layer on the leeward side of a body 
of revolution at moderate angle of attack and can persist to the base; as 
angle of attack increases, the vortices are shed from the body. These vorti- 
ces can influence the Magnus effect on a projectile. 

The persistence of streamwise vortices is found for both laminar and 
turbulent boundary layers. For the latter, spanwise non-uniformity in the 
transition process can induce them in addition to the mechanisms mentioned 
above. Streamwise vorticity may also be involved in large-scale structures in 
turbulent boundary layers. A matter of practical concern when streamwise 
vortices exist in turbulent boundary layers is that they increase the heat 
transfer. 

The above ideas are discussed by Morkovin1, who also emphasizes the 
unsatisfactory state of the observations and theory for streamwise vortices. 
The main conclusions of the present work are also discussed. 

To study the effect, the simplest situation is chosen in which streamwise 
vortices are found: flow behind a protuberance imbedded in a low speed lami- 
nar boundary layer on a flat plate. Also, more experimental data is available 
for this case than any other; even so it is not sufficient for our purposes. 
The objective of this work is to determine if numerical simulation of the flow 
field will show the persistence and other features of the flow field that are 
observed experimentally. 

A schematic of the flow field is shown in Figure 1. Qualitatively, the 
same flow field features are found over a wide range of conditions, regardless 
of whether the boundary layer is laminar or turbulent, or whether the external 

I. Morkovin,  M.V.,   "Ohsevvations on Streamwise Vortices in Laminar and 
Turbulent Boundary Layers",  NASA Contractor Report 159061,  April 1979. 



flow is high speed or low speed. Sedney2 has surveyed the effects of small 
protuberances on boundary layer flows; for additional details of the flow 
field and references describing them see Reference 2. As sketched in Figure 
1, the boundary layer separates upstream o-" the protuberance, forming a horse- 
shoe vortex which stretches around the obstacle. Spiral vortices rise up from 
the surface of the plate in the near wake, forming twin-vortex filaments which 
trail downstream. Smoke visualization studies in 'ow-speed boundary layers 
show_ that the streamwise vortices produced by the interaction process can 
remain steady and distinct for hundreds of protuberance heights downstream of 
the obstacle. The persistance of these vortices is quite remarkable, even 
more so when it occurs in turbulent bouidary layers, considering the high 
diffusivity. 

Two numerical approaches for modeling the downstream flow field are 
employed in the present study. The first uses 3-D boundary-layer approxima- 
tions; the second makes use of a 3-D boundary-region approximation which 
includes the viscous crossflow (diffusion) terms neglected in the boundary- 
layer theory. The measurements of Tani, et al.3. taken ten protuberance 
heights downstream of the obstacle, are used to construct the initial data for 
the calculations. Quantitative agreement between the numerical simulation and 
measurements will depend on the accuracy with which we can fit the initial 
data, which is obtained from experimental measurements and properties of 
boundary layers. The uncertainties in the fitting wi"1 be described. 

The major conclusion is that, using the boundary-region approximation, we 
are able to reproduce the qualitative features of the flow field far down- 
stream of the obstacle, including the persistence of streamwise vorticity; but 
we do not succeed using the 3-D boundary-layer approx-mation. 

II. GOVERNING EQUATIONS 

For some range of the parameters involved, such as Reynolds number, 
protuberance dimensions and geometry, the flow is sensibly steady; see Refer- 
ence 2. Therefore we use the steady, 3-D, incompressible Navier-Stokes equa- 
tions.* 

u ux + v uy + w uz = -p"1 px - u(uxx + uvy + u2z),        (l) 

2. Sedney,  R.,   "A Survey of the Effects of Small Pvotuhevanaes on Boundavy- 
Layey Flows",  AIAA Journal.   Vol.  11,   No.  6,  June 1973,   pp.   782-792. 

3. Tani, I., Komoda, H., and Komatsu, Y., "Boundary-Layer Transition by 
Isolated Roughness", Aeronautical Research Institute Report No. 375, 
University of Tokyo,  November 1962. 

♦Definitions of symbols are given in the LIST OF SYMBOLS section. 
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u  vx + v vy + w vz = -p"1 py + u(vxx + vyy f vzz), (2) 

u wx + v wy + w wz = -p-1 pz + ^w^ + wyy + wzz), (3) 

and the continuity equation 

ux + vy + wz = 0, (4) 

where subscripts denote partial differentiation, p is the density, p the 
pressure, v the absolute viscosity; and u, v, w are dimensional" velocity 
components in the directions of the streamwise coordinate, x, the spanwise 
coordinate, y, and the normal to the plate, z, respectively (see Figure 1 for 
coordinate system). Equations (l)-(4) are sufficient for describing the 
complete protuberance flow field, but would be very difficult to apply in 
practice. If we concentrate, instead, on the downstream flow field, then we 
suspect that if we initialize the calculations "far enough" downstream, we can 
use the boundary-layer or boundary-region equations to describe the flow 
field. 

The 3-D boundary layer equations can be derived from Equations (l)-(4) 
through either an order-of-magnitude analysis, or by formally applying limit 
processes at high Reynolds numbers. The resulting equations, in non-dimen- 
sional   form,  are 

U Ux + V UY +  W Uz = -Px + Uzz (5) 

U  Vx + V VY + W Vz =  -PY + Vzz (6) 

Ux + Vy +  Wz = 0 (7) 

where the non-dimensional  variables are defined by 

X =  x/L,    Y = y/L,    U -  u/u^,    V =  v/u^ (8) 

with 

Z = z Re1/2/L,    W = w Re1/2^,    P - P/CPU^2) (9) 

Re = PUJ-ZP. (10) 

The freestream velocity is u^ and L  represents a  reference length, taken to be 

1  cm in the present problem. 

The 3-D boundary-region equations, on the other hand, cannot be formally 
derived from Equations (l)-(4), to the best of our knowledge. Rather, they 
represent an ad hoc approximation that has been used in some other 
investigations   to   treat   problems  where  crossflow  diffusion  effects  were  not 



negligible. They were first used by Kemp4 for the flow over two intersecting 
flat plates, the corner problem, and have been emp'Dyed extensively by many 
authors for that problem. The boundary-region equations can be derived, using 
familiar limiting processes, for the corner problem, but not for the present 
problem or many others to which they have been appliec. Therefore, to account 
for the expected crossflow diffusion effects, we adopt the boundary-region 
approximation expressed by 

U Ux + V Uy + W Uz = -Px + Uzz + Re"
1 UyY (n) 

U Vx + VVy + W Vz = -PY . Vzz + Re"
1 VyY (12) 

Ux + VY + Wz = 0, (13) 

where the unusual form of the diffusion terns on the right hand side results 
from the way in which z is non-dimensionalized. 

We can write a single set of equations that expresses both the boundary- 
layer and boundary-region approximations 

U Ux + V UY + W Uz = -Px - e Re-1 Un + Uzz (H) 

U Vx + VVY + W Vz = -PY - e Re"
1 VYY + Vzz (15) 

Ux + VY + Wz = 0, (16) 

where e = 0 gives the 3-D boundary-layer equations and e = 1 gives the 3-D 
boundary-region equations. The boundary-region approximation includes one 
additional crossflow diffusion term in each momentum equation that is neglect- 
ed in the 3-D boundary-layer theory. Both approximations neglect the normal 
momentum equation, assuming that normal pressure gradient Pz = 0; model equa- 

tions with Pz # o could also be developed. The boundary conditions applicable 

to Equations (14)-(16) will be described in Section V. When the external flow 
is uniform, as is assumed here, Pv = Py = 0. 

III.  TANI TEST PROBLEM 

We have attempted to apply Equations (14)-(16) to describe the flow field 
downstream of a typical small cylindrical protuberance. Experimental hot wire 
anemometry measurements taken by Tani, et al.3 establish the presence and 
persistence of streamwise vortices in the downstream flow field for various 

4.    Kemp, N.    "The Lcminar> Thvee-Dimensional Boundary Layer and a Study of the 
Flow Past a Side Edge", M.Ae.S.  Thesis,  Cornell University, 29S1. 
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free stream conditions. The test problem treated here corresponds to Tani's 
experimental arrangement with a cylindrical protuberance (k = 0.25cm), where k 
is the protuberance height, mounted normal to a flat plate placed in a wind 
tunnel; see Figure 1. The protuberance height is equal to its diameter and 
the freestream velocity is 520cm/s, with a free stream turbulence level of 
approximately 0.2%.  The protuberance leading edge is located at xk = 60 cm. 

For these conditions the protuberance height is approximately 39% of the local 
boundary-layer thickness, 6, at x = xk, based on the 99%-velocity thickness. 

The Reynolds number based on xk, with v = p/p = 0.15cm2/s is 

Rev = u ><i7v = 2.08 x 105 xk    K 

and the roughness Reynolds number is 

Rek '  550, 

defined in terms of the protuberance height and the local undisturbed velocity 
at x = Xj., z = k. 

Tani took hot wire surveys of the protuberance flow field at various x to 
study the manner in which the streamwise vortices redistribute momentum in the 
boundary layer and affect transition. His measurements taken at (x-xk)/k = 10 

are used in the present study to construct a plane of data for "initializing" 
the marching schemes used to solve Equations (14)-(16). From the limited data 
taken by Tani, distributions of velocity components which fit these data must 
be constructed in order to generate the initial plane flow. This is accom- 
plished by combining the available data with theoretical considerations, so 
that U, V, and W are prescribed everywhere at (x-xk)/k = 10. This process is 
described in the next section. 

In addition to velocity fields. Reference 3 presents data for measure- 
ments of the flow perturbation caused by the protuberance and the spacing of 
the vortices for downstream distance (x-xk)/k = 244; these data are used to 

test the calculations. The transition process, which starts at x = xt, begins 
further downstream; from Reference 3, (x1.-xk)/k -  4500. 

IV.  INITIAL PLANE OF DATA 

The experimental data3 upon which the velocities in the initial plane, Xj 

= X|< + 10k, are based are shown in Figure 2.  The u and v distributions are 

consistent with two vortices, symmetrical about y = 0, but are insufficient to 
characterize the entire flow field. They must be supplemented with theoreti- 
cal considerations and assumptions.  The deviation of the fitted values from 

11 



the   actual   velocity   field   might   be   large   for   sorre  y   and   z   because   of   the 
paucity of the data. 

Figures 2a and 2b furnish data at only three values of z, whereas values 
of ^^2 are piven in Figure 2c for many z values. The curves in these fig- 

ures are from Reference 3, representing the authors' smoothing of the data. 
Figure 2c, together with Figure 6 of Reference 3, shows that the shape of the 
U(Y) curves is the same for all Z; only the magnitude changes. Three quanti- 
ties   are   defined   graphically   in  Figure  2a:     Uj   aid  U2   are  the  maximum  and 

minimum  values,   respectively,  of U  off  the  plane  of symmetry at  fixed  values 

of  Z;   s/2   is   the maximum  value of Y   at which U  » i- (Uj + LL)   and  is  thus   a 

measure of the spacing of the two  legs of the horseshoe vortex.    A measure of 
the  perturbation  due to  the  horseshoe  vortex  is  LU   -  l^;   for Figure 2   it   is 

approximately 20% of the local  Blasius  value of U. 

The fits  for U and V in the initial  plane are: 

Uj  = UB +  1.961  [1.519 n f0"   (1.519 n)]  [UT(Y)  - UT  (2.5)] (17) 

Vj ■ -1.217 n Uj F2  (1.558 n) tan 3T (Y), (18) 

where 

n - Z/(2 Xj)172 =  [uM/(2v Xj)1'"2]!, (19) 

UB - fo'   (n) (20) 

are the Blasius variables.  The process which led to these fitting functions 
is described below. 

The functions f0' (n), n fo" (n), and F2 (n) are tabulated in Appendix 

A. These are obtained by solving 

f '" (n) + f f " - 0 
0   ^   0 0 (21) 

V + f„ F9, + 3-3873 fJ  F*  = 0. c 0     c 0       c 

where f0 (0) = f0' (0) = 0; f0' («) = 1 

F2 (0) = F2 (-) = 0. 

12 



?2 is an eigenfunction occurring in the boundary-layer perturbation analysis 

of Fox and Libby5. 

The functions U-p(Y) and g-^Y) are obtained by dividing the Y-axis into 

segments and empirically fitting the data of Figure 2 in each segment with a 
3rd-order polynomial, with continuity of the functions and first derivatives 
required at tie-points. 

UT(Y) = an + a.Y + aoY
2 + aoY3 

2    3 (22) 
'Tv ; ~ o   1    2    d3 

6T(Y) = b0 + bjY + b2Y
2 + h^*    (in degrees), 

where Py is fitted at z = 0.18 cm. The imposed symmetry requires that we need 

to consider only Y > 0. Five segments were used here. The a- and b- coeffi- 

cients and tie-points are provided in Appendix B. Regrettably, the boundary- 
region approximation was not under consideration when the cubic spline fits 
were made for UT and 3T; consequently Uyy and Vyy in Eqs. (14) and (15) are 

discontinuous at the tie-points. 

The following process was used to arrive at Eqs. (17) and (18). We 
imposed the plausible assumption that as either Y •> «> or Z -»■ <=», U approaches 
Blasius flow and V approaches zero. In Eq. (17) the Blasius U is reached at Y 
= 2.5.  The function n f0'' (n) has the same shape and limits as the U-pl^ 

data in Figure 2c, which measure the amplitude of perturbation to Blasius 
flow. The two constants in Eq. (17) were obtained by imposing two 
conditions: (i) U should agree with Tani's measurement at y = 0.30 cm and z = 
0.25 cm (Figure 2a), and (ii) the peak of the n fQ"   (n) curve should occur at 

z = 0.24 cm, the peak of the data in Figure 2c. As for Eq. (18), Figure 2b 
indicates a reversal in phase of the 3 versus y profiles between z = 0.18 cm 
and z = 0.33 cm; the function F2(n) provides this feature. The two constants 

in Eq. (18) were obtained by forcing the analytical expression for Vj to agree 

with the data at y = 0.30 cm, z = 0.18 cm, and y = 0.30 cm, z = 0.33 cm. 

Results of the fitting are compared with Tani's measurements in Figure 3, 
which shows spanwise distributions, and Figure 4, which shows variation normal 
to the plate. In Figure 3b only the data for y > 0 and z = 0.18 cm were used 
to determine the constants, and the deviation between these data and the 
fitted curve is relatively small. Although the deviation for y < 0 is rela- 
tively large, it is apparent that the scatter in the data is also large, e.g., 
the data for 0 is not an odd function of y. In fitting the data, however, we 
required the symmetry conditions to be satisfied. 

5. Fox,  E.}   and Libby,  P.A.,   "Some Perturbation Solutions in Laminar 
Boundary Layer Theory.    Part 2.    The Energy Equation",  J.  Fluid Meah., 
Vol.  19,   1964,   pp. 4Z3-451.   

13 



The  vertical   component,  W,  is  found from U  and V  by subtracting Eq.   (14) 
r^^-a.^1"165  ^   (15^»  then separating out the  resulting 3(W/U)/aZ term and 

Z 
W = U /    {[Px - UVY + VUY -   (e Re"1 UYY - U     )]/U2}  dZ. (23) 

integrating: 

A similar expression can be derived using Eqs. (15) and (16). For uniform 
external   flow,   Px  =   0.      The  Y-   and  Z-   derivatives   are  evaluated   by   finite 

differences at the mesh points in the Y,Z plane wi'h 3-point formulas, and W 
is obtained by numerical integration of the right-hand side of Eq. (23). The 
integrand, J, of Eq. (23) is indeterminate but finite at Z = 0, so that at the 
first level of mesh points off the plate, 

W   (Z-AZ)   « i AZ U(AZ)  J(AZ/2). 

The computation fails if U = 0 off the plate; however, this has never occur- 
red.      The   boundary-layer   and   boundary-region   approximations  yield  different 

distributions because of the absence or presence of the Re"1 UYY term. 

In Figure 5 the velocity vectors are shown projected into the initial 
plane (as viewed looking downstream from the protjberance). The U- and V- 
components are identical in both approximations, xit the W- components are 
different. A mesh point lies at the tail of each velocity vector. The bound- 
ary-layer approximation leads to two counter-rotatirg vortices on each side of 
the plane of symmetry. In the boundary-region approximation, there is one 
large vortex and possibly several smaller vortices that are not clearly de- 
fined. One noticeable difference occurs at the plane of symmetry, Y = 0; in 
the boundary-region case the flow is toward the plate, while in the boundary- 
layer case the flow is away from the plate. 

The differences between the two flow patterns in Figure 5 suggest that 
Uyy,  and therefore,  Vyy  are  not  negligible  for this  vortical   flow.'   Figure 6 

compares uyy with uZ2 at Z = 1.0. (Since these two terms are dimensional, 

they may be compared directly, no stretching factor being involved.) This 
figure shows  that uyy is 8 times  as  large as uzz in some parts of the initial 

plane. Thus the boundary-layer approximation is violated in this plane 
because it  requires u      « uzz. 

That the boundary-layer approximation may be volated can be anticipated 
from the large gradients, e.g., Uy shown in the data in Figure 2a. The ques- 

tion arises whether or not a boundary layer calculction should be attempted. 
It was decided to do this on the possibility that the large gradients would be 
smoothed out and that the downstream flow could be calculated. 

V.     NUMERICAL PROCEDURE AND BOUNDARY CONDITIONS 

The equations were solved using the predictor-corrector multiple-itera- 
tion (PCMI) method, which has two advantages.    It can be used for both sets 
of equations, and the truncation error is uniformly second order.    One 
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alternative procedure for the boundary layer equations is discussed 
later. 

The numerical solution to Eqs. (14)-(16) is obtained by marching down- 
stream (X-direction) from the initial data plane. Symmetry boundary condi- 
tions 

3U/3Y = V = 3W/3Y = 0 (24) 

are applied at Y = 0 and Blasius flow is prescribed at Y = 2.5. The free- 
stream velocity components (U = 1 and V = 0) are prescribed at Z = 100. The 
numerical procedure is based on a predictor-corrector multiple-iteration 
(PCMI) technique developed by Rubin and Lin6. The procedure is implicit in 
the Z-direction. All flow gradients in the Y-direction are approximated by 
prediction and subsequent correction using an iterative approach, which gives 
a more accurate simulation of the nonlinear coupling between equations. The 
solution is obtained for each grid column by inverting a tridiagonal  matrix. 

Appendix C gives the set of difference equations used in this study. The 

truncation errors for interior points are of 0 (Ax2, AY2, AZ2). The PCMI 

procedure  solves   the  momentum  difference  equations   for U17^1   and  V11^1,   using 

the m-iterate values to form the coefficients of the nonlinear terms and 
approximate Y-derivatives, where m denotes the iteration level. The continu- 

ity equation is then solved for W1114'1. 

For the predictor step, or first iteration, terms in Eqs. (C-l)-(C-lO) 

with superscript zero are approximated by a Taylor series to 0  (AX2): 

FHij,k= Fi,j,k
+ (Fij,k - Fi-ij,k) (xi+r

xi)/<xrxi.i)-      (25) 

During the first X-step an extrapolation of 0 (AX) is used. After extrapolat- 

ing guesses  for U0, V0 and W0 at Xi+1, Eqs.   (C-l)  and  (C-6)  are solved to give 
11 

U    and V .     The  calculations  start at the plane of symmetry and work outward 
in Y.     The  (m+l)-iterate values  are used to approximate derivatives  in the Y- 
direction  as  soon  as  they  become  available;   see Eqs.   (C-5)   and  (C-10).     Next 

Eq. (C-ll) is solved for W1, starting at Y = Z = 0 and sweeping in Z and then 
Y. This completes the first iteration cycle. Subsequent iterations allow the 
nonlinear terms to be corrected and the symmetry plane boundary conditions to 
be satisfied. 

6.    Rubin,   S.G.,   and Lin,   T.C,   "A Numerical Method for Thvee-Dimensional 
Visaous FIOIJ:    Appliaation to the Eypeveonia Leading Edge",  J.  Comp. 
Phye.,   Vol.  9,  1972,   pp.  339-364.   

15 



Numerical studies were performed to determine the number of iterations 
required to give satisfactory convergence of the solution. These indicate 
that three iterations assure convergence of U, V, and W to at least four 
decimal places, which we consider to be sufficiently accurate. Consequently 
at least three iterations were used for subsequent calculations. The number of 
iterations used varied with AX, which ranged from 0.010 near the initial data 
plane to 0.250 at the last downstream station. The value of AX was adjusted 
during the calculations to satisfy the linear stability criterion 

AX < AY|U/V|. (26) 

Eq. (26) is based on a linear stablity analysis for interior points, including 
the effect of multiple iteration6. A 41 x 41 (Y x T grid was used for each X 
= constant plane with AY = 0.025 for 0 < Y < 0.5, AY = 0.100 for 0.5 < Y < 2.5 
and AZ = 2.50 for 0 < Z < 100. The variable spacing in Y was adopted to help 
resolve the large crossflow gradients indicated in Figure 2 for 0 < Y < 0.5. 

Special second-order accurate difference approximations for 3F/8Y and 92F/3Y2 

are employed at Y = 0.5 due to the unequal mesh spacing, where F represents U 
or V. 

VI.  RESULTS AND COMPARISON WITH EXPERIMENT 

Computations were carried out for the vortical flow downstream of the 
protuberance using both the boundary-layer and boundary-region 
approximations. The boundary-layer calculation failed when it predicted 
streamwise flow reversal; the boundary-region calculation, on the other hand, 
was carried to 244 protuberance heights downstream (Tani's last station) 
without encountering computational difficulties. 

Crossflow velocity vector plots at (x - xk)/< = 16 are presented in 

Figure 7, which shows the initial stages of the breakdown of the boundary- 
layer calculation.  Large gradients. My, are predicted at Y = 0.025 and 0.3 

which were not present in the initial plane. As -he calculation proceeds, 
they are not smoothed out, due to lack of crossflow ciffusion. The positive W 
along the plane of symmetry, present on the initial plane, is still in evi- 
dence. At x = xk + 20 k the W-component is larger and the U-component re- 

verses direction, as if streamwise separation had occurred. Since there is no 
pressure gradient in this flow, the usual cause of separation, an adverse 
pressure gradient, cannot be invoked. We only note that (i) for both the 
initial plane and for (x-xk)/k = 16, W > 0 in the neighborhood of Y = 0, and 

(ii) Uz > 0 up to the point of flow reversal; thus the term WUZ could play the 

role of an adverse pressure gradient. At any rate the boundary-layer calcula- 
tion cannot proceed beyond x = x.., + 20 k. 

For the boundary-region calculation the crossflow velocity vector plot in 
Figure 7 shows that some anomalies that existed in "he initial plane, caused 
by discontinuities in second derivatives with respect to Y, have been smoothed 
out.  The presence of the main vortex is clearly seen.  In contrast to the 
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boundary layer results, W < 0 near Y = 0 at this plane as it was in the ini- 
tial plane, and the gradients are smaller, the largest Wy for the boundary 

region case being 20% of that for the boundary layer case. These differences 
between the results of the two approximations are felt to be related to the 
success of the boundary region calculation. 

Figure 8 shows the downstream variation of the maximum value of the 
streamwise vorticity, cx (= 3W/3Y - 8V/3Z), evaluated at the wall.  This is a 

measure of the strength of the horseshoe vortex. Results from the boundary- 
layer calculation are terminated where it breaks down. The streamwise vortic- 
ity from the boundary-region calculation is essentially zero at about 150 
protuberance heights downstream. 

With regard to crossflow velocity, the boundary-region calculation pre- 
dicts that the flow inclination at (x - xk)/k = 244 is less than 0.2°. Tani 

could not detect any crossflow velocity component at 244 protuberance heights 
downstream. In fact, 0.2° is within scatter of his data. 

Figure 9 shows the streamwise variation of the horseshoe vortex spacing, 
s. The variation predicted by the boundary-region approximation is seen to 
agree qualitatively with Tani's measurements. At the last downstream station 
the predicted spacing is about 25% larger than the measurement. The trend of 
the calculated s is the same as that of the data. 

Figure 10 shows the variation of the maximum velocity difference, (Uj- 

^9)1™ • T,ie quantity Ui-Un is evaluated in each crossflow plane and the 

largest value, (ui-u2)max 1S Plotted' The boundary-region calculation pre- 

dicts that the perturbation in U grows to ~ 0.19 at x = xk + 25 k and then 

begins to decay. The calculated perturbation decays faster than the measured 
value up to (x - xk)/k ■ 200; thereafter the calculated value is essentially 

constant and is 38% of the experimental value at 244 protuberance heights 
downstream. Note that the perturbation in U is still present at (x - x^/k = 

244, although the crossflow velocity has decayed to nearly zero and the maxi- 
mum streamwise vorticity at the wall is already zero. These conclusions apply 
also to the experimental data. 

The failure of the boundary layer calculation would seem to be related to 
the lack of a mechanism for smoothing out or diffusing the large crossflow 
gradients in the initial data. However, care must be taken in drawing conclu- 
sions from the results of these numerical solutions because the failure of the 
PCM! boundary-layer calculation may be a product of the numerical scheme 
and/or the inadequacy of the boundary layer model itself. An indication might 
be obtained by trying other schemes. Rather than try schemes similar to the 
PCMI, which would probably fail in the same way, we used a scheme that adds 
support to the statement made in the first sentence of this paragraph. The 
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scheme chosen was the one in Reference 7, called Scheme D, on the basis of 
zone-of-dependence sensitivity. For details see Reference 7. The 

truncation errors for this scheme are 0(AX, AY2, AZ2, AY2/AX). In contrast 

with the PCMI truncation error, this scheme is only -"irst order in AX and has 

the additional error AY /AX. The latter arises from artificial diffusion 
introduced by the X-difference equation. Using s-andard truncation erro? 
analysis techniques, it can be shown that two artificial viscosity 

terms, a UYy and a V^, where a = AY
2/AX, are introdjced into the finite- 

difference equations8. These two artificial viscosity terms have the same 
Torm as the crossflow diffusion terms in the boundary-region approximation. 
These terms have the effect of smoothing out the initial large crossflow 
gradients and the calculation proceeds beyond the point where the boundary 
layer PCMI calculation failed. Apparently the Scheme D boundary-layer 
difference equations behave in a manner similar to the boundary-region approx- 
imation. By increasing AX from 0.01 at the initial plane to 0.50 far down- 
stream, the calculation proceeded to X = 244. However, the results compared 
poorly with the data. Figure 11 shows the values of s from this scheme to- 
gether with the boundary-region result. The divergence between the results 
as X increases, may be caused by the fact that a is 50 times smaller down- 
stream than near the initial plane, and hence the artificial diffusion is 
small, or perhaps because AX is 50 times larger than near the initial plane 
and thus produces unacceptable truncation errors. The conclusion is that this 
boundary-layer calculation fails but in a different ssnse from the PCMI fail- 
ure 

VII. CONCLUSIONS 

In this study we have shown that the three-dimensional boundary-region 
approximation can be successfully used to describe the flow downstream of a 
cylindrical protuberance immersed in a laminar flat plate boundary layer. The 
persistence of the streamwise vorticity downstream of the obstacle is predict- 
ed In agreement with experimental observations. We find that the streamwise 
vorticity persists more than 100 protuberance heights downstream and that the 
initial perturbations in U decay more slowly than the vorticity. Significant 
perturbations in U are still present 244 protuberance heights downstream of 
the obstacle in the boundary-region calculation. This is quite remarkable 

7.    K-itahens Jv.,  C.W.,  Sedney,  R.,  and Gevhev, N.t   "The Role of the Zone of 
Dependence Concept in Thvee-Dimeneional Boundavy-Layev Calaulatione",  U.S. 
Army Ballistia Reeeavah Labovatovy/ARRADCOM Report No. 1821,  Aberdeen 
Proving Ground,  MD,  August 1975.    AD A016896. 

8'    ^f18'  P'J''   "0n Ar'tifiaiaT' Viscosity", J. Comp. Phys.,  Vol. 10,  October 
1972,   pp.  169-184. —  
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considering that we have marched more than a hundred boundary-layer thick- 
nesses downstream to reach this position. The experimental data show the same 
qualitative trend. 

The three-dimensional boundary-layer approximation, on the other hand, is 
not successful in describinq the flow field downstream of the protuberance. 
It fails due to the large crossflow gradients present in the protuberance flow 
field. These gradients lead to the reversal of the streamwise velocity compo- 
nent, U,  during the marching process. 

It is expected that the quantitative agreement between the boundary- 
region calculations and Tani's experimental data would be improved if the 
initial   data were  fitted using 4th-order  (or  higher)   polynomials  so that Uyy 

and Vyy were continuous.    Accuracy could be further improved by using smaller 

grid sizes during the marching process. Unfortunately, it is not possible to 
quantify the expected improvement. These refinements may not be warranted in 
the present problem, considering the sparse experimental data available for 
constructing initial  data. 

Whether or not the boundary-region approximation employed here is the 
most adequate model for this flow field cannot be established unequivocably by 
this investigation. In our version we assumed that the normal pressure gradi- 
ent, dP/dl, is zero. It is possible that dropping this assumption would 
improve the quantitative agreement with experiment. 
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B = tan" (v/u), Eqs. (17) and (13), at Fixed Heights 
in the Initial Data Plane, and Comparison with Tani Data. 
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Figure 6. Spanwise Distribution of Second-Derivatives of Streamwise 
Velocity Component in Initial Data Plane 
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LIST OF  SYMBOLS 

functions  employed in formulation of initial   plane data,  Eq.   (21) 

height of cylindrical  protuberance  (=0.25 cm in expt.) 

reference length for nondimensionalizing  (= 1  cm) 

pressure [g/(cm s  )] 

= P/(PUCO ) 

= puJ-Zy = Reynolds number (= 3467  in expt.) 

= pujc/y =  roughness Reynolds  number  (= 550  in expt.) 

=  PUooxk/M  (= 2.08 x 105 in expt.) 

2 times  value of y at which U = ^ (Uj  + Up), Figure 2a [cm] 

velocity components  in the directions of x, y,  and z,   respectively 
[cm/s] 

free stream velocity  (= 520  cm/s   in expt.) 

1/2 
= u/u^,  v/u^. Re       w/u^,  respectively 

maximum and minimum values of U,   respectively,   (Figure 2a) 

Blasius flat plate boundary layer velocity, Eq.   (20) 

U and V at X = Xj, plane of initial  data 

U-velocity function obtained by fitting Tani  data, Eqs.   (17) and 
(22) 

x,y,z rectangular coordinates:    streamwise,  spanwise,  and normal  to wall, 
respectively  (Figure 1)  [cm], origin at leading edge of flat plate 

Xi,. x-coordinate of cylindrical  protuberance. Figure 1   (= 60 cm in 
expt.) 

X,Y,Z =  x/L, y/L,  Re1/2 z/L,   respectively 

XI X-coordinate of initial  data plane (= 62.5  in expt.) 

3T function describing spanwise VT/UT, obtained by fitting Tani  data, 
Eqs.   (18)  and  (22) i     1 

6 boundary  layer thickness. Figure 1   [cm] 
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LIST OF  SYMBOLS 
(Continued) 

AX.AY.AZ      increments  in X, Y, and Z in finite-difference equations, Appendix 

e = 0 for boundary layer, = 1 for boundary region, Eqs.   (14),  (15), 
and  (23) 

?x streamwise vorticity   ;3W/3Y - 8V/3Z) 

n = Z/(2 Xj)1/2, Eq.   (19) 

u viscosity of air [g/(cm s)] 

v kinematic viscosity o- air (= 0.15 cm2/s  in expt) 

P density of air [g/cm3] 

Subscript 

i,.1,k indices identifying grid points, Eq. (25) and Appendix C 

I initial plane of data 

k front of cylindrical protuberance 

T Tani measurement 

00 free stream 

Superscript 

m       designator of iteration level 
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APPENDIX A: TABLES OF f0', n f0" , and F2 

n V n V F2 

0.00 .0000 .0000 .0000 
0.25 .1174 .1173 .2494 
0.50 .2342 .2325 .4906 
0.75 .3493 .3408 .7032 
1.00 .4606 .4344 .8574 
1.25 .5656 .5044 .9223 
1.50 .6615 .5427 .8776 
1.60 .6967 .5480 .8286 
1.75 .7458 .5448 .7254 
2.00 .8167 .5113 .4948 
2.25 .8736 .4490 .2354 
2.50 .9168 .3687 .0013 
2.75 .9479 .2831 -.1671 
3.00 .9691 .2031 -.2543 
3.25 .9826 .1363 -.2691 
3.50 .9907 .0855 -.2353 
3.75 .9953 .0501 -.1795 
4.00 .9978 .0275 -.1226 
4.25 .9990 .0141 -.0759 
4.50 .9996 .0068 -.0430 
4.75 .9998 .0031 -.0224 
5.00 .9999 .0013 -.0108 
5.25 1.0000 .0005 -.0048 
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APPENDIX C: PCMI FINITE - DIFFERENCE EQUATIONS 

Uncoupled linear finite-difference equations are constructed with the 
PCMI method by approximating U, V and W in Eqs. (14) and (15) as known 
constants, specified from either the extrapolated value or the value 
calculated at the previous iteration level. The coupling between equations 
and the nonlinearities of individual terms are approximated by the multiple- 
iteration process which updates U, V and W at each subsequent iteration 
level. The X-momentum difference equation is given by the tndiagonal system 

where 

"U- -(^1.1.1, ♦>'i>J,k)/(8«)-l/(24Z2) {C-2) 

bU = (l)Hl,J,k + "i.j.k'/'241*' * 1"-a ' * c/^e 4y ' (c"3) 

du-ui.j.k(um.j,k 
+ u

i.j.k'
/'2ix) 

+ (u..j.w-2unj,k + ui>j,k-i'/(2iz2) 

-(witi!j>k 
+ "i,j,k"

ui,j.w-ui.,i.k.i'/(84Z' 

"(Cij.k+ vi.j,k)(Ci>j+i>k" CUi.k+ ui.j+i.k (c-6' 

-2U1.J.k + <!j-l.k'/(2Rei¥2)- 
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with e = 0  in the 3D boundary layer approximation and e = 1  in the 3D boundary 
region approximation.    The Y-nomentum difference equation is  given by the 
tridiagonal  system 

um+l .       .m+l „     wm+1 _   . 
a2j Vi+l,j,k-l + b2j S+l.j.k     c2j vi+l>j,^l " a2j (C-6) 

where 

a2j = alj' 
(C-7) 

b2j =  blj' 
(C-8) 

C2j =: Clj 
(C-9) 

d2j-V1J>k(Cl.J^ + U1J.k^2^ 

+  (Vi,J^l-2ViJ,k 
+ ViJ.k.l)^z2) 

-(Wi+lJsk 
+ Wi.j,kn

ViJ.k+l-
Vi.J.k-l)/^Z) (C-10) 

m+1 
"  (Vi+l5j,k 

+ Vi,j,k)(Vi+l.j+l,k " V1+1J-1^ + V1,j+l,k 

" ^J-l.k)/^) + ^Vmj+l.k 
+ ClJ-l.k + Vi J+l.k 

2V, ,m+l 
i.j.k + vij-i,k)/(2Re4V2'- 
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The continuity difference equation is given by 

<1lJ.lc-M1+l,j.lc.1
+(AZ/4AY)<J.ltk 

vtn+l m+1 jn+1 . ,       , 
vi+l,j-l.k-l     vi+l,j+l.k     M+Lj+Lk-I^ [C-U) 

MAZ/2)[-a3<1>.>k + U-1
1Jjk.1) + b3(UiJ>k + UiJ>k.1) 

'3^i-l.j,k T    i-l,j,k-l 

where 

a3= i^i+l " Xi) + ^^Hl " Xi-l)' (C-12) 

b3= (Xi+1 " Xi-l)/^Xi " Xi-l)(Xi+l " Xi)^ (C-13) 

c3= (Xi+1 -Xl)/C(Xi+l- 
Xi.i)(Xi "Vl)]. (C-14) 

In Eq. (C-U) the difference approximation for 3U/aX is based on a second- 
order accurate backward-difference formula for unevenly-spaced points 
involving three X-levels; the first step in X off the initial data plane 
requires a difference formula involving only two X-levels. 
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