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ABSTRACT OF DISSERTATION
A CONTINUQUS TIME STORAGE MODEL WITH MARKOV NET INPUTS

\h model for a dam is considered wherein the net input rate (input
minus output rate) follows a finite Markov chain in continuous time,
Xt , and the dam contents process, Ct » is the integral of the Markov
chain. The dam is then modelled with the bivariate Markov process
(xt.ct), of which three variations are considered. These are the
doubly-infinite dam with no top or bottom, the semi-infinite dam with
only one boundary, and the finite dam with both a top and a bottom.
Some of the analysis is performed under the most general situation in
which Xt is defined on m states and has an arbitrary generator,
while other analysis is performed under the restricted case when m = 2.

For the doubly-infinite dam, the first and second moment functions
and the maximum and minimum variables are studied. The expected range
function is explicitly derived in a speéial two-state case. Also in
the two-state case, weak convergence to the Wiener process is established
in 0[0,»), from which the asymptotic distribution of the range is
obtained.

For the semi-infinite and finite dams, techniques of invariance
used in the physical sciences are introduced to study first passage times.
These techniques are used to derive the distribution and moments of the
wet period of the dam in special cases, and the limiting probabilities
of emptiness and overf]owx
Nelson Pacheco-Santiago
Statistics Department
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Fort Collins, Colorado 80523
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jii




ABSTRACT OF DISSERTATION
A CONTINUOUS TIME STORAGE MODEL WITH MARKOV NET INPUTS

\‘
A model for a dam is considered wherein the net input rate (input

minus output rate) follows a finite Markov chain in continuous time,
Xt , and the dam contents process, Ct , is the integral of the Markov
chain. The dam is then modelled with the bivariate Markov process
(Xt.Ct), of which three variations are considered. These are the
doubly-infinite dam with no top or bottom, the semi-infinite dam with

only one boundary, and the finite dam with both a top and a bottom.

Some of the analysis is performed under the most general situation in
which Xt is defined on m states and has an arbitrary generator,
while other analysis is performed under the restricted case when m = 2.
For the doubly-infinite dam, the first and second moment functions
and the maximum and minimum variables are studied. The expected range
function is explicitly derived in a special two-state case. Also in
the two-state case, weak convergence to the Wiener process is established
in D[0,=), from which the asymptotic distribution of the range is
obtained.
For the semi-infinite and finite dams, techniques of invariance
used in the physical sciences are introduced to study first passage times.
These techniques are used to derive the distribution and moments of the

wet period of the dam in special cases, and the limiting probabilities

of emptiness and overflow.
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CHAPTER I
INTRODUCTION

1.1 Preliminaries ;

The field of storage theory has been of long-standing interest
in the engineering community, and has in the last few decades become

one of the most energetically pursued fields in applied probability.

Although the origin of storage theory lies in the now classical study

of sizing of water reservoirs by hydrologists, the recent developments
have transcended these original applications. The interest of
probabilists and statisticians in the interesting mathematical and
statistical problems which have arisen from a study of storage problems
have in fact led to a new branch in hydrology known as stochastic
hydrology. Many of the techniques developed by the stochastic
hydrologists have in turn become of independent interest, so that at
present this theory has developed on its own merits as a mathematical
construct, rather than being strictly tied to the classical study of
reservoir sizing. Many natural linkages have also been established
between storage theory and other areas in stochastic processes, among
them queuing theory and the theory of stationary processes.

As a result of the extensiveness of the field, it is necessary

for contemporary investigators to narrow substantially the field of

inquiry to specific types of models and specific aspects of those
models. This investigation studies certain problems associated with
a continuous-time storage model which has a Markovian structure.

Before specifically addressing the problems studied in this
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investigation, however, we will give a, necessarily brief, overview

of the history and categorizations of storage theory.

1.2 History and Literature Review

The classic object of storage theory is the study of a water
reservoir, or dam, which is fed by some source of water such as a
river., The size of the dam to be constructed is, of course, dependent
on the amount of water which can be expected from the supply source.
The size of the dam should be such that the probability of occurrence
of either overflow or emptiness is minimized.

The classical analysis of this problem specified certain
deterministic functions for both the amount of water input and the
amount of water drawn off, and from this the optimal size of the
reservoir was determined. This type of analysis dates at least as
far back as 1883, when it was treated by W. Rippl.

The stochastic nature of the problem was first addressed by A.
Hazen (1914) and later by C. E. Sudler (1927). These two individuals
considered the data representing river runoffs as having an associated
uncertainty. Although their methods of analysis were crude by today's
standards, it is both to their credit and an indication of the
interesting nature of the problems in storage theory that they
developed the techniques of using "probability paper" and data
simulation, respectively, in their studies.

H. E. Hurst [26]* in 1951 studied the problem of determining

the reservoir storage required on a given stream to guarantee a given

draft by considering the cumulative sums of the departure of the

*Numbers in brackets refer to bibliography. )




annual totals from the mean annual total discharge. These cumulative
departures can be thought of as the contents of a hypothetical dam
with no top or bottom; or the unrestricted contents, measured from some
point representing the mean contents.

Under this model, the level of the dam in year n , Cn , 18
the result of n net yearly inputs (input minus output) X;, X5, ...
n
X, - Thus we have C_ =i£] X;
studied partial sums process. The functional studied by Hurst for

» S0 that the contents become the well-

this model is the range up to time n, Rn s given by

_ ma C. mi C.
Rn 1 R

; i<n ! 2.1 <n T

Hurst and subsequent investigators used Rn for initial sizing
estimates by concluding that the range up to time n gives an
indication of the size of a dam which would have been required to
contain that amount of water without either overflowing or becoming
empty. Hurst also considered certain other variations on the range
as defined above, such as an adjusted range obtained by subtracting
off the average up to time n . The basic idea for the sizing of the
reservoir, however, is the same.

If the interval size in this discrete-time model is sufficiently
large (yearly, for example), then it may be reasonable to suppose that
the summands Xf are stochastically independent. This was the first
model studied, and in this case the unrestricted contents process
becomes a random walk.

The significance of the Hurst paper lies in the extremely long
records of data which he compiled, some extending up to 2000 years, as

was the case for the records on the Nile river. From these records he

T IR T




drew a conclusion on the rate of growth of the range which contra-
dicted the random walk model described above. For a random walk
model it is well known that the expected value of the range grows as
no'5 . However, Hurst found in his analysis of the data that all of
these quantities showed a surprisingly similar exponent of 0.69 to

0.80 with a mean of .72. This jis indeed much too large to be explained
by this model and has been the object of much subsequent study.

This anomaly, now known as the Hurst phenomenon, drew the
attention of W. Feller [21] who in 1951 derived the asymptotic
distribution and moments of the range for the iid case by appealing
to approximations by Brownian motion. Feller mentioned that the
Hurst phenomenon might be explained by assuming that the summands
are not independent, although as noted later by P. Moran [33], the
dependence would have to be strange indeed, for any reasonable model
will in fact have an asymptotic growth of 0.5. Moran then commented
that the Hurst behavior may be pre-asymptotic in nature, and that the
records which Hurst studied were not long enocugh to reach their
asymptotic values.

Subsequently Moran in 1964 [34] obtained the mean range when the
inputs were iid but with a symmetric stable distribution with
parameter vy and found that the mean range varied as n]/Y.

This, then, represents the two main theories advanced to the
present time to explain the Hurst phenomenon; non-iid pre-asymptotic
behavior, and iid heavy-tailed net inputs as represented by the stable
inputs.

The heavy tails explanatiorn is not as appealing to many applied

hydrologists because of conceptual difficulties involved with an input




which has an infinite variance. However, it is the opinion of this
investigator that the pre-asymptotic theory is burdened by the fact

that none of the Hurst data seemed asymptotic to nO.S. In fact, all of

the series which he examined showed remarkably consistent large
growth rates for as far back as he could find data.

Although we will not concern ourselves in great detail with the
Hurst behavior, we will demonstrate that the continuous-time model
which we investigate does in fact exhibit the Hurst behavior pre-
asymptotically for moderate values of time.

The more modern studies in storage theory began with Moran in a
series of papers from 1954 - 1957 in which he studied dams with a
variety of inputs and operational policies. In his analysis, Moran
considered the finite dam with both a top and bottom and performed
the analysis in both discrete time and continuous time.

In the continuous time approach, Moran assumed that the input
process was an additive homogeneous process; that is, a process with
stationary independent increments. This means that the input incre-
ments, say C(t,) - C(t;) in non-overiapping intervals (t;,t,) are
independent and have a distribution which depends only on t, - t; .
This is a straight analog of the situation in discrete time when the
successive inputs are considered to be independent. Although Moran’s
continuous time analysis is a more convenient model for a real dam in
that one is no longer limited to studying the inputs only at certain
time epochs, it nevertheless has the fault that as the time intervals
become shorter, the assumption of independence in successive intervals

becomes less realistic. Among other contributors to the model is

e ene L
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J. Gani [23], who considered the input process to be Poisson with a
unit release rate.

E. Lloyd [30] in 1963 was the first to consider a dam, in
discrete time, where the successive inputs were dependent. He
supposed that the input Xn in successive time intervals (n, n+1)
followed a Markov chain and the release rate in each interval was a
constant, say r . The dam contents at time n are then given by

cn = min(a, max(0, Ch-1 + Xn-r))
where a 1is the capacity of the damand 0 < X, <a .

This model, which has since become known as the Lloyd dam,
received considerable attention in the discrete time case in both this
version and the semi-infinite topless version where a = » , Notable
contributions to this study include Ali Khan and Gani [1], who studied
the time to first emptiness for the semi-infinite dam, and Ali Khan
(2], who considered the finite case. In all of these studies the
Markov chain has a finite state space. Brockwell and Gani [11] con-
Sidered the time to first emptiness for the case in which the Markov
chain has the non-negative integers as state space.

As far as range analysis for the unrestricted contents with
dependence is concerned, F. Gomide [24] treated the case of Markovian
inputs in discrete time, and B. Troutman [41] studied limiting dis-
tributions for the discrete time process with Markovian and certain
stationary inputs using a weak convergence approach.

If the continuous time model of a storage system is a better
approximation than the corresponding discrete time model, and the
Lloyd model is a better approximation than the independent input model,

then a continuous time version of the Lloyd dam offers a much closer
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correspondence between theory and a realistic storage system.

Relatively few studies have been done on this model, which is the

subject of this investigation. Most notable of the published results

I

have been those by McNeil [32] and Brockwell [12]. McNeil studied a
dam in continuous time in which the input process follows a two-state
Markov chain with one of the states being zero. When the input
process is in the zero state, the dam is being drained, and he
supposes that there is a genera1 measurable function of the dam level,
say g(x), which represents the demand rate. Although he sets up the
problem in this genéra]ity, he is able to obtain explicit results
only for the cases when g(x) is constant and g(x) is exponential.
McNeil is able to derive the Timiting distribution of the contents and
first passage times.

Brockwell considers the case in which the net input rate follows
a general Markov chain with a finite state space, and by setting up
Kolmogorov-type equations is able to derive the 1imiting distribution

of the contents and first times to emptiness and overflow.

1.3 Objectives and General Approach

The model considered in this investigation is the one formulated
by Brockwell where the net input, say Xt , is a Markov chain in
continuous time defined on a finite state space {uy,...,y } . In
analogy with discrete-time models, the dam content at time ¢t , Ct ’
is given by the integral of the net input process up to time ¢t .

Hence (for a doubly infinite dam)

t
Ct = Io xudu, t>0
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This formulation is the continous-time analog of the unrestricted
contents process described earlier. To contrast it with the next model
which we consider, we will refer to the bivariate process (Xt'ct) as

the doubly-infinite dam. When we refer to the marginal process Ct s

the term “unrestricted contents" will also be used.

If we now refine this model by assuming that the contents must be

non-negative then CT - ft Y*du. t > 0 where
t 5 u’ -
yx = {0 if C =0 and X <0

u Xu otherwise
and we will refer to the bivariate process (Xt,C{) in this context as

the semi-infinite dam. The terminology topless dam has also been used

for models of this type. A symmetric variation of this is to restrict

the top but not the bottom, so that, if a is the highest level which ‘

the contents can attain, then C: - ft X:du, t >0, where ]
0
x* = |0 if Cs =a and X, >0

u X, oOtherwise.

We will refer to this variation of the semi-infinite dam as the

bottomless dam.

The third model which we consider is one for which the contents
must be non-negative and can not exceed a certain level, say a. In
this case the contents are given by

Cz = gt X¥du , t >0, where
Xu if CFe[O,a) and Xu >0
X: = Xu if Cue(O,a] and Xu <0

0 otherwise. ¢
In this case we will refer to the bivariate process (Xt.ct) as the

finite dam.
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Now, in simple terms a Markov process is one in which the
distribution of the future, given the present, is independent of the
past. The Ct process does not meet the requirement and is not, in
fact, Markov. This is due to the fact that the present only conveys
information on the level of the dam contents, and not on the rate at
which the contents are changing. Obviously, adding this information
will affect the future distribution of the contents. The bivariate
process (xt, Ct) » however, does contain the information on the rate
of change of the contents and is a bivariate Markov process. The
state space of such a process is discontinuous i7nature, since it
evolves on a set of disjoint lines as shown in Figure 1.1 for the
finite dam. The solid dots at the right boundaries for the positive
rates and the left boundaries for the negative rates represent the
fact that when the process hits these points it remains there for a
random time. A solid dot on the right boundary, for example,
represents an overflow condition while a solid dot on the left
boundary represents an emptiness condition. Markov processes with
discontinuous state spaces of this type were studied by Moyal [35].

In Chapter Il we present a brief review of background material
which is prerequisite to the development of later chapters. Although
none of the material is new, the results which we quote here are
scattered through various sources and so we include it here in a
unified manner as an aid to the reader.

In Chapter III we study the first and second moment functions of
the marginal processes for the doubly infinite dam. These functions
are useful for fitting the model and as an aid in the initial estimates

of parameters. In this chapter we prove a generalization of a result
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reported by McNeil [32] that the autocorrelation function for the

marginal contents process does not depend on the states of the

Markov chain in the two-state case.
In Chapter IV we begin with the analysis of the range for the
doubly infinite dam. The relevance of this to dam sizing studies

has been discussed earlier. Although the range variable has been

|
|
|
|
|3

studied extensively in discrete time, this is the first analysis in
continuous time. We first study the joint distribution of the
maximum and minimum variables by finding its Laplace transform. We
do this for the most general situations in which the Markov chain is
defined on m states with an arbitrary generater. We call this
the General Case. An inversion of this transform would provide the

joint distribution from which the distribution of the range could, in

o 1k e P P T

principle, be obtained. The inverse, however, is not obtainable in a
simple analytic form and although a numerical procedure could be

used, we choose to restrict ourselves to an analytic rather than
numerical analysis of this problem. By restricting ourselves to
special cases, we are able to obtain exact expressions for the expected

range for all t , and an asymptotic distribution for the range. The

special cases which we consider are those in which the Markov chain

is defined cn two states, which we call the Two-State Case and the

subcase for which the two states yu; and u, , and the two holding
time parameters, x and p , have the relatior y; = -y, and 1 =p .

We call this the Symmetric Case.

We are able to derive an explicit solution for the expected range

function, ERt s in the symmetric case. We do this by first obtaining

the marginal distributions of the maximum and minimum for the two-state
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case. The expected range can be expressed, using the linearity of
expectation, as the difference in expected value of the maximum and
minimum. We obtain the expected range function in its Laplace
transformed version. Fortunately, the Laplace transform can be expanded
in a neighborhood of infinity and the resulting series can be inverted
term-by-term as a confluent hypergeometric series. The properties

of the confluent hypergeometric series have been thoroughly studied
(see, e.g., Buckholz [15]). Tabled values are available in Jahnke,

Emde, and Ldsch [27}.

For illustrative purposes, we chose a particular subcase and
performed a precise numerical calculation of ERt which we include as
a graph for 0 <t <10 in Figure 4.1. For numerical calculation
purposes, Kummer's first formula (Buchholz) was quite useful, for it
allowed calculation in positive terms rather than in terms of a slowly
converging alternating series.

Examination of the graph of ERt shows remarkably close behavior
to that reported by Hurst for moderate values of t . Therefore we
include in this chapter a short note on the Hurst phenomenon. Another
aspect which is evident from the graph is the extremely rapid con-
vergence of ERt to its asymptotic value of f/%- t]/z. This indicates
that for moderate values of t , as small as 5, very good approxima-
tions can be obtained from asymptotic results. In conclusion, we
discuss the order of convergence by performing an asymptotic expansion
of the Laplace transform of ERt in a neighborhood of zero, as
discussed in Doetsch [19].

In Chapter V we discuss what we call, in general, invariance

methods as applied to the analysis of the semi-infinite and the finite
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dams. The invariance techniques to which we refer are those developed
by V. A. Ambarzumian [3] and Chandrasekhar [16] in the 1940's for the
study of radiative transfer in stellar atmospheres, and subsequently
refined by Bellman et al. [4-7] in the late 1950's, and early 1960°'s
in the field of Neutron Transport Theory. Invariance techniques are
very closely related to the idea of regeneration in probability theory.
In this chapter we present a detailed discussion of the principle of
invariance as applicable to our model.

The principle of invariance presented the astrophysicists with
a powerful tool fof the solution ¢f certain physical problems which
had been at best laboriously sclves us.ag more classical techniques.
The same held true in the applications to Neutron Transport Theory.
In studying the problems of f.rst passage times in the storage
model considered herein, a strong relation between all of these
problems becomes evident. This is particularly true in the study of
the wet period, or the sojourn time of the process from the time that
it leaves the zero state until the time that it returns to the zero
state. The classical formulation for the distribution of this variable
involves setting up Kolmogorov equations, which lead to a two-point
boundary value problem in the finite dam. The invariance techniques,
however, enable us to solve directly for the transform of this
distribution, leading to a system of algebraic equations in the case of
the semi-infinite dam, and to an initial value problem in the case of
the finite dam. In the symmetric case, we are able to invert the trans-
form and thus obtain the distribution of the wet period. More
generally, we are able to solve for the expected value of the wet

period in the two-state case, which in turn leads us to finding
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necessary and sufficient conditions for recurrence for the semi-
infinite dam.

We finish this chapter by using a renewal argument to calcuiate

the limiting probability of emptiness for the topless and finite dams, ;

and the 1imiting probability of overflow for the bottomless dam. ;
In Chapter VI we establish a Functional Central Limit Theorem

for the doubly infinite dam on two states. We prove that the process

C(nt)//n converges weakly in the zero drift case to the Wiener process

as n goes to infinity, that is, C(n-)/Vn => W(8-) on D[0,=) where i

8 is a function of the four parameters. We therefore have the approxi-
mation P[C(n.)//n eB) = P[W(B-)eB] , for BeB , the Borel field induced
by the open sets relative to the D[0,») metric. This is a sub-
stantial improvement on the results of Fukushima and Hitsuda [22] and
Pinsky [38], who were only able to show convergence of the marginal
distributions.

We establish weak convergence by the method of establishing an
embedded partial sum process. The difficulty here is that a direct
appeal to Donsker's Theorem is not possible because the sum contains a
renewal counting function as an upper index. Fortunately, we are able
to overcome this difficulty by a technique similar to that used by
Resnick and Durrett [20] who consider weak convergence of sums with
random indices.

As an application of the weak convergence which we establish, we

use the continuous mapping theorem to establish the asymptotic
distribution of the range, since the corresponding result for the

Wiener process was established by Feller [21].
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Chapter VII presents a summary of the results and recommendations

for the further study of these problems.
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CHAPTER II
BACKGROUND MATERIAL

2.1 Markov Processes

In this chapter we present a very brief summary of definitions

and results which will be needed in subsequent chapters. Proofs are

not provided for most theorems, since they can be found in any text

containing Markov processes, such as ginlar [18] or Chung [17].

!

Def. 2.1: The real-valued stochastic process {X,, t > 0} 1isa

continuous-time Markov Process iff ¥n and ¥t1 <ty <<ty

< tn+1’

PD eBlX, ,..., X ] = PP eB|X ']as. for
tn+'l tl tn tn-ﬂ tn

LY

BB (R), the linear Borel sets.

This is often stated as the future, conditioned on the present, being

independent of the past. We remark that in the above definition Xt

may be a vector, which is in fact the case that we will consider later,

Def. 2.2: A function © from R xR xB(R) into (0,11 is called a

transition probability function (t3f) iff
(1) p(t,x,*) is a probability measure on B(R) ¥t,x

(2) For each BeB(R), p(.,.,B) is product measurable with
respect to B(R,) x B(R)

(3) p» satisfies the Chapman-Kolimogorov relation:
¥88(R), s,t R,

i P(t+s,x,B) = [ ©o(s,x,dy)p(t,y,B)
yeR
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A tpf gives the probability of transitioning from some starting
position to some Borel set in some fixed time.

Def. 2.3: We define the Markov Process to have statijonary transition

probabilities ?(-,.,-) iff
P[Xt+s eB|Xt] = p(SQ xt’ B) a.S.

To construct a Markov Process with stationary transition pro-
babilities all that is needed is the tpf and an initial distribution

measure w(«) on B(R) as follows from the following theorem.

Theorem 2.1: Given a transition function p , define the following

finite-dimensional distribution functions for 0 = to < ...< tn:

F, 5eeey 4 (B.X...xB.)
to tn 0 n

=/ ... m(dx )p(t1-t,x »dX1)p(ta-ty,x; ,dx2)

Box...xBn

ceeP(to-ty )Xoy dx)

where 7 1is some initial probability measure on B(R). Then
{Fto,...,tn} is a consistent family and hence by the Kolmogorov
Consistency Theorem we are guaranteed a process {Xt} on
Q= R[O'”). {Xy} has stationary transition probabilities and is
a Markov process.

For convenience, we will label P_  the measure constructed
on (RL%=), B(RLOs=)) from = and p(t,x,B) . When x(B)= s (5)

then we write Px = P"

FAOATI.
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2.2 Strong Markov Processes

Suppose the Markov process is defined on a background probability
space (2,B,P). Suppose that on this probability space we have an
increasing continuum of Borel fields B, t > 0, so that B,< BS

if s> t.

Def. 2.4: A random variable T:0+[0,»] 1is a stopping time with

respect to {Bt} iff (T<t)e Bt~¥t - The pre-T
sigma field is defined by: BT={AeB|A(T < t)eBtV—t}.

Intuitively, BT encompasses all of the information obtained by
observing the process up until time T . It can be easily
checked that BT is indeed a Borel field. The previous
definitions have been independent of the Markov process. We
now suppose that {Bt} is the set of Borel fields generated by

the Markov process, i.e.,
By = B(Xg» s < t), where B(Xg, s < t) s

the smallest Borel field generated by the random variables
{Xgs s < t}. With this in mind, we will define a strong

Markov process:

Def. 2.5: A Markov process {Xt} is said to be strong Markov if ¥
stopping times T and ¥ xeR, ¥ AeB (R[O’”]), PQ(X(-+T)5A{BT] =

Po(ry[X(+)eA] as P, .
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Thus we see that a strong Markov process is one for which the

Markov property holds for stopping times.

2.3 Finite State Markov Chains

g

When the state space is a subset J of the integers, we call the
process a Markov Chain and we can package the tpf into a convenient

matrix form, known as the transition matrix, defined as follows:

Def. 2.6: A function P(t) = (Pi.(t)). . is called a transition
— - J i,Jed —_—
matrix if .
f

(1) Py(t) 20, § Pistl =1 ¥t>0
(i1) Pij(t) is measurable
(iii) The Chapman-Kolmogorov relation holds:
P(t+s) = P(t) P(s) .
If in (i) we have [ Pij(t) <1 we call P substochastic. If, f

J ) |
moreover, ;

(iv) P(t) »1 as t\ 0 wecall P standard.
The subsequent discussion will only involve finite state, %
standard, stochastic transition matrices. !

We have seen that given an initial distribution and a transition

T —

matrix, the Markov chain is probabilistically determined in the sense

that all of the finite dimensional distributions are determined. Since

this is a determining class {Billingsley [9]), then two different

Markov chains with the same initial distributions and transition
matrices are probabilistically indistinguishable.
From the statement of our storage problem, however, it will be more

natural to specify the infinitesimal transition probabilities, that is,

Pij(ct) for 6t = 0. Specification of these infinitesimal
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probabilities lead, in the finite state space case, to a direct
solution for the transition matrix which, along with the initial

distribution, will specify the Markov chain.

Def. 2.7: The waiting time random variable Nt is defined by

W, = inf {s > 0| X

¢ # X¢}, and W, = = if the set is empty.

t+s

wt is the time spent in state Xt before jumping to a

different state.

Def. 2.8: The jump times {Ti}i?0 are defined by

TQ=0
T1=No
Tn+] = Tn * an

Def. 2.9: The sequence of states visited, {X } =, are defined as

X = X(T )

{Xn} is also known as the embedded jump chain.

We now state some well-known results.

Theorem 2.2: The Markov property implies that Wied Bxis[o,aﬁ >

-Aiu
PLW, > ulX, = i]=e

,» u>0
Hence the holding times are exponential with a parameter dependent

on the state. The following holds for joint distributions:

Theorem 2.3: ¥n, jed, u >0

»
E]
14

P [Xn+1 = j, Tn+] - Tn >u | Xo,...,xn,To,...,Tn]
where m 1is a stochastic matrix > Tij 2 0, LTI 0O,n1=1. By
taking conditional expectations of both sides of the equation with

respect to Xy, ..., X  we can show the following:

n
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. noo=Ax Yy
-1 Yy J=laeeis n{Xgseews X 1 = 'H'l e j-!
J=

Hence the times between jumps {Tj'Tj-l}j<n are conditionally

Theorem 2.4: P[Tj -7

independent and exponentially distributed.
As a corollary of this theorem, note that if the sequence of states
visited is deterministic, then the times between jumps are uncondition-

ally independent.

By conditioning on the time of the first jump, we obtain the

Kolmogorov Backward Equation:

Theorem 2.5: #i,j,t >0

= 1 1
k#J

~Ast t -A;s
A

By conditioning on the time of the last jump before t , we obtain

the Kolmogorov Forward Equation:

Theorem 2.6: ¥,j, t >0

-x.(t-s)

-As
J

t t
- i
Pij(t) = 8;50 + f kz Pik(s)xdenkje
0 Xed
k#J
Although the forward equation can lead to difficulties with
explosive processes, that is, processes for which P[XteJ] <1 for

some t , finite state Markov chains are non-explosive and if the jump

matrix is irreducible both the forward and backward equation possess

the same unique solution.
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Theorem 2.7: ¥4,j,Pij(t) has a continuous derijvative and

P7(0) = Q
P-(t) = QP(t)
'li’ i=J
where Q,; = Ay 14

from which,

- i
p(t) = &% = ??6 et

Def. 2.10: The matrix Q is called the generator of the Markov chain.
The parameters A;] give the mean holding times in the ith state and
LT gives the prabability of a jump from state i to state j in the

jump chain.

We note that any matrix Q such that Q1 =0, gq.. >0, i#j, and

i
g5 < 0 is a generator for a Markov chain. J
In the subsequent analysis, we will proceed by starting with a
generator for the Markov chain net input process xt . This generator
will be specified by the infinitesimal transition probabilities. We
will then establish results for the contents process which is derived
from the net input process. We will maintain as much generality as
possible throughout. The most general setting possible is that on an
arbitrary number of states with a generator as described above. We
will refer to this as the General Case. In many instances this is
much too general to obtain explicit results, and so we restrict our-

selves to a Markov chain on two states, which we call the Two-State Case.
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In this case we take as a generator
-2 A)
Q- p=-0

As we discussed earlier, the generator by itself does not specify

the Markov chain; we also need the initial distribution = . In many

cases we will assume that « is the stationary distribution, which we

discuss next.

2.3.1 Stationary Distribution

From the. Markov property it follows that if

T ("i)?=1
then f‘(t) = (o)p(t) .

Now, suppose that there is a time-independent solution, say = ,
to
X* = x* P(t)
then if =(0) = n, it is clear that n=(t) = n ¥t >0,
In this case the Markov chain is in probabilistic equilibrium which

we call (strict) stationarity, and = is known as the stationary

distribution.

The condition for existence of a solution of the system above can

be related to the generator by the following:

Theorem 2.8: f‘P(t) = §‘¥t iff 5‘0 =0 . If X, is irredu-
cible, the solution is unique.
Hence the stationary distribution is the normalized left eigen-
vector corresponding to the zero eigenvalue, whose right eigenvector

is 1.

T = N S —
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Now, suppose that 1lim P (t) j< «., independent of i . Then,
£+
in matrix notation,
lim P(t) = 1«
to =
and 1im 72(t) = 77(0) lim P(t) = 7°(0) ln~ = w-.,
tow - - toeo - -

We call = the limiting distribution of the chain, and it is free

of the initial distribution. We will show in the next section that for

our case the limiting distribution is identical with the stationary
distribution.

0f interest is the rate of convergence to the limiting distribution
for the net input process. We discuss this next.

2.3.2 Rate of Convergence to the Limiting Distribution

The computation of limiting distributions and results on the
rate of convergence are most easily handled by algebraic methods. An
excellent reference for algebraic methods in Markov chains is Karlin
[28]. The basic tool used is the spectral decomposition theorem for
matrices.

Theorem 2.9: If Q is an nxn matrix with distinct eigenvalues

85 » i=1,...,n and right eigenvectors Ei s 1=1,...,n then Q
admits the spectral decomposition

Q= TaT™
where T = (t;,...,t)) and A = diag (e;).

Now, the time-dependent transition matrix was given by

= i i
SORELEPIE
i= :

Substituting Q = TAT™!  into the above, we obtain,assuming distinct ei's

“1.d
=1+ Z Jared R R ICAS

= Te'tr!
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8.t
where eAt = diag (e ! ).

Hence
P(t) = T o1t .
Now, writing T~! = %
we can write the above as
n eit
P(t)= I tyr-e

and, since the stationary distribution, = , is the left eigenvector of Q

corresponding to the zero eigenvalue and right eigenvector 1, we have

n ot
CRESF AL

We now prove the following lemma concerning the nonzero eigenvalues of

a generator.

Lenma 2.1: The non-zero eigenvalues of a generator have negative real

part.

Proof: If & 1is an eigenvalue then 6 satisfies Qx = 6x

for some x # 0 . This says that if Qi =7 q

.,
ifgg |

n
. = y 121,...,
jgl 9% oxy , i n

or =Qux; + j;i Q3 5%5 = O%;

so that jgi Q%5 = (°+Qi)xi

Now, let x, = lejl
1<j<n
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Then, for i=k we get

X. X
(6+Qy) = jgk Us ;i- with |;tl <1

X.
So then |8 + Q| < ZIQ-||"]“_<_ 7 ola,il =Q
k ¥k kJj X j#k kJ k

Hence fo+ Q.| <Q » or fo - (-Q)] < Q
This says geometrical]y that 8 lies within a circle
centered at -Qk with radius Qk on the complex

plane, so that Re(s) < 0 .

With the help of the lemma we see that
g.t
= 1o~ s al T -
P(t) = Tn* + 1.22 tirje —— 1%
with the rate of convergence being exponential and governed by the

largest non-zero eigenvalue.

Now, if w“(0) = - , then

Qt @ i i
7(t) = =P(t) = n%e =1 J %
~ -~ "~ -~ .i=0 .
s i-1 ¢
=1t‘I+Z 7°QQ T =gl +0= =
-~ 1‘='| ~ ~ -

since 7 Q=0
So we see that the limiting distribution = satisfies x“P(t) = x~

and, by uniqueness of solutions in the irreducible case, coincides

with the stationary distribution.
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2.4 Weak Convergence

We presént here a brief discussion of the theory of weak convergence
which will be used subsequently. For a thorough treatment of the subject,
the book by Billingsley [9] is recommended.

We begin with a complete separable metric space (S,p) and we
suppose that S 1is the Borel o-field generated by the open sets under
o. The concept of weak convergence invclves convergence of sequences
of measures defined on the metric space as follows:

a0

Def. 2.11: Suppose {Pn} are probability measures defined on (S,p).
n=0)
We say that {Pn} converges weakly to Po , written Pn=> ﬁ)iff

[fdp, = [fdp

for all bounded continuous real valued functions on S .

Weak convergence of stochastic processes is defined by considering
the weak convergence of the induced measures. To do this, it is of
benefit to consider random elements.

Def. 2.12: X 1is a random element of (S5,S) if 3 a probability space

(?,8,P) such that X 1is a measurable map from (Q,B8,P) into
(S,8).
With this definition in mind, we can define weak convergence of
random elements by
Def. 2.13: If {Xn} is a sequence of random elements on (S,S), then
X, converges weakly to X  iff va;l =»vaal, where Pex;‘
represents the probability measure on 5,S) induced by Xp

This type of framework serves for any dimensionality. For example,

if (S,e) = (R, |x-y|), then a random element is a random variable in

SUU.
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& 2
one dimension. If (S,p) = (Rk, [ ; (xiﬁyi) J%), then a random element

is a random vector. For our analysis of weak convergence of the contents
process, we will work in the space S = D[0,»} , the space of right-
continuous functions on [0,») with finite left limits. Before
discussing the D[0,») metric, we will discuss the simpler space
D[0,1] . Under the uniform convergence metric,

p*(x,y) = sup  |x(t)-y(t)]

O<t<]

the space D[0,1] 1is not separable. A metric under which D[0,1] is
separable is the Skorohod metric,

p(x,y) = inf o*(x,e)Vo*(x,y-1)

Aehd

where A = {a:[0,1] - [0,1] | 2(0) =0, (1) =1, » is continuous,
one to one, onto, and strictly increasing } and e is the identity
map. Hence A comprises the set of time transformation of [0,1].
The idea behind the Skorohod metric is to make functions which are
‘close' after a sufficiently small time transformation also close in
the metric. Unfortunately, 0[0,1] is not complete under the Skorohod
metric. However, Billingsley has modified the Skorohod metric into an
equivalent metric under which D[0,1] is complete. For details see
Billingsley, pg. 112-113. Clearly, the same development holds on
p{0,k] for any k .

For processes on D[0,») , we desire to define a metric so that
random elements xn will converge weakly, Xn -oxo in D[0,=) iff
Xn -oxo in D{0,k] for any k .

To accomplish this, let Ag be the set of homeomorphisms from

[0,k] onto [0,k] with the properties described earlier for A .
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For x,yeD[0,k], define the Skorchod metric

d(x,y) = inf o* (x,e) Vo* (x,y+2)
XsAk k
where p*, s the uniform metric on [0,k].
Let dk be the Billingsley modification to &k which makes
(D[O,k],dk) a complete separable metric space. Now let D°° =7 Dk’

k=1
For x,yed”

so that if xeD” then x = (X;, X;, ...) where XD -

define

- d, (x,,y,)
d_(x,y) = 2. 2K KoLk
k=1 1+ dk(xk,yk)

Then (D“:d‘g is a complete separable metric space. Now define the

projection maps
rk:D[O, o) > Dk

by rk(x(t))= x(t), 0 <t <k, and let :D[0,=)+D" be defined by

p(x) = {rk(x), k> 1} . &

\ Then y(D) is a closed subspace of D™ and (v(D), d=) is a
complete separable metric space. To finish, define d on O0f0,=) by
d(x,y) = dm(w(X),w(y))-

This is the metric that makes D0[0,») a complete separable

h g

metric space and under which convergence is equivalent to convergence
on D[0,k] for all k . For a detailed treatment of convergence in

this space, the reader is referred to Lindvall [29].

N I T B
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We now define determining and convergence-determining classes:

Def. 2.14: UcS s a determining class if two probability measures P

and Q on S suchthat P=Q on U dimplies that P=Q . U

is a convergence determining class if for any sequence of probability

measures on's,iPn} s
n=0

Pn[A] + PO[A] for all AelU ;Pd[aA] = 0
implies that Pn -»Po.
A convergence determining class is always a determining class. In

many cases the reverse is also true. For instance, in the cases of R!

and Rk discussed above, and even in sequence space R”, the finite

dimensional rectangles are both determining and convergence determining.
Therefore to establish weak convergence it is sufficient to establish
convergence of the finite dimensional distributions which can be done,
for example, using characteristic functions. The essential difficulty
in D[0,=) is that the finite dimensional rectangles are not convergence
determining. Therefore, convergence of the finite dimensional dis-
tributions is necessary but not sufficient for weak convergence.
Convergence of the finite dimensional distributions along with
the notion of tightness is necessary and sufficient for weak convergence
in D[0,=) and most of the classical proofs use this argument. How-
ever, tightness is usually quite difficult to establish in specific
cases. In our proof of weak convergence for the Ct process in
Chapter VI we are able to avoid tightness arguments by considering

an embedded renewal process and an appeal to a technique similar to

that used by Durrett and Resnick [20] in discussing weak convergence with
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random indices. The major usefulness of weak convergence lies in the
continuous mapping theorem, which we now describe.

Theorem 2.10: Suppose that Xn, n > 0 are random elements of (S,S)

defined on (Q,B,P). Suppose that h:(S,S,p) + (5°,8-,0°), i.e.,

h is a measurable map from S into another metric space S-.

Let Disc h = {xeS|h is discontinuous at x} . If P[X0 e Disc h] =

0 and X = X° than h(Xn)-> h(Xo).

By considering useful maps onto other metric spaces, then, weak
convergence of derived processes can be easily obtained from the basic
weak convergence. For example, consider the mapping from D[0,=) into

D2[0,=) defined by

ht(x) =( vx(u), Ax(u) )

O<u<t O<u<t

This is a continuous mapping from O0[0,=) into D2[0,»), so that if we can

establish that xn(-) =>x°(-) in D[0,»), then it follows that

Vxn(u), Axn(u) = on(u), Axo(u) .
O<u<t O<u<t O<ux<t O<u<t
Now consider the continuous mapping from Dz[o’m) into D[0,=) defined by

h(x,y) = x-y, and we can establish that

Vxn(u) - Axn(u) = on(u) - Axo(u)
o<u<t O<uc<t O<u<t O<u<t

so that the range function of the random elements xn(-) will converge

weakly to the range function of the limiting random element xo(-) .
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CHAPTER III
ANALYSES OF MOMENTS AND AUTOCORRELATION FUNCTION
FOR THE DQUBLY INFINITE DAM

The doubly infinite dam is of interest for preliminary sizing

studies, as has been discussed earlier. Before any useful information
can be obtained from an analysis of, say, the range, a particular
model must be entertained. Not only must one model be selected out
of various competing models, but also once a model is selected there
may be several parameters which must be estimated in some fashion. For
example, the Markovian models considered in this investigation contain,
in the general formulation, the following parameters:

m states uys...sup

(m=1)m jump probabilities T

. . -1 -
m mean holding times Aj,...,A !

m
This is a total of m(m+l1) parameters which, if m 1is only

slightly large makes the model difficult to work with. The two-state
case contains two rates and two mean holding times for a total of four
parameters, and the symmetric case reduces to two parameters. Although
these special cases undoubtedly oversimplify the situation, neverthe-
less they contain a manageable number of parameters from which exact
expressions of quantities of interest may be explicitly obtained.

In order to both check the fit of the model and perform an initial
estimate of the parameters it is desirable to know the theoretical
moments, or in this case, moment functions for the model. In particular

the autocorrelation function is of benefit in the fitting of stochastic

32
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models, since it can be matched with the sample autocorrelation function
of the data, which can be easily measured.

In this chapter we will investigate the following functions whicn
we now define, for the general case (as far as possible), and the two-
state case.

For a stochastic process Zt’ t > 0 with finite second moments,

we define as usual the

mean function m, = [uP[Z edu]

second raw moment function méz) = fuZP[Ztedu]
(2)
t

- m2
me

cross-product function mg, = [fuvP{Z,edu,Z cdv]

variance function o% =m

covariance function Kt s ° mSt - msmt
9

autocorrelation function

ot,s = Ke,s/0t%
If the process Z, is strictly stationary with finite variance,

then clearly my and o2 will be constant and will be a function

t Pt,s
of t-s only. If, on the other hand, these three conditions are met

then Zt is called second-order stationary.

We will now investigate as much as possible the above functions

for the marginal process on the doubly infinite dam: Xt, the Markov
t

chain, and Ct = [ Xadu , the unrestricted contents process.
0

3.1 General Case
3.1.1 Markov Chain

Suppose that the Markov chain xt has, as generator,
- Aij’i:j i’j=1’---3m

Q-]j =
Ai"ij’ i#]

and suppose that it is defined on states Hlseoooly - Let
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"i(t) = P[Xt=i] as before. In the subsequent formulae, we will drop 4
the upper and lower indices on the summands, which will always be m i
l

and 1 respectively. We assume throughout that the eigenvalues of

Q are distinct.

Me,tes = L JZ ujuPlAe = 1 Xppg = 3 |
!

= Z Z “1“JP1J ﬂi(t) by the Markov property (3.2) i

iJd !

and

2
U% = Z ug 1r (t) - [§ uiﬁi(t)]
= Z Z “i(“i'“j)"i(t)“j(t) (3.3)
i#)
For the covariance function we obtain, using (3.1) and (3.2)

Kt,t+s = § § uiujPiJ(S)" Z wims (t) Z uTy (t+S) .4) |

giving for the autocorrelation function
; § Mk 1J(S)Tr (t) - Z wyms(t) § ujﬂj(t+s)

[§ X Hs (\11 )'" (t)" (t)] [Z#'% l-l.i(u-i'lﬂlj)'“'1'(t"'s)“’j“ﬂ's)]!'5
(3.5)

Pt,t+s

Now, when the Markov chain has its stationary distribution = , we

-

see that o is a function of s alone, given by
t,t+s

2
P Ty - ST
§ § nyusPyg(s)n, (; Uy 1)

pg = — (3.6)
;f} Wi (U.i'l-lj )"'iﬂj
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Using the expression for Pij(s) from section 2.3.2 this reduces

to eks
Z Z Z Beifig®  TiMiY
og = (3.7)
:E: :E:u (ugmmgdmyms
i
or i 0,5
p_ = C.e (3.8)
s k2 K
where
. g [t kiTkiTi%i¥j
.
§¢§ wy (ny u- Ty

Since Re(ek) < 0, this shows that p*0 as s+=. This also
shows that the rate of convergence is governed by the eigenvalue with
largest real part.

3.1.2 Contents Process

t
We now consider the contents process Ct = Xudu . For

0
this analysis we also assume that Xt is stationary. Ct is the net
input (input-release) in (0,t) for a doubly-infinite dam whose net
rate of change of level at time u is Xu . This is the continuous

time analog of the cumulative sums of a Markov chain {Xn, n=0,1,2,...}

as considered by Odoom and Lloyd [36], Ali Khan and Gani [1] and others.

Since the typical procedure is to observe the input at a discrete set
of times {0,h,2h,...} it is useful to know, for modelling purposes,

the mean and covariance function of the increment process
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N

8, (t) =/wsh x(u) du = Ce+ )~ cfe - ) (3.9)

f t-%h

‘? These are the same increments treated by McNeil for a special

two-state case where one of the states is zero. We will examine Ah(t)
more generally. The relevance of An(t) is that by looking at

°t,t+h for the Ah(t) variable, we will be examining the correlation
between adjacent increments. This correlation will then provide an
indication of the degree of approximation to our process by one with
independent increments for which, of course, pt,t+h =0 . For the
rest of this section, the moment functions which we develop will be for
the increments of the process, which we will denote by an argument of

h in the function.

For the mean function we have

h

t+ 7
EAh(t) = Ef x(u) du = Z uimsh

h 1
t-7

| For the second raw moment function, we have

i
é 9
i
i,

2 *z 2
mt(:z)(h) =Ea,(t) =E f x(u) du [ =
h

t- 7

t t+s
. f 7 2 Efx(u)x(g)1du- de
. -8 b

2 2
i t+ n.ts %
. / 7’ E[x(u)x(£)] du d& (3.10)
1 t- 3 e
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where we are now integrating over the half-rectangle in which
Uu>g .
Using (3.2) and the results of section 2.3.2, we can write (3.10)

as

h 8 (u-¢)
ter
nZ)(h) = 2 /“ /‘ 23w | g Zth e n.du dg
T3

(3.11)
After performing the indicated integrations, (3.11) becomes

LI oyh

i J k=2 ek

0T wpuymymy b2 (3.12)
i3

For the variance function we obtain
h

t+ o 2
s3(h) = m{?) ./. 7B
t-2

(2 srih) (3.13)

and, substituting from (3.12), we obtain

2 m t .r. . ekh
ot(h) =2 ; ; kz-; —k—;—z—kl 2 - ekh -1 LR
" k
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For the covariance function we have
h 3h

+ t+ =—
Kt,t+h(h) = Cov fh ?x(u) duf ¢ x(u)du

h
t-z' ,t""z'

3h h

t+ 7
= f h f Cov[x(u)x(g)] de du
tty . %

and, substituting for Cov[-,+] from the numerator of (3.7), we have

t+ g‘ t+ §2rl m ek(E'U)
Keseen(h) = f " f " ;JZ k;ztkirkje deuyuymydu
t - 7 t + 3

(3.15)

The integration in (3.15) is straight-forward and we obtain finally,

3h h
m g, lt+ =) o, |t+
k( 2) k( Z
)
K (b)=zzzt~"--7 e -e
t,t+h 7§ k=2 ki kJ ek

'°k(t i %> ‘°k<t' %)

. e - . .
e u1uj1r,l

Expanding the product makes the dependence on t disappear, and

we have
m teiTd 20, 8 h
Ke, ten(h) ’;JZK; 7“1 1+e -2 wiugmy o (3.16)
k

Since the variance of the increments is free of t , we can use

equations (3.14) and (3.16) to write the correlation function as
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m

LAY 26,h 8.h

ZZZ ﬁ# 1+e k =2 k UsPsTs

1§ k=2 9, B

Pragap(h) = T, o : (3.17)

ki kj - o.h -

Z;Jz:k; 62 e ekh 1 ELE

k

McNeil notes that for his two-state model with u; =a and u, =0,
ot t+h is free of a . This becomes obvious from (3.17), since
in this case there is only one summand and the MM term becomes a¢ ,
which cancels from the numerator and denominator.

We close this section by checking (3.17) for the McNeil model. For
the McNeil model we have m=2, yu;=a and up=0 , whereas for a two-

state model we have, as will be derived in the following section,

m = o/Mp and 98, = -(x+p). Hence

-(X+p).| 2
1-e

Pttt 7 2 (A+p)h-1+e'(k+p)h1—

the same as found by McNeil.

3.2 Two-State Case

In the two-state case, we can obtain some simple expressions for
the moment functions.
3.2.1 Markov Chain

In this case the generator matrix is

Q:

p -9

which admits the spectral decomposition

g

[

Zrorme ey
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Q = TAT™!
with
00
A= ‘
0 ~(A+p) |
and i
_]_ A [
]
7 f2e? l
T= )
- . g
2 /A24p2
From which we get
- V2 P V2 A
T-l = ——]—-
Ato ®

,/xz.,.pz ~A24p2

The stationary distribution satisfies =“ Q = 0~ from which it follows

- -~

that

‘4 = 2 —A~.
: (pﬂ ’ oﬂ)

From the spectral decomposition of Q , the transition matrix and
the moment function are easily obtainable. Since this is the result of
routine algebra, we merely state the results. The moment functions are

calculated under the stationary distribution.

P(t) = (a+p)~! <° A) + e'(x+°)t (_x -x)

PP

P A

-1
me = (A0) " (our+anz)
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méz) = (%+p)'1(puf+ku§)

-2
o2 = pA(a+p) (n1-p2)?

2 2 2 ={A¥p)s
My tes = (A%0) (ouy*auz) + apluy-uz2) e

-2 2 '(A*'p)s
Kg = pa(atp) " (uy-u2) e

-(a+p)s

We note that all limiting values have an exponential rate of conver-
gence with (A+p) as a multiplier of t . Thus A and , both
contribute equally to the order of convergence. In addition, note

that o, 1is free of u; and wuy .

S
3.2.2 Contents Process

For the contents process, when Xt is stationary, we

obtain

-1
my = Tugmet = (o+A)  (puitdnz)t

.(s)ds|dt

2
R J uguyey IF ;

e Pi;(s)ds + ft’E P
T3] o |o J 0

The integrations are straight-forward, and we obtain finally

-(Atp)t

mt(z) = mi - 2(A+o)'upk(u1-u2)2[1'e '(“")t]

from which

.
-(a+0)t
(x+0) v (w0l - 1J

of = 2(3+0) oA luy=uz )’ [e
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We notice from the above that the variance function is proportional to
the square of the difference between the two states, and the large-t
growth is approximately linear.

Rather than examining the correlation between arbitrary points of
time, we again consider the correlation between increments,which is

easily obtainable from eq. (3.17)

262h 02h t,:ThH-
[1 ve -2 } ) ‘gl?gl'“i“J"i
i J

(h) 82
Pt,t+h
8,h tyila.
2 |-62h+e 2 -1 Z Z —ngluip.ni
I 8 J
2
[ -(x+p)h|”
- U -e ,
-(Ap)h] °?
2l(A+p)h = T + e

the same as found by McNeil. Note that Pt t+h is free of the states.
9

This is a slightly more general result than the one reported by McNeil

where only one state was arbitrary.

o

[ T,
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CHAPTER IV
ANALYSIS OF THE RANGE IN THE DOUBLY INFINITE DAM

In this chapter we begin the range analysis for the unrestricted

t
contents process C, = f X,du in the doubly infinite dam. Let T

0
be an exponentially distributed random variable with mean s

independent of the process {Xt} , and let

-1

MS = sup{Cp. 0<ucx<T}
m, = inf{C,, 02uzT}
where as before {Xt} is a finite Markov chain with generator
ey
C, = X du .
t o U

We shall determine the joint distribution of MS and mg

in principle determines the joint distribution of

=
I

= sup{Cu, 0<ucx<t}

3
]

inf{Cu, 0 <uc<tl

and hence of the range

A closed form expression for the distribution of Rt is

and

(4.7)

(4.2)

¢ and

which

difficult to obtain; however, we shall find an explicit expression for

ERt in the symmetric case and investigate its asymptotic behavior for

large t.
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4.1 Joint Distribution of MS, mg

Define
o(xauy) = PIx#My < a, xtm_ > OfX ) = u,] s D<x<a
(4.5)

Then, appealing to the strong Markov property of (Xt,ct) as shown by

Erickson [20-1] we can write the first jump equation for o as

-Aiu

( ’u )=D Xy, )"'Z/e(x*'u U:u ) 'IJe }\‘idu
(0<x+u u<a) (4.6)

where °(x’"i) represents the case in which there are no jumps. For

o(x,u;) » therefore, we can write

( 'x/“i -Aiu -su
f e se du (”1‘ < 0) (4.7)
Q(Xaui) =< %'-—x' -2.U -su
{Ir T e 7 se du (u; > 0) (4.8)
\o
Hence
. (A;#s) x/u }
7‘1"‘5 1-e (ui < 0) (4.9)
o(x.ui) = < S (Ai.;-s) (ﬁi)}
X+ 1-¢e i (“i > 0) (4.10)

8 is a bounded, measurable function on the state space of the
bivariate process (xt’ct)‘ Hence, as shown by Brockwell [12] the

system of integral equations possess a unique bounded solution and

e(x,ui) satisfies the Kolmogorov backward equations.
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Writing,

by (xas) = 1 - 8(xmy) = 1 - PIMg < a=x, m_ > =x|xg = u;)

(4.11)
we find by differentiating (4.6) that
o ¥xas) = D7H(Q=sI) yixis) (0 < x < a) (4.12)
where Y»(x,s) = (wl(x,s),..., wm(x,s))
and D= diag(ui)
with boundary conditions
wi(a,s) =1 (Ui > 0)
(4.13)

‘Pi(o,s) =1 (ui < 0) .
The system (4.12) has the solution
v(x,s) = exp[-D7" (Q-s1)x] ¥(0,5)

4.2 Explicit Solution for the Two-State Case

Suppose that Xt has generator

- (12)

and is defined on the states u; > 0 and u, < 0 . In order to
determine exp[-D'l(Q-sI)x] , we spectrally decompose M = -D~!(Q-sI).

The eigenvalues are given by

[ﬁ.+>‘_+s.] +//l<.‘ﬂ'i+ﬁi>2__(_Ls}\+ + s?
/3

H2 H1

<@
i
n)—

H1H2
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We note that, if we set

d l. <Q:§ + Aii) .
2 H2 Uy
then
6 =d+ ([d] +a), where 2 >0.
Case 1: d>0. Then ¢y =d+d+a=2d+4>0
8 =d-d-a=-24<0
Case 2: d<0. Then 8, =d-d+a=4>0
6p =d - (~d) ~a=2d -2<0

So that in either case we have

8y > 0, 6y < 0.

The right and Teft eigenvectors can be taken to be

ti = (A,a+s-01y1)
Ez = (A,A+s-85u1)
r = (ulo,uz(k+5-91u1))
ry = (plo,uz(K+S-er1))

. Mx .
We now note that we can write e "v , v an arbitrary column vector, as:

01
eMxv = triv e
Hence
81X
1
Aie
eMxV = 31x
- Ace
where
Ayt
-_=—, -°.-’
A t)2

X

+

+

t

€2X
+ triy e

62X
Ble

80X
Bje

12A1 = thAy (4.14)

e et g1 DS (A U I D SR v
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and |
B _ to . }1
Ty e t228; = tzB2 .

With this in mind, we can write the system (4.12) as:

81x 02X :
¥1(x,s) = Aje =+ Bje (4.15) !
81X 87X
bp(x,s) = Ae ~ + Bye
!
with auxiliary conditions for A,, Ay, By, By given by M
§,a  ea

|
—

Ale + Ble
from the boundary conditions

"
p—

Az + By
and

(A+s=-81u1)A; = AAy
from (4.14)
(x+s-62u7)B; = AB;

Solving for Ai and Bi we obtain

92& f

Ae - (A+S‘62u1) (4 ]6) ;

AI- 6,a 614 : |
e (ats-gyuy) - e (a+s-equ)

A+s=81u
e |—5— | A

614
Ae - (A+S-B1u1)

6,a 6sa
e (rts-gauy) - e {a+s-6yu1)

Ats-82u
Bz’ \ Bl

The exact joint distribution of MS and m

Bl=

g are easily obtained from

(4.15).and (4.16), from which the exact distribution of R, =M, -m




the range to time T can be obtained in principle. An exact solution,

however, is analytically intractable. Hence, rather than looking for

the exact distribution of RS , we will look instead for its expecta-

tion, since by linearity of the expectation operator, we can obtain

this using knowledge only of the marginal distribution of MS and m

4.2.1 Marginal Distribution of MS

In the definition of y , letting y = a - x , we have
wi(Yas) =1 - P[MS <Yy mS >y - alxo = Ui]- |

Therefore, the marginal distribution of Mg is given by

P(Mg > y] = lim y,(y,s)

Q-0

Since 9; >0 and 6, < 0, and noting from4.16 that 1lim Bi exists

a-—roe

and is finite, 1i=1,2, then from4.15it follows that

. X _ 91(a'y)
lim wi(y,s) = lim Ase ., 1=1,2

Qo0 d-»co

e e e N T

jrvredel

and, after evaluating this limit we have

-ely
v1(y,s) = e

Ats-8y,u; =01y
ba(yas) = — 2L g

LS S e o e = ey

Therefore, if the initial rate is positive then MS is exponentially

distributed with parameter 8; . If the initial rate is negative, then

s
mass at 0 of size

M. has a truncated exponential distribution with parameter 6; and a

g1H1=S

0 A
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Therefore it follows that
<1
E[Mslul] =08,

E[M, [u2] = (812)™ (¥s-031;)

4.2.2 Expected Value of Rs

By the law of total probability

"

R = EMn) = [E04lu) - B fu)] [P X(o)

o]

H2

v [e0rlu) - et 1] [P x(0)

| S ]

However, from consideration of symmetry we have

Elmguy] = = EIM[-u,]
Elmguz] = = ELH[-uz]

Hence
lMgm ] = [E04 1) + EO[-1)] PX(0) = wa] (4.17)

+ [EM Juz) + EM ] u2)] PLX(0) = w2

Stationary Case

We now evaluate ERg when X(t) has the stationary distribution,
- -1
which in the two-state case is =° = (p(x+p) t A(a+p)

Substituting the appropriate values into (4.17) we obtain:
- - -1 -1 ~
ERs = (a+p) 1 911(p+x+5-81u1) + 9, [X+pk (A+S*91uz)]‘ (4.18)

where




i

A B S A o i < € o
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@
—
]

2
2
1 [a+s . Ats +//(i ots . Ats | _ s(itp)+s
2 U2 U1 4 U2 Uy U1

2
;) _l[p*f_sn_ﬂ.] *//% (g+_s+m) _ s(itp)+s?

2L m u2 Ui U2 u1H2

4.2.3 The Laplace Transform of ERt

If mR(t) = ER; » then since
o -st
ERS = [ mR(t)se dat ,
: )
it follows that the Laplace transform with respect to time of ERt’ say

ﬁR(s) , is given by
m_(s) = s~ 'ER
R E s '

Although the general two-state solution is easily obtained from (4.18)
we will further restrict our attention to the symmetric case to perform

an exact inversion:

Symmetric Case u; = =-uyp =b,A=p-=a
. 2
In this case we obtain after simple algebra that ; = 6, =//éazzs
and
BR(s) =pal | B (4.19)

as+s?
We can write mR(s) as

me(s) = ba"s'l[(2as)'*f(za+s)(1+s/za)“f-1].

Expanding (1+s/2a)';i in a Taylor series about o , we obtain
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T2 s n

]+_S_ ';5=]_ 1 +...+(_])n1.3... 2n=1 Sn"’...
( 2a ) a"s" .

Hence, combining Tike powers, we have

. s)-*s= (1_) A RO IS IPYR WP
(2a s)(1+ﬁ 2a + |1 3 s-'.- 2 a2, als

roow (a1 L3 (2nod)
4" 'a  (n-1)!

1+3...(2n=1) N
4"a"n!

+ (_])n 2-a-

Noting that

1.3...(2n-3) - 2.a+3.3 .., (2n-1) _ 2-1-3 ... (2n-3)
4"'Ta"'1(n-1)! 4"a"n 4" T

we have

lS + i (_'I)n"] 2‘]'3...(2"'3) sn

(2a+s)(1+s/2a)'% = 2a +
2 n=2 4nan'T7n!

from which we get

5 , . -3/2 =372 T
mR(s) = —ba s (2a+s)(1+s/2a) =-ba s
L =372 L 3/2
= ba % s -ba 1s 1y 4% b a S %

- . . 2j+1
+ grgi_z Z (-1 )J"'] 1 3_...‘214-1! <i>"2‘—
j=0 83 (j+2)! a
(4.20)
valid for 0 < |s| < 2a .

4,2.4 Explicit Inversion of Laplace Transform

Equation (4.20) gives an expansion for ﬁR(s) in increasing

powers of s. Although such a form can not be used for term by term

-».
e e
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inversion, it will be useful to derive an asymptotic expansion which

will be discussed later. We now perform an expansion in terms of i

decreasing powers of s from which explicit inversion will be possible. :

Returning to (4.19) we can write it as D

A -1 - -1 - ¥
mR(a,b,s) = ba 1s 1] 2ats 1| = ba 1s 1 [(1 + Z?a) -1]

Y2as+s?

b
Using the binomial expansion of (1 + 2?a> , we obtain

mR(a,b,s) = ba~ls™? g:; (k> %?) -‘1
k_k=1
= b ; (t) £ (4.21)

S

valid for I%?l <1, i.e., |s|> 2a.

Equation (4.21) provides a power series expansion for ﬁR(s) which
js absolutely convergent in a neighborhood of infinity. In order to
perform term-by-term inversion, we appeal to a theorem found in

Doetsch [19] which we now state:

Th: When ?(s) can be expanded in an absolutely convergent series
for [s| > R of the form
. a
f(s) = -
l 3 sl\

where the Ap form an arbitrary increasing sequence of numbers

0 <Xy <A < ... 4=, then the inversion can be executed term by

o - —— — . ———b 1§ . - — ="

s e 1~ P MR 16 o i ex2 5 i e ARSI 150 TS e SR SLLIHA et 7 A< - SRS A iR Ayt e e os s e e R
- ) " . , , O 4 . N ‘
Gl i GEN GEN oy O N OOw oEn oW OEN DA DO BN B B Y s e

i
>
H
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The series for f(t) converges for all real and complex
t#£0.
The conditions of the theorem are met by (4.2}), with

; )
= n n =
an ( n J2a and An ‘n + 1.
Therefore, we have for the inversion
k
!f ) Zak‘]th

mg(a,b,t) = b :A;] (k 5

(4.22)

The series in (4.22) can be expressed in terms of a confluent hyper-
geometric series which we now define:
Def. The confluent hypergeometric series with parameters aeR and

veR is denoted by F(a,vy,X) and is given by

(a). j
F(Qsst) = 2 G’l ,35'::-
J

J=0
where (a)j 2 g(atl)...(atj-1) for j=1,2,...
=1 for j=0.
The confluent hypergeometric series converges for all x (Buchholz
(15]), and has been tabulated in [27].
Returning to (4.22) we have
3 k_k k
. b ) 2at
mp(a,b,t) = 2 Eg; (k o

Hence,
mp(a,b,t) = 2 [F(m1,-20t)-1] (4.23)

The confluent hypergeometric function for a negative argument
behaves Tike a very slowly converging alternating series. This makes

it difficult to compute numerically. However, we can use Kummer's first

..
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formula found in Buchholz to express it in terms of a hypergeometric

function with positive argument. Kummer's first formula is

Fla,8,X) = € F(B-a,8,-X) .

Using this, we can re-write (4.23) as

-2at
ma(a,b,t) = g [e F(3/2,1,2at)-1].

For numerical calculation on a computer this form is useful, for

the confluent hypergeometric function is now a monotonic series which

PR

converges rather quickly, and the internal computer algorithms can be

used to calculate the exponential term.

i We present one last form for mR(a,b,t), using formula (14), page

7, of Buchholz:

b2 -2at 2at
my(a,bst) = = f eV i(2at-v)™3/2 ¢ 4.24
R arr(n) 4 vy v) v ( Y.

4.2.5 Asymptotic Expansion of Laplace Transform

Equation (4.23) provides the exact mean of the range to

time t in terms of a known function. However, the asymptotic behavior

is not evident from this form. To study the asymptotic behavior, we

make use of the technique of asymptotic expansion of the Laplace Trans-

form, following Doetsch.
We first define an asymptotic expansion:
Def. A function ¢(z) 1is said to have an asymptotic expansion

Tv (z2) as z+w , written ¢(z) = ] ¢ (2) , iff
V=0 v v=o0
n
o(z) -} wv(z) = o(¢n(z)) as z+= for every n=1,2,... .

v=g

Another way of stating this is to say that 4

e nasifiie oo
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n
o(z) - [ (2)

v=0- o
w z) +0 as z+» .

This says that the error ¢(z) - Z v, (z) not only goes to zero, but it
v=0
is of lower order of magnitude than the last term in the sum.

We now state a theorem found in Doetsch which can be used to obtain

an asymptotic expansion for mR(t):

Theorem: If %(s) is the Laplace transform of f(t) , and ?(s) can

be expanded in a neighborhood of a, in an absolutely conver-

gent power series with arbitrary (perhaps non-integral)

exponents:

%(s) Z C (S-a ) A =N <y <AL < Ll o
v=0

(where N 1is a positive integer) then the following

asymptotic expansion for f(t) is valid for to= :

ot «— C -x -1
f(t) se® 2, —>_y v

. :] ) ' .
with W—O if )\v-O,],Z... .
We wish to apply this theorem to (4.2Q) with ay = 0, but first we
must remove the singularities at zero. To do this, define

?(5) = f‘l;R(S) - /E b a"’ 5-3/2 + b a-ls'l- ’{Tz- b 6-3/2 S‘li

Then

2j+1
i+ -3 .(2j+1 2

4 (J+2)'

f(s) =
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This is an absolutely convergent power series with

_ 2g+]
C. = (-1)j+1 1-3...(2j+1)a ( ),
J

4j(j+2)!
ALl
and Aj 2
Applying the theorem, then, we obtain the asymptotic expansion
o _ 2j+3
i, . 2
£(t) = i/g (3) (=1)7711.3...(2§+1) (at) (4.25)

jJ0  ad(ge2)ir (— -215—[)
We now invert %(s) term by term to obtain
f(t) = mo(t) - b /2 ¢+ 3 /& t;5 (4.26)
R an -7 /Tl' W o
Therefore, the asymptotic expansion of (4.26) is given by (4.25).
As an example of the application of this asymptotic expansion,

we can take just the first term and obtain the limit

Tim a =0

or, equivalently,

8 H.b 3 /7 b -k
mR(t)-b/a-t +3--I/; -ma t

]1m = ]
e Z p 32
37 3572 r(-172)

which says that

bl A _ 1| _3 /Z _b %, Z bt
mR(t)-/_/?:t /E 4/" ;7'2'1’. 0 ﬁ‘;sré-ﬂ—_]—/—z)

a
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In particular, since t"‘+o, then as tow

b g .k
mR(t) ~ F /‘1? t . (4.27)

a

Notice that if b = va then

mR(t)~//§ t!’ i

which is the value for the Wiener procéss. This is far from coinciden- P
tal: In Chapter VI we will prove that under these conditions the
process will in fact converge weakly to the Wiener process.

4.2.6 A Note on the Hurst Phenomenon

For the Wiener process it is well known that the maximum

random variable has distribution

where ¢(0,t;x) 1is the normal distribution function with mean 0 and

variance t .

Hence we obtain for the mean, say EMt

2

X
EMt=[ 2x_ e ot dx='/Z t;s
o V2nt T

Since the expected range is given by

' P[Mt <x]=1+2¢0,t;x), x >0
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and since for the Wiener process Emt = - EMt , it follows that

ERg(t) = 2EM,

ERg(t) = /2 ¢

By appealing to the continuous mapping theorem one can hope

or

that this well-known result for the Wiener process will also hold
asymptotically for any process which converges weakly to standard
Brownian motion.

H. E. Hurst [26], in studying large amounts of data involving
streamfliows, rainfall, pressures, etc., found that ERn appears to
vary as n° with .69 < ¢ < .80. The average values of o observed
by Hurst was .72. Since his discrete time models for these processes
were assumed to be made up of sums of independent radom varijable, then
the theoretical behavior of ER, should have been as n‘s. This
discrepancy became known as the Hurst phenomenon and was commented on
in the introduction.

Although no completely satisfactory answer has been provided to the
phenomenon, at Teast two theories have been suggested. The first is
that the assumption of independence is not valid, and the observed
growth of ER, is the result of serial dependence in the series of
summands. However, as noted by Moran [33], such a dependence would
have to be of a very peculiar kind, since with all plausibie models
the large time behavior is approximated by an additive process, whose
growth rate is no'5 .

The second theory is that, due to dependence of the summands, the

series studied by Hurst are not of sufficiently long duration to exhibit

DA et v
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the asymptotic behavior, and hence what he was seeing was the pre-
asymptotic behavior. Several models have been suggested which exhibit

this behavior in discrete time.

In our continuous time model, the analog of dependence of the
summands is dependence of the increments of Ct . Asymptotically we
have shown that ERt behaves like //g t% . However, it is of interest
to investigate _ERt for finite t to see if the Hurst phenomenon
appears pre-asymptotically.

In Figure 4.1 is a plot of mR(t) vs. t for both our Markov

model with a = b =1 and for Brownian motion. In Figure 4.2 is a

~

plot on a logarithmic scale of mR(t) and /4§ £-72 vs. t for
1 <t<2. Fromthis plot it appears that the rate of growth of

mR(t) is closely approximated by a power of t , and within this range

of time, the power of t is close to Hurst's average of 0.72.

The rapid convergence to the asymptotic value is apparently

inconsistent with the length of the series studied by Hurst. However,

by returning to equation 4.27, we note that taking a and b so

that b = a;s does not change the asymptotic growth rate. We now note

from Eq. 4.24 that in this case,

LN (a,bst) = mR(1,1;at)

Hence by choosing a sufficiently small, we equivalently perform

a time expansion, so that the approach to the asymptotic value can be

delayed as long as desired. Now, if our model is to dispiay the Hurst

t = 2000 (years), we would need to take

phenomenon up to, say,

a = ,001. However, such a value of a 1implies that the correlation

between successive yearly increments is, from Eq. (3.3),
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2
-.002
[ 1-e ]
- = .99865
2[.002-1+e~-00¢]

Corr[a;(t),a,(t+1)] =

This value is much too high to be realistic. However, if we take

a =.,], then we obtain

Corr{a,(t),a,(t+1)] = .87720.
Thus a stream flow with a yearly correlation of this value and following

this model would display Hurst behavior out to approximately 20 years.




‘uoLyou
UBLUMOJG puR |3pOW AOYJRW 40} 3 SNSUBA 3 awi} 03 abuea pajdadx3y [°p a4nbiL4

61

ADNHW




2 >131> |- 404 elEp 1SINY SO
3jed4 ymoab abeasae 03 |apow AojJey 40y 3bues paydadxa o Ijes Ymoub Jo uosisedwoy 2°p danbl4

T .

ZE'H T

62

d
+

AOAMHH

. (37425 5071-801)
i HiHQ LENNH NO4 ONY

T3GTH AOANHKW 302 1 SA 1N3




—

l
|
i
i
I
!
I
l
|

CHAPTER V
INVARIANCE METHODS IN THE ANALYSIS OF SEMI-INFINITE AND FINITE DAMS

5.1 General Description

In this chapter we will develop the application of what we call
in general “"invariance methods" to the analysis of storage theory
problems. These methods are well-known in the fields of astrophysics
and particle physics, where the power of these techniques have been
recognized and well utilized. Originally formulated by V. A.
Ambarzumian [3] in 1944, the techniques were formally developed by S.
Chandrasekhar [16] in a series of papers on radiative transfer through
semi-infinite stellar atmospheres which appared in the Astrophysics
Journal from 1944 to 1947. Subsequently Bellman and Kalaba in 1956 [5]
refined the technique by applying it to finite regions in the field of
particle transport, in which they called the technique 'invariant
imbedding.' A good definition of invariance methods is given by M.
Scott [40] who states that the method involves:

generating a family of problems by means of a single
parameter, where the basic properties of the system remain
invariant under the generation of the family. The family

then provides a means of advancing from one member, some-

times degenerate, to the solution of the original problem.

After providing a brief description of Chandrasekhar's and Bellman's
application, we will establish what will be a natural application of
these methods to storage theory. In particular we will take advantage
of the power of the invariance methods to derive the Laplace transform
of the 'wet period,' and from this obtain moments and the limiting

probability of emptiness. This will lead us to a discussion of neces-

sary and sufficient conditions for the recurrence of the contents

63
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process. Although some of the results that we present in this section
are not new, we will be able to derive them in a direct and simple
fashion, avoiding the Kolmogorov differential equations which have
previously been used to derive these results. In fact, in the case of
the semi~infinite Qams our equations are algebraic in nature.

5.1.1 Chandrasekhar's Principles of Invariance

In his application to astrophysics, Chandrasekhar was
concerned with the transfer of radiation through a stellar atmosphere.
In studying certain aspects of the radiation, such as the intensity, he
considered the atmosphere to be stratified in parallel planes in which
all of the pertinent physical properties are invariant over a plane.
When considering a semi-infinite atmospheric region then, he utilized
the fact that certain physical laws governing radiative transfer must

be invariant to the addition or subtraction of layers of arbitrary

optical thickness to or from the atmosphere. Through this 'principle

of invariance' as he called it, he was able to increment the arguments

in the equation governing the physical laws of radiative transfer

while sti1]l maintaining the basic equations. These perturbations of the
equations then led him to direct solutions for the physical quantities
of interest.

In studying the time to emptiness in a semi-infinite dam, the
essential similarities of the two problems become clear. In the case of
the dam, the strong Markovian character of the bivariate process (Ct’xt)
makes it possible to consider the process as regenerative at the
stopping times corresponding to first entrance into an upper semi-
infinite region after traversing an incremental slab of arbitrary

thickness. Thus random variables such as first passage times become
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‘invariant® to the addition or subtraction of these finite incremental
slabs. Seen in this context, one notes the similarity between
Chandrasekhar's Principles of Invariance in stellar atmospheres and the
regenerative property of a Markov process. In fact, this entire dis-
cussion could be phrased in terms of regeneration. The essential
difference, however, is that in the classical analysis of Markovian
structures the principle of regeneration is used to establish
Kolmogorov~-type equations which are generally partial differential
equations. These equations normally provide much more information

about the process than is required for the study of particular aspects

eun e SN NN IR BN R =R

which become essentially boundary conditions for the Kolmogorov equa-
tions. For exampie, suppose that we are interested in the wet period
for a semi-infinite dam: that is, the time elapsed from an initial

exit from zero to a first return to zero. In the two-state case, if

we let

T=inf{t>0:Ct=0}

then we may be interested in finding the Laplace transform of T ,

r -sT ]
¢ = Ele lxo-u1>o

Now, by setting up and solving the Kolmogorov backward

equations, Brockwell was able to determine the Laplace transform of the
time to first emptiness given an arbitrary initial level x . Thus if

(x) represents this transform in the general case, then

¢is(x) = E[e-ST |X° = ui]

where T = inf{t:t > 0, Ct = -x}

¢is

DR ol Pt ol et Geed ey e




66

However, the solution depends on ¢is(0) » which in Brockwell's

formulation was obtained from a rather complicated set of boundary
conditions. Invariant imbedding leads, as we shall see, to a direct R
determination of ¢ ds the solution of an initial value problem when

the dam s finite and of an algebraic equation when the dam is infinite.

5.1.2 Bellman's Invariant Imbedding

As noted earlier, Bellman refined Chandrasekhar's Principles

of Invariance and applied them to finite regions in particle transport

theory. Two excellent comprehensive studies on these applications are
those by Bellman, Kalaba, and Prestrud [6], in which they apply the
technique to radiative transfer in slabs of finite thickness, and
Bellman, Kalaba, Prestrud, and Kagiwada [7], in which they apply it to
time dependent transport processes.

In these studies, Beliman called this technique "invariant
imbedding,"” a name by which it has subsequently become known. The
application to time dependent transport processes is particularly
relevant to nur study of the finite dam. Because the analogy to the
finite dam problem is not obvious, we will discuss briefly the former
process, and then draw the analogy.

The physical model in the transport process is of a one-dimensional

rod of fixed length ¢ which is capable of transporting particles such

as neutrons. The particles are allowed to travel to the right or to

1

- the left and can interact only with the fixed constituents of the rod.
3 When a particle interacts with the rod, the old particle disappears

L

and two new ones appear, one travelling to the right and one travelling

to the left. A1l the particles travel with the same speed and their 1

other physical properties are such that the particles are distinguishable

- T e e e e ———— v 225 one
Ry -

e

vy - A

opeeLibS




|
.
L]

only by their direction.

Suppose that we inject one particle at one

end of the rod, and are interested in the total number of particles

emanating from the other end.

One approach to this problem would be

to derive an equation for u(x) = number of particles emanating from

the end of the rod if we start with one particle at x , for 0 < x <2,

The desired quantity would then be given by u(o) . However, a more

efficient approach would be to develop, if possible, an equation for

u(o) directly.
imbedding.
rod of length ¢

ferential equation for wu(2) .

This is precisely the approach used in invariant
The invariant imbedding technique is to embed the original
into a rod of length ¢ + s2 , and develop a dif-

Whereas a differential equation for

u(x), 0 < x < 2 would lead to a two-point boundary value problem with

boundaries at x = 0 and x = &, the differential equation for wu(o0)

is an initial value problem with initial value ¢ = 0 . This initial

value is easily determined because of its degeneracy.

We now begin to see the analogy to the storage problem, which we

will 1ist in the form of a table.

Partic]e Transport

Storage Problem

Particles travel only to right
or left with fixed velocity.

Do not need to know entire
f%n§t10n u(x), O<x<z, but only
u(o).

Differential equations for
u(x) lead to a two-point
boundary value problem, where-
as differential equations

for u(o) give an initial

value problem.

Pam contents only increase or
decrease at fixed rates.

0o not need to know ¢:_(x) for
all 0 <x <a, but oﬂfy ¢s(o)

Differential equations for
¢..(x) Tead to a two-point
bBﬁndary value problem, where-
as differential equations for
¢.(0) gives an initial value
pPoblem.

Table 5.1

Analog between Particle Transport and Storage Problem.
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5.2 Applications of Invariance to First Passage Times

We will now use invariance techniques to study the distribution
of first passage times. In a later section we will discuss necessary
and sufficient conditions for these times to be finite. !

5.2.1 First Passage Times for the Semi-Infinite Dam

5.2.1.1 General Case

We define the following functions related to first

passage times:

(a) The Laplace transform of the first passage time to level y :

tet v =influ : C, =y}, (3.1)
and define
15 (y) = gle”71 X = u (5.2)
ij {x_=wu;}'% i :
T J
for wj > 0, My > 0,y>0 and

- - -ST =
Tij(‘y) =E [e I{x'r = uj}‘xo ui.l (5.3)
for My < 0, ny < 0,y<0.

If there are p positive states and m-p negative

states, let T+ and T  represent the corresponding matrices

with entries T

(m-p) x (m-p).

(b) The Laplace transform of the first return time to level zero:

+
i

and T;j , of dimension pxp and

For uy > 0, p;, <0, let

+-

R1j ol 5

where

J

a ]
® I(xT * uy) Xy = vy (5.4)
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T=inf(t>0:C, =0} (5.5)
Let R'™ be the px(m-p) matrix [R:S] .
For wy < 0, My > 0, the right side of (5.4) will be denoted
by R;; and the (m-p)xp matrix [R;;] by R™Y.
The Laplace transform of the first return time to level zero

with no prior passage through a given level.

For u,i>0, M.

i< 0, and y > 0, let

+ -sT
Ry;() = E[; Lie = walic(t)ty, o< te 7 11% = “i]
LI - (5.6)

For My < 0, "j >0, let

- -sT

Rz ) = E[% Hxgp = uyd Tec(e)pey, oster %y = “i]
(5.7)

Let R+(y) be the nx(m-p) matrix [R;j(y)] and let

R™(y) be the (m-p)xp matrix [R;j(y)]

Tha Lanlace trarsform of the first raturn time of the content of

a topless dam to zero given that X0 =y, 1is

1

+-
Ri3 »

J:Uj<0

where R;g is defined by (5.4). We now use an imbedding argument to
determine R+' . The time at which a sample path, starting at the zero
level, crosses into the upper region (y,») 1is a stopping time, and
the strong Markov property of (Xt,Ct) may be appiied at

these times. Using this idea to obtain the desired first return time
to zero, we decompose R according to the number of reflections of the

sample path in the slab (0,y) to obtain the relation
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R™™ = RY(y) + TH(yR™" T (y)

i
i
| + THyR™R “(yR™T7(y)
I
1
]
]

+ THYRTR “(pIRM R~ ()R T ()
(5.8)

= R*™(y) + () RYI - R "RV 7M7) (5.9)

We now consider the limiting behavior of the matrices in (5.9) for small

y . First, note that

A PR SN PR

Y
-y — A
T:i(y) = (1->\1- -L) e HMi +o(y) as y-0 (5.10)
4
= and, expanding the exponential,
. . ) 4
T.“(.V) =1- “1‘ (Ai+s) + 0(¥) (5~]])
Similarly,
A
- + - _L s . g
T'ij('y) = A'i"‘l'.]' s e i+o(y), i#] (5.12)
= L
= *i"hu,- + o(y) (5.13)
- Therefore,
Ty) =1-y [D'l(sI-Q)] 44 Foly) (5.14)

where, for an mxm matrix M we define [M] ., (M] _ ., [M]_, , and

[M]__ to be the partitions defined by
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Through parallel reasoning,

T(y) =T+y [D'I(sI-Q)] . *toly) (5.
For the R functions, it can be shown that

+ -1

R (y) = y[D7°Q],_ + ofy) (5.
and

R™(y) = -y[0™'Ql_, + ol(y) (5.

Substituting (5.14), (5.16), (5.17), and (5.18) into (5.9) we obtain

R™"= y(07Q), + (I-y[D'l(SI--Q)] ++>

16)

17)

18)

+ ™[4y (07 o)-+R*'J‘1(r+y[D‘1(sI-Q)]__)+ oy (5.19)
Since
‘-I+y(D'10)_+R+‘] la I-y(n‘lo)_+ R™ + oly), (5.20)
then i
R =y, + B -y (s1-0)] 8"
- R7y(07hq)_RYT + R+'y[0'1(sI-Q)] __+o(y) (5.21)
from which we obtain, by taking the limit as y-0 ,
R0, ™ +[07M(s1-0)],, R - R [0 (s1-0)] __
- (07'Q),_ =0 (5.22)

5.2.1.2 Two-state Case - Laplace Transform of Wet Period

For the two-state case we remarked earlier that the

first passage time corresponds to the wet period in the dam. In this

RIS ot 1 A gy MV~ 7
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4=
case we set ¢ . = Ri2 in (5.4) and, making the appropriate substitutions,

equation (5.22) reducas to

pu-1 2 -1 - -1_ -1 -1
2 ¢ - [pu2 -Au -S(u1 u )] oA ul =0 (5.23)

from which we obtain the two solutions

¢ = uz(Zp)'l[é :_(A2+4AouI1u§1)%] (5.24)

where

-1 -l -1 -1
A= s{uz =u; ) + puz =am

We must now select the correct solution. Since
A2 @ as s ==, then bg
is unbounded for the positive solution, and so we conclude that
¢ = uz(zp)-l[A - (A2+4Apuf1 uEl)%]- (5.25)

We now investigate conditions under which the first return to zero,

T , is finite. First note tha*
af -1 -1 -
¢, = u2(20) [ouz - - fowz *+ lu11ﬂ (5.26)

and

-1 -1 +)

where m = EXt when xt has its stationary distribution. We cail m

the drift of the process. Therefore,

1 if m<oO
= (5.27)

)‘uz
- — {f m>0
P U1

% =

——— e+ e
e b

e o
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Since %, = P(T < =] , then from (5.27) it follows that for the

topless dam, a non-positive drift implies that P[T < =] = 1 , whereas

Au
a positive drift implies that P[T < =] = - -2 ]
pul

5.2.1.3 DOistribution of ué; Period for the Symmetric Case

If we set u; = byup; = =b, A = p = a , then the

Laplace transform equation becomes

ror-[2eglo g0
or
62 -2 (1 +-§-)¢S+1=o (5.28)

From this equation we see the rather surprising result that the time to
first emptiness does not depend on the states on which the Markov chain
is defined.

Solving the quadratic equation, we obtain

_ s s2 ., 2s %
q,s = ] + E - <;~2- + —a— (5-29)
which can be written in terms of 1/s as
= §. za ;i 5
o =3 []-(1+?—) ]+1 (5.30)
Expanding (l + —§—3-> in its binomial expansion, we obtain
o (I ':I
S 23
¢s=; [] -g(k)(?) , +1 (5.31)

Performing a term-by-term inversion of (5.31), we obtain the

density of T, say fr(x), x >0 as

ipiaier-iv-ri % pit
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2
f) = 2[ Pl (22 « (/8] L X

3
{=%) (%) (3/2) (5/ -
. ?.2*.53.2/2 5/2) ngl X2 + ... (5.32)

We can write this in terms of a confluent hypergeometric series as

fr(x) = 3 F(3/2, 3, -2ax) (5.33)

For the distribution function, say
X
GT(x) =PlT <x}= | fr(u)du
0
we can integrate the power series term by term to obtain the series

2
_a 3/2 (-2a) .o ., (3/2)(5/2) (-2a) .3
Grlx) = 3| x+ B §75kwe + BERAAL LR w0 v

(5.34)

5.2.1.4 Time Between Overflows for the Semi-Infinite
Bottomless Dam

We now consider a semi-infinite dam with a top but
no bottom. This may in fact be a more realistic model than the topless
dam, since actual dams are constructed and operated in such a way that
the probability of overflow is higher than the probability of emptiness.

The analysis of the bottomless dam is directly analogous to the
analysis of the topless dam. Therefore, we will be brief in the
following derivations. In the bottomless dam, if we measure the

contents relative to the top of the dam, which we can set equal to zero

without loss of generality, then for the contents process we have




'

a

1
l
l
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B
C, = [F x*(u)du (5.35)
0
where
1 if c5=o and X, > 0
X*(u) =

xu otherwise.
For the bottomless dam, CE = 0 represents an overflow condition.
Let 9 be the Laplace transform of the time to first overflow, given
a starting condition, Xo = u, . Then by considerations of symmetry we
can conclude that o satisfies equation (5.25) with the parameters

A,0, and uj,u; interchanged. Therefore b satisfies

Au1-1¢§ - [Xufl- ouz’ = S(uzl-ufl)}¢s - puz! =0 (5.36)
from which it follows that
-1 1 -
o = u(r) [A-(A2+4>\ou11 uzl)%] (5.37)

where
-1

A= sui'=uz') + Al - pus

The explicit inversion for the symmetric case is identical, since
in that case the two exchanged parameters are equal. Therefore, the
distribution of the time between overflows in the bottomless dam is
equal to the distribution of the wet period in the topless dam, as
expected.

By similar reasoning to that used to establish (5.27), we conclude
that for the bottomless dam, a non-negative drift implies that
P[T < »] =1, whereas a negative drift implies that

ou1

P[T <m]=--x—u—2-
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5.2.2 First Passage Times for the Finite Dam

5.2.2.1 General Case
We now turn our attention to the finite dam with
an upper boundary at a . In the same vein as (5.4), we define
Rij(a) = E{?-ST g = upho ® ui] (5.38)
with {Ct} replaced by {Ci} » the content process for the finite dam
where T 1is given as in (5.5). Let R(a) be the px{(m-p) matrix
ﬂqgmﬂ.
Using the same matrices defined for the semi-infinite dam, and
using the same argument of decomposing R+'(a) according to the number
of reflections of the sample path in the slab (0,y) , O <y <a , we

can write the relations

R™(a)

= i
R*(y) + 2'% T (y)R*" (=) [R'u)R*'(a-y)] ™ (y)
1=

R*(y) + T IR (amy) [1-R7()R™ (a-)] 17 ()
(5.39)

Using the relations (5.17) - (5.20), we can write
R*(a) = y(07'Q),_ + (1-y[0"*(s1-Q)],,)

. R"(a-y) [I-y(D'lQ)_+R+'(a-y)] (tey[07Hs1-Q)] ) + oty)
(5.40)
so that

+- +a
R "(a) ; R_(a-y) _ _ R+-(a_y)(p'lo)_+R+'(a-y)

(07! (s1-0)] ,,R""(a~y) + R™(a-y)[D" (s1-Q)]

+(07h), + 9§11 (5.41)

B S A

-




— —— e e ———

77

Taking the 1imit as y+0 we obtain
+-
+- -1 - PR -
R{2) 4 g*(a)(0710)_,R™(a) + (07 (s1-Q),,R™(a)

- R ()07 (sI-0)]__ - (07%Q),_ = 0 (5.42)

i
i

The initial condition is
+

- —gr*,
RTT(0) = Ee™5"3j
where r?j is the first passage time from state i to state j in

the Markov chain. This variable is discussed in Chung [17].

5.2.2.2 Two-state Case - Laplace Transform of Wet Perijod.

In the two-state case, letting ¢(a,s) = RI; ,

equation (5.42) becomes

2= 0(a,s) + ouz'e2(aus) + [ul (a#s) = uzt(p#s)] o(a,s)-auit= 0

(5.43)

The initial condition in this case comes from the holding time in state

' u; , which is exponential with parameter A . Hence we have the

initial condition

6(0,s) = A(x+s)™*

We will carry out the complete solution for this case.

Equation (5.43) is a Riccati equation, which can be reduced to a

yomwti -

second order linear equation by letting

¢(a,s) = y(a,s)/b y(a,s)
-1

k
]
.
T where b° = ouy

-1 -1
ig . by = w1 (A*+s)-uz" (o+s)
] ; . bz = Au;l
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The resulting Z"d order linear equation, as can be easily checked, is
y**(a,s) + byy-(a,s) + bobzy(a,s) =0 (5.45)

To solve (5.45) we first obtain the characteristic roots:

w3t (p+s)-p3t (ats) [u§1(0+s)-ufl(k+5) }2 -1 -1
7 z 7

6 = + pAuy w2
(5.46)
Note that the discriminant is equal to
-2 -2
w2 (p+s)? wp (Ms)® T
+ - u1 p2 S(ptr)-uy uz s? (5.47)

4 4
which is always positive because ;<% . Therefore the characteristic
roots are real, and the solution for y(x,s) 1is:
81a 8,a
y{a,s) = Cye + Ce (5.48)

Substituting (5.48) into (5.44) we obtain
81a 824
Ci9,e + Cr65€

¢(a,s) = (5.49)
-1 8:d 8-a
puz |C1e  + Coe
Now, letting C = C5/C; , we obtain
8;a 8oa
0;e + Cose
¢(a,S) = (5-50)
- ( 9;4d CPY-}
ouy b2 + Ce

which involves only one arbitrary constant. To evaluate this constant

we use the initial condition to obtain:

i
l
|
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8; +C o
9(0,5) = g = ————— (5.51)
puz " (1#¢)

Hence

(A+5)8; = puz A
C = - (5.52)

-1
(A+s)ez - pu2 "2

So we have as a final result that

8;a 8.4
8,e + Coqe

01a DY}
ouz-l[; + Ce

where C is given by (5.52) and 6,,8, are given by (5.46).

(5.53)

d(a,s) =

5.3 Moments of Time to First Emptiness for the Two-State Case

Since we have derived the Laplace Transorm of the time to first
emptiness, we can use these equations to obtain the moments without
having to actually solve for the transform. Although we could in
theory write down the moment equations for the general case, the
resulting equations are not easily solved, and so we restrict ourselves
to looking at the first two moments in the two state case, for which

the equations are

. .4
ET = - 35 %sls=0
2 . 42

so that

d2 fa ] }
. 42 e
Var T = o bl e | ds ¢s] s=0
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For the semi-infinite dam we differentiate equation (5.23) to

obtain

20ut(s)e”(s) - [ouzl- aul- s (ui- wz' )], (5.54)

-1 -1
*(uy -ug e =0
And, upon evaluating this expression at s = 0 we obtain

<20up " 'ET + (pup ™t apy THET + uitenst = 0

from which we obtain

H2 = U]

T= 5.55
ET = == ( )
which can be written in terms of the drift parameter as
- l\) H2-4j
ET = (m om0 (5.56)

Differentiating equation (5.23) again, we obtain

29u§‘[<’(s)¢"(S) + ¢‘(s)2] il t_Pu?'Anz'l'S(ufl‘“zl)) *7s

+ 2[ui u3tde%g = O (5.57)
! Evaluating again at s = 0 we obtain
: -1 T2+ 2 - '1_ -1 2_2 "1_ -1 T =
) 2ou; [ET2+g2T] - [ouz -Aul JET2-2(uy -uz JET = 0
T From which it follows that
. 2(u* -z’ JET - 2327
ET2 = o (5.58)
. PU2 = Au2

[ B BT R A A N IS W pat e ¢ 8 e L L e K maad - T S .
ihlnL~ ' ’
.
o4 4. > . . N
. - . Fase N . - - » hod
- " o L e 3 4 d




Therefore

-1 1 -1 -l
y 1\ | 2(u1 w2 JET - (3pup” -huy )ERT
ar T = = xR (5.59)
.Similar calculations for the finite dam produce
- '1+ -l)a
-1 [ <1 a1 (Auy +ouz
ET = (Mg + puz ) [111 -uz 2T nz (a0 )e ] (5.60)
5.3.1 Conditions for Recurrence
In analogy with the theory of Markov chains, we call the

contents process Ct recurrent or transient depending on whether

p=1 or p<1 where p =P[T < »] . In the recurrent case we

call Ct positive recurrent or null recurrent depending on whether
ET <o Or ET = o . We will relate conditions for recurrence to
the drift parameter of the process, m .

For the topless dam, it follows from equation (5.27) that m < 0
implies recurrence, while m > Q0 implies transience. From eguation
(5.56) it follows that m=0 implies null recurrence while m < 0
implies positive recurrence.

By symmetry, for the bottomless dam it follows that m > 0 implies
positive recurrence, m=0 implies null recurrence, and m < 0 implies

transience.

5.4 Limiting Probability of Emptiness for the Two-State Case

Consider the time-dependent probability of emptiness
Pe(t) = P(Ct = 0) .

:f the bivariate process has a limiting distribution, then we consider
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the following limit

Pe = liz Pe(t)
We call this the 1limiting probability of emptiness, and it can be
interpreted as the large-time percentage of time that the dam will be
found empty.
Brockwell [12] has actually derived the limiting distribution
of the content by solving the Kolmogorov equations. However, as is the
case with the time to first emptiness, these equations require knowledge
of the boundary value Pe for their solution. Although Pe can be
obtained by other methods, we present here a direct method of evaluating
Pe- by using the previous results concerning the time to first emptiness

and a renewal argument.

5.4.1 Embedded Regenerative Process

Assuming that X(0) = u, > 0 , define
Ty = inf(t > 0[C, = 0}
12 = inf{t > TIICt = 0}

and, continuing in this fashion, define =, , i >1 . The t;'s are

the first return times to zero of the contents process, and since the
bivariate process (Xt’ct) is strong Markov and the <t's are stopping
times, then they are regeneration points and the process (tj,t; + t25...)

1s an embedded delayed renewal process (see Figure 5.1).
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] Figure 5.1 Embedded Renewal Process.

l Now, thinking of this as a two-cycle renewal process with

cycles T and X , then it is a standard result of the renewal theorem

k ' that

Pe = Eiﬁé'EF (5.61)

5.4.2 Semi-Infinite Topless Dam

For the semi-infinite topless dam we have

E =(;’,,—) <%;—1—> (5.62)

and, by the memoryless property of the exponential,

YR

X -~ exp (o) (5.63)

] . so that Ex = o'l.

.. Substituting (5.62) and (5.63) into (5.61) we obtain after some

. algebra

[

p = (5.64)

.
o
=
[
.

s

A ad
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5.4.3 Semi-Infinite Bottomless Dam - Limiting Probability of Over-
flow -

Using the symmetry between the topless and the bottomless

version, we can write for the time to first overflow, T

1\ r1mw2 5
ET ={ = - (5.65)

and, using the analogous embedded renewal process, we have for the

1imiting probability of overflow, Pf .

-1

. A =0
P .1 W1t 1 (5.66)
u2A+uyp

5.4.4 Finite Dam
In this case, substituting equations (5.60) and (5.63) into
(5.61) we obtain
-(Aufl + ouil)a]—l
(5.67)

= -1 -1 -1 -
Pe = AlAuy" + puz J[(X+p)(hu1 + puz'e.

For the case u; =1, u, = - 1 we obtain

I (p-r)a \| -!
Po = A(p-A)\_wo)(pe e ﬂ (5.68)

which agress with the previously reported result [12].

TP S o > TP

pre e
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CHAPTER VI
A FUNCTIONAL CENTRAL LIMIT THEOREM FOR THE
UNRESTRICTED CONTENTS PROCESS ON TWO STATES

6.1 Formulation

In this chapter we show that a scaled version of the contents
process Ct, 0 <t<=, will converge weakly to the Wiener process on
D(0,=). A short description of the topology of this space was pro-
vided in Chapter II. The weak convergence results of this section
generalize the results of Fukushima and Hitsuda [22] and Pinsky [38],
who showed convergence of the marginal distributions.

To establish weak convergence for Ct we appeal to a result given
in Chapter II that if Ti are the times of jumps of a Markov chain
and {Xn} are the succession of states visited, then if the sequence
(Xn} is deterministic, the holding times are unconditionaily independ-

ent, i.e.,

=A; U,
o J-17J

1

LU -]

To- . -,.= 9s ey =
PL j TJ_ > uJ j=1 m] .

1
J

In the two-state case the sequence Xn is deterministic, being
given by {u1,uzsHysupz,...}. If we fix on the entrance times into the
u; State by the Xt process, we see that we can consider an embedded

renewal process with cycle lengths (gi) where

as seen in Figure 6.1,
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From Figure 6.1 we can see that the embedded renewal process is
really an alternating renewal perocess with two subcycles in each
interval. Thus the first cycle has length g; , and is composed of

the two subcylces of length T, ~ exp(A) and T, - T; ~ exp(p) . The
second cycle has length £, and is composed of the two subcycles of
length T3 - T, ~ exp(x) and T, - T3 ~ exp(p), and so forth. The
slopes of the sample path over odd subcycles is u;(>0) and over even
subcycles is wuy(<0) . We use the notation w: to represent the wait-
ing time random variable for the subcycle of the ith cycle during

which the slope of the sample path is positive, and w; for the sub-

cycle during which it is negative. Thus

+
Wi = Toi007 Tagian)
and
Wi = To = Taig
+ - = _ = ©
Note that wi + wi Tzi Tz(i-]) Ei . Let {Sn}n=] be the
renewal process, so that
n _
S, = I & (6.1)

Let N(t) be the renewal counting function for the S, Process; thus

]
N(t) = inf {J] _21 g 2t} (6.2)
1=

Now consider
nt
C(nt) = [ x(s)ds (6.3)
0

Then, referring to Figure 6.1, we can write C(nt) as

L




+ e S ——re e s v e

S?l(nt) N(nt)
C(nt) = / x{u)du - / x(u)du (6.4)
nt

where the second term represents the 'overshoot' of the process to the
first renewal past nt , and so must be subtracted off to maintain
equality.

Since the sample paths of X(t) are piecewise linear with slopes
u; and u, , we can re-write C(nt) 1in terms of the holding time

+
variables w; as

N(nt) N(nt)
C(nt) = Z W: up v L W'{ uz - Rn(t) (6.5)
i i
where
SN(nt)
Rn(t) =f x{u)du (6.6)
nt

Now define

+ - ¢ U2
Zn = Hypw "Wy - -5 (6.7)

Then, by Donsker's theorem (Billingsley [9]),

z p2 2
_%—:_1_-5 W (A—;+ —-2—) <] on D[0,=) (6.8)
n o

Returning to the original process (6.5), we can write

C(nt)= : wiu1+w;u2-—)‘—-'—

p

H1 H2

+ <-—~+ —p—) N(nt) + R (t) (6.9)

A
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or,

C(nt) = Zy(py * <”T1+ "—:-) N(nt) + R (¢) (5.10)

Setting nn(t) = ELEEL , then {nn(t)}:=] are increasing processes

in t , and for each fixed t ,

Pt
nn(t) -> ‘E—E‘ 2SS N

Therefore it follows that

ng(+) = (E(&)17'(+) on DLO,=), i.e.,

-1
"_(%_l-,G +l_> (+) (6.11)

Since the limit is degenerate, then the following joint convergence

holds by Theorem 4.4 in Billingsley L9].

2 2 -1
EL'!.‘.L,M%Q - w([h+12-]\ (°)) . (l-+-]-)(.)

/n A2 p2

Using the continuous mapping

v(x,9) = x + ¢

we conclude that

4
NG)T o wise) on D[O,=) (6.13)

2 2 -t
u M
when g = _1.'....%. <]T+‘l)->
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P pas s . [P .

! "
] f

We now show that — => 0 in D[0,«) . From 6.6 we have

- /n
. SN(m:)
Rn(t) :/r x{u)du
’ nt
P SN(nt)
| if Supsx(u) du
t<u<
‘ i nt =N (nt)

L V(up-uz) (SN(nt) - ﬂt)

= V(uy,-uz) v (nt)

where vy(nt) 1is the forward recurrence time evaluated at nt. There-
fore it suffices to show that
() 0 in D[0,m) .
/n
If u,0% are the mean and variance of the interarrival times for

a renewal process, then Iglehart and Whitt {26.1] have shown that

S - une
Il 2 Medonefe ) o (i), ) . (60

no2/ud

Now, since ﬂé‘ﬂ—)--»(;)- in D[0,») , then we also have the joint

convergence

[n-] ~ ¥ _uN(n-)en:  N(n:) N
e AT ”(“""'“(:)’36)]5)

Now consider the mapping w(x,y,¢) = (x-¢,y) and apply the

- continuous mapping theorem to obtain
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9)

SN(n.) = uN(n-) , uN(ne)- ne] w(i) , - w(l)> . (6.16)
o /i [¢) ',n- g

and, again applying the continuous mapping theorem to

W(Xsy) =x +y

S 8 ()

or SNSn.! =N - 0

we obtain

o/n

so that indeed 1195)--»0 on D[0,=) .
/n
6.2 Zero Drift
W H2

In the zero drift case -;-+ :7 = 0, so that from 6.10

it follows that
C(nt) = zN(nt) + Rn(t) (6.17)

and, using Th. 4.1 in Billingsley [9] ,

€(ne) _ w(g.) on D[0,=) .

)

Hence, if AcB , the sigma field generated by the open sets relative to
the D[0,») metric,

lP[ﬂM eA]- p [N(B-) eA]l +0 as no=

/n

Thus we have the large-n approximation

p|Cred 4] - P[w(g.) eA]

n

p e e e

A e e A




g pomd et Sumd el omm G GEE G DR B VN AR GBS e TR

[}

92 &

6.3 MNon-Zero Drift

For non-zero drift Eq. (6.10) is

up ¥z :
C(nt) = ZN(nt) AT > N(nt) + Rn(t)
so that if
C*(nt) = gﬂ) - (u_;. + E) Mlt).
n e /n
then

C*(n+)= W(B-) on D[0,=) .

Thus we see that in this case the centering function is random.

6.4 Asymptotic Behavior of Range

He can obtain the asymptotic distribution of the range from the
corresponding result for Brownian motion as follows: Consider the
continuous mapping from D[0,~) into R given by

f(C(nt)) s (Hax C(nu) < Min c(nu))

O<us<t O<u<t
Then by the continuous mapping theorem, for R(nt), the range ofgiﬂﬁl,

/n

we have B
R(nt) => R°(gt) ,

the range of Browian motion.
W. Feller [21] derived the density of the range of Brownian motion

as:

t

f(t,r) = 8 Z (-1)"" k%(%)
k=1
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where ¢(x) 1is the standard normal density function. Hence the

asymptotic distribution of R(t) has a density given by

8 2 (0% i)
k=1 gt




CHAPTER VII
SUMMARY AND CONCLUSIONS

7.1 Summary
In this investigation we considered several problems connected with

Markovian storage models in continuous time.. We proceeded by con-
sidering three different variations of the model. These were the
doub]y-infinitg dam without top or bottom, the semi-infinite dam in

both its topless and bottomless versions, and the finite dam with both

a top and a bottom. In each case the process which we examined was

the bivariate Markov process (Xt, Ct) in which X, was a Markov chain
with finite state space representing the net input rate, and ct was
the integral of Xt , and represented the dam contents. We maintained
as much generality as possible throughout, but restricted overselves to
particular cases whenever necessary. The most general formulation of
the model was when the Markov chain xt was defined an an arbitrary
n-dimensional state space with an arbitrary generator matrix. We
often restricted the discussion to the two-state case in which the
Markov chain was defined on states u; >0 and p; < 0 and the holding
times in the states were exponential with parameters A and o . On
occasion we restricted ourselves still further to the symmetric case

in which X =p and u; = = up .

In the derivations, we did not follow the formal definition-theorem
style of presentation, but rather chose to present the derivations and
results in a more natural flow. Since with this style of presentation
it is not as easy to locate individual results, we now present the

specific results derived in each chapter, as an aid to the reader.
94
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7.2 Conclusions

Chapter III

In this chapter we derived several moment functions for the
Markov chain process Xt and the contents process Ct .
(i) General Case - Markov chain:

Extxt__t_s' § § uiujpij(s)ﬂ.i(t)
Var X, = § . g ui(ui-uj)ﬂi(t)ﬂj(t)

Cov[Xt,Xt+s] s ; § “i"jpij(s)"i(f) - ; “i"i(t) § "i"i(t+s)

A eed ey Sy O B B B o

When xt is stationary,

i ka
Corr(X X, . ] = C e
t st £ Tk
where

§ iﬁtki PiTiMiH;

Cx
LI uylugougdmymy

it

and tk s T k =2,...,m are the normalized right and left eigen-
vectors of the generator matrix, with eigenvalues ek' The asymptotic

behavior of Pg is governed by the largest non-zero eigenvalue .

(1) General Case - Contents process:

EC, = Dnymyt .




|
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t+

If a,(t) = f X(u)du, an increment of the C, process
h

t-2

of length h centered at t, then

M ot,.r. 8, h
g(a2(t)) = 2 21: ; ;iiﬁ—"l [e K o,h - 1] s

usmem, h2
+ ]Z JZu1uJTr11tJ

m
toar,s 8, h
ki k k
Var{a,(t)) = 2 BLIN. 4 [e -eh-]] TR
(h) izj k=p eﬁ- k ifjti
m
t, ", 28,h o,h

: COV[Ah(t),Ah(t+h)] = Z z K [1 ve K.z k]“i“'“i
‘ T 7 k=2 et J
1

B

Corr [Ah(t),Ah(t+h)] . k;Z K

‘ t, .r 8. h

22,0, 3. X [e k -ekh-I] g
‘ iy k=2 ol Vol

(iif) Two-State Case - Markov chain

The moment functions are:
EXy = (x*0)™ (pur*aug)

EX2 = (x+0) ™" (oud+rud)
Var X, = oA(a*) % (u1-uz)?

- 2 2 -(ato)s ;
EXtXt,,,s = (A+p) 2[(9111"'%142) + 2 (uy-uz) e ]

‘mv—uo—omo—uuu——-——--————.._
4
|




& msta §
»

-2 2 -(a%p)s
CovXysXiped = oa(0%0) " (py-n2) e ?

-(A+p)s
Corr[xt,xt+s] =@

(iv) Two-State Case - Contents process

EC, = (p+2) " (o +any )t

-(a+p )t
Var C, = 2(p+A)-“pA(u1-uz)2 [e o) + (k+o)t'1]

[1-e-(x+p)h]2

Corr{a, (t),a,(t+h)] = - ~(x*o)h
2[(A+p)h-]+e ]

In this case the correlation function is free of the states.

Chapter IV
In this chapter we studied the range of the contents process

for the doubly infinite dam.
(i) General Case

We derived the Laplace transform with respect to time of a
form of the joint distribution of the maximum and minimum variables.

If Mg = Sup{C,, 0O<u<T, T-exp (s)}

mg = Inf{C;, 0 <u <T, T -exp(s)}
and

"1(’(!5) = ]'P[Ms <a-x,mg :-xlxo = “i]

-

then

¥(x,s) = exp[-0™" (Q-s1)x] ¥(0,s)
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where
'bi(a) =1, ¥ >0

¢1(0)=1: Uy <0.

(i3) Two-State Case
The distribution of Ms is given by

-0y F

P[Ms > y"‘i]= A+s -8y -8y

s X+, +sZ]

:1 1 a2 _
® Z'A+[TA U2

where

A=ptsS A*+S
u2 M

Hence if the initial rate is positive, the maximum to time T is
exponentially distributed. If the initial rate is negative, the

maximum has a truncated exponential distribution with a mass at 0 of

01u1-S
size X .
If Rs = Ms - mg o, the range to time T , we found that when
xt is stationary,

ER, = (a+) ' fo;™! (o*a%s-yu;)

+ 8, Dvor " (atsteyu,)]
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——

where 8; = 8 above and

8 =6 -A.

(iii) Symmetric Case

For the symmetric case in which yu; = b, yp = -b, and 1 =p = a,

we found for the range to time t, say Rt » that

-2at
chy <2 [ bovo o) 1] <8 [ (B ) ]

where F(a,B8,x) 1is the confluent hypergeometric series defined by

|
!
}
{
[
!
b

alatl)...(atj-1) for j=1,2,...
1 for j=0

where (a)j =

Using an asymptotic expansion of the Laplace transform we found

the asymptotic behavior of the range as

-3/2
(t -_b/gt!f-_].]-i 2 b k. g @T?b L

I
l
!
I
I
l
1
I
!

a

so that in particular a large-t value is

- b B
() /s[/gt]

We did an exact calculation of ER, for 0 <t <10 in the
case a=b=1 and found that the Hurst phenomenon was evident in

the approximate range 0 <t <2 . If a, b are chosen so that

b= ag , the asymptotic behavior is not changed. In this case, -choosing
a to be small extends the Hurst behavior to longer periods of time,

while at the same time it increases the correlation between increments.
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In order to explain the Hurst phenomenon with this model for Hurst's
longest series of about 2000 years requires a correlation between
adjacent yearly increments of .99865, which is unrealistically high.
For the shorter time period of 20 years, the required correlation drops

to a more acceptable value of .87720.

Chapter V
In this chapter we introduced the principles of invariance

developed by Chandrasekhar and Bellman in physical models to the study
of storage models. The relevance of this chapter is in the power of
these techniques to provide direct solutions to first passage problems
in a simplified manner over classical techniques.

(i) Semi-Infinite Topless Dam

General Case

We derived Laplace transform equations for the distribution
of the first return to zero, given an exit rate My >0 and return rate
. < 0.
"3

Two-State Case

In this case the first return time to zero corresponds to the
wet period. We solved the general system of Laplace transform equations
explicitly to obtain the Laplace transform of the wet period, T , as

¢ = u2(20)7 A + (A% - 4Xpu1-1u51)%]
where A= s(uzleuil) + ouzte A
from which we obtained

i if m<©0
P[T<=] = pu1

" g if m=20

By differentiating ¢, , we obtained (for m < 0).
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e7 = ] H2-u)
m p + A
-1 -1 -l -1.,.2
2(u; w2 T)ET - (3puz -aup )ET
Var T = NGV

where m is the drift, i.e., m = gxt for X, stationary.
We then used a renewal argument to obtain the limiting probability

of emptiness, Pe as

p = (for m<0)
e Ro

Symmetric Case

In the symmetric case we were able to invert the Laplace

transform to obtain the density of the wet period as

GU)=%F(%3,Ju>

where F is again the confluent hypergeometric function.

(ii) Semi-Infinite Bottomless Dam

In this case we derived the Laplace transform of the time

between overflows as

% = u1(2>\)°1["A - (A2+ 4)\9111-1112-1)1/2]

-1 -1 ~1 -1
where A= S(ul ~ o ) + Aug “ PU2z

The density of the time between overflows is the same as the density of
the wet period for the topless dam.

We derived the 1imiting probability of overflow, Pf » @S

Pf =My .
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(iii) Conditions for Recurrence

We derived necessary and sufficient conditions for recurrence

of the Ct process as follows:

Topless Dam: ct is recurrent iff m = Ext <0 . It is positive
recurrent if m < 0 and null recurrent if m=20 .
Bottomless Dam: C, is recurrent iff m > 0. It is positive
recurrent if m > 0 and null recurrent if m= 0.
(iv) Finite Dam
General Case
We derived an initial-value differential equation for the

Laplace transform of the wet period.

Two-State Case

We derived explicitly the Laplace transform of the wet period

for a dam of height a as

614 PY-|
6,8 + csze

+(a,s) = _1[913 |
puz Le + Ce

where -1
(A+s)e;-pus A

C=-

(?\"‘S)ez'ouz.lA

01,2 * A + [A24pap; Y277 and

-l -
2™ (p#s)-u1 "t (at+s)
As 5

and we obtained the moment of T as
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-l -

-1 -1
1 <1 -1 -1 -1 '(AU], +DU2 )a
) Jur o ew2T t Ay (atole

ET = (o,

and the limiting probability of overflow as
-1

(o=2)a
P = Alo-2) [(m)(oe -A)]
Chapter VI
_In this chapter we established weak convergence in 0[0,=) of
the unrestricted contents process Ct on two states. The basic results
which we obtained involved weak convergence to Brownian motion of the

process of C(nt) . We established that for the zero drift case,

—gﬁ!‘i%w(s-) on D[o,»), where

/n

2 2
p%ul + A%

B = p0i*0)

and W(.) represents Wiener measure.

Using this we were able to conclude that the asymptotic distribu-

tion of the range has density

= 3 - k-1 k
fr(t,r) = 8 k; (-1) kz(—m—:m.)

B

7.3 Recommendations for Further Study

One possible line of further research would be the extension of
the results derived for the two-state case to three or more states.
This would require a clever choice of a generator matrix which would
give sufficient generality and yet have enough structure to make the

calculations manageable. One possibility which we would recommend for

further analyses is the generator matrix
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s B e B

] pe ey

Q=o(lr-1), 5>0

which has the property that = is the stationary distribution and the
autocorrelation function is
-pS.
Corr[Xt,xt+s] = e .

Another possible line of research is the extension of the technique
of invariance to obtain further results in storage theory. These
techniques have been highly developed in the physical fields. What we
have presented here is but the briefest introduction to their use in

storage theory. Undoubtedly many other results must be obtainable

through sufficiently clever applications of these principles.
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