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SUMMARY

1> e "k be given populations associated with unknown real

parameters el, ey ek . The goal is to find a population with a

Let w

sufficiently large parameter in two stages with screening out inferior
populations at the first stage. Both, thg control and the non-control
situations are considered simultaneously. Let 'ﬂI denote the class of
permutation invariant randomized procedures (¢, P, §), where at Stage

1, ¢ and ¢ decide how many populations and then which ones, respectively,
are selected, and where at Stage 2, after additional samples have been
drawn from the selected populations, § makes the final decision. Let

P* and &* denote the natural decisions, i.e. which are associated

with the largest sufficient statistics. Under the assumption of a common
discrete or continuous type strongly unimodal exponential family it is

shown that with respect to every reasonable 1loss function, procedures of

the type (¢, y*, 6%) form an essentially complete class within 'AI .




1. Introduction.

Let = ..., M, be k given populations associated with unknown

1’

parameters 6

k
l,””ekGQ,WMW QU< R is an unbounded or bounded
interval. Let the goal be to find a population with a sufficiently large
parameter after having screened out inferior populations at the first
stage. If all (all but one) populations are screened out at Stage 1, the
procedure stops and decides finally in favor of none (this one). Other-
wise, at Stage 2 additional observations are taken from all populations
which have been selected at Stage 1, and a final decision is made among
them. Throughout this paper our considerations will be held general
enough to cover both, the control and the non-control settings. For
references of papers dealing with two-stage procedures of the type descr-
ibed above see Gupta and Miescke (1981),

Assume that samples {Xij}4 can be

3=l,...,0

and {Y..}.
{ 1j]]=l,...,m

drawn from LA at Stage 1 and Stage 2, respectively, i =1, ..., k,
which are mutually independent. Let the observations from L be real-
valued and have a density c(ei) exp(eix)b(x), x€ R , 8, €Q wr.t. u,
the Lebesgue measure on R or the counting measure on Z, resp., i=1,...,
k . The function b(x), x € R, and thus the underlying exponential
family is assumed to be common for all k populations. Let Ui = Xil +
oo * xin and Vi = Yil LA Yim be the sufficient statisties for

ei with respect to the samples of me at the two stages, and let their
densities with respect to u be denoted by fei and gei s respectively,
i=1, ..., k . Finally, let Hi = Ui + Vi be the overall sufficient
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statistic for ei, i=1, ..., k. For notational convenience, let

u=(u U ), V= (Vl, cers Vk) etc. in the following. For later

12 cees Y ¥

considerations, note that

(1) fg(u) cn(G)exp(Bu)bn(u), u€E R, O6€Q,

g (v) = c (B)exp(Bv)b (v), vE R, B€ Q,
e m m

where cn(e) = c(0)", cm(e) = c(O)m, 6 € Q, and where b~ and b~ denote
the n-fold and m-fold convolution of b with respect to u .
At next, let us give a precise definition of a randomized two-stage

procedure.

Definition 1. Two-stage procedure (¢, ¥, 8).

Stage 1: After having observed U = u , two decisions have to be made:
how many populations should be selected and then, which ones. Let ¢
and Y be the corresponding decision functions. Thus let ¢ = {¢i|
120, 1, ., X} , where ¢, : ®¥ + [0, 1] is measurable, i = 0, 1,

]
w.ook ,and L ¢, =1 . Moreover, let ¥ ={v _|ss< {1, ..., k},
120 1 s,t
Is] = t, t= 1} , where “’s,ﬁ R + {0, 1] is measurable, s<{1, ...,
k],lsl:t,tzl,and :
s,|s|=t

denotes the size of a subset s' of {1, ..., k} .

ws’t 1,tz1, and where |s'|

If a decision based on ¢(u) is made w.r.t. O then the procedure
stops, and no population is finally selected. If a decision based on
¢(u) is made w.r.t. 1 then the procedure stops also, and a final

decision is made based on {w{i} 1(2)' i=1, ..., X} . In all other
1




cases the procedure proceeds to Stage 2.
Stage 2: If at Stage 1, populations " with j € § = [il, cees it},

t 2 2 , have been selected, then, after having observed Vi 2V, 5 eeey

101
V. = v, , the final decision will be made based on {§. ~(u, v, , ...,
i i j.8 = i

v, )]j€ 8] . Here, § =[Gi s|i€ s, s& {1, ..., k}, |s| 2 2} , where
*

t
6 ¢ R* x Rlsl+[0, 1] is measurable, i€ s ,ss< {1, ..., k} ,
E ]
|slz2,ana L 6,
. i
ics

1, |s]z2.

S

Let J denote the class of all such two-stage procedures.

Definition 2. A procedure (¢, ¥, 6) € J is called (permutation)
invariant, if the following three conditions are fulfilled:

¢ is invariant: For every i€ {1, ..., k}, u€ ]Rk , and permutation

o of (1, ..., k), ¢0(5) = ¢0(uo(l)’ cees uo(k)) and ¢i(g) =

¢i(uo(l)’ vy uo(k)) .

Y is invariant: For every t € {1, ..., k}, s< (1, ..., k}] with

(u) =

- k ;
Is| = t, u€ R, and permutation ¢ of (1, ..., k), \po(s)’t u

v

8§ is invariant: For every s = [il, cers it} {1, ..., k} with t=z 2,

s,t(uo(l)’ cenes uo(k)) ,» where o(s) = {o(j)|j€ s} .

i€s,uc€ ]Rk, (vi 3 eees Vg )€ R and every permutation o of

1 t
(1, ..., k) with o(s) = s, 60(1),0(3)(3’ vil, cres Vo ) = Gi,s(uo(l)’

t
ceay U v s ases V ) .
o(k), o(il) O(it)

Let jI denote the class of all invariant (¢, ¢, 6) €D .

Loss Assumptions: Let L(8, s, i) denote the loss at 6 € Qk if subset




ss{1, ..., k} with |s| 2 1 is selected at Stage 1 and the final
decision is made in favor of i € s . Let this loss function be invar-
iant, i.e. L(8, o(s), o(i)) = L((eo(l)’ vees Go(k)),s, i), iesg

{1, ..., x}, BE Qk , for every permutation ¢ of (1, ..., k) .
Assume that at every fixed 6 € Qk with els 62 ,and ss{3, ...k}

with 0 < |s|< k-2 , the following four conditions are satisfied:

(r1) L(e, {2}, 2) < L(g, {1}, 1)

(L2) L8, §v {1,2}, 2) < LB, 5 v {1,2}, 1)

(L3) L(g, 8v {2}, 1) =< 1(B,Swv {1},1i),i€es§,
(L) L(g, §v {2}, 2) < L(8, §v {1}, 1), || > 1.

Since we have made no assumptions with respect to the loss LO(Q),
say, for selecting no population at Stage 1 at 6 € Qk , all reasonable
loss functions in the control as well as in the non-control setting

should have the properties assumed above,

Example: The following loss function has been adopted by Gupta and
Miescke (1882) in the control case. LO(Q) = 0, L(8, {j}, 3) = 1(60 - ej),
j=1, .., k, L(B, 5,1) = c|s] + 26, - 6,), i€ s, s {1, ..., k} with
{s| 2 2, where 8, € & is a given control value, 2 is non-decreasing
with R(0) = 0 , and ¢ = 0 is the cost for every population which enters

Stage 2.

In this paper our purpose is to show that every (¢, ¢, 8) € JI
can be equalled or beaten, uniformly in terms of risk, by (¢, ¢, &%),

and, moreover, under the additional assumption of a strongly unimodal




discrete or continuous type exponential family, by (¢, ¥*, &%) , where

Y* and &% are the natural decision functions which are defined below.

Definition 3. For every t€ {1, ..., k}, s« {1, ..., k} with |[s| = ¢,

ue R, vt L@ = (B |70 1f s € @ B(w , where B (w = {s'|

s'< {1, ..., k}, |s'| = t, max {uili € s'} < min {ujlj € st} .

Similarly, for every s = [il, cees it} with t=2,i€ s, u€ le,

t
(v. , cees v, JER and w, =u, +v, ,3=1, ..., t, &% (u, v, ,
i i, i i i i,s i
-1 . .
cees Vo ) = le(wi s eees W, Y o) if i€ (Q)Cs(wi s eees Wy ), where

t 1 t 1 t

_ s - . & .
Cs(wil, cens wit) {]le max {wr!r € s}, j € s}] . Note that 6i,s is

only a function of (w ey We )

y
i 1t

The resultsby Eaton (1967) will play a fundamental role in our
considerations and will be used repeatedly. Instead of mention it at
every new occasion let us point out now that in all relevant situations
Eaton's "property M" is given. The argument is always the same and can
be found e.g. at the end of Section 2 in Eaton's paper. Also, the specific

loss functions under concern will always be invariant in his sense.

2. The results.

The risk of a procedure (¢, ¥, 8§) €.J at 8€ Qk is given by

k
() R, (0,9,6)) = Lo(OEH(V) + iEIL(g.{i}.i)Eg[¢1(g)w{ﬂ’l(g)]

k

+ LE, “t@s): 2@ L L8,8,3)8, (UV, ...V, )],

= 8,
-fil,...,it) j€s

t=2 - 1 t
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Since for every (¢, ¥, 8) €J_, R(8, (¢, ¥, 8)) = ROB (qys + v

1°
ec(k)), (¢, ¢, 8)), 8¢ Qk , for every permutation o of (1, ..., k),

it is convenient to compare procedures in JI in terms of their Bayes
risks with respect to permutation symmetric priors. Thus let O = ( Ol s
cves Ok ) be from now on the random parameter vector with any but fixed
permutation symmetric (prior) probability distribution 71 defined on

the Borel sets in Qk . It has to be assumed now that L(8, s, i) for
every fixed i€ s, s< {1, ..., k} , is measurable and integrable
properly. Note that for most of our results we need to consider only
priors T which have finite supports, where these two conditions mentioned

above are met automatically. The Bayes risk for (¢, ¥, §) € J under T

is given by

(3) (v, (4, ¥, 8)) =[] RO, (¢, ¥, 6))dT(8) = ERE , (¢, ¥, 6)) .

Qk
Remark 1. Note that for two procedures in 'ﬁI we have R(§, (¢l, wl, 61))
S RO, (B, ¥yp 6,)), 8€ 0%, if and ondy if n(r', (¢, ¥, 6,)) =
r(t', (¢2, ‘1’2, 62)) for every symmetric prior T' with support (t')

{ (o ) | o permutation of (1, ..., )}, 8 € ok .

o(1)* "*°° 6o(k)
Since we will compare procedures in ﬂI which are only different in
the Y-and 6-components, the natural way to do this is to look at the
conditional posterior risks, given U = u , for every fixed u¢€ ]Rk .
Thus let u € ]Rk be fixed, which in view of the invariance of the
problem can be assumed to satisfy u,6 < u, < ... % L Now, for

1
(¢, ¥, 6) € 'ﬂI’ this conditional risk, given U = u , is given by
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(4) E {R(O, (¢,9,60)]U = u} = ¢ (WE {L ()Y = u}
: g+l
+¢. (W) Xy, L (E{LO, {i}, DU = + ¢y (u) L___________w (u)
1= {i},1= - - £=2 s={i;,...,1} S+t

t

(Ll B(8; (s Vg + ooes V; JLQ, s, MU= u, v,y eeen vy HU = o],
j€s 1 t 1 t

which, after some standard computations, is seen to be equal to

(5) (u) I L (8) H f (u )dT(G)B(u)
k q=1 q d
Q

k X
. -1
+ ¢ (W iZ:‘.l‘p{i}’l(g) J e, (i}, 1) mf, (u )dT(®IB(w)

Qk q=1 “q
k
+ Lz ¢t(3) ) _ws (w) f L (u, Viis sees Vo )
t=2 s={i,.e0hi) Rt €8 18 Y1 Tt

J e, s, §) n £ (u) 1 ge (v )at(@) T du(v )B(u)
Qk q=1 q 1 res pEs

k
where B(u) = f H fe (u )dt(8) .
k q=1 “q 9

Lemma 1. Let (4, ¥, ) €J, be fized. Then r(t, (4, ¥, 6 <

r(t, (¢, ¥, 8)) and thus R(8, (¢, ¥, 8)) < R(8, (¢, ¥, 8)), uniformly
in 8 € o8 , where § is the eame as U except that @{i} 13 w?i} L
P21, «ouy k.

Proof: The first assertion follows from (Ll) and Lemma 4.l of Eaton

(1967), and the second one holds true in view of Remark 1.
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From now on we have to study the term following ws t(-\i) in (5) in
9
more detail. Before we make use of the assumption that we are dealing
with an exponential family, it is crucial for our further considerations

to note that for every fixed s = {i , i t} with t = 2 the following

o
holds by Fubini's Theorem.

(6) f LS, s(g,v. seenaVy )f L(8,s,3) H fe (u Y1 ge (v )ar(e) 1 du(v )
Rt 3€s 7 h Ttk q=1 9 res pEs

k k
:f L6, (u,vil,...,vi )_f L(8,s,j) I fo (uq)ge (vq)dT(?_) n du(vp).

k j€s 0% 7 t ok q=1 'q q p=1

Remark 2. By (6) we have inflated the formula by introducing the v.'s

with i1 € s as dummy variables. This is necessary to be able to proof

our Lemma 3 below with the help of Faton's (1967) results. The nextfollowing

Lemma 2, however, could also be proved without this trick.

For fixed s = {il, Cees it} with t 2= 2 , the term following

lbs t(g) in (5) is seen, after plugging in the exponential family, to be
k]

equal to

(7 f ZG (u,v.,...,v )fL(e s, i) Hexp(e(u +v))
]R ]és 11 1t Qk q=1 q

k
(e )dt(8) I b (v )du(v )B(u)
r-—l

c(e)n+m

where B(u) = [ II exp(e u de, (6 )at(8) and c (8) = , BE Q.

ok 971




A change of variables wq = uq + vq, q=1, ..., k , leads us to

k
U W UL ) [ L(B,s,) T exp(®

® [ L 8§, (u,w W)
g J€s 1»s S TS T ok =x 119
k I
c_, (8 )at(8) M b_(w_-u )dulw_)B(u) ~ .
ntm q =M T T r’T=

Lemma 2. Let (¢, ¥, 6§) E.ZI be fixed. Then r(t, (¢, &, §%)) <
r(t, (¢, ¥, 8)) and thus R(8, (¢, ¥, §%))< R(8, (b, ¥, 8)) , uniformly in
se of .

Proof: In view of Lemma 1, we can assume that ¢ = ﬁ holds. The measure

k

dt(g) = Mc_, (8 )dT(8) is seen to be a permtation invariant o-finite
q=1 "

(¢ is continuous ) measure on the Borel sets in Qk . Thus it follows

from (L2) and Lemma 4,1 of Eaton (1967) that for every fixed w € Ig(,

k
(9) Z 6, (uyw, -u, «ooyw, ~u, ) [ L(B,s,3) T exp(8 w_)dT(8)
jes I°8 1 h Ty 1t ok g=1 119
is minimized if Gj s * 6; s? j € s . This proves the first assertion,
’ ’

and the second one holds true in view of Remark 1.

Remark 3. As we have pointed out already at the end of Section 1, note

*

3

information contained in (wi s eens Wy ) .
1l

that the optimal decision function § s® j € s , makes use only of the

t

= 6*

i,s i,8

Now, for § » J€ s , formula (8) reduces to




k k - _
(10) I min f L(8,s,j) I exp(eqw ya(e) bm(wr-ur)du(wr)B(B_) 1

. - q =
]Rk i€s Qk Q=1 r=1

From now on, let only u € ]Rk with uls Uy £ ..o S u and

t€{2, ..., k} be fixed and let s < {1, ..., k} be variable subject

to |s] = t . For notational convenience, let

k
min [ L(8,s,j) O exp(eqwq)d?@_), we R, |s| =t.

1y £
j€s Qk q=1

temma 3. Let s s {1, ..., k] with 1s |s| s k-2 be fized and let

for p,q € {1, ..., kl\s, sp=§u{p] and sq=§“{QJ . Then for
every w € ]Rk with w sw, £ Wsd (W),

k
.(w) =I L(0,s,3) T exp(6 w )dT(8), say,
3= k r=1 rr -

Q

se{l, .., K} with |s| = |8] +1, j€ s, weE R . As we have

Proof: Let us look at HS

mentioned already, T 1is a permutation invariant o-finite measure on
the Borel sets of Qk . Moreover, for 16 ]Rk with up < wq, we have

the following.

(1) H ]-(E) s H ’j(y_), j€ S .

po—
1]

q P

This follows from Lemma 4.1 of Eaton (1967). This because for every
fixed j € §, we are concerned with a fixed size |[§] + 1 subset
selection problem, where (L3) assures that the assumptions concering

the loss function in Eaton (1967) are satisfied.




—

(#) H q(ﬁ)s Hy p -

’ ]

q P

This follows also from Lemma 4.1 of Eaton (1967). This time we are
concerned with a fixed size 1 subset selection problem, where now (L)
assures that the assumptions concerning the loss function in Eaton (1967)

are satisfied.

Pulling together (i) and (ii) , the proof of Lemma 3 is completed.
For the last step in our considerations, we assume from now on that

the underlying exponential family is strongly unimodal, i.e. that the

densities in this family are log-concave. This is equivalent to function

b being log-concave, as can be seen immediately. At this point let us recall

that the measure YU 1is either the Lebesgue measure on R or the

counting measure on 2% , the set of integers in R. This is crucial for

the proof of our main result below, even in the case of m=mn=1 .

Theorem. Asswme that the underlying exponenmtial family ig strongly
unimodal and that the measure V is either the Lebesgue measure on R
or the counting measure on Z . Let (¢, ¥, §) E.JI be fixed. Then
r(t, (¢, ¥*, 6*)) < r(t, (¢, ¥, 8)) and thus R(8, (¢, Y*, &*)) <
R(B, (¢, ¥, 6)), uniformly in 8 € QF .

Proof: In the continuous as well as in the discrete case, strong
unimodality of a member of the exponential family of densities is
preserved under its convolutions W.r.t. u . For details and references,

see Barndorff-Nielsen (1978), chap. 6. Thus bm(x), XER or x€2Z,




vespectively, is log-concave. By Lehmann (1959), p.330, this implies
that bm(w-u) has monotone likelihood ratio in w with respect to u ,

ww€ R or u,w€ Z , respectively.

At the fixed u € R with U s U, S S U and t€ {2, ..., k},

in view of (5)-(8), (10) and (11), an optimal by t(E) equals O , unless

s with |s| = t minimizes
P k
(12) Ik s(g_) rr_tlbm(wr’ur)d“(wr) .
R =

Here we are concerned with a fixed size t subset selection problem.
By Lemma 3, ﬂs(g_) has the properties of the loss function assumed in
Eaton (1867). Thus the proof is completed by an application of Lemma

4.2 in Eaton (1967) and in view of Remark 1.

Corollary 1. Under the assumptions of the Theorem, the elass of procedures

(¢, v*, 8%) € I, constitutes an essentially complete claas in d; -

The proof of Corollary 1 as well as that of the first part of Corollary 2
are obvious. The second part follows from Blackwell and Girshick (195u),

sec. 8.6.

Corollary 2. Under the aseumptions of the Theorem, let (b, Y, 8) € ﬂI
be fized. If (¢, ¥, 8) ie minimax in jI then (¢, Y%, &%) has the

same property and, moreover, both procedures are minimax in J .

]




—lu-

Remark 4, If one is looking for a Bayesian procedure with respect to a
symmetric prior, then if there exists any, there will also be one of the
type (¢, Pk, &%) E.JI . Thus the problem reduces to optimization of

¢ which, admittedlv, will usually be still a difficult task. In the
normal case (with unknown means and a common kmown variance) under a
symmetric product normal prior a Bayes procedure has been studied by
Gupta and Miescke (1982) in the known control case with respect to the

loss function given in the Example in Section 1.
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in two stages with screening out inferior populations at the first stage. Both,
the control and the non-control situations are considered simultaneously. Let pl’

-

denote the class of permutation invariant randomized procedures (4, @u 8), where
at Stage 1, @{?nd &(decide how many populations and then which ones respectively,d
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are éelected, and where at Stage 2, aﬂCr additional samples have been(

drawh from the selected populations, § makes the final decision. Let
and 3* denote the natural decisions, i.e. which are associated with the
largest sufficient statistics. Under the assumption of a common dis-
crete or continuous type strongly unimodal exponential family it is shown
that with respect to every reasonable loss function, procedures of the
type 0’, g’) form an essentially complete class within @
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