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FOREWORD

This report was prepared as part of a development program to determine

methods of reducing noise levels due to military weapons during testing and

training operations. Early work was funded by the Naval Science Assistance
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search program. Major funding was provided under the Gun Blast Effects program,

NAVSEATASK 653/497/004-l-S0956.

This report has been reviewed and approved by F. H. Maillie and J. F. Horton

of the Systems Safety Division of the Combat Systems Department.

Released by:

THOMAS A. CLARE, Head
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INTRODUCTION

A number of models and data sets exist for far-field peak overpressure

(peak sound pressure) due to explosive charges. The basic form of the model

for far-field overpressure is based on similitude theory. A set of similarity

parameters known as Sachs' scaling 1describes the effects of distance, charge

weight, and propagation medium properties (characterized by atmospheric pressure

and sound speed) on blast wave parameters such as pressure, impulse, and time.

For peak overpressure, the parametric relationship can be stated as

( 1 a "'\(1)
F 1/3
a /

where

P overpressure

P a absolute atmospheric pressure

R =distance

W =energy released by detonation of the explosive charge, usually
expressed as weight of a standard explosive.

This model is commonly used to describe the effects of altitude on blast wave

parameters. A special case of Sachs' scaling, for invariant ambient conditions,

is known as Hopkinson scaling, the parametric relationship for peak overpressure

being

P= f ( W1I3

*The blast wave overpressure field is loosely divided into two zones, the near
field and the far field, based on required mathematical models. In the far
field, the linear, or acoustic, equations are adequate while in the near field,

nonlinear shock wave theory is required for correct phenomenological descrip-
tion.



The functional form usually chosen is

PM = CA = C 1/3 (2)

where

1/3A = R/W = scaled distance.

This is the most commonly used model for explosive blast wave peak overpressure.

The parameters C and a are essentially constant in the far field (but not in the

near field). The peak overpressure may be expressed as peak sound pressure level,

in units of decibels, according to Equation (1),

L Pk = 10 log 10 (-)2= 20 log10 (P

where P = 20 PP = 2.9 x 10 9 psi = zero reference for the decibel scale.

The effect of changes in propagation medium properties, such as those associ-

ated with changes in altitude in the atmosphere, may be determined by using the

functional form of Equation (2) for the similarity parameters of Equation (1),

i.e.,

P 
R P a1/3\-a

= a
a

For two different altitudes denoted by subscripts I and 2, with equal values of

R and W, peak overpressures satisfy

PN,1 a 1 3

Ha,2

and the change in PSPL (peak sound pressure level) due to the change in atmos-

pheric pressure is

APSPL - 20 (1- )3log1 0 )

2
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Note that this change is independent of the magnitude of R or W.

SURVEY OF AVAILABLE MODELS

Available models can be divided into two rather distinct types. One type of

model is based on analytical calculations for a spherical blast wave propagating

through a uniform infinite atmosphere ("free air"). The other is based on empiri-

cal data and implicitly includes the effects of propagation through the real

atmosphere and reflection and ground attenuation effects.

2The NOL model is typical of the analytically based models. Calculations

were carried out for three cases: a nuclear blast wave in ideal air, a nuclear

blast wave in "real" air, in the one-dimensional calculations, and a TNT blast

wave in "real" air ("real" air means that real gas attenuation effects were in-

cluded in the one-dimensional calculations). All calculations were carried out

for sea level "free-air" (uniform propagation medium of infinite volume, 15*C, 1

atm pressure) expansion of a spherical shock front and, thus, do not include at-

mospheric refraction effects or reflection and ground attenuation effects. An

interesting result was that, below I psi, 1 kiloton nuclear was equivalent (on

the basis of peak overpressure) to 0.7 kiloton TNT, rather than the well-known

value of 0.5 which is applicable in the 5 to 50 psi range.

The NOL calculations for TNT were carried out for an overpressure range from

7,600 psi (248 dB) to 0.0001639 psi (95 dB); i.e. , for both the near field and

far field. The demarcation between near field and far field is somewhat arbi-

trary, but appears to be approximately 0.2 psi (156.8 dB), at which point the de-

cay rate [the exponent a in Equation (1)) becomes constant; i.e., PSPL versus

log R becomes linear.

A least-squares curve fit (squared multiple correlation coefficient 0.999,

agreement within 0.5 dB) of results of the NOL free-air TNT calculations, for

P < 0.2 psi, yielded

PM 36.8 -1 396.8 ( R-) -1.09 (4)

3
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130 < A (~/)(84,000

PM Psi

units R ft

W lbs TNT

or, in metric units

PM = 49.7 A-1. 0 9  = 49.7 (E -1- (4a)

0.05 < A (/ ) < 33

PM pascals

units R kilometers

W kilograms TNT

This model and other models discussed below are presented graphically in Fig-

ure 1.

The NOL results for nuclear explosions agree very well with other similar

studies. 3 ,4  These nuclear models have been used as the basis for TNT overpres-

sure models. Reed5 recommends

PM= 70.944 A_ 1.1 =70.944 (R.~ 1.1 (5)

P M pascals

units R kilometers

W kilograms TNT
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or, in English units,

PM = 56.8 X 1 "1  56.8 (W/ ) "-1.1 (5a)

PM psi

units R ft

W lbs TNT

This model was extrapolated from the AFWL3 free-air nuclear model using 0.5 kilo-

ton TNT = 1 kiloton nuclear and by doubling the overpressure to account for

surface burst versus spherical expansion. This model yields somewhat higher

pressure levels than the NOL model, as could be expected in view of the NOL

results for TNT-nuclear equivalency at low overpressures and because of Reed's

correction for surface effects.

Swisdak 6 presents, in a graphical form, a band of predicted TNT far-field

overpressures versus scaled distance for 10 < A (ft/lb 1/ 3) < 10,000. The upper

limit of this band essentially agrees with the NOL model [Equation (4)], while

the lower limit of the band can be represented by

=108 A 1 2 8 = 108 (6)

10 < A t- < 10,000

PM Psi

units R ft

W lbs TNT

6



or, in metric units,

PM= 33.0 A_12 33.0 (R 13)-1.28 (6a)

0.004 < X IT 4

PM pascals

units R kilometers

W kg TNT

6
Swisdak also presents near-field TNT blast wave parameters based on a sur-

vey of available experimental data. Swisdak's curve for near-field peak over-

pressure, shown in Figure 2, is a best fit of experimental TNT peak overpressure

data (total data scatter -10 to 15 percent). 7Al~so shown in Figure 2 is the

NOL 2 analytical TNT curve. The agreement is very good with a maximum disagree-

ment of about I dB (-10%) at A = 66 ft/lb 1 1 . This good agreement between cal-

culated and measured near-field results provides increased confidence that the

NOL far-field results are valid.

For free-air spherical expansion without attenuation, overpressure is in-

versely proportional to distance; i.e., ui = 1.0 in Equation (2). This is shown

in Figure 1, for comparison of slope (decay rate) only, and was arbitrarily lo-

cated to pass through 158.5 dB at A = 100 ft/lb 1 /3. This spherical spreading

decay rate amounts to -6 dB per doubling of distance or -20 dB per x 10 dis-

tance.

The BRL model 8is an empirical model based on a total of 273 overpressure

measurements made under undocumented, but presumably widely varying, atmospheric

conditions. The atmospheric conditions were probably generally "negative gra-

dient" conditions; i.e., sound speed monotonically decreasing with increasing

altitude, which is characteristic of the "normal" or "average' atmospheric

structure. This atmospheric structure refracts acoustic energy into the tipper

atmosphere, resulting in lower overpressure at the earth's surface than would be

7
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obtained for the uniform atmosphere assumed in the theoretical models. It should

be noted that the empirical data also implicitly contains reflection and ground

attenuation effects. The explosive events were surface bursts of roughly hemis-

pherical TNT charges of 5, 20, and 100 tons. The data were processed to obtain

the following low pressure range (PM < 0.2 psi) model (constants rounded to three

significant figures):

= 227 X-1.41 = 227 (W 1 3)-1.41 (7)

40 < X < 1000

PM psi

units R ft

W lbs TNT

or, in metric units,

= 25.0 X- 1.41 = 25.0 (R 1.41 (7a)

0.02 < X < 0.4

PM pascals

units R kilometers

W kg TNT

Equation (7) is often used outside of the parameter range stipulated, e.g.,

at scaled distances perhaps as large as 10 ft/lb 1/ . There is obviously some

uncertainty as to the validity of the expression for small charges and large dis-

tances.

Recent data obtained by Schomer9 '10 provide useful information regarding the

mean expected PSPL at very large distances from small explosive charges. Blast

wave parameters were measured and recorded for 735 noise events, each due to sur-

face burst detonation of a roughly hemispherical 5-lb (2.27-kg) C4 explosive

charge. Atmospheric temperature gradient conditions ranged from surface inversion

9



to negative gradient. Measurements were made at 16 locations at distances of 2,

5, 10, and 15 miles in each of the four principal compass directions. One of the

parameters measured was PSPL. Results of a statistical analysis of this PSPL

data are shown in Table 1. The PSPL data, for each individual station as well

as combined data for each distance, were examined for conformance with Gaussian

distribution. PSPL population frequency distribution plots appeared to visual

inspection to be roughly Gaussian for some (but not all) stations, but formal

standard tests such as the "chi-squared" test indicated rather poor correlation.

This means that the standard deviation (Y) values shown in Table 1, which are on

the order of 10 dB, are of limited usefulness. One can conclude, however, that

excursions of PSPL should lie within 10 dB of the mean expected value. For about

two thirds of all noise events, excursions of more than about ±20 dB (2o) from

the mean PSPL value, for any given value of X, should occur infrequently, and

excursions of more than ±30 dB (30) should be rare. This observation agrees very

well with measurement experience. The PSPL data were also converted to peak

overpressure; the resulting frequency distribution plots were not even approxi-

mately Gaussian.

The data shown in Table I provide the basis for a refined far-field mean

expected peak overpressure model for small charges and large scaled distances.

First, the equivalent TNT charge weight for a 5-lb C4 charge must be determined.

Swisdak6 shows TNT equivalent charge weight ratio for C4, based on peak overpres-

sure, to vary from -1.45 at 100 psi to -1.2 at 10 psi with no data presented

for the very low pressures of interest in the current study. It seems reasonable

to assume that the appropriate equivalency factor is probably less than 1.2,

possibly -1.0 (as past experience indicates). if the C4 peak overpressure

equivalent TNT charge weight is between 0.8 and 1.2, using 1.0 results in an

error in predicted PSPL of less than 0.75 dB. Thus, for far-field peak over-

pressure modeling, no distinction will be made between C4 and TNT. The data of

Table 1 was obtained at Fort Leonard Wood, Missouri, about 1,000 ft (about 300 m)

above sea level. Correction of the data to sea level conditions, by means of

Equation (3), amounts to +0.3 dB. A least-squares curve fit of the mean PSPL

10



Table 1. Experimental C4 Far-Field PSPL Data

Station LPk

N Mean G Extreme Values
(dB) (0B) (dB)

2 Mile North 656 110.0 5.7 93.6 I130.0

2 Mile East 712 110.8 6.5 90.6 /132.2

2 Mile South 732 98.9 9.2 80.0 /121.6

2 Mile West 697 100.6 8.2 80.5 /124.0

2 Mile All 2797 105.0 9.3 80.0 /132.2

5 Mile North 718 94.4 8.3 73.5 /118.5

5 Mile East 687 99.9 8.3 70.5 /120.4

5 Mile South 594 91.9 13.2 56.0 /117.7

5 Mile West 675 81.6 8.7 63.0 /117.5

5 Mile All 2674 92.0 11.8 56.0 /120.4

10 Mile North 711 81.3 10.0 63.5 /113.5

10 Mile East 701 89.0 10.4 67.8 /116.3

10 Mile South 712 90.6 8.3 70.0 /114.7

10 Mile West 700 79.0 7.4 65.5 /112.0

10 Mile All 2824 85.0 10.4 63.5 /116.3

15 Mile North 671 75.7 8.3 66.7 /104.0

15 Mile East 701 80.8 8.2 66.2 /104.0

15 Mile South 604 86.4 8.4 70.0 /113.0

15 Mile West 613 75.0 7.8 70.0 /105.0

15 Mile All 2589 79.4 9.3 66.2 /113.0

Li1



data of Table 1, corrected to sea level, yielded (squared multiple correlation

coefficient = 0.995):

PM= 143X_1 .4 = 143 (R)- 1.44 (8)

6,180 <A (ft/lb 1 3 ) < 46,300

PM ps

units R ft

W lbs TNT

or, in metric units,

12.4 A~1  12.4 W_3 (8a)

2.45 < A < 18.4

P. pascals

units R kilometers

W kg TNT

This model falls about 5 dB below the BRL model (see Figure 1). The fact that

this model is based on a great deal of data, for small charges and large dis-

tances, provides considerable confidence in the validity of the model.

CLOSURE

Either a "free-air" or a "mean expected" blast overpressure model could be

used to predict far-field blast noise levels. A "free-air" model has the advan-

tages of being a well-defined baseline propagation condition (i.e., a uniform

quiescent propagation medium of known property values); however, such a propaga-

tion condition does not, in general, occur in nature. A "mean expected level"

12



model, based on empirical data obtained under a wide variety of atmospheric con-

dition, yields a better indication of noise levels that would actually be en-

countered in practice. A disadvantage of such a model is that the atmospheric

structure that yields the "mean expected level," and the correlation between

atmospheric structure and resultant noise level, is not well defined. Also, it

is not necessarily clear that the "mean expected level" is the same for different

geographic locations and terrain characteristics. Thus, a "mean expected level"

model yields only approximate, though quite realistic, predictions of blast wave

overpressure levels.
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