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ABSTRACT

i
J
Reported here are the results of a three year study of the high

rate volumetric Properties of Snow.

In addition to the report presented

here,

the project resulted with over ten publications {(Brown 1979-1981,

Bowles 1981, Rosé, 1981) which are included in the list of references.

The constitutive behavior of dry snow is analyzed and described mathe-

matically by means of two microdynamical models. These are then evaluated

by means of previous experimental data. A number of applications are

then investigated.

These applications include vehicle mobility in

Pinally,

shallow and de<p snowpack,

steady shockwaves, and nonsteady shockwaves.

an clectromagnetic stress wave generator was designed, constructed

and used 1n a shockwave testing program on snow. Experimental results

and discussed.

}

are rresented

ACKNUWLEDGEMENT :

The work reported herce was funded by Army Rescarch

office Grant No. DRXRO-RR-P15413-GS. The author expresses his appreciation

to the Army Research Office for its support. 3Special thanks is extended

to Dr. Steve Mock of ARO for his encouragement and cooperation on all

aspects of the grant.,

war

e

Accesaitn

- NTTH AN
nete T
IEIERAE _ o -

Toat o - e




TABLE OF CONTENTS

Topic Page
T. INTRODUCTION......0vceveeenenn St e rereceeee e f s e e 1
1I. HIGH RATE VOLUMETRIC PROPERTIES OF SNOW..... et ce e 7
IT.A. A Material Representation of ICE.............. e e
IT1.B. Development of Volumetric Constitutive Law for
Pore Collapse Model........ ... it ennnn. e, 13
T1.C. Comparison with Experimental Data for Pore
Collapse MOAGLl. oottt n i et et e et ieaeiaanan 23
11.D. Devclopment of Constitutive Law for Neck Growth Model.... 32
II.E. Comparison with Experimental Data for Neck Growth Model.. 40
11.F. Simplified Equation for Neck Growth Model................ 43 g
I1I. APPLICATION TO PROBLEM OF VEHICLE MOBILITY .. i i v ronennnnns 48 3
-
A
ITT.A. Introductory REMAYKS. ... e i roneneeoneennnnsos 48 -
[11.B. Tracked Vehicle Mobility in Shallow Snowpack of 3
Medium DonsSity. oottt i i i e e e i e e 50 z
ITf.0. Tracked Vehicle Mobility in Deepr Snowpack of Mcedium {
Density......o... et e ettt et et 61 E
T11.D. Vehicle Performance Under Different Snowpack Conditions. 78 :
IV, APPLICATION TO SHOCKWAVE PROPAGATION. . ....cevneeeoen-. e h e e e 88 é
L
1
IV.A. xntroductory ROMArKS. .o innreeennenn e h e e e 88 :
IV.B. Governing Equations for Plane Shockwavos ................. 90
1V.(.  Steady Shockwaves in Snow........... [ Cee e 94
IV.D. Nonsteady Shockwaves............ C e et eaereeeeteanessenenr. 113 .
IV.E. The Use of Jump Equations for Analyzing Nonsteady £
Shockwave Propagation.........cveovevnene te e et araeanenan ..o 123
7.  EXPERIMENTAL PROGRAM ON STRESSWAVES IN SNOW.......... e ... 138
V.A. Elcctromagnetic Theory............ e e eeee-a. 141
V.E. Assessment of Generator Performance....... e ce. 142
V.C. Test Results with the Electromagnetic stress
WAVE GONOTAEOL . st v v e vt s st sanonenoonsoenososensssasensans .. 144
VI. CONCLUSIONS
VIT. REIFIIRENCES.,




LT T TN ~
R ¢

T . -
L R R

X. INTRODUCTION

This report is concerned primarily with the high strain ratc volumetric
properties of snow. This work was originally oriented toward the analysis
of shockwaves in snow, - but as the preject progressced, it became apparent
that the study would have to include a major cffort to cvaluate the
volumetric properties of snow. This property of snow must be known
before a number of probems involving snow can be studied.

The mechanical properties of snow have been under active investigation
for over forty vyears. Mellor (1974, 1977) has made thorough reviews of
rast investigative work on the properties of snow. Salm (1981) has
recently made a more up to date review and has described the current

state of the art.

karly work (1940-1960) was directed at evaluating the linear properties

of snow. Work typical of this period includes work by Kinosita (1967).

L

Later work by Lee (1961,1963), and Salm (1974) extended the earlier work

IV N

on the linear properties of snow. Most of this work concentrated on the
linear viscoelastic properties. At low enough strain rates, say at

=7 -1 cys ) .
rates less than 10 s, snow does exhibit linecar properties, although the
deformation is generally inelastic. Most linear constitutive rclations

used to describe the behavior of snow have the forms

t t
T o= 2f G{t-1) & (1)d" +f At-T)itr {-’Z(l)d't (r.1)

where T is the stress tensor, E is the strain tensor and G and ) are respectively

the shear and volumetric relaxation moduli. The above equation can be inverted
to describe the strain in terms of the history of the stress. These forms of
the constitutive laws are valid only so long as the material behaves as a

linear viscoelastic material. Figure 1 shows the typical uniaxial rate of
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deformation and creep rusponse curves that result with lincar viscoclastic
materials. This is shown in the case of solid lines. Actual response curves
for snow are shown with the broken lines. Tn order for a material to boe truly
viscoclastic, the creep curve must show the characteristics of the solid line.
For instance, in Figure 1l(a), the crecp curve consists of two jarts.  The first
rart represents the strains which develop when the constant axial strezg Tll 15
apprlied.  The second part represents the recovery which occurs when the lvad
is released. A viscoelastic rebound which equals the initial elastic strain
occurs immediately upon load application.

snow does not show this true viscoclastic behavior.  The strondest ovidence
of this is demonstrated in the crecp curve when the stress i reloeascd.,  In the
case of snow, the instantaneous elastic response may be but a small fraction of
the dAnitial elastic strain. Aside from this case the creep and deformation rote
tests do not readily show this particular behavior. Tn particular the detorma-

tion rate tests do not show any significant diffevences beotween the bhehavior

of snow and that of a linecar viscoelastic material.

ot
[

By obscrving
detformation rate tests, one may urroncohsly conelude that snow 1o indeed a
linear viscolastic material. The ratce curves shown in Figure 1 consists of
two parts.  The first part of the curve shows the hbuildup of stress as the
material is subjected to a constant uniaxial strain rate, whereas the second
part yives the relaxation of stress after the strain rate is stopped and main-
tained at a constant value. Some differences do emerge in the relaxation
curves, but generally it is not very significant.

The actual behavior of snow exhibits some characteristics of an elastic-
viscoplastic material, since some of the initial elastic response when loaded
is jJradually dissipated away.

However, snow docs also exhibit some very definite

viscoelastic characteristics. This makes snow a difficult material to model
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with a single constitutive equation even in the small strain-low strain-rate i
rogion. As o matter of pragmatism, most past investigators have chosen to model
v
: snow with a lincar viscoelastic representation similar to that of Ey. (1). 1 ’
h
For most applications, such representations have been found to be acceptable.

ey ey ey ) N UDD OBE o

%
The above is scen to be particularly true when one eonsiders other problems i
£
with characterizing snow properties. Snow is a highly variable material. Its '
i
properties change drastically with temperature, density, and the effects of
temperature gradient metamorphism.  Such properties as fracture stress and
rompsliance can o through an order of magnitude variation, and correctly defining
these properties is quite difticult.
L . . - -1 Co R
Whoen fintte strains or large train rates (g, 10 , b R
- Al
.
§
| - are involved, snow exhibits definite noanlincar propertios.  Salm (yo0g), HBrown 1
s
3
.
Sroal (173, 1974, 1977), Desrues and  others (1981) have characterized thesc §
:
propertics.  salm considered primarily the resjonse of snow to uniaxial deformations p
b

ared sabsequently developed a nonlinear viscoelastic model.  brown's latoer work

: was eusentially a thermodynamic formulation in which compression, tension and
shear test data was used to develop a threc dimensional constitutive cguation

for snow. This formulation was shown to be quite accurate for a wide rande of

deformation conditions. However, the constitutive cquation was complicated and
cumbersom . Therefore the applicability to engineering problems is limited.
Desrues and Others have recently formulated an incremental constitutive ecquation,
and this work should show good promise for solving some important ongilncering

problems.

The albove nonlinear formulations are still quite limited in the range of strain

rates for which they are valid. All of the theories incur rather large errors for

. -4 -1 . .
strain rates above 10 s 7. Under tension and shear these strain rates cause
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fracturce (Brown, 1974, 1977), but under some compressive deformations, sustained
loading can be applied to snow without causing fracture.

There are a large number of problems in which the above discussed constitutive
cquations do not apply. This includes deformations which produce extremcly high

. |
strain rates (&

! > 10—45_1) and large strains (1¥E » 0.2). Problems involving
shockwaves, vehicle travel, projectile impact or penctration, among others are
examples of such situations. For instance vehicles traveling over a low density
snowp.ack can produce strain rates in excess of 10 S—l and increases in density
of 120%, Harrison (198l) reports on vehicle mobility studies of tracked vehicles
in snowpack. In instances wherce little venicle slivpage occurs, the deformation
of the spow under the track is largely volumctric, and this problem can be
analyzed with a relatively simple volumetric constitutive law (Brown 197¢,
Iwsla, 1981b). In cases where the vehicle incurs significant slippage, then
a multiaxial constitutive law is needed.

mxplosives are used to initiate avalanches in recreational arcas and
along highways exposed to steep open slopes. Thesce explosives produce
intense, high frequency shockwaves which propagate into the snowpack.
Depending on the explosive speed, snowpack propertics and placement, the

. 5 ~1

shockwave spreads and attenuates. Strain rates on the order of 10°s
and volumetric strains as large as 200% can be induced. In order to analyze
these problems, very specialized constitutive relations are required.

The military 1s also concerncd about several problems concerning impact
loading of snow. These include fuse action, ballistic penectration, and
cffectiveness of artillery explosives in snow. For instance, artillery

fuses which work well in mud fail to detonate properly in snow. Also rifle

fire has been shown to penetrate much less deeply into snowpack then origin-
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ally thought. The unigue properties of snow are responsible for these
surprising results.

Prior to the results reported here and the papers publishad by the
author (Brown 1979-81), many of these problems could not ke analyzod
analytically. In order to do so, appropriate constitutive relations arc
needed.  This report brings together tihie work of the author on the high rate
volumetric properties of snow. Also included are applications to soveral

srclems. Finally recommendations to further work are also given.
Y 3

The work rceported here concerns only the high rate volumetric propertics
of snow. Deviatoric propertics are not considered here. The reason for this
is that very little is known about the higyh rate propertices of snow, and a
gocd starting point would be volumetric properties. 1In addition some important
i roblems can be studied if only the volumetric properties are known. Oncc
the volumetric properties are known, it is felt that these results can be
nsed to hely cvaluote the deviatoric propertics. A complete multiaxial
constitutive equation is necessarily qute complicated, and it would appear

to be best to approch this development in a systematic manner.
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IT. HIGCH RATE VOLUMETRIC PROPLERTING OF SHOW

Practially all of the previous work citod in tiee introduction us od
jurely phenomonalouical methods of characterizing snow. ‘Thils nmethod uses
crecy, data or deformation  rate data to detormine material cocfficionts in
the constitutive cquation chosen to represent the material.  The form of tor
constitutive eqgquation Lo chosen after the toest data 05 obscrved to detorming
i the material s clastico, viscoelastic, lincar, nonlitear, eto, Ity
i roach, little or no concern 1 yiven to the microstructural detormation
processes and thelr eftfect on the properties of Lhe material.

ine reason that the phonomonaiogical apperoach 15 usced so muci, bs Lot
1 is a relatively straight forward method.  Curve fitting technigues such
ar the linear and nonlincar least squares methods arce commonly us:d in
conjunction with statistical analyslis to determine just how well a constitutive
conaation works, This approach s very straight forward for elastic and lincar
viscoelastic materials, but for elastic-viscoplastic materials this approach
can become much more difficult, since very intricace mathematical models
(Frown, 1977) muast bhe used.,

More recently Brown (1w79, 19380), and St. lLawrence (1977)
daves utilized microdynamical wodels to formulat. constitutive theories for
snow.  Ihis apgroach considers deformation mechanisms at the crystalline
1o vel which are important in determining the macroscoplc behavior. This
wethod of studying the material is justitiable in the sense that the be-
Lhavior of the parent material (ice) and the deformat ton mechanisms at the
granular level must be responsible for the propertics of the granular matcerial.
Also this method results with constitutive laws which give much insight into
what microstructural changes occur during deformation. Microdynamical

approaches would consequently appear to be preferable to phenomenalogical
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formulations. However, the microdynamical approach usually crelds constr-
tutive relations which are mathomatically complicated.  Tn fact thene

methods have to date not found a Lot of cngloceriweg s tor this versy
roeason, Jenkins (31981), and Brown (1980 arve cxam les of rocent work oo

iy

granular materials such as sand and gretn. Phe et docade shoulsd oo e

trogress in this arva.

Presented here are two formulations develaoped by tho aurnor. Thee firat

od is applicable to medium-to-hisgh density snow, and the scoond oovalid
for lower density snow.  Both formulatiens wse the mizcrodynamical o
and hence are based on the material jrojertices of oo and the raieiiar toexture

of tne porous material, snow.

1T A,. A MATERIAL REPRESENTATION OF ICE

Previous studies by Dillon and Andersland (1:67) and itawkes and Nellor
(1:72) have indicatod that polycrystalline ice under unlasial Cension and
compression possesses a rate-dependent yield stress. Additional oxierimentad
work by Haynes (private conmunicatlion) has extoended the previous work to
strall, rates 1n excess of LoUs . In tenslon, ice generally fractures at
high strain rates, and this critical stress is not strongly rate dependens.
However, under comeression, the critical stress shows a dofinite rate
dependency, cven at the ratoes studied by Haynes. o The: prosent study primarvily
concoerns the compressive propertics of ice for intermediate-to-hiign d fornation
ratas.,

saned on the experimental results indicated in Figure 2 (Dillon and

:’\.:ulvr::land(l‘)(.'])lmnl Haynes ), the following constitative relation is

assumed for polycrystalline ice:

8

A o WA Gl ¢ 5,

Nfua

T

-




AXIAL STRAIN RATE (s7')

iyevystalline dce

for

resylts




9 - . - h ,
- - - " o e
* . ‘l W ¥ . .~

whoye

~

10

. Y = S +Cln{AD) A o1 (11.4.3)
O f ]
I , U, and A are material constants; 5, o, and Doare the privcipal é
) i
difforence values of the deviatoric strioss tensoy, foviotoric strals tennor, ‘
k)
l 4
and deviatoric rate of deformation tensor.,  sSimilar detfinitlons hold for D :
L
l and ¢. The matrix material, ice, is assumed to be incompressible, so tihat ﬁ
3 tie: deviatoric values of the strain tensor and the deformation rate tonsors
! ;
' vdaal the total strain and deformation rate tensors.
N - '
iv' The above equations are essentialily those of un elastic-viscoplastic
b l
3 mat-crial, so that the material behaves clastically unt'l a rate-dependent 1
. }
. . . . . . .
' vicld condition i reached, wherceupon plastic doeformation ensucs.  Those i
. . . . . . - "
vaquations arve uom what different from Glen's flow law, .
H
A .
Loy (I1.n.9) .
Wiicre and ¢ o, reapectively, the shear stroess and shear strain rate, © :
l '
H ot erdal o oconstant and noils o a scalar. Bgquations 2-1% were chonen, sinst
l Creos aerguire o stradght-line form on Migure 1 and fit the data better than
X Slents daw. slen's law does work well at lower stren rates, however, and 1in
l My cases b omathematically more tractable than the form of cage. 2-3.
mislder now o compression test on polyerystaliine ice. The only
‘. l
neszero stYons comgonent 16 .Ix , where the x-dircction is the axial direction ..
' rotre compression test.  The deviatoric stress sensor is
i
T (tr 7)1 (IT.A.D)
l 3 |
where tr oump lies the trace of the tensor, ‘J; is the 1dentity tensor, and .
b ' is the Couchy streus tensor. § therefore has the components
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oo dncompressibde, the divergence o the weloacity Diedd b o,
. vy (TLoAn.8) 3
v
‘
. . . ) :
and 1t can be shown that D has the components :
r
) ;
Cx '
- - Q] U N
K
1 E J -1
ij 5 0 (I1.A.)
L
P
u J - Tt
2 0
- J

The principal difference values, $ and D, are, respoectively,

3 X%
D= 2ot (I1.A.10)
2 Ox
In the results reported in Figure 2, strains were all small, so that the
axial rate of deformat on component D'<x is approximately cqual to the axial

strain  rate ;xx' For uniaxial compression, gg. 2.3 becomes

1
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As ocan be scen in Figure 2, this equation represents the Sest vesults cupt. _‘
i
. . ~ . . i
weell,  There 1o an apipreciable amount of scatter indicated by Che wertl ool ‘
: C ‘ , i
Vines. This 1s to be expected, as there may be a good degrece of variabilaitey
I freezing the lce, in forming the speciuens, and in testing. However, the
average results avpear to be well approximated by the constitutive law.
Tae constitutive law  does not invelve a work-hardening term.  Previous 4
Y
H
cxper imental studies on jce by Dillon and Andersland (1962), anontg others, H
i
Have not indicated strong work-hardening* characteristics tor ice. However, é
3
titore are no puulisned data on loc involvinoe large strains in excoss of .
M 3 [$4) M 3 N . p1 ..
several hundred pereoent. Therotore, 1t is quite jossible that at large :

strains loe does exhiblt work-hardening properties.  Such strains cortainly

do ooccur Juring finite conpaction of snow, particularly in the very oritical
grain bongs where massive localized delormations take place. Thus, the
constitutive equation finally formulated for snow may have to be empirically
adjusted with a work-hardening term.

This problem has also been encountered in the field of powder metallurgy
where o porous metal with an elastic, perfectly plastic matrix material
shows considerable work-hardening characteristics. Quite possibly the large
strains occurring in high stress regions such as grain bonds are of such an
order of magnitude that the matrix material does work harden. Also, quite

*h wWork-hardening material is one that stiffens under plastic deformation.

12
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1o, DEVELOPMENT OF T'HE VOLUMETRIC CONSTITUTIVE LAW FOR POk COLLabLE e Ui
Jonsider now the deformation of a thick-wallsd hollow 5y here of an in ;
' ampressible viscoplastic material with the constitutive relation given by
- . - . : . a5 2 i, R 4
) ceg. 1T.ALD - TLLUAL 3. The geometry 1s jiven in Flgure 3, The tnitial
5
internal and external radil of the sphere, a and b, are chosen so that the
N © O
ﬁ correct material porosity results. In this paper, the density ratio is
i\
- defined as
-, ‘“::; . 4
’ Poe e (T1.L.1) ¢
. 3
whre i aro, cotavaerly, the Less dencity of the rorous material H
b !
.
and the matrix material, icoe. }
3 Poder an cxternol time-doependo nt pressue loading, the intornal oand

cxtertal radii a(t) ond L) change with time., The deformation s spherically
comte Lric, so the deformed coordinates of o ogencric point can Lo exporossed as:
r{v ,t}

]

= A (11.B.2)

whe ro r), '.:O, ‘pu arce the undeformed spherical coordinate positions, and r,
!

°

*, ¢ denote the deformed coordinate positions.
Incompressibility of the matrix material requires the Jacobian of the

deformation to equal unity; i.e.

r ar
S eme ] (11.8.3)
. oox

O 0
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litegration yields

b % .
v v, ThBit) (1.4

whore v 15 an unknown function of time.  This cquation can b differentiard

twico.  This roesults in

]
s rsine N b oW 4 g

for tine radial acceleration.,  The aceeleration can be expressed in terms of

Ao acceleration potential S{r,t):

¥ (17.R.6)
By Joing this, the following can be arrived at fer all a” r < bh:
4
]
» .o . 3
{ P R (F1.B2.7)
S 1 3 Lhop .oy 3
ltx
'
. The above results Gre strictly of a kinematical nature and depend only é
‘ on the constraint of material incompressibility. In addition, matcrial
} incompressilility may be used to arrvive at the foliowing relations: S
) b 3,,,3 3
Com e e = b /(BT -a ) (I1.B.8a)
33 0] [¢] [S IV
(. -a)
. ) a {e-1 a
N ;e L3 ‘ (T1.R.5b)
: o s TN e = e .
! -1 xr, ~1)
: e ) (\O ..
3
4 <3 ! R ¥ ..
¢ , (LO 4y
!- B(t)y = -+ - s (11.8B.8c¢) ,
L (‘l.’l’
£
: As the external pressure P increases, the deformation proceeds in three
distinct phases:
(1) an initial purely elastic phase

(2) an elastic-plastic phase with an elastic/plastic interface
at r = ¢, where a < ¢ < b, and

15
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(3) A& fully plastic phase.  During the first two phases, the strains
arc assumed to be mmall, but during the fully jrlastic phasce, large stralns

Ccan e lncurred. Bach phase 15 now cnsideroed separately.

tully Elastic Phase:

In this phase, the strains are asound to e anbanitesimal. ey fore

the throe strala cormponont s dare

e

. ST
r 'Y

o

LoE e = oouSr ( v)
where u is the radial displacement; and if u is small compared with v, u =

;_'-—r“ma‘,' be approximaced by the exprocsion

—
L=}

N L i ( LBLLA)

For small strains, x‘,) diffcrs by a small amount from r; therefore, in this

-

soction the distinction will be dropped. The strains become

; (11.8.11)
¥ B
e =B (IT.5.12)
v I)r 3

Since the material is as:amed to be lincarly olastic, the constitutive

¢ juation acquires the form

5= e = 4G B/ (3r°) (II1.B.13a)
. R

' EP ZGGQ = =20B/(3r") (I1.B.123L)
; ¥
A 3
§ S, = 26e, = -26B/(3c) (11.R.13c¢)
'- ¢ ¢
;? where Sr' S‘.), sq.) and ¢ @ uq) are, respuctively, the deviatoric stress and
g
7;3. deviatoric strain components. Since the material is incompressible, the

volumetric strain is zero, and the hydrostatic pressure j, cannot bo¢ evaluated

with the constitutive equation alone.
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The radial cquation of motion isa

W
v 2
— T T -3 ,) = 0
% Y r 4 m (rp Lt

which may bo put in the modifiod forn

4
5
¥
- e - (11.0.15) ;
33 mooor §
Py
tor whieh ©7 ¢ bowr lasy condltions are: j
ro-a (IT.15.16)
t

S RS S S T (I1.B.17)

it should be noted that pore pressure is assumed negligible.  Under extremely

farge rates of loading or near low density ratios (say 19071.2), the wisdom

!
¥

thln wousump tron may Lo questionalbdle. Thra will be discussed in more detail

oty Integratilon wto e 1o results dnce

/

~ptr, ) ‘m‘.\r,t)"h(t) (IT.B.18

Whebe: et ) Is a tinee funchtion. since T g =,
r

+ b+ 45H(3r3). (1I1.5.19)

A by the boundary condltions ygives the solution

4GB ] )
+ '.;l"( R (Tr.n.20)

4 can then be expressed dircctly in terms of P(t) by making appropriate use
of equ. 7 and 8. These, combined with eq. 20, yield

4G(ox _-)
2 .t 0 (Ir.m.21)
b) = Uit + —
P{t) T Q) 3a(0-1)

where

=
IR Wy 3 e
ToNg
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Sauation 22 describes the waterial volumetric response to o a hydrostatic
vrensure Yoading. Fheo term POUY e rosont s Shee actual presoare in the
watris material. Joarroll and Holt (1972) hawe shown that the average

pressure in the rorous material p(t) ic approximately

i

Ar o long as the material does not yield, eg. 21 describes the tlme-
dependent reswonse of the material.
This caguation is the same as Carroll and Holt's (1972) rooult in i iy

ady o f s orous aluminan,

Fouation odindicates that the maXimum stress occours at the inner
oot Yereldon: then andtiates there; and, oo the pressure V) continue:s
, a4 yiedd surtface, vo- cf(t), propagates radially outward. CThe
vietd condition given by eyg. (IT.A.3) is reached at a critical prossare l'l
when the principal deviatoric stress difference, Sr-Sp, reaches the critical
value ¥, which itself is rate dependent.

Asisume now P l—‘l and that yi.lding has propagated out te a radial
Jdistance ¢, a ¢ b, tor r ‘e, an inelastic stress state exists, and for
r>c, the material is elastic. When analyzing the outer elastic zone, the

following boundary conditions apply:

Ur = -p{t), r = b (I1.B.24)
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So=n = - Y, r .
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interface ot the elastic zone and dlastic

At the

the yvield condition. In the vielded zonce,
S Yoo T (s i I AD)

wokoh

i

Consider first the yielded zone, wiere the
1 terms ot the deformation rate tensor.
o and o, are oL,
+
n hr
1y :
I E 1
1
b, o= /8N
R v
T o shearing components o are zero. Since the

Falordan deseription can boe ased here.

Adveraence of the velocity veotor vanish; 1.0,

o '
e AR |
LR by

[WE¢

This yields

where 7 1s an undetermined time function.

cquating to the acceleration potential results in

2o, i

constitutive

The principal rate corgononts

deformation is

tocomproens

R

¥

stroess

PR
[P S N

remalins valid as long as the loading 1s wmonotonic.

law 15 detined

wre,

Viasomis, 4

ity voquires that the

(1I.13.31)

(LE.B.32)

Dif ferentiating the above and

(rr.n.33)
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Actually F(L) can bLe rolated dicectly Lo B0 detdaeed an e 307, widloh ran

he done by differentiating B ro obtain

Bit) -~ =3 (t) QPR P L

=hich should be expectaed, since Foand B have beon based on the parely

Kinematical constraint of material Incompressibility. 1 '

Htilizing the incompressibility constraints in og. B ogives

3-
F(o) = 2o (11.B.25)

I(a —
J((IU 1)

Now onsider the radiai couation of motion. In torms of Lac deviator:

I

U
11
.
=
A 0 M BN CDN  23  3e Ye Pl +

t T R - {(T1.8.20)
. ! v B (R moon
3 .
' i
{ cinclral cleviatoric deformation rare dait e rence L :
) :
N H -0 -3 ol .37
Yr !
$
G tie i fLerence 3=y can ocasily be oseen to have the value YL Soiuion :
.
ot et oot born iV
i
4
ey o= s #28 Inlr/e)
;U v}

yoin{r,/u) ] (17.1.138)

, 2
FCOdn (/)

-, P k(t)
n

Wil v

K. [—BAFIL/; (I1.1.39) ‘

4
andg k(L) is a time integration function resulting from solution of the
t cquation of motion. T we denote as I'(. the value of the radial stress
st the interface r = ¢, application of the stress boundary to oq. 38
gives
L2 q
P“ = 2(80—0)1n(c/a) + 3C1n(c/a)1n(gz) ‘
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where ll)a and wc denote the value of § at r =

VN

=y o= )
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a and ¢, respectively. This

sust o then bhe oguated Lo the radial stryess obtained from the solution of the
Zone v b
clastic zone, o rocedure jdenticial to that foilowed in i

ot thy detsrmation enn b foliowed Yo arrive ot e v T iy
] ; -4 - \
! A S A L (R I ‘1 !
b i 1
Timpnared frow eds G 4y
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() b -1 Proe te-y ]
10
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can culweruently bee o cllminated by means of egs. 3G, 37, 414

vhiat g relationshipy boetweon ©oand Pocan e establishod.

Pl dne shown later, this intermediate phase 1s not of nwuch
s final eonation will not be developed here.

o Bhanes

reachoes b, the sphere becomes fully viscous, and the full

Lee considered with one constitutive oguation.  The equation

ouce thoe ajpropriate substitutions are made, once again vields

Pt that this time the boundary conditions given by cgs. (6oand

A lication of the houndary conditions results in:

PlEY = lnki%~)]/3

2770 ] 28 -0 kacin
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A indicated by og da, the jressare respongse of the waterial consist s ol

two jarts: {(a) 4 auar-statie vart and (L) a Jdvnanioe part as rejroeoented

Lo tier acoe leration potontial terw coY
IR 1
Tue accoelaration rorm can casilye oo shown to ds
3
o
- W ) i
ota 3=l b o
\
-4 - 02
(L =1 ) NRES IUDSI
i -
1y
Crercoaned by ane Mireaoable in [ A R
T ac e toratron b Precomes slgni ficant o tbyoat o ven T S T N A
v inve v slanifieant Iuertial offeots, inchbuiin shoo <, oAt
o, v g G shoeUne 8 witl spaaestestati I dosre LonL Pt b
te ool ration torms nany be twoglectod,
Seoandioatod nosection LA, some modification of tho constitatiye
Law i d to vy flect work-navdening effocts and te provids scne cov-
yooctren bor some o thee simpliPving assampt ions goeade by whirineg sach
coof e 24, a3 ocan b

re=hardening Iwnn,_7--x;-(—«$:‘<,"1“) ,oand beomaking use

in the following Porm:

it

wheore Hoand Joare mate rial o coetiicients. Thilc work-headenina

Lature consistent with the term used by St Lawrence and sradley (1074,

whor totond that silman (7900 uned o similar term for Pithiium ©haoe tde

—

crostals Lo account for variat cone in the mobile dislocation veloo:ty,

porons snow, work-hardening may be duce to cxoessive amounts of antercranular
motion that woulld not be present an solid jolyerystalline oo, S, Loeronoee

and Brodley (1974) addressed this question in o moere thorouch manney. I
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and X
n 3

are: thoe undeformed coordinate ypositions,

(1

I.C.

and

s

- X o

L

“3

are the deformed coordinate positions, t is time, 4 Is the crosshead velocity

the initial sjecimen height.  The Jaceobian

feanstant in this oasa), and hL 1
)

Sothe deformation givey

, . (I1.C.3)
D 2N " .
i (,,),U)L

and therefore the density is
1

DNV SRS (11.c.4)
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The density ratio, however, is

a= aoll-(A/ho)t] (I1.C.5)
and its rate is
. q’ox
a == T (I1.C.6)
0

The constant rate tests do give a constant density ratio rate. Note,
however, that the rate of change of density is not constant. For this set

of experiments, & was readily calcualted by eq 6 and eq II.B.47 was then

utilized to find the variation of p and & for a given rate. Figure 5 shows
the comparison of theory with experiment for snow at -10°C and for three
initial densities. The data acquired by Abele and Gow (1975, 1976) included
a variety of strain rates, since different specimen sizes and crosshead

speeds were utilized. The data shown here reflect rates in the neighborhood
of &~ 10s”L.

The data available from Abele and Gow (1975, 1976) measured only 01,
the major principal stress, whereas the hydrostatic pressure p =--1/3(01+02 + 03)

wvas needed. Therefore, a series of experiments was run to measure lateral
stress as well as axial stress so that Abele's and Gow's data could be

adjusted to reflect p rather than 01. It was found that

. < p<o.
0601 p09801

for all the experiments run, thereby fairly well bracketing the data report

(11.Cc.7)

by Abele and Gow (1975, 1976).

One interesting result was observed in the testing program. In tests
involving "old" snow, the lateral stress was found to be about 90% of the
axial stress, but for tests of "new" snow, the lateral stress was only 30-
408 of the axial stress. In each case, unbonded snow (sifted within two

hours of the time of testing) was used, so that the difference between the
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Figure 5. Comparison of pore collapse theory with experimental data.




lateral stress in the old snow and that in the new snow must have been due
to differences in crystal structure, primarily crystal shape. The old snow
had un&ergone equitemperature metamorphism, and the crystals had a spherical
shape. The grains, therefore, were capable of rolling and sliding relative
to each other, thereby accommodating a lateral motion to produce a large
lateral stress. New snow, with its complicated grain structure, would not -
allow this, thereby producing a smaller lateral stress.

As can be observed from Figure S, the comparison between theory and
experiment is quite good, with the essential characteristics of the deformation
being represented by the theory.

Figure 6 compares theoretical pressure curves with data collected and
summarized by Mellor (1974). This figure contains results of laboratory
studies as well as field data relating density to gravity reasonable compared
with the data. It should be remembered that some of the data shown in this
figure represent uniaxial stress conditions, and that the actual hydrostatic
pressures are only one-third the values shown for these data. Therefore,
some of the experimental curves would move down vertically relative to the
theoretical curves. However, since there is such a diverse range of load
histories, temperatures, and time ranges contained in Figure 6, any meticulous
adjustments would not necessarily change things that much. What can be
said, though, is that eq II1.B.48 appears to be functionally correct for
snow with initial densities exceeding 300 kg m-3.

Figures 7 and 8 further describe some important properties. The
deformation rate dependency is illustrated in Figure 7. For snow with an
initial density of 350 kg m-3, the stress response is shown as a function
of density-ratio rate at three different instantaneous densities. As can
be seen, a rate dependency does exist, but the importance of rate decreases

as rate increases. At rates characteristic of stress waves, therefore, one
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might be able to assume a constant yield stress and achieve a simplified
version of the constitutive law given in eq. II.B.48, However, for lower
rates, say in the range 10‘5<|&|<10, the rate dependency is significant
enough that such a simplifying procedure would not be recommended.

Figure 8 gives an indication of just how effectively snow can absorb
energy during compaction. In particular, this figure shows the work required
to compact snow to a terminal density of 700 kg m-3 for a range of initial

densities and density-ratio rates. One can see immediately that initial

density has a dramatic effect on work required to compress snow. Density-

ratio rate is also significant but certainly much less so than initial
density.
1I.D. DEVELOPMENT OF CONSTITUTIVE LAW FOR NECK GROWTH MODEL

The deformation of porous material such as snow involves several
different mechanisms which act simultaneously to varying extents. Three
such mechanisms are: (a) pore collapse, (b) intergranular glide, and (c)
inelastic deformation of intergranular necks. Pore collapse and neck
deformation both involve deformation of the matrix material, whereas inter-
granular glide is a function of bond strength and surface frictional properties.
Pore collapse is a predominant mechanism at higher densities, and was shpwn to
accurately define mechanical behavior in the previous section.

For low density snow, the volumetric deformation is determiend largely
by the intergranular glide and inelastic deformation of the grains and
necks. Under a state of hydrostatic pressure, one may expect effects due
to intergranular glide to be reduced to a minimum relative to inelastic
deformation. Due to the random nature of both grain geometry and grain-to-
grain bonding, glide effects certainly cannot be eliminated, but it may be
reasonable to ignore them in comparison to the volumetric strains due to

plastic deformation and flow of the matrix material.
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In this section, a constitutive law for volumetric deformation of low
density snow is formulated by using a neck-growth model. In order to
account for intergranular slip effects, an empirical adjustment of the
equation is then made, and the results are then compared to existing experimental
data.

From Figure 9(a), a good idea of the grain and neck geometry can be
obta;ned. The grains are those structural elements which have free surfaces
which are predominantly concave inward, toward the center of the grain,
where this radius of curvature is denoted by R. Individual grains are
connected by necked-down regions whose surface are concave outward toward
the air phase in the section view shown in Figure 9(a).. This radius is
denoted by R'. The bond is the plane containing the minimum cross sectional
area of the neck. When two ice grains are brought into contact, the length
L of the neck begins to increase from its initial value of zero, since
sintering effects begin to produce the concave outward geometry of the
neck. This is illustrated in Fiéure 9. In many cases the length of the
neck can be quite large, particularly for low density snow in which some of
the necks have developed from the fragile needle structure of fresh snow.

If one is considering fracture strength of snow, the bonds are of
primary importance, since these are the regions of low cross sectional area
in the material. However, characterization of the dgformation properties
of snow must consider the entire neck and the ice grainsg, since they con-
tribute to the total deformation process.

In developing the constitutive relation, inertial effects are assumed
to be negligible. The major portion of the deformation procss is assumed
to take place in the necked regions of the granular structure. The grain

bodies them selves eventually begin yielding as the pressure increases
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b. IDEALIZED GRAIN GEOMETRY

FPigure 9. Representation of grain and bond geometry for neck-growth
model of snow deformation.
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during the deformation process. In undistrubed snow that has had several

days to sinter at temperatures of about -5°C, the grain bonds will usually

e

have cross sectional radii at least 25% as large as the grain bodies themselves.
This rate of bonding depends to a large extent on the temperature and

imposed pressure. At temperatures below - 30°C, snow sinters very slowly.

In the absence of a temperature gradient, snow at -5°C can be fully bonded

within one day with grain bond radii on the order of 10% of the grain body t

if moderate pressures are imposed on the material. i
With reference to Fig. 9, the ice grain can be divided into two regions.

Region 1 is that portion of the grain body upon which lateral surface

L o S Rk el O 3

loading is imposed, whereas Region 2 has a load-free lateral boundary.
Region 1 does have some stress free surface since the grain bonds do not 1
completely envelop the surface. The material is assumed to be completely
yielded, since primary interest is in snow under large volumetric deformations.

The grain radius is R, and A is the neck radius. the bearing stress
P (Fig. 9(b)) on the grain bond is assume to be related to the macroscopically
measured pressure, p, by

P pa(R/A)2 (11.D.1)

Here O is taken to be the density ratio,

o= pm/p (I1.D.2)

where pmanddp ara, respectively, the densities of the matrix material (ice)
and the porous material (snow).
Consider first Region 2 of the ice grain. Assuming surface tension

effects are negligible, its lateral surface is completely stress free. The

stress tensor, using a cylindrical coordinate system, has the nonzero

stress components ozz' Or ' cee, and ozr’ The stress-free boundary con-

X

dition on the lateral surface can be used to obtain:
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o!‘z = ozz dR/Jz (11.D.3)

The 2z and r components of the equation of equilibrium are
= b
aozz/az + (1/r)d(r o ) /dx = 0 (11.D.4)

aon/ar + aou/az + (<:rr -cee)/r = 0 (11.D.5)

r

The condition of incompressibility requires that

avz/az + (l/r)a(rvr)/ar =0 11.D.6)

where vr, vz and ve are the velocity components in the r, z and 0 directions.

t Integration of eq 4 and use of lLeibnitz's rule and the mean value theorem

s results in

»

R
\ . ~l: 2ﬂr(aozz/az)dr = Aiaa;z/az + (Gzz(z,t) -ozz(R,z,t)) 3Az/32 (I1.D.7)

where Gzz is the average axial stress on the cross sectional area Az at the

-

location z in Region 2. The following relation,

R
£ 21rr(aozz/az)dr = Azaczz/az, (I1.D.8)

is approximately correct if either (E;z( z,t) - ozz (R,2)) or BAZ/Bz is

sufficiently small to make their product small in comparison with the other

terms in eq. 7. Assuming this approximation, the z-component of the equation

B bty RS ol 5 ik A

of equilibrium becomes, after application of the boundary condition,

aozz/az + (Zozz/R) 9R/9z = 0 (I1.D.9)
Utilizing material incompressibility and the predominantly axial state of

stress, the flow law given in eq. II.A.l acquires, after some algebra, the

form

ozz = 2s° + 2C 1n ((3A/4) avz/az) (11.D.10)

2

~
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Solving for 8vz/3z gives
avz(z,t)/az = (4/3n) exp (Ozz/ZC ~ SO/C) (11.D.11)

which can be shown to satisfy the equilibrium equation, eq. 9. The in-
compressibility condition can be used to show that the rate of change of the h
radial velocity v, is

| v, =~ (x/2) avz/az (I1.D.12)
/ . s

Setting r and v, equal,’ respectively, to A and A in eq 12 and substituting

into eq. 11 yield
A = -(2A/3n) exp (0,,/2C = S_/C) (11.D.13) :
Now consider the deformation in Region 1 of the ice grain. 1In this

region, part of the lateral surface is constrained by the bearing pressure

of adjacent grain bonds. In this case, at a neck .

2
Opp =~ P a(Rr/4) (I1.D.14)

whereas crr is zero on other parts of the lateral surface not in direct

contact with a neck. The average stress on the lateral surface must be

R T

reduced by a factor f, 0 < £ < 1, which gives the fraction of lateral -

surface in contact with a neck. Therefore the average value of orr at

r = R is

2
o, =-fpa (R/D) (I1.D.15)

which gives the mean radial component of stress acting on the radial surface

i
7
'?
;
t

of the grain in Region 1. The radius R is relatively constant with respect

to z in this region.

In what follows, the superscripts I and II are used to refer to regions
1 and 2, respectively. From eq. 1 the axial component of stress, ozz' in

Region 1 is approximately g
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L= BlA + B, R (I1.D.22)
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These last two equations define an average stress state in Region 1.
The maximum difference value S in Region 1 is then

I

2
s = ozz [(R/A)® £-1] (11.D0.17)

11 2
=0, [ £ - (4/R)7]

Making use of incompressibility, the maximum difference value for the rate
of deformation tensor can be found to be

2
b= (1/rd) -%;-(rzvr) (11.D.18)

Returning to the constitutive law, and then integrating this after first

substituting eqs 17,18 yield

2
R=-R By g1y B
R=-2exp {[() £-1] c - S,/c} (I1.D.19)
Equations 13 and 19 define the rate of change of the neck radius and
grain radius respectively. These must now be related to the rate of change
of the density ratio. If Vm is the volume of the solid ice phase in a cubical

region containing the grain of radius R and N necks of length L, one can show

that Vm and the volume V of the cubical region are

ve(2v/m:-2%+13 (11.D.20)

v, = (4-2M)TR%/3 + nmAlL/2

+ (m/3) (2% + A%) /RE-p? (11.D.21)
Vﬁ must be constant if the matrix material is incompressible. Utilizing this

constraint gives the following approximate relationship for the rate of change

of the bond length L,

e EE
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where
B, = - —35 { (4 - 3-N)R2 + N(2R2 + Az)/al (11.D.23)
NA 3

B, = —(2/nA%) {NAL + 2NRA/3 - (2R® + A%)AN/(3R) }(I1.D.24)

The average number of bonds N attached to a grain varies with density
and snow type. In the absence of any substantial data on the variation of
N with density, the following approximate relation is assumed.

N=4 (1 + (p~-0.30)/0.50) (11.D.25)
where p is given in Mg m-a. Very little data are available to verify the
accuracy of this equation. Kry and Gubler made studies of snow structure,
but their results considered a relatively narrow density range. The density
ratio can also be expressed as the ratio V/Vm. Then, the rate of change of

0 can be calculated with the use of eqgs 13, 14, 20, 21, and 22. The result

of this is

a = Al exp (Blp) + A2 exp (sz) (I1.D.26)
where
_ % 2
Bl— 2c (R/)

82 = %-I(R/A)2 £ - 1) (I1.D.27)

A, = (2KA/38) (-20/Y R- 2 4 B,) exp (-5_/C)

A, =(KR/3A) (2R/Y r2-a% & B,) exp (-5_/C)

K= 3(2 /%3_:35 + L)2/Vm
Eq 26 describes a volumetric behavior for snow which functionally has the
correct form.& However, acceptable accuracy cannot be expected since factors
such as work hardening of the matrix material, effects of random grain and

neck geometry, and intergranular glide have not been accounted for. 1In order

to adjust this equation to better fit experimental data, the following emperical
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term is used

‘ Cc, + C.p
} =
| F clp° (a/ao) (I1.D.28) ,
! to divide the pressure p in eq 26. E
& The constitutive equation then becomes E
4
a= A, exp (Bp/F) + A, exp (B,p/F) (11.D.29)

+

with A, A, Bl and 82 iemaining unchanged from the values given in eqgs.

4

23, 24 and 27. 1In these results, all coefficients are determined by the

T EE N E e ..

b Lkt o

properties of ice and the structure of snow, except for the three constants

T

Cl. C2 and C3 contained in eq. 28. ]

I1X. E COMPARISON WITH EXPERIMENTAL DATA FOR NECK GROWTH MODEL

Abele and Gow (1975,1976) have reported results of their studies on

N T T L)

the high rate volumetric properties of snow. Their 1976 study involved the
deformation of sifted and compacted snow, a process which resulted in
initial densities higher than 0.30 Mg m-3. Their 1975 work was concerned
with natural undisturbed snow with densities ranging from 0.1 Mg m-3 to

0.30 Mg m-3 and a temperature range of -30°C<_0< =2°C. Their experiments
consisted of confined compression tests and have already been described in
Section II.C. The reader is referred to that section in order to familiarizé
himself with the test procedures.

Several densities were considered here to demonstrate the effect of
initial density on the stress response of the snow. Generally, the average
crystal diametér was about 0.2 to 0.3 mm, althou, this was at best an
estimate obtained from the thin sections illustrated in reports by Abele

and Gow. This snow is similar to fine grained seasonal snow. The bond

Y]
»
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radius was taken to be 0.08 - 0.12 mm, based on thin sections illustrated

in Abele's paper. .

i
4
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Figure 10. Comparison of neck-growth theory with experimental data.
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Figure 10 illustrates a comparison of theory with the experimental

data. The term F in eqs 28 and 29 was evaluated by determining the coefficients

to fit eq 29 to the experimental data for an initial density of 0.30 Mg m_s.

Cl, C2 and C, were found to be 0.112, 1.67, and 6.40, respectively. As

3
can be readily seen, for all densities from 0.10 Mg m-3 to 0.60 Mg m-3 the
agreement between theory and experiment is excellent.

Figure 11 illustrates the effect of bond size on the volumetric properties
of snow. In Figure 11, grain size is held constant while bond size is

varied over a range characteristic of alpine snow. Figure 12 illustrates

the effect of deformation rate on the response of snow. The importance of

graknssize an-pressure response was checked. R was varied over an order of

magnitude while the ratio A/R was kept constant, and the pressure response

was found to vary by less than a percentage point, so that one may conclude

Cee Bl SR A e

that grain size is a second order effect.

II.F SIMPLIFIED EQUATION FOR NECK GROWTH MODEL

compaction. This was done for the range of initial densities and deformation

rates illustrated in Figures 10, 11 and 12, and R was found to be at least
two orders of magnitude less than A. This is due to the fact that the

grains have a high degree of lateral constraint, whereas the grain bonds

are essentially unrestrained. This result allows the constitutive equation

to be simplified by neglecting the term B, exp (Bsz). The resulting simplified

2
constitutive law becomes
. B,p/F

a - Ale (I1.F.1)
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[ Equations 13 and 19 can be used to calculate A and ﬁ during volumetric .
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Figure 12. Effect of deformation rate on pressure as predicted
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and this equation is more readily inverted to obtain p as a function of
a and &. This equation gives results virtually identical to the results
illustrated in Figures 10 - 12,

The above constitutive equation is considered to be valid for quazi-
static rates of loadiné. When very large rates, such as those associated
with stress waves are incurred, intergranular dynamical effects such as those
derived in the pore collapse model should be included. This results with
the following constitutive law.

2
P= % In (a/A)) + — g% (a,a,8) (I1.F.2)

a

In summatyf a rate sensitive volumetric constitutive law based on
grain and grain bond deformation has been developed and compared with
experimental data. As can be seen in the above, the developed law does
accurately describe the behavior of snow for a given deformation rate and
for a range of initial densities. Aside from the rheological properties of
the matrix material, one of the most important parameters is the ratio A/R
of the bond and grain radii in the undeformed snow. However, the importance
of this parameter becomes less significant as volumetric strains become
large. This can be better understood by first considering Figqure 13, which
shows the variation of the neck radius as a function of density for two
different intial neck radii. It can be seen that the relative differences
in bond radii decrease during the compaction process. The smaller bonds
experience a larger stress and hence flow more readily than the large
bonds, thereby growing at a faster rate.

The constitutive law was found to lose accuracy at the higher pressures
where the theoretical curves are terminated in Figure 10. For all four

cases shown in Figure 10, this occurred when the bond radius was about three

fourths the value of the grain radius., At this point, th: adjacent bonds
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on an ice grain begin to interact in a significant degree as they grow into

each other. The kinematic equations, eq 22 ~ 27, do not account for this,

and this may be part of the reason for the loss of accuracy at the higher

densities.

The neck growth model used in this study could be applied to other

materials such as porous metals, although the constitutive law for the

—— -

matrix material would be different than the one used here. However, the

T . MalOE, T B We SogEw . -

kinematical description used here should be readily adaptable to other

porous materials.
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III APPLICATION TO THE PROBLEM OF VEHICLE MOBILITY

III.A INTRODUCTORY REMARKS

The problem of oversnow mobility can generally be divided into two
different but related topics: (1) power requirements for motion in snow
and (2) traction requirements. The latter problem has probably received
more attention, since sufficient traction and drawbar pull capability must

be developed before any,forward motion is possible. In addition the problem
of traction capability is somewhat simpler to define mathematically, at
least in the manner that this problem has been previously treated (Mellor
1963). This is not meant to imply that the problem of traction capability
is a simple problem, since the stress state in the immediate vicinity of
the track grousers is quite complex. Previous studies have avoided a
detailed stress analysis by calculating averaged shear stress capability of
the snow at the track-snow interface. A relation similar to the Coulomb-
Mohr criterion is used to find the shear stress in terms of the track
pressure, and by application of equilibrium, the tractive capability of the
vehicle can be found. This approach has met with some success as indicated
by Mellor (1963). In addition, Harrison (1956, 1975) has utilized a method
used for soils to predict drawbar pull capability, but he has pointed out
some shortcomings of this method.

The problem of calculation of vehicle power requirements has however
not been studied as extensively as the second problem. A very relevant
reason for this is that there has not existed a theory for accurately,
defining the volumetric properties of snow under finite, high rate com-
paction processes. This difficulty has in part been relieved by the development
of volumetric constitutive laws such as presented in Section II, where it

was shown to accurately predict the response of medium-to-high density snow

48
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to large amplitude high rate volumetric deformations.
In the case of a shallow snowpack, the pressure bulb, which is the b
region of compacted snow directly beneath the vehicle track, extends to the
ground. This enables the relatively rigid ground to lend a significant ‘
amount of support to the vehicle. If the snowpack is quite shallow, the 4
effects of the shear stress on the sides of the pressure bulb may be neglected.
The pressure inside the bulb does not consequently vary signficantly in the
vertical direction, thereby allowing the rather easy calculation of power

requirements for tracked vehicles in snow.

+

In the case of deep snowpack, the pressure bulb receives no support

foom the ground, and the bulb must be supported primarily by the shear

stresses existing on the bulb wall. As a consequence the pressure bulb can

ETET LY~ SN

.

extend a significant distance into the snowpack before an equilibrated :
state is reached. Due to the effects of the shear on the bulb walls, the
pressure and the density distribution in the wall is no longer uniform.
The constitutive law in eq II.B.47 is used to estimate energy and
power requirements for over-snow tracked vehicles. Since high rates and
large amounts of compaction are involved, constitutive equations developed
by other researchers are generally not valid for this case. Mellor (1979,
1977) gives a thorough review of previous constitutive formulations for
snow, and one can readily see that most previous work is valid for either
small strains or rates well below those that can be generated by tracked
vehicles in motion. The following analysis, therefore, represents one of

the first attempts to analytically calcualte power requirements for tracked

vehicles which generate large amounts of compaction of snow. The comparatively

simple problem of shallow snowpack is first studied, and then deep snowpack

mobility is considered in the following section.
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I1I1.B TRACKED VEHICLE MOBILITY IN SHALLOW SNOWPACK OF MEDIUM DENSITY

Harrison* (private communication) has indicated that the cross section
of the failure zone below a vehicle track takes on a somewhat rectangular
shape. Figure 14 gives a schematic of the failure region, often referred to
as the pressure bulb. It is assumed that shear failure occurs along the
sides of the failure region, and that the material directly below the
vehicle track undergoes unidirectional compaction. Outside the pressure
bulb, the snow undergoes very little compaction so that the energy dissipated
would be negligible when compared to the dissipation occurring within the
pressure bulb. The depth of the failure region depends on the shear strength
of the snow, and some of the energy dissipation is invariably due to deviatoric
deformations. However, when one considers the massive amount of compaction
occurring within the pressure bulb, neglecting deviatoric energy dissipation
becomes a valid simplifying approximation. There are conditions under
which such an assumption may not be reasonable. Th.s would include situations
of slippage or vehicle turning. But if a vehicle is moving along a straight
path and is not experiencing much slipping, the above app;oximation should
be valid. At any rate, the results should give a reasonable lower bound on
vehicle power requirements and allow for a good parametric study of the
problem. The following analysis would be particularly valid in the case of
shallow snow in which the pressure bulb extends to the ground.

The constitutive equation as given by eq II.B.47 can be used to calculate
directly the energy a vehicle expends in compacting snow during its passage.

Stress power is given by

W= -:')—tr(z' ) (III.B.1)

A

*Research Engineer, U.S. Army Cold Regions Research and Engineering
Laboratory, Hanover, New Hampshire 03755,
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where S and 9 are, respectively, the Cauchy stress tensor and the rate of
deformation tensor. tr(-) is the trace of the tensor quantity inside the
' i parenthesis. The stress power, &, is simply the rate, per unit mass, at
! which work is being done internally by the stresses. W is a central part
i J of the first and second laws of thermodynamics. For a purely viscous E
l material under isothermal conditions, & would reduce to the rate of energy

disspiation. For a viscoelastic material, the stress power would contribute !

to both the rate of change of strain energy and to the rate of energy

CAR RGN N ol

where p is the hydrostatic pressure, v is vertical particle velocity, and x

dissipation. 'f

#

\;, In case of a undirectional deformation, the stress power associated g
£

| with compaction is: <
R

w 0 Ix (IT¥I1.B.2)

R

%

is the vertical coordinate position of the particle during deformation.

The continuity equation for unidirectional motion is

o

a v
St P =0 (II1.B.3)

Egqs. II1.B.47, 2 and 3 can then be used to obtain
1 .
F=->pa (111.B.4)

Integration of eq 4 results with

t
- |
w ﬂ 5 a dt (III.B..S)

In the above the pressure p is a function of time. Eq II.B.47 may be in-

verted to yield

* a o Rt

a (I111.B.6)
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where
Q(t,@) = 3 (F(t,@ + Infa(e-1)]] - Ina (111.B.7)
F(t, ) = & (3ozp(t)e(‘”‘/%)/(.:rln(m‘i‘1 )) = 2(5,-0)) (111.B.8)

The pressure loading in the material below the track is assumed to

have _the form

p(t) = p* t— n - H(t-to)] + P*H(t-to) (I11.B.9)

o
where H(t) is the Heavyside step function. Figure 14 shows the nature of the
pressure distribution under the track. The total work done by the track to

a unit mass of snow is then

t*
1 (t.a)
m

(IIX.B.10)

where t* is the duration of time that the snow is under the track. Egs.
7 to 10 can then be used to study the energetics of oversnow vehicle travel.
The above results have been used to make such a study. By substituting
the assumed pressure function given by eq 9 into eq 10 and integrating eq 10
over the time t* corresponding to the interval that an element of snow is
under the vehicle track, the actual work in compressing a unit volume of
undeformed snow is found. This gives a direct measure of track efficiency
for a given set of parameters such as vehicle speed, track pressure, track
geometry, and snow properties.
Eq 2 gives the instantaneous power/unit mass of snow while the material
is under the track, and this expression can vary considerably during the
interval, t*, of track loading. For the purpose of this study, the average

power is more meaningful, and this is calculated by simply dividing the total

work per unit mass, W, by the time period, t*, required to produce this work.
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Therefore, " e¢(t'a’
P = _1_f p(t) —5—dt (111.B.11)
t*

gives the power per unit mass is subsequently refrred to as “specific power".
The specific power, P, would have to be augmented by a factor equal to the
total mass of snow under the tracks, if one wanted to find the total power
requirements.

- Nominally, a track length of 5 meters was chosen. Track pressure was
limited to 5x104N-m-2, which admittedly is uncharacteristically low when
considering military vehicles. However, such pressures are more realistic
for vehicles such as snowmobiles. 1Initial snow densities studied range
from 300 Kg~m—3 to 700 Kg-m-3, and vehicle speeds are restricted to about
15 m-sec-l.

Figures 15 anc 16 compare specific power requirements for two track
loadings, and a significant difference is generated when one increases the
track loading from 1x104 N-m-2 to 5x104 N-m-z. In particular, the efficiency
of the lower track pressure becomes increasingly apparent at higher vehicle
speeds. This is due to decreasing amount of snow compaction that occurs
while the snow is under the track as the speed increases. At the lower
track loading there appears to exist a critical speed above which little
increase in efficiency is achieved with higher speeds. For the higher
pressure, significant amounts of compaction continue to occur at the higher
vehicle speeds. These high pressures, even at high épeeds, forces the
vehicle a significant distance down into the snowpack, thereby expending
much energy in snow compaction. At lower track pressures, the compaction
becomes much less significant, and the vehicle tends to "ride-up" on the
which is a much more efficient configuration. The relationship between the

pressure and deformation is a highly nonlinear one, as evidenced by eq.
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11.B.47. As a consequence, one can expect a nonlinear relationship between
specific power and vehicle speed.
Notice the tremendous increase in power when the track pressure is

2 to Sx104 N-m-z. Again, this can be attributed

increased from 1x10% N-m™
to the highly nonlinear relationship between p, @, and @ in the constitutive
equation.

_Figures 17 and 18 illustrate the variation of vehicle power with
initial snow density. ;&n these figures the relationship between specific
power and density is illustrated for three different vehicle velocities.

As can readily be seen, for snow with initial densities above 300 Kg-m-3, a
track loading of 104 N-m-3 operates fairly efficiently. However, the same
cannot be said for a track loading of 5x104 N-m.z, where good efficiencies
are not achieved until an initial snow density of about 500 1<g-—m_3 is
reached.

The foregoing calculations indicate that much can be done in an analytical
manner to make parametric studies of over-snow mobility. The study given
here considered only volumetric effects, and as such would represent a
lower bound on total energy levels absorbed by the snow when compressed by
vehicle tracks. However, this estimation should be good if slipping is not
significant. Central to such an analytical study is the availability of a
constitutive equation which can accurately represent the material response
to large compactions at high rates.

The results of the computations illustrated in the figures show an
intricate relationship between the rate at which energy is absorbed by the
snow and such parameters as track pressure, vehicle speed, and initial snow

density. Decreasing the track pressure substantially reduces the snow

density required to allow the vehicle to move efficiently through snow.
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Figure 18. Effect of density on power consumption.
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The same results are implied for the speed required to allow the vehicle to
begin to plane out onto the surface, thereby resulting with less compaction
of snow. The figures show a;highly nonlinear relationship between these
parameters and the power dissipation. These figures also indicate there
exists critical combinations of snow density, track loadiﬁg, and vehicle
speed which allow efficient travel over snow.

--The calculations were made by assuming a uniform compaction of the
snow directly below thg vehicle track, and as a consequence these calculations
would be particularly accurate for shallow anwpack, in which pressure
bulb reaches the ground. For deep snowpack, compaction within the pressure
bulb would not be as uniform, and the results would have to be interpreted
in terms of the averaged pressure within the pressure bulb. However,
without knowing the shear strength of the snow along the sides of the
pressure bulb, these calculations would be difficult to arrive at.

Presently, the author is working on a more comprehensive constitutive
law for snow, which, when completed, should provide a more complete description
of the high strain rate properties of snow. In addition to the formulation
of a more comprehensive constitutive law, much more experimental data is
needed so that the variation of snow properties with snow type can be
determined. Density alone is not a sufficient parameter for doing this,
and in-depth studies are needed to determine those structural parameters of
snow which, in conjunction with density, can be used to accurately evaluate
the material coefficients to make calculations such as done here more
accurate. When a set of constitutive equations, such as the one presented
here, are available for a wide range of snow densities and snow-types
detailed studies can then be made on vehicle performance in snow for a wide

range of conditions. Such studies can form guidelines for track design.
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I11.C TRACKED-VEHICLE MOBILITY IN DEEP SNOWPACK OF MEDIUM DENSITY

In this section, we assume the snowpack is so deep that the pressure

bulb does not extend to the ground. 1In this case, the pressure bulb must
be supported by the surrounding snowpack. This is done by means of shear +
stresses along the bulb walls and a normal stress along the bottom of the %
bulb. : }J
~Studies by Harrison (1975) have indicated that in deep snowpack the

pressure bulb is usually very close to a rectanqgular shape. There is some
spreading of the bulb below the track, but this is usually not very significant.
Figure 19 shows schematically a typical shape. Often local inhomogeneous
conditions or vehicle turning can cause the vehicle to significantly alter

the bulb shape. However, if the vehicle is moving in a straight line, the

bulb geometry depicted in Figure 19a is realistic.

V46 1% b AR iy v

Now idealize the bulb as shown in Figure 19b. The hydrostatic pressure,
p in the bulb is assumed to be a function of Y and t, where Y is the verti-
cal Lagrangian coordinate of a particle which eventually is contained in
the pressure bulb at deformed position y and time t. The shear stresses
along the wall and in the pressure bulb is simply the critical pressure P,

required to initiate inelastic compaction of the snow. Not shown at the

lower surface is a shear stress component, which must be zero at the center

of the bottom surface and which grows as the two lower corners are approached.
This shear stress is felt to partly restrain the pressure bulb from spreading,

since it must act inward toward the centerline of the bulb.

We consider now the Lagrangrian forms of the equilibrium equation and
the continuity equation. The equilibrium equation and continuity equations

are respectively
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9T oT
A4 -z _
3Y + 3z 0 (x11.C.1)
]
dp v _ s
at + psi- 0 (I11.C.2)

° o
Tyy and sz are respectively the normal and shear components of the

-]
Piola stress tensor T. The Piola stress tensor is related to the more

familiar Cauchy stress tensor, T, by the equation

Po -
r= 251l 4 (I11.C.3)

p° is the initial density of snow, and F-l is the inverse of the deforma-

tion gradient tensor. Utilizing egs 3 and 1 and taking advantage of the

uniformity of the deformation in the 2-direction results with the following

BRI T T R IR SR

reduced form of the equilibrium equation:

3 2p
_Ea s - S ar (I11.C.4)
Y pmw

where w is the width of the track, and T is shear stress on the bulb wall.

Integration of the above gives
2p

Y
p(Y,t) = - f o 1dY' + p(0,t) (I1I1.C.5)
pmw o]

o

where p(0,t) is the pressure produced by the surface loading.

Eq II.B.47 can be inverted to give

t Q(t', p, o) '

a = ~j e dt' +Q (I11.C.6)

o]
[o]
where
Q= %‘ [F(t, a) + 1n(a(a-1))] - 1n A (111.C.7)
p Sesog o
# F(t, a) = E{3OLeP(Y, t)/(J1ln (—a"l 1) -2 (So—c) ] (III.C.8)
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Equations 5 and 6 can be solved simultaneously to yield the variation of a

under the track. 1In order to solve these equations the shear stress T must be
found. 1In his earlier study, Mellor (1963) has studied the shear strength of

snow and have shown that under safficiently high rates, the shear stress of snow

is weakly rate dependent but depends strongly on the hydrostatic pressure. 1In .

view of these results, the following form is adopted for T.

e
EAR

S TE T +Kp (II11.C.9)

5 ooy

/

Under relatively high pressures, the portion K p can be significantly larger

than To' so that To can be neglected. The pressure variation then becomes

2 p, K Y ([t o, t*)
pl(Y, t) = + ————— e 4t' p(y', t)dy' + p(o,t) (I1I1.C.10)
pm w o [e}

K is actually a function of the velocity of the particles on the bulb wall,

but here it will be assumed constant, since the rate dependence of K is
not well defined.

The continuity equation can be put in the form

1 0 O
2 - get {F| = getlo & (II11.c.11)
o & oY T
0O 0 1
)
Integration of this results with
: Y o
y -y, = f{'-—a—)dY (I11.C.12)
(o] (o]

yo is simply the depth of the rut formed by the tracks, since this is the
deformed position of the top surface Y = 0. At the bottom of the pressure
bulb, y = Y, since there is no significant displacement at that point.

Therefore, if we denote YB as the position of the bottom of the pressure bulb,
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eq 12 gives
B a r
Y, = (1-3) av (II1.C.13) |
o
For a given problem, eqs 6 - 13 can be solved numerically when appropriate ; 4
boundary and initial conditions are specified. Assuming p (0,t) is g

known, eq II.B.48 is first evaluated at t=0 to find P the critical

yield pressure. Eq 10 then is integrated to determine the value of ¥ =

P

Y_ at which p = pc. Eq. II.B.47 is then used to find & for 0<y<y

B B’

Then the problem is step forward integrated in time by some small time

increment At, and the procedure is repeated. Doing this for the complete
time period of track loading gives a numerical solution defining sinkage,

energy consumed, 0, and stress distribution and bulb depth.

IIPRTE M FrIRY €.~ x SPNY

The work done to the snow can easily be found by calculating the work

IC P AN

expended by the surface pressure in compacting the snow. At the upper

surface, the work is given by the expression

aw = p(0,t)dy(0,t) (111.C.14)
The work rate is then

dw _ dy

ac - p(0,t) at (0, t) (III.C.15)

This is the work rate/unit time per unit track area. Consequently the total

vehicle power expended in compacting the snow is

A
T fi* dy (0
P, = o5 p(o,t) ¥ (0,t) ar (11I.C.16)

o
where AT is the area of the vehicle track and t* is the time that the snow

is under the vehicle track. This power term includes the work dissipated
due to shear losses along the bulb wall as well as the energy dissipated L,

compaction of the snow in the bulb. Not reflected would be energy expended

due to track slippage and the dissipation of energy associated with the
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large deviatoric deformations in the immediate vicinity of the track grousers.
Idealize now the track pressure by the distribution shown in Figure
20b. The pressure is assumed to build up linearly to a constant peak pressure

p*. This variation is given by the equation

P(O,t) = 0 t < v
0,t) =p £
Pt PR (1-H (er))] + PrH(tE), 0 <t <t (I111.C.17)

H(t)”is the Heavyside step function, and to is the entry time, i.e. the time
increment that the surface snow is in contact with the front part of the track.
to is determined by the vehicle sinkage and speed. Figure 20b illustrates the
temporal variation of p(0,t). Generally the track pressure has a periodic
variation determined by the spacing and size of the track wheels. For
wheels with a moderate or small spacing, this periodic fluctuation may be
neglected.

The track grousers also generate stress concentrations within the
snowpack in a localized region near the surface. This region will have a
very complicated stress state which involves both large normal stresses and
large deviatoric stresses. In this 2one, a significant amount of energy is
dissipated by both shearing and compaction, and the exact nature of the
deformation within this area would be determined by grouser size, geometry
and spacing as well as the amount of slippage and nominal track pressure.

The analysis made in this section does not have the capability of
calculating the energy absorbed in this zone within the localized effect of
the track grousers. Here we find the energy absorbed through compaction of
the snow in the pressure bulb and the shearing deformation within the
pressure bulb and along the bulb walls. As a consequence these calculations
provide a lower bound on the total energy absorbed by the snow. 1In the
absence of vehicle slipping, the shear zone in the grouser region may be

neglected in comparison to the much larger pressure bulb,
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Vehicole performance can Lo determined paramctrically o toams of o

nunber of sarame tervs, including track goometry, track pressar., vebhiobe

speed, and snow density. By track guometry, we mean track widtl, lenerp,
cntye length and angle of attack.
I adartion to caloulating vehicle powery reguirements, such 1nformetion

ax osiankage, bulb depth, and densily and jressure profile within bive ralh

can ier found. dot oall of this will Lo done here, sinee this woild recuire

tac much space, and the main interest 1s tie evaluation of power rogquirements.

The Tasic track geome-try and vebilcole welght chosen Cor the caleulations
@ these of the Ovdinance M5A4 high-speed tractor. This vehicle was
originally designed tor transporting personnel and light cargo over soft
tsrrain,  The MHAd has a 235 horsepower yasoline cngine, weighs about

twe tve tonsg, and has oa track length of about 3.0 meters and & track width
U003 meters. The nominal track pressure varies from 0.43 bar upward,
copeendinyg on the load.  consequently the MLA4 does not have good capability

Por cierating in decp scasonal snowpack but dous have a reasonable wobillty

T porsnnial o snowpack such as on the Greenland icecar or on medium Jensity

2

terally these densities are in excess of 300 Kg-m

soeasonal om0
Fioauree 21=27 sunmarize the results of this study.  The results are
sttt b terms of horscpower, since this is the most recognizable unit of
cower. CPhe track pressures considered were for the most part larger than
.2 bhars, since for ncdium-to-high Jdongity snow, track pressures below U0
v result with insignificant encrgy levels consumed in thoe pressuve bulb.,
Pigures Z1 and 22 illaustrate the very strong dependence of encrgy
consumption on initial density and nominal track pressure. For instance by

merely increasing the pressure from 0.3 bars to 0.9 bars, an increase of an

order of magnitude in energy consumptin results for snow with a density of
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300 Kg-m-3. Conversely snow with an initial density of 500 Kg-m- consumes

only about 10% as much energy as snow with an initial density of 300 Kg-m

3, as shown in Figure 5. As indicated by Brown (1978b) and evidenced in

Figure 22, for a given pressure P*, there exists a critical density above

which very little compaction and energy consumption takes place. Figure 22

shows that for a density above 450 l(g-m"3 a track pressure of 0.6 bar

produces very little compaction.
Figure 23 demonstrates the effect of track geometry on track efficiency.

The M5A4 has a length-width ratio of about 10, but Figurxe 23 shows how

energy consumption would vary for a L/w variation from 2 up to 10. This

figure shows the obvious advantage of a long narrow track. The reason for
this dependence lies in part with the role that the shear stress plays in
supporting the pressure bulb. One can readily see by Figure 19 that for a

wide track, the pressure bulb would have to be deeper in order for the wall

shear stresses to support the bulb. This can also be seen by noting eqg 4

in which the track width w inversely affects the pressure gradient in the
bulb. An increased w decreases Jp/dy, thereby increasing the depth to
which the bulb penetrates before the bulb pressure decreases to the critical
yield pressure P

Figure 24 shows the variation of bulb depth with track pressure for

three initial snow densities. As should be expected, bulb depth decreases

with decreasing pressure and increasing density. The variation of bulb

depth with track length-width ratio is illustrated in Figure 25, and Figure
26 gives the vertical variation of bulb pressure for one particular case.
As can be seen, the dpeth is critically dependent on the value of P the

yield pressure given by eq. II.B.48, Over the bottom 0.4 meters of the

bulb, the pressure p goes through a relatively small variation, so changing
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pc by 50 to 100% could case a significant change in the bulb depth. This,
however would not affect power consumption much, since most of the energy
is consumed in the upper portion of the bulb.

Finally, Figure 27 shows the compactive force generated by the motion
of the vehicle in the snow. This was obtained by integrating the horizontal
component of the track pressure over the track area. Note here the improvement
of track efficiency with vehicle speed.

The results of this study show that the method described here has the
potential of predicting power requirements of oversnow vehicles for a wide
range of conditions. For example the formulation developed here enables
one to make a parametric study of the effect of a large number of factors
on energy consumption rate. This includes such factors as nominal track
pressure, length-width ratio, snow properties, angle of attack, etc.
Therefore this formulation could be of some use as an analysis and design
tool.

The calculations used in the example were for snow with a uniform
density and a track which develops a uniform track pressure. Such an
assumption is not necessary, and a stratified snowpack and nonconstant
track pressure could have been used. However, to demonstrate the formulation,
the simpler problem was considered here.

Presently there is not much data available for comparison with the
example given here. Harrison (1975) has detailed results for several
vehicles in seasonal snowpack in which th snow density in the upper 50 cm
were less than 300 Kg-m-3, which makes direct comparison with the example
given here difficult, The constitutive law given in eq II.B.47 is not
considered to be accurate for densities less than 300 Kg—m-3, SO cons-

equently an example for lower density snow was not possible.
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The general behavior of the results demonstrated in Figures 21-27
agree with what has been observed in field studies reported by Harrison

(1975). Whether or not there is a good quantitative agreement will be

determined when either new field data is available or when the model developed

here has been generalized to include conditions of lower density snow.
what has been demonstrated, however, is the apparent usefulness of this
model for design and analysis purposes.

i
JI1I.D VEHICLE PERFORMANCE UNDER DIFFERENT SNOWPACK CONDITIONS.

In the previous two sections, vehicle performance was evaluated for
dry snowpack with densities greater than 300 Kg m_3. The pore collapse
equation was used for thesz calculations, since it is valid for this type
of snow and is relatively easy to use.

In this section the neck growth model is used. This allows an evalua-
tion of vehicle performance in low density snow as well as higher density
snow. In addition, since grain size and bond diameter can be varied, the
effects of snow type can be studied.

Normally a vehicle will have to be operated under a variety of snow-
pack conditions. For instance during mid winter, operation on low density
dry snowpack may be required, whereas during the spring, unsaturated wet
snow will be incurred. It would be useful to be able to predict how much -
variations in snowpack conditions affect vehicle performance.

Recently Abele (1981) has investigated the volumetric properties of
wet snow. Of particulat interest is his work on unsaturated snow (free
water content less than 8% by volume). A volumetric constitutive law for
this snow (Brown, unpublished) has been developed and could be used in a
number of problems of interest. This constitutive equation has a form

similar to the por:: collapse model developed earlier, i.e.
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which is essentially the same equation as was used to describe the behavior of
high density snow (Brown, 1979). Abele (1980) indicates that wet snow is somewhat
more rate dependent than dry snow, and that the material is somewhat softer
than dry snow at the same density. Also the work hardening term ¢ was
found to be dependent on the free water content. Utilizing Abele's experimental
results, eq 11 was used to approximate the properties of wet snow with
essentially no free water and wet snow with 7% free water by weight. It
should be noted that to date, Abele's data is the only high rate test data
for wet snow, so the constitutive equation given by eq 11 cannot be expected
to be extremely accurate. There just is not yet enough data to thoroughly
verify the accuracy of any equation. However, the results found here for
wet snow should give a good gqualitative evaluation of mobility in wet snow.

B procedure essentially the same as used in the earlier two sections
can be used to analyze vehicle performance, so only the results are given

here. The same track loading is assumed here as was assumed in Section

I1I.C.

3

For dry snow, a range of densities from 200 Kg m - to 500 Kg m—3 were

evaluated for speeds ranging from 1 ms -1 to 10 mshl. Also the effect of
track pressure on vehicle power requirements was also investigated. Thése
results are all illustrated in Figures 28-32. The unit of power used here

is horsepower as it is more familiar to people. Figure 31 illustrates the
effect of snow type on vehicle performance in snow. Plotted in that figure
is the variation of vehicle horsepower with the ratio A/R. For well sintéred
mid-season snowpack, the mean radius, r, is on the order of 0.1 mm, whereas
A may average as large as 0.04 mr. However, snow which has been under
“cmperature gradient effects will metamorphose until the grain size R may

be as large as 2 mm.
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A relative comparison of vehicle power requirements in wet snow and
dry snow is illustrated in Figure 32 where results are shown for wet snow
with 0% free water and 7% free water. A density of 400 Kg m“3 was chosen
since late season wet snow usually has a density in excess of 400 Kg m-3.

For the wet snow, eq 1 was used in evaluating the vehicle performance.

Figure 28 shows the dramatic increase in energy requirements with
decreasing snowpack density. The sinkage increases significantly, and this
additional sinkage increases the thrust required to push the snow just
ahead of the track downward and forward as the track passes over the snowpack.
Comparisons in Figure 28 are for two vehicle speeds while such parameters
as intergranular bonding were kept constant.

One additional point should be made here. As rut depth increases, the
forward thrust applied by the tracks also must increase. This results with
an increased shearing force applied to the snowpack in a direction parallel
to the direction of vehicle travel. This increased shearing force results
with additional horsepower consumption within the snowpack and would have
to be added to the numbers arrived at here since shearing effects were not
included in the analysis. Consequently, the solution found here should
represent a lower bound on the actual energy consumed within the snowpack.
Studies with W, Harrison of the U. S. Army Cold Regions Research and
Engineering Laboratory show that shearing effects are not significant as
long as the vehicle is not experiencing slippage.

Figure$ 29 and 30 show that power consumption increases rapidly with
track pressure but that when a critical vehicle speed is reached, vehicle

travel becomes relatively efficient. This critical speed depends on snowpack

density, track pressure and intergranular bonding.
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Finally the variation of vehicle power required for travel in temperature
gradient snow increases dramatically as the temperature gradient effects

become more significant. Mid season equi-temperature snow is the pre-

dominant snow type for normal snowpack. For instance in a two meter deep
snowpack, a full .5 meters may consist of this snow type. Grain size is
normally 0.1 - 0.3 mm in diameter, and intergranular bonding is well estab-
1ishéd, the ratio A/R often being on the order of 0.3 to 0.5. However,
under the influence of a temperature gradient, grain size increases. This
rate of increase depends on temperature, so that the metamorphism proceeds
most quickly near the bottom of the snowpack where the temperatures are
normally above -5°C. Quite often in a one meter early season snowpack
which experiences a cold period, the entire snowpack can show these tempera-
ture gradient effects. It is certainly possible that the ratio A/R could
decrease to values less than 0.1 to produce very weak, collapsing snowpack.

Future work needs to be directed at the more difficult problem of
energy consumption when vehicle slippage occurs during travel. Current
finite element and finite difference methods may be used to solve this
problem if the relevant material properties of the snowpack are known.
Unforttnately these material properties are still not available. Brown
(1981) has used a nonlinear constitutive relation to model sinkage of
building foundations into snow. This constitutive equation has the form

Fom MY -m . -1 -1
~~ ~ ~ 0~ 3 tr(g E) S (111.D0.2)

e -1
- =P @) ¢

where C-l is the inverse if the deformation tensor, E is the Lagrangian strain

tensor, f is the second Piola stress tensor, and N is a viscosity coefficient
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which is density dependent. The pressure term is a function of o and

o and is given by eq II.B.47. For the settlement problem, this formulation
was found to work well. Generally strain rates less than 10-45— were
incurred in the problem., Whether or not ;t would work at all well for
higher strain rates associated with vehicle mobility has not been determined.
Also the constitutive equation is somewhat complicated, and it should be
possible to formulate a simpler constitutive equation for the vehicle
mobility problem. At any rate, if an accurate representation of the deformation
in the bulb below the track is to be determined for conditions where vehicle
slippage is occurring, a more general equation than used in this paper is
needed. Assuming an acceptable constitutive relation for snow can be

found, solution procedures similar to that of Yong et al (1978) can be
performed. Yong's work to date represents the best numerical work on this

type of problem. Their approach would have to be modified to account for
large snowpack strains and somewhat more complicated material properties,

but their finite element approach should give useable results.
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IV APPLICATION TO SHOCKWAVE PROPAGATION

IV.A INTRODUCTORY REMARKS

Stress waves in snow are a problem tﬁat has not been studied as extensively
as other subjects. Practically all of the previous work on the mechanical
properties of snow has been restricted to quasi-static condiﬁions in which
inertial effects are negligible. Napadensky (1964) first investigated the
dynamic properties of snow under the effects of shock waves. Mére recently,
Johnson (1978) considered in detail the propagation of elastic sonic waves
in snow. Wakahama and Sato (1977) Wisotski and Snyder (1964), and Gubler
(1977) all conducted experimental investigations of stress waves in snow.
Mellor (1977) reviewed previous work on shock waves in snow, as did Johnson
(1978). But to date virtually no work performed has utilized a material
constitutive equation to investigate the propagation of inelastic stress
waves in snow. This is not surprising, since a valid constitutive law for
snow has been lacking, and consequently previous studies have been restricted
to the use of mass and momentum balance principles. However, o..ce a constitutive
law is found to accurately describe the behavior of snow.under rates of
loading characteristics of stress waves, a much more detailed analysis of
stress waves can be made.

A number of problems require a detailed knowledge of the response of
snow to shock waves. The relative effectiveness of in-snow and airborne
explosives for initiating avalanches is one such example. To date the
relative effectiveness of explosives detonated in the air, or in snowpack;
or on the ground has not been determined. Avalanche experts still do not
agree on optimum explosive speed or charge size. Another case in which
stress waves are generated is projectile impact. A related problem is

avalanche impact on structures. In all of these problems, solution of the

s T —— -

e iy i A I VA




usual balance principles can yield some information; but without an appropriate

constitutive law, such questions concerning stress wave attenuation or

S

alteration of stress wave profile cannot be answered.

At this point some definitions are in order. An elastic'wave is one B
in which no internal dissipation takes place. The material responds elastically
to the stress wave, and no attenuation can be attributed to inelastic

deformation of the material. A plastic wave is one in which material s

yielding and viscous flow occur. This is often referred to as a nonlinear
wave. This is an inexact definition, however, since material nonlinearity
can occur in the absence of material yielding and plastic flow. However,

since at high deformation rates snow remains practically linear up to the

okl b il A ek fint sy C

point where yielding begins, any differentiation between plastic waves and
nonlinear waves is meaningless. .
In stress waves, the jump in a variable (such as strain, pressure, and

energy) is defined as the difference between the values of the variable

work on stress waves has been restricted to the determination of these
jumps. A shock wave is a wave in which the displacement of a particle is
continuous across a wave front but in which the particle velocity experiences

a jump. An acceleration wave is one in which the particle velocity and

displacement are continuous across a wave front, but in which the accelera-
tion has a jump across the wave. The surface representing a wave front is

often referred to as a singular surface, since discontinuities in acceleration

and/or velocity can occur at this surface.
A steady wave is defined here as one in which the wave speed propagates
at a constant speed V. One can show that the wave amplitude remains constant

for such a wave. Even in plastic waves such a condition can be established,
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although generally this condition is shoxt-lived. Steady waves have been

——

studied extensively since they are mathematically easy to investigate.

Nonsteady waves are simply those waves that lack the characteristics of

steady waves; i.e., their amplitudes may either grow or attenuate.

Ve T

IV.B GOVERNING EQUATIONS FOR PLANE SHOCKWAVES

In the following sections, differentiation of the constitutive law will be

necessary. This can beidone in terms of the moduli:

£ -3 (0,08 (IV.B.1)
T

(IV.B.2)

E, = 23‘ (IV.B.3)

Ao i e AN G e,

E , E_, and E2 are, respectively, the tangent, rate, and acceleration moduli.

T 1
The derivatives 9p/9X and dp/dt then can be shown to have the forms:

p_ B, 3 3
x By mtE on t E2 ax (IV.B.4)
22__ o s a

at - TEqOHE 040 (IV.B.5)

where X is a coordinate variable.
Consider now balance laws for stress waves. We use here strictly a
mechanical theory and do not study restrictions invoked by the energy law

or the second law of thermodynamics. The two laws we consider are those of

mass balance and momentum balance.

The momentum balance for a plane wave propagating in the X direction

requires

20
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X + po bo = po Tt (1v.B.6)

where bo is the body force acting in the X direction and V is the particle velocity.
If the state of stress is dominated by the pressure p, and if body forces are

negligible, eq 6 can be reduced to:

-9p _. v (IV.B.7)

Po 3
_g. 5{. + g_‘; =0 (IV.B.8)

Since a = om/ p = poao/p, we can get
v 1 3Ja
% - o 3¢ (Iv.B.9)

as the form of the mass balance equation which is used later.

Consider a one-dimensional stress wave propagating through a medium
such as snow. We define as a wave (or wave front) a smooth one-parameter
family of points Y(t), «,< t< ®, such that Y (t) gives the material point
(or particle X) at which the wave is located at time t. X is the position
of a particle in the reference configuration, which here will be the un-
deformed configuration., x = x(X,t) is the position of a particle X at time

t and is therefore the deformed position. The intrinsic velocity of the

wave is

V= 4 Y(t) (IV.B.10)

dt
which is the velocity of propagation relative to the undeformed position of

the body.
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Let f be any variable, say density or stress. Assume f(X,t) is a
function of position X and time t and is of class C2 in X and t except at X
= Y, where f has a jump on discontinuity; i.e., the values of £ just in
front of and behind the wave front (X = Y) have different values. We

denote this jump by the expression [f], or

[£) = f~£' (IV.B.11)

- !
where !
/

lim £(X,t)

2}
n

X+Y

X<y

2.}
]

lim £(X,t)

X >y

X > Y.

f+ and £ represent, respectively, the values of f just in front of and
just behind the wave front. For instance, in a shock wave we would have
(vi# o, [0] # 0, and {x] = 0; i.e., the particle acceleration would undergo
a jump across the shock wave, but particle position would not. The above
equations were all defined with the assumption that V > 0, so that the

wave is propagating in the positive coordinate direction.

Now, consider derivatives of [f], since these will be used later in
the analysis of shock waves. Assume f(X,t) has a jump discontinuity at the
wave front, X = Y(t), but otherwise is continuous and differentiable.

Thus, clearly the jump [f] is a function of time only through the position
X = Y(t). The derivative of [f] follows from the definition of the jump:

d d - +
at l£) = az'( £{Y (t), t)-f(Y (t):ta
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(IV.B.13)

cim ke et B AL MRS

2 ke

il e A A I ki S ;




AD=-A108 032 MONTANA STATE UNIV BOZEMAN DEPT OF CIVIL ENGINEERING==ETC F/6 8/12
AN INVESTIGATION OF TME WIGM RATE VOLUMETRIC PROPERTIES OF SNOW=-ETC (U}
NOV 81 R L BROWN DAA829=78=0~0089

UNCLASSIFIED ARO=15413,9~08S5 NL

~.




....
X <
< .,
58
-
5§
-1
Z
Z <
mg
3%
232
L
(-]
.mn
z
22
g 2
H

Hon




o Jf(y ,t) Ay Af”
ox  dt ot

_af(v+,t) ay of
oxX dt ot

from which we get

4 of of
ac fl] =V T + 3t (1v.B.14)

However, if we assume f is continuous across the wave front, then [f] = O,
and eq 14 gives

v [g%_] = - [%{-J (IVv.B.15)

Equation 15 places restrictions on the jumps in the derivatives of f if f

is continuous at Y. Equation 15 is called Maxwell's theorem, although both

2
conditions for singular surfaces. %
]

The compatibility equations can now be applied to the balance laws.
Recalling that a shock wave generates jump discontinuities in v,G, and dv/9X,

whereas x isccontinuous across the wave, Maxwell's theorem gives

ax

To calculate the pressure jump across a pressure wave, integrate eq 7 from

(vl =-v [é%] (Iv.B.16)

< < i
xOl to xB' where xa Y(t) XB, to obtain

a ¥ .
- p(x ,t)+p(xa,t) = 3 xa po x.dx

Or, by breaking the integral on the rightwhand:side intovtwopparts, we get

l eq 14 and 15 are also often referred to collectively as the compatibility

'P(XB:U + P(xa' t) =

froc, e

y(t) x
a4 n 8 ¢
' at (ﬁ Po X X *J;(t)_ Pg X dx) (I1V.B.17)

a




Now, taking the limits of xa + Y (t), xB -+ Y+(t), and using eq 16 and

Leibnitz's rule to differentiate the integral on the right-hand side, we obtain

p] = Po V [x] = Py Vv v) ' (Iv.B.18)
This equation is a familiar jump eguation that relates the pressure jump
across the wave to the jump in the particle velocity and wave speed. A

similar procedure applied to eq 9 results in 4
N !

[ =V
v F & (@) (IV.B.19)
0
Therefore, we see that the material has a jump in @ if the wave is a shock
wave, since [v] is nonzero. Combining eq 18 and 19 gives g}
povz 5
ip] = - o lal (1V.B.20)

(v}

which is a well known relationship for shock waves relating pressure jump N i
across a wave to the jump in density ratio.
Evaluating eq 7 both ahead of and behind the wave front, then letting

X approach Y(t) and subtracting these two forms of eq 7 lead to:

[g%] = -p, (vi (1Iv.B.21)

Equations 18-21 are all widely recognized jump equations for stress waves
and are applicable to both steady and nonsteady waves.

We now analyze in detail the propagation of steady waves before considering
the details of nonsteady stress waves,

IV.C. STEADY SHOCK WAVES IN SNOW

To investigate further the properties of steady waves we now return to
the jump equations, eq IV.B.18-21. 1If the material is at rest just prior
to the stress wave arrival, the jumps [p] and {v] equal the values of p and
v as the wave passes. Denoting the steady values of 0 and p behind the wave
by the asterisk, *, eq IV.B.18. 1IV.B.2l can be put in the following respective

forms:
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t ar =q - 2 p* (Iv.c.l)
i pvz
. 0
>
; 1

* =

v v p*

(IVIC.2)

¢]
From here on an asterisg will denote the value of a variable behind

the wave, i.e., in the steady condition after the wave has passed. The
terms v, a, and p refer to the values of the respective variables at any

point in the wave. As indicated earlier, eq 1 and 2 result strictly from

‘consideration of the balance principles and do not involve the material

properties in any way. We now investigate the effect of material properties

on the momentum balance equation.

Case 1l: Steady waves in medium density snow.

‘--,-___;-_-________

In the following the constitutive equation based on the pore

( collapse (eq II.B.47) is used. Later steady waves in low density snow is

considered. First, however, Eq II1.B.47 has to be modified to include

the intergranular inertial term as defined by eq. 1I.B.44. Eq IX.B.47 is

valid for quazi-static deformations in which inertial effects are

negligible.

The complete constitutive law is
Y Ay 2 (-¢o/
Fe 10 (o) (2(S°-C)+cln ("‘“‘)) Je °
a(a-1)

ERBNG . 4ot w0 » i 5t v o

& ((c-1)2/3 - a'2/3) (Iv.C.4)

2
) ((a_l)-l/:! - a-x/s)

2 2/3

T = °m°2 / ay - 1)




The inertial term given in eq 3 is essentially the acceleration potential term

pm (wb- wa) defined in eq II.B.44, except that a and b have been eliminated and

the equation has been algebraicly reorganized. Some simplification of the

acceleration term can be made. Except under extremely severe shocks, the term

containing & can be neglected. Later in the paper this will be done.

In a steady wave, the solution to the balance equations may be expressed

in terms of the single variable

n = X-vt. (Iv.c.6)

Substituting the constitutive law into eq IV.B.20 and changing variables

from X and t to N by use of eq 6 we find after some algebra

p v?

-¢a /0
-0 (o] o
(u—ao) = 33 ln ( )

GO a-1
(vmt')2
(Z(SO-C)+C 1n (m))
2 2
Vit d "
- '—Za—‘ a (Qla, a,a)) (IV.C.7)

The prime denotes differentiation with respect to the variable n. After

integrating the above, we get

2
p.V a
-0 2 0
330 (a—ao) (a - —3-(a+aoa

[+ ]
2 2
-Vv1 " o
= —2—— (Q(alala))+ _:T__ in { I )
ao 3 a-1

y o —Pa/a, .

- (ayo) ) da (1Iv.C.8)
(Z(So C)+C 1n Q(—(l-’].)

The above equation describes the density ratio jump across the wave, once the wave

speed is known. However, this is an integro-differential equation and would have

to be solved by a numerical method or some other approximate method.
In cases where strain rates are not extremely large, eq 8 would have

to be used, since it makes use of the more complete constitutive equation,
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eq 3. Such would be the case for low-frequency, large-amplitude waves.
However, if one is considering shockwaves, the strain rates become

very large, say on the order of 104 -1065-1

. Under these extremely high

rates, the constitutive equation can be simplified somewhat, since the yield
stress of ice becomes only weakly rate dependent. This can be seen in eq.
II.A.3 where at large values of D, Y changea only slightly with significant
chanées in D. cOnsequeﬁély, if Y is replaced by a constant value Yo = 300 bar,

i
the constitutive equation developed in section II.A can be reduced to the

following form

2Y J 2 * ..
__0 o -pa/a T d 9(a,a,d)
P=735 In ( P Je 2 (Iv.C.9)

This equation is obviously more tractable than the earlier equation. The value

of Yo = 300 bar was chosen since this yield stress is consistent with strains
n, -1 -

actually generated in many shockwaves (D v 2x1055 1), and a range of D between

10%s71 ana 10%7? places the actual yield stress Y within ten percent of the

vakue of Yo = 300 bar.

Substituting eg. 9 into eq IV.B.20, we obtain

2
) pov (a-ao) ) 2Yo ; 1n( o ) e-¢a/a0
[» ] 0 3a a-1
2_2
v T d " [}
- T 30 ( (Q(a,a,a)) (IV.C.10)

or, upon integrating,
a
2

- povz(a—ao) ( ol - (Mao))

3(!0

2.2 .
=" y%_ [Q(al&ra)]

+ '—3—21!1 (
q .

a-l) e "¥%/% aa (Iv.c.11)
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In steady waves, 0 = 0, and & = 0 both ahead of and behind the wave;
L .
therefore [Q(a,x,a)} vanishes. Substituting eq. IV.B.18 into eq. 11 for
steady waves then gives

o
-$ a/
p* g(zyyof 1n (&%'1")‘ ¢ /% aa)

a
(]

2 a -1
ar® - —=- (a*«xo)) (IV.C.12)

Carrying out the indicated integration results in

-¢ a*/a,

(gl (a*)-e 9, (a*—l)) (Iv.C.13)
where
o ~dot /o -¢ o

g, (a*) = - ¢° (tn (amre -ln(age )+ -

© ~..n n .
(1,, % Z(_“N_ (OL*.] -1 ) (1Iv.C.14)

e n-n! a
0 i=i o/

Equations 13 and 14 give the pressure jump across the wave. Equation 10
can then be used to calculate the wave profile, i.e., the variation of the density
ratio a inside the stress wave. This can be accomplished by inverting eq. 10 to

obtain

a

as

n "j (IV.C.15)
2 FByay, V)

[+

where N} is the variable defined in eq 6, and

B y

4Y 'y =¢8/a

=10 (I

F(B.ao. V) (3“3) o 1n (E%)e 48
0
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2 o 1/2
20 V 2 %
+ “Po (B-ay) (B — (Bmo))) (1v.C.16)
3 HE(B)

Setting a = a* in eq 15 then gives nl, the length of the wave, but this equation

can also be used to calculate the a-n profile during the passing of the wave.

.Napadensky (1964) conducted an extensive testing program on shock waves in
snow at Camp Century. These experiments involved snow with densities generally
higher than 400 kg m-3. The stress waves were generated by using a low-density
explosive to drive a metal plate into solid cylindrical specimens. By
varying the amount of explosive and the mass of the driver plate, a wide
range of load conditions was achieved. The explosive technique, however,
usually has a considerable amount of experimental scatter.

A streak camera was used to record the motion of etch marks on the
snow specimen and the driver plate. 1In this way, both particle velocity
V and wave velocity V were recorded photographically. Since the speed
of the camera was such that the exposure time was only about 5 Ms,
fairly good time resolution was achieved. However, as indicated by
Mellor (1977), large errors were incurred in the experimental program.

There was a very poor resolution at the lower pressure levels, and it is
questionable whethér or not Napadensky's reduced data accurately reflected
the actual stress wave parameters. However, for the intermediate range
of stress wave pressures, the data appeared reasonable, since the streak
film recordings appeared to have both good time resolution and ability
to record particle displacement.
Figures 33 and 34 give a direct comparison of the theory and Napadensky's

experimental results, and as can be seen the two compare fairly well.
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Pigure 33. Comparison of theory with stress wave data.
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Figure 33 shows the pressure jump across the wave as a function of the
density jump Ap caused by the wave. Figure 34 shows the variation of
plastic wave velocity V with particle velocity V*. For particle velocities
above 20 m s-l, the data and theory compare nicely, but below that, they
deviate significantly. The theoretical curve terminates at the point
where the wave ceases to be fully plastic.

“The data in figure 34 at the lower particle velocities are questionable.
Napadensky shows the plastic wave velocity decreasing to zero as the
wave intensity (as indicated by V*) the particle velocity decreases and
this result defies physical reasoning. For instance, as the intensity
of a shock wave decreases, the severity of the plastic deformation
should also decrease. As the amount of the plastic deformation becomes
less significant, the pressure wave should then begin to acquire character-
istics of an elastic wave. Equation IV.B.20 can be used to find the

wave speed:

(IV.C.17)}

1f Ap*/Aa* does not approach zero as the stress wave intensity decreases,

V2 must remain finite at low plastic strains. One would expect Ap*/b0* to acquire -
a value close to the elastic modulus. This argument is also supported

by other analytical work, such as that of Coleman et al. (1964), on the

theory of wave propagation in nonlinear materials. In particular, we

note the familiar equation

2
Ve = x-:p/p0 (Iv.C.18)

where for shock waves Er is the instantaneous secant modulus, and for

acceleration -aves E » the instantaneous tangent modulus. In either
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stress wave, Ep increases as the degree of plastic deformation decreases,

i.e., as a smaller percentage of the material is deformed plastically. As ]

a result, Ep appraoches E, Young's modulus of the material, and V thereby }*
increases to a value close to the elastic wave speed for weak plastic ’T '
waves,

In the case of strong stress waves that produce complete plastic

deformation of the matrix material and large jumps in density, the work-
]
hardening characteristics of the material become important in determining

"

the resulting wave speed. In particular, Ep increases as a result of

densification and work-hardening effects, thereby resulting in larger

balues of V as indicated by eq 18. Consequently, a very strong plastic

wave has a large wave speed. The above reasoning justifies the minimum
calculated value of V shown by the curve in Figure 34. This minimum is

located near the transition zone between partially plastic and fully plastic

e R b AR

waves.

Figure 35 - 37 present results of parametric studies of stress waves

in snow. Figure 35 shows how the density ratio varies through the front of
the stress wave. For the less intensive wave, a shorter wavelength is

required to generate the acceleration forces necessary to produce the

compaction to decrease 0 from 3.0 to 2.0.

Figure 36 illustrates the variation of pressure jump [p) with density

jump for a range of initial densities. Note that as the initial density is
increased, the curves are translated upward. Figure 37 also gives a very
dramatic demon;tration of the effects of work-hardening characteristics of
snow. At low pressures, the plastic wave speeds are as expected; i.e.,

wave speed increases with density. But at higher pressures, this relationship

is inverted, since large changes in o must accompany the large pressure
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! jumps for snow with initial low densities. Consequently, there is con-

iy siderable work-hardening, which has a stiffening effect, and this results
in increased wave speeds. Snow with high initial densities would not

undergo as much work-hardening.

% Case 2: Steady waves in low density snow. ’ )
i For this case, the neck growth model constitutive equation is ﬁsed,

3 since densities as low as 100 Kg m-3 may be studied. Other than the

#

constitutive law, the analysis is identical to that presented in Case 1.

Consequently only the results and discussion is presented here. The final

3 expression for the pressure jump is ar
. .
L o -1 In (a/A)
*2 o ,.* f 1" da (IV.C.19)
o * = —_— —q —_—
P 3(“ 2 (@ 0)) o BlF

Figures 38-~40 illustrate the results of this study. Unfortunately
only a small amount of experimental data is available for a comparison with

these results. To date the most comprehensive experimental study is that of

et S R VT2 B PREY R ST T T TN T

Napadensky (1964). However, Napadensky's experiments were conducted with
snow with desnities of 0.5 Mg m_3 or higher, so a direct comparison with
the calculated results here is not possible for low-density snow.

Figure 38 illustrates the variation of pressure jump with density for
several different initial densities, including 0.5 Mg m-3, which is compared
with Napadensky's data. As can be seen, the results agree with the data

for that initial density. In Figures 38 and 39, the dominant frequency of the

wave was 200 kHz. This frequency would correspond to what is produced by
high-speed explosives.

Figure 39 shows the manner in which the wave speed varies with the

wave intensity as determined by the pressure jump. In particular, for

each initial density the wave speed has a local minimum at low values of

e Wm0t
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Figure 38. Dependence of pressure jump on density jump for stress
waves in snow represented by neck growth model.
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Figure 39. Variation of stress wave velocity with pressure jump.
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t wave pressure. This is attributable to the work-hardening properties of
snow under volumetric deformations. As the snow is compacted, the necks

rapidly thicken, whaih in part enhances the material strength. In addition,

the large deformations which occurs in these necks also work-harden the
neck material, thereby further increasing the snow strength. This resulting
increase in material strength results in an increased wave speed since the
wave speed is determineﬁ‘by the ratio of pt/(a% - qb).
Figure 40 illustraées the effect of wave frequency on the pressure
jump for pressure waves which pfoduce a density jump of 0.2 Mg m-3. Curves
3

are presented for initial densities of 0.1, 0.2, and 0.3 Mg m °. As can be

seen, the pressure jump increases with wave frequency, although the dependence

of pressure jump on frequency is not as significant as the dependence on

density.

The stress-wave analysis reported here has been shown to agree well

with the only experimental data the author is aware of. Unfortunately the

data are available only for snow with an initial density of about 0.5.Mg

m-a. Consequently, no definite conclusions can be made about the validity

of the theoretical results for snow with initial densities below 0.5 Mg m

3

However, the volumetric equation upon which this study is based has

been shown to represent accurately the response of snow under quasi-static
load conditions for densities as low as 0.1 Mg m-3. Consequently, the low-
density stress-wave results shown here should at least be qualitatively
correct.

The wave speed was found to be strongly dependent on initial density
and the pressure jump across th wave front. Since the pressure is only

moderately affected by frequency, the wave speed is also only moderately

.
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Figure 40. Effect of stress wave frequency on pressure jump for
constant density jump. ) ’
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frequency dependent.

The dependence of wave speed and pressure jump on density is not as
straight-forward as it is for pressure waves which produce infinitesimal
strains. In the case of pressure waves that produce large density changes,

pressure jump and wave speed depend on both the initial density po and the

final density p.. The complicatated relationship can readily be observed
in Figure 39.

The type of pressure wave described in this case is not commonly found
in nature. However, it does play a central role in determining the effect-
iveness of explosives in initiating avalanches, since a good portion of the
explosive energy that is transmitted to the snowpack is absorbed in the
crater zone through inelastic compaction of the snow. This type of deformation N
also is largely responsible for the attenuation of the pressure wave as it

propagates away from the crater formed by the explosive. All of this

decreases the energy that is delivered to the snowpack for the purpose of
starting avalanches.

The result that the wave pressure-jump increases with wave frequency
would imply that the energy absorbed irreversibly by the snow also in-
creases with frequency assuming that Do and p* are held constant. This in
turn would imply that the attenuation rate would increase with frequency,
since larger amounts of energy are dissipated in the snow as frequency
increases. However, since this is weakly frequency dependent, the effect
of frequency on attenuation rate is probably not as important as p* and po

for plastic waves.
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IV.D NONSTEADY SHOCKWAVES

If the wave is nonsteady, the wave front profile, amplitude and wave
speed may all change with time. Material nonlinearity and internal dis-
sipation mech;nisms are accountable for this. In some cases, the wave
amplitude may actually grow, although such a situation is generally short-
lived. Coleman et al. (194%, have studied the properties of nonlinear
waves in some detail. Since that time considerable effort has been devoted
to the study of stress wgw < in nonlinear or inelastic materials. More
recently, Nunziato and Walsh (1978) have investigated the propagation of
waves in uniformly distributed granular materials. 1In their paper they
indicated that, in a granular material, the only density change induced by
a shock wave must come from compaction of the matrix material and not from
reduction of void volume. This result contradicts the results of this study
(IV.B.19) and the experimental results of Napadensky_(1964).

We have developed now the wave equation for a material with a volumetric
constitutive equation of the form given by eq IV.C.3.

Differentiating eq IV.B.9 with respect to time, and then substituting

the equation of motion eq IV.B.7, yield

2
1 a _(-9p 1 3%
— — = e—— — (IV.D.l)
po ax( ax) ao aoatz '

Then, substituting eq IV.C,3 directly in the above equation, we get, after

some rearranging,

2
g %, ®r oaw =P 7%
T ax? X gy % g2
3 ( da ]
+ % El % + E2 A% (Iv.D.2)

In order to solve this equation, a finite difference solution can be used.
This equation is extremely nonlinear, since ET' El' and E, are all functions

of a, &,and d. Therefore, convergence and stability problems are difficult
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to handle. A central differencing technique is used. At position xi and 1

time t, let a have the value az. Then the difference forms of the time

and spacial derivatives of o become j

Y
j+1  j-1
P e Sl ‘ (Iv.D.3)
i 2At
, R i
. ag+1 -2ag+ z+az 1 ‘ ‘
E:il?L = 5 (1IV.D.4)
(At)
X
3 ) o3 | .
By 0, 1%-1 (1IV.D.5) |
9X 2Ax 1
3% gd = @I 31 (a?’lm? by odtlgdt ¥
i i+l i+l i i i-1 "i-1 = .
3 > (1v.D.6) =
x 2(Ax)
The form shown in eq 6 is used for the second order derivative, since this % ‘
3
averaged derivative results in improved stability characteristics of the "
finite difference solution, as indicated by Ames (1965). 7
In solving the problem, a double modulus was employed. During pressure f

E = 1@ 2y " .12 .
T 3 o (- fz(a)u - —f3(a)a ) (Iv.D.7) ;
3o

where

1 + (1+¢2) 1 X (IV.D.8)
£ = =D ( ao) n ( a1)

B By o

£ = g(a) + f(a) (IvV.D.9)

2 3a 0.2

l buildup, IV.B.1l gives the appropriate tangent modulus, which becomes
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£ =2 1 _ 1 + e
3T% 07 g2 (1IV.D.10) k.
- . 2h

g = (a-1)"%3 _o4/3 (IV.D.11) T
£ = (a-1)"Y3 713 (1v.D.12) !

However, once a maximum pressure igs reached, and unloading begins, the
static part of ET must decrease in order to avoid a large elastic rebound

in the finite difference solution. This rebound produces an artificial

i
oscillation in the solution and is a common problem with finite difference

BRI, o T P e

3

£y

methods. Various methods have been used to reduce this form of instability.

The easiest way to facilitate this is to decrease f1 by a factor of 1/2

when & becomes negative. A factor of 1/2 is somewhat arbitrary, but this

value was found to be sufficient to avoid any significant volumetric rebound.
In order to demonstrate the solution, Qe consider the particular

problem of an air blast directly over a snow covered ground surface. We

assume the blast produces an overburden pressure of the form

L

p= p* (l-cos wtb 0 < Wt <27

p=0 Wt>2m (IV.D.13)

and calculate the attenuation of the wave as it propagates into the snowpack.
The frequency w = W/27 is determined by the speed of the explosion, and the
overburden pressure p* is determined by explosive size and proximity to the
snowpack surface. Of particular interest is the response of a snowpack to
an overburden bressure of about 20 bar since this is what thg SULFAE (surface-
launched unit fuel air explosive) weapon system generates.

Figures 41-46 show results of the finite difference solution of the

nonsteady wave problem just described. Figures 41 and 42 illustrate how
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Figure 43. Attenuation of density jump caused by shockwave.
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the wave form is altered as it propagates into snow with an initial density
of 350 kg m-a. The surface loading has a frequency of w = 5000 Hz and an
amplitude of p* = 12 bar. Piéure 41 shows the temporal variation of the
density change for points at 0, 1, 2, 5, and 8 cm into the snowpack.

= Figure 42 demonstrates the density profile for various times. Note how the {
wave spreads and the density rates S decreases as the wave propagates

further into the snowpack.

1
Figures 43 and 44 make a direct comparison of three different pressures.

Figure 43 compares wave attentuation in terms of density jump and Figure 44

\El ; shows the pressure attentuation. As can readily be seen, the advantage of ?
{ | the higher pressures is largely eliminated within the first 10 cm. This ;

' ! merely points out the substantial energy absorbing capability of snow. ;

} | As expected, the highly dissipe’ ive chgracteristics of snow-rapidly i
<

change the stress wave as it propagates through snow. For pressure waves
; with a magnitude in excess of 5 bar, the pressure amplitude reduced to a
small fraction within 10 cm. This result is to some extend verified by
Wisotski and Snyder (1966). 1In the tests reported by Wisotski and Snyder,

one-pound spherical Penolite charges were detonated in deep mid-season

snowpack. Piezoelectric gages were used to record arrival times and pressures
to within 0.15 m of the charge. These transducers apparently had a broad,
flat frequency range, so that the recorded results should be meaningful.

They also observed that the wave speed close to the charge was significantly

slower than further from the charge, However, there was a great deal of

o

scatter in measurement of arrival times, so no precise measurements were

made. But the pressure readings for a 6-bar pressure wave showed good

Figure 45 shows the variation of the stress wave speed as the wave

T i o ety

propagates into the snow. Initially the 2l-bar wave travels at a signi-

120

' agreement with the results shown in Figure 44.
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ficantly higher apeed, but this situation quickly changes. The variation

in stress wave speed is due to a combination of factors. The wave speed

B S e
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initially decrease as the waves attenuate and work-hardening effects become
less significant. However, once the wave intensity is reduced to a critical
value, dissipative effects likewise become less significant and the wave
é speed begins to increase. These results are in close agreement with those
shown in Figure 37 for steady waves.
Figure 46 shows the effect of wave frequency on attenuation. One can
readily see that higher frequency waves do attenuate more quickly, but this

effect is not all that great. Of the three waves shown, the difference in

pressure jump by the 5_cm position is only about 20%. The frequency difference
is partly erased by wave spreading, and probably the higher frequency wave

spread more quickly and therefore experience a quicker reduction in frequency

b Wit K G AR 4 M 100 5 im0 il s i -

content.

It is also possible to study the growth and decay of shock waves by
considering the jump equations. These equations cannot give as much information
as the direct approach just discussed, since stress wave profile and wave
length cannot be calculated from the jump equations. However, the direct

approach using the finite-difference technique ts computationally a time-

consuming and expensive means of solving the problem. If wave attenuation

is sought, there should be more convenient means of doing this.

A solution to the problem of shockwave propagation in a nonlinear

B one B AN A L e e e

dissipative matérial can be a complicated problem if one attempts to determine

such wave properties as wavespeed, pressure profile, attenuation, and
alteration of the wave as the wave propagates into a medium. Spence (1973)

characterized wave propagation properties for viscoelastic materials.

l IV.E. THE USE OF JUMP EQUATIONS FOR ANALYZING NONSTEADY WAVE PROPAGATION..
II 123
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Generally a detailed analysis requires solution of the momentum and mass

balance equations. In particular, if one desires a quantitative evaluation, ;
a numerical solution of these equations is usually required, but this can ;
2

#

be an expensive and time consuming procedure, since the solution of the

differential wave equation can involve a large number of simultaneous

difference equations.

This can best be illustrated by considering the wave equation solved

2 E . v
3%a ¥r % o 3 3 da 3
E + ______+__(31§£-+E2—-a—i)(lva.l)

2
o]
T 3 2 X  oX ao 3t2 X

The constitutive law (for instance eq IV.C.3) can be conveniently written

in the following form

numerically in the preceding section: i
.

S i

. 3

p=Qlac) +9o(a,a)a " +9.(aa Ja (Iv. E2) i

A

¥4

The functions Ql' Q2 and Q3 can readily be determined from eq IV.C.3. For

purposes of this discussion, it is convenient to use eq 2. ET, El' and E2

3
1
]
4

are functions of a,&,&, so that the wave equation, which is basically the

differential equations of motion, and continuity, is a nonlinear fourth

order partial differential equation. Ql' Q2 and Q3 are all continuous and

was shown to accurately characterize the pressure response of snow to high

rate compressive deformations.

In this section a solution to the stress wave problem is presented and
compared to earlier results. The method used here entails the use of jump
equations, often referred to as weak solutions. The shockwave is defiqed
ags a smuoth one parameter family of points Y(t) such that Y(t) gives the

material point at which the stress wave is located at time t. X is the

position of the particle in the reference configuration, and x = x(X,t) is

124

I differentiable functions of o and the initial ratio, a,. The above equation
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the particle position for any time t. The intrinsic velocity of the wave

is

d . .
V=g Y =y (IV.E.3) £

If £ (X,t) is any descriptive variable of the material, the jump in £,

denoted as [f] is the difference in the values of f just behind and in
front of the wave:

(£) = £ - £ (Iv.E.4) £
where

£ = lim £(X~8, t)
§&* o

£ = 1im £(x46,1)
§+o0

Here we assume the wave is propatating in the positive X direction. This
characterization of a shockwave depicts the wave as a singular surface,

i.e. the wave is assumed to have an insignificant wavelength, so that the

0 ket NG i v o AL A . ¢ ot s
" F o %

only properties which can be garnered from this description are the jumps
in variables across the wave. As a consequence, some information is lost,
since the internal structure of the stress wave cannot be studied. However,
the problem becomes mathematically much more manageable.

In the following the governing equations and widely recognized relations
for stresswaves are again presented for more convenient reference. Then
additional results are developed to make possible calculations of the

growth and decay of stress waves by use of the jump egquations. Finally,

the current development is compared to earlier results.

1283




In what follows, we assume the stress wave is propagating into an
undisturbed medium. Thus a+ = Q. and the pressure p, particle velocity

v, and density ratio rate a ahead of the wave all vanish. Therefore,

6] = a -a

S ’ (IV.EB.5)
pl = p
vl =v
@) =a

The derivative of the pressure p with respect to either time or position

has the form

-] +
: p=-Ef + E Q+E, a (Iv. £6)
g o
Py ™ .ETux + Elak + Ez“x '
where a subscripted x denotes differentiation with respect to X. Then
the jumps in these variables may be shown to be
i pl = -E, (@] +E, (@] +E, [a] (IV.E.7)

lp,) = - B @) + E]

laxl + E, l&xl

E;, EI, and E; are the values of ET' El' and E2 just behind the wave. The

rate of change of (p] with respect to time may also be shown to be

(pl, = -E_ &}, + E. [a)

¢ - ¢ 1 e * Ey [a]t (IV.E.8)

The subscripted t implies differentiation with respect to time. In the above

[Plrepresents the change or jump in the value of the pressure derivative p
across the wave, whereas [p]t gives the rate of change of the pressure jump‘
{p] as the wave propagates through the medium.

For a plane wave propagating in the X direction, the two governing differ-
ential equations are the momentum and mass balance equations.

These are;

3% pov (IVfE.Q)

G e A oy e s o cee
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These equations may be put in the form of jump equations in much the same

manner as was done by Coleman (1964) and Chen and Gurtin (1971). The difference

form for these equations are:

{ dp/3x) =-po [v} ’ (Iv.E.11)

[3v/3x] = [&/aol (IV.E.12)

Alternate forms of these two equations are

{pl = PV IVl (Iv.E.13)
{vl = -v[ 3x/9X] = ~ V]F) (IV.E.14)
[ vl = - [a] (IV.E.15) ;
: :
F is the deformation gradient, 3x/9X. %
i Equations 13 and 15 may be used to arrive at P
‘ o
{ Va2l (IV.E.16)
) P, lal

The secant modulus for the material is defined as

E = - -{g-}— (IV.E.1T)

80 that the wave speed V then has the form

2 - ' - .
V = Go Es/po (IvV.E.18)

In addition to the above, the familiar compatibility relation for shockwaves

(Coleman et al 1964) is of considerable use in the study of shockwaves. 1If

£(X,t) is any function of position and time, the compatability relation requires

that
If]t = [f) + VIfxl (IV.E.19)




The above relations, eqs 11 ~ 19, are considered to be the standard jump
equations for the propagation of shockwaves in materials. They have been used
extensively in previous studies by Coleman et al (1964), Carrol et al (1973),

Chen et al (1971), and others to characterize the manner in which shockwaves

are propagated through materials, irrespective of the material properties.

We now use the foregoing relations to evaluate the growth and decay rates

of shockwaves in snow. Differentiating eq 15 and using eq 19 with f = v

O LR e G

results with /
vial + V[m]t = -0 (fv] + v{vxl) (IV.E.20)

Then substitutir}g egs 11 and 12 gives

a 3
Via) +Vial = == [p] - Via] (IV.E.21) !
e X é
° i
This equation is then further modified by using eq 7, eq 9 with £ = a and %
£ =0, and eqs 13 and 15. After some algebra, we get g
E
° pVial | _ _ ‘ _ _ . £
———e = - - E I
l % v (ET + Es) [ct]t + (ET Es) [a]) (IV.E. 22) 5
: + El ([d]t - [a]) + E, ({Ol]t -]
;5 l V may be eliminated by differentiating eq 15 and substituting into eq 22 for
A
V. The result is
l LD + ED) fal, - SE (4], = (B, - ED) 9]
§ 2 T -] t 271 t T s
1
I - 3 P sse
l - Ellal +E, (Fla), - fa 1) (IV.E.23)
As can be seen here, the full collection of moduli determine the rate of
. change of [a) for the above form of the wave equation. )
Some additional criterion for determining what constitutes the wave
l amplitude is needed. For instance, one can reguire that the wave has passed a . .
i




point where the material is no longer being compressed, i.e. when ‘o= o, which

{
would be equivalent to requiring [&] = o. Rather than this, we impose the re-~
quirement that the wave has passed a point when the peak pressure has been
reached. This is equivalent to the condition
[p] = o (IV.E .24) g
This then implies, with eq 7 ?
- e - e !
-E; [o] + E] [ +E, [a]=o0 (IV.E.25) ;
With this, [G) can be eliminated from eq 23, and we get é
i
el v EDt0r, - 2B 10, = -5 0] + 3 E] 18) (IV.E.26) 3
27T s t 271 t s 2 72 t
Eq 26, in conjunction with eqs 2, and 8 may be used to study the manner in g
which the stress wave propagates through snow. Given an initial set of conditions, 2

say [0] and [&], these equations may be solved to determine [plt, [a]tand

[N

[a)t and by numerical integration, the temporal variation of [p], [a],

and [&] can be evaluated.

Results in Section IT indicate have the acceleration modulus is extremely

small, and the terms E;[&]tln egs 8 and 26 may be neglected. Therefore we

will assume that effects associated with E2 can be neglected and drop this

term from eq 26.

The formulation developed here may now be compared to results obtained in
the earlier development where Eq 1 was integrated by a finite difference

method. In that section, the material constitutive equation for volumetric

deformation was given by eq 2 where Ql' Q2, and Q3 are

Y

9, = 352 exp(-da/a ) 1n (a/(a-1)

2
T
Qz - - F&'( (a-l)

-4/3 _y-4/3) (1v.E.27)
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93 o ( (a-1) -t )

In the earlier analysis, it was determined that a finite difference solution
to the wave eqpation gave very reasonable results when compared to what experi-
\o

mental results are available., However, as is common in finite difference
solutions of higher order differential equations, stability problems were
incurred and had to be solved, and the required grid size resulted in long
computation terms.

EQ 26, with the term with E; eliminated, can readily be put in a dif-

ference from in order to obtain expressions for [a]t and [&Jt at any instant,

t. This equation and the compatability equation eq 19 with f = 0 can then be

used jointly to solve for [cz]t and [&]t The compatability condition is

[al, = (@] +v (o] (Iv.E.29)

c:,x can ke evaluated by expanding O into a Taylor series about a point just

behind the shockwave. To demonstrate this, consider Figure 47, which shows

7 E 0 ¥ S N 0 o P i A

two arprofiles resulting from the shockwave. The solid line describes the
wave profile at a time t), and the dashed line represents the wave profile at
time ':_:"'1 = ¢ ~At, where At is a small time increment. The wave has progressed a

distance of AX = VAt during this time from position xj_1 to xj. ag_l represents

the density ratio at time t3 and position xjil:g xj - VAt. A Taylor series

expansion of a about point X. . is of the form

j-1
b R £ 1 22_ j-1 n |
Qj—l n=o nl d.n a (t v xj_l) (At) : 1

t

which may be truncated to

-1
-1

3 j * j-1
“j—l - aj +a j-1 At
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Figure 47. Idealized density profiles in a shockwave.
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for small values of At. Then, Vqu] can be shown to have the form

I _ 3
vl“x] -V (a- a._l)
Ax
Jo_oa3-1 _ 35l
- aj aj_1 ay_) At

-1
J (IV.E.30)

and eq 26 in difference form becomes

1 -3 -3 33,7y 3o ey o)
2 (3(ET)j + (Es)j) laltj 2(El)j[a]tj = (Es)j [a]j (IV.E.31)

Upon using eqs 30 and 31 to evaluate [a]t and [&]t at any instant tj where the

wave is located at position xj' then [a) and [&] can be calculated by direct
step forward integration.

Figures 48 - 51 illustrates the results of the method described above.
In figure 48, wave pressure attenuation in medium density snow is calculated
and compared to experimental results of Wisotksi and Snyder (1964). As can be
seen, agreement with the data is excellent, although one should notice that
there is about a twenty five percent difference between the density used in

the calculations and in snow studied by Wisotski and Snyder. It is anticipated

that the attentuation in the lower density snow should be larger. Unfortunately
there still is a shortage of good shockwave data for making a more rigorou:z
evaluation of the theory.

Figure 49 illustrates the attenuation of the pressure jump due to the

shockwave, Also included in the figures are results obtained by the full numerical

solution of eq 1 in the preceding section and in the paper by Brown
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(1980b) and in Section IV.C. As can be seen, some discrepancies between the

two theories emerge. There appears to be a fairly good correlation between
the two theories for the lower pressure waves, but for a pressure wave with an
initial amplitude of 21 bar, the two solutions diverge rather quickly. It is
not yet determind which theory is more correct. While the direct finite
difference solution of eq 1 would represent a more rigorous method than the

method presented here, the stability problems associated with numerical solution

of high order difference equations may introduce some numerical errors.

Unfortunately there is no experimental data with which to compare these results.
Figure 50 compares the attenuation in the density jump, and Figure 51

illustrates how the wave speed changes as the wave propagates through a homo-

geneous snowpack. In both of these figures there do exist differences between

the two formulations although the results do show very similar trends.

"The method described here for characterizing shockwave propagation in

materials such as snow has not been studied extensively in the past. When

jump equations have been used, their use has been restricted almost entirely

i wdresmt 3o e o8 g el 4

to calculations of density jump or wave speed. Very little effort has been
made toward evaluating wave attentuation or growth.

As has been shown, the use of weak solutions do appear to be a viable'
means of investigating shockwaves without having to resort to complicated and

expensive numerical solution of the wave equation. While a numerical solution

was employed here, effort required to obtain a solution was but a small frac-
tion of the effort required for the solution of eq 1 in the paper by Brown

(1980b) .

The numerical results here do imply that snow does strongly attenuate in
plastic stress waves. As has been shown, the wave amplitude is reduced to

about 10% of its original amplitude within 10 cm of propagation.




V. EXPERIMENTAL PROGRAM ON STRESS WAVES IN SNOW.

Other than the pioneering work by Napadensky (1964), there has been very
little significant laboratory work on plastic shock waves in snow. Other work
includes studies on shock waves in wet snow by Wakahama and Sato(1977). Brown
(1979(a}, [b], (c] has made theoretical studies of steady and non-steady waves
in snow, and the results appear reasonable when compared to what little experi-
mental evidence is available for stress waves.

In order to improve on the quantity and quality of shock-wave data, an
electromagnetic stress-wave generator has been constructed, and this instrument

is described in detail here. Other methods of generating shock waves could

have been used. For instance, explosives can be used to produce a wide range

of wave amplitudes, although wave frequency is not an easily controlled parameter,
and explosives also usually have a great deal of experimental scatter. The
electromagnetic generator was chosen, since it appeared to provide an optimum

combination of pressure and frequency capability. In addition it has negligible

S S IR S e BB

One drawback is the danger associated

»
&

experimental scatter and is easy to use.

with high voltages, and such a system must have incorporated into it safety
features to minimize this aspect of the system. However, the use of explosives
also requires implementation of safety features.

Basically, the electromagnetic generator consists of a 20 kV capacitor
with a capacitance of 30 WF, a triggering unit, a spark-gap trigger, and a
system of conducting plates and load strips. The generator works on the
principle that when two high-energy electric currents are conducted in opposite
directions along adjacent parallel strips, a strong repulsive electromagnetic
force is generated to force the two strips apart.

The capacitator and high-voltage side of the trigger are both completely

submerged in a tank filled with transformer oil, thereby insulating components
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and reducing any corona effects that might occur during charging of the capacitor.
A 20 kV regulated power supply is used to charge the capacitor, and charging

time generally is less than 5 min. The capacitor voltage can be read from

either a gauge on the instrument panel or froh a digital voltmeter if more

accuracy is required. A 400 MQ dropping resistor is used to drop the voltage

to the gauge. The digital voltmeter is connected to opposite ends of a 0.4 MQ
resistor in series with the dropping resistor, so that a 1 V output on the
digital meter corresponds to a 1 000 V charge in the capacitor. The digital
voltmeter is connected remotely to the generator, so that charge voltage can

be monitored from outside the cold room in which the testing is done.

As can be seen in figure 52, the electrical circuitry consists of three

separate components: (1) the trigger control system; (2) the power supply,

capacitor, and conducting elements; and (3) the monitoring instruments. Wwhile

these three separate systems are interconnected, they serve different purposes.

4R L e D B PN R 8. 1 1y,

The trigger control unit outlined in Figure 52 serves several purposes.
First it controls power to the entire system. Second, when the power is

switched on, an electromagnet activates a high-voltage switch to close the

turned off or a power failure occurs, the switch automatically opens to allow
a limiting resistor to discharge the capacitor. 1In addition, a 100 M{l bleed

resistor is also permanently installed in the circuit to bleed the capacitor

down in case the H.V. switch for the other resistor should fail. The control
unit also controls the power to the high~voltage power supply and contains

the trigger module which, by means of a transformer, pulses the spark gap with

< Yenr

a 25 kV pulse. This ionizes the gases in the trigger which closes the circuit
and allows the current to be conducted across the spark gap, through a control

coil to the load strip and to the ground side. The coil is used to make the

inductance of the complete system large enough so that the current will not
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l charging circuit to allow the capacitor to be charged. If the system is




exceed the maximum allowable current for the spark gap.

V.A ELECTROMAGNETIC THEORY

The generator is a LRC circuit, and the system performance is determined

by the differential equation

2
a @ .2,
" (Lg) +RE+ & =0 (V.A.1)

where Q is the instantaneous capacitor charge, L is the circuit inductance, R
is the total circuit resistance, and C is the capactitance.

mode, the solution to eq 1 is

a
Q(t) = 19, exp ( - at)] (a sin wt + cos wt), (V.A.2)
w = 1/1c - (r/21)2 (V.5.4)

The instantaneous current i(t) can be shown to be

Q
i(t) = G%c exp (-at)sin wt. (V.A.5)

The current is exponentially damped, and if T is the period of the oscillating
current, the full-cycle peak-to-peak ratio of the current amplitude is

A

2 = exp ( - aT),
A

are the peak current values of two successive complete cycles.

{V.A.6)

where Al and A3

The values of L and C may then be solved for in terms of C, Ty and A3/Al.

This yields (Snell and others, 1973)
2T 1n (A3/A1)

R V.A.T)

2 2
cl(2m)” + (1n (A3/Al)) 1,

2

T
ctizm? + an a,/an? . (V.A.8)

L =

The pressure p produced between the two conducting strips varies with the

current as
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where w is the strip width, and U is the magnetic permeability of the material
separating the strips, which, in this case is 0.254 mm thick Mylar. Equation

9 is valid so long as the strir width w is large compared to the separation of

the conducting plates.

V.B ASSESSMENT OF GENERATOR PERFORMANCE

In its present form, Lhe generator has about 6000 J of energy when charged
to 20 kV. Maximum current with this configuration is about 160 kA. The spark
gap, however, is designed for a maximum current of about 100 kA, so the maximum
voltage used to date is about 15 kV. This level of current and voltage was
however, found to be sufficient to produce high-pressure shock waves in snow.

When the system was originally completed and first tested, the resistance
and inductance were found to be 3,75 m) and 85 nH, respectively, and a capacitor
voltage of 15 kV resulted in currents of about 275 kA, which, after about 20
shots, destroyed the spark.gap. After tﬁat, the control coil shown in figure 52
was placed in series between the capacitor and load strips to raise L and R to
values of 650 nH and 19 m{l, which keeps the maximum current below 100 kA when
the capacitor voltage is less than 15 kV. This is significantly lower than
the potential system output (450 kA at 20 kV) when the control coil is removed,
but to date a spark gap to handle these current levels has not been constructed
for the stress-wave generator.

The current in the circuit is monitored by a Rogowski coil that is encircled
by the conducting strips near the end of the load strips. This coil is simply
a length of insulated wire that is looped and twisted tightly into a shorter
length. When this is placed adjacent to the conducting strip (in this case,
at a point near the load strip), the electromagnetic field set up by the large

current produces a voltage across the leads to the Rogowski coil. Actually it
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Typical Rogowski coil output.
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makes little difference if the coil encircles the strip or is encircled by the
strip itself, as was done in our case. The electromagnetic field produces a

voltage across the coil leads in either case. The voltage across the leads

from the Rogowski coil (Snell and others, 1973) is proportional to the instan-
taneous voltage in the capacitor. The output from a typical oscilloscope
trace of the coil output is shown in figure 53. Snell and others (1973) have
shown that the maximum current can be determined from the period T of the
Rogowski output and the full-cycle peak-to-peak ratio A3/A1 of the voltage

generated across the coil. This relation is

AN 1/4
1 =ve 2 (_z) (v.8.1)
max o ¥ A,

From figure 53, A3/A1 = 0.611, T = 30 us, so for a capacitance of 30 uF
and a voltage of 15 kV, a maximum current of 84 kA is developed. Under these
conditions, a pressure in excess of 5 000 kPa can be produced for a specimen

with a 10 ecm x 2.5 cm cross-section.

e A R o ok SRRSO 4,
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The test procedure is relatively simple. While the capacitor banks are

Bk s

uncharged, the specimen is cut and shaped and mounted on the load strips, and the

capacitor bank is charged, which generally takes less than 5 min. When the de-
sired voltage is reached, the spark gap is pulsed, thereby completing the teste.
The Rogowski coil and transducer output are:recorded on trace oscilloscopes.

Repeatability of the system is excellent, with generator output scatter being - ‘

less than 5%, <

V.C. TEST RESULTS WITH THE ELECTROMAGNET1C STRESS WAVE GENERATOR

A testing program was initiated during the research project funded by the

Army Research Office. The purpose of the project was to evaluate the propagation

e e bl Y el R

of shockwaves in low density snow. In all, about 150 shockwave tests were run on
v 1

‘ pressure transducer is then positioned at the top end of the specimen. Then the




e £
P N
Sy e - ‘
3 1
o f
¥
I
| /' 1560<p <200 KG/m3
/ ‘ _ :
' | V=5KV }
l E 1.0 g
' % _
' w f
S .
a b
|
| ' 0.5} L4
| ° °
| : .
) ) .
. | .
0 . o
| | o 5 10
: l PROPAGATION DISTANCE - CM
: ' Figure 54.
uh
-




T
[
2F ‘ ' 4 3 ‘2
o 200<€p. <250 KG/M g
< v=5 KV 4
@ J Lt
| :
w 3
o« ;
« A
7]
i
= f ’
o ©®
°
°
°
°
°
0 4 1
o 5 10
PROPAGATION DISTANCE - CM

Figure 55.

146




1 [ ‘
g
2l o 200<p=< 250 KG/M3 4
« V=7KV !
g . . :
1] ] %
‘ 3
i
& b
=) :
1]
i
c 1}
Q.
®
®
o
) o
®
. @
0 N :
0 6 | 10
PROPAGATION DISTANCE -~ CM

Figure 56.




i Y, RO )
” - Rl 5 e ¥
24 . ” Carh

148

i
2r 3
« 150<pp < 200 KG/M
< . .
‘:’ V=7 KV
. .
o«
=)
»
»
@
o 1F °
o
° °
[
®
°
. 0 bt 4
o 5 10
' PROPAGATION DISTANCE - CM
Figure 57,




I

.

200<pP< 250 KG/M3
2t V=10 KV
[« o4
<
(1]
[]
w [ )]
[+ o
-
(/4]
(7]
1]
e 1
) °
L 4
1 Y
Py o
1 Y
o o
o ®
0 X
0 5 10
PROPAGATION DISTANCE - CM
Figure 58.

149




¢ o . . B .
1 - T =
G W L b AN A s

3

specimens with initial densities ranging from:150 Kg m-3 to 300 kg m . The

reduced data is represented in Figures 54-58. These tests are separated into

ranges of density and the pperating voltage of the stress wave generator.

As was indicated earlier, the spark gap trigger was incapable of withstanding

currents in excess of 100 kA, even though the stress wave generator had the

capability of producing currents as large as 460 kA. Therefore, the tests had to

be run at pressures which were only about 5% of its full capability. Financial
constraints would not allow the purchase of a trigger which could handle these

large currents.

In all tests, natural snow gathered from the Bridger Mountains was used.

Seived snow-.normally has densities in'excess of 350 kg m’3 and hence could not
be used. 1In additicn seived snow has different mechanical properties than natural

snow of comparable densities, since seiving alters the granular bonding and the

manner in which the grains interact with each other during loading and deformation.

Since interest was in natural snow, it was decided to not use seived snow.

The decision to use natural snowpack resulted with its own set of problems.

considerably, and it is also difficult to avoid finding small ice crusts, surface
hoar layers or sun crust layers in the snow. Sometimes these layers are very hard
to detect. However, they do affect the nature in which stress waves are propoa-

gated through snowpack. They act as a surface which reflects part of the wave

if the surface is perpendicular to the propagation direction.

Natural snow is also much more difficult to handle and test than seived

snow, particularly if the density is low. Often specimen damage can occur, thereby

resulting with bad test results. In addition, it is often difficult to obtain

good surface contact between the specimen and loading strip and betweeen the specimen

and the pressure transducers.

A"’r.’
l For instance, natural snowpack is normally nonhomogeneous. Density tends to vary
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The difficulties cited above results with an abnormally large number

of bad shockwave tests. Of the gpp:oximatoly 150 tests that were run, only
a little more than 50 tests gave valid results, and these are shown in

Figures 54-58. These tests, however, do form a basis upon which to evaluate ;3 4
shockwave propagation properties of low dengity snow. ‘

At the time of the writing of the report, an analytical solution of

nonsteady wave propagation in low density snow was being worked on but as
of then, unfinished. This solution was was based on the neck growth model
described earxlier in this report.

The test data does show that shockwaves do attenuate rapidly in low density
snow. Shockwave amplitude drops to less than 10 percent within 10 cm of propa-
gation distance. These results are consistent with results obtained previously

for higher density snow.
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VI. CONCLUSIONS

Presented in this report has been the research efforts of the author during
the three year period of a research grant funded by the Army Research Office,
Research Triangle Park, NC. The purpose of the grant was the investigation of
high rate volumetric properties of snow with special emphasis on shockwave propa-

gation. It is felt that progress was made in gaining a better understanding of

the unique properties of snow when subjected to high rate deformations. Applications

of theory to such problems as vehicle mobility in snow and shockwave propagatdon
has been shown to give results which seem realistic and reasonable. This last
ph;ase was used,since there still does not exist enough experimental data to draw
definite conclusions.

More work still needs ¢o be done to gain a better understanding of the high
rate properties of snow. For instance, a constitutive law to accurately describe
the behavior of snow under multi-axial deformations needs to be déveloped. Such
a result could find application to a number of problems, including vehicle grade-
ability, penetration mechanics, shear wave propagation, to name a few. In
addition, there is still a need for more data, so continued shockwave testing

and high rate testing should also be encouraged when possible.
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