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CZAPTER ONE

INTRODUCTION

During the last decade, considerable atternticn has been given

To o

1]

ical precedures for identification, estimation and control which are
implementavle on these machines. As an introduction to this tozic, some
background material is given in Section 1.1. A trief review of exist-
ing parallel algorithms for identification, estimation and control is
rresented in Section 1.2. The motivation and significance of the re-
search reported in this report are discussed in Section 1.3. Finally,
the objectives and contributions cf this report are stated irn Secticn 1.
1.1 3Background

The design of an automatic control system generally involves
the selecticn of additional components which usually have adjustable
parameters such that the overall system meeis a desired perfcrmence
specilication. ror example, this performance specification may be
formulated in terms oFf the minimization of an error criseria, settling
tine, energy constraint cr it may simply reguire a2 stabtle resgcnse.
The performance index provides a quantitative measure of systex perform-
ance and is chosen to emphasize important system characteristics. This
type of quantitative measure is Qery important for parameter Idenfica-

tion, state estimation, and for the design of optimal and subcptimal

zontrol systems.

[

design of parallel computers and the development of darallel numer-

L.

IO " VST




The early wcrk in the area ¢l zarasmeter ii2ntification can

oe attributed to !Nyguist [1] and 3ode 27 in which “re

O

uency aralysis

methods were used in conjunction with lozarithmic frejuency diagrams

iy

2o it parametric models to data.

More recenily, parametric mciels used in "modern" contrecl
thecry have been formulated in terms of state equations. The reed tc
determine such models from experimental data nas led to a continual
effort to improve parameter identiZication and state estimation pro-
cedures. Probably the oldest and most widely known methods for perform-
ing these tasks include: maximum likelihood techriques [3], Xalman
filters (L], weighted least squares procedures _5), and stochastic ap-

oreximetion [6]. These sequential methods, however, may recguire a

prohibitive amcunt cf computer time to converge, if in fac<, convergence

Since the introduction of time domein methods and the Zevelop-
zmert of optimal control theory, 2 dramatic change in +“he design of auto-

-

. 3ecause the use of optimal ccnircl

31
D
o

matic control systems has occur

<heory generally results in the need o sclve z highly nonlinesr two-

J
O
o
81
ot
o
o]
[+
31
™
\]
3

y value provlem (NTP3VP), much research has been conducted
in tne area 3£ numerical metheods for seliving MTPRVP's. Currently, the
most popular methcds for solving NTPBVP's include iterative techniques
such as shocting methods [7] and gquasi-linearization (8] or non-itera-
tive methods such as invariant imbeddins (91, These methods, however,
suffer from the fact that convergence %5 the osptimal solution is rether
time consurcing 1f <hese procedures are

mplerented on a conventicnel

ccmputer. One way to correct this Droblem might be to design faster




computer sys<wems, or simply develop more efficient algorithms,
Apparently at this %ime, many falt that the numericel methods develop-
ed te date were rather =fficient (although sequential in nature; and

that the provtlem ol excessive computation tizme cculd be =ost =2asily

1
®
‘D
ct
)
9
ct
[#)
4

by the design of faster (parallel) corgputers,

v

In view of the need for fas*er cozputers, the somputer indus-
try has seen a significant change in the architecture of mcdern computers.
This has led to the develorment of parsllel computers which are capable
of performing the same set of instructions on merny data sets simulta-
neously (see Figure 1.1). Basically, a parallel computer can be viewed
as a set of processing elements (PE's), each of which has its cwn local
memory (IM) =2nd a repertoire of arithmetic and logical inms<truc<ions.

T™e role of the ceniral processor (CP) is to coordinate the effzrts cf
each PE while the IM is used for temporarily stering intermediate results.

Each PT is syachrcnized to perform the same instructicn at *he same time

sn data located in its own memory. Whern axn instruction set has been
completed by each processor, the results are transferred tc glotal memery
where <he central processor interprets the resul:s and Jdecides whether
<o continue computasions cr halit. Note that if ¥ preccesscrs are aveil-
aple and calculations are organized such that eech PE is being fully
utilized, then the speed of computation would te i times faster than the
speed =¥ a single PE. It is clear, however, that achieving this increase
in speed requires great care in structuring ccmputaticnal algcrithms.
Recognizing this fact, Larsen, et 21, (100, ‘il

N

5 seriously consider using th2 parallel corzuting capabilities 27

modern parallel computers to allow the implemen<atisn of nonlineer

R N AT *.
.
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1

e3timation and control procedures. uch of the work in these parers

was primarily concerned with restructuring Jymamic rrogramming so that

many calculations could be performed ty a computer with the facility

ey

or large scale gzarallel trocessing. CUnfortunately, in many cases,
g o T

tne number ol processors required by this zethod can be too extensive

<0 be very practical.
For a number of years after the initial efforts of Larsen and
Tse, it appeared that the development of parallel algorithms for non-

linear estimation and control had ceased. This occurrence might have

T

been due to the many problems associated with the Illiac IV (the first
truly parallel computer) [12].

Recently, however, there has bteen a renewed interest in parallel
algorithkms due to ihe successful development cf many parallel computers
(see Tablel.l). Due to the availability of these machines, many new non-

linear estimation andé control algorithms have been proposed, the details

oI which, will be discussed in the following section.

2.2 A Survevy of Parallelism in Idensificeticn,
Istimation ané Control

The idea cf structuring estimaticn and ccntrol algorithms suca
<hat many operzticns may te performed sizuitanecusly has only receatly
been considered. In fact, this area is so new that at the present time
only a small number of parallel algorithms exist to perform such tasks.
To survey these methods, we will consider the topics of identification,
estimation and control separately in the remainder of this section.

Para’lel Parameter Identification

In reference 23], Reid is concerned with identifying the

parameters of a linear time invariant systez Irom observing noise free
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QUITUT measurements., as

cally, Reid's method emwploys an algetbralic

representation of the parameter sensitivity variablss to effliciently
and accurately obtain the system component matrices and ccmponent sen-
sitivieties whi;h are then used to form a linear sys+em of eguations
and a small number of zuedrature integrals., The parallel aspects of
this algoris lie in the fact that the quadrature integrals may Dbe
evaluated simultanecusly. Also, parallelism can be exploited in solv-
ing the lipear system of equations by utilizing the procedures discussed
in references [14] and M15],

The structure of Reid's algorithm also leads toc a natural set
of conditions which are useful in determining if & system is identifi-

able, Tor exampie, for 3 system to be locally identifiable, the sensi-

tivicy metrix must have rank p where p is the number of unknown parameters.

OCther results on "structurel identifigbility,”

and <heir "queli<y" are also reported by Reid in references [13] and {16].

Because Reid relies heavily on linearity and other properties of linear
systems in the develovment ¢f his method, it is restricted to linear
dynamical systems., This, along with the fact that measurement ncise and
Process noise are omitted fyom the problem formulation, seriously limits
the application of this method.

Parallel State Estimation

The approach to *he linear state estimeticn problem taken in
reference [17] is to develop an explicit square-root algorithm which
allows parallel processing with little communication between processors.

The method is tased upon a modification of the Kelman filter algorithm.

"excitation identifiability"
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val. These calculations are performed sixultaneously by N processors
working independently. When each processor completes its task, some

slobtal calculations are performed and ths results are combined to cbtain

arn cverall optimal estimate at the subinterval endpoints. At this point,
the estimates at the subinterval interior pcints may be updated if
desired.
The most expensive computations required by this procedure is
estimating the states at the subinterval endpoints. Generally, this
orocedure requires about 1L-L0% more computations than a conventioneal
Kalmen filter but, because many of these ccmputations can be performed .

in parallel, the actual execution time mey indeed be much less. As

oy

pointed out by Kaiaith [17], for this method to be faster than a h
single XKalman filter, the system should be high order, have a sparse
system matrix end the state estimates must be desired infrequently
ccmpared to the number of data points. To help speed computations, a
sguare-root doudbling formule is introduced by Xalaith for calculatiz
the steady-state covariance nmatrix of time invgriant systems.
Alfhaugh Xalaith argues that the rarallel square-root algo-
rithm can be more efficient than a single Kelman filter, this is not
verified through simulatior. Also, it should be noted that this method
is only applicable “o state estimaticn ¢f linear systems.

Parallel Maximum Likelihood Tstimation

In reference _1l. Larsen and Tse resiructure the dynamic pro-

gramming method %o 2stimate the maximum likelihoed trajectory of a




nonliinear discrete-time system. The approach teXen ty Larsen and Tse
15 to deccmpecse the dynamic programning algorithm into three pamts which
consist of a rarallel states algorithm, carallel noises algorishn,
and a2 parallel state and stages algZorithm.

The majcr advantage of the parallel states z=lsorithm is that
“he caliculations performed by each rrocessor are the same. Al<hough

*his is highly desiratle, there are several 'cverhead" calzulazions (such

as binary search and compare) associated with the para’lel noises algo-

4}

ithm which require moderate ccmmunication betweern prccessors and
seripheral devices.

Also, the major shortcoming of %his approach lies in “ne fact
tral the parailel staltes and stages algcerithm can regquire a pronibitive
aumper cof processors. For example, for a problem wizth 10 states and
100 stages, then 10xL00 = 1000 processing elements would be required.
Althougn these processors need not be very sodhisticzsted, such a large
aumder of them may lead to reliability and symchronization probvlems.

inally, Larsen and Tse do not discuss *he application ¢f their

terallel Iymamic programming algoritinm tc any pretlem of practical inter-

Zarallel Ztate ané Pararmeter Zstimation

The parallel state and parameter (SA?) estimation algorithim re-

zertad by Targecn, et al. in reference _187, has heen developed
for discrete linear time invariant systems whose outputs are corrupted

1

ty a white Gaussian noise (WGHN) process. This parallel 3aysian algorithm

~ s - oz - P N I < - e
2nplcys many extended Zalman CTilters (EFK's' whienr simultaneously rerform
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vhe SAP estimation functions. The integration of the a posteriori
density function required %y this method is approximated by a finite

suxn whose elements mey bte ccmputed independently. Noie that this method
of integration is a variation of the rectangle rule, which is known to
be extremely inaccurste unless many grid points are used. Since the
aumber of parallel filters is equal to the number of grid points, it is
entirely possible that a rather large number of filters mey be reguired
to implement this procedure; especially if accurmey is & major consid-
eration.

As en indicator of performance, the parallel SAP estimation
elgorithm was “ested by sclving both a2 first and second order linear
state estima*tion provlem. For these simple examples, the simulations
performed in reference [ 18] indicate that 8-20 parallel filters could
be used without much loss in accuracy of the estimates, Although this
i3 encouraging, it seems more appropriate to test this method on a low
crder, but highly nonlinear, process in whica both the state and para-
Deters of the process must be estimated, TFor this problem, it seems
¢lear that a trade-off must be made between accuracy and the pumber of
Parallel filters required for the procedure to converge.

Parellel Control Algorithm

One of the first attempts to use parallelism to speed wp
optimal control zomputations was reported by Larsen and Tse in refer-
ence .[10]. Iz this paper, a parallel dynmamic progremming algoritham
for solving botk deterministic =and stochastic nonlinear control

problems was developed.,

10




Basically, their method s based upon 2 decomposition c? the

dynamic programming algorithm into a parallel states algorithm, & par-
ellel state and stages algorizhm, a parallel decisions algorithm, s
parallel successive approximations algorithm, a parellel shi®t vector
algorithm, and a parallel state increnment dynamic programming elgorithm,

Larsen =nd Tse's method suffers from the same problems as
their maximum likelihood method previously discussed, as well as the
fact that the parallel state increment dynamic programming algorithm
employs Euler's method to integrate the right-hané side of a nonlinear i
system's equations of motion. Since it is well known that Euler's
method is not very accurate unless extremely small steps are taken, it
aprears that this approach is of little practical value,

1.3 Motivation and Significance

Although nonlinear optimal control and estimation theory has

been xmnown Ir a number of years, the developmernt 02 practical nwmeri- '

cal me;hods based upon this itheory nas teen relatively slow. As

Dointed out in the previous section, the major problems with existing

methods have been a lack of accuracy and excessive computatior time and

that the use of parallelism has been proposed to alleviate such problems,

The survey cf existing parallel estimation end control algo-

rithms indicates that there exists a need to develop more efficient
parallel procedures based upcn modera nonlineer estimation and control
theory. This fect has motivated an investigaticn of several parallel
procedures with the hope that the computation time required for ccn-
vergeace of the new procedures could be significentiy less than

existing methods.

11




The development cf mcre erfficient parallel estirmaticn and

-

control algeorithms is sigrnificent since:

e Farallalism shouli enable the design o nonlinear control systenm

witihcut the need for arprcoxirmating the behavior of highly nonlirear

equations of motion by a linearized model.

e Parallel implementation could speed up computation time enocugh to
perzit modern nonlinear identification, estimation, ard control

algorithms to be executed in real time.

With this in mind, the objectives and contributions of <this
thesis will now be clearly stated.

~.4 Chiectives and Contributions

In Section 1.2 a survey of scme existing parallel identifica-~
tion, estimation, and control algorithms and an eveluation of their
usefuiness and drawbacks was made in terms of accuracy, speed, pro-
zessor requirements and numericzl efficisncy. From this survey, it is

clear that none of the existing parallel algorithss meet all of these

requirements. In view of the atove, the ctiectives of this report are
S 3 [%
ta

e Develop computationally efficient procedures for the identification,
estimation and control of nonlinear dynamical systems which employ
a high degree of parallelism but at the same “ime are not extrava-

gant in the utilization of processing elements.

e Investigate toth analytically z2rd through 2emputer simulation the
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values ¢ certain algoritnm parzreters sc Tzt near sprtinum TerIcr~

e 7Propose a parallel computer architecture suitaeble fcr implementing

the newly develcped parallel methods.

he major contributions which resulted fror conductiing this

research are:
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unconstrainred minimization.

approach =¢ sclving nenlinear two-point boundary value Trotlems.
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e _evalcgment of trocedure wihlzsh automatically adiusts the step size
< - R A 3 q . - o - N - <~
of = rarallel predictcr-correctior integration scheme <0 zalintain a

desired level of accuracy.

e Temonstraticn with representativ

t

exemples *hat the newly developed

parallel algorithms dc indeed perform Tetter than existing seguential

rethnods in terms of speed, accuracy, and reiiacilis
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Stimization problems (such as nonlinear estimation and control
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CHEAPTER TWO
PARALLEL ALGORITIMS FOR THE IDENTIF_CATICH,

ESTIVATICN AND CZCUHTRCL CF ONLINZAR DYHAMICZAL SYSTENMS

In this chapter, a collecticn of parallel algcrithms are
descrited which can be used <o solve acnlinear es*ima%icn 2né zontro:
rroblems on a computer with the facility for large scale parallel
processin We skhall begin our discussion of these technigues by
formulating the nonlinear estimation and control problems in Secticns
2.1.1 and 2.2.1 respectively. In Section 2.1, parallel methods ‘or
simultaneous state and pazrameter (SAP) estimation are presented while

~

carallel contrcl algorithms are discussed in Section 2.2, In Zecticon

o

.3, these methods are combined so “hat the esiimation ané conircl

functions can be performed cn-line in an adaptive fashion,

1
O

It showld be emphasized that the goal of this chepter is
develor algorithxs which pessess z nigh degree of pearelilslism Ttut at

the szme time do not regquire an excessive number o processcrs., This
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acw that the perallel zlgorithm presented in Secticas
2.1, 2.2, and 2.3 should be capable 57 handling “he ncrnlinear trocess
equations directly, represent two of the contributions of this report
Finally, one of the more subtle contributicns developed in
this ckapter I1s an adaptive mesh selection algorithm which optimally
places the mesh points needed by the method of parallel shooting. Neo

that the nmesh point placement is optimal in the sense of minimizing t

maximum local truncetion error associated wi<h integrating diffarenti

2

cuations aumerically,
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3 2.1 Parameter Tientifizeticn and Sta*te Estimation Algorithms

In this section, two methods are presented for simultaneously
astimating the state and identi:ying the parzmeters 2f a nornlinear
dynamical system. The first method is based upon sclving a nonlinear
two-point boundary value problem (NTPBVP) while the seccnd method
requires a direct minimization of a suitably defined cost function.
Before the details of these methods are given, a formal statement of
the state and parameter (SAP) estimation problem is in order.

2.1.1 Problem Statement

Consider the nonlirear dynamical system and measurement

model represeated by

i %(t) = £lx(=),t] + clx(2),tw(¢) (2.1-1)

z(t) = hlx(t),t] + v(z) (2.1-2!

whexre

-
x(t)eR" is an augmented state vector which includes the

unknown parameters, w(t)eR® is a process noise, a2nd z(t)eR®
is the measurement wvector which has been ccrrupted by the
Jeasurement noise v(z).

It is assumed that:

e The initial state of this process is Gaussien with mean Bro and

covariance

E{x(t )x'(t Y=o

e The noise processes w(t, and v(t) are mutually independent zero-mean
white Gaussian noise (WGN) processes with corresponding covariance

matrices

16 L




m
w8 w () = Q(%)8(%=s) T St s ST,
and
fﬂ/ 4
lv(t)v ()} = R(s)&{x-5) oS8 S,
-1
e G(t) and R{z) are positive delinite symmetriz sc <hat § () and j
]
-1 , - [
R7{E) exist T - & oo <. I

let us define Z_ = Lz(T)!tofﬁjﬁ} as the accumulate? ncisy state mea-
surements up to and including time t. The problem is to obtain an
estimate of the augrented sitate vector x(t) at <ime = on the basis
2f the ovservations represented by ZS. Cur interest will be
restricted to the case when s > t in which case ﬁt]s is referred to

as a "smoothed" estimete of x(%).

By defining »lx;:t Z_] as the a2 posteriori provebility that

v

the state vector assumes the value X at time T conéi<ioned upcn
+he measurement data represented by Z,, “he maximum-z-posteriori (MAP)
-

s - X ~MAP (. .
estimate of xtis (denoted as x‘15515 defined by

“

~MAP
p(X.
tis

fo) - o~

iz, ] = max“p(x;t‘zt] t <t <s <t (2.1-3}
[ hi

I+ has been shown {(ef. [:1¢], [20]) that he meximizaticn
indicated in eqn. (2.,1-3) is aquivalen: to finding the deterministic
signal, #(t) te[:o,tol which minimizes the functional

e

= of 2_
= o lste em |12

o]

to .
+ 4 T 20e)-nize),£]] |2 +|15(2)] ]2 Yat  (2.1-4)
RS OIS M IOl

%

(¢
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Note that the SAP estimation problem has teen ccnverted to a
Ceterministic cptimization problem and that once G(t) is found such that
eqn. (2.1-L) is minimized, we may integrate ega. (2.1-5) to obtain the
MAP estimate of %X(t) provided i(to) is known. Although this approach

to the SAP estimation problem is not new, the use of parallelism to expe-~
dite the search for W(t) as well as in integrating eqn. (2.1-5) has not
been considered vefore. These ideas are explored furither in the next

section.

2.2.2 Tndirec: State and Parameter Estimstion Algerithm

In this section, a parallel numerical method vased upsn the
caelculus of variations is presented for simultaneously estimating the
state and parameters of a nonlinear dynemical system. Although this
method can be used <o solve state and paremeter (SAP) es<imation
problems which do not incorporate precess noise into the state model,
“he method will be 2resented assuming that 2 noise process 1s used
o account for modelling uncertainties., Witk this in mind, consider
the optimizaticn problem defined by egns. (2.1-4) and (2.1-5).

To find 9(t) using the calculus of variations, let %he

Hamiltonian be defined as

H=%[Hz(t)-h[5€(t),t]||2 . 1) ]2 ]
rR1(s) D)

+k:(t){f[£(t),t]+G[2(t),t]G(t)} v el , t,] (2.1.2-1)

Then the necessary conditions for optimality beccme:




v m
Moo a(s) = =a(e)5 [2(=), 2 A(e) (2.1.2-2)
EiY
-~ 5H Y o S AR P o+ TGO -
xl\t):,\—‘--__x"\,,‘, \,_+G_x(u>, £ J(v)
2A
12 [R(z), Ale), t] (2.1.2-3)
3" CR(21, 30 -l
\ ‘\: = ..A‘ e L = R - ‘\.4 - .'
( ) ox(t) ( ) \Z(t) qu(t), t]}
m ~ ~ N
R Eilie {CINES R 300 T(4) olR(2), £] &)
AR(x) b 3x(t)
5 alx(e), alt), t] (2.1.2-4)

~

The bournda>y condi<icns associated with eqas. (2,1,2-2 )

(2.1,2-4) are given ty

. “l,a
= - F - - 7 b - )
X(to) on‘X(‘o) LI (2.1.2-5a)
J\(tf) = 0 (2.2.2-5t)

In princizle, the scluticn to the nonlinear two-pcint

-

boundary value protlem (NTPRVP) redresented by egns. (2.1.2-2), (2.1.2-3),

f2.1.2-4) and (2.2.2-3) can be ob%eined using ordinary shooting L7.

but, because computational problems can arise when integrating

eqns. { 2.1.2-3) and {2.1.2-L) forward in time, the following parallel '

Ll

s a2 modification of Keller's approach [217,

[N

shooting procedure, wiich
is recommended.

Parallel Shooting Solutisn of YVenlinear SAP Zstimation Prcblems

To illustrate the procedure egns. (2.1.2-3) and {2.1.2-4) are

concatenated as follows:

!
.
.
i
4




Sc(:}-l Tx(2), M), t]
S 8 sfx(t), x(zr), t]
o) [ slxte), ace), ¢1] (2.1.2-6a)
x(< ) ,;(t ) F\t
A [-==24 + 3B I - 5y Aa
._)‘(to) l_k(tf_)J J_Mtf) (2.1.2-6v)

where @ is a 2n vector of known boundary conéitions and the elemenis

o? the 2nx2wn natrices, A and B, ere chosen suchk tha®t egn. (2.1.2-6v)

is setisfied. By defining y(t) =E-:£L)]a.nd partitioning the intexrval
A(t)

- - Yeb! + =
["c"'fJ into § subintervals £ < b, < ... < =t the NTPBVP

1

represented by eqn. (2.1.2-6) can bhe written as

vym sy el seley, vy (2.1.2-7a)
Ry (x)) + 3y (x,) = @ §=0,1, ..., N=1(2.1.2~T0}
where
y(£) tt-:[tj, tJﬂJ
yyl2) =
0 othervise

Since y(t) is recuired to be comtinusus zt <he pertition »oinis, it is

necessary <het

yd_l(tj) = yd(tj) J=1,2, ..., F-1 (2.1.2-8)
Combining egns. (2.1.2-7) gnd (2.1.2-8) results in the Zollowing
NIPRVE:

4 = F(Y(s), ¢ .1.2-9

1(t) = F(Y(s), &) te [to, t,.] (2.1.2-0a)

Pr, + QY_ =y (2.1.2-9b)

Fere Y(t), F(Y(%), %), Ty, ¥ and ¥ are 2nN vectors defined es:




o

P = e ﬂ
yo\t) sc(t)
v. (=) s, (¢)
S Ple(e),e) o | TS
.vN_l(t) sN_l(t)
e —d - po—
+
yo(to) yo(.l)
-
/4- t
L B y A | =————— -
= x YA [ als,)
i T 0
(ty ) (t,) - -
_ N-1""N l_J | 1 R
with P end Q being 2nWY22Y =matrices of the form
[Ta o. ... 0]} o o....381
0 I0o0.. .0 -1 0. .. .0
. . ) 2 -I0...0
P = Q = 0
0 e oo+ 01 0 .« 0= 0
e — e -

Note that if we could find the constant wvector YZ which

minimizes

2
F = IIPYL + er - vl (2.1.2-10)

subject to ihe dynamic constraint (2.1.2-9a), we would have an estirate

2% the unknewn states and paramaters. 3acause “he cozpenents of

21
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(2.1.2-9a) are uncoupled, they mey de integrated using e parallel
iategration algzerithr by simultaneously shooting over each subinter-
vel. Because eech subin*erval is much shorter than the interval
(£ ,t.], it becomes lass likaly that the integration of the components
of (2.1.2-9a) will diverge, As a result, convergence problems asso-
ciated with excessively large intermediate velues of x(t) or A(t) may
be alleviated by adopting parallel shooting.
In summary then, the parallel algorithm toc be implemented
would be:
Step 0: Record the noisy observations z(t),t s[to,tf], arbitrarily
choose the components of Yi’ and set ':?.(‘~:o)=m.x wvhere m is
o} o
the a pricri meen value vector of the augmented initial state
vector x(t ).
0
Step 1: Find A(to) by solving the linear system
At ) = (m =%(%
Peorts) = (my -&(5))
where Py ig the a priori coveriance matrix of x(to).
Step 2: Using X{(t_ ), A{t ) as the first 2n comporents of Y, and the
maining ccmpenents of YQ, iztegrate “ue componeants of
.1.2=%¢) over each subinterval by emploving a parallel in-
tegration zethod. Then record z{z), and x(t) ¥t ¢ [to, t.].
Step 3: Evaluate the error function
E=||pY, + Qv -v]||?
14 r
Step 4: If the error function is sufficiently small, the currently re-

corded values of %(t) are accepted as the "smoothed" estimates

we desire. Hence, we mey terminate “he algorithm. Ctherwise,




e
S —

using the recorded ncisy measuremenss, 2crpute 2 new value of
Yz so es to minimize E by employing a perailel minimization
method. Now reiturn %o Step 1.

Note that the parallal algoriihm above reduces to 28 varallel

version of ordinary snooting if only one sutinterval is used,

Adaptive Mesh Selection

To implement the parallel algorithm discussed in the previous

section, the mesh points to<t <40. <t =tf must be chosen, Given that

1 N
N has been specified, the problem is to "optimally" select the mesh
points. The technigue we shall propose for optimizing the mesh is

: based upon using the local truncation error associated with any numeri-

k cel method for integrating differential eguaiions.® Upon convergence

cf the procedure, the mesh points will be optimal in the sense of

f minimizing the maximum local <runcation error cover each subinterval.
Formelly, the method is as follows:

tep O: Let N be specified., Then partiticn the interval [to,tf] into

N subintervals of length Ai ¥i=1, 2, ...,N.

R S R i IR i

T i ] I l

“o il “2 “N-1 “wre 1
(0)

Set £=0 and E equal to some large positive real number.
tep 1: Integrate the components of (2.1.2-9a) over each subinterval

i and find 3
i

¥ The loczl truncation error is defined to te the norm of the differ-
ence between the computed solution and the 2xact sclution of an
initial-value problem. Techniques for =stimating this quantity based
on Taylor series approximetions may te found in reference [22].
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v * = <) = 2 WY
ey . <:§f eL(., J=0,%,2,...., U=2
J__J-pl

where e_{%) is the local truncation errcr.
-

a 1 N iy
Swep 2: T e= . e . - t
T et e=(e max® , € max) ani compute
2 < e
le
- (2+1)

(2
-E )I< €, the mesh pcints are accepted. Otherwise
redistribute the mesh using a parallel minimization method

. +
so as to minimize E(2 1) as a function of

subject to
N

ZA=t-t:A > 0.
=1 9 T o7 ;

Set £ « £ + 1 end go o Step 1.

Note that in Step 1 above the local truncation errors caa
be computed simultaneously by separate arithmetic processors. By
cembining the sdaptive mesh selection algeorithx and the parallel
shocting algorithm described in the previous section, we will have a
rapid me<hod for accurately obtaining a MA? estimate of the states
and parameters. |

This is easily achieved dy augmenting Y

Z
with the unknown subinterval lengths 4,,4,, . . ., AN-]. and minimpizing
en err2r Sunction ¢f the form
- 2 2
= ]|P‘.’£+Q‘£r-ﬂi v [leld (2.1.2-11)

subject <o the constraints given oy




2.1.3 ITiract State and Parereter Estimation Algorithm

i+ That is, process noise is omitted Zrom the state model,

“hmen the fixed interval smoothed estimate of the unknown state and

parameters may be found by searching for the vector ﬁ(to) which mini-

mizes the functional

7= lae)-a, |12
o X0

+ 3 Svfflz(t)—h[i(t),tllIZR-l(t)dt
Yo

(2.1.3-1)

subject to

.

(£)=2T%(t),=2] ¥ te [to,tf]. [2.1.3-2)

The most direct method for solving this problem would be o

itially set i(to) to m_ , integrate ean. (2.1.3-2) forward in time
0

over the interrel [to’t‘] and evezluate the perfcrmance index (Z.1.3-1).

&

By considering chenges in the perfcrmance index due to ches
g g e

3]
[1.1]
.3
w
1o
2}

(%), one mey use this informesion <o decide if this procedure sheuld

he repeated. Svrecifically, if the change in J is sufficie

t

ly smell,

%
o]

then X(t_) is accepted. Otherwise, the value of i(to) should be
selected such that the performance index is minimized.

To speed computations, parallel integration methods may be
used to integrate eqn. (2.1.3-2), while the selection of the next
value of i(to) may be made using 2 parailel minimization method.

An example illustrating this procedure is givern in Section

N

2.1 0f%his thesis. For now, however, let us devote our sitenticn to




develcping zarzllel 2lgoriznms for optimal control computations.

This section is zoncerned with the development of »arallel
rumericel mathods Jor symthesizing controls for nonlinear dymamicsl
systems. Specifically, an optimal control algorithm is preserted
in Seczion 2,2.2.1 which incorporates parallel shooting and adaptive
zmesh selection to solve the optimal control problem. This method is
extended to accommodate problems in which the control is constirained
in Section 2.2.2.2. 1In Section 2.2.2.3, = parallel algorithm is
discussed which mey be used to sclve free terminal time problem. i.e.,
droviems in which the terminal time is unspecified and as such must be
osotimized, Fiznally in Section 2.2.2.L, & suboptimal (or direct)
son%rcl procedure is given <o design feedbeck ccnirol laws for non-
linear dynamical systems, .

Le% us proceed by formelly stating the optima®l contrsl

problem,

2.2.1 2Problerm Statement

™ sical process o be controlled is assumed to be 3

1]
g
o g
<

asnsinucus nenlinear dymamical system which can be represented by
x(£) = £{x(£),ult),%) telt ,t.] (2.2.2-1)
where
x(t) € B is the state of the systen,
u(t) € R is the control and r < a.

The terminal time, tf, may be either prescribed or be an unspecified

croblen parameter. It is assumed that 4he initial siate vector x(to)

and M components, 0 < M < n, of the final state vector, x(tf) are known,




: ’ ’ .
fie., x{t )= x_and for M >0, x0T =0, 1 <L <M

The optimel zontrol precblem s that of €inding a centrol

[P

vector in some elmissible set, u{t) € U, which minimizes a perfcrmance

%

o Y - \ - - - (= o - \

J = _O(x'\w‘.)) + f .‘.J(X(t/, u(.,)’ - . i« {\C._...-Z/
- t

houndary conditions. Observe that, if M comporents of the fircal state
recter are known, then these zuanti<ies need not be Incorporated ix

<ne penalty function, $(x(t,)), showr in egn. (2.2.1-2). The soluticn,

2{%) = u*(%), of the optimal control rroblem is called the cpiimal
control and is assumed to exis* and tc he uwmizue,

L3

[¥e

In practice, it is rather difficult <o find the optimel

§2-

2ontrsl since to do so it is necessary =o solve a highly nonlinear

seoint boundary value vprcblem (YTPBYP), Since the scluticn =f

UTE3VE's is often very time consuming, the role of pareilelism might

be <o reduce the computaticrnal burden associated with sslviag NTPEVE's.

IS

This idea i3 pursued further Iz zhe nex:t seczicn.

" -
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2.2.2 Cotimal Zratyrol A_zoritihms

For a corntrol signel to be optimal, Pontryagin's Minimur
Principle [ 23] indicates tha® the control mus: mirnimize the Yamiltonian
defined as 12.2.2-1)
Hix(t), A(£), ul(e)) = Lix{e), u(t),t) + AT(s) flxit), ult), e
where A(t) € R* is the costaze or 2dloint vector. Let u*(%) de an

alement of U and lat x*(%) be =he solution cf egn. (2. L.1-2) which is




dependent cn x*(to) = x¥ and ul{z) = u*(%). Iz order for u*{%t) zo be
the optimal control the following necessary conditions for optizality

nust ve satisfied.

x*(s) = %%(x*(t), A*(<), u*(£)) (2.2.2-2)
(o) = - Er(e), A%(2), uk(z)) (2.2.2-3)
x¥(t,) =0, 1i=1,2, ..., M (2.2.2-4)
A*(g,) = 9, (x*(tf)) i=M+1,M+2, .. .8

- ¢ i (2.2.2-5)
Hix*(t), r#(t), u*(t)) < H(x*{t), A*(t), ult)) (e.2.2-6)
T te [to,tf] ard ¥ u(%) e U (2.2.2-7)

These necessary conditions mey be used tc solve many problems of
interes* in optimal countrol thecry. In particwlar, our efforts will
focus on developing parallel algorithms %o sclve specified terminal
time problems, bounded control problems and free terminal time problems.

2.2.2.1 Svecified Terminel Time Algorithm

_et us assume that the condition

(2.2.2.1-1)
can be explicitly solved for u(t), the comtrsl is not sublect tc a
magnitude sonstraint and the terminal +ime is specified.

Under these conditions eqn. (2.2.2:6) requires that

JE . .

g (), Ar(e), u*(t)) = 0 Fux(z) = nlx*(z), A*(£))

(2.2,2.1=2}

Now consider the system of equatiors

u(t) = ul(x(t), A} (2.2.2.1-3)




’ BH ’ \ -~ 1
SEE Ty (x{t), ML), uls)) = flxic,, 20+, ) (2.2.2.2-4)
foy - SH . . T [
Ae) = - 3% (x(e), M), ule)) = gixlzsy, 2lt), ule), t)

X to\ = X x’(ta) =3, i=1, 2, y M
A(to) = A Ai(tf) = b (x(t,)) 1 =Me2, M#2, ..., n
{ s

Let Q represent that set of vectors for which the syster.
(2.2.2-2) =nd (2.2.2-3), with ult) given by (2.2.2-6), has a unique
sciution ¥ t s[to, tf]. Then for each AO £ Q, there corresponds a

unicue non-negetive value for the scalar functient

M » 1 2
£=7 (2 (t2) =0 )+ ] (A () -6 (x(e,))
j=1 i=Mel  * i 7

(2.2.2.1-6)

The fmcetion E will be referred to as an error funcsion,
Notice that if one could find k; € {I such that the forwerd
iztegration of =qns. {(2.2.2.2-L4) and (2.2.2.1-3) l2ads tc £ = 0, then

Tnhe resuliant sclution of egns. {(2.2.2.1-4) and (2.2.2..-3) sutlect tc

13

2

3
AV
\)
)V

-— -

‘2.z.2. 1-3) would satis®y the necessary ccnditions (2.2.2-2),
(2.2.2-3), (2.2.2-4), (2.2.2-5) and (2.2.2.1-2). The associated
control vector, u(%), as specified by eagn. (2.2.2.1-3) would, there-
fore, be taken as the optimal control‘for the originel optimel control
problem. Since x(to) is assumed to be known, the problerm of finding
k; and hence of solving the optimal control problem is equivalent to

the problem of mirnimizing the error funcion given by eqn. (2.2.2.12-8).

29
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may be accomplished by iteratively updating the initial costate until :
the error functicn {2.2.2.1-6) is minimized., It may be, however, for

eny given initial costate the solution of egns. (2.2.2,1-L) and

(2.2.2.1-5) togetner with 2qn. (2.2.2.1-3) mey become excessive in

magnitude for t < t..

-
4

n order to cove with such situetions, a tech-

nique used by Isaacs [(24] or the method of parallel shooting can be

adopted.

Isaacs Procedure:

It ko € ), then there will, in general, exist some t’<tf
to the left of whish the solution of egnms. (2.2.2.1-4) and
(2.2.2.1-5) together with eqn. (2.2.2.1-3) remains computable.
Consider then the optimal control problem which is iderticel to
the original problem except that tf is replaced by t'. Using ko’
as the "priming guess" at the optimal initial costate for this
modified optimal control problem, a solution can be obtained and
the resulting initial costate, ié, is tak;n as & candidate for
membership in . If Xgeﬂ, tf may be replaced by its original value
and the solution to the original optimal control droblem can be
pursued.

I#, however, Xgiﬂ, then there will, in genmeral, exist t",
t'<t"<tf, such that the solution of eqms. (2.2.2.1-4) and (2.2.2.1-5)
together with eqn. (2.2.2.1-3) remains computzble to the left

of t". A new optimal conirol problem in terms of +" is then posed

and the process is repeated.




b Experience with Isaacs' method indicetes that this method
is particularly well suited only for problems with relatively short
mission +times. This is a result of the fact that, if the mission
time is ‘oo long, the sensitivity of the solution to smell changes in

<he initial costate becomes oo excessive for the Isaacs method to

overcome, ror short, mission times, however, convergence to an
element, A*o € €, is quite rapid. Convergence may be accelerated
still further if parallelism is introduced when integrating the state
end costate equations forward in time. Also, the selection of the

next value of the initial costate can be made using a parallel minimi-

zation procedure,

Parallel Shootinaz Sclution ¢f Ovtimal Control Problems

In some cases, the problem under consideration may be sen-

sitive to small perturbations in the initial costate and, as z result,

convergence to az optimdl sclution may ve slow (if convergence ccocurs

at ail), In this situation, parallel shooting has proven to de very
effective in alleviating such problems. By invoking the principle of
duali%ty, the parallel shooting procedwre described in Section 2.1.2
tc sclve cptimal estimmetion problems may be employed to sclve optimal
control problems alsoc.

To illustrate the parallel shocting procedure for optimal

control probiems, eqns. (2.2.2.1-4) and (2.2.2.1-5) are concatenated:

| x(t)) _ £(x(t), ult), t)
i(t) glx(t), X(t), ult), %)

A s(x(t), A(t), ult), &)

(2.2.2.1-Ta)
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x(t ) x(t ) (t)
=2 + B LI oo Lo
M) Megd ] |2 e (2.2.2.1=Tb)

where 0 is a 2n vector of known boundary conditions and the elements

of the 2nx2n matrices, A and B, are chosen such that eqn. (2.2.2.1-Tv)

is satisfied. By defining y(t) = x(t) and partiticning the interval
At)
[to,tf] into N subintervals v < %, < .... <t =t., the NTPBVP
represented by eqa. (2.2.2.1-7) can be written as
V.= s , t telt,, t .2.2.1-8a]
Yy = 5ylyy, t) [ty y41] (2 1-8a)

Ay (e)) + Byg ,(t,) = Jj=0,1, ..., §-1 (2.2.2.1-8)

where

y(t) et ]

3 F
yd(t) =
0 Otherwise
Since y(t) is required to be continuous at the partition points, it is
necessary that

¥y.1(ty) = vyt 3=1,2, ..., ¥-1 (2.2.2.1-9)

Combining eqns. (2.2.2.1-8) and (2.2.2.1-9) results in the following

NTPRVP:

() = P(Y(t), t) telt,, t.] (2.2.2.1-10a)

bil
sz + QYr =y (2.2.2.1-10b)

Here Y(t), F(Y(t), t), Yﬁ‘ Y. =ad Y are 2nX vectors defined as:




1 —————— ————— 0

Yyr (T q) Vo1 (Eg)
RSSO | B

4 e . 0) B .. .. B

O I0...0 I 0....0

. . . ¢ -I0...O0

P = . Q= . 0
0 .

L_o ... 01| 0 ...c-T0

In view of this formulation, the parallel variation of

extremels algorithm considers the selection of Yz to minimize

i 2
T All P+ @ -yl (2.2.2.1-11)

subject to the dynamic constraint (2.2.2,1-10a). This defines a new

optimization problem inwvolving constant rather than time varying
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unknowns, Cbserve that finding the vecior YZ such thet E £ 0 is
equivalent to satisfying the necessary conditions for optimality.
Also, it is irportant %o note that the components of eqn (2.2.2.1-10a)
are uncoupled and hence may be integrated by simultaneously shooting
over each subinterval,
In sumary then, the procedure to be followed is:
Step 1: Arbitrarily chocse the components of YZ'
Step 2: Integrate the components of egqa. (2.2.2.1-10a) simultaneously
starting at Yﬁ using a parallel integration scheme.
Step 3: Eveliate the error function E A || PY, + Qf_ - ||2
Step 4: If the error function is sufficiently small, then Y, is ac-
cepted. (therwise, update Y, such that E is minimized

L

by using e parsllel minimization procedure. i
Note thaﬁ the parallel algorithm above reduces to a parallel
version of ordinary shooting if only one subinterval is used. In this ‘
case, however, the algorithm may still be considered a parallel method
since the differential equations may be integrated using s parallel
integration scheme. Alsoc, the partition points required by this algo-
rithm may be optimally selected via the adaptive mesh selaction algo-
rithm, discussed in Section 2.1.2.

2.2.2.2 Bounded Control Algorithm

The techniques described in the previous section can be

extended to problems with control constraints of the form:

u,(*) <3

b

¥te [to, t.] i=1,2, ..., r (2.2.2.2-1)

i

The method for handling constraints of this type is based on the fact




that for each t € [to, tf], u*(t) is either on its boundary or

— {(x*(t), A®(t), u*(t)) = 0. Consequently, in the evaluation of the

error functions described in Section 2.2.2.1, u(t) is replaced by

n(x(t), A(£))  for b (x(t), A(t)) B, £= 1,2, ...,z

u, (t) = ,
B, sgn (hi\x(t), A(t)) otacrvise (2.2.2,2-2)

The approsch can also be extendel to scme cases where
%%{x(t), A(t), u(t)) = 0 can be explicitly solved for the control.*
For example, consider
B(x(8), A1), u()) = P (x(£), A(£)+F,(x(t), M(t))ult)
(2.2.2.2-3)
where ugt) i_Bi, i=1,2, .., T ¥ te[to, tf]
In this case, the extremization required by eqn. (2.2.2-6) is carried

out directly. Thus, eqn. (2.2.2.1-3) is rerlaced by

u(t) = - B sgn (F2<x(t), Ae))) (2.2.2,2-k)

Note that this technique regquires that

Folx(e), AMt)) # 0 ¥ telt s tf]
since eqn. (2.2.2.2-L) would be undefir 4 in this case. Note that if
this cccurs on the optimal trajectory, <he problem is called &

singular control problem,

2.2.2.3 TFree Terminal Time Algorithm

To accommodate problems when t_, is free, we utilize the

£
necesgsary coadition

H(x*(t), A*(t), u*(t)) =0 ¥ ¢ [:o,t;] (2.2.2.3-1)

* Note that the bang-bang control problems fall into this category.




In particular, since the Hamiltonian must bte zero at t = to’ the

following constraint must be satisfied.

H(x(to),.k(to), u(to)) = 0 (2.2.2,3-2)
Incorporating the constraint given by eqn. (2.2.2.1-3) into eqn.

(2.2.2.3-2), results in
Hx(t,), At.), B(x(t)), At)) =0 (2.2.2.3-3)
For computational purposes, we restrict our consideration to those

cases where eqn. (2.2.2.3-3) can be explicitly solved for one of the

components of the initial costzte vector. For convenience, assume

this to be the first component of X(to).f From eqr. (2.2.2.3-3), it can
be seen that Al(to) is a wmique funetion of x(ts) and the remaining cor-
ponent of the initial costate vector.

Let this value of ll(to) be defined by:

kl(to) = (x(to), A(t,)) (2.2.2.3-4)
wvhere the (n-l1)-vector A(to) is defined as

T
3(to),...,kn(to))

N 4

Me ) & (e ), A
In view of eqn. (2.2.2.3-4) and the fact that tf is unspecified, a
suitable error function which must be minimized by selecting tf and

~

A (to) would be
M M .
A 5 2
E = igl (xi(tf)’ci) +iZM+l (Xi(tf) - ¢xi(x(tf)))

(2.2.2.3-5)

Clearly, this error function can be viewed as e function of the

* If this is not the case, we simply reorder the components of the
initizl costate vector.
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followirg n-vector:

N A T
(200 Me D) S (£ph50z0), Aglt ) ,nn A (2 ))0

Cbserve that if one could find (tf, k(to)) € Q such that E = 0

sublect to the comstraints of egn. (2.2.2.1-3), (2.2.2.1-4), (2.2.2.1-5),

(2.2.2.1-2) end (2.2.2.3-1), then the corresponding control

vector as given by eqn. (2.2.2.1-3) would be the optimal control for
the original optimal control problem. Notice that this is equivalent
to minimizing the error function (2.2.2.3-5) subject to the constraints
of eqns. (2.2.2.1-3), (2.2.2.1-4), (2.2.2.1-5) and (2.2,2.3-4).
In sumary, free terminal time problems may be solved using
the following parallel algorithm:
Step 1: Arbitrarily select the components of the n-vector (tf, i(to))'
Step 2: Using x(to) and i(to), evaluate kl(to) using eqn. (2.2.2,.3-L4).
Step 3: Compute u(to) from eqn. {2.2.2.1-3) and use a parallel inte-
gration method to integrate the components of eqns. (2.2.2.1-4)
and (2.2.2.1-5) starting with x(t_), i(to) and A, (£ ) over
the interval [t ,t.].
Step L. At time tf, evaluate the error function given by eqn.
(2.2.2.3-5).
Step 5: If the error function is sufficiently small, stop; otherwise
use a parallel minimization algorithm to update (tf, i(to))

such that eqn. (2.2.2.3-5) is minimized.

2.2.3 Subovtimal Control Algorithm

In the previous section, various parallel methods were
discussed which could be used to design optimal contrel systems.

Although a controller designed using these methods is optimal in the




\

sense of satisfying the necessary conditions for optimality, the

resultant control system is open loop and, as such, may be very sen-

sitive to environmental disturbances. Thus, it seems appropriate to
consider metheds for designing a closed loop control system to over-
come such problems. With this in mind, the fcllowing parallel method
is proposed.

Suppose the controller is constrained to be of the form

u(t) = nlx(t),t] ¥ toelt ,t,] (2.2.3-1)

wvhere h{x(t),t] is assumed to ye continuous and specified by the con=
trol system designer up to a set of constants. For example, to design
a8 linear feedback contrnller cne might select

u(t) = b{x(t),t] = kx(t) (2.2.3-2)
where k is a guin matrix whose elements must be determined such that
the closed loop system is stable. Once the structure of the controllér
has been specified, the problem is simply to find a finite number of
constants wvhich minimize:

t
7= olxleg)eg ¢ f TLlx(t),alx(t),t],8)at (2.2.3-3)
t
(0]

subject to the dynamic constraint given by
x(t) = £lx(t),nlx(t),t],t]. ' (2.2.3-h)
If we let K = (kl’ k2,A...., km) be the vector of unknown
constants to te optimized, then the optimal elements of X may be
found as follows:

(0) such that

Step 0: Let u(t) = h(x(t),t] be specified and select K
the forward integration of eqn. (2,2.3-4) is stable

over the interval [to’tf]' Set £ = 0.
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Q\
Step 1: Given K< ’ and the kxnown initial state x(to), integrate

eqn. (2.2.3-4) forward in time over the interval [to,tf]

using a paralilel integration schenme.
Step 2: Evaluate %“he performance index:

t#‘
J = ¢(x(tf),tf) + t‘L(x(t),u(t),t)dt
o

step 3: 1¢ |0E) .

J‘£)|<e, then the current value of K is accepted
and the procedure is terminated. Otherwise, use a parailel
minimization procedure to update X such that J is minimized.
Then set & =+ 2+1 and return to Step 1.

Clearly, the simplicity of this method and thé fact that the
controller utilizes feedback makes this method very attractive. Also,
by incorporating parallel algorithms in Steps 1 and 3 sbove, the com-
putation time required for convergence can be significently reduced,
Pinally, it should be noted that the direct gain optimization proce-
dure above is the dual of the‘direct state and parameter estimation
algorithm discussed in Section 2.1.3.

2.2 Adaptive Control and Estimation Algorithms

Focr many physical processes, variations .in the environment
necessitate major modifications in the control strategy to meet oper-
ating requirements. 1In sﬁch caseg, an adaptive control system might
be employed tc provide near cptimal control in spite of eanviroumental

! disturbances. In this section, an explicit adaptive control scheme
is described which employs parallel algorithms to generate a control
signal in response tc paremeter changes tracked by an adaptive para-

| meter identifier. Since, in many cases, the state variables required
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oy the explicit adaptive control scheme are nct accessible, the

unknown states of the system must be estimated simultaneously with
“he parameters.
Jue to the fact that the parameters may be rapidly varying,

“he role of parallelism would be to reduce the computatior time needed

%o update the pararmeter velues, state estimates and subsequently the
control law, In particular, the state and parameters may be updated
by using the parallel state and parametsr estimation algorithms dis-
cussed in Section 2.1 on a "windew" of measurement data and then the
parallel control algorithms of Section 2.2 could be employed to update
the control based upon the latest estimates of the states and para-
meters.

To this effect, this section will be ccancerned with devel=-
oping parallel algorithms for rapidly performing nonlinear estimation
and control in an adaptive fashion. Note that the major goal is to
utilize these parallel algorithms in an explicit adaptive controller
of the type shown in Figure 2.1. Hopefully, the use of parallelism
will permit the cn-line implementation of such a system. To this end,
let us proceed by formally stating the adaptive control problem.

2.3.1 Problem Statement

Consider =a stochastic nonlinear dynamical system and mea-
surement model represented by

x(t) = £{x(t),ult),t]) + 6[=(t),thwe(t) (2.3.1-1)

z(t) = hix(t),t] + v(¢) (2.3.1-2)

vhere x(t). is an augmented state vector which contains any unknowm

parameters, u(t) is a control, and z(t) is a measurement vector.
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The noise processes w(:) and v{z) are mutuelly iniependent zero-pean

ot

white Gaussien ncise processes with corresponiing tcvariance matrices

Jo (50}

E{w(

t

Q(x)8t=5s) t.o< T, s ST,

and

E{v(t)v-(2)}

e

R(£) 3{s=s) TSt s St
Also, it is assimed thet the initial state, x(:o}, is Gaussiar and
wcorrelated with w(t) and v(¢). Purthermore, consider the performe
ance critericn

7= 2olxte,),e,) +f

k() ,ule),plae) o (2.3.1-3)
0

t

where E {‘} is an expectation operator. The ctjective is ‘o determine
the control, u(+), which minimizes eqn. (2.2.1-3) sutject tc “he sto=-
chastic dynamic constraints given by (2.32.1-1) and (2.3.1-2).

The approach we shall taske in solving this siochastic control

[

oroblem is similar to that of Larsen and Tse (11, whe propcsed separat-

ing this problem into a deterministic zontrol croblem and a nonlinear
estimation problem. 3Basically, the apprcach is as follows:

Suppose Tor a given system, the state and & nominal set of
parameters which define the systems eguaticns ¢f motion are known at
the initial time. Because the structure of the estimator and coatroller
shown in Figure 2.1 1s assumed tc be known, we may set the appropriate
parameters in the adaptive estimator and contrecller %o their nominal
values beforse the process Lo be controllied is started, When this
initialization is complete, the process is started and “he centrol
is computed on-line and epplied to the plant zs the process evolves

for all ¢ > ¢t .
-z
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To account for uncertainties in the plent parameters and
disturbances, it maey be necessary 1o adapt +the control during the
mission time interval ::c,tf]. This mmy be accomplished on-line by
updating the contrcl Dy emplcying the parellel control algorithms
discussed in Section 2.2  at the adaptation times Y where

i o’ F
However, to use the algorithms of Section 2.2., an estimate of the
process parameter:z and unkinown state variables must be available at
the time of adaptation. These estimates can be acquired by recording

the noisy observations z(t) over the interval [t,,t on-line and

i+£
using the nonlinear SAP estimation algorithms discussed in Section 2.1.
The idea cutlined abcve forms the basis for the explicit
adaptive control scheme which is iliustrsted by the timing chart shown
in Figure 2.2. With this background, we can proceed to the next
secticn, in which the details of the adaptive control scheme are

vresentec.

2.3.2 Direct Zxplicit Admptive Control

In thkis section, an explicit adaptive control scheme is pre-
sented which utilizes *he direct estimation and control algorithms
discussed in Sections 2.1.3 and 2.2.3 respectively. In particular,
consider the state and measurements models given by eqns. {2.3.1-1)

and (2.3,1-2) with w(t) =0 ¥ t

™M

[to, £ _.]. That is, no process noise
4

e
w
(o]
2]
o
192}
D
[a]
t
H
<k
I
ur
w

ssumed that the nominal initial state of this
process is xnown and a nominal set of parameters-which define the
dynamics represented in eqn. (2.3.1-1) are given. Also, let us assume

" . 2 e r‘ . oL . Y :
-8t T b8 - v s 2 Tne
tha%t the mission me | ° tp] i3 finite with the partition
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t <t.<t, L. <E

<t, = t,

o "1 72 "n=1 "N f

and that the control law to be optimized is linear in the
svate as follows:

u(t) = Kx(t)
To implement the explicit adaptive control scheme, a sequence of
control and estimation problems must be solved. In particular, the
following must be solved cn-line:
Control Problem:

te
min J, =f L{x(t),kx(t), t]at i=0,1,2, .. (2.3.2-1)
t,

K
i

subject to x(t) = £[x(t),Kx(t),t].
SAP Estimation Problem:

min

= ftiﬂ % 2 i =0,1,2 N
2(s,) J, =% . [1z(t) - h[x(t),t]lIR_l(t)dt i=0,1,2,...,)

* (2.3.2-2)
subject to

2(t) = £{R(t),K&(t),t].

Note that %(t) is an augmented state vector which contains
the unknown parameters to zllow the simultaneous estimation of the
stetes and parameters,

In view of the above protlem formulation, the following parsl-
lel procedure might be employed toc adapt the control in response to

parameter changes detected on-line.

Explicit Adaptive Control Algorithm ~ Direct Method

Step O: 1Initialize the estimator and controller with a nominal set of

parameters and control gains. Start the trocess and apply the
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control which 1s computed based upon the nominal quantities
as the process eveolves for t > £, Set 1 = 0.

Step 1: Throughout the interval ts[ti,ti+lJ record the noisy measure-
ments z(t) and the control u(t). At time ti. s use the
recorded values to update the estimates of x(t) by minimizing
eqn. (2.3.2-2) using the direct SAP estimation algorithm
discussed in Section 2.1.3.

Step 2: Reinitielize the controller with the updated estimates of
2(ti+l) and reoptimize the control gains over the interval

(t tf] by minimizing eqn. (2.3.2-1) using the direct gain

i+1?
optimization procedure presented in Section 2.2.3.

Step 3: 1If ti+l<tf’ apply the reoptimized control to the process for
t z'ti+l’ set i+ i+l and go to Step 1. Otherwise, stop since

the mission time has been exhausted.

The optimelity of the control histories generated according

to the above procedure primerily depends upon two items:

e The reliability of the state and parameter estimates obtained at
the adaptation times.

e The ability of the parallel algorithms to redugce the performance
criteria given by eqms. (2.3.2-1) and (2.3.2-2).

The stability of this algorithm depends mainly on how far
the actual process parameters are from their nominal wvalues when the
process is started, the degree of parameter variation during the
mission time and the frequency of adaptation.

Although the explicit adaptive control algorithm previously

described employed the direct estimation and control procedures, it
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could Just as easily employ the indirect methods discussed in
Sections 2.1 and 2.2. In this case, these methods would be used to
solve the NTPBVP's associated with the optimal control and estima-
tion problems. Note that if parallel shooting is used, the adapta=-
tion times should correspond with the mesh points required by the
parallel snooting method. It should be emphasized that no matter
which parallel algorithm (direct or ‘indirect) is employed to perform
the estimation and control cperations, the role of parallelism is to

reduce the computation time enough to allow the on-line implementation

of the explicit adaptive control scheme.




CHAPTER THREE

PARALLZL ALGORITHMS FOR REDUCING COMPUTATION TIME

To reduce the amount of computation time associated with
the parallel algorithms described in Chapter Two, one may employ
parallel minimization algorithms and parallel methods for integrating
ordinary differential equations {ode‘'s). Specifically, a reduction in

computation time is possible because:

e Parallel minimization algorithims generally require fewer iterations

to minimize a function compared with serial methods.

e Parallel integration procedures allow many of the arithmetic oper-
ations associated with integrating ode's to be performed simulta-

neously on separate processors.

In Section 3.1, a survey of parallel minimization procedures

is presented. Also in this section, a class of parallel rank-two
quasi-Newton methods are developed which is one of the major contribu-

tions of this thesis.

in Section 3,2, parallel integration methods are surveyed
and one of the methods is extended so that the integration step size
is automatically adjusted to maintain a desired level of accuracy
while keeping the parallel structure of the algorithm. The develop-
ment of such a& parallel variable step size integration scheme is a
significant contribution in its own right.

Finally, tbe advantages of utilizing the new parallel methods

developed in this chapter are illustrated by comparing these methods
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With regard to the monotone sequence, it has been observed

that if this sequence is selected such that it approaches zeroc too rapid-
ly, then the total number of functiocn evaluations required to locate the
minimum becomes needlessly large and as a result, the amount of time re-
quired for convergence increases significantly. On the other hand, if
the monotone segquence approaches zero too slowly, these relatively large
values may cause the Chazan~Miranker algorithm to become unstable.

Experience with the Chazan-Miranker method indicates that

the performance of this method is highly dependent on the choice of

algorithm parameters which is not wvery desirable.

Parallel Variable Metric Algorithm

Straeter has developed a gradiernt-based parallel variable metric
(PVYM) algorithm which can ve implemented on modern parallel computers ;
[26]. Ome of the properties of the PVM algorithm is that if the func- i
tion being minimized is a quadratic in n variables, then the iterates
will converge to the location of the minimur in one iteration provided
n levels of parallelism are used. Also, Straeter has shown that for
strictly convex functions on a finite dimensional space, the i{terates
converge to the minimum provided the metrics are uniformly bounded.

Straeter's PVM algorithm is a parallel version of Broyden's |
symmetric rank-one procedure [29], which requires at most n iterations
to find the minimum of 2 quadratic function in n variables. Note that
when minimizing a quadratic, the PVM algorithm is n times faster than
the symmetric rank-one procedure. Although this is highly desirable
and the major reason for developing & parallel minimization procedure,
Straeter's method suffers from the same problems associated with

Zroyden's syrmetric rank-one procedure.




with some existing minimization and irntegration algorithms.

3.1 Parallel Minimjzation Algorithms

In this section, methods for unconstrained minimization

are discussedwhich are suitable for modern parallel computers. At the

present time, only three algorithms have been reported which possess

this feature. These methods include the nongradient algorithm of
Chazan and Miranker [25], the parallel variable metric (PVM) algorithm
reported by Straeter [26], and the parallel Jacobson-Oksman (PJO)
procedure developed by Straeter and Markos Corl.

These parallel procedures are described in some detail in

Section 3.1.1 to motivate the discussion of a class of parallel guasi- é
Newton (PQN) methods which is developed in Section 3.1.2. In Section f
3.1.3, the PQN method is tested by minimizing a standard set of test |
functions and the performance of this new method is demonstrated by ‘
comparing it with some popular minimization algorithms curremtly in .

use.

3.1.1 A Survey of Parallel Algorithms for Unconstrained Minimizaticn

In this section, three parallel algorithms for unconstrained
minimization are discussed tc provide sn indication of the state-of-
the-art in this area of research. The methods to be considered include 4

the nongradient algorithm of Chazan and Miranker [25] and the gradient-

dependent algorithms developed by Straeter [26], [27). The mathematical
details of each parallel algorithm may be found in the Appendix, while a
brief review of their properties and shortcomings is given in the re-

mainder of this section.

Chazan-Miranker Algorithm

Chazan and Miranker have developed a parsllel nongradient
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algorithm for unconstrained minimization which is suitable for execu-
tion on an array of parallel processors (25]. I+ can ve shown that
this algorithm will converge for strictly convex, twice continuously
differentiable functions. Moreover, if the function to be minimized

is a quadratic in n variables, the procedure will require at most n2

one-dimensional minimizations to converge. Since these one-dimensional
- . .minimizations can be performed simultaneously using n levels of
parallelism, at most n iterations would be needed. Note that this is
significantly faster than the serial Zangwill-Powell nongradient
method [28], which requires approximately n° sequential one-dimensional
mainimizations to find the minimum of a quadratic in n varisbles. This

implies that the speed-up due to parallelism increases linearly with

the number of processors wher minimizing a gquadrati: by the Chazan-
| Miranker algorithm.

The Chazan-Miranker algorithm is based on the properties

of conjugate directioms. In fact, it can be shown that the search
direction vectors generated by this algorithm form a set of conju-

gate directions. By searching along these directions, convergence

is guaranteed (at least when the function being minimized is convex).
! The rate c¢f convergence, however, depends primarily on the accuracy
of each line search and a monotone decreasing sequence tending to
zero.

With regard to the line search, provisions must be made
for allowing both positive and negative values of the linear search
parameter because the search directions generated are not necessarily
descent directions. Note that this complicates the line search algo-

rithm to some degree.
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The most noteable problem with all rank-one algorithms (serial
or parallel) is that the update rule used to construct the inverse
Zessian is numerically unstable. That is, the update 1s undefined B
when certain vectors are orthogonal. Unfortunately, this occurs quite
often when applying Straeter's method to nonquadratic functions and
generally results in a nonpositive definite update, Also, Straeter's
PVM algorithm requires accurate gradient information for the method
to converge. Since the gradient of highly complex functioms is diffi-
cult at best to compute numerically, this problem may sericusly limit
the application of Straeter's method.

Parallel Jacobson-Oksman Procedure

Another gradient-dependent method for unconstrained mini-
mization which exploits the parallel computing capabilities of modern
parallel computers is the parallel Jacobson-Oksman (PJO) procedure re-
ported by Straeter and Markos [27]. This algorithm is a modification
of the sequential Jacobson-Oksman (SJO) procedure [30] which assumes
“hat the function being minimized is homogeneous. Because the class
of homogeneous functions contains the quadratics as a subclass, homc-
geneous functions are therefore richer than the guadratics. Mors=over,
functions which have a singular Hessian at the minimum can be more
accurately approximated by a homogeneous model.

At each iteration of the PJO algorithm, a linear system of
n+2 equations must be solved. Straeter has shown that if the sclution
of this linear system exists, and the function being minimized is homo-
geneous in n variebles, then the PJO algorithm will converge to the

minimum in one iteration provided n+2 levels of parallelism are used.
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By ccmparison, the 3JO procedure requires n+2 iterations to minimize
a homogenecus function in n variables. traeter also shows that the
PJO algorithm will converge to the location of the minimum of any

function with a continuous, uniformly positive definite matrix of

seconé partial derivatives.

Although the PJO algorithm is relatively efficient, if has
been reported in (273 that in practice the PJO algorithm may not per-
form better than the SJO algorithm. Straeter also indicates that the
major problem a;sociated with the PJO algorithm is its limited robust-
ness. The term robustness used by Straeter refers to the relative
insensitivity of the PJO algorithm to the magnitude of the basis vec=-
tors needed by the PJO algorithm. In fact, if the magnitude of the
basis vectors is too small, the linear system which must be solved at ?
each iteration may not have full rank or may be very close to being
singular. The problems cited above are not very encouraging and seer
to indicate that much care must be taken when using the PJO elgorithm.

In view of the problems associated with the parallei minimi-
zation algorithms discussed in this survey, it appears that there exists
a need to develop a more robust and deperdable method for minimizing a
function of several variables. In the n2xt sectiom, a class of éarallel
rank-two quasi-Newton methods are presented which are shown to be more

robust and dependable than currently existing procedures.

3.1.2 A Class of Parallel Double~Rank Quasi-Newton Methods

In the previous section, a survey cf parallel minimization

; methods was presented and the shortcomings of these methods were cited.

Since the time of their development, new results have appeared in the
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literature which may be amenable to parallel computation. In particu-
lar, Broyden [29] has introduced a family of variable metric formulee
which are useful for function minimization and have the desirable prop-
erty of quadratic termination provided accurate line searches are used.
Imbedded in Broyden's class of quasi-Newton methods is the Davidon-
Fletcher-Powell (DFP) method [31], the Broyden-Fle%cher-Shanno (BFS)
method [32] and the symmetric rank-one (SR1) method [29].

Analytical and empirical studies by Dixom [33] and [3u4], anmd
Himmelblau [35] indicate that the BFS rule is generally preferable to
the DFP and SRl updates because of its reliability of convergence for
a wide class of problems. In view of these results, the remainder of
this section is concerned with restructuring Broyden's class of quasi-
Newton methods such that the modified procedure posses a high degree
of parallelism. A particularly interesting outcome of this work is a
class of parallel double-rank quasi-Newton methods (such as a Parallel
Davidon-Fletcher-Powell (PDFP) method and Parallel Broyden-Fletcher-
Shanno (PBFS) method, as well as a parallel version of the symmetric
rank-cne method. It is felt that this new class of parallel guasi-
Newton methods potentially can be far superior tq the parallel methods
surveyed in Section 3.1.1.

3.1.2.1 The Parallel Quasi-Newton Method

In this section, a gradient-dependent parallel algorithm
which employs a rank-two correction to approximate the inverse Hessian
matrix associated with Newton's method is developed. One of the de-
sirable properties of this new parallel minimization algorithm is that

if the function being minimized is a quadratic in n variables, then
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the inverse Hessian can be constructed exactly in one iteration, pro-

vided n+¥l levels of parallelism are used. This property of the parallel

quasi-Newton (PQN) method will be proven later in this chapter. At
this time, however, it seems appropriate to formally present the method.

Parallel Quasi-Newton Method

. (0) (0) .
Given x , H ,and T = \Gl, 02, e n

let £ = 0, m = 2, and perform the following steps:

Step 1:
a. Let xJ = x(l) + cd. Then simultaneously compute:
L
s(x( )) and g, = g(x,)

J
¥3j=1,2, ..., n

b. Simultaneously compute the gradient differences:

(l))

y‘j’SJ-s(x 3311 2a°"sn
tep 2:
i. = 7i i t for s ©
Let al = ol and solve the fcllowing linear system fc cml n2?

.. (o] H
> "m,m-1
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Then construct the direction vector:

m-1

20 + c . C
LD

m 4
3=1

If m < n, set m * o+l and repeat this step. Otherwise, go to Step 3.

Step 3:
a. Compute "n+l" gradients of f(x) at "n+l" distinct points in

parallel:

x(4))

gl and 8, = g(x +4d,) j=1,2, ...,

b. Compute the graaient difrerence in parallel:
L
())

yj=sj-s(x J=1,2, ...,n
Step Uu: .
Update H using "n" rank-two corrections. Let Hé2+li = H\z),
¢ £ [0, 1] and compute:
T {(&+1) (2+1) T
d, 4 (H y,) (B ¥.)
gll) _ (W) 79§ gel 730 gl )
3 J-1 o y'1’ H(2+l)
17y PR B R
T J=1, 2, ..
+*
LS
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where
L(2+1)
[T (2+1) 2 dj B0y
Ve Ty Wy vy T TS
R Yy fier Y
Then set H(2+l) = Hi2+l)
Step 5:

Perform a line search in the direction s as follows:

min f(x(z) +as)
where

o = ) (0,
and set x(2+l) = x(z) +a s,

L+3 '3
If !f(x( +L)) - f(x< ))I < e, stop; otherwise, set L - f+1, set

OJ =4, ¥3J=1,2, ..., n and go to Step 2.

It should be pointed out that a fundamental need of the PQN
method is the solvability of the linear system of equations shown in

Step 2 of the algorithm. The issue of solvability will be analyzed in

the next section assuming the function teing minimized is quadratic.
However, a rarnk test should be incorporated into the linear equation
solver fo test for solvability at each step of the iteratiocr.

3.1.2.2 Properties and Convergence of the PQN Method

In this section, an analysis of the PGQN method will be con-
ducted to demonstrate the properties of this algorithm and show that
the algorithm will converge in only one iteration to the minimum of a
quadratic function. If the reader is not particularly interested in
the mathematical details of the convergence proof presented ir this
section, but is more interested in the performance of the PQN algo-

rithm, he should move on to Section 3.1.3 since the rest of this report
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may be read without an understanding of the following analysis.
To begin our study of the PQN method, the following defini-
tions are in order:
Definition: A function f: R® + R' is said to be quadratic if f is of
the form:
flx) =% xT Ax + bT X + ¢
where the A matrix—is positive definite symmetric (pds).

d

Definition: Let A be pds. Then a finite set of vectors dl’ d2, vees &)

is said to be mutually conjugate if

di A dk =0 ¥ i # k.

_At this time, & number of propositions will be stated and
proved which summarize the properties of the PQN method.
Ultimately, these results will be used to prove convergence
of the PQN methbd.

Provosition 3.1: Let f:Rn > Rl be quadratiz and »,, J =1, 2, ..., n

b

be an arbitrary vector. If X, = x +b,, and y,k =

J J J
X - , tb = ADb,.
s(xj) g(x) en y, 3
Proof: Since f(x) = 3 xT Ax + bT X + ¢, we have

¥y o= Alx + bJ) - Ax = ADJ,

At this point, it will be shown that the direction vecto:s
generated according to Step 2 of the PQN method form a set

of mutually conjugate directions.
Proposition 3.2: Let f: Rn *-Rl be quadratic and suppose

= (cl, Tps vvvs cn) =cI; c> 0.
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If the sequence of linear systems shown in Step 2 of the

PQN method is solvable when 4. = 0, and

1 1
i-1
d = i = .
5 cl+z cljoj 2, »
J=1

then

T
diAd15 0 ¥1i#k

Proof: This proposition will be proven in two steps. First, the re-
sult will be shown for the first iteration of the PQN method
and secondly, for all other iterations.

Since f is quadratic, the result of Proposition 3.1 implies
that y.j = A OJ ¥J3=1,2, ..., nin Step 1 of the PQN method.
By direct computation,

i-1

T T T
diAd.K=0iAdk+z Ci,jchdk

J=1
-1

_.T T

=y, 4 + z TR 4 (3.1.2.2-1)
J=1

¥i=2,3, ...,n and k=1,2, ..., i-1
In view of the structure of the linear system shown in Step
2 of the PQN method, it should be clear that the linear system

of equations may be written as follows:

0 (3.1.2.2-2)




By the solvability hypothesis, however, the ciJ's can be found

to satisfy eqn. (3.1.2.2-2). But this implies trat
dT A =0 ¥i#fk
3 A%

Hence, the direction vectors generated during the first itera-
tion of the PQN method are mutually conjugate.
Now consider all other iteratioms.

In Step S of the PQN method, 0, = 4 ¥i=1,2, «cey 0y

J 3’
i.e., the tasis vectors are set to the most recent set of
mutually conjugate directions. Hence, yJ = A d, for all remain~

ing iterations, Now let d depncte the updated value of d. Then

i-1 k-1
AT A T _
diAd.k=(di+ZciJ dJ)A(d.k'PZCkEdz)-O
3=1 2=1

¥i=22,3, ....n ad k=1,2, ..., 1-1

since the d,'s are mutually conjugate.

J

The next result shows that if the function being minimized is
quadratic, then the linear system shown in Step 2 of the PQN method will
be solvable for all iterations provided it is solvable on the first iter-

ation.. To show this and other results, the following essumption is needed.

Assumption A.l: Henceforth in this section we will assume that the algo-
rithm is solvable on the first iteration.
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Provosition 3.3: If £: R =+ R is quadratic and {di}?=l is a set of
mutually conjugate directions generated according to Step 2 of
the PQN method, then after one iteration of t?e PQN method the
coefficient matrix

= -

T T
yl d1 e e e e e e e e e ym-l dl

T ) T
¥y dm-l et e e e e e e ym—l dm—l

becomes a positive definite disgonal matrix for all other

iterations.

Proof: Using the result of Propositiocn 3.1, and the fact that the d's

are mutually conjugate, we have

v a =a"ad, =0 ¥i#] (3.2.2.2-L)

Also, it should be clear that

y? d, = d? Ad, >0 since
i1 i i

A is positive definite symmetric. Since the off diagonal terms
of Cm-l are zero and the diagopal terms are positive, Cm_l is

clearly a positive definite diagonal matrix after the initial

iteration.

The next issue to be considered is positive definiteness of
the update. That is, if we initialize the PQN method with a pds approx-

imation to the inverse Hessian, can it be guaranteed that the updated
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inverse Hessian is pds? The answer to this question is resolved by

Proposition 3.4 below.

‘o +
Proposition 3.4: I Hz_i is positive definite symmetric with ¢ > O, then

J
L+1 . : - :
H is positive definite symmetric

J

T y
J 74
Proof: The symmetric property is obvious from the form of the update

& 4 >0 ¥3=1,2, ..., n

rule below:

T (z+1) (9.+1)
g(es) _ () & 4 v) B0
3 =8t L. T (+1]

RE ¥y By Yy

+ ¢ Vj v (3.1.2.2-5)

where
(2+1) q
_[or (e ]45 I .
J j J-l T +1 '

d B

35 Y3t Y }
To show positive definiteness, the result is proved for ¢ = 0

and then for ¢ > 0. By direct computation, it is easy to show that

vhen ¢ =
T 2 (2+1) 2
T H(‘?""l) \2’4_1) (X dj.) (x J -1 Y‘j) ,
b'q h X + -
3 -1 R T 4{2+1) :
'RE Yy B Y
(3.1.2.2-6)
Let o = [H(2+1)]% 4b = EH(2+1)]%

Substituting these quantities into eqn. (3.1.2.2-6), we have

T (1) (s a) (b0 b) - (aF b)°
J blh
T 2
(x 4&,)
+ _-J—T (3.1.2-2‘7)
4y ¥
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What we must show is that x dj(£+l) >0 ¥ x # 0. The first

term in eqn.(3.1.2.2-7) can be shown to be positive semi-definite

‘using the Schwartz inequality [36] as follows:

(aTa)y v v - (2T 2> o
T T T
(a7 8) (0.%) - (a®®)2 | |
oF b -
Also, it is clear that:
T 2
(x~ 4,)
————IJ—T >0 & dg‘ yj >0
d
17
Thus, when ¢ = 0, we have shown that:
T H§2+l) x>0 ¥x#0
To show strict inequality we must show that:
) T .2
(af &) (BF 1) - (T 1)2 -, (x a,)
bT b dT Y
d 7

do not vanish simultaneously. Note that

(¥ &) 0 v - (T )3 5
- -
P b

only if a and b are colinear. But this implies.that x and yJ ar

linear, i.e.,

x =8 yj ¥ 8 # 0.

In this case, however,

T T T
d, =4d =4
x 3 x f By

= d
3 B y#O

3

since

T
RE

>0 ¥i=1,2, ..., n




Therefore, tota

T 2
4
(aT s) (bT b) - (a.T blg, and (x J)
v b dT y
J
can't vanish simultaneously, Hence,
xTH§l+l)X>0 ¥ x # 0.
Now suppose ¢ > 0. In this case, the matrix ¢ vJ vg is at least pos-

itive semidefinite, Since the update given by eqn.(3.1.2.2-5) consists

of the sum of a positive definite matrix and at least a positive semi-
definite matrix, the update is positive definite.

(2+1)

Corollary: If H(z) is pds and ¢ > O, then H is pds

édgyj>o ¥3=1,2, ..., m

(2+1)

Proof: Since H is obtained fyom a finite sum of pds matrices,

H(£+l) is pds.

The next result shows that the set of mutually conjugate

directions generated by the PQN algorithm are also linearly independent.

Propgsition 3.5: Let I = (ol, Ty ...,_cn) =clj;c> 0. If
£(x): R% Rt is quadratic with d; = 0, and Assumption A.1 holds,

then for the PQN algorithm the set of vectors dl’ d2,~..., dn

are linearly independent.
Proof: Suppose there exist ai i=1,2, ..., n such that

al d1 + ... an @n = Q.
Then o dT Ad
1 71 1 i

of the fact that the d's are mutually conjugate by proposition 3.2.

+ ... +tQ d? Ad =aqa, d? Ad, =0, in view
n i1 n 1 1

T
But since di A di > 0 due to the positive definiteness of A, Gi
must be zero. But this is precisely what is required for the

d's to be linearly independent.
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The next two propositions are particularly useful in proving

the convergence of the PQN method.

Proposition 3.6: Let ¢ > 0 and H§£+l) be given by eqn.(3.1.2.2-5).
ThenH§2+l)yJ=dJ ¥3=1,2, ..., n
Proof: By direct computation,
-4 dT Yy
g 4+1) v, = g(2+1) y, + =l
J J J-1 J al &
J -
(2+1) T (2+41) T
1=t Ny N Ra Yy,
y T (1+1) RS
J -1 b
(2+1) (2+1) T
=Hy Yyt vyt ey vy g
= T
I RCIRS
- T = =
-djgdavjvjy.j_o ¥ ] 1,2, ..., 1

Thus, the proposition will be established provided we can

show ¢v vT

37373

Therefore, suppose ¢ > 0. Then

= 0. If ¢ = 0, the result is trivially true.

(2+1)
v Ty =y (WD) 3 Hyy 9y
3T R Y T T ()
3V Yyt Y
d T
L] "T yJ
Y
O (2s1) T
S R RS T I RN QN ¢ 259
T T 375 N
RhE RRd (2+1) (2+1)
+1 T +
S ST I 1 B I N
1 VS Yy
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After some manipulation, it is easy to show that:

T, =29 T ,(2+1) - T (2+1)
SIS e Yy B Yyt 4y Yy
: 3

(2+1) T (2+1) -
Hya o v gy yé} PRy =0

Provosition3.7: If f(x): R - R is quadratic, ¢ > 0, 3 w 3

-1, (2+1)
ATw = Hj-l v, end
T (2+1) (2+1) T
pogen) U8 Ty vy
J-1 aty o (H(2+l) Y,)
A 3 -l J

T T -
+¢vJvJ¢;dJyJ>O J=0,1, ..., n

where ]
(2+1) ‘
v = [4T ga+1) X dy _ By vy
3 Yy 51 Yy I I S
B J "J-1 J

then

Proof: Since f(x) is quadratic, from Proposition 3.1 we have:

By hypothesis,

T (2+1) . (2+1) T
5 - al) = G4 WLy By
dT T H(2,+l)
A Yy Fier Yy
+o v, v§ w (3.1.2.2-8)

66




[ DT

Also, the assumption that 3a:3
A-l v = HS%II) w = A-l . Hgle)
substituting d, = A7 y, and Héf{l) = A7 into eqn.(3.1.2.2-8)
leads to:
(B-athw=o0
=>Afl w=3BWw
Corollary 1: If Hgle) w=Atw for some we R and £f(x): & - Rl is
quadratic, then H(2+l) w = A'l w.

J
Corallary 2: (Fundamental Property of H)

if #(x): R® + RY is quadratic, then

(2+1) -1
= o= ¥ < =1,2, ..., 1
The proof of Corollary 1 is obvious from Proposition 3.7 when
\ .
3= Hé£+l’. However, the proof of Corollary 2 is more subtle. To

prove Corollary 2, we shall use mathematical induction. Note that
since £(x) is quadratic, we may invoke Corollary 1 with w = Yy and Prop-

osition 3.1 to obtain

(2+1) _ =1 - . V -
HJ Ve T A Ve T dk for any kK and § = 1, 2, ..i, n
Yowever from Proposition 3.6, we have
(2+1)
q, =4 ¥3=1,2, ..., n.
J ) yJ % lj * * .
Yow let us assume Hgfil’ yJ = dk ¥ kx < j-1. Also, by Proposition 3.6 1
+1 -
Hg ) Ve T dk for k 23=1,2, ..., n.
However, using Corollary 1 of Propositicn~15 the fact that dk = A’l Yys ?
and the inductive hypothesis, we have .
(2+1) _ -1 _ .
Hj Vi = A Ve * dk ¥k<y=1,2, ..., (

At this time, we are in a position to prove two very important
convergence theorems. The first result shows that the PQN method con-

verges exactly to the inverse Hessian of a gquadratic function by
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performing Steps 1, 2, 3, and 4, while the second result indicaetes that
the PQN method will minimize a quadratic function in only one iteration
(Steps 1, 2, 3, b, and 5).

Theorem 3.1: If £(x): R® + R} is quadrstic and Assumption A.1 holds,

\ -
then H(l’ = A 1

Proof: Let x, z € R and suppose X = Az~ Then
since f£(x) is quadratic with A psd, At exist so that
z2=A"x (3.1.2.2-9)
From Proposition 3.5, the 4

J's J=1,2, ..., n are linearly

independent so they form a basis inRY Hence,} B

J 2
hol
z = B, 4
2 e
J=1
Since f is quadratic, we may write:
n n
x=Az= B, Ad, = }E 8
355 37y
J:l J:l
From the fundamental property of H, we have
(1) :
H = 4, =1,2, ..., n
n ¥y 3 J
But by definitionm, Hil) = H(l)t Therefore,
a n
(1) ‘zg (1)
H = 8, H'™ = B, d, =12 .1.2.2-10
x 3 Yy 1Y (3 )
J=1 3=1
using the fact that H(l) y‘j = dj' But eqns.(3.1.2.2-9) and (3.1.2.2-10)
imply that
H(l) x =73= A-.| x
Hence, H(l) ="k,
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Theorem3 2t If f(x): R - R s quadratic, then the PQN algorithm will

converge to the location of the minimum of £(x) in one itera-
tion zrovided Assumption A.l holds.
. T T s s
Let f(x) = 3% x~ Ax + b~ x + ¢c. From Theorem 3.1, it is clear
that after performing Steps 1l-4 of the PQN method,
-\ —q

AR

Using this result in Step U4 of the PGN method, results in a

single line search of the form:

min f (x(l) + 0 3)

aq Y
where
s = g% g(x(l))
_A-l(Ax(l) + o) = LSS R
Hence, GO mnust be found to minimize
PYCALL %, ) (3.1.2.2-21)

Since f{x) is quadratic, the minimum of f(x) is located at
x = ANy, Cleerly, a, =1 minimizes eqn.(3.1.2.2-11) and
+he updated solution is x(2) = -A"1%. Hence the procedure
converges in cone iteration.

The analysis presented in this secticon indicates that one of

the major attributes of the PQN a2lgorithm is that convergence will re-~

sult after one iteration when the function being minimized is quadratic.

This is significant because most highly efficient serial procedures

{sueh as the DFP method) can require at most n iterations to converge

in such cases.

It should be noted that the convergence results derived in

this section assume that the function being minimized is quadratic.

For nonquadratic functions, however, the convergence progrerties of the
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PQN algorithm will be demonstrated ir the usuval way by testing this
new algoritnm on a set of standard test functions. This aspect is con-
sidered in the next section.

3.1.3 Test Function Performance

When a new minimization algorithm, such as the PQN method
discussed in the previous section, is developed, it is a common prac-
tice to compare it with existing methods using a standard set of test
functions. Some of the most common test functions used by researchers
1 in this area includes the quadratic function, Rosenbrock's function,
Powell's function, Woodi's function, and the Helical Valley function
(26, 34]. These functions and their properties are summarized below:
e Quadratic Function
) 2 2

=X + 2x + 5x 2 - 2%, X

£{xys %55 % 1 2 3 1 %2

3

Exact Solution: (0 , 0, 0)

Starting Apvroximationm: (1 , 1 , 1)
This function is rather easy to minimize and is incliuded to
verify the finite step convergence property of quasi-Newton methods.
e Rosenbrock's Function
f(xl, x2) = 100 (x2 - X
Exact Solution: (1 , 1)
Starting Approximation: (-1.2 , 1)
Rosenbrock's function is particularly difficult to minimize
since the minimization must travel along the parabolic valley y = x2.
¢ Powell's Function

2 2
f(xl, Xys X, xh) = (xl + le2) + 5(x

L

- xb)

<
-

+ (x2 - 2x3)h + lO(xl - xh)




Exact Solution: (0 , 0, 0, 0)
Starting Approximetion: (3 , -1 , 0 , 1)

This function is difficult for a variable metric algorithm
+o minimize because at the minimum the Hessian is singular.

wood's Function

. _ 2,2 2 2,2

.(xl, X5s X xh) = lOO(x2 - X ) ) )
)2

3

+ 1.9.8(x2 -1) (x, - 1)

+ (1 - xy)7 +#90(x, - x

3
)2 + (xh - 1)2]

+ (1 - x +10.1 [(x2 -1

Exact Solution: (1,1 ,1 , 1)
tarting Approximation: (-3 , -1, -3, =1)
This function is difficult %o minimize because the quadratics

x,2 - X5 and x 2 - X, form a set of level curves which are banana

z 3
shaped.

Helical Valley

2 2 2
£ . , = 100 - + -
(xl X, x3) [(x3 100) (v x12 R x22 1)1+ x5
where
‘ca.n-l x./x for x, > 0
2°71 * 1l —~

2T Q=

T + tan"l x2/x for x, <0

1

o

Exact Solutxom: (1 , 0, O)
Starting Approximavion: (-1 , 0, 0)
This function is rather difficult to minimize because the
aminimum is located at the bottom of a helical valley.
The tes* “.nctions described above were used to study the con-
'msencae cropert 5 of the PQN algorithm. In particular, the PDFP

“iz were emplicyed toc minimize these test functions. Also,

" me+thod, as well as the PVM method, were




P el

B LT e s

employed to minimize the test functions previously described. The re-
sulting perfcrmance of each method is summarized in Tatles 3.1-3.5.
The results indicate:
Quadratic Function
In this case, the parallel algorithms converge in only one
iteration while the serial methods converged after three iteratioms.
Note that these results are consistant with theoretical results which
indicate that the PVM, PDFP and PBFS methods must converge in one
iteration (see Table 3.1).
Rosenbrock's Function
For this function, the PVM and PBFS algorithms converge sig-
nificantly faster than the serial methods but the PDFP method
required more iterations to converge than the serial DFP method
(see Table 3-.2). Since each gradient evaluation reqguires approxi-
mately the same time as two function evaluations, in this case,
the equivalent number of function evaluations required by each
method is:
26 x 2 + 63 = 115 for  PDFP
107 + L2 = 149 . for DFP
Because the PDFFP mgthod requires fewer equivalent function
evaluations compared to the serial. DFP method, the PDFP method will
actually converge faster than the DFP method even though more iter-
ations are required.
Helical Valley
From the results shown in Table 3.3, the parallel methods

require fewer iterations to converge than the serial methods. Note

that the PVM methods converged the fastest in this case.
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¢ Wood's Function

In this case, the parallel algorithms once again converged
mcre rapidly than the serial methods. In fact, the PVM method is
nearly 50% faster than the serial DFP method. Also, note that the
PBFS method is competitive with the PVM method this time (see Table
3.4).

e Powell's Function

As seen from Table 3.5, each of the parallel minimization
procedures convergsd more rapidly than the serial methods. All of
the parallel methods performed equally well on this test functionm.

In summery, the results indicate that without questiocn the

parallel minimization procedures converge more rapidly than serial

methods. Also, it appears that the PBFS method is preferable to the
PDFP procedure.

Before a recommendation can be made as to which parallel
algorithm should be generally used, a robustness study should be con-
ducted. The term robustness used here is a measure of the relative
insensitivity of a parallel algorithm to the magnitude of [ici|l
+=1,2, ..., n. The issue of robustness will be addressed by vary-
ing the weighting parameter, ¢, associated with the set of linearly
independent vector

I = (cl, Tpys vees cn) = ¢ In; e >0
required by the PVM, PDFP, and PBFS algorithms. 1In particular, the
robustness of these algorithms is demonstrated in Figures 3.0-3.3,
wvhich were obtained by solving the set of standard test functions de-

9 3

scribed earlier with 1077 < ¢ < 107~.
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The results indicate:

e [For Rosenbrock's function, the PDFP and PBFS algorithms are
more robust than the PVM algorithm, although the PVM algorithm
may require fewer iterations to converge (see Figure 31)).

e For the Helical Vailey function, the PBFS and PVM algorithms are
more robust than the PDFP algorithm. Again the PVM algorithm

converges more rapidly than the other methods (see Figure 3.2).

e TFor Wood's function, the PBFS algorithm possesses the highest degree
of robustness. Note that for the PVM algorithm the total number

i of iterations required for convergence increases very rapidly if c¢

is chosen too large. Also observe that the PDFP algorithm is more

robust than the PVM algorithm even though more iterations are re-

quired for convergence (see Figure 3.3).

e For Powell's function, the PDFP method is the most robust, although

the parallel minimization procediures all require spproximately the

seme number of iterations to converge over a wide range of c;

lO-g‘i e < I].O.5 (see Figure 3.k4).

In summary, the robustness study conducted here indicates
that the parallel rank-two quasi-Newton methods (PDFP, PBFS) generally

are more robust than the rank-one PVM algorithm. The results also

indicate that the PBFS algorithm mignt be preferable to the PDFP method. i
Although the PVM algorithm generally required fewer iterations to con- 4

verge, the PBFS algorithm might be preferred in view of its superior

robustness characteristics. Finally, the results obtained clearly
show that parallel rank-two methods are more robust than parallel
rank-one methods which was one of the major motivations for developing

the PQN method presented in Section 3.1.
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3.2 Parallel Methods for Integrating Crdinary Differential Equations

In this section, parallel methods for integrating ordinary
differential equaticns are discussed and compared. In particular,
Downs' method [37) and the Miranker-Liniger method@ [ 38) are discussed
in Secticn 3.2.1. 1In Section 3.2.2, the Miranker-Liniger method is
extended to allow the integra:ion step size to be automatically adjusted
so as to maintein a desired level of accuracy. To more fully appre-
ciate the speed and accuracy of the parallel variable step size inte-
gration method, it is compared with existing integration methods in
Section 3.2.3.

3.2.1 A Survey of Parallel Integration Algorithms

Before discussing parallel procedures for solving initial-

value problems, let us first define the underlying problem and briefly

mentiocn some pogsible approaches to its solution. Therefore, consider
the initial-value problem:

y(t) = £ly(t), ¢] t>t (3.2.1-1)

y(t)) =y,
where the initiel tinme, to’ end the initial condition, Y, are assumed
to be known.

It is assumed that £: R° + R is contiﬁuous and differen-
tieble. The exact solution to this problem is only known for special
choices of the function fly(t}, t]. In general, however, the right-
heand side (RHS) of eqn.(3.2.1-1) is so complex that only approximate
solutions may be found.

At the present time, many numerical procedures have been
proposed to solve initial-value problems. Some of these methods

include: Euler's method, Runge-Kutta usethods, and predictor-ccrrector

methods [ 22],
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Currently, the fourth-order Adam's predictor corrector and
i the Runge-Kutta-Fehlberg methods are among the most efficient proce-
dures for solving initial-value problems [ 39]. These methods, however,
are sequential in nature and as such are not suitable for parallel
computers.

Although meay parellel computers exist at the present time,
only two parallel methods for solving initial-value problems currently

exist. These methods, due to Downs [ 37] and Mirenker & Liniger { 38],

surprisingly were developed nearly a decade ago. Apparently, this

aree of research may be reconsidered in the near future, but, for now, i

let us discuss Downs' method.

Downs' Method 1

One of the first parallel methods for numerically solving

an initial-value problem was reported by Downs in reference [37]. This

method was originally designed for use on the Illiac IV although it can
be executed on any parallel computer with N processors which are cap-
able of operating simultaneously. : f
To begin our discussion of this method, let T = [to, 2F
.o tN-l’ tf] be a time partition of the interval [to, tf]. Associated

with WN is a sequence of functions which will be denoted by

YA (v (2), ¥3E), «ony ¥RE))
Basically, the approach taken by Downs is to construct a sequence
(yk(t))§:i in a recursive manner such that in the limit, the sequence
approaches the exac: solution of the initial=value protlem under con-
sideration.

In reference [37], Downs gives two methods for computing

the recursion on a parallel computer. The first method is based upon
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computing a partial sum in 2 log2 N steps. Downs indicates that
although this method is quite efficient on a parallel processor, such
as the Illiac IV, convergence can be slow. The second method pro-
posed by Downs requires more complicated computations but usually
leads to much better convergence. This technique is based on a first-
order Taylor series which also requires only 2 1032 N steps to execute,
Downs shows that his procedure converges linearly to the exact solu-
tion of an initial= value problem provided that the.initial approxima~
tion to the solution is sufficiently good.

The major problem with Downs' method is thet the number of

pProcessors needed to implement his procedures may indeed become pro-
hibitive. This is especially true if the RHS of the initial-value

problem is highly nonlinear since, in this case, the number of parti-
tion points (or processors) associated with the time partition 7

N
must be relatively large to ensure accuracy. This, along with the fact

e ee oo,

that Downs does not present an example illustrating the performance
of his procedure, may cause one to be reluctant to use his method.

Miranker and Liniger's Method

Miranker and Liniger's class of parallel predictor-corrector
integration methods is based upon decoupling the.predictor-corrector
equations such that the calculations required by the predictor and
corrector can be performed simultaneously on separate processors [ 38].
This may be achieved by forcing the corrector to lag the predictor by
one time step. 1In fact, Miranker and Liniger have shown that if

too= g+ ih i=0,1, 2,
vhere h is an integration step size parameter and yi, y?, yg, f?, and

fz are denoted as the value of y(ti), the predicted value cf y(ti),

86

.
1




the corrected value of y(ti), the value of f[&f, tg , and the value
of f[}i, t, Jrespectively, then the following predictor-corrector
pairs may be derived:

Parallel Trapezoidal Rule:

= 4C P
Viap = Vi * 28 £ (3.2.1-2a)
c . ,C P ¢
yg =¥yt (0/2) (g7 + 10 ) (3.2.1-2b)
Parallel Adams-Moulton (3rd order):
= , P c ¢
Vo =¥ig @3 (715 -2 +ff ) (3.2.1-3)
c . . P ¢ e
v =¥+ (8/12) (55 + 85 | - £ ) (3.2.1-3b)

Parallel Adams-Moulton (Lth order):

- .c c
y?*’l = yi-l + (h/3) (8 f§ - 5 fl-l + ,-l» f

(o4 (o]
{2 = fi_3)
(

It is clear from the structure of the parallel predictor-

3.2.1-ka) 2
2

c _ .c ys) c c c
yg =vig v (/24 (9 £+ 1980 L -5 fio* fi3) %
(3.2.1-kb) ;
:
3

corrector pairs above that the predictor and corrector equations may be
evaluated at the same time if two processors are available. Also, note
that the computation time may be reduced by a factor of two if one of
these methods were used rather than a conventional (serial) predictor-
corrector method.

Miranker and Liniger extend this idea of parallel operation
on two processors to parallel operation on any even number éf pProcessors.
They also analyze the stability and convergence of their class of
methods by studying the root condition and local truncation error asso-
ciated with the theory of classical multistep methods.

Since the integration step size, h, is fixed for all time

in the parallel methods above, tne accuracy and efficiency of these
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procedures may be greatly influenced by the choice of h. For example,
if the step size is too large, then the resultant solution will be

inaccurate. On the other hand, if the step size is too small, then

the efficiency of the algorithm is reduced since too many integration
steps would be taken. Thus, the problem of step size selection is
crucial to the successful application of this method. This observation
has led to a modification of the basic method which is the topic of

the next section.

3.2.2 PPC Integration With Varjable Step Size

In the previous section, a number of parallel predictor-

corrector (PPC) methods for integrating ordinary differential equations

e S ik TRk

{ode's) due to Miranker and Liniger were presented. The primary

advantage of using these methods over other procedures is the speed-up
of computation. Although the computations required by a PPC method )
may be done extremely rapidly on separate processors, the accuracy

of the solution may suffer if the step size parameter, h, is not chosen

proverly. Thus, it seems appropriate to modify Miranker and Liniger's
methods such that a prescribed level of accuracy‘can be maintained
while keeping the parallel feature of these methods.

This modification might be realized by using the predictor
and corrector values at tiae same time step to estimate the locai
truncation error and use this quantity to vary the step size to achieve
a prescribed accuracy. However, since the corrector lags the predictor
oy one time step in the PPC pairs described in the previocus sectien,
one might suspect problems with this approach. Indeed, this 1is true

and has been verified thrcugh sizulation.
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In view of the above, it appears that a better method might

be to use the predictor at step i+l and the corrector at step i to
estimate the locel truncation error at step i which could be used to

automatically vary the step size.

Ir the remainder of this section, the ideas discussed above
will be used to extend Miranker and Liniger's class of parallel predic-
tor-corrector methods such that a desired level of accuracy is maine-
tained. Although each member of Miranker and Liniger's class of PPC
methods can be extended, the basic procedure will be demonstrated for
the parallel Lth order Adams-Moulton method given by egns. (3.2.1-ba) and
(3.2.1-bkb).

It is well known that the local truncation error associated
with the Adams-Moulton corrector (eqn.3.2.1-4b) is given by [19]:

e _ =19 .5 (5)
di,c 4 y(ti) -y = 75% h” y (Cl) Cl'e [to' tr]

(3.2.1-5)
Due to the form of eqn.(3.2.1-ka), we must estimate the local
truncation error of the predictor. Since eqn.(3.2.1-4a) is accurate
to O(hh), we will assume an exact solution of the form:

yit) = ¢ t 2t _ (3.2.1-6)
b

so that y' = f(y, t) = 5t o2ty (3.2.2-7)
By definition, the iocal truncation error associated with

the predictor is given by:

a1,y 27000 - Vie1 (3.2.1-8)
Substituting eqms..3.2.1-6) and (3.2.1-7) into (3.2.1-ka) and evaluating

(3.2.1-8) at t = h, t,

s = 2B, b =3h, 0ty

- = ln, t
1-37 % f1p By the

desired result iz obtained:

+1
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232 .5 (5)
= ;%5 Wy (CQ) L, € [to, t.]1  (3.2.1-9)

“te1,p 1

Note that although the estimates of the local truncation errors given
by eqn.(3.2.1-5) and (3.2.1-9) are mathematically correct, they are of

. . s s s . . Yo
little use numericall,. This is due to the fact that explicit calcula

y(ﬁ)(

tion of ;) is crearly problem dependent. To circumvent such

problems, we need a better method of estimating the local truncation
error.
To obtain such a method, we proceed by subtracting eqn.

(3.2.1-5) from (3.2.1-9) assuming Zy = T, = 5, to get:

(b ) = Viaq * (g - v(ey) = %%% 2y () (3.2.1-10)

Using this result and eqn.{3.2.1-5), it is easy to show that:

==X ¢ _ 2 -
4 ¢ = 352 [yi Yiep * 5y1 (3.2.1-11)

where

- v/
S, avle, ) - wley)

Using “he Schwartz and triangle inequalities [36] on eqn .

(3.2.1-11), we obtain the upper bound on the local truncation error

¢ A t ._];2 P

< II-C_‘ |
I =5,el 22510 MYy = Vi

18 1} .2.1-12
+ i8] (3 )

This result is particularly interesting because it indicates that

idL,ci is directly proportional to ]Gy]. This implies that to main-
tair a small local error at the corrector, the step size cannot be
“00 large since to predict too far in advance may cause |6y| to be
large. Although this result is clearly what is needed, egn.(2.2.1-12)

is not very useful as is because the |é | is unknown. To overcome this

[

difficulty, we may write a Taylor series approximation for y(t) eval-

uated at t = ty , as follows:

90




y(ti+l) = }’('Ci) + hi f[y(ti)) ti J+ o(hiz)
where
By § %5y - %20 -
Thus, we have
2
6,1 <vy Ir By, £ 1]+ [o(ay)] (3.2.1-13)

If we substitute eqn (3.2.1-13) into egn.(3.2.1-12), we
have a means of estimating the local truncation error ¢f the corrector

nunerically as follows:

1
ldg | 555% Uyy =y +n It £ (3.2.1-14)

Finally, this result can be utilized to automatically vary the step

size, hi’ until a desired accuracy is obtained, More specifically,
this mey be achieved by performing the following steps:

Step 1: Simultaneocusly evaluate the predictor and corrector equs.

¢ i e e #C
Yo =i T (B - 5f v b -ty y)
3

c__¢c i C _ et
ve =y tam v (of] v 197, - 51

(3.2.1-15a)

(o4 \
i-2 ¥ Tio3/ (3.2.1-150)

P Step 2: Estimate the local truncation error:
= =2 {Iy¢ - ¢
t 4 e = 35 Uvg = vial o 103
Step 3:

a. If emin'i d <€ , the step is accepted so set i + i+l and go

i,c = "max
to Step 1.
b». If di > €nax’ then the local truncation error is too large. Therefore,
replace h, « hile, restart method and go to Step l.
c. If di < Emin’ the solution is more accurate than desired. Therefore,

replace hi - 2hi’ restart method, set i +« i+l, and go to Step 2.
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The sequence of computations required by eqns, (3.2.1-15a) and

(3.2.1-15b) is illustrated in Figure 3,5 below.

Figure 3.5 - The Sequence of Computations of a
PPC Integration Procedure

The upper line represents the progress of the computation
at the mesh points for the predictor while the lower line shows the
progress of the corrector. The dashed line is referred to as a compu-
tation front. The arrows in Figure 3.5 indicate that the computations
at the mesh points ahead of the computation front only depend on infor-
mation behird the front which is characteristic of a parallel integra-
tion algorithm. The method can be implemented b& simultaneously

evaluating the following quantities in separate processors:

P
S Vi T Tyt
c c .
.- Yy - fi .
Before leaving this section, a few words should be said about
starting tkhe parallel variable step size integration scheme. Note

that to start this method tne following quantities must be available

to the parallel processors:
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These values may be obtained by taking four forward integra-
+tion steps of a standard Runge-Kutta (RK) integration method since RK
methods are self-starting. The values of y(t) and fly(t), t] computed
over the first three time steps smay be used by the corrector while the
value of y(t) and f(y(t), t] at the fourth time step can be used to
initialize the predictor. At this point, enough information is avail-
able to begin processing in parallel using the parallel variable step
size integration scheme.

3.2.3 Comparison of Methods

In order to determine the effectiveness of the parallel
integration procedures discussed in the previous sections, these methods
were used to find.the solution of the forced Van der Pol equation [371:

¥ () + alt) (1 - x2(t)) &(t) = x(¢) + u(t) =0  (3.2.3-1)
vhere

a{t) is a parameter which defines a particular systems

dynamics and u(t) is a forcing function or control.

To solve this problem by the parallel integration procedures
previously discussed, we must write eqn (3.2.3-1) as a system of first-
order differential equations. If we let xl(t) = x(t) and x_(t) = (%),

2
then eqn (3.2.3-1) may be written as:

:'cl(t) = x2(t) (3.2.3-2a)
x,(t) = a(t) (1 - xlz(t‘))xz(t) - x(t) + u(t) (3.2.3-2b)
In the simulations, the control was selected as:
u(t) =sin =t  t3>0
Y2
4
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since this input will cause x(%t) to be uniformly asymptotically stable
(k0] Alsc, in the simulations a{t) was set to zero and the initial

conditions were chosen as:

Xyq = 1 =1+/2 .
‘10 L and x20 1 2
In this case, the exact solution of egn {3.2.3-2) is given by:
x.(t) = cos ¢t + sin t + 2 sin L t
1 2

. 2 1l
xe(t) =cos £ = sin t + = cos =
v 2 v 2

At this point, Miranker and Liniger's fourth-order parallel

t

integration method (PPCL2) and the parallel variable step integration
procedure (PPCL2V) were used to obtain a numerical solution to Van der
Pol's equation when a(t) = 0. Let us denote the computed solution as

%(t) and the exact soluticn as x(t¢).

In Tables 3.6 and 3.7, x(t), X(t), and the error x(t) -

%(t) are shown over & five second interval. The results indicate

e By using the PPCL2 procedure with a fixed step size of h = 5./200
0.025, the computed sclution is accurate tc about 6 digits (see

Tatle 3.6) which substantiates the 2laim that the PBCL2

In
. -
rrocedure is accurate to 2{(h ).

e The PPCL2V integration procedure can indeed vary the step size to
meet a 5-6 digit accuracy requirement imposed by the user (see
Table 3,7). To obtain the computed solution shown in Table 3.7, the
PPCU2V procedure only took 140 integration steps while the PPCL2
procedure required 200 integration steps.
The secord example which was considered is when a(t) = 1

¥te [0, 5). In this case, an analytical solution to the Van der Pol
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equation is impossible to obtain. Nevertheless, an approximate solu-
tion can be obtained by employing the parallel integration methods.

For this example, the results indicate that the solution
obtained using the PPCL2 procedure (h = 0.005 and fixed) and the variable
step PPCL2V method agree to about 5 digits (see Tables 3.8 and 3.9).

It is interesting to count the number of integration steps
required by each procedure, Clearly, for the fixed step size method
5/0.005 = 1000 integration steps were needed. For the PPCL2V method,

however, the number of integration steps needed depends largely on the

behavior of the solution x(t). Note that in regions where x(t) varies

rapidly many integration steps were required while relatively few steps

] ~ were taken when x(t) was nearly constant (see Figure 3.6 and Table 3.9).

But this is precisely what we would expect a good variable step size

PR

method to do.
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FIGURE 3.6:

Solution of Van der Pol's Equation




CHAFTER FOUR

IMPLEMENTATION CONSIDERATIONS

Thus far, this thesis has primarily been concerned with the
development of efficient numerical methods for sclving nenlinear
estimation end contrecl problems which are suitable for modern parallel
computers. In this chapter, the implementation of these methods is
considered. In particular, a parallel computer architecture is pro-
posed in Section 4.1 which utilizes three levels of parallelism to
allow the implementation of the parallel algorithms discussed in
Chapters Two and Three. In Section 4,2, the execution time of the
parallel algorithms is estimated and compared with that of currently
used sequential methods., Finally, the speedup due to parallelism is
estimated using the timing equations given in Sectioms 4.2.3.

4L.,1 A Parallel Computer Architecture

Whereas most existing computer systems (parallel or serial)
liave been designed as general purpose machines, the parallel
computer proposed in this section may be considered a special purpose
machine for implementing the parallel algorithms discussed in Chapters
Two and Three, The architecture of the proposed.computer utilizes many
independent processors capable of operating simultanecusly such that
more processing power would be possible than a single central proces=-
sing unit with traditional architecture. Although there is no reason
to believe that the architecture of the proposed parallel computer is
an "optimel" implementation of the parallel algor:thms described in

Chaepters Two and Three, it may be viewed as a "natural" implementation.




—====ﬂ

In view of the structure of the parallel algorithms developed
in Chapter Two and Three and the availability of low-cecst microproces-
sor systems (available on s single &% x 11 inch card), *he proposed
para’lel computer is crganized intc three levels of parallelism; namely:

L o level I (Minimization Level)

e Level II (Shooting Level, if applicable)

o Level III (Integration Level)

To reduce the possibility of coordination and synchronization
problems with each level, the proposed computer should be synckronous
and utilize a single-instruction-muliiple-data (SIMD) stream to effi-
ciently implement the parallel algorithms. Other considerations which
should be of interest include: ;

e Timing requirements for real time control computations ;

(Specifying processor add, multiply and trensfer times

such that the execution time is rapid enough to permit the R

nonlinear estimation and control computetions to be
done in real time.)
e Memory and peripheral regquirements
e Effects of wordsize
¢ Communicetion and interconnecticn among processors 4
e Feasibility of implementation and, of course, cost
With these considerations in mind, the organization of
each level of the proposed parallel computer will now be described.

L,1.1 Minimization Leal

The minimization level (Level I) is the upper level of the

architecture in which a finitewdimensioral minimization problem, and
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a8 search for the appropriate unkncwns (Parameters or boundary
conditicns) iIs initiated. If M is the number of unknowns to be
ortimized, then the search for the unknowns can be performed simule-
taneously by M optimization modules. Each optimization module might
consist of a processing element (PE), a local memory (LM) element, ana
an integration module (IM). Because we want the searches to be per-
formed simultanecusly, the structure at this level might be organized
as shown in Figure L4.1. Notice that this parallel structure is
ideelly suited for eveluating a fimction and its gradient at M distinct
points simultaneously which is precisely what is required to implement
the parallel minimization algorithms discussed in Section 3.1.

At this level, the role of the central processor (CP) is to:

e Initialize each processor

o Contrel the operation of each processor

® Monitor the status of each processor

e Watch the clock and controls o keep the processors

synchronized during a glven iteration

As indicated above, the role of the optimization modules is
to implement the minimization phase of the pa:allgl algorithms dis-
cussed in Chapter Two., Because the mathematical computations required
by the parallel minimization algorithm discussed in Section 3;1 are
relatively sophisticated, the proéessors at this level should be also.
In fact, the PE's should be pipelined so that the required vector-
matrix operations can be performed very rapidly.

Since speed is & primary concern, cache memories might be

applicable for the locel memory units at this level,
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As shown in Figure L,1, the connection of adjacent proces-
sors is not necessary since, by design, the parallel algorithms of
Chapters Two and Three allow nearly all computations to be performed
independently of the others. Note that this indicates that relatively
little (if any) communication is required among the processors at
this level.

Finally, because of the large dynamic range of the computa-
tions required by quasi-Newton methods, the wordlength required
should be relatively long -

4,1.2 Shooting Level

If parallel shooting is used to aid the search for the
unknown boundary conditions, then the mission time interval [to,tf]
would be divided into N subintervals using the partition

to < tl <. 0. % tN = tf

The task of the processors at this level is o implement

the parallel shooting phase of the parallel algorithms discussed in

Sections 2.1 and 2.2 by finding the solution to the appropriate
initial-value problem over each subinterval simultaneously in parallel.
This phase of the algorithm might be implemented using the parallel
structure shown in Figure L.2.
At the shooting level (Level II), the role of each PE is to:
e Initialize the integration module
e Monitor the status of each integration module ,1
e Communicate with the processors at Level I and Level II 1

to keep computations synchronized.
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Since the processors at *his level are mainly used for

"bookkeeping" and "status checks," the PE's need not be very
sophisticated. Also, the local memory units shown in Figure k.2
might be relatively small in view of the primitive operations per-
formed at this level. Note that if parallel shooting is not used,
then this level is not necessary. In this case, the integration
module required at Level I .simply consists of a refined integration

module which is discussed next.

4.1.3 Integration Level

At the integration level (Level III), the processors are
dedicated to the task of integrating ordinary differential equation
(cde's) over a subinterval using a parsllel integration scheme such
as the methods presented in Section 3.2.1. These methods are sug-
gested for the numerical solution of the initial-value problems
(IVP's) over each subinterval since computations can be sped up
significantly by utilizing more than one processor operating in

parallel orn each ode. To further speed computations, a parallel

integration nethod could be used to integrate each component of the

31

ight-hand side (RHS) of an IVP. If "L" processors are aveaileble
for integrating each component of the RHS and the IVP is nth order,
then this phase of the parallel algorithm might be implemented as
shown in Figure 4.3. Note that when L = 2 the structure shown in
Figure 4,3 is ideslly suited to implement the parallel predictor-
corrector pairs presented in Section 3.2. k
With regard to processor and memory requirements, the

srocessors at this level must be scmewhat sophisticated, due to the
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matheratical computations involved when evaluating the RHS of an
VP, The trocessors, however, need not be pipelined because the
ccxputations required by the parallel integration précedures do
not warrant 1%, Nevertheless, the processor add and multiply time
shculd Tte as small as possible since the integration phase generally
i3 the zos: time consuming phase of the parallel algorithms dis-
cussed in Chapter Two. JAgain, since speed is crucial here, cache
memories should be employed at this level.

Because the numericel solution of an IVP involves knowing
“he sclution at many points, the solution stored in the local meio-
ries should be accessible to all preocessors. Generally, in situations
~ixe this, two or more processors may sttempt toc access the same
memory medule during a memory cycle. This phenomenon is called
"memory contention” and is usually rectified by providing the system
with a "memory lock."

The function of the memory Lock is to preclude access by

other processors once a processor has ini<iated a memcry access.

Since only cne access car De made per memcry cycle, cne of the

‘e

eguests must wait, or <he sys<ter =t be efficient, however, the
wait time should be zc mcre <nan zne r <we memory cycles.

L.1.4 Coordinatisn of Zach Level

Now <that <re 3t~ vz -o Saneticn of each level has been
discussed, the operatisn =% =; & 'ntir: svetem V..l Te briefly
described.

Basically, the para . 2. ;-ccesszing voull tegin at Level I

i 3]

-

and proceed to Levels I arnd III ag fallows., At Zevel I

33

hes cen+tral
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voacessor would initialize the PE's with an initial approximation of

the state and costate variables at the partition points of the

‘v

erallel shocting algorithm. This information, along with the

initial and final times ass&ciated with each subinterval, would be
transferred to Level II where the parallel shooting phase of the
aigorithm would be initiated. When.a function and)or gradient
evaluation is required, the processors at Level III would be activated.
! At Level III, each processor would simultaneously integrate its
assigned initial-value problem over its assigned subinterval and use i
its local memory as -temporary storage for intermediste results. When |
the integration thase is complete, the'results would be transferred 4
to global.memory which then would be accessed by the central processcr

for the velues needed to evaluate an appropriate error function.

uahtan

Finally, the central processor would evaluate the error function and

decide whether tc centinue computations or halt.

Although it appears that, while one group of processors are

busy at a given lewvel, the remeinizg processors are idle, this is not
k] & y

<he case because the idle processors are really performing status
cnecks and other utility functioms.

L,2 Parallel Algorithm Execution Time

The goal of this sectiocn is +to analytically determine a set
of timing equations which can be used to estimate the execution time.
of the parslilel algorithms discussed in Chepters Two and Three. The tim-
ing equations are also used to compare the execution times of different

algorithms, as well as to estimate the speed-up due to parallelism.




One way to estimate *he executicn time of the parallel
algorithms would be to cozpute the time required per iteration by
taking into account that many arithmetic operations would be per-

formed in parallel. This can be done by counting the tctal number

of additions, multiplications, function evaluations, and gradieat
evaluations for a given iteration and multiplying the operation

count by representative execution times for these opérations. By
adopting this approach, one may estimate the time required for con-
vergence by using a serial computer (such as an IBM 360) to deter-

mine the rnumber of iterations needed and multiply this by the estimated
time per iteration. Note that this estimate, however, would be

oroblen dependent and that communicatior time between processors and

Temory is ignored.

The assumption that processor-memory communication time can

be ignored is realistic since for many nonlinear estimation and contrel
problems the mathematical computations performed by each processor 3
would be significantly more time consuming than memory eccess time.

The execution time of the parallel algorithms will be estimat-

¢d by deriving a set of timing equations for the minimization thase and

integration phase separately. At the end of this section, the timing
equations are combined to provide an estimate of the execution time of
“he entire parellel algorithm. At this time, it should be pointed out
thet the timing equations given in this section are derived assuming

the parallel algorithms are executed on a parallel computer whose

architecture is consistent with that discussed in Section L.1.
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L,2,1 Minimizaticn Phase

In this section, the total number of arithmetic operations
required by the CM, PVM, PDFP and P3FS procedures discussed in
Section 3.1 are counted assuming meny of these operations <a=n be
performed in parasllel., To form a tasis for comparison, an operation
count is also given for the serial ZP, DFP, and BFS procedures
assuming these algorithms are executed sequentially. To derive the
operation count for each of these methods at this time would be very
time consuming and repetitious. Therefore, only the operation count
for the PQN algorithm will be derived at this time.

Since step 1 of the PQN algorithm can be considered an
initialization step, one iteration of thkis method essentially con-
sists of steps 2, 3, 4 and 5. Therefore, the operstion count

will only include the arithmetic operations required to per-

form steps 2 - 5, The operation count will be derived bty counting [

the arithmetic opveratiocns required by each step, one at a time, and

combined at the end %o obtain an overall operation count.

Starting with step 2 then, observe that s sequence of linear

systems of equations must be solved during this step. To sclve each

i
[
f
Il

linear system as rapidly as possible, arny one of the following algo-
rithms discussed in references [ 1L4], [15], and [L1] may be employed.
Among these methods, the procedure reported by Pease [-1l] is pre-
fereble since it only requires n processors and, as such, could be
implemented on the parallel computer propcsed in Section L,l.

Besically, to solve a general linear system of the form

ax = b where acR™™® and x,beRnXl using Pesse's algorithm, we must
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augment the "a" matrix with the vector "b" by placing "b" in the
n+l column as follows:
A= [afb]
and solve x = a-lb by performing the following operetions in parallel
on the rows of A,
for J = 1 step 1 until n do
begin ti*aij/ajj i=1,2,...,n 1i#)
for k=j+1 step 1 until n+l do

aik«aik-tiajk i=1,2,...,0 i#)

end;

-

X.*a, a, .
i 1,n+1/ ii

i=1,2,...,n

If the arithmetic operations required by Pease's algorithm
are counted assuming they are done in parsllel, then only n(a+l)/2
additions and n(n+3)/2 multiplications are needed by this method.
Note that this is significantly faster than a serial Gaussian-
Elimination procedure which required O(n3) multiplications and addi-
tions. In summary, if Pease's algorithm is used tc solve the linear
systems required in step 2 of the PON methed, then n(n+l)/2 additions

and n{n+3)/2 multiplication must be performed for each system of

equations. Note that the linear systems in step 2 are increasing
in size and step 2 must be executed n-l times, Therefore, the total

number of operations which must be performed during step 2 is given

by:
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a=1
1 2 Y
=3 {i°(a+M) + i(a+3M}
i=1

2 \
- A+M,n(2n"-3n+l)} + A"‘BMIH(H-]./}
-2t 6 2 T2

_nn), | ate®ean-b),
- 67 43 6 )

where A and M represent the addition and multiplication operations
respectively.

In step 3a. of the PQN algorithm n+l gradients must be
evaluated but if n+l processors are gvailable to perform the gradient
evaluations (ge's) sirmltaneously then equivalently only one ge is
performed. Also, the n vector addition can bte performed in parsllel.
Similarly, in step 3b, the n gradient differences may be done simul-
tanecusly. Hence, 2n additions and lge are »equired in step 3.

In step 4., the inverse Hessian, H, is updated using n
rank-two corrections in which the vector-matrix operations can be
performed in parasllel., By sitraightforward evaluation, it can be
shown that (8n2+lln) multiplications and (Tn2+2n-2) additions must
be performed in step 4 of the PQN algorithm assuming "an" processors
are utilized for each vector-matrix operatiocn and ¢ > O, If ¢ = 0,
then the update is somevhat simpler and as a result only (hn2+hn)
multiplications and (3n2+n) additions would be needed.

In step 5, a single line gearch is required. If we assume

'L" function evaluations are performed during the line search and




Wu’q

f(x(z*l)) is evaluated, then L+l f'mction evaluations are performed

during this step.

To obtain the overall oreration count, the operation counts
obtained fer steps 2 - 5 are combined. Hence, the overall operation
count for cne iteration of the PQN algoritnm is given by:

PQN: (7n2+hn+n(n2-l)/6-2)A
+ (8n2+lln+n(n2+3n-h)/6)M

+ (L+1)FE+1GE

n denotes the dimensionality of the problem,
A denotes =dditions
M denotes multiplications
FE denotes functicn evaluetions
GE denotes gradient eveluations,
and L denotes the number of function evaluetions during a

line search.

Using the operation count ebove, it is a simple matter to
estimate the execution time for one iteration of the PQN algorithm.
Specifically, if ta’ tm’tfe‘ and tge dencte the processcr add time,
processor multiply time, thg time required for one function evaluation,
ané the time required for one gradient evalustion respectively, then
by multiplying the operation count above by these quantities the

execution time for one iteration of the PQN may be cbtained as follows:

PN : (7n2+hn+n(n2-l)/6-2)Ata
* (8n2+lln+n(n2+3n-h)/6)th

+(L+1)FEtfe+1GEtge (L.2.1-2)
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Recell that, when ¢ = 0 ( ¢ = 1 ) in the PQN elgorithm,
the PDFP (PBFS) method is obtained., <J{bserve if ¢ = 0, then
<he update in step 4 is somewhat simpler and the time per -teration

Is reduced %o:

POFP: t_. = (2n2

o + 3n + n(nz-l)/é) At + (hn2 + lLn

+ n(n® + 30 - L)/16) Mo + (L + 1) FEt

\
+1 GEtge (k.2.1-3)

Also, note that the time for one iteration of the PBFS method
is the same as the PQN algorithm since the PBFS method is only a spe-
cial case of the PQN algorithm when ¢ > 0.

Following a similar procedure as outlined above, the execu-

tion time of on= iteration of the CM and PVM procedures can be shown

to be:

CM: tpi = (5 + n) Me + (3 + 2n) At + (L +1) FEtfe

(L,2.1-L)

v ]
2
ct
1]

(20 + alk + 3(n-1)/2] - 1) at,
# (20° % 3[1 + (n-1)72] + 2) Me_

3 1 GEt L.2.1-
+ (L + 1) F:tfe + 1 GE ge (L.2.1-5)

As indicated earlier, it is useful to estimate the execution
“ime for one iteration of the ZP,DFP and BFS procedures assuming all
computations are done sequentially. 3By performing an operation count
and multiplying it by representative execution times, it is straight-
forward to show that the execution time of one iteration of the serial

methods are:
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. o (n 2
ZP: tpi (n€ + 30 + 2) th + (p° + Lkn +1) Axa

+ [((a+2) L +1) FEt,, (4.2.1-6)

. = 2 2

DFP: tpi (6n + 3n) ML+ (k0 + 2n - 2). At,

"+ (L +1) FEt, +1 GEtBe (1;.\2.1-7)
BFS: tpi = (7n2 + Ln + 2) th + (hn2 + 5n - L) Ata

+ (L +1) FEt,, + 1 GEtge (L.2.1-8)

Note that if the number of additions and multiplications per-
formed during one function and gradient eveluation were known, then the’
execution time could be estimated as & function of processor add and
multiply times. In the next section, tfe end tge will be estimated in
terms of ta and tm which will allow the speed-up due to perallelism to

be estimated in Section 4.2.3.

4.,2.2 Integration Phase

In the previous secticn, the execution times of the m?nimiza—
tion phase of the parallel algo:-ithms discussed in Chepter Two were
estimated in terms processor edd time, multiply time and the time re-
quired for a function and gredient eveluation. 1In the context of the
parallel algorithms described in Chapter Two, & function {or gradient)
eveluation consists of integrating a set of differential equations over
an appropriate time interval and evaluating a suitably defined error
function.

Thus, the function (or gredient) evzluation time depends pri-
marily on the numericel integration method employed and the conplegity
of the differential equations being integrated. This will be mwade more

precise by estimating the execution time reguired by the parallel
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predictor-corrector (PPC) method discussed in Section 3.2 and comparing
it with the execution time required by a serial Adam's predictor-
corrector (APC) method.

To begin, consider the PPC integration method defined by:

P _,c ,h c c ¢

Yiep = Viptg(Be5-5e0_4e] petf o) (4.2.2-1)
¢ _ .c ,h e e ¢

v =i (0fh0rg )55 +el ) (4.2.2-2)

As deseribed in Section 3.2, the predictor and corrector
equation above may be evaluated simultaneously on two separate pro-
cessors. Also, the right-hand-side (RHS) of the initial-value
problem (IVP) cean be evaluated simultaneously since the sequence of

computations is

PE#l:. . . . +yF P

-' * L - L] .
i+l i+l

PE#2:. . ..-*y;: > E L.

By performing the computations in this manner, effectively
only one RHS evaluation is performed at eaéh step. Also, when evalu-
ating eqn. (4.2.2-1) and (4.2.2-2) four sdditions and five multiplica-
tions must be performed., Therefore, the totel number of arithmetic
operations which must be carried out per step is:

L4A+5M+1RHS (L.2.2-3)

Now suppose N steps are taken to solvean IVP over some
interval of time. Then the time for one function evaluation may be

estimated using the following expression:

tp, = WNAt +5NMt +INRHSt . (h.2.2-L)

vhere tr is the time required to perform one RHS evaluation.

hs
Finally, if there are Arhs additions ang Mrhs multiplications when

evaluating the RHS of an IVP, then t, may be estimated as follows:

fe
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4 Yee © (Mu‘rhs )NAta+(5+erhs )Nth (4,2,2-5)

Note that, if the function being evaluated is a function

;

of n variables, then the gradient of such a function has n componerts. I
If we assume that each component of the gradient requires approxi- 3
!
;

mately the same time to evaluate as the function itself, then the
time required to evaluate the gradient is approximately

tge = Dtpe (L.2.2-6)

To form e baesis for comparison, it is instructive to count

the total number of arithmetic operations which must be performed by

the serial Adam's predictor-corrector (APC) pair:
(L.2.2-7)
_ . h P _ ¢ c c
Vien =i *ay (355 =590 ) 378 598 5)
¢ _ .t b P d c c
Viep =¥s 3% Of * 29 f5 - S0 ¢ ) (u,2.2-8)

From eqns. (4.2.2-1) and (4.2,2-8), it is straightforward to
show that 8A + 11M + 2RHS operations must be carried out sequentially

to implement the serial APC pair.

As before, if Arhs additions and Mrhs multiplication are

performed during a RHS evaluation, then the time required for one
function and gradient evaluation is simply:

t fe

(8+2Arhs )NAta+(ll+2Mrhs )N’th (4.2.2-9) A

and

tge = ntg, (4,2,2-10) ;

Note that two RHS evaluations must be performed at each
step of the serial APC method while only one RHS evaluastion was

required by the parallel APC. Since a RHS evaluation is the most
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time consuming operation that must be performed, the PPC

method will execute nearly twice as fast as the serial APC method.
Ideally then, the speed-up due to parasllelism would be approximately
two in this case,

4.2.3 Overall Execution Time

In Section 4.2.1 and L.2.2, the execution time of the
minimizaetion phase and integration phase of the parallel algorithms
discussed in Chapter Two was estimated. Also, in these sections,
the timing equations for some widely used serial procedures were
given. In this section, these results will be utilized to estimate
the execution time of the overall algorithm, as well as the speed-up
due to parallelism.

To estimate the overall execution time of the parallel
algorithm discussed in Chepter Two, we =imply substitute eqns.
(4.2,2-5) and (L.2.2-6) into one of the timing equations for the
parallel minimization algorithms. Similarly, the overall execution
time of a completely serial method muy be obtained by substituting
eqns. (4.2.,2-9) and (4.2.2-10) into one of the timing equations
associated with the serisl minimization procedures.

For example, if the serial ZP or DFP method were used
with the serial APC method, the overall execution time for one
iteration is:

ZP/APC:

.2
tpi = {n +3n+2+[(n+2)L+l](ll+2MrhS)N}th

+{n2+lm+1+[(n+2)L+1](8+2Arhs)N}Ata (4.2.2-11)
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Theorem L.1: Let N> >n

DFP/APC:

2
ty = {én +3n+(L&n+l)(ll+2Mrhs)N}th

2
+{un +2n-2+(L4n+1) (B+2A , INJAL, (4.2,2-12)

On the other hand, if the CM or PVM algorithm were used with
the PPC integration method, the time per iteration of the overall
algorithm would be:

CM/PPC:

th = {S+n+(1#1) (544, INIME

+{3+2n+(L+1)(h_Arhs)N}Ata

(4,2.2-13)
PVM/PPC:
Y- 3
tot = {2n"+3n+25n(n-1)+(5+M , INIME (L.2.2-1k)
2 3
+{2n +hn-l+5n(n—l)+(L+n+l)(’*"‘Arhs)N}A‘Ca (4,2.2-14)

ote that if the processor add time, ta‘ end multiply time,
tm’ were known elong with M, L, N, Arhs and Mrhs‘ then the time per
iteration, t_;, could be estimsted using ean. (L.2.2-11), (k.2.2-12)},
(4,2,2-13) or (L.2.2-1L4). Also, the timing equations may be used to
estimate the speed-up due to parallelism, the details of which are

given in the following theorem:

2
and 2(Mrhs+Arhs) > > 19. Then the speed-up

due to parallelism, S, satisfies the following inequali-

ties:
t N of the DFP/APC method
i, s A 2 >
- tpi of the PYM/PPC method

2

H. s t y of the ZP/APC method 21 (p+2)141]
tpi of the CM/PPC method I+1
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Proof: To prove i.: Dividing eqn. (L.2.2-12) by (4.2.2-14) and

using the fact that N >> n2, we have

S = 19+2(Mrhs+Arha)
9+Mrhs+Arhs
But since 2(Mrhs+Arhs) > 19, S may be bounded from below as follows:
16+1
> = >
S 9+16 /2 2,054 2

To prove ii.: Dividing eqn. (4.2.2-11) by egn. (L.2.2-13) and

recalling that N >> n2, we have

(n+2)1+1 {19+2(Mrhs+Arhs)}

L+l 9+Mrhs+Arhs

S =

But 2(Mrhs+A ) > 19 implies that

rhs

2,054 (n+2)1+1] , 2[(n+2)L+1]
L+1 L+l

s >

To illustrate the impmct of parallelism, as well as the
tightness of the bounds given by Theorem 4.1, suppose ta = 200 nsec,

t, = 1000 nsec, n=9, L=k, N=100, A p=33 end Mrhs=h3. Then by sub-

stituting these quantities into eqns. (L4.2.2-11), (L.2.2-12), and

(4.2.2-14), we have:

tpi = 0.4 3 seconds for ZP/APC

tpi = 0,1432 seconds for DFP/APC
tpi = 0.02721 seconds for CM/PPC
tpi = 0.0710 seconds for PVM/PPC

Observe that the results ambove indicate that one iteration

of the parallel algorithms require significantly less time to execute
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compared with the serials methods. This, along with the fact that
the parallel algorithms generally require fewer iterations to con-~
verge compared with serial methods (this was demonstrated in Section
3.1.3), makes the parallel methods very attractive. Furthermore,
the speed-up lue to parallelism in this case is:

GRADIENT-DEPENDENT METHODS:

0.1432

S = 5.0710

= 2,017 > 2,0
NONGRADIENT METHODS:

S = %F%g%gi = 16.548 > 16.4

Note that the lower bounds sbove, which were obtained from
Theorem 4.1, are rather close to the actual speed-up celculations.

Finally, from eqns. (4.2.2-11), (L4.2.2-12),(4.2,2-13) and
(4.2.2-1k4), it can be observed that if many integration steps are
needed to solve a given initial=value problem, then the integration
phase of the paramllel elgorithm requires much more time to execute
compared with the minimization phase. Thus, it is very important to
use an efficient, yet accurate, integration method, This observation
was the primary reason for developing the parallel variable step size

integration method discussed in Section 3.2.3.
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CHAPTEK FIVE

PZRFORMANCE OF PARALLEL ALGORITHMS

- In this chapter, the performance of the parallel identifi-
cation, estimation and control algorithms devised in this thesis will
be evaluated. In Section 5.1, the robustness of the parallel variable
metric algorithm discussed in Section 3.1.1 is demonstrated by solving
an optimal control problem associated with a Van der Pol process.

All aspects of the parallel algorithms are tested including parallel
shocting and adaptive mesh selection. In Section 5.2, the perfor-
mance of the parallel state and parameter estimation &lgorithms is eval-
vated by identifying the aerodynamic parameters and the initial state
cf the lateral equations of motion for & T-23 asircraft. The indirect
ancd direct control algeorithms developed in Section 2.1 are ther util-
ized in Section 5.3 to design a controller for controlling the longi-

tudinal equations of motion for a F-8 Crusader aircraft. Finally, in

Section 5.b4, the performance of the parallel adaptive control algo-
rithms discussed in Section 2.3 is evaluated for the F-8 aircraft.

To establish & basis for compariscon, the serial Davidon-

By

letcher-Powell (DFP), Eroyden-Fletcher-Shannc (BFS), and Zangwill-

owell (ZF¥) methods, along with Straeter's parallel variable metric

ae)

(PVM)} algorithm, the Chazan-Miranker (CM) method, and the parallel
quasi-Newton (P4YN) method will be employed to minimize the aprropriate
error functions described in Chapter Two. The gradients reguired by
the variable metric algorithms were obtained by finite-differencing
and the line searches were implemented by fitting a quadratic function

§ through three points. All of the parallel algorithms were coded in
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FORTRAN IV and executed on an IBM 3033 (a serial computer) since a

parallel computer was not accessible.

5.1 Evaluetion of Parallel Algorithm Performance

In this section, the Van der Pol system presented in Section

3.3 will be used to study the following:

e The robustness of the parallel variable metric algorithm discussed

in Section 3.1.

e The convergence properties of the indirect control algorithm dis-
cussed in Section 2.2 when different integration methods are

employed.

e The effect the number of subintervels has on convergence of the

parallel shooting algorithm presented in Section 2.3.

e The convergence properties of the adaptive mesh selection algo-

rithm described in Section 3.1.

To begin this study, recall from Section 3.3 that the Van

der Pol system may be written as follows:

kl<t) xg(t) (5.1-1)

{£)

a{t) [1 - =x2(2)] x2(t) - xl(t) +u(t) (5.1-2)

= N

5(2
vhere x(0) = xy is known, a(t) is a parameter which reflects a par-
ticular system's dynamics, and u(t) is a control variable.

The problem considered in this section is to obtain the

optimal control, u(t), which minimizes the cost functional:

; fo [30e) + x20e) + v2()7 ab (5.1-3)
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subject to the satisfaction of egns. (5.1-1) and (5.1-2). From the
necessary conditions of optimality given in Section 2.3, it is easy
to show that the nonlinear two-point boundary value problem (NTPBVP)

associated with the Van der Pol system is given by:

State Equations

k() = x,(t) (5.1-k)
5,(t) = a(t) [1 - ()] xy(8) = x;(8) + ult) (5.1-5)
Costate Equations
il(t) = a,(t) [2 a(t) x, () x,(t) + 1]
-2 x () (5.1-6)

1

hy(e) = = (6) = A(8) alt) [1 - x(1)]

-2 xe(t) (5.1-7)

Boundary Conditicns

T

x(0) = [xlo, XQO] (5.1-8a)

A(5) = [0, 01" (5.1-8b)
Optimal Tontrol

u(t) = % )\e(t) (5.1-9)

If ordinary shooting is used to sclve the NTPBVP above, then

an appropriate error function which must be minimized is simply:
2
E=|[x(5)]] (5.1-10)

To demonstrate the effectiveness of ordinary shooting and the
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parallel algorithms developed in Chapters Twc znd Three, thece

Maiia i S

methods were used to determine the initial costate which causes eqn.

(5.1-10) to be minimized, given that

a(t) =1 vt e fo, 5]

x(0) = [0 17,

The initial costate vector was chosen as A{0) = [0.5 S.OjT
which caused the forward integration of egns.(5.1-4), (5.1-5), 5.1-6)
and (5.1-7) to be well defined. As a result, the NTPBVP cculd be
easily solved for the optimal unconstrained control which is shown in
Figure 5.1.

In many instances, due to physical constraints, the optimal
control may be bounded. To accommodate problems of this type, the
bounded control algorithm described in Section 2.3 can be employed.

To demonstrate the effectiveness of this procedure, the optimal con-

trol problem above was solved assuming |u(t)| < 0.8 ¥ t e [0, 5].
The optimal bounded control for this example is shown in Figure 5.1.
The ability of the parallel initial costate algorithm to re-
duce the error function defined by egn (5.1-10) is shown in Tables
5.1-5.Lk. Since the parallel algorithms were simulated on an IBM 3033
(a serial computer), the total number of function and gradient evalua-
tions shown in Tables 5.1-5.4 reflect the fact that an advanced com-
puter with n = 2 or n + 1 = 3 levels of parallelism should be used to
execute the Chazan-Miranker method or Straeter's method, respectively.

The results indicate:
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For initial values of A(to) close to optimum, the Chazan-Miranker f
procedure is capable of speeding up convergence by nearly a factor

of two over the DFP and ZP methods. Straeter's method is much more

effective than the DFP method in reducing the errof function for

about the same number of function end gradient evaluations (Table 5.1).

For initial values of A(to) far from optimal, the parallel algo-

rithms are capable of reducing the error function by several orders
of magnitude compared with the DFP method. Although the ZP method
managed to reduce the error function the most, this was achieved at

the expense of many function evaluations (Table 5.2).

When the control is constrained (|u(t)| < 0.8) and the initial value
of A(to) is selected near the optimum, all procedures converged. :
Note that the ZP method required a relatively large number of func-

tion evaluations to do so however (Table 5.3). '

If u(t) is constrained, Straeter's method is clearly superior to the
DFP method when l(to) is initially far from cptimal. Observe that
although the CM method required many function evaluations, conver-
gence did result, whereas the ZP method failed to locate the minimum

in this case (Table 5.4).

5.1.1 Robustness of Parallel Minimization Algorithms

To study the robustness of the parallel minimization algo-

rithms and the effect different integration schemes have on convergence,

ordinary shooting was used to solve the NTPBVP represented by equs.
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(5.1-k) - (5.1-8). As in the previous example, the error function :
which must be minimized is E = [IA(S)]]Q. The methods used to inte- i u
grate eqns,(5.1-4) - (5.1-7) forward in time were the Adam's predictor-

corrector (APC) pair given by eqns. (4.2.2-7), (4.2.2-8), the parallel

predictor-corrector (PPCL2) pair given by egns. (3.2.1-ke), (3.2.1-Lb),
and the parallel predictor-corrector veriable step size (PPCL2V)
method, discussed in Section 3.2.2.

Because of the expense incufred when simulating the parallel
algorithms, only two of the parallel minimization methods were con-
sidered; namely the CM and PVM algorithms. As shown in Section 3.1.3,
.the rate of ccnvergence of this the PVM algorithm depends primarily
on a weightinglparameter which defines a set ¢f linearly independent

vectors denoted by:

4 (01’ Opy =5 O n

where
In is an x n identity matrix and
¢ is & scalar weighting parameter which is fixed for all
iterations.
’ <

By varying the weighting parameter over a large range (say 10~ c 1

< 1071) the robustness of the PVM method can be evaluated. Also,
integration effects can be measured by using one of the integration
methods cited earlier. Because the APC and PPCL2 integration methods
are fixed step size procedures, the step size must be selected a priori.
Since the step size, h, must be sufficiently small to assure accurate
results without an excessive number of integration steps, h was set

to 5/100 = 0.05. For the variable step size method (PPCL2V), a 5-6
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digit accurecy requirement was requested which meant that the step J
size must be varied to maintain the local truncation error below 10-5.
Initially, the integration step size was set to h = 0.05, but in order

to meet the accuracy requirement imposed, the step size was immedi-

ately reduced to h 0.025. After this initial adjustment, the step

size remained at h 0.025 for the remainder of the integration inter-
val.

At this point, simulations were performed to determine the
convergence properties of the indirect contrecl algorithm when the
integration methods described above are employed. The results are

summarized in Figure 5.2.

The results indicate:

e The robustness of the PVM algorithm is enhanced the most when the .
PPC42 integration scheme is employed, i.e., for a wide range of ¢
3)

(lO-7 < ¢ < 10°°), the performance of the PVM algorithm is insensi-

tive to the specific value of the weighting parameter.

e The parallel integration methods enhance the robustness of the PVM
algorithr more than the serial APT method; although the PVM method
coulé be tuned to converge the fastest when the APC method was

employed (see Figure 5.2).

Before leaving this section, a few words should be said
about the robustness of the Chazan-Miranker (CM) algorithm. To use
the CM algorithm, a monotone decreasing sequence must be selected. In
optimal control applications, it has been determined empirically that

a reasonable choice of the monotone decreasing sequence is:
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B, = c exp (-2)

where

¢ is a weighting parameter and £ denotes the iteration

number.

In the context of the CM method, the term robustness refers
to the relative insensitivity of the method to the particular value of
c. By varying the weighting parameter c over a wide range, say 10 < ¢
< 10-2, the robustness of the CM method can be measured. To this
effect, the CM method was used with PPC integration to solve the
NTPBVF asscciated with the Van der Pol system. The results obtained
are shown in Figure 5.3.

The results indicate that the CM algorithm was not very robust
at all. In fact, if the weightirg parameter was greater than 10, the
CM method didn't converge tecause the excessively large value of ¢
caused the forward integration of eaqns, {5.1-4) = (5.1-7) to become
unstable. In view c¢f these undesirable results, no further simulations

were ccnsidered.

5.1.2 Parallel Shooting

In this section, the convergence of the parallel shooting
algorithm presented in Section 2.3 will be -"tudied by dividing the
mission time interval into many subintervals and determining if con-~
vergence may be accelerated or not. Recall from Chapter Two that as
more subintervals are introduced, the original NTPBVP becomes a multi-
point boundary value problem and the number of unknown boundary condi-
tions increase from 2n to n{2N-1) vwhere n is the system order, and

N is the number of subintervals. Despite this fact, the major advantage
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of using parallel shooting is that the sensitivity protlems associated
with the forward integration of the state and costate equations is sig-
nificantly reduced.

In view of the above, a natural question then is "How should
N be chosen?" Although the parallel shooting method has been known
for a number of years, the question raised here has not been answered
satisfactorily.

One way to answer the above question, which is the approach
teken here, is to select & value of N, solve the resultant multipoint
boundary value problem using parallel shooting, and record the number
of iterations required for convergence as a function of N. To deter-
mine if this procedure would indeed provide some insight into how to
choose the number of subintervals, the mission time interval was
divided intc 2, 3, and 5 subintervals and the parallel shooting algo-
rithm discussed in Section 2.3 was employed to solve the resultant
multi-point boundary value problem. To illustrate the procedure, the
twe suvinterval case will be briefly described.

For the two subinterval case, the mission time interval
[0, 5] was arbitrarily partitioned into two subintervals of length
Al = 1.6 ard A2 = 3.L. Note that the sum of Al and A2 is equal to the
length of the mission time interval since this is a necessary con-
straint. The '"reduced" error function which must be minimized subject
to the dynamic constraints given by eqns (5.1-k) to (5.1-7) is given

by : *

*
Since x(to) = x, is known, there is no need to include it in Y

0
Observe that this reduces the number of unknowns in Y

¢
L
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E= |p, + QY - v1]? (5.1.2-1)
where

00! 0 q 0000!10]
0 o; 0 0 0000!01
e T — S

p. |[00j1000 0= -1000500
colo1oo 0-100100
0 ofoo 10 00-10]00
00r0001] | 000-170 0]

=<
I

[ (2.6) %,(1.6) X (1.6) A,(1.6) A,(5.0} A,(5.0)7"

2

and

T
y = [3,(5.0) A,(5.0) 0 0 0 ]

To start the parallel shooting method, ¥, was initiaslly set

2

tc a zero vector but upon convergence Y, was determined to be:

L

YZ = (0.43019 5.1156 0.3189 -0.2012 1.871 -0.781L)

m
-

Since the goal of this section is to determine how to choose
the number of subintervals, the above procedure was repeated by dividing
the mission time into three subintervals of length, Al = 1.0, A2 = 1.0,
and A, = 3.0, and then into five subintervals cf length, Al = A, = A, =

3 2 3

Ah = A5 = 1.0. Observe that, in each case the constraint that the sum
of the subinterval lengths must be equal to the mission time was
imposed at all times. Finally, to be consistent with the two subinter-
val case, Y2 was initially set to zero for both the three and five sub-
interval cases.

To this effect, the simulations were performed. The results

shown in Figure 5.4 indicate:
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e The integration interval should be partitioned into as few as
possible subintervals since the number of iterations required for
convergence, as well as the number of unknowns, will be reduced

{see Figure 5.L).

e The number of iterations required for convergence appears tc in-
crease linearly with the number of subintervals for the DFP/PPCL2
method while for the PVM/PPCL2 method, the number of iterations
required for convergence tends to level off as the number of sub-

intervals is increased.

The last observation may be directly related to the accuracy
of the solution to the initial-value problems over each subinterval.
As the number of subintervals increase, the step size employed by the
PPCL2 integration method decreases because the nurmber of integration
steps taken cver a given subinterval was held fixed. As a result, =

more accurate integration of the appropriate differential eguations was

obtained over each subcinierval. Thus, the gradients required by the
PVM and DFP methods were obtained more accurately as the number of
subintervals was increased. But since the PVl eigorithm is known to
perform better when accurate gradients are utilized, this may explain
why the number of iterations required by the PVM/PPCL2 method does not
increase very rapidly. On the other hand, since the performance of
the DFP method is generally not affected very much by inaccurate gra-
dient information, this may explain the linear trend shown in Figure
5.4 for the DFP/PPCL2 method.

It is instructive to note that the dimension of Y, in each

L
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case was n{(2N - 1). Since n = 4, this implies that 6, 10, and 18
unknowns must be found when 2, 3, and 5 subintervals were used re-
spectively. Since the parallel algorithm converged in all cases,
this indicates that this method may be employed to solve high order

optimization problems.

Finally, it should be noted that the results obtained in 3
this section are not very meaﬁingful as is,because no insight has been |
gained as to where the mesh points should be placed. However, if the
number of subintervais has been specified, then the adaptive mesh
selection algorithm discussed in Section 2.2.2.1 canbe utilized to allo-
cate the mesh points in an optimal fashion. An example illustrating
the use of the adaptive mesh selection algorithm is presented in the
next section.

5.1.3 Adaptive Mesh Selection

In this section, the adaptive mesh selection (AMS) algorithm

described in Section 2.2.2.1 will be employed to optimize the mesh
points required by the paralliel shooting aigorichm. Inview ofthe results
obteined in the previous section, themission time interval [0, 5] was
divided into only two subintervals. Hence, the problem was to simulta-
neously find the optimal values of the subinterval lengths (Al and A2)
and the solution to the resulting multi-point boundary value problem
subject to the dynamic constraints given by egns.(5.1-4) to (5.1-8),
as well as the static constraints, Al > 0, A2 > 0, and Al + A2 = 5.

To use the AMS algorithm, one must decide which numerical

integration method to use because the Jocal truncation error associated

with the integration method selected is required. Since the parallel '

predictor-corrector (PPC) method given by eqn.(3.2.1-ka) and (3.2.1-Udb)




L . .
is accurate to O(h ), this method was selected to integrate the re-

quired initial-value problems.

To illustrate the use of the AMS algorithm, consider the

NTPBVP represented by eqns.(5.1-4) - (5.1-8) and the error function

below:
2 2
E= || + @ -]+ [le]] (5.1.3-1)
where
[001000 0 00 0110
0010000 o 00 0)01
e L O Lo
00i1000 -1 00 0,00
P= |00l'0100 Q=|0-1 0 0100
00l0o010 0 0-1 0100
000001 00 0-1!00
- T
Yo = [ (0) A,00) % (8) x,(8,) A (8) A,(8,) 8]

and

T
(A (5.0) A,(5.0) 0 0 0 01°.

<
]

The first term shown in egn (5.1.3-1) is the usual error function
associated with the parallel shooting method while the second term is
included tc allow the mesh points to be optimized. For the problem

under consideration, the error vector, e, has two components, namely:

+
e'jl

ST max eL(t) J=0,1 (5.1.3-2)

tjitit,j+l
where eL(t) is the local truncation error associated with the PPCL2

integration method. Recall from Section 3.2.2 that the norm of eL(t)

was derived to be:




'r"""'ﬂllllliiuu--hMWH .

‘eL(t)]z —-12 (‘yIiJ _ yC

C
251 a1l * By 150D (5.1.3-3)

where in this case y = (x, x. A XE) and f consists of the right-

1 "2 "1

hand side (RHS) of X , X,, A, and A,.

In view of the above problem formulation, the parallel algo-
rithms discussed in Chapter Three were used to minimize eqn.(5.1.3-1)
subject to the dymamic constraints given eqns.(5.1-4) = (5.1-8) and
the static constraint Al >0, A2 > 0, and Al + A2 = 5. Based upon
é previously obtained solutions, Y2 was initially selected as:

Y2 = (0.4 5.0 0.25 -0.2 1.4 -0.9 2.5)

which resulted in an initial error function value of E = 0.9157 and

||e|| = 0.01004. Based upon the definition of E, these values indi-
cate that initially most of the error was due to the choice of x and
A at the partition points rather than the choice of the partition
points themselves. To reduce E, the DFP was used in conjunction with

the PPCL2 integration method. After ten iterations, the following

values of Yz, E and l)el] vere obtained.

PO

Y, = (0.4192 5.1201 0.1505 -0.2093 0.9562 -0.8581 2.33L)
E =0.0093 and ||e|| = 0.00929

Observe that these results indicate that the error in the solution at
the partition points is only 0.0093 - 0.00929 = 0.00001 and that the
norm of the local truncation error, ||e||, dominates over the solution
error. Also, note that after ten iterations, the éubinterval lengths
had converged to 4, = 0.2334 and b, =5-0, = L.7666.

To determine if the local truncation error could be reduced
still further, the AMS algorithm was allowed to execute for a total

; of 50 iterations. After 50 iterations, the normof the local truncation
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errorhadbeenreducedto]le[|=0.00ThO2whilethetotalerrorwasE=
0.007724. Eotethat{le![hadbeenreducedbyabout23%fromitsinitial gi
value of 0.01004 which is encouraging. The value of Yl obtained after i
50 iterations was:

Y, = (0.3285 5.0683 0.3354 -0.208k 2.0047 ~0.7364 1.4378)
which indicates that the subinterval lengths should be selected as
b = 1.4378 and A, = 3.5622.

In summary, it can be concluded from the results presented

in this section that by using the AMS algorithm to optimally select
the mesh points reguired by the parallel shooting algorithm, the local
truncation error can indeed be minimized, although many iterations
may be required. Observe, if the integration interval [0, 5] is
divided into two subintervals of lengths B, = 1.6 and A2 = 3.4 and if
the parallel shooting elgorithm is used, then it was shown in the

previous section that the optimal value of Y, is given by:

£

YR = (0.43019 5.1156 0.3189 -0.2012 1.871 -0.781L

In this case, the norm of the local truncation error, ||e|], it |[e]!

)T

= 0.0081L which is nearly 8% greater than the error obtained using
the adaptive mesh selection algorithm.

5.2 Evaluation of Estimator Performance

The performance of the parallel state and parameter estima-
tion algorithms was evaluated using simulated measurement data charac-
terizing the lateral motion of a T-33 aircraft. The equations of

motion used in the simulations were given by [42]:
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i YB a, -1 0.05467 Y6
1 a
; L Lp L 0 Léa

x(t) = x(t) + Ga(t) (5.2-1)

' Ng NN 0 N
p r o

0 1 0 0 0
" _ ]

where the state variables xl(t), x2(t), x3(t), and xh(t) represent the
sideslip angle, roll rate, yaw rate and roll angle respectively. The
aileron deflection angle,éa,was selected as a one degree step command

for the purposes of identification.

4 The measurement model used in the simulation was selected

as: :
q
z(t) = x(t) + v(t) (5.2-2) f
i
where v(t) is a zero-mean WGN process with covariance
[ h ( ) wnN : o
,
roou 0 0 o ]
q
0 4.0 0 0 i
q(t) =
’ 0 0 017 0O 4
| | o o 0 3.4

This value of Q(t) was selected since a ratio of signal
variance to noise variance of approximately two was desired.

The objective was to simultaneously estimate the four state
variables and the aerodyanmic parameter vector

- T
0= (YB, ao, LB, Lp’ Lr’ NB, No, Nr’ Ysa, Léa, Néa)

However, to identify all of the aerodynamic parameters would be imprac-
tical since the computational cost would be too high. Therefore, a

sensitivity study was conducted to determine those parameters which




"

most affect system performance and therefore are most important to
explicitly identify. More specifically, the state sensitivities:

3 x.(t)
bx, (t) = 3—%(7)- 5 0,(t) i=1,2,3,1L (5.2-3)

J=1,2, «o., 11

were calculated and displayed to aid the decision process (see Figure
5.5). From Figure 5.5, it can be concluded that %> Lp, L6 » and N6
are the most important parameters to identify since the sta:e sensi-a
tivities associated with these parameters are much larger in magnitude
than the remaining parameters. Therefore, the remaining parameters can
be considered less important and set to their nominal values. Thus, we
shall be concerned with solving the reduced SAP estimation problem in

the remainder of this section.

5.2.1 Direct SAP Estimation

To find the unknown states and parameters associated with

the T-33 aircraft, the following performance index was considered:

J=1%||%(0) - m !|2_1 + %fl [1z(t) - x(t)|]2-1 at  (5.2.1-1)
xol Pxo 0 Q(t)

where

(0 0 0 0 0.1k2 -6.51 =4k.lL _1.8)T

=]
"

and

x 0.01 I8.
Q

el
"

The parallel algorithms discussed in Chapters Two and Three
were employed to find %(0) which minimizes egn.(5.2.1-1) subject to

eqn (5.2-1). To start the algorithm, the estimate of the augmented

state vector was selected to be X(0) = O which resulted in an initial

performance of J = 1.008 x 106.
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As indicated in Table 5.5, the parallel SAP estimation
algorithm managed to reduce the performance index more rapidly than
the serial DFP algorithm. In fact, the results in Table 5.5 indicate
that the serial DFP method did not converge after eight iterations
while the parallel method converged after seven iterations. Upon
convergence of the PVM method, the initial state and parameter esti-
mates compare very favorably with the true values which were

Xl = 0., x2 = 0., x., = 0., x)4 = 0.

0 $ &

. = 0.1%2, L = -6.51, L, = -L.LL and N, = 1.8.
P a a

Using the estimated initial state and parameter vector, a simulation
of the T-33 aircraft was performed. The resulting trajectories along
with the simulated measurement data ere shown in Figures (5.6-5.9).
Note that the estimated roll rate and roll engle trajectories are
essentially indistinguishable from the true trejectories while there
is only a small error associated with the sideslip and yaw rate tra-
jectories (see Figures 5.6 - 5.9).

5.2.2 Indirect SAP Estimation

To assess the performance of the indirect SAP estimation
algorithm discussed in Section 2.1.1, it was used to find the unknown
states and parameters of the T-33 aircraft. To use the indirect

method, the SAP estimation problem defined by:

t
3=3% &) - m ||§-1 +szftf (12(¢)
o]

(o] X0

- 0 Dx(0), €3Gy + TRy et
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and x(t) = £ [x(t), t] + G[x(t), t] @(¢t)

must be reduced to a nonlinear two-point boundary value problem
(NTPBVP). Using eqns, (2.1.2-2), (2.1.2-3), (2.1.2-4) it is easy to

show that the NTPBVP associated with the T-33 asircraft is given by:

x(t) = a x(t) + b éa (5.2.2-1) i
-1 T
Alt) = R (t) (z(t) - x(t)) -~ a (t) A(t) (5.2.2-2)
where
P & 7]
: a
L, L L 0 ' L
a = B e :Oh and b = S
N N N o I N
r ) 8
' a
]
0 1 0 0 ! o !
L =
Oy 10,

LS

The boundary conditions associated with eqns.(5.2.2-1) and

(5.2.2-2) are:

A0) = ~p7% [%(0) - m ] (5.2.2-38)
o]

In the problem formulation above, the augmented state vector, x(t),

includes the unknown parameters o Lp, L. , and N6 .

a a

0’ 8
To solve the NTPBVP represented by egns. (5.2.2-1), (5.2.2-2)

(5.2.2-3a) and (5.2.2~3b), ordinary shooting was used initially. How-

ever, due to *the sensitivity of the costate eqn.(5.2.2-2) to small

changes in %(0), convergence was rather slow.

On the basis of these results, it was decided that parallel
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shocting should be ccnsidered. Thus, the integration interval [0, 1]

was partitioned into two subintervals (Al = 0.4 and A2 = 0.6) and

the parallel shooting algorithm discussed in Section 2.1.2 was employed

to minimize the reduced error function:*

=, +er_y1|2 (5.2.2-L)
where
{ |
% 1 O % 1 1g
P = ——r————— Q= ————te
%161 %16 “Ii61 %
v, =20 AT KMo’
r_= Do) <o) aTa.0)]"
and
Yy =0

Note that by using parallel shooting, the dimension of the
problem is artificially increased from 2n = 16 to n(2N - 1) = 24,
Although the problem now appears more formidatle to solve, this is not
the case because the sensitivity of the solution to the selection of
%(0) should be reduced which might help convergence.

In fact, the results shown in Tables 5.6 and 5.7 indicate
that convergence can occur using parallel shooting; however, the

number of iterations required still was rather large. Note that the

* Since A(0) = p;i [&(0) - mxo] is known once %(0) is given, there is
no need to include it in YQ. Observe that this reduces the number of

unknowns in Y, by a factor of n.
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results shown in Tables 5.6 and 5.7 cleerly indicate that the gradient
dependent DFP algorithm is preferable to the nongradient ZP method.¥

5.2.3 Timing Considerations

In Section 4.2, the execution time of the parallel (and
seriael) algorithms was estimated in terms of variables representing
the number of additions, multiplications, function and gradient evalu-
ations. In this section, these results are employed to estimate the
time required to simultaneously estimate the state and parameters of
the T-33 aircraft's equations of motion. Although this can be done

| using any of the timing equations given in Section 4.3, the timing
results will be explicitly calculated assuming the PVM minimization
method and the fourth-order PPC integration method are used in the
direct SAP estimation algorithm given in Section 2.1.

For the T-33 aircraft, 10 additions and 13 multiplications

s i et A L A

must be performed when evaluating the RHS of the aircraft's equations

of motion. Also, suppose the parallel predictor-corrector (PPCL2)
method requires 100 integration steps to integrate the appropriate
differential equations over the integration interval [0, 1]. By sub-

stituting Arhs =10, M = 13 and N = 100 into egn, (4.2.2-5), an

rhs
estimate of the time required for one function evaluation can be
obtained as follows:
= -+ el o =
tee = 1400 At + 1800 M t_ (5.2.3-1)

If the direct state and parameter (SAP) estimation procedure is

* The parallel minimization algorithms were not considered here due to
the enormous expense which would be incurred when simulating these
methods on a serial computer.
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utilized, then n = 8 and the execution time fcr one gradient evalua-
tion is:

tge =nt. =11,200 A ta + 1L,400 M v (5.2.3-2)

From Table 5.5, four function evaluations are performed during a line
{ search on the average. Hence, let L = L. By substituting eagns.
(5.2.3-1) and (5.2.3-2) into eqn.(4.2.1-5), an estimate of the execu-
tion time for one iteration of Straeter's PVM algorithm may be
obtained as follows:

t . =23,638 Mt + 18,443 A ¢ (5.2.3-3)
pi m a

To illustrate the speed achievable through parallelism,

suppose the processor add and multiply tines are ta = 200 nsec and

tm = 1000 nsec , respectively. By substituting these values of ta

and tm into egn. (5.2.3-3), the execution time per iteration is only
0.0273 seconds. Note that this time mey be reduced still further if

the PPCL2 integration method is used to integrate each state equation

on separate processors. In particular, if 16 processors (two for
each state equetion) were available, the function and gradient evalua-
ticn time would be reduced to:

tfe

1]

175 At + 225 M t_ (5.2.3-4)

t

ge 1400 A t, 1800 M t (5.2.3-5)

By substituting egns. (5.2.3-4) and (5.2.3-5) into egn. (4.2.1-5), the
estimated execution time for one iteration of the PVM algorithm would
be reduced to 0.0036 seconds.

| By using the timing equations derived in Section 4.2, and




the procedure descrived above, the execution time of many other algo-
rithms may be estimated. To provide a basis for comparison, this was
done for both direct and indirect SAP estimation procedures and the
results are shown in Tables 5.8 and 5.9.

The results indicate:

e The execution time per iteration can be significantly reduced if
a completely parallel (i.e., parallel minimization and parallel

integration) algorithm is used.

¢ One iteration of the nongradient algorithms require less time to

execute compared with the gradjent-dependent methods.

¢ One iteration of the indirect method requires much more time and
processors to execute compared with the direct method (see Tables

5.8 and 5.9).

Finally, the speed-ur due to parallelism is illustrated in
Figure 5.10 which iliustrates the speeu-up/iteration as a function of
processors.

5.3 Evaluation of Controller Performance

The performance of the parallel nonlinear controcl algo-
rithms presented in Section 2.2 was evaluated by designing a control
system for controlling the longitudinal motion of an F-8 Crusader
aircraft. The longitudinal equations of motion of the F-~8 aircraft
were obtained from the aircraft model shown in Figure 5.11. The
aircraft model illustrates the forces which were considered and the

coordinate system used by Garrard and Jordan in reference [43].




.
s,ud/ 1 A
LET/2700°0 62/8.20°0 G9/L100°0 6/L1950°0 sddd
LE1/8E00°0 - G2/6L20°0 $9/€100°0 6/8650"0 ddad
LET/9£00°0 Ges£120°0 G9/2L00°0 6/9550°0 WAad
LET/ETON0 Ge//010°0 49/9200°0 6/£120°0 WO
LT/6£00°0 £/9.20°0 6/6.00°0 1/6G50°0 sad
LT/8€00°0 £/61.20°0 6/400°0 1/8650°0 EE
L1/8010°0 £/7580°0 6/6120°0 /L8170 dz
w3709 TV
(ALvIS/ade) {snuy/ade) (ALIVIS/AdY) (SHY/ddT) pouss UOT)BZTWIUTH
ehddd 2hiddd DV odv uorqeIdaqul
035U 00T = '3 “03SU 00Z = 3 €T = My ‘o1 = "My 00T =N ‘h =7 ‘g=u

BUTWL], UOTIBWIIST JyS 10310

JAVHOMIV €€-L

187G JIdVL

16l

- N




d
s,ad/' 3 tAEN

G92/9£9600° 0 G2/2G1.0°0 621/59810°0 6/SERT 0 Sddd
692/62600°0 i G2/811L0°0 621/0£810°0 6/2ERT°0 ddad
G92/21600°0 62/01L0°0 621/£1810°0 6/0£4T°0 ’

G92/9THENO" 0 G2/12L20°0 627/6.8900°0 6/916150°0 WO

£€/5600°0 £€/921L0°0 L1/v810°0 T/E€ERT C sdd
£€/£600°0 £/811.0°0 L1/0£810°0 T/25HT°0 dda
££/6120°0 £/1£22°0 L1/8£950°0 1/£0GH°0 az

W3 20D TV

(2LVIS/ade) (snu/ade) (ALVIS/AdT) (sHY/ddT) pouss UOTHRZTUTUTH

¢hddd ehodd odv Ddy uoggyeadajuy

w ‘
088U Q00T = 43 “09SuU 00¢ =

e S

34 SUY.J
3 o = M ege 2 Sy oot =N =T g=u

Jurwr], UOT3ewySy dys 303aTPUl

LAVHOHIV £8-~L :6°G HIAVL

162




dn peads uotTqeWT)SH dYS 302ITPUL  1QJRIOITY EE-L  G0TTG FNOIL

SLN3IW3TI ONISSIO0Nd

00¢ ooz ool
<4 T T

%
Y90
g2

NOiIlvE3ll/s dNA33dS

-

163




— e mwe e — em— G— —

TopoW TeOTWeukq 3JeJoaTY :TT°S HHNDIA

z ‘B2 ybBnoayy edod oy
ijpjnaipuedied sixo A

e e e e e = e e - e - — — s — A — —

S~ _..H:S 9Alojey

|
fo—— g29s') - g20s | ]
|




It is assumed that the aerodyramic drag is negligitle

and that the 1ift may be separsted into its wing and tail components.
Under these conditions, it can be shown (cf, [%3)) that the longi-

tudinel equations of rotion become:

m(d + w é) = -mg sin O + L, sin o + Lt .in o (5.3-1)

t
m(w + u ©) = mg cos O - L, cos & - Lt cos o (5.3-2)
O=M + 2 a- % L -c € 3-
Iy M, L cos . Ly cos o ~c S (5.3-3)
where

m = mass of aircraft
u = velocity of aircraft in X direction
w = velocity of aircraft in Z direction |
© = angular displacement about Y axis, measured clockwise

from the horizon as shown in Figure 5.11 ;
Iy = moment of inertia of aircraft about Y axis
L, = wing lift
Lt = tail 1lift
& = wing angle of attack
at = tail angle of attack
M = wing momert
w
2 = distance between wing aerodynamic center and aircraft

center of gravity

L, = distance between tail aerodynamic center and aircraft
center of gravity

= damping moment.
In reference [ L3, Garrard and Jordan reduce egns. (5.3-1) -
(5.3-3) to a nonlinear dynamical model in which cubic and lower order

terms are retained for the F-8 aircraft. This model of the F-8 aircraft
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which is given below can te used to study the effect disturbances have
on the F-8 aircraft when it is perturbed from level, unaccelerated
flight at Mach = 0.85 and an altitude of 30,000 feet.

For small angle of attack disturbances (a < 23.5° = 0.41

radians), the F-8 aircraft model is given by:

oy 2 2
X = (1 x] - 0.088 xl) Xg - 0.877 x, + 0.L47 xJ
+ 3.846 xi - 0.215 u + 0.28 u xi + 0.47 u2 X,
+ 0.63 w - 0.019 xg - (5.3-4)
Xy = g {5.3-5)
%. = -0.396 x. - L.206 x. - 0.47 x° - 3.56% x°
3 ’ 3 : 1 : 1 - 1

- 20.967 u + 6.265 u x§ + 46 u2 X, + 61.L u3 (5.3-6)

while for large angle of attack disturbances (a > 23.5° = 0.h1

radians) the F-8 aircraft model becomes:

s (e _ 2 . _ 2
X, = (1 X - 0.088 xl) x3 0.019 x5 - 0.053 X,

+ 0.006 xi + 0.0L9 x% - 0.215u + 0.28 u xi

+ 0.47 u2 x) + 0.63 u3 (5.2-7)
%, = x3 (5.3-8)
X, = -0.396 x. - 5.116 x. - 0.042 yg - 0.32 x3
3 3 1 ) 1 ) 1

- 20.967 u + 6.265 u xJ + k6 u® x  + 6.k u> (5.3-9)
The state variables, Xy Xg» and x3, represent the angle

of attack, pitch angle, and pitch rate, respectively. The tail de-
flection angle, u, is the control variable which must be designed to
reduce an angle of attack distrubance as rapidly as possible.

In the remainder of this section, an open loop and a closed

loop controller will be designed and evaluated using the procedures
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discussed ir Chapter Two. Also, the computation time required by the
control cynthesis algorithms will be estimated.

5.3.1 OCOpen and Closed Loop Control Synthesis

In this section, an open loop controller is designed by
solving & nonlinear two-point boundary value problem (NTPBVP) asso-
ciated with the F-B aircraft's longitudinal equations of motion. Also
in this section, two closed loop controllers are designed. The first
using linear quadratic regulator (LQR) theory and the second using the
direct gain optimization algorithm described in Section 2.2.2. The
controllers are designed assuming the angle of attack remains below

23.50 so that “he low angle of attack model given by eqns. (5.3-4),

A

(5.3-5) ard (5.3-€) could be used.

Linear Controller ESynthecis

To use LQR theory to design a controller for the F-8 air-
craft, the equations of motion must be linearized. Linearizing egns.
(5.3-L), (5.3-5), and (5.3-6) results in the following linear model

of the F-8 zircraft:

-0.877 0. 1.0 -0.215
x(t) = 0. C. :.0 x{t) + 0 u(t) >.3.1-1)
-L.208 0. -0.396 ~20.976
which is cf the form
x(t) = A x(t) + b u(t) (5.3.1-2)

The ~-*imal control must be determined to minimize the quadrstic per-

[ s T we) 4 w(t)?) at (5.3.1-3)




7
e -

subject to the dynamic constraint given by eqr.(5.3.1-2). From

LQR theory, it is well known that the optimel control is given by [hh]
a(t) = -r F b7 P x(t) (5.3.1-L)

where P is the positive definite solution of the steady state matrix

Riccati egusation
AP+ PA-Pbr T bP+Qc=o0. (5.3.1-5)

The Q matrix and the sceaelar r were selected as

0.25 0. 0.
Q= 0.25 0. and r = 1.0
0 0 0.25 !

since this choice of Q and r gave good response without exceeding a
raximur tazil deflection of 257 (0.4363 raciens) ané a tail deflection
rate of 60o/sec (1.0~72 radians/sec). The criimal control probler
above was solveé using ORACLE - a collection ¢f optimal regulator alge-
rithms for the control of linear systems [L&.

The resultant control law was determined to be:

f

u(t) = -0.053 xl(t) + 0.5 xg(t) + £.522 x,(t) t >0

To determine if a "better" controller could be designed by
utilizing the nenlinear equations of motion of the F-8 aircraft di-
rectly, the direct gain optimization procedure discussed in Section
2.2.2 was employed. Since we want the controller to be linear and

utilize feedback, the controller is constrained to be of the form:

u(t) = Ky x (t) + K, xe(t) + K3 >;3(t) t >0 (5.3.1-8)
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where K K2, end K_ are constant gains which must be determined.

1’ 3
The optirmization problem, in this case, is to find the

control gains which minimize the performance index:

J = %r [xT(t) Q x(t) +r u2(t)] at (5.3.1-9)
0

subject to the nonlinear equations of motion given by egns. (5.3-L),
(5.3-5), and (5.3-6). The matrix § and the scalar r were selected to
be the same as in the LQR design.

At this point, the direct gain optimization procedure could
be used to find the optimal values of Kl, Kg’ and K_ needed to define

3

the control. Initially, Kl’ K., and K_ were set tc zero and updated

2 3

by the Davidon-Fletcher-Powell (DFP) method until the performance index
(5.3.1-9) was minimized. After twenty iterations of the direct gain
optimization procedure, the gains had converged to their optimal values

which when substituted into eqn (5.3.1-8) yields:

u{t) = 0.1368 x.(t) + 0.4331 x,(t) + 0.6797 x3(t) t >0

(5.3.1-10)

Nonlineear Controller Synthesis

To determine hcw well the lineer feedback controllers de-
fined by egqns{5.3.1-8) and (5.3.1-10) approximate the optimal control,
the calculus of variations approach was considered. 1In this case, the
problem is to find an open loop control which minimizes egn. (5.3.1-9)
subject to the satisfaction of egns.(5.3-L) — (5.3-6). Recall that,
when the calculus of variations is used to solve an optimel control
problem, it is necessary to solve a nonlinear two-point boundary value

problem (NTPBVP). In this case, the NTPBVP which must be solved is
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easily shown to be:

State Equaticns:

% = (1 - x° - 0.088 x) X, = 0.877 x| + 0.AT xf

1 1 3

+ 3.8L6 xg - 0.215 u + 0.28 u xi + 0.L7 u2 Xy

+0.62 u3 - 0.019 xg (5.3.1-11)
X, = Xy (5.3.1-12)
. 2 3
Sy = -0.396 Xq - L.208 X, - 0.47 x] - 3.56L x]

- 20.967 u + 6.265 u x? + L6, W xy + 61k u® (5.3.1-13)

Costate Equations:
-0.25% X, + kl (2.xl %3 + 0.088 x3 + 0.877

B
>
[
"

2 2
- 0.9%L X, - 11.5358 x] - 0.%56 u X, - 0.L7 u™)

+ AB {(L.208 + 0.56 x, + 10.692 xi - 12.53 u X, E
+ h6.12) (5.3.1-1L) ;
hy = =0.25 x, + 0.038 AL Xy (5.3.1-15) 4
. _ \ 2
k3 = -0.25 XS - Al (1 - Xy - 0.088 xl) - K2
+0.396 A, (5.3.1-16) ?
Boundary Cconditions:
0.3L9 0
x(0) = 0 A {(0)=1]o0
0 0

Let the Eamiltonian be defined as:
2 2
H{x, u, A, t) = % [b.25(xl + %, 1

+ X2 i2 + k3 x3 : (5.3.1-17)

2 2 .
+ x3) + u ]+ Xl X

Then the optimal control must satisfy the necessary condition: :
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3 H = (1.89 Al + 18L.2 XB) N (1.0 + 0.94 X, xl
2 2
+ g2, Xy AB) u + xl {0.28 ] - 0.215) + x3 (6.265 Xy
- 20.967) = 0 (5.3.1-18)
If we let
A =1.89 xl + 184.2 A3
B= 1.0+ 0.9% Xy Al + 92, x, A3
and
_ 2 2
C = xl (0.28 x] - 0.215) + x3 (6.265 x] - 20.967),

then the necessary condition becomes:

A u2 +Bu+C=20

which implies that the optimal control, u, is given by:

2
_ =B+ /% - L AC
u = = (5.3.1-19)

From the optimal control theory, it is well known that a 3

sufficient condition for optimality is Huu > 0. Thus,
E =2Au+B>0 (5.3.1-20)

uu

Substituting egn.(5.3.1-19) into egn. (5.3.1-20}, we have
/D 3
2Au+B=+/B"-LC |

which is positive only if the positive square root is used. Therefore,

the optimal control is given by:

-B + /B2 - L AC

4= 2 A )

Note that the optimal control is relatively complex to imple-
ment due to the square root operation required. Furthermore, to imple-

ment this controller, the solution to the NTPBVP must be known a priori
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in order to evaluate A, B and C. Otserve that this is not an easy
task because as the initial costate is adjusted from iteration to iter-
ation, the term B2 - LAC may become negative, in which case the
optimal control is undefined. Unfortunately, this occurred when
numerical methods were applied to this problen.

One way to overcome this difficulty is to use the approach
taken by Garrard and Jordon [L3) who approximated egns.(5.3-4),
(5.3-5), and (5.3-6) by eliminating the u3, u2 and cross product terms.

In this case, the approximate ejuations of motion which are valid for

low angles of attack are simply:

. 2 2
x, = (1 - x] - 0.088 xl) x3 - 0.877 X4 + 0.L7 x]

+ 3.8L6 xi - 0.019 xg - 0.215 u (5.3.1-22)
%, = % (5.3.1-23)
: = -0.396 x. - 4.208 x. - 0.47 x° - 3.564 x>
x3 . 3 . 1 . 1 . 1

- 20.967 u (5.3.1-2L)

If this model of the F-§ aircraft is employed in the design of the

open loop controller, the costate equations and control are given by:

Costate Eguations:

L. = -0.25 X, * A, (2.x

1
- 11.538 xi) + A

1 x3 + 0.088 x3 + 0.877 - 0.94 Xy

(b.208 + 0.56 x, + 10.692 xi

3
(5.3.1-25)
k2 = -0.25 X, + 0.038 11 X, (5.3.1-26)
. _ 2 _
x3 = -0.25 x5 - A, (1 - x] - 0.088 xl) Ay * 0.396 k3

(5.3.1-27)




Optimal Control:

u = 0.215 }‘1 + 20.967 >\3 (5.3.1-28)

Note that in this case the optimal control (for the approxi-

mate F-8 model) is extremely simple to compute provided Al and A_ are

3
known. These gquantities were obtained rather easily by solving the
NTPBVP represented by eqns.(5.3.1-22) - (5.3.1-28). This was achieved
by incorporating the serial DFP minimization algorithm and the APC
integration method into the indirect control algorithm described in Sec-
tion 2.2.2.1.* The resulting sclution is, of course, optimal for the
approximate F-8 model and is shown along with the LQR control and

closed loop control designed using the direct gain optimization proce-

dure in Figures 5.12 - 5.15. The trajectories displayed in Figures

5.12 - 5.15 indicate:

e The response of the F-8 aircraft due to the LQR control is signifi-

cantly different from that due to the open and closed loop controls.
This may be attributed to using a linearized model of the F-8

aircraft in the design process. \

e The response of the F-8 aircraft due to the closed loop control
designed using the low angle of attack model compares very favorably

with that due to the open loop control which is optimal for the

b approximate F-8 model.

The second result, along with the fact that the closed loop

control utilizes feedback while the optimal control does not, indicates

Parallel algorithkms were not considered here because only the effec-
tiveness of the resultant control was being studied not the method
used to obtain it.
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that the closed locp control may be preferatle in this caese. Finally,
it should be emphasized that the closed loop control was designed with-
out approximating the nonlinear equations of motion of the F-8 aircraft.
This attribute of the direct gein optimizaztion procedure is studied
further in the next section in which a nucber of feedback controllers
are compared.

5.3.2 Feedback Control Laws

Irn this section, several feedback controllers are designed
and compared at high angles of attack. The problem of interest this
time is to determine the feedback control law ul{t) = g (x(t)) which

rinirizes

5 ™ - f
J = %a[ [x* g x +ru] at (5.3.2-1)
0

subject to the F-8 aircraft equations of rotion given by egns. (5.3-k)

-~ (5.3-9). Ir this example, the initial state was X, = {0.575 C 0) .

and the matrix & and the scalar r were selected as:

0.25 0 0
Q= 0 0.25 0. and r = 1.0
0 J 0.25

Note that voth high and low angle of attack models are used in this
case.

The control problem above was coriginally considered by i
Garrard and Jordan who used LQR and perturbation theory to design the

following flight controllers [L3]:

e Linear Control

u = -0.053 x; + 0.5 Xy * 0.521 X3 (5.3.2-2)




e Quadratic Control

_ 2
u = -0.053 X, + 0.5 X, * 0.521 Xg + 0.0k x]
- 0.0L8 Xy %, (5.3.2-3)
e Cubic Control
W= -0.053 x| + 0.5 x, + 0.521 x5 + 0.0b xf
3 2
- 0.0L8 X X, + 0.374 x] - 0.31 x| X, (5.3.2-4)

Because these designs do not account for the quadratic and cubic con-
trol terms, as well as the cross terms involving x and u appearing in
egns. (5.3-4), (5.3-6), (5.3-7), and (5.3-9), it seems plausible that a
better controller might be designed. To show this, suppose the con-
troller is constrained to be of the form:
) = + K >
u(t) Kl xl(t) YQ x2(t) + x3 x3(t) t >0
(5.3.2-5)
If the direct gain optimizetion procedure describved in

Section 2.2.3 is employed, thenthe optimal gains (K Lo and K_) could

1’ 3

be found by initially setting them tc zero and updating the values of
Kl, K2, and K3 using an iterative scheme until the performance index
(egn. 5.3.2-1) is minimized. Tc speed computations, the parallel
integration methods discussed in Section 3.2 may be used to integrsate
eqns. (5.3-4) - (5.3-9), while the selection of the next value of Ki»
K2, and K3 may be made using one of the parallel minimization methods
descrited in Section 3.1. Because the parallel numerical procedures
can account for all the nonlinearities in egns. (5.3-4), (5.3-6),
(5.3=-7), and (5.3-9), the optimized control law:

u(t) = 0.138 xl(t) + 0.385 xe(t) +0.243 x_(t) 1t 20

3




¢, & simuletion of the
response of the F-8 aircraft to each feedback control law was con-

ducted and the resulting trajectories were nlotted (see Figures 5.16
- 5.19). SZince the objective was to reduce an angle of attack dis-
turbance tc the origin as rapidly as possitle, it is clear that the

controller giver by egn.(5.3.2-6) is inde=d superior to the cthers.
Llso of interest was &« comparison cf the performance of the

parallel and serizl minimizeticrn methode éiscussed in Chepter Three.

In Table 5.0, the parallel anc serial methcds are compared by count-

ing the total numter of iterations reguired fcr convergence tc g set of

neously using n + 1 processors and & uriverisate search per iteration
while the serial algorithms require one gradient evaluatiorn ané & urni-

variate search per iteraticn. Eence, tre ccouputer tine aeeded per

iteration ty ezch method will bLe nearly tre szve provided the perellel

we zssume the paral’lel zigerithms are executed on the
parallel computer discussed ir Section .1, ani that the criterion agbove
is used to compare the methods, then the resuits in Table 5.10 indicate

o~

that the parallel algorithms would reguire significantly less time to

*
ne cyc.e of either metnol he gradient of
eqn. {(5.3.2-1), using this 3 directicr of
search, and rerforming = un directicn.
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TAZLE 3.10:

F-8 AIRCRATT

Direct Gain Optimization at & High Angle of Attack

Total Sumber Tetal Number Resultant Optimal
Mizimization cZ Function of Sradient Total Mzober Optinal Cost
Algeris | Ivalustions Zvaluations of Iteraiions Gains Je
FAS 155 - "8 0.13809 0.10135L2
0.30k85
0.2L30L
DFP 125 14 1k 0.23808 0.2013562
0.38L8L
0.2L3C2
8FS 95 hal = 0.1381% . 0.1013%42
0.38L87
£.2u30k
o } 06 - 12 9.12809 0.20238k2
cm0t | 0.38L83
[ c.2u302
e | m 10 9 0.13600 0.20135:2
e =103 ] 0.38475
i c.24207
sere | 96 u 1 0.23191 0.10235L2
e =107 mshgg
o 0.242
v P 3 g ¢.138732 9.1813502
~3 [ 9.385651
¢ =10 3.243310
Infzial Parformanse Index: J e J.509863

Inizial 3tace:

x(0) = (0.575¢586 0 2)

nitle. ‘hcice of Gains:

£=(0 0 Q)
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execute compared with the serial algorithms. "lso, the results in

Table 5.10 show that the parallel methods used fewer function evelua- i
. .

tions to achieve convergence. Thus, it can be concluded that the

parallel algorithms can be very effective in determining the control

gains needed vty flight control systems.

5.3.3 Timing Consideration

-~

.n this section, the execution time required for conver-

gence to a set of optimal control gains will be estimated for the F-8
aircraft. First this will be done assuming a completely sequential
algorithm is executed on & serial computer. Secondly, the execution
time will te estimated for a completely parzllel algorithm which is
assumed to be executed on the paralliel computer described in Section
4.1. Finally, these two estimates will be used to estimate the speed-
up due to parallelism.
From the high angle of attack model of the F-8 aircraft,

it is easily verified that n = 6, A = 21, and Mrhs = 32. If we

rhs
l=2t N = 100, ta = 200 nsec, tm = 1000 nsec, anéd L = 8, then for the

DFP method with APC integration the execulion time per iteration is
0.1277 seconds using eqn. (L.2.2-12). On the other hand, rcr the PVM
algorithm with PPCL2 integration, the execution time per iteration is
0.06316 seconds using eq... (L.2.2-1L). 1In this case, the speed-up due
to parallelism is simply C.1277/0.06316 = 2.02 which shows that one
iteration of the parallel algorithms will execute about twice as fast

as the serial algorithms. WNote that a further reduction in computation

time can be achieved if the RHS evaluatiosns were performed by separate

One function evaluation includes sll arithmetic operations needed to
evaluate eqn. (5.3.2-1).
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processors. i.e., one processor for each state variable.

If this is considered at the -expense of additional pro-
cessors, then the execution time for one iteration of the PVM algo-
rithm would be only 0.0106 seconds. This time the speed-up due to
parellelism is 0.1277/0.0106 = 12.05, which is rather significant.

Other possibilities, along with the processors required, are shown in
Table S5.11.

To estimate the time required for convergence to & set of
optimel gesins, the results shown in Table 5.10 and Table 5.11 can be
used. For example, the execution time of the DFP/APC and PVM/PPCL2
algorithms could be estimated as follows. From Table 5.10, the serial
DFP algorithm required 1L iterations to converge. Using this fact,
and the fact that the execution time for one iteration of the DFP/APC
algorithm requires 0.1277 seconds (see Table 5.11) when one processor
is available, the execution time required for convergence is simply
1L x 0.1277 = 1.7878 seconds. On the other hand, if the PVM/PPCL2 algo-
rithm is executed using 8 processors, then cthe time required for con-

’ vergence is only 8 x 0.0106 = 0.08L48 seconds from the results shown
in Table 5.10 and Table 5.11. Thus, if a completely parallel algorithm
is executed on the parallel computer described in Section k.1, the
timing required for control computations might be rapid enough to
permit adjustment of the control gains in real time. Finally, the
advantage of using a completely parallel algorithm is further enforced
by computing the speed-up due to parallelism based on the total time
required for convergence. From the calculations above, the speed-up
is 1.7878/0.0848 = 21.08 which indicates that the parallel algorithm

converged more than 20 times faster than the serial algorithm.
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5.4 Evaluaticn of Adaptive Controller Performance

The purpose of this section is to evaluate the performance
of the explicit adaptive control scheme discussed in Section 2.3.°

This is accomplished by initially designing a feedback controller in

Section 5.4.1 which will cause the F-8 aircraft to follow a nominal :
pitch rate command of So/sec based upon a nominal set of aerodynamic

parameters. In Section 5.4.2, the effectiveness of the parsllel

algorithm is demonstrated by adjusting the feedback control gains oﬁ-

line in response to a lOo/sec pitch rate command. Finally, in Section

5.4.3, the feedback control gains will be adapted in response to vari-

ations in the aerodynamic parameters of the F-8 aircraft using a moving

window, explicit adaptive control scheme.

5.4.1 Gain Optimization

In this section, the problem is to find a feedback control
law which causes the F-8 aircraft to follow a pitch rate command. The

pitch rate command considered in this example was:

. 5°‘/sec t ¢ [0, 2]
OC = (5.4.1-1)
’ 0 othervise

and the state model (valid for low angles of attack) considered was:

o 2 2
X, = (1 - X - 0.088 xl) Xy - 0.877,xl + 0.47 x]

+ 3.8k46 xi - 0.215 u + 0.28 u xi + 0.47 u2 x4

+ 0.63 W3- 0.019 xg (5.4.1-2)
iz = x3 (5.4.1-3)

e
H

_ 2 3
-0.396 Xg - L4.208 X, - 0.47 x] = 3.56k x]

- 20.967 u + 6.265 u xi + 46 w2 x, + 614w (5.4.1-L)

1
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where x_(t), x.(t), x

1 5 3(t), and xh(t) represent the angle of attack,

pitch angle, pitch rate, and pitch rate command, respectively.
The structure of the controller is shown in Figure 5.20 and

the control law to be optimized is:

u(t) = Ky xl(t) + X, x2(t) + K3 x3(t)

+ G(xh(t) - x (t)) (5.4.1-5)

3

Since the objective is to find the control gains K and G

l, Ke, K3a
which cause the pitch rate of the F-8 aircraft to track the pitch rate

command, the following performance index was specified:

> Lr 2
J = %Jr (x> @ x +ru] dat (5.4.1-6)
0
where
0.2% 0. 0. 0.
0. 0.25 0. 0.
<= o, 0 1000.0  -1000.0 and r = 1.0
0. 0. -1000.0 1000.0
Initially, the unknown control gains were selected as Kl = -0.1, K2 =

-0.001, K, = -0.04 and G = -0.k4 since these values caused the F-8
aircraft to remain stable over the entire mission time interval [0, 5].
At this point, the direct gain optimization algorithm dis-

cussed in Section 2.2.3 was used to optimize the control gains assuming

theinitialstateoftheF-8aircraftwasxo = (000 0.087)T. The per-

formance of the different methods considered are shown in Table 5.12.
The results indicate:
e Each of the minimization procedures converged to a set of gains
which cause the tracking error (performance index) to be reduced

from J = 0.635004 x 103 initially to J = 0.559612 x 103 upon con-

vergence.
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¢ The PVM algorithm required nearly half the function and gradient

evaluations to converge compared with the serisal DFP algorithm.

By substituting the optimized control gains shown in Table

5.12 into eqn.(5.4.1-5), the optimized control law cendbe obtained as follows:

u = -0.128 X, - 0.009 Xy - 0.0k6 x_ - 0.k27 (xh - x3)

3
(5.4.1-7)

To determine how well this controller would ceuse the F-8
aircraft to track a So/sec pitch rate command, a simulation was per-
formed. The pitch rate command and the pitch rate response which
resulted from applying the optimized control law (egn.5.L.1-5) are
shown in Figure 5.21. Looking at Figure 5.21, it is clear that the
pitch rate response ©OF the F-8 aircraft tracked the pitch rate com-
mand relatively well. Thus, our nominal design is complete.

5.k.2 Adaptive Gain Optimization

In the previous section, the controller given by eqn.
(5.4.1-5) is optimal only if the initial state of the F-8 aircraft is
at the origin and a So/sec {0.087 radian/sec) pitch rate command is
considered., If, however, the megnitude of ithe pitch rate commard is
different from So/sec, the gains will have to be reoptimized. Thus,
it is of interest to determine how rapidly the parallel élgorithms
can adjust the feedback gains inresponse toa different pitch rate command.
To illustrate this, suppose the pitch rate command is lOo/sec
(0.174 radians/sec), i.e., twice the magnitude of the nominal pitch rate,
and the initial state of theF-8 aircraft is (0 0 0 0.174). The problem
is then to reoptimize the control gains to account for the new pitch

rate command.
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Tris was accomplished by performing only two iterations of
the direct gain optimization algorithm which was initialized with the
optimal geins for the nominal 5°/sec pitch rate commend case. The re-
sults are shown in Table 5.13.

The results indicate that after only two iterations of the’
PVM algorithm, convergence to the optimal set of control gains is
possible. However, if the DFP algorithm is utilized to adapt the con-
trol pyains, the gains obtained after adaptation were still relatively
far from optimal.

Ir view of these results, and the fact that the execution

time required for one iteration of the parallel algorithms has been i
shown to be much shorter than the sequentizl methods, it appears that
the paresllel algorithms may be applicable to update the control gains

in real time. This concept is pursued further in the next section.

5.4.3 Moving Window Adaptive Gain Optimization

As & final topic in this chapter, an explicit adeptive

controller will be designed to stabilize the F-8 aircraft as the

aircraft's center of gravity is moved aft during flight.
To determine the point at which the F-8 aircraft becomes

unstable, the differential pitch rate was computed analytically

1 using the expression:
8x3
d_)'(3 =-BT dR, (5.’4.3-1)

; where 4% is an incremental change in the distance between the wing

aerodynamic center and the aircraft's center of gravity (see Figure

5.11).
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To evaluate eqn. (5.4.3-1), the pitch rete equation below

was utilized.

. 0 1 2.3 o .2
%y = Mw/Iy + (CL + CL xy CL xy - CL x_/2
w w v W
2 3 - 0] 1
- CL x7/2) q s/Iy - {cL +C (xl - €y - 8y X, ¥ u)
W t t
2 3
-CLt(xl-eo-ae+u)+aeu}
(1 -(x, -e,. ~a x, + u)2/2) Qs & /1
1 0 e "1 t "ty
- C x3/Iy (S-h’3-2)

By substituting the aerodynamic data shown in Table 5.14 into ean.
(5.4.3-2) and using the fact that % + Qt = 16.889, it can be shown

with some effort that

9%
?ﬁ% = 5.27 x, - 22.5 xf +1.23 u - 0.61k u> - 0.7748 u xi
L2
-~ 3.2%4 x, 17, (5.4.3-3)

Substituting eqn. (5.4.3-1) into egn. (5.3-6), the modified equations

of motion of the F-8 aircraft become:

. 2 2
x, = (1 - x - 0.877 X, + 0.47 x]

1- 0.088 xl) x

3

+ 3.8L46 xi - 0.215 u ~ 0.019 xg + 0.28 u xi

+ 0.47 u@ x, + 0.63 w3 (5.4.3-L)




TABLE 5.14: F-8 ATRCRAFT DATA
Mach = 0.85 Altitude = 30,000 ft.

0 _ 0
ch = cLl 0
1 1
c =cr = 4.0
L, L
2 2
ch = cLl = 12.0
ae = 0.1
s = 375 ££° (33.75 m°)
S = 93.4 f‘t2 (8.41 m2)
m = 667.7 slugs (9773 k) ;
8e = 0.75 ?1
1
eo =0 ;
0 |
C =
ma.c ]
¢ = 11.78 = (3.53 m) ‘;
I, - 96,800 slug ft2 (127,512 kg-m°)
i g - 0.189 £t (0.06 m)
L = 16.7 ¢ (5.01 m)
q = 318.0116
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Y = . < 2 , 2
%o 0.39% X3 + (5.27 4L - 4.208) Xy - 0.47 X3
- 3.564 x5 - 20.967 u + 6.265 u x° + 6. u° x
1 1 1
+ 61.k u3 + (1.23 u - 22.25 xi - 0.61L u3
2 2 -
- 0.TT48 u x, - 3.24 u xl) as (5.4.3-6)

Note that if df = 0, then egns. (5.4.3-L4) - (5.4.3-6) reduce to the

low angle of attack model of the F-8 aircraft given by egns. (5.3-4) -~

(5.3-6).

By increasing df incrementally from d2 = 0 to d2 = 1.5 in
eqns. (5.4.3-4) - (5.4.3-6), the point at which the F-8 aircraft
becomes unstable can be determined by monitoring the open loop response
of the aircraft and determining when the response doubles in amplitude.
From the open loop response, it was concluded that under nominal
conditions {df% = 0), the aircraft is stable. However, as df is increased

the aircraft became unstable for df > 1.

In view of these results, the remainder of this section is
concerned with the design of an explicit adaptive controller which |
will stebilize the F-8 aircraft as df is increased from 42 = 0 to df =
1.5. Since the direct adaptive control algorithm discussed in Section
2.2.3 must be initialized with a set of stabilizing gains, such a set

of gains must be determined a priori based upon a set of nominal condi-

tions.

As indicated earlier, the nominal conditions for the example
under consideration are d2 = 0 and a nominal initial state of X =
(0.349 @ 0). If we restrict the control to be linear of the form:
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A . S

u(t) = K xl(t) + K (t) + K, x_(t) t >0 (5.4.3-7)

2 *2 3 %3

R

1

1° K2 and K3

which minimize a suitably defined performance index such as:

then the provlem is simply to find the control gains K

5
J = ;ﬁf (xT(t) Q x(¢) +r ue(t)) at (5.4.3-8)
0

subject to the F-8 aircraft's equations of motion described by eagns.

(5.4.3-4) - (5.4.3-6). The Q and r matrices were selected as:

0.25 0. 0.
Q= 0. 0.25 0. and r = 1.0
0. 0. 0.25

since this choice of Q and r gave good response in previous examples
when d2 = 0. Because the open loop response of the F-8 aircraft is
stable over the entire mission time invervel [0, S], the control gains
wvere initially set to zero.

At this point, the direct gain optimization procedure was
employed to optimize the control gains. The resulting control law

was determined to be:

u(t) = 0.1k16 xl(t) + 0.8036 xz(t) + 0.6L488 x3(t)

t>0 (5.4.3-9) f

Now that the nominal design is complete, the optimized control gains

K, = 0.1416, K

1 2

the adaptive control algorithm.

= 0.8036, and K3 = 0.6488 can be used to initiaslize

Before the direct adaptive control algorithm described in

Section 2.3.2 can be utilized, the adaptation times t s t

10 b0 e Yy

must be specified a priori. However, since the adaptation times are,
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in general, chosen somewhat arbitrarily, uniform adaptation intervals
were considered. In particular, since the duration of the mission time

is only five seconds, the adaptation times were selected as t. =1,

1

t, =2, t_ =3, and th = 4. Also, in the simulations it was assumed

2 3
that df varies linearly from the stable condition (df = 0), to the

unstable condition (df = 1.5) as follows:
at(t) = 3/10 t ¥t e [0, 5] (5.4.3-10)

Because only the effectiveness of the control update algo-

rithm was being studied in this example, it was assumed that perfect
estimates of 42 were available as needed. The adaptive control scheme
was evaluated by performing one iteration of the direct gain optimiza-
tion procedure assuming the actual values of df were aveailable at the
adaptation times.

To determine if the parallel algorithm could indeed optimize
the control gains more rapidly than serial methods, the PVM and DFP
algorithms were considered. The resul.s obtained are slown in Tables
5.15 and 5.16.

The results indicate that PVM algorithm could indeed reduce

the performance index more rapidly than the sequential DFP method.
This is more clearly revealed by summing the performance index vealues
after adaptation for each method. For the PVM algorithm, this amounts
to:

J, = 0.0k2
i

s ”

i=0
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while for the DFP method the

I

:E: J. = 0.046.
i

i=0

Note that a reduction in cost of approximately 10% may be realized

if the parallel method is used in this case.
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CHAFTER SIX

CONCLUDING REMARKS

In Section 1.2, a survey of existing parallel identifica-
tion, estimation and control algorithms and an evaluation of their
usefulness was made in terms of accuracy, speed, processor require-
ments, and numerical efficiency. From this survey, it was clear that
the major problems with existing methods were the lack of accuracy
and excessive computation time. Also, it was revealed that parallel-
ism can be employed to alleviate such problems. Thus, the need for
developing more efficient parellel procedures based upon modern non-
linear estimation and control theory was establiched. This fact led
to the development of several identificstion, estimation and control

algorithms wnich employ & high degree of parallelism but at the same

time were not extravagant in the utilization of processing elements.
Whereas most existing estimation and control algorithms had been F
decigned using approsimate liaearized equations of motion, the parallel
procedures developed in this thesis utilize the nonlinear process
equations directly.

The nonlinear estimation and control algorithms developed
in this thesis employ parallel minimization methods to accelerated 4

convergence, parallel methods for integrating ordinary differential

equations to facilitate computations, and e procedure based upon par-

titioning the integration interval to improve accuracy and reduce the
sensitivity of the overall ‘algorithm.

The major contributions which resulted from investigating
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each phase of the nonlinear estimation and control algorithms con-

sisted of:

e Developing a class of parallel rank-two quasi-Newton methods for

unconstrained minimization.

e Establishing a strategy for optimally selecting the number of
subintervals and mesh points associated with the parallel shooting

approach to solving nonlinear two-point boundary velue problems.

o Developing & procedure which automatically adjusts the step size
of a parallel predictor-corrector integration scheme to maintain

a desired level of accuracy.

e Demonstrating with representative examples that the newly de-
veloped parallel algorithms do indeed perform better than existing

sequential methods in terms of speed, accuracy, and reliability.

e Applying the PQN method, PVM algorithm and the CM method to solving
dynamic optimization problems (such as nonlinear estimation and
control problems) rether than static optimization problems inveolv-

ing algebraic functions.

The remainder of this chapter is divided into three sections.
In Section 6.1, some conclusions are drawn based upon the results
obtained as a consequence of conducting this research. In Section 6.2,
some recommendations are made, and areas of future research are sug-

gested in Section 6.3.
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6.1 Conclusions

In this section, some conclusions are drawn based upon the
analytical and empirical results obtained in Chapters Three, Four and
Five.

From the results in Chapter Three, it can be concluded that
without question the parallel minimization algorithms do indeed re-
quirg_significantly fewer iterations for convergence compared with
serial methods (see Tables 3.1-3.6). In fact, it was shown analyti-
cally that if the PQN algorithm is utilized to minimize & quadratic
function in n variasbles, then convergence to the location of the
minimum is guaranteed in only one iteration provided n + 1 degrees
of parallelism are employed (see Theorem 3.2 and Table 3.1). Since
the PQN method was generally more robust than the PVM algorithm, this
result suggests that parallel double-rank methods might be more robust
than parallel rank-one methods (see Figures 3.1-3.€).

From the timing equations derived in Chapter Four and the
timing results in Chapter Five, it was revealed that one iteration
of the (parellel or serial) nongradient algorithms required much less
time to execute than did the (parallel or serial) gradient-dependent
methods, although more iterations of the nongradient methods were
usually required for convergence (see eqns. (4.2.2-11) - (L.2.2-1k)
and Tables 5.8, 5.9, and 5.11). Also along these lines, it was shown
that one iteration of the indirect control algorithm required signifi-
cantly more time and processors to execute compared with the direct
gain optimization procedure (see Tables 5.8 and 5.9). This observation
was also valid for the indirect and direct SAP estimation algorithms

as well.
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From the simuletions performed in Chapter Five, it can be
concluded that although the gradient of a highly nonlinear function
may be difficult at best to compute numerically, the convergence
properties of the gradient-dependent algorithms were clearly prefer-
able to the nongradient methods (see Tebles 5.1-5.7). From the re-
sults shown in Figure 5.2, it was reveeled that the robustness of the
PVM algorithm was enhanced the most when parallel methods rather than
serial methods were employed to integrate the state and costate equa-
tions associated with the Van der Pol system. This result was obtained
using ordinary shooting. However, when parallel shooting was con-
sidered, the number of unknown boundary conditions which must be found
was artificially increased from 2n to n(2N-l) where n is the order of
the system and N is the number of subintervals. Despite this fact,
as the integration interval is partitioned into many subintervals, the
sensitivity of the solution will be reduced, and in general, the
solution obtained will be more accurate. Unfortunately, since & high
order optimization proolem must be solved (i.e., n(2N-1) unknowns must
be found), the number of iterations required for convergence increases
as well (see Tables 5.6 and 5.7).

When the AMS algorithm was used to optimally select the
mesh points required by the parallel shooting algorithm, it was re-
vealed that the local truncation error could indeed be minimized,
although many iterations were required here also. In fact, it was
shown that a 20% improvement in accuracy was possible by employing
the AMS algorithm (see Section 5.1.3).

From the SAP estimation results obtained in Section 5.2, it

can be concluded that even if poor estimates of the unknown initial
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state and parameters of the T-33 aircraft were available initially,
convergence to the true initial state and parameters was possible even
when the measurement data was extremely noisy (see Table 5.5).

From the results obtained in Section 5.3, it cen be con-
cluded that the response of the F-8 aircraft could be improved signifi-
cantly if the control was designed by employing the nonlinear control
algorithms developed in Section 2.2. 1In particular, it was revealed
that it was better to design a simple feedback control law using the
F-8 aircraft's nonlinear egquations of motion directly rather than
to approximate the equations of motion and employ linear quadratic
regulator (LQR) theory or utilize a more complex control law.

Finally, it can be concluded from the adaptive control re-
sults obtained in Section 5.3, that the direct gain optimization pro-
cedure might be implemented in an on-line adaptive type fashion. This
follows from the fact that after only two iterations, the PVM algo-
rithm converged to an optimal set of control gains while after two
iterations of the serial DFP method, the control geins remeined
relatively far from optimal (see Table 5.13).

6.2 Recommendations

In view of the results obtained in this thesis, the follow~

ing recommendations are in order.

e The weighting parameter, c, which defines a set of basis vectors
for the PVM, PBFS, and PDFP methods, should be set to ¢ = 10-6 since
this choice of ¢ gave the best overall performance (see Figures

3.1-3.6).
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e In view of the superior robustness characteristics of the PBFS

method, it might be considered rather than the PDFP and PVM

methods, although the PVM method did converge faster than the PBFS

| method in many test cases (see Tables 3.1-3.6).

e If convergence problems are encountered when using the PQN method
to solve nonlinear estimation and control problems, the following

modifications of the basic procedure are recommended:

(241)
J

PQN slgorithm only if d§ yJ >0 ¥3=1,2, ..., n. As indicated

1. Update the inverse Hessian, H , in Step U of the
by Proposition 3.4, this modification will guarantee that the inverse
update will be positive definite.
2. Replace Step 3 of the PQN method with the following:
a. Compute n + 1 gradients of f(x) at n + 1 distinct

points in parallel:
(1),

g(x and g, = g(x +cad,) J=1,2, «o.y n

J

b. Compute the gradient difference in parallel:

)3
y, = (g, - g(x( )))/c

In the above modification, ¢ is the same weighting parameter
used to define the basis set

= = H > 0.
b3 (Ol’ 9, s on) c I; c >0

By performing computations in this manner, the gradients required can
be computed more reliably because the forward integration of the state
and costate equations will remain stable. Note that when f(x) is

quadratic, y, = (c A dj)/c = A 4, for the modified version of Step 3.

J J




But since y.j = A d, in Step 3 originally, the remaining steps of the

J

PQN method are unaffected by the modifications cited above.

In view of the results presented in Section 3.2.3, the

PPCU2V integration scheme is recommended for solving the required ;
initial-value problems (IVP's) since the accuracy of the solution can
be specified a priori. Also, because the PPCL2V method has been de-
signed to execute on separate processors, the solution to an IVP can be
obtained extremely rapidly.
With regard to the nonlinear state and parameter (SAP) esti-

mation algorithms, the direct SAP estimation algorithm should be used

3 only if process noise is omitted from the state model. On the other
hand, if process noise is included in the state model, then the indirect
method should be considered. If sensitivity problems are encountered,
the parallel shooting method with adaptive mesh selection has proven

to be very effective in alleviating such problems.

With regard to the control algorithms, the direct gain
optimization procedure is highly recommended in view of the fact that
near optimal response was obtained without an excessive amount of
computation {see Figures 5.6-5.10). Also, this method should be
seriously considered because the equations of motion of a highly non-
linear system can be utilized directly in the control system design
process.

6.3 Areas f Future Research

In this section, some areas of future research are suggested.
One aspect of the PQN method which could benefit from addi-

tional research is the generation of a set of mutually conjugate
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directions. In particular, alternate parallel methods should be con-
sidered for solving the linear system of equations required to generate
the direction vectors. Since each row of the Cm-l matrix defined in
Proposition 3.2 is known once m has been specified, the Gaussian
Elimination procedure [22] might be modified to solve the resultant
linear system in a row-wise fashion. Of course, this modification
should be amenable to parallel computation.

Another area of future research might be the extension of the
parallel variable step size integration method derived in Section 3.2.2
such that the order of the method, as well as the step size, can be auto-
matically adjusted to maintain a desired level of accuracy. This con-
cept was initially investigated by C. W. Gear in reference [46] although
Gear's work was concerned with purely sequentiel methods at that time.

With regard to the parallel computer described in Section

L.1, future research should be conducted in the following areas:

e Specifying processor add, multiply and transfer times to permit

real time estimation and control.
¢ Estimating memory size and peripheral requirements.
e Studying the effects of wordsize.

° Analyticaliy modeling the reliability of the proposed design and
studying the effects of component failures (such as one of the pro-

cessing elements).

e Determining the feasibility of implementation and cost.
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Another possibility might be to develop a parallel nonlinear
estimation and control algorithm based upon Hamilton-Jacobi-Bellman
(HJB) theory [4T]. To illustrate how the control algorithm might be

arranged, consider the optimal control problem:

t
. _ £
min Vix,, t,) = o(x(t,), t.) :[; L(x, u, t) at (6.3-1)
(o]
subject to
X = f(x, u, t) t e [to, tf] (6.3-2)

If we assume that x(t_ ) = x, is known, t. is specified and

o} f

x(t.) is unspecified, then the HJB equation which must be satisfied is:

£
V(x, t) 3 (x, t)]°
-—~7;L——— + L{x, u, t) + f(x, u, t) =0
t ox

(6.3-3)
The boundary condition associated with eqn. (£€.3-2) is
simply:

V(x(tf), tf) = ¢(x(tf), tf) (6.3=L)

By defining the Hamiltonian as:

H(x, u, A, £) = Lx, u, t) + A7(t) £lx, u, t) (6.3-5)
then it can be shown that the adjoint variable, A(t), is given by
A(t) = 3V(x, t)/3x. PFrom the maximum principle, it is well known tnat
the optimal controls must satisfy the necessary condition 3H/3u = O.
If this condition can be solved explicitly for u(t}, the control will
be of the form:

u(t) = hix(t), A (t), t] (6.3-6)
But since A(t) = 9V(x, t)/9x, the optimal control is:

u(t) = h[x(t), av(x, t)/dx, t] {6.3=T)

|




f By substituting eqn. (6.3-7) into eqn. (6.3-3), the result

is: J
'aﬂla('é_ﬂ + L(x h[x’ a t]9 t) '

Wix, t)]7T v

™ flx, =— a’ t) = (6.3-8)

The problem then is to find the continuous function V(x, t)
which satisfies egn. (6.3-8) and the boundary condition (6.3-4) subject

to the dynamic constraint (6.3-2).

In view of the above problem formulation, an eppropriate

error function might be:

E = ;Ef e (t at (6.3-9)

where

e(t) = L(x, h(x, %%, t], t)

7
3 3V v
[Bx:] £lx, E(x, 3o 1) t) + 53¢

Note that if the time functions V(x, t) can be found such

that eqn. (6.3-9, is identically equal to zero and the constraints

given by egn. (6.3-2) and eqn. (6.3-4) are satisfied, then we would
have a solution to the original optimal control problem. For computa-

tion reasons, however, V(x, t) is usually approximated by a power

series of the form:




r- ——

—

where the c's are time functions which must be determined. However,
because the c¢'s are functions of time, the problem at hand is more
difficult that it appears. One way to overcome this difficulty is to

approximate the c's using a Taylor series as follows:

c(t) = 4, + dl(t - to) + % d2(t - to)2 + 0((t - to)3)
(6.3-11)
where the d's are constants which must be determined.

Thus, the problem has been converted to one of finding a set
of constants rather than time varying unknowns. Since we are now
confronted with solving a finite-dimensional minimization problem, the
perallel minimization algorithms discussed in Section 3.1 can be used
to optimize the d's in eqn. (6.3-11). Also, the parallel integration

? methods described in Section 3.2 may be used to integrate eqn. (6.3-2)
which is necessary to evaluate the error function (6.3-9).

On the basis of the results obtained in this thesis, it is
felt that the parallel Hamilton-Jacobi-Bellman (PHJB) method outlined
above should also benefit a great deal from the use of parallelism.
Since the control gains obtained by this method are, in general, time
varying, the PHJB method should provide better control than the direct
gain optimization procedure presented in Section 2.2.3. Of interest

then, would be a comparison of the response of a given system due to
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the control laws designed by each method along with the number of pro-

cessors required to implement each procedure. Using this information,

a trade-off could then be made between the number of processors and
the response of a given system.
Finally, it is hoped that these remarks and the encouraging

results obtained in this thesis motivate future research in this area.
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APPENDIX

PARALLEL MINIMIZATION: PROCEDURES

In this appendix, the Chazan-Miranker method, the parallel

variable metric (PVM) algorithm due to Strseter, and the psrallel

Jacobson-Oksman (PJO) procedure reported by Straeter and Markos are

given for reference. These methods are useful in minimizing a func-
tion £: R% =+ R which is assumed to be continuous and differentiable
in each varisble. The gradient of f will be denoted as the function
g: R 5 R*. With these preliminery remarks, the parallel minimization
methods cen be presented formally as follows:

Chazan-Miranker Procedure

Let & represent the iteration number and define the follow-

ing quantities:

o UP 4 {upl, UPys «s s upn} = a set of n linearly independent unit

vectors.
3
. Bl’ L=1,2, ..., é a sequence of positive scalars tending to
zero.
. WPr;'éupi if L) imod n where 1 =1, 2, ..., n
. PTE, 2=1,2, ..., & a sequence of n vectors :
f; . Vi+d, J=1,2, ..., n, 2 =1, 2, ..., é a sequence of n vectors

called search direction vectors.

Then the value of x which minimizes f(x) may be obtained by performing

the following steps:
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Determine the scalars,

J
Qpe1?

the univariate minimizations

. J =
m;n f(wz +ap,, sl+l) J=1,2, ..., n
IS
where
1 i
Vg RFT L v
ig
1 1
spa1 8 Venr/ Vg 1|
Step 2:
Update the n vector, PT, such that:
1 _ 1 1 1l 1
Py, = PTQ + (1 + 02+1) v2+l/||v2+l]|
Step 3:

Compute f(PTi+l) and terminate the algorithm if:

1 1
|£(PTy, ) = £(PT))|

is sufficiently small; otherwise, continue to Step k.

Step L:
Update the search direction n vectors, such that:
J = (3% _ J 1 1 3+l
Voeger = (00 = @n) Vo /T T+ vy
J=1,2, ...y {n-1)
Step S:

Update the nth search direction vector by selecting one of

the linearly independent unit vectors from UP as follovs:

n _ n
Votn+l B WP

24n+1 241

by performing simultaneously




where

WP is chosen cyclically from the set UP.

)9}
L+1
Set £ + £ + 1 and return to Step 1.

S e N

Parallel Variable Metric Algorithm

Let £ denote the iteration number and define:
e I {01, Ogs +ens Un} as a2 set of n linearly independent vectors.
. VO as any positive definite nxn matrix; typically VO = In.
!

Then the value of x which minimizes f(x) may be obtained by performing

the following steps:

Step 1:
a. Evaluate the function and its gradient at n distinct points simul-

taneously in parallel.

f(xk + GJ) and gJ = g(x2 + GJ) i

¥l=1,2, ...y n

b. Compute g? gj and terminate the algorithm if
T
gJ g.j J=19 21 "'sn

is sufficiently small; otherwise, continue to Step 2.

Step 2:
a. Compute yJ A g‘1 - g(xg) J=1,2, ..., n
*

b. Compute the residual vectors

J-1 T

Ty
rjévl-lyj—o,j-Z rT rk J=2, ..., n
k=1 'k Yk

Tf the denominator in step 2b is zero for any term, that term is
deleted from the sum.
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1= Va -9
3
¢c. Compute the n scalars, TJ, and modify the metric:
-(yTr )L for yTr ¥0
_— 35 37
J = 0 othervise
L n
V, =V + T, T r'r J=1,2 n
1 2_1 J J J L 3 0
J=1
Step 3:
a. Determine the scalar al by performing a single univeriate search.
léun f(xl +a, s,
£
where
sp 8-V, elxy)
b. Update the n vector x, such that

=x, + 0, s
2

Xo+1 2 °g

Compute f(x, .) and g(x2+l) simultaneously in parallel and termi-

241
nate the algorithm if

2
letx,,, )1

is sufficiently small; otherwise, set £ + £ + 1 and return to

Step 1.
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Parallel Jacobson-Oksman Procedure

Let % denote the iteration number and define:

4 {cl, o . °n+l) as a set of n+l linearly indepen-

P
dent vectors
Then the value of x which minimizes f(x) may be obtained by perfcrming

the following steps.

Step 0@

Let x, be the initial estimate of the minimum of f{x)
and compute f(xo) and g(xo). Set & = 0.
Step 1:

Define:

X, =x, +0 J=1, 2, ..., n+l

and evaluate f{x,) and g(xJ) in parallel.

J

Step 2:

Set X 4o = xz and solve the linear system:




r————————————

and

Y -
vy = x‘j g(xj) J=1,2, ..., n¥2

Step 3:
Compute the search direction vector:

Sy = B - xy

and evaluate f(B) and g(B). If ||g(B)|| is sufficiently small, stop.

If not, and if f(B) < f(x,), then set x, . = B,  « 2+1, and return

241
to Step 1. Otherwise, perform a line search:

min f(x

+As,)
N '} ')

and set Xop1 = Xp * A 8ps %2 « 2+1 and go to Step 1.







