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SUMMARY

Let tl, " Tk be given populations associated with unknown real

parameters 61, ..., ek . The goal is to find a population with a

sufficiently large parameter in two stages with screening out inferior

populations at the first stage. Both, the control and the non-control

situations are considered simultaneously. Let JI denote the class of
I

permutation invariant randomized procedures ( , , 6), where at Stage

1, 0 and 0 decide how many populations and then which ones, respectively,

are selected, and where at Stage 2, after additional samples have been

drawn from the selected populations, 6 makes the final decision. Let

0* and P denote the natural decisions, i.e. which are associated

with the largest sufficient statistics. Under the assumption of a common

discrete or continuous type strongly unimodal exponential family it is

shown that with respect to every reasonable loss function, procedures of

the type (1k , 6*) form an essentially complete class within J3
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1. Introduction.

Let wl, ... Ik be k given populations associated with unknown

parameters 01, ... 1k E 1 , where Q Q JR is an unbounded or bounded

interval. Let the goal be to find a population with a sufficiently large

parameter after having screened out inferior populations at the first

stage. If all (all but one) populations are screened out at Stage i, the

procedure stops and decides finally in favor of none (this one). Other-

wise, at Stage 2 additional observations are taken from all populations

which have been selected at Stage 1, and a final decision is made among

them. Throughout this paper our considerations will be held general

enough to cover both, the control and the non-control settings. For

references of papers dealing with two-stage procedures of the type descr-

ibed above see Gupta and Miescke (1981).

Assume that samples (Xij]=l,... and (Yij . can be

drawn from iT. at Stage i and Stage 2, respectively, i = 1, ... , k1

which are mutually independent. Let the observations from iT. be real-1

valued and have a density c(Oi ) exp(e0x)b(x), x E JR , 8i E Q, w.r.t. V,

the Lebesgue measure on JR or the counting measure on Z, resp., i ,...,

k . The function b(x), x E JR, and thus the underlying exponential

family is assumed to be common for all k populations. Let Ui. X +
1 il

+ X.n and V. = Y + .. + Yim be the sufficient statistics for

e. with respect to the samples of n . at the two stages, and let their1 1

densities with respect to V be denoted by f and g , respectively,
0

i 1, ... , k . Finally, let W. U. + V. be the overall sufficient1 1 1
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statistic for 6., i = 1, ..., k . For notational convenience, let1

U (U1, .... Uk), V = (Vi, ..., V etc. in the following. For later

considerations, note that

(I) fe(u) = c n()exp(Ou)b (u), u E ., E E 1 ,

g (v) =c m(O)exp(6v)b C v), vyE IR , 6E R

nwhere c (0) = c(O) , cm(e) = c(8)m , 0 E S , and where b and b denotenn mn

the n-fold and m-fold convolution of b with respect to p

At next, let us give a precise definition of a randomized two-stage

procedure.

Definition i. Two-stage procedure (0, ).

Stage 1: After having observed U = u , two decisions have to be made:

how many populations should be selected and then, which ones. Let

and p be the corresponding decision functions. Thus let 0 = (oil

i = 0, 1, ... , kJ , where i : Rk - CO, 1] is measurable, i = 0, 1,

k , and = i. Moreover, let [s,tls Q (, ... , k}
1=0

Isl = t, t a l , where tt: k o, 1] is measurable, s Q [1, ... ,

k4, Isl = t, t z 1 , and *s t 1 t a I and where Is'!
s,Isl=t

denotes the size of a subset s' of (1, ... , k

If a decision based on O(u) is made w.r.t. 0 then the procedure

stops, and no population is finally selected. If a decision based on

O(u) is made w.r.t. 1 then the procedure stops also, and a final

decision is made based on ([ 1i),l
( u) I i = i, ... , k] . In all other
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cases the procedure proceeds to Stage 2.

Stage 2: If at Stage 1, populations wj with j Es ti, ... ,

t a 2 , have been selected, then, after having observed V. V.l, .,
1 1

V. v , the final decision will be made based on (6 . , ... ,
It it j,5 1

vi Ii E 3 . Here, 6 =(6 i's E s, s a {l},, , s a 23 , where

6.i's : x JRlsl -* £0, 1] is measurable, i E ss (1 , ... , kJ

Isl 2 2 , and E 6. -1 , Isl a 2jEs 1

Let .0 denote the class of all such two-stage procedures.

Definition 2. A procedure (0, 4,, 6) E . is called (permutation)

invariant, if the following three conditions are fulfilled:

k* is invariant: For every i E (1, , kJ, u E IR , and permutation

a of (1, ... , k), *0(u) 0 (uO(l), ... , ua(k)) and O =(u)

i (uc( , ...,U (k))

is invariant: For every t E (1, ... , ki, s g (1, ..., k) with

k
Isi = t, u E R , and permutation a of (1, ..., k), 4, (u)

s,t(ua(l), ...,- Uo(k)) , where a(s) = [a(j)U j E s) .

6 is invariant: For every s = ill ...,I it] Q (1, ..., ] with t a 2,

i E s, u E R k , (v. , , v ) E Rt  and every permutation a of
1 t

(1, ..., k) with a(s) = s, 6 ( ),(s) (us V1 , ... , vi) : .' s(Ua(l),

• o(k), vCr(i ), "'.-, vc(i t)) .•

Let .0 denote the class of all invariant (0, 4, 6) E .0

Loss Assumptions: Let L(O, s, i) denote the loss at 6 E k if subset



s c [ , ... , k] with Isi . 1 is selected at Stage 1 and the final

decision is made in favor of i E s . Let this loss function be invar-

iant, i.e. L(8, a(s), (i)) = L((Oa(I), ... , 8() .),0, i E s

(, , 0 E , for every permutation a of (1, ..., k)

Assume that at every fixed 6 E 0k with 8 1 2 , and k)

with 0!: JIs k-2 , the following four conditions are satisfied:

(Li) L(6, {2}, 2) : L(.t, {1}, 1)

(L2) L(_, v {1,2}, 2) : L(O, s v {1,21, 1)

(L3) L O8, v {2}, 1) :r L(O_, 9 - {1}, i), i E ,

(LW) L(e, 9g {2}, 2) - L(6, a {1}, 1), jl > 1.

Since we have made no assumptions with respect to the loss L0

say, for selecting no population at Stage 1 at 2 E Sk , all reasonable

loss functions in the control as well as in the non-control setting

should have the properties assumed above.

Example: The following loss function has been adopted by Gupta and

Miescke (1982) in the control case. L0(8) 0, L(O, {j}, j) = (O0 - 6j),

j =I, ... , k, L(_, s, i) = cisl + Z(eo - 0a), i E s, s (1, ... ,kj with

Isl a 2 , where 00 E R is a given control value, t is non-decreasing

with .(0) = 0 , and c a 0 is the cost for every population which enters

Stage 2.

In this paper our purpose is to show that every ( 6, , 6) E.I

can be equalled or beaten, uniformly in terms of risk, by (0, $,6*),

and, moreover, under the additional assumption of a strongly unimodal
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discrete or continuous type exponential family, by ($, 4*, *) , where

4 and 6* are the natural decision functions which are defined below.

Definition 3. For every t E [i, ..., kj, s Q (1, ..., k) with Isl = t,

uE IRk , * (u) = iBt(u)- 1 (0) if s E (1) B (u) , where B (u) = (s'I
s ,t- t- t t

s , Q {l, ..., k, Is'l t, max {uili e s'}1 min {ujj E s'}]

Similarly, for every s =(il, ... it J with tz 2, iE s, uE mk

(v , v. ) E It and w. u. + v. , j =, ... , t, 6 (u, v.tj t j 1,s - 1

v. ) Cs(W. . . W ) (o) if i E (e)Cs(W.l ...w, w ), where
St s11 1 t s i t

C(w.,...w ) [Lw. max {w I s, j E s) Note that 8* is
s I  t r i,s

only a function of (wi , ...,wt .
11 1 t

The resultsby Eaton (1967) will play a fundamental role in our

considerations and will be used repeatedly. Instead of mention it at

every new occasion let us point out now that in all relevant situations

Eaton's "property M" is given. The argument is always the same and can

be found e.g. at the end of Section 2 in Eaton's paper. Also, the specific

loss functions under concern will always be invariant in his sense.

2. The results.

The risk of a procedure (0, 4, 6) E at 6 E is given by

k
(2) R(0, L,)) L (e)E * (U) + Z L(e,(i),i)E6 *1 C1u)M }1 (U))

0-- il -

k
+ E6  t(U) E EsZt(u) Z L(C,s,j)6 CUV 9 ...9.V

t=2 -9-11 - j l,- s - t
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Since for every (4, p, 6) E di R(, (, 6)) ( )

(), , p, 6)), 8 E Slk for every permutation o of (l, .. ,

it is convenient to compare procedures in .I in terms of their Bayes

risks with respect to permutation symmetric priors. Thus let 0 = ( 01 ,

" " k ) be from now on the random parameter vector with any but fixed

permutation symmetric (prior) probability distribution T defined on

k
the Borel sets in Qk It has to be assumed now that LO, s, i) for

every fixed i E s, s c [i, ... , ki , is measurable and integrable

properly. Note that for most of our results we need to consider only

priors T which have finite supports, where these two conditions mentioned

above are met automatically. The Bayes risk for (4, ip, 6) E J under T

is given by

(3) r(T, (4, P, 6)) J' R(O, (4, p, 6))dT(_) = E R(0, (4, ), 8)

Remark 1. Note that for two procedures in 0 1 we have R(O (oil' 11
k

C R(O, (02' 2' 62)), 8 E S1, if and only if r(T', (4l ) i 6))

r(T', (42' P29 62)) for every symmetric prior T' with support (T')

S (i)' ....' ao(k)) c permutation of (1, .... k), E

Since we will compare procedures in .I which are only different in

the N-and 6-components, the natural way to do this is to look at the

kconditional posterior risks, given U = u , for every fixed u E R

Thus let u E k be fixed, which in view of the invariance of the

problem can be assumed to satisfy u1 ! u2 : ... 9 uk  Now, for

(), P, 6) E JII this conditional risk, given U = u , is given by

I
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i ~ ~() E j(e_(, .6)u 0 MJ€0uE [(e_ u(0

k k
+ $1(u) Z . l(U)E (L(O, fi}, i)IU = u + - (u) ) -p (u)

i=1 {},- t=2 -s={il s,t -

E( E{6 .(uV V )LO, s, j)(U u, Vi .. V }II ul,

jEs t t 1 t

which, after some standard computations, is seen to be equal to

k -1
(5) 4Co(u) L0 (0) H f (u )dT()O(u)

k q10q q

k k
+ l(U)_ } U) j' L(Z, {i}, i) ui f T(Uq)dW()8u)

k
+ LC (u) TI f C(U, v .. .
t=2  -- = 1q sit  IRt j J's 1 t

knLM, S, j5 qIf q(u q) 11 gea (v r)dT(O5 H dp(v pS WO -

qk=l q r-s r Es

k

where 8 J T fq (u )dT(_)
k q=l q

Lemma 1. Let (€, p, 6) E I be fixed. Then r(T, ($, r. 6))

r(T, (€, W, 6)) and thus R(_, (,, i, 6)):g R ( , uniformly

in e E 0k where p is the same as 'p except that {i},l

i :1, ... ,k.

Proof: The first assertion follows from (Li) and Lemma 4.1 of Eaton

(1967), and the second one holds true in view of Remark 1.
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From now on we have to study the term following s,t(u) in (5) in

more detail. Before we make use of the assumption that we are dealing

with an exponential family, it is crucial for our further considerations

to note that for every fixed s= (il, ... , it) with t > 2 the following

holds by Fubini's Theorem.

k
(6) f 6. (uv.l,...,v.) L(,s,j) T f (u) TI g0 (v)d ( ) i d)(v )

Rt jEs i -- t ik q=l q q rEs 6r r s P

k k
(u,v. ,...,v. )j' L(O,s,j) IT f^ (uq)g9 (v)WT(O) I dvJ(v ).

Rk jES 3 's - 1k - q-l q q p=l P

Remark 2. By (6) we have inflated the formula by introducing the v. 's
1

with i Z s as dummy variables. This is necessary to be able to proof

our Lemma 3 below with the help of Eaton's (1967) results. The nextfollowing

Lemma 2, however, could also be proved without this trick.

For fixed s = (il, ... i tJ with t z 2 , the term following

4st(u) in (5) is seen, after plugging in the exponential family, to be

equal to

k
(7) X 6. (u, v, . v L(e, s, j) H exp(O (u + v

Rk jEs 's - 1 t k q-l q q q

k
Cn(0 )dT(6) RT b (v )dV(v ) (u)

nmq -rlm r r -

k
where 8(u) I exp(O qu q)cn( q)dT(6) and cn+m(0) = c(O)n+m, 0 E .

k q=l
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A change of variables w = u + v, q1, ... , k , leads us toq q q -

k
(8) w (u, w-u ... ,w. -u. )f L(8,s,j) IT exp(O w )

Rk jEs ' s  it t k q=l

k 1

c n+m(q )dT() H b m(wr -u r)d(wr )k(u)-1
r=l

Lemma 2. Let ( , 4, 6) E . be fixed. Then r(t, ($, 4, 6*)):

II r(r, (0,, 6)) and thus R(6, (,p.6*)):: R(O, C,4,)),uniformly in

Proof: In view of Lemma 1, we can assume that 4 = holds. The measure
k

dP(8) = n (0 q)dT(O) is seen to be a permutation invariant a-finite
q=1 q -

(c is continuous ) measure on the Borel sets in Q . Thus it follows

k
from (L2) and Lemma 4.1 of Eaton (1967) that for every fixed w E JR

k
(9) L. 6js (u, w. -u. ... ,w. -u. )f L(6,s,) 11 exp(e w )d(e)

jEs S l 1  t 1 t kql qq -

is minimized if 6. 6 j E s. This proves the first assertion,

and the second one holds true in view of Remark 1.

Remark 3. As we have pointed out already at the end of Section 1, note

that the optimal decision function 6 , j E s , makes use only of the

information contained in (wil, ... , w .

1 t
= *

Now, for 6 js' j E s , formula (8) reduces to

K~ ~ ~ ~ ~ ~ ~ ~~~' ....... .,... .. .. .... . .
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k k
(10) J' min L(e,s,j) I exp(q w )T(e) 1 b (w r-u r)di(wr) (u)

]Rk jEs Qk q=1 r=l

From now on, let only u E 1Rk with uI 1 U2  .. uk and

t E (2, ... , k) he fixed and let s Q [i, ... , ] be variable subject

to Isl t . For notational convenience, let

k

(11) s(w) = min L(O,s,j) I exp(Oqw q)d (), wE IRk , Is = t
jEs S k q=1

Lemma 3. Let s (1, ... , wi] th 1 Isi k-2 be fixed and let

for p,qE (1, ..., kJ\s, s ("[p] and s q = w(qJ . Then for

every w E IRk with w : w q s (w) r I (w).
q P

k
Proof: Let us look at H sj(w) = L(Osj) T exp(Or w r)di(-), say,

s c (1, ... , k] with Is l = 1 + 1, j F s, wE IR . As we have

mentioned already, ? is a permutation invariant a-finite measure on

the Borel sets of Qk . Moreover, for w E JRk with w r w , we have-- p q

the following.

(i) H .(w) r H .(w), j E •s ,.- s ,J-
q P

This follows from Lemma 4.1 of Eaton (1967). This because for every

fixed j E g, we are concerned with a fixed size Jil + 1 subset

selection problem, where (L3) assures that the assumptions concering

the loss function in Eaton (1967) are satisfied.
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(ii) H (w) : H
s ,q- s ,pq p

This follows also from Lemma 4.1 of Eaton (1967). This time we are

concerned with a fixed size 1 subset selection problem, where now (LW)

assures that the assumptions concerning the loss function in Eaton (1967)

are satisfied.

Pulling together (i) and (A) , the proof of Lemma 3 is completed.

For the last step in our considerations, we assume from now on that

the underlying exponential family is strongly unimodal, i.e. that the

densities in this family are log-concave. This is equivalent to function

b being log-concave, as can be seen immediately. At this point let us recall

that the measure p is either the Lebesgue measure on JR or the

counting measure on Z , the set of integers in J . This is crucial for

the proof of our main result below, even in the case of m = n = 1

Theorem. Assume that the underlying exponential family is strongly

unimodal and that the measure v is either the Lebesgue measure on

or the counting measure on Z , Let (0, 0, 6) E .I be fixed. Then

r(r, (€, 4, 6*)) s r(T, (€, 4, 6)) and thus R(O, (0, **, 6*)) r

kR(O, (€, ', 6)), uniformly in e E 0.

Proof: In the continuous as well as in the discrete case, strong

unimodality of a member of the exponential family of densities is

preserved under its convolutions w.r.t. V . For details and references,

see Barndorff-Nielsen (1978), chap. 6. Thus b (x), x E 3R or x E Z
mI
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respectively, is log-concave. By Lehmann (1959), p.3 30, this implies

that b (w-u) has monotone likelihood ratio in w with respect to um

u,w , R or u,w E Z , respectively.

At the fixed uE Ek with u 1  U2 < -. 5 u. and tE(2, ..., kJ,

in view of (5)-(8), (10) and (11), an optimal s,t (u) equals 0 , unless

s with Isl = t minimizes

k(12) s s(w ) IT b m(wr- ur)dlj(w r)
Ik r l

Here we are concerned with a fixed size t subset selection problem.

By Lemma 3, S(w) has the properties of the loss function assumed in

Eaton (1967). Thus the proof is completed by an application of Lemma

4.2 in Eaton (1967) and in view of Remark 1.

Corollary 1. Under the aeszwnptions of the Theorem, the ola.s of rioceoures

( . p*, *) E I constitutes an essentia7y complete cZaes in .I

The proof of Corollary 1 as well as that of the first part of Corollary 2

are obvious. The second part follows from Blackwell and Girshick (1954),

sec. 8.6.

Corollary 2. Under the assumptions of the VTwom, Zet (0, p, 6) E A

Z'e fixed. If ( , *, 6) is minimax in .I then ( , **, 6*) has the

same property and, moreover, both proveduwve are minimax in .

I
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Remark 4. If one is looking for a Bayesian procedure with respect to a

symmetric prior, then if there exists any, there will also be one of the

type (0, *, 6*) E .I ' Thus the problem reduces to optimization of

0 which, admittedlv, will usually be still a difficult task. In the

normal case (with unknown means and a common known variance) under a

symmetric product normal prior a Bayes procedure has been studied by

Gupta and Miescke (1982) in the known control case with respect to the

loss function given in the Example in Section 1.
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