AD=A107 774 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A==ETC F/6 9/2
PAPERS ON PROGRAM TESTING» (V) 1

1979 R A DEMILLO: R J LIPTONe F & SAYWARD N00O14=T79=C~0231

L

UNCLASSIFIED 6IT=1CS~79/04 N

o
‘\L'F-,
Aiosrra

GIT-ICS-79/04

PAPERS ON PROGRAM-TESTING

RicHarp A, DeMiuLo*
RicHARD J. LiPTON™*

A
A
e
o
-

oy
<

Q

<

Sumver, 1979

* GEORGIA INSTITUTE OF TECHNOLOGY
** UNIVERSITY OF CALIFORNIA, BERKELEY

***% YALE UNIVERSITY

for public relocse nd s s
distribution fs unlimited.

FREDERICK 6., SAYWARD™™*

This document has “bar v .;r-(;i'-I

DTIC FILE copy

T

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

.
--, .
Ot st il oS

PROGRAM TESTINGT

PAPERS ON

.f.

Accessir:
};f"" -

ol

K

A,

P————— .

fﬂ"" so P

. L‘ T}

|

|

A

X

o

.V

By the Program Mutation Groups at Georgia Tech, the University of California,
The research reported herein was supported in
part by AIRMICS through ARO grant no. DAAG29-78-G-0121 and by ONR grant no.

Berkeley, and Yale University.

N00014-79-C-0231.

Forward

Since late 1976, we have been involved in what we believe is a new

approach to computer program testing, an approach called mutation analysis
- (and we shall forever be indebted to Jerome Feldman for suggesting the
term). The main novelties of the mutation approach to program testing are !
its simplicity, its empirical basis, its ease of mechanical implementation, j
and its tractability for scientific analysis. Although much remains to be
learned about mutation as a testing tool, there is a considerable body of
written material which describes our initial experience with the technique.

Much of this material has appeared only in workshops or as memoranda,
so we have been urged to collect it together for wider dissemination. The
current collection is the result. The reader should note that the
- selections do not appear in chronological order; rather, they are organized

so that a sufficiently patient reader may proceed from the conceptual basis
of mutation analysis through implementation, application, and theoretical
- issues. !

e eta e - ek e n ae

We expect to distill much of this material into a more formal treat-
- ment in the coming months; as always, comments and criticisms of all kinds
will be appreciated.

Richard A. DeMillo
School of Information and Computer Science
Georgia Institute of Technology

*‘f’f
4 -

—

Pl

’ Richard J. Lipton
Department of Electrical Engineering and
Computer Science
University of California, Berkeley

Frederick G. Sayward
Department of Computer Science
Yale University

Summer, 1979

TABLE OF CONTENTS

PART ONE: INTRODUCTION TO MUTATION Page
= 1. Hints on Test Data Selection: Help for the
Practicing Programmer e v b v e e 1
- 2. Program Mutation: A New Approach to Program Testing. 9
3. Mutation Analysis ¢ . i e e e e e e e e e e e e e e 29
h = 4. Discussion of "A Survey of Programming Testing Issues". 58
1 5. The Status of Research on Program Mutation. 66
} -
PART TWO: APPLICATION ISSUES
" 1. Program Mutation as a Tool for Managing
Large-Scale Software Development. 85
= 2. Stability of Test Data from Program Mutation. 9
= PART THREE: THEORETICAL ISSUES
1. A Probabilistic Remark on Algebraic Program Testing 100
- 2. Mutation Analysis of Decision Table Programs. e e e e e 103
- 3. Proving LISP Programs Using Test Data 107
- PART FOUR: IMPLEMENTATION ISSUES
1. The Design of a Prototype Mutation System for
Program Testing L . e e e e e e e e 137
- 2. Heuristics for Determining Equivalence of ;
Program Mutations, e e e e e e 142 i
- 3. CPMS Users Guide it 171 ;
_ 4. Pilot Mutation System (PIMS) Users' Manual. 181 j
'J

- .
SO P A O

Hints on Test Data Selection:
Help for the Practicing Programmer

Richard A. DeMillo
Georgia Institute of Technology

Richard J. Lipton and Frederick G. Sayward
Yale University

In many cases tests of a program that uncover simple

@

errors are also effective in uncovering much more complex
errors. This so-called coupling effect can be used to save

work during the testing process.

Much of the technical literature in software
reliability deals with tentative methodologies and
underdeveloped techniques; hence it is not surpris-
ing that the programming staff responsible for debug-
ging a large piece of software often feels ignored.
It is an economic and political requirement in most
production programming shops that programmers
shall spend as little time as possible in testing. The
programmer must therefore be content to test
cleverly but cheaply: state-of-the-art methodologies
always seem to be just beyond what can be afford-
ed. We intend to convince the reader that much
can be accomplished even under these constraints.

From the point of view of management. there is
some justification for opposing a long-term view of
the testing phase of the development cycle. Figure 1
shows the relative effect of testing on the remain-
ing system bugs for several medium-scale systems
developed by System Development Corporation.'
Notice that in the last half of the test cycle, the
average change in the known-error status of a
system is 0.4 percent per unit of testing effort,
while in the first half of the cycle, 1.54 percent of
the errors are discovered per unit of testing effort.
Since it is enormously difficult to be convincing in
stating that the testing effort is complete, the
apparently rapidly decreasing return per unit of
effort invested becomes a dominating concern. The
standard solution, of course, is to limit the amount
of testing time to the most favorable part of the
cycle.

Programmers have one great advantage
that is almost never exploited: they
create programs that are close to being
correct!

0018-9162/78/0400-0034800.75 -

How, then, should programmers cope? Their
more sophisticated general methodologies are not
likely to be applicable.! In addition, they have the
burden of convincing managers that their software
is indeed reliable.

The coupling effect

Programmers, however, have one great advantage
that is almost never really exploited: they create
programs that are close to being correct! Program-
mers do not create programs at random; competent
programimers, in their many iterations through the
design process, are constantly whittling away the
distance between what their programs look like
now and what they are intended to look like. Pro-
grammers also have at their disposal

¢ a rough idea of the kinds of errors most likely
to occur:

e the ability and opportunity to examine their
programs in detail.

Error classifications. In attempting to formulate
a comprehensive theory of test data selection. Susan
Gerhart and John Goodenough’ have suggested
that errors be ciassified as follows:

(1) failure to satisfy specifications due to imple-
mentation error;

{2) failure to write specifications that correctly
represent a design:

(3 failure to understand e requirement:

(4) failure to satisfy a requirement.

But these are global concerns. Errors are always
reflected in programs as

¢ missing control paths.
¢ inappropriate path selection, or
¢ inappropriate or missing actions.

1978 tEEE COMPUTER

!,

We do not explicitly address classifications (2)
and (3) in this article, except to point out that even
here a programmer can do much without fancy
theories. If we are right in our perception of pro-
grams as being close to correct, then these errors
should be detectable as small deviations from the
intended program. There is an amazing lack of
published data on this subject, but we do have
some idea of the most common errors. E. A. Youngs,
in his PhD dissertation,* analyzed 1258 errors in
Fortran, Cobol, PL/I, and Basic programs. The
errors were distributed as shown in Table 1.

In addition to these errors, certain other errors
were present in negligible quantities. There were,
for instance, operating system interface errors,
such as incorrect job identification and erroneous
external 1/0 assignment. Also present were errors
in comments, pseudo-ops. and no-ops which for
various reasons created detectable error conditions.

Complex errors coupled. How, then, do the rela-
tively simple error types discovered by Youngs
connect with the Gerhart-Goodenough error classi-
fication? Well, the naive answer is that since arbi-
trarily pernicious errors may be responsible for a
given failure, it must be that simple errors com-
pound in more massive error conditions. For the
practical treatment of test data, the Youngs error
statistics, therefore, do not seem to help much at
all. Fortunately though, the observation that pro-
grams are “close to correct” leads us to an assump-
tion which makes the high frequency of simple
errors very important:

The coupling effect: Test data that distinguishes
all programs differing from a correct one by only
simple errors is so sensitive that it also implic-
itly distinguishes more complex errors.

In other words, complex errors are coupled to
simple errors. There is, of course, no hope of ‘‘prov-
ing"’ the coupling effect; it is an empirical principle.
1f the coupling effect can be observed in *‘real-world”
programs, then it has dramatic implications for
testing strategies in general and domain-specific.
limited testing in particular. Rather than scamper
after errors of undetermined character, the tester
should attempt a systematic search for simple
errors that will also uncover deeper errors via the
coupling effect.

Path analysis. This point seems so obvious that
it's not worth making: test to uncover errors. Yet
it's a point that's often lost in the shuffle. In &
common methodalogy known as path analysis, the
point of the test data is to drive a program through
all of its control paths. It is certainly hard to criti-
cize such a goal, since a thoroughly tested program
must have been exercised in this way. But unless
one recognizes that the test data should also dis-
tinguish errors, he might be tempted to conclude,
for example, that the program segment diagrammed
in Figure 2 can be tested by exercising paths 1-2
and 1-3, even though one of the clauses P and Q

April 1978

2

may not have been affected at all! In general, the
relative ordering of P and Q may be irrelevant or
partially unknown and side effects may occur, so
that actually the eight paths shown in Figure 3 are
required to ensure that the statement has been
adequately tested.

o -

PERCENT OF TOTAL ERRORS 0SSt REL

0 | 1 - A

0 10 20 30

PERCENT OF TESTING EFFORY
{MAN-MONTHS COMPUTER HOURS ETC »

40 Li¢ 60 70 8

Figure 1. More programming errors are found in the early part of the

test cycle then in the final part.

Table 1. Frequency of occurrence of 1258 errors
In Fortran, Cobol, PL/I, and Basic programs.

Relative
Frequency

Error Type of Occurrence
Error in assignment or computation 27
Allocation error 15
Other. unknown, or multiple errors 1
Unsuccessful iteration .09
Other 1/0 error 07
170 tormatting error 06
Error in brahching

unconditional 01

conditional 05
Parameter or subscript viotation 05
Subprogram invocation error 05
Misplaced delimiter 04
Data error 02
Error in location or marker 02
Nonterminating subprogram 01

Figure 2. Sample program segment with two paths.

35

®

Two examples given below indicate that test
data derived to uncover simple errors can, in fact,
be vastly superior to, say, randomly chosen data or
data generated for path analysis. A byproduct of
the discussion will be some evidence for the coupling
effect. A third example reveals another advantage
of selecting test data with an eye on coupling:
since it's a problem-specific activity, there are
enhanced possibilities for discovering useful heu-
ristics for test data selection. This example will
lead to useful advice for generating test vectors for
programs that manipulate arrays.

Our groups at Yale University and the Georgia
Institute of Technology have constructed a system
whereby we can determine the extent to which a
given set of test data has adequately tested a
Fortran program by direct measurement of the
number and kinds of errors it is capable of uncover-
ing. This method, known as program mutation, is
used interactively: A programmer enters from a

, terminal a program, P, and a proposed test data

set whose adequacy is to be determined. The muta-
tion system first executes the program on the test
data; if the program gives incorrect answers then
certainly the program is in error. On the other
hand, if the program gives correct answers, then it
may be that the program is still in error, but the
test data is not sensitive enough to distinguish
that error: it is not adequate. The mutation system
then creates a number of mutations of P that differ
from P only in the occurrence of simple errors (for
instance, where P contains the expression “B.LE.C”
a mutation will contain “B.EQ.C"). Let us call
these mutations P,, P,, . , P..

Now, for the given set of test data there are only
two possibilities:

(1) on that data P gives different results from
the P, mutations, or

<

00 00,

Figure 3. Eight paths may be required for an adequate test.

36

(2) on that data P gives the same results as
some P,.

In case (1) P, is said to be dead: the “error’’ that
produced P, from P was indeed distinguished by
the test data. In case (2), the mutant P, is said to
be live; a mutant may be live for two reasons:

(1} the test data does not contain enough sensi-
tivity to distinguish the error that gave rise to
P,or

(2) P, and P are actually equivalent programs
and no test data will distinguish them (i.e., the
“error’’ that gave rise to P, was not an error at
all).

Test data that leaves no live mutants or only live
mutants that are equivalent to P is adequate in the
following sense: Either the program P is correct or
thera is an unexpected error in P, which—by the
coupling effect—we expect to happen seldom if the
errors used to create the mutants are carefully
chosen.

Now, it is not completely apparent that this
process is computationally feasible. But, as we
describe in more detail elsewhere, there is a very
good choice of methodology for generating muta-
tions to bring the procedure within attractive
economic bounds.*

Apparently, the information returned by the
mutation system can be effectively utilized by the
programmer, The programmer looks at a negative
response from the system as a '‘hard question”
concerning his program (e.g., *'The test data you've
given me says it doesn't matter whether or not this
test is for equality or inequality: why is that?")
and is able to use his answers (o the question as a
guide in generating more sensitive test data.

0], ®

COMPUTER

A simple example

Our first example is very simple: it involves the
MAX algorithm used for other purposes by Peter
Naur in the early 1960°'s. The task is to set a vari-
able R to the index of the first occurrence of a
maximum element in the vector A(l), . A(N).
For example, the following Fortran subroutine
might be offered as an implementation of such an
algorithm:

SUBROUTINE MAX (A N.R)
INTEGER ANLLN.R

1 R=1

2 DO31=2N.

3 IF(A(D.GT'A(RIR=1
RETURN
END

We will choose for our initial set of test data three
vectors (Table 2).

Table 2. Three vectors constitute the initial
set of test data.

A(1) A(2) A(d)

datatl 1t 2 3
data2 1 3 2
data3 3 1 2

How sensitive is this data? By inspection, we
notice that if an error had occurred in the relational
operation of the IF statement, then either data 1.
data 2, or data 3 would have distinguished those
errors, except for one case. None of these data
vectors distinguishes .GE. from .GT. in the IF state-
ment. Similarly, these vectors distinguish all simple
errors in constants except for starting the po loop
at 1" rather than “2.”" All simple errors in vari-
ables are likewise distinguished except for the
errors in the IF statement which replace “A(I)" by
1" or by “A(R)."”

That is. if we run the data set above in any of the
following mutants of MAX, we get the same results.

SUBROUTINE MAX (A.N.R)
INTEGER A(N\.LN.R

R=1

DO3i=s1N.1
[FIAID.GT.A(RIR=1
RETURN

END

W N -

SUBROUTINE MAX (AN.R)
INTEGER A(N)LLN.R

R=1

DO31=2N.1

IFIL.GT.AR)R =

RETURN

END

W N =

SUBROUTINE MAX (A N.R)
INTEGER A(N)LLN.R

1 R=1

2 DO31=2N.1

April 1978

IFIAL.GE ARIR = |
RETURN
END

w

SUBROUTINE MAX (A.N.R)
INTEGER AN)LIN.R

R=1

DO3I=2N1

IFIARLGT A(RIR = |
RETURN

END

W N —

Let us try to kill as many of these mutants as
possible. In view of the first difficulty, we might
guess that our data is not yet adequate because it
does not contain repeated elements. So, let us add

A(l) A(2) A(3)
data4 2 2 1

Now, replacing .GT. by .GE. and running on
data 4 gives erroneour results so that all mutants
arising from simple relational errors are dead. Sur-
prisingly, data 4 ajso distinguishes the two errors
in A(l); so, we are left with only the last mutant
arising from the “‘constant’ error: variation in begin-
ning the Do loop. But closer inspection of the pro-
gram indicates that starting the po loop at 1~
rather than “2" has no effect on the program, other
than to trivially increase its running time. So no
choice of test data will distinguish this ‘‘error,”
since it results in a program equivalent to MAX. So
we conclude that since the test data 1-4 leaves only
live mutants that are equivalent to MAX, it is
adequate.

Comparisons with path analysis

This example illustrates hidden paths in a program
which should also be exercised by the test data. To
illustrate what hidden paths are, consider the
Fortran program—call it P—suggested by C. V.
Ramamoorthy and his colleagues:*

INTEGER A.B.C.D
READ 10,A.B.C
10 FORMAT4!110)
5 IF((A.GE.B) .AND.(B.GE.C)) GOTO 100
PRINT 50
50 FORMAT(1H *LENGTH OF TRIANGLE NOT IN
10RDER®*)

STOP

100 1F({{A EQ.B} .OR. (B.EQ.C)) GOTO 500
A=A*A
B=B*R
C=Ce*2
D=B-C
IF (A.NE.D) GOTO 200
PRINT 150

150 FORMAT(1H ,*RIGHT ANGLED TRIANGLE®*
STOP

200 1F (A.LT.D). GOTO 300
PRINT 250

250 FORMAT(1H ,*OBTUSE ANGLED TRIANGLE®)
STOP

300 PRINT 350

350 FORMAT(1H.*ACUTE ANGLED TRIANGLE®*
37

STOP

500 IF { (A.EQ.B) .AND. (A.EQ.C)) GOTO 600
PRINT 550

550 FORMAT(H.*ISOCELES TRIANGLE®*
STOP

600 PRINT 650

650 FORMAT(1H .*EQUILATERAL TRIANGLE®*)
STOP
END

The intent of this program is to categorize triangles,
given the lengths of their sides. A typical path
analysis system will derive test data—call it T—
which exercises all paths of P (Table 3).

Table 3. Test deta T to exercise the Fortran program P.

TESTCASE A B C TRIANGLE TYPE

1 2 12 7 ILLEGAL

2 5 4 3 RIGHT ANGLE
3 % 7 7 ISOSCELES
4 19 19 19 EQUILATERAL
5 4 6 4 OBTUSE

6 24 23 ACUTE

Now consider the following mutant program P"

INTEGER. A.B.C.D
READ 10,A.B.C
10 FORMAT(4110)
5 IF{ A.GE.B) GOTO 100
PRINT 50
50 FORMAT(1H .*LENGTH OF TRIANGLE NOT IN
10RDER®*)

STOP

100 IF({ B.EQ.C)GOTO 500
A=A"A
B=B*B
C=C**2
D=B+C
IF (A.NE.D) GOTO 200
PRINT 150

150 FORMAT(IH .*RIGHT ANGLED TRIANGLE®)
STOP

200 IF (A.LT.D) GOTO 300
PRINT 250

250 FORMATI{1H .*OBTUSE ANGLED TRIANGLE®)
STOP

300 PRINT 350

350 FORMAT(1H .*ACUTE ANGLED TRIANGLE®*}
STOP

500 [F ((A.EQ.B) .AND. (A.EQ.C)) GOTO 600
PRINT 550

550 FORMATI(1H .*ISOCELES TRIANGLE®*)
STOP

600 PRINT 650

650 FORMAT(1H .*EQUILATERAL TRIANGLE®)
STOP
END

P’ prints the same answers as P on T but P’ is
clearly incorrect since it categorizes the two test
cases shown in Table 4 as acute angle triangles:

Table 4. Two test cases are acute angle triangles.

TESTCASE A B C TRIANGLE TYPE

7 7 5 6 ILLEGAL
8 2% 26 7 ISOSCELES

P and P’ differ only in the logical expressions
found at statements 5 and 100.* The test data T
does not sufficiently test the compound logical
expressions of P; T ounly tests the singleclause
logicals found in the corresponding statements of
P’ Hence, T' is a stronger test of P thanis T (i.e.,
for P we have more confidence in the adequacy of
T than in the adequacy of T). Note that the logical
expression in statement 5 of P could be replaced
by B.GE.C to yield a program P~ which produces
correct answers on T The test case A=5, B=1,
C=6 will remedy this and provide still a stronger
test of P.

A more substantial example

Our last example involves the FIND program of
C.A.R. Hoare.” FIND takes, as input, an integer array
A.itssize N> 1, and an array index F, 1 K F< N
After execution of FIND, all elements to the left of
A(F) have values no larger than A(F) and all elements
to the right are no smaller. Clearly, this could be
achieved by sorting A: indeed. FIND is an inner
loop of a fast sorting algorithm, although FIND
executes faster than any sorting program. The
Fortran version of FIND, translated directly from
the Algol version, is given below:

SUBROUTINE FIND(AN.F)

FORTRAN VERSION OF HOARE'S FIND
PROGRAM (DIRECT TRANSLATION OF
THE ALGOL 60 PROGRAM FOUND IN
HOARE'S “PROOF OF FIND"” ARTICLE
IN CACM 1971).

INTEGER A(N\N.F
INTEGER M.NS.R.1J.W
M=1
NS=N

10 IF(M.GE.NS) GOTO 1000
R=A(F)
1=M
J=NS§

20 IF(.GT.J) GOTO 60

30 IFA(IL.GE.R) GOTO 40
I=1+1
GOTO 30

40 IF(R.GE.A{J)» GOTO 50
J=J-1
GOTO 40

50 IF.GT.J) GOTO 20

COULD HAVE CODED GO TO 60 DIRECTLY
~DIDN'T BECAUSE THIS REDUNDANCY
IS PRESENT IN HOARE'S ALGOL
PROGRAM DUE TO THE SEMANTICS OF
THE WHILE STATEMENT.

[eXeloleXele]

anoacaon

W=A(
Alli=AW)
AlJ)=W
1=1+1
J=J-1
GO TO 20

*The clause A EQ B in statement 500 is redundant

COMPUTER

"

80 1FIF GT.JH GOTO 70
NS=]
GOTO 10

70 1K GT.F) GOTO 1000
M=
GOTO 10

1000 RETURN
END

FIND is of particular interest for us because a
subtle multiple-error mutant of FIND, called BUGGY-
+1nD. has been extensively analyzed by SELECT, a
svstem that generates test data by symbolic execu-
tion* In FIND. the elements of A are interchanged
depending on a conditional of the form

X .LE. A(F) . AND. A(F) LE Y

Since AR itself may be exchanged. the effect of
this test is preserved by setting a temporary vari-
able & = ArF) and using the conditional

X.LE.R.AND.R LE. Y

In BUGGYFIND, the temporary variable R is not
used: rathe:, the first form of the conditional is
used to determine whether the elements of A are
to be exchanged. The SELECT system derived the
test data A = {3,2,0,1) and F = 3, on which BuGGY-
FIND fails. The authors of SELECT observed that
BRUGGYFIND fails on only 2 of the 24 permutations
of 10.1,2.3), indicating that the error is very subtle *

We will first describe a simple-error analysis of
the mutants of FIND, beginning with initially naive
guesses of test data and finishing with a surpris-
ingly adequate set of 7 A vectors. This data will
he called I).. The detailed analysis needed to deter-
mine how many errors are distinguished by a data
set were carried out on the Mutation system at
Yale University.

We have asked several colleagues how they
would test FiND, and they have nearly unanimously
replied that they would use permutations. We first
describe analysis which we have done using permu-
tations of the array indices as data elements. In
one case. we use all permutations of length 4 and
in another case, we use random permutations of
lengths 5 and 6. Surprisingly, the intuitively appeal-
ing choice of permutations as test data is a very
poor one.

We then describe analysis in which another
popular intuitive method is used: random data. We
show that the adequacy of random data is very
dependent on the interval from which the data is
drawn (i.e., problem-specific information is needed
to obtain good results).

Finally. we find evidence for the coupling effect (i.e.,
adequate simple-error data kills multiple-error mu-
tants) in two ways. First, the multipleerror mutant
AUGGYFIND fails on the test data I).. Next, we
describe the very favorable results of executing
random multiple-error mutants of riND on D,

We begin the analysis with the 24 permutations
of 10,1,2,3 with F fixed at 3. The results are sur-

*We found that BUGGYFIND failed on only the aforementioned

Mermutatinn

Ap- 1978

prisingly poor. as b8 live mutants are left. That is,
with these 24 vectors there are 58 possible changes
that could have been made in FIND that would have
yielded identical output. Eventually, by increasing
the number of A vectors to 49, only 10 live mutants
remain. Using a data reduction heuristic, the 49 A
vectors can be reduced to a set of seven A vectors,
leaving 14 live mutants. These vectors appear in
Table 5.

Table 5. D,—The simple-error adequate data for FIND.

TEST CASH A ¢

1 (- 19340 47 4
12022 - M0

¢ (14 n [

3 23§ 0 !
4 (-5 =% -H -

5 (1320 3

6 23N 3

7 (01 ’

In constructing the initial data, after the 24 per-
mutations, the 49 A vectors were chosen somewhat
haphazardly at first. Later, A vectors were chosen
specifically to eliminate a small subset of the
remaining errors. There were some interesting
observations concerning the 49 vectors:

{1) The average A vectors kills about 550 mutants.
{2} The *“‘best”” A vector kills 703 mutants (test
case 1 of Table 5).

13) The “worst™ A vector kills only 70 mutants.
This was the degenerate A = (0).

The data reduction heuristic uses both the best
and the worst A vectors to pare the 49 A vectors
to seven.

The final step in showing that the data of Table 5
is indeed adequate is to show that the 14 remain-
ing mutants are programs that are actually equiva-
lent to riND. That is, the 14 “errors” that could
have been made are not really errors at all. One
might be surprised at the large number of equiva-
lent mutants (approximately 2 percent). This we
attribute to FIND's long history (it was first pub-
lished in 1961). Over the years., FIND has been
“honed’’ to a very efficient state—so efficient that
many slight variations result in equivalent but
slower programs. For example, the conditional

1.GT.F

in the statement labeled 70 in the FIND can be
replaced by any logically false conditional, or the
IF statement can be replaced by a CONTINUE state-
ment, to result in an equivalent but slower program.
It is not likely that this phenomenon will occur
in programs which haven’t been “fine-tuned.” We
estimate that production programs have well under
1 percent equivalent mutants.

Let us now compare D, with exhaustive tests on
permutations of (0,1,2,3) and then with tests on

39

e

random permutations of (0,1,2.3,4) and (0,1,2,3.4.5).
Table 6 describes the results for all permutations
of (0.1,2,3).

Table 6. Results of sll permutations of (1,2,3 4).

NUMBER OF NUMBER OF
TEST CASES VALUES OF F LIVE MUTANTS
24 1 158
24 2 60
24 3 58
24 4 141
96 12384 38

In Table 7 the same information is provided for
the case of random test data.

Table 7. Resuits of random permutations.

NUMBER OF
RANDOM NUMBER OF

TEST CASES SIZE OF A VALUE OF F LIVE MUTANTS

10 UNIFORM FROM UNIFORM FROM 88

{5.61 1 70 SI1ZE OF A

25 ' 65

S50 | 54

100 ‘ | 54

1000 Y 53

As the data indicates, permutations give rather
poor results compared with D,.

Our analysis with random data can be divided
into two cases: runs in which the vectors were
drawn from poorly chosen intervals and runs in
which the vectors were chosen from a good interval
(—100,100). The results are described in Tables 8
and 9.

Table 8. Results of random data from poorly chosen intervais.

NUMBER OF RANGE OVER RANGE OVER

RANDOM WHICH VECTOR WHICH SIZE VALUE NUMBER OF

VECTORS VALUES DRAWN OF A DRAWN OF F LIVE MUTANTS
10 {100.200} [1.20} UNIFORM 28
16 [~200 —100] {1.20] FROM 28
10 | —100 —90} {1.20] SIZE 25
OF
VECTOR

Table 9. Resuits of random data drawn from | - 100,100};
other parameters as in Tabie 8.

NUMBER OF
RANDOM NUMBER OF
VECTORS LIVE MUTANTS
10 22
50 17
100 "
1000 10

40

— -t

Although the intervals in Table 8 are poor, one
could conceive of worse intervals. For example,
draw A from [1, size of A]. However, in view of the
permutation results, such data will surely behave
worse than that of Table 8.

Three points are in order. First, even with very
bad data, D. is much better than simple permuta-
tions. Second, it took 1000 very good random
vectors to perform as well as D, Third, using
random vectors yields little insight. The insight
gained in constructing D, was crucial to detecting
the equivalent versions of FIND.

The coupling effect shows itself in two ways.
First, BUGGYFIND fails on the adequate D,: hence,
we have a concrete example of the coupling effect.
Although the second observation involves random-
ness, and thus is indirect, it is perhaps more
convincing than ghe “one point” concrete BUGGYFIND
example. We have randomly generated a large
number of k-error mutants for k > 1 (called higher
order mutants) and executed them on D,.

Because the number of mutants produced by com-
plex errors can grow combinatorially, it is hopeless
to try the complete mutation analysis on complex
mutants, but it is possible to select mutants at
random for execution on D,. Of more than 22.000
higher-order errors encountered, onlv 19 succeed
on D,. These 19 have been shown to be equivalent
to FIND. Indeed, we have yet to produce an incor-
rect higher-order mutant which suceeds on D.!

Conclusions

Our first conclusion is that systematically pur-
suing test data which distinguishes errors from a
given class of -~rrors also yields "advice’’ to be
used in generating test data for similar programs.
For instance. the examples above lead us to the
following principles for creating random or non-
random test data for Fortran-like programs which
manipulate arrays (i.e., programs in which array
values can also be used as array indices):

(1} Include cases in which array values are out-
side the size of the array.
(2) Include cases in which array values are

negative.

(3} Include cases in which array values are re-
peated.

(4) Include such degenerate cases as D,'s A = (0)
and A = (—5,~5,—-5,—-5).

Principle {4} was also noticed by Goodenough and
Gerhart.®

It is important that a testing strategy be con-
ducive to the formation of hypotheses about the
way test data should be selected in future tasks.
Information transferred between programming tasks
provides a source of ‘'virtual resources’' to be used
in subsequent work. Since the amount of available
resources is limited by economic and political
barriers, experience—which has the effect of expand-
ing resources—takes on a special importance. It is,

COMPUTER

Seemingly simple techniques can be
quite sensitive via the coupling effect.

of course, helpful to have available such mechanical
aids as the mutation system, but as we have shown
even in the absence of the appropriate statistical
information, a programmer can be reasonably con-
fident that he is improving his test data selection
strategy.

A second conclusion is that until more general
strategies for systematic testing emerge, program-
mers are probably better off using the tools and
insights they have in great abundance. Instead of
guessing at deeply rooted sources of error. they
should use their specialized knowledge about the
most likely sources of error in their application.
We have tried to illustrate that seemingly simple
tests can be quite sensitive, via the coupling effect.

The techniques we advocate here are hardly ever
general techniques. In a sense, they require one to
deal directly in the details of both coding and the
application—a notion that is certainly contrary to
currently popular methodologies for validating
software. But we believe there is ample evidence in
man’'s intellectual history that he does not solve
important problems by viewing them from a dis-
tance. In fact, there is an Alice In Wonderland
quality to fields which claim they can solve other
people’s problems without knowing anything in
particular about the problems.

So. there is certainly no need to apologize for
applying ad hoc strategies in program testing. A
programmer who considers his problems well and
skillfully applies appropriate techniques to their
solution—regardless of where the techniques arise—
will succeed. B

References

1. A. E. Tucker, “The Correlation of Computer Program
Quality with Testing Effort,” System Development
Corporation, TM 2219/000/00, January 1965.

2. R. A. DeMillo, R. J. Lipton, A. J. Perlis, “‘Social Pro-
cesses and Proofs of Programs and Theorems,” Proc.
Fourth ACM Symposium on Principles of Program-
ming Languages. pp. 206-214. (To appear in CACM)

3. John B. Goodenough and Susan L. Gerhart, “Toward
a Theory of Test Data Selection,”” Proc. International
Conference on Reliable Software, SIGPLAN Notices,
Vol. 10, No. 6, June 1975. pp. 493-510.

4 E. A Youngs, ErrorProneness in Programming. PhD
thesis, University of North Carolina, 1971.
5. T A.Budd, R. A. DeMillo, R. J. Lipton, F. G. Sayward,

““The Design of a Prototype Mutation System for Pro-
gram Testing.”” Proc., 1978 NCC.

April 1978

6. C. V. Ramamoorthy, S. F. Ho, and W. T. Chen, “On
the Automated Generation of Program Test Data,”
IEEE Trans. on Software Engineering. Vol. SE-2, No
4. December 1976, pp. 293-300

7. C. A R. Hoare, "Algorithms 65. FIND,” CACM. Vol. 4.
No. 1. April 1961, pp. 321.

8. R. S. Boyer, B. Elspas, K. N, Levitt, "SELECT-A
System for Testing and Debugging Programs by
Symbolic Execution,”” Proc. International Conference
on Reliable Software. SIGPLAN Notices. Vol 10,
No. 6. June 1975, pp. 234-245.

Richard DeMillo has been an associate
professor of computer science at the
Georgia Institute of Technology since
1976. During the four years prior
to that he was assistant professor of
computer science at the University of
Wisconsin-Milwaukee.

A technical consultant to several
government and research agencies and
to private industry, he is interested
in the theory of computing, programming languages.
and programming methodology.

DeMillo received the BA in mathematics from the
College of St. Thomas. St. Paul, Minnesota, and the
PhD in information and computer science from the
Georgia Institute of Technology. He is a member of
ACM. the American Mathematical Society, AAAS, and
the Association for Symbolic Logic.

Richard J. Lipton is an associate professor of computer
science at Yale University. A faculty member since 1973.
he pursues research interests in computational complexity
and in mathematical modeling of computer systems. He
is also a technical consultant to several government
agencies and to private industry.

Lipton received the BS in mathematics from Case
Western Reserve University and the PhD from Carnegie-
Mellon University.

Frederick G. Sayward is an assistant professor of com-
puter science at Yale University, where he pursues
research interests in semantical methods for program-
ming languages, the theory of parallel computation as
applied to operating systems. the development of pro-
gramming test methods, and techniques for fault-tolerant
computation. Earlier. he worked as a scientific and sys-
tems programmer at MIT Lincoln Laboratory.

A member of ACM, the American Mathematical Society,
and Sigma Xi, Sayward received the BS in mathematice
from Southeastern Massachusetts University. the MS in
computer science from the University of Wisconsin:
Madison, and the PhD in applied mathematics from
Brown University.

41

I
I
1
1
1
1
1
j

9 |
PROGRAM MUTATION: A NEW APPROACH TO PROGRAM TESTING

R A DeMillo

School of Information and Computer Science
Georgia Institute of Technology
Atlanta GA

R J Lipton :

¥ G Sayward

Department of Computer Science ;
Yale University
New Haven CT

ACKNOWLEDGEMENT

We acknowledae the work of Tim Budd and Mike Lebowitz and the other members of the
Yale !nivers:te Testing Croup for help in implementing and experimenting with the

pretotupe mytation system.

© R A DeMillo, R J Lipton and F G Sayward 1979

107

—_— - n

.
— _ A

10
PROGRAM MUTATION: A NEW APPROACH TO PROGRAM TESTING

ABSTRACT

the goal is to establish absol-
method which has a less ambitious

Unlike contemporary software validation methods, where

ute program correctness, program mutation is a testing
to establish that a program is either correct or is ‘'radically’

but gquite useful goal:
as how the

incorrect. The basic concepts of program mutation are explained as well
method is applied in building interactive program mutation systems which
establishing this goal. Also, the applications of program mutation as a

iect management tool and as a tool for assessing the quality of procured

aid users in
software pro-
software are

A prototype mutation system for a non-trivial subset of FORTRAN has been
A system for nearly

overviewed.
1mplemented and initial experience with this system is reported.
full ANSI FORTRAN is about half implemented and is expected to be ready by early Fali

1975,

INTRODUCTION

Program testing is an inductive science which addresses the following fundamental ques-

ticn:
If a program is correct on a finite number of test cases, is it correct in general?

Finite test data which implies general correctness is called adequate test data (004)
and since adequate test data cannot in deneral be derived algorithmically (003), program
testing cannot in general be deductive. Recently, pat! analysis (001,002,005,006) and
symbol:c exccution (007,008) have emerged as methods which allow one to gain confidence
in one's test data's adequacy. Although as with any inductive science it is possible
to make false inferences with path analysis, the basic idea is undeniable: test data
which exercises all flowchart control paths of a program at least once must be better

than test data which does not.

t It has been said (020) that from a scientific point of view program testing can hardly
be said to be in its infancy. The software engineering community, most notably the
program verification school, continue to point out that program testing is insufficient
to guarantee program correctness (see (01%) for an argument against program verificat-
ion). We agree. However, since program testing has been used in developing all soft-
ware that has ever solved any real problems, we must ask the following rather obvious

question:

Given that program testing, while not a perfect technique, has proved to be a very

f
| 109

[

g

11

useful technique, how we can develop testing methodologies which have less than
perfection (absolute program correctness) as their goals yet sti1ll yieid substantial
gains?

It is all too easy (and wrong) to take the popular viewpoint that program build.ng 1s
a purely logical deductive activity to which program testing is unsuitable. Our view-
Point is that program design and development is an empirical engineering activity for
which an inferential formalism has not yet been developed. However, it seems clear
that such a formalism is not entirely necessary if one is willing to accept that pro~
gramming is a human, inductive activity which may never be subject to complete formal-
ism.

In this paper we will describe an on-~going research effort which is aimed at achieving
gains from program testing while not ensuring perfection. We call our testing method-
ology program mutation. Besides discussing the method, we will overview a prototype
system which implements the method and report our initial experiences with program
mutation. Moreover, unlike the deductive approaches to software reliability such as
program verification (009,010), program mutation provides quantitative information on
the status of software development. We will explain how this information can be used
effectively throughout a software project's management hierarchy. We will also explain
how it can be used as a quality measure for procured software.

THE PROGRAM MUTATION METHODOLOGY

It has been observed (011,022) that the vast majority of errors that remain in software
once it has been tested and put into production tend not to be radical errors* but
rather are interacting combinations of simple errors. Indeed, there are many ‘'horror'
stories similar to the failure of an early Vangard missile launch because of a missing
right parenthesis in a controlling program. So a reasonable goal of program testing

is to rule out all combinations of simple errors. That is, design a program testing
method with the goal being that if a program passes the test then either:

1 The program is correct.
2 The program is radically incorrect.

Even this seems too ambitious if one attacks directly. First, given a program we must
be able to generate all of its simple errors. Assuming that .his can be done, we next
must eliminate the simple errors and the complex errors which ~manate from their cor-

binations. Clearly the number of complex errors will be a ccabinatorial explosior in

the number of simple errors. While it may be feasible to eliminate all simple errors,
explicit elimination of all complex errors appears intractable.

The goal of the program mutation testing methodology is to establish that a given pro-
gram is either correct or radically incorrect. Let L be the programming language under
consideration. A mutant operator is a simple program transformation, dependent onr L

which produces mutant programs of a qiven program P, The mutants are also procrass n

.

There are no agreed on technical definitions of error categories. We tud w.ll be informg,. B, ruaa-
ical we mean errors due to grossly misunderstanding the program specifications. Errors wnich are
difficult 1f not impossible to capture by general algorithmic methods but which would easiiy be ot
served by almost any test or when the software is first put ainto production. An exampie wouid Lo

forgetting to include an action sequence in a decision table program,

12
(. For example, if -
I = 1+1
-—
is a statement in P, then
I = 1-1 -—
I = I+2
I = I+0 (i e a no-op)
—
are all simple changes which lead to three mutants of P. The goal of the nutant oper-
ator is to introduce simple errors in P, thus producing mutants of P. Alternatively,
if P is incorrect due to a single simple error, some mutant would be a correct prograr _
for the given task. There should be several mutant operators, each corresponding to
different classes of simple errors that may occur an . Let s(r) denote the set of
all mutants of p. Tdeally, M(r) should contain mutants corresponding to all and onty
the possible simple eriors. However, thls 1s too ambitious a goal for general purpos.: -
} vprogram transformations and we relax the requirement to be that M(P) covers all simple
E errors tn the sense that M{P) may also contain mutants which are equivalent to P. W
let M*(P) denote all the mutants of P which come from multiple applications of mutan: -
operators on F. These mutants are also programs in L.
A
Let b be the input domain of r. P is said to pass the mutation test with data 7 if -
there exists T a subset of D such that:
e P works as intended on T —_—
For each mutant m in M(P) either
- m fails to work as intended on T, or
- m is equivalent to f. - ;
I1f p passes the mutant test then we are sure that P is free of simple errors. Bu: what “
of complex errors? To this end we have observed a coupling effect which staces: —_
Test data T whilch rauses all the non-equivalent mutants ot M(r) to fatl is so sen:g-
tive that all the non-equivalent mutants of M2 () must alse farl on . —_
4
The justification of the coupling effect parallels the probabalistic argument for ;
~ustifying the single fault methods used to test circuits (021). However, we have !
no theory to make it a hard-fast principle. Basically, if several simple errors (de- -
tectable by T) combine to make a complex error then it is extremely unlikely the simple
errors will cancel to allow the successful execution on T of the mutant containing the
complex error. The goal of program mutation theory is then to validate, depending on -
: either deductively or experimentally, the coupling effect for language L by establish-
ing the following metatheorem of program mutati.on:
—
e If p passes the mutation test then either
- P is correct, or
- P is radically incorrect. —
It is not hard to see that if the metatheorem holds for language r and if P is a non-
radically incorrect program, then it is impossible for P to pass the mutation test. -
In (017) the mutation metatheorem has been formally shown to hold where L is certair
classes of decision tables and the mutant operator involves the reformulation of conditions -—
} 1 - ’

and applied actions. Currently, programs which manipulate data structures are under
investigation.

For general purpose procramming languages such as FORTRAN, the task is more difficulte.
There is a noticeable lack of empirical studies on programming errors to draw on in
formulatiny a complete set of mutant operators ~ a necessary requirement for program
mutation to be deductive. Here, complete means that all simple errors will be captured
in M(P). Hence, at least for now, in the case of general purpose lanquages we can con-
sider program mutation to be an inductive tool for gaining confidence that the meta-
theorem of program mutation holds for a particular program P. A prototype system for

a subset of FORTRAN will be overviewed below. Some initial experience with it, tne
effectiveness of the implemented mutant operators and substantiations of the coupling
effect can be found in (013). A mutation system for nearly full ANSI FORTRAN has been
designed and is about half written. Several experiments to finding 'good’ mutant oper-
ators and for evaluating the effectiveness of mutation testing are under consideration.

PROGRAM MUTATION APPLIED

We do not intend that program mutation can be effectively used by the novice programmer.
Rather (unlike previous software reliability methods) in program mutation we are making
and exploiting the following assumption:

Experienced programmers write programs which are either correct or are 'almost'
correct.

That is, in the mutation terminology:

If a program is not correct, then it is a 'mutant' — it differs from a correct pro-
gram by simple well-understood errors.

There is empirical evidence which supports this natural premise (011,022).

In order that it be feasible to perform the mutation test, the size of M(P) and T must
be small. Our view is that the mutation system should be interactive. The user speci-
fies the program P and initial test data T, to the system whence the mutant operators
are applied to P, thereby generating the mutants of P. The mutants are then executed

on T). A list of mutants which fail and which succeed on T, is produced. If ali mut- p
ants give incorrect results then, by the coupling effect and the experienced programner
assumption, it is very likely that P 1is correct. On the other hand, if some mutants i

are correct on T;, then the user must then examine the results of the mutation run to
determine:

e P contains a non-radical error

® Because mutants which should have failed did not, r, is inadequate and must be aug-
mented to 7, and the system re-run

e Some mutants are equivalent to p. Currently, this must be done manually but there
is hope that symbolic execution techniques can partially automate this task.

This cycle can be viewed as a series of interactive sessions in which the user defends
P and the current test data against a system adversary which asks questions of the form:

yrirpainatd - C e — -
—— by A T e e e e e S, I T ey Toer™e g TS T

14
-
why does your test data not distinguish this simple error?
Such an adversary forces the user of program mutation into a careful and detailed re-
view of his program and the design decisions made in constructing it. The issues which -
the user must address include:
e Which mutant operators should be applied to the program? -
e Are the program and its mutants correct on the given test data?
e Is a given mutant equivalent to the program?
—
In this view we hold hope that even radical errors can be uncovered by users of program
mutation.
-—
OTHER APPLICATIONS OF PROGRAM MUTATION —
Several approaches to aid in the design, implementation and debugging of large-scale
software have recently emerged. Examples are restricted modularization, structured
—
crogramming, and program verification. However helpful they may be to programmers and
low-level managers, the effects of these techniques cannot be utilized throughout the
project management hierarchy since they are qualitative rather than gquantitative; man-
—
agers should not be expected to understand code and/or sophisticated mathematics.
Besides being a tool for determing adequate test data, program mutation also provides
the type of information that managers need to monitor software development and personnel -
performance. By using an automated program mutation system with report generation cap-
ability, during software development managers may extract information such as:
—
& Mutant failure percentages for each module indicating how close the software is to
being acceptable
-
e Wwho is responsible for classifying which mutants as equivalent
e Which mutants have yet to fail. —
This quantitative information can be used in several ways at different levels in the
management hierarchy. Among these are: p—
® Re-assignment of personnel to work on modules where the mutant failure rate is low
-—
® Pinpointing responsibility for modules which faill after having been deemed accept-
able
—
® Forced justification of why certain equivalent mutants exist
® Monitoring PERT chart adherence
—
e Rewarding personnel who achieve high mutant failure percentages. 1
\ See (023) for a description of how program mutation can be integrated with the chief -
programmer management concept.
Government agencies and profit making industries are currently finding that purchasing -
i
;
! w—t—
: 112 4
'
-2y T

atiibsteseutinan wiidntantiion - ity

15

software from speclalized software vendors is more economical than in~house development.

The contracts generally consist of the specifications for the software and a date oOn
which the software and test data on which the software meets the specifications are to
be delivered. Occasionally, some test data is given with the specifications. Two
problems for the contractor are apparent in this scheme:

At any time during the contract period the purchaser has no indication as to how
‘close' the software is to being ready

e Upon delivery, although the software works correctly on the supplied test data,
there is no way to measure the gquality of the purchased software.

We see program mutation as a partial solution to the first problem and as a definite
solution to the second.

Since program testing 1s the final stage of software development, a contractor can

specify that the vendor indicates at what point testing commences. Assuming that the

vendor is using a mutation system, the contractor can monitor the final stage of devel-
opment by having the vendor periodically report mutant elimination percentages.

To evaluate the delivered software, one can specify in contracts that the test data
of modules must eliminate a certain percentage of the mutants with respect to 'standard’

mutant operators. Here there are many options. Software not passing this quality test

may be rejected or there could be a substantial financial penalty to the vendor. In

this case it is not essential that the vendor uses a mutation system, only that the con-

tractor has one available to evaluate the final product. Alsc, note that the contracter

is not concerned with equivalent mutants; rather, a simple test
computerized) dependent solely on the mutant operators is used.

(which can be entirely

Currently, we have
little information on which mutant operators should be employed in this test, however,
experiments to answer this question are in progress.

THE PROTOTYPE FORTRAN MUTATION SYSTEM

A prototype mutation system for a large subset of FORTRAN has been implemented as an
interactive system on the PDP-~10.
following.

See (018) for a more detailed description than the
We chose FORTRAN as the source language in our first implementation of a
mutation system since there is a large body of existing programs on which we can experi-

ment. However, the methodology is language-independent — mutation systems for other
languages are in the design stage.

The programs considered are FORTRAN subroutines with the following data types and
statement types:

Integer constants and variable
One and two dimensional arrays
GOTO statements

CONTINUE statements

ASSIGNMENT statements with general arithmetic expressions
RETRURN statements

Logical 1If statements with general relational and logical expressions
00 loops with one level of embedding.

16
The mutant coperators which the system can apply to a program fall into four categorie:: -
e Ueclaration mutdtions. There are mutant operators to insert default array limits
and to permute the limits of two-dimensional arrays. -
@ Data reference mutations. Data references are instances of constants, scalar var-
iables, and references to one and two-dimensional arrays in the statements of the -
program. There are mutant operators to replace any data reference by any other
reference in the program as well as an operator to replace conctants by other con-
stants not necessarily appearing in the program. Also, there is an operator to pcr- -~
mute the index expressions of references to two-dimensional arrays.
e COperator evaluation mutations. There are mutant operators to replace occurrence:. —
nf arithmetic operators in the program by all the other arithmet e operators. Ther
are mdtant operators to do likewise for relational and logical operator:..
——
e Ccrtrol mutations. There are mutant operators to replace the label portion of G017
statements by each of the other statement labels appearing in the program. Alsc,
there are mutant operators to see if all control paths of the program are traverscd
at least once, to force DO loops to end on continue statements, to force D0 loops -
net to end on continue statements and to replace each statement of the proarar by o
return statement.
-
as discussed above, these operators are designed to capture simple errors and to assesc 1
the adequacy of the given test data to distinguish them. For example, in making ar
array have dimension, one checks whether the test data is causing the array to be acc- -
essed other than as a scalar. '*
The user specifies to the system his program, test data, and the mutant operators he -
wishes to be applied. The system then generates and executes the mutants on the test k
¢ata and produces a report indicating which mutants are correct and which fail on the
crven test data. Various profiles and other useful information are alsc reported. Ar bt
exam.le of the report produced by the system 1s given in the appendix. The detorrin-
at:on of mutant correctness or failure is done in one of two ways: 1
— 4
e By direct comparison of the mutant output with the program's output
By a user supplied algorithm which examines the output of the mutant.
-
In both cases the system asks the user whether or not the program is acceptable on the
test cata. However, determination of mutant failure is done by the syster.
— L
Cpon examining the report, the user may re~-run the system and augment his test data in
an attempt to make the remaining mutants fail. He may also specify that additional
ritant operators be applied to the program. The system produces another report of thc
same nature as the first for the user to examine. This cycle continues until the user 1s - !
satisfied that his current test data adequately tests his program or until an error :n
the program is discovered.
—
The prototype FORTRAN system heavily uses the PDP-10 file system to record transient
information such as mutant correctness status and the current test data between runs.

/ In spite of the fact that the program terminates on the test data, some mutants may - %
actually be non-terminating. To handle this the system records the program's execution !
time for each test case and deems that a mutant has failed due to being non-terminatina i
1f the mutant has not terminated within a factor of the program's execution time. -

’ 1

-— ‘1
115

'-lu-"l-FIIlI-lIII-IlIl--l-I!IllIlll.-'HI-ll!l-lll-ﬂ--'!.l.----» e cauas

17

Experience has shown that a factor of 1O is reasonable.

SOME INITIAL EXPERIENCES WITH PROGRAM MUTATION

The results of using the prototype FORTRAN mutation system on three programs are now
described. The first is Hoare's FIND program (014) which, given an integer array A,

of dimension ¥ and an array index F, rearranges A such that A(l)-A(F-1) are no greater
than a(F) and A(F+1)-A(N) are no less than a(F). The second is the Knuth, Morris, and
Pratt PAT program (015,016) which, given two arrays of integers, decides whether the
first array occurs in the second. The third, SCAN, is the gcanner used in the prototype
system itself.

For all three programs, the testing strategy was the following. We first constructed
what we believed would be good test data for the programs independently of the mutation
system. The program and this initial test data were input to the system with all imple-
mented mutant operators in effect. The results of these 1initial runs are summarised

in Figure 1.

i EXECUTABLE NUMBER OF NUMBER OF PERCENTAGE OF IN-
PROGRAM STATEMENTS TEST CASES MUTANTS CORRECT MUTANTS
| FIND 34 24 758 92-2
. PAT 42 9 1178 772
SCAN 104 19 8838 89-1
Figure 1: Initiral mutation run

| S

We then made mutation runs with augmented test data until all mutants either failed con
some test case or were determined equivalent. The final results are shown in Figure 2.

— — e ——— —

PROGRAM NUMBER OF RUNS NUMBER OF TEST CASES ¥ OF INCORRECT MUTANTS
FIND 8 49 98-1
PAT 9 35 987
SCAN 7 35 97-9
Figure 2: Initral mutation run

In comparing the mutant elimination percentages of Figqure 1 to Figure 2, we can demcns-
trate one reason why program testing as an art has been held in such low estecem:

wWith all three programs, even after hard thought, our initial test data failed to
distinguish a large number of incorrect mutants.

Although the initial mutant elimination percentages in Figure 1 seem adeguate, corre.-
ated with Figure 2, we see that the initial test data failed to distinguish 44 incorrect
mutants of FIND, 253 incorrect mutants of PAT, and 778 incorrect mutants of SCAN. The
final mutant report for SCAN appears in the appendix.

The reason FIND did so well initially is8 due to our choosing all permutations of 1-4
with F fixed at 3 for the initial data. Permutations are a reasonable test of programs
like FIND but they fail to distinguish all mutants (see (0!3)). Higher dimensioned

permutations do no better. We have run 1000 uniformly drawn random permutations of sizes

18

5 and 6 as test data for FIND and they failed to distinguish 39 incorrect mutants of

FIND. The reason is permutations of A are legal FORTRAN indices of A and not until

negative data is used do these mutants of FIND fail. This is analogous to mixing —
pointers and the values pointed at which is a common programming blunder. The insight
gained is that test data for pointer type programs should be constructed so that values
pointed at are not legal pointers. See (0!3) for other such insights for test data
selection that have been gained from program mutation as well as for a more detailed
discussion on the pitfalls of using random test data.

Figures 1 and 2 suggest that 2% might be a good estimate for the expected number of
eqguivalent mutants that a program will have, at least for the mutant operators imple-
mented in the prototype FORTRAN mutation system. If one accepts this estimate, then
eliminating better than (say) 97% of all mutants without trying to determine equivalent
mutants allows one to gain high confidence in test data adequacy.

Another observation is that the number of mutants of a program appears bounded by cn-
where n is the number of statements in the program and c¢<l. This compares favourably
with other methodologies for achieving reliable software which all seem to have inher-
ent exponential growth factors. 1In fact, the unclever prototype FORTRAN mutation system -
took 90 minutes of CPU time on the PDP-10 KA-1l0 processor to run the 8838 mutants of

the 104 statement scanner program. The KA-10 is 5 times slower than the IBM 370/158

and'ao times slower than the CDC 7600. Because our system is CPU bound, the 90 minutes -

of CPU time scales down directly to 18 and 3 minutes on these faster machines.

We are currently working on a 300-line auditing program taken from a production environ- —
ment. We see no reason why any FORTRAN module cannot be tested on a mutation system

within acceptable cost-effective CPU times. I

CONCLUSIONS

Program mutation is an engineering approach to program testing where the goal is to
establish that a program is either correct or is radically incorrect. The method is
based on the coupling effect: simple mutations are suff{icient to distinguish complex
mutations. 1Initial experience has suggested the validity of the coupling effect.

The effectiveness of program mutation depends on two factors:

e Human judgement
e The implemented mutant operators. -

In the former case we have suggested how mutation systems can be designed to aid users
in meeting the goals of program mutation. 1In the latter case we are currently running b
experiments to evaluate the mutant operators implemented in the prototype system and

to develop 'good' mutant operators for future mutation systems.

e —

- 19
REFERENCES
— 001 RAMAMOORTHY C V, HO S F and 008 KING 0
CHEN W T Symbolic execution and program testing
On the automated generation of CACM vol 19 no 7 pp 385-394
— program test data (July 1976}
IEEE Trans on Software Eng vol 2
no 1 pp 293-300 (Dec 1976)
-
009 LONDON R
The current state of proving programs
002 HOWDEN W E correct
- Methodology for the generation Proc ACM Nat Conf New York (1972)
of program test data
: IEEE Trans on Computers vol 24
- no 3 pp 554-560 (May 1975)
010 HANTZER S and KING J
An introduction to proving the correct-
bl ness of programs
003 HOWDEN W E Comp Surv vol 8 no 3 pp 331-353
Reliability of the path analysis (Sept 1976)
— testing strategy
IEEE Trans on Software Eng vol 2
no 3 pp 208-214 (Sept 1976)
- 011 YOUNGS E A
Human errors in programming
Intl J of Man Machine Studies no 6
- 004 GOODENOUGH J B and GERHART S L pPp 361-376 (1974)
Towards a theory of test data
selection
- IEEE Trans on Software Eng vol 1
no 2 pp 156-173 (June 1975) 02 BOEHM B
Software design and structuring
In Practical strateqgies for develop:ing
- large software systems Horowitz (ed)
005 HUANG J C Addison-Wesley (1975)
An approach to program testing
bl Comp Surv vol 7 no 3 pp 113-128
(Sept 1975)
013 DeMILLO R, LIPTON R and SAYWARD F
- Hints on test data selection
Computer (April 1978)
006 MILLER E F and MELTON R A
Automated generation of test
case datasets
Proc 1st Intl Conf on Reliable 014 HOARE C
software Algorithm 65: FIND
CACM vol 4 no 1 p 321
(April 1961)
007 CLARKE L
A system to geanerate test data
and eymbolically execute programs 015 MORRIS J and PRATT V
TEEE Trans on Software Eng vol 2 A linear pattern matching algorithm
no 3 pp 215-222 (Sept 1976) Tech rep 40 Comp Centre Univ of California
118
— — - b it

20 -
perkeley (1970} 023 DeMILLO R, LIPTON R and SAYWARD F
Program mutation as a tool for managiny
large scale software development —
ASQC Tech Conf (1978)
016 KNUTH D and PRATT V
Automata theory can be useful ———
stanford Univ Tech rep (1971)
—
017 BUDD T and LIPTON R
Mutation analysis of decision
table programs -
Conf on Information sciences and
systems John Hopkins Univ (1978)
0t8 BUDD T, DeMILLO R, LIPTON R -
and SAYWARD F
. The design of a prototype mutat-
ion system for program testing -
NCC (1978)
-
019 DeMILLO R, LIPTON R and PERLIS A
Social processes and proofs of —
theorems and programs
Ath ACM Symp on Principles of
programming languages (1977) —
’ 020 GOODENOUGH J -
A survey of program testing
issues
In Research directions in soft-~ -
ware technology P Wegner (ed)
MIT Press (1978) 74
-— ;
|
021 CHANG H Y et al -~
Fault diagnosis of digital
systems
Wiley-Interscience (1970) -—]
022 BOEHM B W 4
Software engineering
IEEE Trans on Computers vol 25 -
! no 12 pp 1226-1241 (Dec 1976) 1
i ;
H
: - .
' 119 (|

21

APPENDIX

MUTATION STATUS REPORT SCAN.F4 23-0ct-77

D ~N B W N -

A Db LD A B E DWW W W WWWWWWNNRNRNRNRNRNR NN o o el et o oad ot et et -
W N N P W= O WD NN DB WRN O W N, A WRN O W0 NOWUEe WRN —~ O W

LISTING OF THE PROGRAM BEING MUTATED

SUBROUTINE SCAN(RECORD,N,TYPE,KIND,ID,EOL,IVAL,COLUMN)

1. SCAN THE RECORD, STARTING AT LOCATION N AND RETURN THE NEXT
IDENTIFIER, CONSTANT OR SYMBOL.

2. RECORD IS AN 80 WORD ARRAY, ASSUMED 1 CHAR TO A WORD. N IS
LOCATION TO START SCAN, ON RETURN N POINTS TO LAST LOC
SCANNED + 1.

3. RETURNS INFORMATION IN COMMON/SCANNER/

TYPE — TYPE OF OBJECT FOUND (SEE SCANER.PAR)

KIND — SUBCLASS OF TYPE

1D(2)— CHARACTER FORM OF IDENTIFIER FOUND, PADDED WITH
BLANKS

EOL - SET TRUE IF END OF LINE WAS FOUND BEFORE A CHAR
WAS

IVAL — INTEGER VALUE FOUND

COLUMN — COLUMN IN WHICH LOCATED OBJECT BEGAN

INTERNAL VARIABLES USED
CH ~ CURRENY CHARACTER
K ~ LOOP COUNTER
IDB - UNPACKED ID BUFFER
LOG SYMBOLIC LGGICAL OPERATORS
LTYPE— TYPE FOR EACH OF THE ABOVE
LKIND— KIND FOR EACH OF THE ABOVE
SYMC — CHARACTER CODE FOR SYMBOLS TO Bt RECOGNIZED
STYPE— TYPE FOR EACH OF THE ABOVE
SKIND- KIND FOR EACH OF THE ABOVE

4. NONE

5. NONE

6. TRAPON TO TRAP INTEGER OVERFLOWS.

7. ENCODE TO PACK IDENTIFIER
LINE 32— ASSUMES CHAR NUMBER = CHAR/2**29

8. ASSUMES 5 CHARACTERS TO A WORD
9. NONE
10. TIM BUDD, JULY 29, 1977

11,

OO OO0 OO OO0 0000000000000 OO0 OO0 OO 0O0 0 OO0 OO

12,

49
50
51
52
53
54
55
56
58
59

61
62
63
[
65
6
67
68

o
o

.
>

R R s e I T R
O o~ T £ oL P — ¢

Vo

w oo Wow
o

ey

Ao 00O

oo OO0 nN oD OO 00

[aEES N ol

RN H

kR R

LA S0

ThER

22

INCLUDE 'SCANER.PAR/NOLIST®
TESTED BY MANUALLY CHANGING PARAMETERS IN BODY OF CODE

PARAMETER SPACE-1H, A=1HA,2=1HZ,C0=1H0,C9=1H9,PERIOD=1H.,
STAR=1H*
ALSO TESTED AS ABOVE

INTEGER N,RECORD(12)

INCLUDE 'SCANER.COM/NOLIST'
TESTED BY MAKING INTO PARAMETERS
INTEGER TYPE,KIND,1D(2),EOL,IVAL,COLUMN

INTEGER CH.K,IDB(10),SYMC(8),
STYPE(B),SKIND(8)

DATA STATEMENTS SIMULATED BY ASSIGNMENTS
DATA SYMC/'(',')'.'.'.'='.'#‘.'-'.'/',“"/,STVPE/ LPARN ,RPARN
COMMA,BECOMS ,2*ADDOP ,MULOP ,APOST /,SKIND/ 4*NOKIND,PLUS,
MINUS,DIVIDE ,NOKIND/

SYMC(1) = 40

sYMC(2) = 41

SYMC(3) = 44

SYMC(4) = 61

SYMC(5) = 43

SYMC{6) = 45

SYMC(7) = 47

SYMC(8) = 96

STYPE(1) = 4

STYPE(2)
STYPE(3) = 8
STYPE(8)

STYPE(S) =

STYPE (
STYPE(
STYPE (

SKIND(
SKIND{(
SKIND{

SKIND(
SKIND(
SKIND(6

SKIND(7)
SKIND(8) -

5
6) = 5
7) = 6
8} 1
1) =1
2) =1
3) 1
4y
5y = 2
) 3

5

1

=

103
104
105
106
107
108
109
110
IRR
12
113
114
115

e

117
118

o

o

119 ¢

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

[alN o)

146 C

147
148
149
150
151
152
153
154
155
156

R le e)

[BN =1

23

10(1) = 32
ID(2) = 32
EOL = O
IVAL = 0

SKIP OVER LEADING SPACES

10 IF (N.GE.13) GOTO 110
IF (RECORD(N).NE.32) GOTO 20
N =N+
GOTOo 10

NOW HAVE NON-NULL CHAR

20 CH = RECORD(N)
COLUMN = N

READ AN IDENTIFIER--=--==cmeemmme e aca i accecmccncmanans

IF ((CH.LT.65).OR.(CH.GT.90 }) GOTO 30
K =0
22 IF (K.GE.10) GOTO 23
K=K+ 1
IDB(K) = CH
23 N = N 4+ 1
IF (N.LT.13) GOTO 24
CH = 64
GOTOo 25
24 CH = RECQRO(N}
25 IF (({CH.GE.64).AND.(CH.LE.30)).OR.
o ((CH.GE.48).AND.(CK.LE.57)))
* GOTO 22
PAD WITH BLANKS
26 IF (K.GE.10) GOTO 28
K=K+1
10B(K) = 64
GOT0 26
28 ENCODE(10,999,10) 1DB
28 DO 29 Ks1,5
ID(1) = ID(1) * 10 + IDB(K)
29 1D(2) = ID(2) * 10 + 1DB(K+5)
TYPE = 2
GOTO 90

READ A NUMBER--~---ceccmcmuamvmmccocancaanoe Seemececcmccccmeecnea,

30 1F ((CH.LT.48).OR.(CH.GT.57)) GOTO 40
32 IVAL = IVAL * 10 + (CH - 48)

N =N+

IF (N.EQ.13) GOTO 34

CH = RECORD(N)

IF ((CH.GE.48).AND.(CH.LE.57 }) GOTO 32
34 TYPE = 3

GOTO 90

157
158
159
160
161
162
163
164
165
166
167
168
169
170
17
172
173
174
175
176
177

[BN el el

17¢ ¢

179
180
181

182
183
184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199
200
201
202
203

OO 0O o0

READ A PERIOD (OR A LOGICAL EXPR)

40 IF (CH.NE.46
TYPE = 16
GOTO 90

) GOTO 50

READ A STAR-ee-ccoronacancanannns
50 IF (CH.NE.42
TYPE = 6
KIND = 4

N=N+1

IF (N.EQ.13) GOTO 90
CH = RECORD(N)
IF (CH.NE.42
N=N+1

TYPE = 7

KIND = 1

GOTO 90

} 60TO 60

) GOTO 90

READ ()

60 DO 62 K=1,8
62 IF (CH.EQ.SYMC(K)) GOTO 64

FALL THROUGH LOOP => SYMBOL ERROR
G0TO 120
64 TYPE = STYPE(K)
KIND = SKIND(K)
N =N@+1
GOTO 90
CORRECT EXIT POINT
90 RETURN
ERRORS -
ERROR 110, END OF LINE
110 EOL =1
COLUMN « 13
GOTO 90
ERROR 120, INVALID SEQUENCE OF SYMBOLS
120 GOTO 90
END

123

-4

-3

3 3 3 _J3 _)

-

-3]

-4

25
CLASSIFICATION OF THE PROGRAM'S FURMAL PARAMETERS

STRICTLY OUTPUT PARAMETERS

TYPE KIND ID EoL IVAL COLUMN

INPUT AND OUTPUT PARAMETERS
N

READ ONLY INPUT PARAMETERS
RECORD

THE METHOD OF DETERMINING MUTANT CORRECTNESS IS

BY COMPARISON TO THE PROGRAM

124U

R

26 veMillo et al

THE PIMS RUN TITLE
BEFORE THIS RUN THERE WERE 6 PIMS RUNS ON THIS PROGRAM
8838 MUTANTS WERE CREATED DURING THOSE RUNS

0 NEW MUTANTS WERE CREATED DURING THIS RUN

FOR A GRAND TOTAL OF 8838 MUTANTS

PP —
&

27
MUTANT'S STATUS BEFORE THIS RUN

A TOTAL OF 29 TEST CASES

A TOTAL OF 8838 MUTANTS

OF THESE 206 ARE STILL ALIVE

THERE ARE 104 PROGRAM STATEMENTS,
GIVING 84-98 MUTANTS PER STATEMENT

MUTANT PROFILE

ARRAY LIMIT DEFAULT INSERTION 6 0
SCALAR VARIABLE REPLACEMENT 539
SCALAR VAR FOR CONSTANT REPLMT 872 34
CONSTANT FOR SCALAR VAR REPLMT 1320 0
COMPARABLE ARRAY NAME REPLMT 210 0
CONST FOR ARRAY REF REPLACEMENT 360 0
SCALAR VAR FOR ARR REF REPLMT 336 0
ARRAY REF FOR CONST REPLACEMNT 2368 111
ARR REF FOR SCALAR VAR REPLMT 2016 12
ARITHMETIC OPERATOR REPLACEMNT 64 0
‘ RELATIONAL OPERATOR REPLACEMNT 105 15
LOGICAL CONNECTOR REPLACEMENT 6 0
GOTO LABEL REPLACEMENT 427 21
PATH ANALYSIS 104 0
CONTINUE STATEMENT INSERTION 2 2
RETURN STATEMENT INSERTION 103 9

THE PERCENTAGE OF ELIMINATED MUTANTS IS 97467

THE ELIMINATION PROFILE FOR ALL MUTANTS IS

TYPE OF ELIMINATION NUMBER OF ELIMINATED MUTANTS

TIMED-QUT 310

REFERENCED AN UNDEFINED VARIABLE 2034

SUBSCRIPT RANGE ERROR 1071

DIVIDED BY ZERO 0

ARITHMETIC OVERFLOW OR UNDERFLOW 63

WROTE A READ ONLY VARIABLE 58

EXECUTED A TRAP STATEMENT 104

PRODUCED WRONG ANSWERS 4992 '

126 - -

Denillo et al

28 -~
MUTANT STATUS AFTER THIS RUN
A TOTAL OF 35 TEST CASES
A TOTAL OF 8838 MUTANTS
OF THESE 190 ARE STILL ALIVE -
THERE ARE 104 PROGRAM STATEMENTS,
[GIVING 84-98 MUTANTS PER STATEMENT
-—
MUTANT PROFILE
ARRAY LIMIT DEFAULT INSERTION 6 0 -
SCALAR VARIABLE REPLACEMENT 539 2
SCALAR VAR FOR CONSTANT REPLMT 872 33
CONSTANT FOR SCALAR VAR REPLMT 1320 0 -
COMPARABLE ARRAY NAME REPLMT 210 0
CONST FOR ARRAY REF REPLACEMNT 360 0
SCALAR VAR FOR ARR REF REPLMT 336 0 ~
ARRAY REF FOR CONST REPLACEMNT 2368 M
ARR REF FOR SCALAR VAR REPLMT 2016 12
‘ARITHMETIC OPERATOR REPLACEMNT 64 0 — '
RELATIONAL OPERATOR REPLACEMNT 105 6
LOGICAL CONNECTOR REPLACEMENT 6 0 1
GOTO LABFL REPLACEMENT 427 15 — 2
PATH ANALYSIS 104 0
CONTINUE STATEMENT INSERTION 2 2
RETURN STATEMENT INSERTION 103 9 -
THE PERCENTAGE OF ELIMINATED MUTANTS IS 97.85
—
THE ELIMINATION PROFILE FOR ALL MUTANTS IS
TYPE OF ELIMINATION NUMBER OF ELIMINATED MUTANTS
TIMED-OUT 310 -
REFERENCED AN UNDEFINED VARIABLE 2035
SUBSCRIPT RANGE ERROR 1073
DIVIDED BY ZERO 0 -
ARITHMETIC OVERFLOW OR UNDERFLOW 63
WROTE A READ ONLY VARIABLE 58
EXECUTED A TRAP STATEMENT 104 -
PRODUCED WRONG ANSWERS 5005
-
—

29

Mutation Analysis
Timothy A, Budd, Richard J. Lipton,
Richard A. DeMillo, and Frederick G. Sayward

Research Report #155

April 1979

Supported in part by the Office of Naval Research under Grant
NO0014-75-C-0752, the Army Research Office under Grant

DAAG 29-78-G-0121, and the National Science Foundation under
Grant MCS-780-7291.

30

Mutation Analysis

Timothy A. Budd
Richard J. Lipton

Computer Science Division
University of California,
Berkeley, CA 94720

Richard A. DeMillo

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

Frederick G. Sayward

Computer Science Department
Yale University
New Haven, CT 08520

ABSTRACT

A New type of software test is introduced, called mutation
analysis. A method for applying mutation analysis is described,
and the results of several experiments to determine its
effectiveness are given. Finally it is shown how mutation analysis
can subsume or augment many of the more traditional program
testing techniques.

1. Introduction

Traditionally, program testing has been an ad hoec technique done
by all programmers: the programmer creates test data which he intui-
tively feels captures the salient features of the program, observes the
program in execution on the data, and if the program works on the
data (i.e., passes his test) he then concludes the program is correct.
Just as most programmers have tested programs in this manner, most
programmers have also deemed to be correct programs which were
indeed incorrect.

Modern testing techniques attempt to augment the programmer’s
intuition by providing gquantitative information on how well a program
is being tested by the given test data. Certainly the sheer number of
test cases is not sufficient to significantly increase our confidence in
the correct functioning of a program. If all the test cases exercise the
program in roughly the same way then nothing has been gained over a
smaller number of executions. The key idea of modern testing tech-
niques is to exercise the program under a variety of different cir-
cumnstances, thereby giving the programmer a greater confidence in
the correct functioning of the software component.

31

Several popular testing techniques use an idea called covering
measure. Examples of covering measures are: the number of state-
ments executed, number of branch outcomes taken, or the number of
paths traversed by the test cases. Test data with high coverage meas-
ures then exercise the program more throughly (according the the cn-
terion) then ones with low measure.

In this paper we will discuss a new type of testing method. pro-
gram mutation, which differs significantiy from those previously men-
tioned. Numerous theoretical and empirical studies [1,2,4,5] indicate
that data satisfying this test criterion often perform significantly
better in discovering errors and validating programs then data satisfy-
ing .other criterion. In many cases, the new test will actually subsume
the goals which have been earlier investigated.

2. Description of the Method

Mutation analysis starts with one important assumption which is
surprisingly not often recognized:

ezperienced programmers write programs which are either

correct or are almost correct. J
{(one manifestation of this is the common programmers joke that the '
code is always "90%" finished.)

The mutation method can be explained as follows: Given a program
P which performs correctly on some test data T, subject the program
to a series of mutant operators, thereby producing mutant programs
which differ from P in very simple ways. For example, if

I=1+1

is a statement in P, then

1-1
I+2
J+1

—
Bonon

are all simple changes which lead to three mutants of P.

The mutant programs are then executed on T. If each mutant pro-
gram produces an answer which differs from the original on at least
one test case, then the mutation test for P is passed. If, as is more
likely, some of the mutants produce the same answers as the original
program on all the test cases submitted, then either

1) the rmutant programs are equivalent to P

2) the test data T is inadequate for passing the mutation test and
must be augmented.

In this case the original program must then be examined with the
list of live mutants in order to derive test data on which some or all of
the remaining mutants will fail. The degree of testing is then measured
in terms of the number (or percentage) of mutants which have been
eliminated by the test data.

As an intuitive aid ane can think of the mutation system as pro-
posing alternatives to the given program and asking the programmer
for reasons, in the form of test cases, as to why the alteratives are not
just as effective as the original program in solving the given task. This
then insures that the program is correct relative to small perturba-
tions in its structure.

32

At first glance, however, it would appear that a program and test
data which passed this test might still contain some complex errors
which are not explicitly mutations of P. To this end there is a coupling
effect which states:

test data on which all simple mutants fail is so sensitive to
changes in the program that it is highly likely that all complez
mutants must also fail

By complex mutant we mean the transformation which takes the
original incorrect program into the presumed correct version. Since
therefore any such correct program will be differentiated from P, if P
truly executed correctly on T there can be no complex mutants, hence
P is correct.

Several experiments substantiating the coupling effect have been
conducted| 1,4]. Some of these will be described in the following sec-
tions. The DAVE group [15,16] at the university of Colorado have also
observed that the ability to detect simple errors is often useful in
insuring against quite complex errors. The types of simple errors con-
sidered in mutation analysis is, however, much more extensive then
that considered by DAVE.

Constant Replacement {+ 1)

Scalar for Constant Replacement

Source Constant Replacement

Array Reference for Constant Replacement
Scalar Variable Replacement

Constant for Scalar Replacement

Array Reference for Scalar Replacement
Comparable Array Name Replacement
Constant for Array Reference Replacement
Scalar for Array Reference Replacement
Array Reference for Array Reference Replacement
Arithmetic Operator Replacement
Relational Operalor Replacement

Logical Connector Replacement

Unary Operator Removal

Unary Operator Replacement

Unary Operator Insertion

Statement Analysis

Statement Deletion

Return Statement Replacement

Goto Statement Replacement

Do Statement Replacement

figure 1

3. The System

A systemn has been constructed which performs mutation analysis
on sets of subroutines written in ANS] FORTRAN. The system is interac-
tive and iterative, so that the user presents the system with a program
and an initia! test set. After constructing and executing each mutant
serially the system responds with summaries and reports on the
number and type of mutants which remain (i.e. which produced the
same resvlt as the original program.) The user can then augment the

F—'

33

test data set and reexecute the remaining mutants on the new test
cases. This process can continue untl the desired level of testing is
attained.

The mutant operators used in the current system are shown in
figure 1. The names are fairly self explanatory: for example, the three
mutations given in section 2 are produced by anthmetic operator
replacement, constant replacement, and scalar variable replacement,
respectively.

Various versions of the mutation: system have been in operation
for about two years [2], and in that period numerous experiments have
been qonducted investigating the coupling eflect and the utility of the
too} for program development and testing [5]. The next section details
some experiments performed which substantiate the coupling eflect.

4. The Coupling Effect

We have already reported on an experiment [4] involving Hoare's
FIND program [P] that supplied empirical evidence for the coupling
eflect. The experiment went as follows:

‘(1) We derived a test data set T of 49 cases to pass the mutation test.

(The large size of T was due to our inexperience.)

(2) For efliciency reasons, we reduced T heuristically to a test data
set T' consisting of seven cases on which FIND also passed the
mutant test.

(3) Random k-order mutants of FIND, k>1, were generateu. (A k-order
mutant comes from k applications of mutant operators on the
program P.)

(4) The k-order mutants of FIND were then executed on T'.

The coupling effect says that the non-equivalent k-order mutants of
FIND will fail on T'. Note that step 2 biases the experiment against the
coupling effect since it removes the mian-machine orientation of our
approach to testing. We would have been quite happy to find a coun-
terexample to the coupling eflect for the mutation systemn, since it
would have allowed us to improve the set of mutant operators. The
results of the experiment, though, gave evidence that we had chosen a
well coupled set of mutant operators for the pilot system:

KX Number of k- order mutants Number successfulon T
2 21100 19
>2 1500 0

The 19 successful mutants were shown to be equivalent to FIND. We
concentrated on the k=2 case since, intuitively, the more one mutates
FIND the more likely one is to get a program that violates the com-
petent programmer assumption.

The major criticism of the experiment concerns step 3. Since the
first-order mutants that compose the k-order mutants are indepen-
dently drawn, the resulting k-order mutant is likely to be very unstable
and subject to quick failure, in contrast to the more desirable case
where the k-order mutant contains subtly related changes that
correspond to the subtle errors programmers find so hard to detect.

The current experiment on the coupling effect ornits step 2 above
and make the following important change to step 3:

>-

34

(3) Randomly generate correlated k-order mutants of the program:. By
correlated we mean that each of the k applications of mutant
operators will in some way be related to all of the olthers - they
could for instance eflect the same statement of P, or the samec
variable name, or the same statement label, or the same constant.

Once again, if P passes the mutant test with test data T, the coupling
eflect says that the correlated k-order mutants of P will fail on T.

For this experirrent three programs are being used: FIND, STKSIM
and TRIANG. STKSIM is a program that maintains a stack and allows
the standard operations of clear, push, pop. and top. TRIANG is a pro
. gram that, given the lengths of the three legs of a triangle, categorizes
the input as not representing a triangle or as representing a scalene,
isoceles or equilateral triangle [3]. The following is a summary of the
results of the experiment so far

PROGRAM K=2 K=3 K=4
number successes number successes number successes
FIND 3000 2 3000 0 3000 0
STKSIM 3000 3 3000 0 3000 0
TRIANG 3000 1 3000 bl 3000 0

In all cases, the successfu. correlated k-order mutants have been
shown to be equivalent to the original program.

We have yet to find a non-trivial counterexample to the coupling
effect for our FORTRAN systems. The one successful 3-order mutant of
TRIANG deserves closer examination; indeed, we initially felt that it was
a non-equivalent mutant. The mutant is

e T T

CominrIn e ey A e

rype=arm—

’
'
:
s
f
i

35

SUBROUTINE TRIANG(1,J.K,MATCH)

INTEGER 1,J,K,MATCH

MATCH IS OUTPUT FROM THE ROUTINE
IF MATCH = 1 THE TRIANGLE IS SCALENE
IF MATCH = 2 THE TRIANGLE IS ISOSCELES
IF MATCH = 3 THE TRIANGLE IS EQUILATERAL
IF MATCE = 4 IT IS NOT A TRIANGLE

oo NoNeNoNQNQ! @]

IF (1.LE. 0.0R.J .LE. 0 .OR. K .LE. 0) GOTO 500
MATCH =0
IF (I.NE. J) GOTO 10
- MATCH = MATCH + 1
10 IF (I1.NE. K) GOTO 20
MATCH = MATCH + 2

MO :change statement to MATCH = MATCH + K

20 IF (J .NE. K) GOTO 30
MATCH = MATCH + 3
30 IF (MATCH .NE. 0) GOTO 100
IF (I+J .LE. K) GOTO 500
- IF (J+K .LE. 1) GOTO 500
IF (1+K .LE. J) GOTO 500 j
MATCH = 1 ,
- RETURN {
100 IF (MATCH .NE. 1) GOTO 200
IF (I+] .LE. X) GOTQ 500 X
110 MATCH = 2
- RETURN
200 IF (MATCH .NE. 2) GOTO 300 J

- MO, change statement to IF (MATCH .NE. K)

IF (1+K .LE. J) GOTO 500
GOTO 110

300 IF (MATCH .NE. 3) GOTO 400 .
IF (J+K .LE. I) GOTO 500 3

MO3: change statement to IF (J+J .LE. 1)

GOTO 110
- 400 MATCH =3
RETURN
500 MATCH =4
RETURN
END

Note that the correlation is with respect to the variable K. The mutant
- operators MO, and MO, produce incorrect mutants while MOg produces
a mutant equivalent to TRIANG. Yet the 3-order correlated mutant is i
equivalent to TRIANG. 1

- This makes a beautiful illustration of the part of the programming

36

process that program mutation is trying to exploit. Using the constant
2 in the first two mutated statements is an arbitrary but coupled dec:-
sion. Indeed, you can replace both instances of 2 by any positive con-
stant (or any variable whose value doesn't change between the execu-
tion of the two statements) and you get an equivalent program --
replace only one instance and you get an incorrect program. In a
sense, the constant 2 in those statements is what would be called in the
terminology of formal logic a "bound variable.’

5. An Analysis of How Mutation Works

In this section we will go through a detailed analysis concerning
how and why mutation analysis car he expected to uncover errors
under a wide variety of situations.

5.1. Trivial Errors

1f one of the mutants considered is indeed the correct program
then of course the error wili be discovered wnen an at'empt (s made to
eliminate that particular mutant. Alternatively if the errors in the ori-
ginal program act in a reasonably independent manner and each error
1s individually captured by a singie mutation then the errors will
almost certainly be detected.

Given the vast folklore about !arge systems failing for extremely
trivial reasons, the ability to detect such simple errors in indeed a
good starting place. Fowever many errors do not correspond exactly to
the generated mutations, and multiple errors may interact in subtle
fashions. This being the case we must demonstrate that mutation
analysis possess many more powerful capabilities.

5.2. Statement Analysis

Many programming errors manifest themselves by sections of
code being "dead”, that is unexecutable, when they shouldn't be. Also
many bugs are of such a serious nature Lhat any data which executex
the particular statement in error will cause the program to give
incorrect results. These errors may persist for weeks or even years if
the error occurs in a rarely executed section of code.

Accordingly a reasonable first goal for a set of test cases is that
every statement in the program is to be executed at least once [12].

Various authors have presented methods to achieve this goal. Usu-
ally these methods involve the insertion of counters into the straight
line segments of code. When all counters register non-zero values every
statement in the program has been executed al least once.

In Mutation analysis we take a different approach to the same
objective. If a statement is never executed then obviously any change
we produce in it will nol cause the altered program to produce test
answers differing from the original. However as a means of directing
the programmers attention to these errorsin a more direct and unam-
biguous fashion a simpler approach is taken. Among the mutations
generated are ones which replace the first statement of every basic
block in turn with a call on a special routine which aborts whenever it
is executed. Obviously these mutations are extremely unstable, since
any data which executes Lthe replaced statement will cause the mutant
to produce an incorrect resuit, and hence to be eliminated. The

37

reverse, however, is also true. That is, if any of these mutants survive,
then the statement which the mutation altered bas never been exe-
cuted. Hence an accounting of the survival of this class of mutations
gives important information about which sections of code have and
have not been executed.

Mutation Analysis goes even one step further. Some authors have
assumed that not executing a statement is equivalent to deleting it [8].
This is certainly not true. A statement can be execited but still not
serve any useful purpose. In order to investigate this another class of
mutants generated replaces every statement with a CONTINUE state-
ment (a convenient FORTRAN NO-OP.) The survival or elimination of
these mutations gives more information then merely whether the
statement is executed or not, it indicates whether or not the state-
ment is performing anything useful. If a statement can be replaced by
a NO-OP with no effect then at best it indicates a waste of machine time
and at worst it is probably indicative of much more serious errors.

Merely being able to execute every statement in the program is no
guarantee that the code is correct {7,10]. Problems such as coincidan-

‘tal correctness or predicate errors may pass undetected even if the

statement in error is executed repeatedly. In subsequent sections we
will show how mutation analysis deals with these problems.

5.3. Branch Analysis

Some authors have pointed out [12] that an improvement over
statement analysis can be achieved by insuring that every flowchart
branch is executed at least once. For example the following program
segment

A

IF (expression)
THEN B;

G

has the flowchart shown in figure 2.

figure 2

All three statements A,B and C can be executed by a single test
case. It is not true, however, that in this case all branches have been
executed. For example in this case the empty else clause branch (a)
has been ignored.

38

We can state the requirement that every branch be taken in an
equivalent manner by requiring that every predicate expression must
evaluate both TRUE and FALSE. It is this formalization which is used 1n
mutation analysis.

Among the mutants generated are ones which replace each reia-
tional expression and each logical expression by the logical constants
TRUE and FALSE. Of course, like the statement analysis mutation-
these are very unstable and easily eliminated by almost any data. But
if they survive they point directly and unambiguously to a weakness in
the test data which might shield a potential error.

By mutating each relation or logical expression independently we
actually achtieve a stronger goal than that achieved by usual branch
analysis.

Consider the compound predicate

1IF (A s BAND C £ D) THEN

The usual branch analysis method would only require two test cases to
test this predicate. If the test points were (A<B,C<D) and (A<B.C>D)
this would have the effect of only testing the second clause, and not the
first. This is because branch analysis fails to take into account the
"hidden paths" [4], implicit in compound predicates. (see figure 3).

T

e

FALSE FALSE TRwE

ficure 3

In testing all the "hidden paths” mutation analysis would require
at least three points to test this predicate,. The three points
correspond to the branches (A> B,C> D), (AsBC>D) and (AS B C<
D).

As an example of this consider the prngram shown in figure 4,
adapted from [8]. The program, which was alse studied in {17], is
intended to derive the number of days between two given days in a
given year. The If statement which determines whether a year is a leap
year or not is, however, incorrect in this version. Notice that if a year
is divisible by 400 (year REM 400 = 0) il is necessarily divisible by 100
{(year REM 100 = 0). Hence the logical expression formed by the

39

conjunction of these two terms is equivalent to just the second term
alone. Alternatively, the expression year REM 100 = O can be replaced
by the logical constant TRUE and the resulting mutant will be
equivalent to the original. Since this is obviously not what the program-
mer had in mind the error is discovered.

PROCEDURE calendar (INTEGER VALUE day1, monthl, day2, month2, year);
BEGIN
INTEGER days;
IF month2 = month1 THEN days = day2 - day!
- COMMENT if the dates are in the same month, we can compute
the number of days between them immediately;
.ELSE
BEGIN
INTEGER ARRAY daysin (1 .. 12);
'aysin(1) := 31; daysin(3) := 31; daysin(4) := 30;
d..ysin(5) := 31; daysin{8) := 30; daysin(7) := 31;
- daysin(8) := 31; daysin(9) := 30; daysin(10):= 31;
daysin(11):= 30; daysin{12):= 31;
. IF ((year REM 4) = 0) OR
- ({year REM 100) = 0 AND (year REM 400) = 0)
THEN daysin(2) := 28
ELSE daysin{2) := 29;
COMMENT set daysin(2) according to whether or not year
is a leap year ;
days := day2 + (daysin(month1) - day1);
COMMENT this gives (the correct number of days - days
in complete intervening months);
FOR i := month! + 1 UNTIL month2 -1 DO
days := daysin(i) + days;
- COMMENT add in the days in complete intervening months;
END;
WRITE(days)
END;
figure 4

5.4. DATA FLOW ANALYSIS

During execution a program may access a variable in one of three
- ways. A variable is defined if the result of a statement is to assign a
value to the variable. A variable is referenced if the statement required
the value of the variable to be accessed. Finally a variable is undefined
if the semantics of the language do not explicitly give any other value
to the variable. Examples of the latter are the values of local variables !
on invocation or procedure return, or DO loop indices in FORTRAN on
normal do loop termination.

- Fosdick and Osterweil [16] have defined three types of data flow

anomalies which are often indicative of program errors. These
anomalies are consecutive accesses to a variable of the forms:

g =

- 1) undefined and then referenced

40

2) defined and then undefined
3) defined and then defined again

The first is almost always indicative of an error, even if it occurs
only on a single path between the place where the variable becomes
undefined and the reference place. The second and third, however, may
not be indications of errors unless they occur on every path between
the two statements.

Although the first type of anomaly is not attacked by mutations
per se it is attacked by the mutation systemn, which is a large interpre-
tive system for automatically generating and testing mutants. When-
ever the value of a variable becomes undefined it is set to a unique con-
stant undefined. Before every variable reference » check ic performed
to see if the variable has this value. If the variable does the error is
reporied to the user, who can take corrective action.

The second and third types of anomalies are attacked more
directiy. If a variable is defined and not used then usually the state-
ment can be eliminated with no obvious change (by the CONTINUE
insertion mutations described in the last section.) This may not be the
case if, for example, in the course of defining the variable a function
with side effects is invoked. In this case the definition can likely be
mutated in any number of different ways which, while preserving the
side effect, obviously result in the variable being given different values.
An attempt to remove these mutations will almost certainly result in
the anomaly being discovered.

5.5. Predicate Testing

Howden [10] has defined two broad categories of program errors
under the names domain error and computation errors. The notions
are not precise and it is difficult with many errors to decide which
category they belong in. Informally, however, a domain error occurs
when a specific input follows the wroug path due to an error in a con-
trol statement. A computation error occurs when an input follows the
correct path but because of an error in computation statements the
wrong function is computed for one or more of the output variables.

After Howden’'s study was published, some researchers examined
the question of whether certain testing methodologies might reliably
uncover errors in these or other classification schemes. One method
proposed specifically directed to domain errors was the domain stra-
tegy of White, Cohen and Chandrasekaran [19].

The reader is referred to the references for a more complete
presentation of the technical restrictions and applications of their
method, but we can here give an informal description of how it works.

If a program contains N input variables (including parameters,
array elements and 1/0 variables) then a predicate can be described
by a surface in the N dimensional input space. Often the predicate i
linear, in which case the surface is an N dimensional hyperplane. Let us
consider a simple two dimensional case where we have input variables |
and J and the predicate in question is

I+2J5~3

The Domain strategy would tell us that in order to test his predi-
cate we need three test points, two on the line 14+2J=-3 and nne a smal

42

distence £ from the line. (see figure 5.

Assuming a correct outcome from ‘hese tests what have we
discovered? We know the line of the predicate must cut the sections of
the triangle AB and BC. Since € is quite small the chances of the predi-
cate being one of these alternatives is also small. Hence, although we
don't have complete confidence that the predicate is correct, we do
have a much larger degree of confidence then we could otherwise have
attained.

To see how mutation analysis deals with the same problem we first
observe that it really is not necessary to have both A and C be on the
predicate line. If A is on the line and B and C are on opposite sides of
the line the same result follows. We now described how mutations
cause these three points to be generated.

As an intuitive aid one can think of mutation analysis as pesing
certain alternatives to the predicate in question, and requiring the tes-
ter to supply reasons, in the form of test data, why the alternative
predicated would not be used just as well in place of the original.
- These alternatives are constructed in various ways.

A number of the alternatives are generated by changing relational
operators. Changing an inequality operator to a strict inequality
operator, or vice versa, generates a mutant which can only be elim-
inated by a test point which exactly satisfies the predicate. For exam-
ple changing i+2J<-3 to 14+2J<-3 requires the tester to exhibit a point
for which [+2J=-3, hence which satisfies the first predicate but not the
second.

A second class of alternatives involves the introduction of the
unary operator "twiddle” (denoted ++ or --). Twiddle is an example of a
non FORTRAN language construction used to facilitate the mutation
process. For an integer expression a, ++a has the meaning a+1. For
real expressions ++a means a + 1/100. --a has a similar meaning
involving subtractions.

Graphically, the effect of introducing twiddle is to move the pro-
posed constraint a small distance parallel to the original line {see
figure 6). In order to eliminate thrse mutants a data point must be
found which satisfies one constraint but not the other, hence is very
close to the original constraint line.

Finally a third class of alternatives are constructed by changing
each data reference into all other syntactically correct data refer-
ences, and each operator into all other syntactically correct operators.
The effects of these are related to the phenomenon of spoilers, which
are described in section 5.8.

The total eflect caused by so many alternatives is to increase thr
number of data points necessary for their elimination, hence by a pro-
cess similar to that of Cohen et al[19] to increase our confidence that
the predicate is indeed correct.

In order to more graphically illustrate the construction of these
alternatives and demonstrate their utility we will go through a small
example. The program in figure 7 was taken from [19]. No
specifications were given, but the program can be compared against a
presumably 'correct” version. It was chosen here because it only
involves two input variables, hence the alternatives can be easily illus-
trated in a graphical manrner.

43

’ “2an\ \i-

44

READ 1.J;

IFlIsJ+1
THENK=1+/J-1:
ELSEK =2+ 1;

IFKz21+1
THENL=T1+ 1;
EISEL=J-1;
IFI=5
THEN M = 2*L + K;
ELSEM =1 + 2%K -1,

WRITE M;
figure 7

IF(Is1+0)
F(IsT+2)
JF(Isd+0)
JF(1s3+0)

JFR(12 1+ 5)
LRI+ 1)
JAR(++1 2T+ 1)
IF(-1sd+ 1)
JF(I s -7+ 1)
P s 447+ 1)
CIF(S -0 + 1)
P13+ 1)
PRI s 40+ 1))
IR0 s (3 + 1))
JIF(NOT. Is J + 1)
IR ST-1)
. IF(I s MOD({J, 1))
JIF(1 S 1/1)
CIF(1 < J*1)
LIF(Q £ J%%1)
LR £ 0)
JIF(1 s 1)
JF(I<I+ 1)
JIF(=3+ 1)
IR T T+ 1)
JJF(I >0+ 1)
P27+ 1)
figure 8

45

As you can see the program has three predicates: [8J+1, K2]+1
and 1=5. We will illustrate only the effects of changing the first.

Figure 8 gives a listing of all the alternatives tried for the predi-
cate | £ J+1. Some of the choices are redundant, for example ++] =
J+1 and 1 £ --J + 1. This is because the mutations are generated in an
entirely mechanical way. It is our feeling that the processing time lost
because of redundant mutations is much less then the time which
would be required to eliminate them by preprocessing the alternatives.

The alternative predicates so introduced are illustrated in figure
9. The original predicate is the heavy line running from the lower left
to the upper right.

In the paper from which the example program was taken the
authors hypothesize that the program contains the following four
errors.

1) The predicate K 2 I+1 should be K 2 1+2.
2) The predicate I=5 should be 1=5-J.

3) The statement L=J-1 should be L=]-2.

4) The statement K=1+J-1 should read

THEN IF (2*) < -5*1 -40)
THEN K = 3;
ELSE K=1+J-1;

We leave it as an exercise to verify that the attempt to eliminate
the alternative K 2 [+2 must necessarily end with the discovery of the
first error. Note that his is not trivially the case since errors 1 and 4
can interact in a subtle fashion. In later sections we will show how the
remaining three errors are dealt with.

5.6. Domain Pushing

One very important mutation which was mentioned in the last sec-
tion is the introduction of unary operators into the program. These
anary operators are introduced wherever they are syntactically
correct according to the rules of FORTRAN expression construction. In
addition to the operators ++ and -- discussed in the last section, the
remaining unary operators are - (arithmetic negation) and a class of
non FORTRAN operators ! (absolute value), -! (negative absolute value)
and 2! {zero value). It is the last three which will be of most concern to
us in this section.

Consider the statement

A=B+C
in order to eliminate Lthe mutants
A=B+C
A=B +1IC
A=1(B+C)

we must generate a set of test points where B is negative (so that B+C
will differ from !B+C), C is negative and the sum B+C is negative'.

1) Notice that {f it is impossible for B to be negative then this is an equivalent mutation, that

is the aitered program is equivalent to the original In this case the proliferation of these al-

ternative can either be a nuisance or an important documentation aid, depending upon the

47

Similarly negative absolute value insertion forces the test data to be
positive. We use the term data pushing for this process, meaning the
mutations push the tester inte producing test cases where the domains
satisfy the given requirements.

Zero Value is an operator defined such that Z! exp IS exp if the
value is non-zero, otherwise if the expression evaluates to zero the
value is an arbitrarily chosen large positive constant. Hence the elimi-
nation of this mutant requires a test set where the expression has the
value zero.

Multiply this process by every position where an absolute value
sign can be inserted and you can see a scattering effect, where the tes-
ter i1s forced to include test cases acting in various conditions in
numerous problem domains. Very often in the presence of an error this
scattering eflect will cause a test case to be generated which will
demonstrate the error.

Consider again the example studied above. Figure 10 gives a list of
mutants and the accompanying graph shows the domains they push
into. As you can see even this simple example generates an extremely
large number of requirements.

LIF(M>J+1)

2IF(I>U+1)

IF(I> Y+ 1))

(r+1J) -1

d+4) -1

1+ 3 -1

(I +J)-1)

2°*1+1

'(2 s+ 1

=1 2*]+ 1)

. }F ({K<i+1)

JJF (K <+ 1)

AP (K <1+ 1))

.L=1 + 1

L=y1+1)

=1 -1

L=1(J-1)

JF QLT 5

. M=2*1L+K

. M=12*L+X

.M=2*L+ 1K

2=+ L+ K)

1L+2*K-1

L+2*!K-1

L+12*K-1
(
(

O DDA
7<><><><><7<

= e bt b bt b b bt s

[IRACIE SN
-0

NN
N® Ok W
Txxxzxx

tnnnnn

N
[95)

{L+2*K)-1
{L+2°*°K-1)

NN
N

figure 10

Recall again that one of the errors this program was presumed to
contain was that the statement L=J-1 should have read L=I]-2. One
effect of this error is that any test point in the area bounded by 1 = J+1

- te-ten polnt of view The topic of equivalent mutants will be taken up in sectiop 5.10.

48

kel

49

and I = 1 will be computed incorrectly. But it is precisely this area that
mutants 8, 9 and 10 push us into. This means that this error could not
have gone undiscovered using mutation analysis.

This process of pushing the programmer into producing data satis-
fying some criterion is aiso often accoinplished by other mutations.
Consider the program in figure 12, which is based on a program by
Naur[14], and has been previously studied in the literature [7].

alarm := FALSE
bufpos := 0;
fill := O;
REPEAT
i character{cw);
] cw=BLorcw=NL
THEN
IF fill + bufpos £ maxpos
THEN BEGIN
outcharacter{BL);
END
ELSE BEGIN
outcharacter(NL);
fill := 0 end.
FOR k := 1 STEP 1 UNTIL bufpos DO
outcharacter(buffer{k]);
fill := fill + bufpos;
bufpos := 0 END
ELSE
IF bufpos = maxpos
THEN alarm := TRUE;
ELSE BEGIN
bufpos := bufpos + 1;
bufler[bufpos] := cw END
UNTIL alarm OR cw = ET

figure 12

Consider the mutant which replaces the first statement FILL:=0
with the statement FILL:=1. The eflect of this mutation is to force a
test case to be defined in which the first word is less then MAXPOS
characters long. This test case then detects one of the five errors in
the program [7]. The surprising thing is that the eflect of this muta-
tion seems to be totally unrelated to the statement in which the muta-
tion takes place.

5.7. Special Values Testing

Another form of testing which has been introduced by Howden[11],
is called special values testing. Special values testing is defined in
terms of a number of "rules”, for example

1. Every subexpression should be testing on at least one test case
which forces the expression to be zero.

2. Every variable and subexpression should take on a distinct set of
values in the test cases.

That the first rule is enforced by the zero values mutations has
already been discussed in the last section on domain pushing.

50

That the second rule is important is undeniable. If two variables
are always given the same value then they are not acting as "free vari-
ables” and a reference to one can be universally replaced with a refer-
ence to the second. In fact this 18 exactly what happens in this case,
and the existence of these mutations enforces the goals or the distinct
values rule.

A slightly more general method of enforcing this goal can be con-
structed as follows: A special array exactly as large as the number of
subexpressions computed in the program is kept, with two additiona!
tag bits for each entry in this array. Initially all tag bits are off, indicat-
ing the array is uninitialized. As each subexpression is encountered in
. turn the value at that point is recorded in the array and the first tag
bit is set. Subsequently when the subexpression is again encountered if
the second tag bit is still off the current value of the expression is com-
pared against the recorded value. If they differ the second tag bit is
set. Otherwise no change is made.

In this fashion by counting those expressions in which the second
tag bit is OFF and the first ON one can infer which subexpression have
not altered their value over the test case executions, and hence one
can construct mutations to reveal this. This method is similar to one
used in a compiler system by Hamlet[8].

5.8. Coincidental Correctness

We say the result of evaluating a given test point is coincidentally
correct if the result matches the intended value in spite of the fact
that the function used to compute the value is incorrect. For example
if all our test data results in the variable I having the values 2 or 9,
then the computation J = [I*2 could be coincidentally correct if wha'
was intended was J = [**2.

The problem of coincidental correctness is really central to pro-
gram testing. Every programmer who tests an incorrect program, and
deems it to be correct, has really encountered an incidence of coun-
cidental correctness Yet with the exception of mutation analys:s no
testing methodology in the authors knowledge deals directly with this
problem. Some researches even go so far as to state that the probler:s
of coincidental correctness are intractable {19].

In mutation analysis coincidental correctness is attacked by the
use of spotlers. Spoilers implicitly remove from consideration data
points for which the results could obviously be coincidentally correct,
in a sense "spoiling” those data points. For example by explicitly mak-
ing the mutation J=1*2 => J=1**2 we spoil those test cases for which | =
0 or I = 2, and require that at !east one test case have an alternative
value.

Using again the example program introduced above, figures 13
and 14 show the spoilers and their effects associated with the state-
ment M=L+2*K-1. Notice a single spoiler may be associated with up .-
four different lines depending upon the outcomes of the first two pred:-
cates in the program. Pictorially, the efflects of spuiiers are that within
each data domain for each line there must be at least one test case
which does not lie on the given line. In broad terms the effects of th's
are to require a large number of data points for which the possibilities
of coincidental correctness are very slight.

aaaa
51
I.M=(L+ 1*°K)-1
2 M={(L+3*)-1
A M=(1+2%K)-1
4. M=(J+2°%) -1
5 M=(K+2%K)-1
8. M=(L+2*)-1
7. M=(L+2%)-1
8. M=(L+2+L)-1
9. M=(L+1I°K)-1
10. M= (L +3*K) -1
11.M=(L+K*K)- 1
12.M=(L+ L*K) - 1
13. M= (L +2%*K) -1
14. M=(L+2%K) -1
15, M= (L +2*K) -K
iB.M=(L+2*K)-L
17.M=(1+2%K)-1
1B.M=(2+2%K) -1
19. M= (54 2*K) - 1
20. M = (L + 2*1)-1
21. M= (L +2*2)-1
22. M = (L + 2%5) -1
R23. M=(L+5*K)-1
24. M=(-L+2%)-1
25. M=(L+-2%) -1
26. M = (L+2*-K)-1
27 M=(L+2*-K)-1
28.M=-(L+2%K)-1
29. M =-((L + 2*K)- 1)
30.M=(L+2+K)-1
3. M=(L+2-K)-1
32. M = (L + MOD(2,K)) - 1
3B3.M=(L+2/K)-1
34. M=(L+2%K)-1
35. M=(L+2)-1
36.M=(L+K)-1
37. M=L-2%K -1
38. M = (NOD(L.2*K)) - 1
39. M =L/2*K - {
40. M = L*2*K - 1
41. M = L*#(2*K) - 1
42.M=L-1
43. M = (2*K) -
44.M=L+2‘K+1
45. M = MOD(L + 2*K.1)
46. M = (L + 2*K) /1
47. M = (L + 2°K)*1
48. M = (L + 2=K)**1
49. M = (L + 2*K)
50.M =1
figure 13

>

Y

for R1 = 0 by 1 to N begin
RO <- a(R1)
for R2 = R1+1 by 1 to N begin
if a(R2) > RO then begin
RO <- a{R2)
R3 <- R2
end
end
R2 <- a(R1}
a(R1) <- RO
a(R3) <- R2
end

figure 15

Often the fact that two expressions are coincidentally the same
over the input data is an indication of program error or poor testing.
For example the sorting program shown in figure 15, taken from a
paper by Wirth[20], willi perform correctly for a large number of input
values. If, however, the statements following the IF statement are
never executed for some loop iteration it is possible for R3 to be
incorrectly set, and an incorrectly sorted array may be produced.

By constructing the mutant which replaces the statement a(R1) «
RO with a(R1) « a(R3) we point out that there are two ways of defining
RO, only one of which is used in the test data. Therefore the error is
uncovered.

5.9. Missing Path Errors

As identified by Howden [10], we can say a program contains a
missing path error if a predicate is required which does neot appear in
the program under test, causing some data to computed by the same
function when really different functions are called for. These missing
predicates can really be the result of two different problems, however,
so we might consider the following definitions.

A program contains a specificational missing path error if two
cases which are treated differently in the specifications are incorrectly
combined into a single function in the program. On the other hand a
program contains a computational missing path error if within the
domain of a single specification a path is missing which is required only
because of the nature of the algorithm or data involved.

As example of the first type of path error is error number four
from the example in section 5.5. Although this error might result {from
a specification, there is nothing in the code itself which would give any
hint that the data in the range 2*%*j<-5*-40 is to be handled any
differently then given in the test program.

For an example of the second class of error consider the subrou-
tine shown in figure 16, adapted from [13]. The inputs are a sorted
table of numbers and an element which may or may not be in the table.
The only specification 1s that upon return X(LOW) 5 A £ X(EIGH), and
EIGH <= LOW + 1. The problem arizes if the program is presented with
a table of only one entry, in which case the program loops forever.

Nothing in the specifications state that a table with only one entry
is to behave any differently from a table with multiple entries, it is only

ISR

54

SUBROUTINE BIN(X,N,A,LOW,HIGH)
INTEGER X(N).N,A,LOW FIGH
INTEGER MID

LOW =1

HIGH =N
8 IF(HIGH - LOW - 1) 7,12,7
12 STOP

7 MID = (LOW + KIGH) /2
IF (A - X(MID)) 8,10,10
8 HIGH = MID
GOTO 6
10 LOW = MID
GOTC 8
FND

figure 16

because of the algorithm used that this must be treated as a special
case.

Problems of the second type are usually caused by the necessity
to treat certain values, for example negative numbers, differently from
others. This being the case the process of data pushing and spoiling
described in sections 5.6 and 5.8 will often lead to the detection of
these errors. So it is in this case where an attempt to remove either of
the following mutants will cause us to generate a test case with a single
element. '

IF (KIGH - LOW - 1) 12,12,7
MID = (LOW + HIGH) - 2

Since mutation analysis, like most other testing methodologies,
deals only with the program under test (as opposed to dealing with the
specifications of those programs), the problems of detecting
specificational missing path errors are much more diflicult. Since
mutation analysis causes the tester to generate a number of data
points which exercise the program in a muiltiplicity of ways our
chances of stumbling into the area where the program misbehaves are
high, but are by no means certain.

So it is with the missing path error from the example in section
5.5. It is possible to generate test data which passes our test criterion
but which fails to detect the missing path error. We view this not as a
failure of mutation analysis, however, but as a fundamental limitation
in the testing process. In the authore view the only way that these sorts
of problemns have a hope of being eliminated is to start with a core of
test cases generated from the specifications, independent of the pro-
gram imptementation. This core of test cases can then be augmented
to achieve goals such as those presented by mutation analysis. Some
methods of generating test data from specifications have been dis-
cussed elsewhere [7,17].

5.10. Equivalent Mutants

As was mentioned in a footnote in section 5.8, if a variable is con-
strained to being strictly positive {which is often the case) then insert-
ing an abso'ule value sign before each reference Lo that variable will

et

SBde s il e s

-~

St A

r

B ot

55

generate an alternative program which is in all respects functionally
identice! to the original. A mutation which produces such an equivalent.
program is called an equivalent mutant.

Almost any of the mutation types used in the current system can,
under the right circumstances, produce an equivalent mutant. It has
been observed empirically that with the exception of those mutations
produced by inserting absolute value signs (which often vary widely)
the number of equivalent mutants produced is usually 2-5% of the total
number of mutants.

In the current system no attempt is made to remove equivalent
mutants algorithmically, even though in a large number of cases it

.would be possible to do so. The reason for this decision is because even

though equivalent mutants serve no purpose from the point of view of
test data analysis, they serve a very important role in error detection.

No mutant is ever declared equivalent except by an explicit com-
mand from the tester. In order to determine equivalence the tester
must often spend a considerable amount of time examining the code,
and in the process obtain an intimate knowledge of the algorithm ana
how it works.

Often a number of mutants can be labeled equivalent on the
strength of a single insight. Example are recognizing that a variable is
by necessity positive during part of the program, or recognizing that in
a binary search algorithm it doesn’t matter how you choose the middle
element as long as it is between the lower and upper bounds.

The fact is, however, that in attempting to remove equivalent
mutants we are forcing the programmer into a very careful review of
the program. How many errors are discovered in this manner is more
of a question in psychology then in program testing, but our experi-
ence has been that often such a careful review will uncover very subtle
errors which would be difficult to discover by other means.

As an example of this process, we must admit that no mutation in
the current system would force the tester into discovering the second
error in the program in section 5.5. (Notice that if J had been refer-
enced in the section of code following the I=5 predicate then the pro-
cess of data pushing would have revealed this error.) None the less the
following mutants are equivalent for the given program. An examina-
tion of these would force the tester almost directly into a review of the
area of code containing the bug. And the search would be intensified if
the tester realized these changes would not be equivalent in the
corrected program.

2L + K
12*L + K
=2*L+ 1K
= 1(2*L + K)

o

X

6. Discussion

After an extended exposition of the mechanics of mutation
analysis we are now in a position to take a more globa!l look into why
this all works. It seems to us that there are two general arguments
which can be put forth, summarized as follows:

——rtea A . [SVTURN FTR TR

s —

56

1) With respect to error detection, it is not that the mutants them-
selves capture the errors which may be in the program, it is
rather that the mutation task forces the tester into finding data
which exercises the program in a multiplicity of ways, and this
exercising is what is likely to uncover the errors.

2) The goal of mutation analysis is difficult to attein (this is
confirmed by more then two years experience with this process),
and by setting a difficult goal we force the programmer into a very
careful review of the programs. Independent of all other claims
made by this method, merely forcing the programmer to spend an
extended period of time reviewing the coded product will often
lead him into discovering errors in logic or design. -

Of course we would hope that the first is the dominant reason for
discovering errors in programs, and indeed the studies we have so far
conducted indicate this. We mention the second, however, because it is -
often significant in real applications, and is a fact not usually noticed
by automated too! designers.

As we saw in section 5.10, the mutations implemented in the -
current system are not sufficient to detect ail programming errors.
This we view not as a weakness in the methodology but in the mutation
operators used. As we collect more and more examples of such errors
we can look for patterns in the types of errors which can go undetected
by our system. By observing these patterns we may find new mutant
operators which will detect these errors. In this manner the system
may be continually improved, and our understanding of the program- -
ming process itself increased.

o,

We have also observed that as the complexity of programs
increases, the number of "building blocks” from which mutations are -
constructed grows? and the chances for errors like those just
described to go undetected actually diminishes. This is perhaps a i
novelty- a method which works better on complex programs then on _

simple ones !

Acknowledgements

We wish to thank Alan Acree, Jim Barns, Edie Martin, and Dan -
St. Andre for their contributions to the program mutation
effort.

2) the number of mutants grows roughly proportional to the number of statements times the
number of unique data references in the program.

57

[1] T.A. Budd and R.J. Lipton, "Mutation Analysis of Decision Table Pro-
grams”, Proceedings of the 1978 Conference on Information Sci-
ences and Systems, Johns Hopkins University, 1978.

[2} T.A. Budd, R.J. Lipton, F.G. Sayward and R.A. DeMillo, "The Design
of a Prototype Mutation System for Program Testing"”, AFIPS 1878
NCC, pp 623-627.

[3] J.R. Brown and M. Lipow, "Testing for Software Reliability”,
Proceedings of the 1975 International Conference on Reliable
Software.

(4] R.A. DeMillo, R.J. Lipton and F.G. Sayward. "Hints on Test Data
Selection: Help for the Practicing Programmer”, COMPUTER, Vol.
11.4. April 1978.

[5] RA. DeMillo, RJ. Lipton and F.G. Sayward, "Program Mutation as a
Tool for Managing Large-Scale Software Development”, ASQC
Technical Conference Transactions- Chicago.

[6] M. Geller, "Test Data as an Aid in Proving Program Correctness”,
Comm. ACM Vol. 21,5 May 1978 , pp 368-375.

[7] J.B. Goodenough and S.L. Gerhart, "Toward a Theory of Test Data
Selection”, IEEF Transactions.ef Software Engineering, June 1975.

[8] R.G. Hamlet, "Testing Programs with the Aid of a Compiler”, IEEE
Transactions of Software Engineering, SE3-4, July 1977.

[9] C.A.R. Hoare, "Algorithm 85: FIND", Comm. ACM 4,1 (April 1961),
pp. 321.

[10] W.E. Howden, "Reliability of the Path Analysis Testing Strategy",
IEEE Transactions of Software Engineering, September 1976.

{11] W.E. Howden, "An Evaluation of the Effectiveness of Symbolic Test-
ing". Software - Practice and Experience, Vol. 8,381-397(1978).

[12] J.C. Huang, "An Approach to Program Testing", ACM Computing
Surveys, September 1975.

[13] B.W. Kernighan, and P.J. Plauger, The Elements of Programming
Style, McGraw Hill, New York,N.Y., 1978 (2nd ed.)

[14] P. Naur, "Programming by Action Clusters”, BIT, Vol. 9, pp 250-258,
1968.

[15] L.J. Osterweil and L.D. Fosdick, "Experience with DAVE- A Fortran
Program Analyzer”, Proc. 1978 AFIP NCC, Vol 45, PP. 909-915.

[18] L.J. Osterweil and L.D. Fosdick, "Data Flow Analysis as an Aide in
Documentation, Assertion Generation, Validation, and Error Detec-
tion”, Technical Report CU-CS-055-74, Department of Computer
Science, University of Colorado, Boulder, September 1974.

[17] T.J. Ostrand, E.J. Weyuker, "Remarks on the Theory of Test Data
Selection”, Digest for the IEEE Workshop on Software Testing and
Test Documentation, Ft. Lauderdale, Fl. 1978.

[18] R.J. Rubey, J.A. Dana, and P.W. Biche, "Quantitative Aspects of
Software Validation"”, IEEE Transactions of Software Engineering,
June 1975.

(19] L.J. White, E.I. Cohen and B. Chandrasekaran, "A Domain Strategy
for Computer Program Testing”, Ohio State University Technical
Report OSU-CISRC-TR-78-4, 1978.

[20] N. Wirth, "PL360, a programming language for the 360 computer",
JACM, 15, 37-74 (1968).

[21] E.A. Youngs, Error Proneness in Programming, PhD Thesis, Univer-
sity of North Carolina, 1971.

58
Discussion of "A Survey of Programming Testine Issues"

*
Timothy A. Budd". Richard A. DeMillo®. Richard J. Lipton” and

*
Frederick G. Sayward

In this paper Goodenough addresses a myriad of issues and goals
encountered in testing computer programs. During his discussion of using
testing to show program correctness it is explained that testing can be
used to ensure the absence of program errors providing that one has
effectiveness of this approach lies in finding reliable and valid tests
which, as observed by Goodenough, can be extremely difficult. OQur main
purpose in this note 1is to comment on these concepts. on their
applicability to testing computer programs, and to suggest an alternative
approach.

As in an earlier paper [5}. reliability and validity are defined 1in
terms of quite precise and formal properties of computer test data
selection criteria. With these definitions a so-called '"fundamental
theorem'" was proved in [5) which r&ughly states:

If a- test data selection criteria which i{s valid and reliable can

be used to select test data for a given program. and 1f the

program 1s correct on the selected test data. then the program is

correct on any data.

-

(+) School of Information and Computer Science. Georgia Institute of
Technology. Atlanta. Georgia 30332

(*) Department of Computer Science. Yale University, New Haven, Connecticut
06520

(1) See Goodenough’s paper for the formal definitions of these and other
terms which we will drawm on in this discussion.

r—

59

Several comments are in order on this approach. First. reliability and
validity are defined as binary attributes; that is, either a test data
selection criteria has or doesn’t have one or both of these properties.
However, intuition says we should expect that a program test is reliable
and valid if it is useful in predicting the correctness of a program - not

necessarily ensuring absolute correctness in the formal sense, but at least

increasing our confidence that the program is indeed correct. Although
Goodenough addresses this aspect indirectly in a footnote, where the idea
of measuring a test data selection criteria’s reliability and validity is
discussed in passing. there is the danger that readers will follow him and
not focus on this issue which we consider to be the most important issue of
his approach to using program testing to ensure program correctness.
Second., we feel that the fundamental theorem provides no useful information
or guidelines for anyone who has to test real programs since it 18 aimed at
showing #bsolute correctness. What Goodenough has done is to reiterate the
conclusion of {5]) -~ 1f you prove that your testing criteria is perfect in
a fairly obvious sense, then your program is correct if it passes the test.
Clearly. this 1s the expected deduction. He then says that research in
this are; of program testing should be directed toward finding reliable and

"

valid testing methods. or at least establishing how '"close' the methods are

1

to being reliable and valid so that we can judge how ‘close" to perfect are
programs which pass the test.

As an editorial note, while the fundamental theorem of (5] shows that
validity and reliability are sufficient conditions for demonstrating

program correctness by program testing. they certainly aren’t necessary

conditions. Yet Goodenough consistently says that program tests must be

valid and reliable if correctness is to be gotten from testing. Clearly.

60

this is misleading and could adversly influence future program testing
research efforts.

oodenough ends on a pesimistic note in stating that, from a
sclentific point of view, testing research can hardly be said to be in {ts
infancy. He, as others in the software engineering cvommunity. most notably
the program verification school., continue to point out that program testing
is insufficient to guarantee program correctness. We agree. However,
since all software being used todav, since all software that has ever been
developed to solve any real problems, has been developed using testing. we
must ask the following rather obvious question:

Given that program testing, while not a perfect technique, has

proved to be a very useful technique, how can we develop testing

methodologies which have less than perfection (absolute program

correctness) as their goals yet still yleld substantial gains?
It is clear to us that the future direction of software engineering must
not turn its back and risk not developing this very i{mportant research area
the way it should be. It 18 all too easy. and wrong. to take the popuiar
viewpoint that program building 1s a purely logical deductive activity to
which program testing is unsuitable. Our viewpoint is that program design
and development is an empirical engineering activity and when Goodenough
says that program testing is not even in 1its infancy, we take it to mean
that an inferential formalism for program testing has not yet been
developed. However, it seems clear that such a formalism is not entirely
necessary if one is willing to accept that programming 1s a human.
inductive activity which may never be subject to complete formalism.

In the remainder of this discussion we will overview an on going

research effort which {s aimed at achieving gains from program testing

o

.,""‘"‘-.llllllllii--——~—~_,~wn.%

61

while not ensuring perfection: namely. program mutation [4). It has been
observed (6] that the vast majority of errors that remain in software, once
it has been tested and put into production, tend not to be radical
g[(ggg(z) but rather are interacting combinations of simple errors.
Indeed. there are many "horror" stories similar to the failure of an early
Vangard missile launch because of a missing right parenthesis in a
controlling program. So a resonable goal of program testing 18 to rule out
all combinations of simple errors: that is. design a program testing
method with the goal being that 1f a program passes the test then efither

(1) the program is correct, or

(2) the program is radically incorrect.
But even this seems too ambitious if one attacks directly. First, given a
program we must be able to generate all of its simple errors. Assuming
that this can be done, we next must eliminate the simple errors and the
complex errors which eminate from their combinations. Clearly the number
of complex errors will be a combinatoric explosion in the number of simple
errors. While it may be feasible to eliminate all simple errors, explicit
elimination of all complex errors appears intractable.

The %oal of the program mutation testing methodology is to establis:
that a given program 1s either correct or radically incorrect. Let L be
the programming language under consideration. A mutant operator is a

simple program transformation, dependent on L, which produces mutant

programs of the a given program P. The mutants are also programs in L.

(2) There are no agreed on technical definitions of errors categories. We
too will be informal. By radical we mean errors due to grossly
misunderstanding the program specifications - errors which are
difficult if not impossible to capture by general algorithmic methods
but which would easily be observed by almost any test or when the
software 1s first put into production.

i

62

The goal of the mutant operator is to introduce simple errors in P. thus
producing mutants of P. Alternatively, {f P is incorrect due to a single
simple error, some mutant would be a correct program tor the given task.
There should be several mutant operators. each corresponding to different
classes of simple errors that may occur in L. Let M(P) denote the set of
all mutants of P. 1Ideally, M(P) should contain mutants corresponding to
all and only the possible simple errors. However, this {s too ambitious a
goal for general purpose program transformations and we relax the
requirement to be that M(P) covers all simple errors in the sense that M(P)
may also contain mutants whiclt: are equivalent to P. We let M*(P) denote
all the mutants of P which come from multiple applications of mutant
aperators on P. These mutuauts are also programs in L.

Let D be the input domain of P. P is said to pass the mutation test
with data T if there exists T a subset of D such that

(1) P 18 OK(T), and

(2) for each mutant m in M(P) either

(a) m is not OK(T). or
(b) m is equivalent to P.

Icp pas;es the mutant test then we are sure that P is free of simple
errors. But what of complex errors? To this end we have observed a
coupling effect which states:

Test data T which causes all the non-equivalent mutants of M(P)

to fall {3 so seunsitive that all the non-equivalent mutants of

M*(P) must also fail on T.
The justification of the coupling effect parallels the probabalistic
argument for justifying the single fault methods used to test circuits;

however, we have no theory to make 1t a hard-fast principle. Baslically. {f

63
several simple errors (detectable by T) combine to make a complex error
then it is extremely unlikely the simple errors will cancel to allow the
successful execution on T of the mutant containing the complex error. The
goal of program mutation theory is then to validate, depending on L either
deductively or experimentally, the coupling cffect for language L by
establishing the following metatheorem of program mutation:
If P passes the mutation test then either
(1) P is correct, or
(2) P i3 radically incorrect.
In {l1] the mutation metatheorem has been formally shown to hold where L is
certain classes of decision tables and the mutant operator involve the
reformulation of conditions and applied actions. Currently. programs which
manipulate data structures are under investigation.
For general purpose programming languages, such as FORTRAN, the task
is more difficult- There 18 a noticable lack of empirical studies on

(3

programming errors to drawn on in formulating a complete set of mutant
operators - a necessary rejuirement for program mutation to be deductive.
Hence, at at least for now. in the case of general purpose languages we can
consider-program mutation as an inductive tool for gaining confidence that
the metatheorem of program mutation holds for a particular program P. A
prototype system for a subset of FORTRAN has been implemented [2]) and some
inf{tial experience with it and the effectiveness of the implemented mutant
operators and substantiations of the coupling effect can be found in [3].

A mutation system for ANSI FORTRAN is in the design stage. Several

experiments to finding "good" mutant operators and for evaluating the

- iy o e 42 S >

(3) Here, complete means that all simple errors will be captured in M(P).

64

effectiveness of mutation testing are under consideration.

Some final commments on performing the mutation test are in order.
Clearly the size of M(P) and T must be small. Our view is that the
mutation system should be interactive. The user specifies the program P
and initial test data T, to the system whence the mutants are generated and
executed on Tl' A list of mutants which fail and which succeed on T1 is
produced. The user must then examine his results to decide

(1) P contains a non-radical error.

(2) Because mutants which should have fafled didn’t. Tl must be

augmented to T2 and the system re-run.

(3) Some mutants are equivalent to P. There is hope here that

symbolic execution techniques can partially automate this task.
This cycle can be viewed as a session in which the user defends P and the
current test data against a system adversary which asks questions of the
form, "Why doesn’t your test data distinguish this simple error?" Such an
adversary forces the user of program mutation into a careful and detalled
review of his program and the design decisions made in constructing it. In
this view we hold hope that even radical errors can be uncovered by users

of program mutation.

REFERENCES

{1] T.Budd and R.Lipton, "Mutation Analysis of Decision Table Programs". to
appear at the 1978 Conference on Information Sciences and Systems.
Johns Hopkins University.

(2} T.Budd. R.DeMillo, R.Lipton and F-Sayward. "The Design of a Prototyn-
Mutation System for Program Testing'. to appear at the 1978 National
Computer Conference.

(3] R.DeMillo, R.Lipton and F.Sayward. "Hints on Test Data Selection". to
appear in Computer, April 1978.

65

[4] R.DeMillo, R.Lipton and F.Sayward. "PROGRAM MUTATION: A Mcthod of
Determining Test Data Adequacy'. to appear. 1978.

(5] J.Goodenough and S.Gerhart, '"Toward a Theory of Testing: Data Selection
Criteria", IEEE Trans. on Soft. Eng. SE-1.2 (June 1975). pp. 156~173.

[6) E.A.Youngs, "Human Errors in Programming”, International Journal of Man
Machine Studies 6 (1974). pp. 361-376.

66

THE STATUS OF RESTZARCH ON PROGRAM MUTATION
i o Tt (*) T “ck G. S Ny
Richard J. igcton and Trederick G. Savward

December 1978

ABSTRACT

A status report on twWo new program utation systems 1s given. The Iirst 13

the ZXPER svstem for tasting progrzams written in ANSI TORTRAN and Zor

experimenting on the concepts of program outation. It has bSeen desizned,
impiemencad, and is in i{cs Iinal debugging stages. The second is the I72M

svszems for testing programs written in a COBCL subset. This system is i:a
its final design stage.

Also, the results of a new experiment on substantiating the '"coupling
ffect" of our FCRTRAN svstems are presented.
INTPODUCTION
Program autation is a relatively new approach to program tasting
which, unlike traditional methods, attempts to expdloit the Zacc that good
programmers write code which is "close" co being correccz. Traditionmallw,
the fundamental question addressed in program testing has been:

Given that a program P is xaown to work on test data 7, can
we conclude that P works in general!

As expected, the traditional question is theorericallv unanswerable 3.

dewever, program tasting researchers nave made advances ia proviiia

XN

defiaice answers ‘or special cases [6,10] and, Zor the general casa, nave
srovided methods [3,9,11,12] for gainiag czonX dence in a posizive answer.

Program mutation, on the other hand, has sctriven t> answer a weaker

ye: judlte realistic question. The forpulation of this weaker guestion :s

-~
»
~

Departoent of tlectrical Enginesring, “niversi:zv oI lalifornia at
3erkeley, Berkeley, Caliiornza 94720

{-, Jeoarcment of Computer 3cience, Yala Universizw, Yew Faven, Connecrti:u
76320
This raesearch was suppor<ed L zarI bV 2
sudcontracts under :the sconsorship af AIRMIC
29-73~G-1121

-

4
- - L —— oy ﬂ-u-i-n--n—ndn---n-n-nn--u-lhli--nﬂﬁl-iJ

- 67

based or wna:t we call tne competent pProcramder 2SS ISDLion:

% competen: programmer, alter several Iterations anc on
¢eering tnat has jor of designing, cocing, ancé tesIiing .s
- cocrlete, has written & program that is either correc: or
-t

"almos:" correc: ir the sense tha:t i: d:iffers irom a correc:
prograg in only simple wavs.

AS 2 simple exampie, suppose we wan:t a FORTRAN program that computes ihe
- ¢istance ‘rom the origin to an N—dimensional vector ¥ where the distance is
defined to be the square root of the sum of the squares of the elemen:s of
X. We would accept the following incorrect prograz as being written by a
coapetent programmer:
PROGRAM Pl
SUM=]
- DO 1l I=],N
SUM=STM+X (T)**2
1 DIST=SQRT(SM)
But we would questior the competence of a programmer who produced
- PROGRAM P2
DIST=X(1)
DO 1 I=],X

] DIST=MAX(X(I),DIST)
With the compe:ient programmer assumption, the cuestion adcressel In DIogT
Dutation becomes:

Given that Pis written by & compstent programmer ancé tha: ?

is known to work onm test data T, can we conclude that F

works in general?
Note that the mutation question differs phnilosopnically from the
traditional testing questing in a very important way: traditionally, a

_?rogram is treated as a random objec:t, whereas ir program mutatior a

prograr is assumecd to be either correct or almost correct, a mutant ol 2

correct program. Thus program Pl above is a mutan: of the correct progran

P Zor the distance problex:

PROGRAM P
STM=0. 0
DO | I=!,N

1 SUM=SUM+X(TI)**2
JIST=SORT(SWM)

P2, on the other hand, is not a mutant of P.

To apply program nutation, we choose the mpethod of e2liminating che
alternatives —-— developing a test set T on which the program P is correc:
but on which all mutants of P fail. In practice there are far too many
mutants of P to cousider. But by concentrating on the "first order”

-
-

autants of P the methodology becomes tractable. irst o>rder autants of ?

ccme from a single application of a putant operator, a simple svntactic or
semanCic program transformation such as (!) changiag a particular i%stance
of a relational operator to one of the five ocher relatisnal operators, ¢
(2, zhanging the label part of a particuiar GOTC scacement o one 3i the
other labels appearing in the program. Wwe then rely on the couplizg
efface:

- ; - .

Test data that causes all first-order autants 5 3 progranm

to fail is so sensitive that all higher-order autants oI th

program will also fail.

To illustrate, the following two programs are first-crder autants of

>rogram P apove:

PROGRAM M1 PROGRAM M2
SUM=] SM=0.0
DO ! I=l,N CO 1 I=l,X

1 SUM=SUM+X(T)%**2 SIMuSTM+X (1) **2
DIST=SQRT(SM) 1 DIST=SCRT(SUM)

Program ?l is a mutant but not a first~order mauctant of ?2. 3v the coupiiis
arfect, 1{f P is correect on test data T while Ml and MI fail, then 2! aust
also fail on T.

wlzh this formulation, the effacziveness of »rcgram Jucaticon now

decends on the validizvr -7 :we issimortions: the ::mrezan:t drograoner

PEPPRIOPRY

69

assumptior anc the coupling effeci. 1Irn practice, -heoretica. stulies
aocwithstanding {2, it is not necessary to show formally :that these
2ssuczptions holé in order for program mutation 2o be 2 useful tool for

zesting real programs writter in real programming languages. we nave Jound

*4,

zhat in performing mutant tests on ar incorrect program the user Is forced
into developing test data on which the program fails i7). So we are
interested in building interactive systems to aid programmers in performing
mutant tests ané in evaluating the effectiveness of the approach. We pick
a real programming language L and, based on the literature and our personal
experience, define an appropriate set of mutant operators for L. Then we
build a man—-machine mutation system that aids in performing mutant tests
for L and the chosen mutant operators. Using the system and other aias, we
thern performr experiments to substantiate the competent programmer
assumption and the coupling effect for L and the given mutant operators;

we also check to see how effective the systex is as a testing tool.

So far we have introduced prograr mutazion [4] and built a pilo:
mutation system, called PIMS, for a subset of FdRTRAN [1]. With PIMS we
wanted to gain some initial experience with mutations and building wmutazion
svstems. The subset consisted of a singie FORTRAN subroutime with DO, IF,
G370, anc assignmen: statements as the control s:tructures. 7Tnhe data
structures were integers with arrays of up to two dimensions. The nmutant
.operators were fouwr classes: declaration, data reference, operator
evaluation, and control flow We discussed user methods of determining the
correctness of a prograc on tes: data, automatic detection of mutant
failure, mutants equivalent to a given program, non-terminating mutants,

-
and managing the n” wmutants generated by applying the mutant operators, ©.

the number of executable statemen: in the program. We have also done

70

experiments on the competent programmer assumption ‘. and the coupiing

effect 5],

Now we would like to report on CWwO New »rogram =utatisn svsiems, s7e
for nearly full ANSI FORTRAN, the other for a CCBOL subser, and on 1 new,
stronger experiment for substantiating the coupling effect Ior our ORTRAN

svstems.

THE IXPER SYSTEM

In working wich P™S, we observed that the test dafta m0sSt drogramrers
intd tively feel is gzood as well as test data generated bv auromati: 3eans,
eicher randomly or by svmbolic execution, do poorly with respect to the
zutant test. Perhaps this gives evidence as to why program testing has
traditionally Seen held in such low asteem. We admit that PIMS wvasn':t verv
flexible in its design and consequently we were able to perform onlv
iimired experiments with this svstem,

The EZXPER system has as i=s language ANSI TCRTRAN =minus 1,0 and

-

complex arithmetic. Its mutant coperators are basically the same as ia

PTMS. The system was built 2t Yale om the DEC-21 and is nearly detuggec.
Recently, it has begun to be :ransported to the VAX computer at CC
3e;keley. Among the goals »f zhis system are (!) determining Yow orcgram
autation can be integrated with the design, coding, and testing of

mul ti-module programs, (2) determining whether the autant coerators of 2745
are sufficient for the additrional data and control structures allowed .o

TXPER, (3) further experiments on the coupling 2ffecsz, and (-) excer:muen:s

on the e“fectiveness of the method.

setween PTMS and IXPER. PIT!S was Jesigned solalv 3s 3 usar=oria2nlac

L
71
— svster; <he user submits a prograz and & se: of test data and se.ec:s
wnich svster—cdelined mutant operators are to be applied tc the progra-.
hd - y . . -
IXPIA, on tne otner hanc, is organized arounc the concep: o0 an experimen:
wnich consists of & program, a se: of test data, 2 subset of the syster's
L3
rnutan:t operators which mav be applied to the program, and s further subset
- o tnis subset wnich will be applieu tc the program. The experimenter is
easily able to generate slight differences in each of these eiements and
o
then monitor the progress of subjects using EXPER to perform the mutan:
[zest.
One current experiment involves the redundancy oI mutant operatorTs.
—
Such redundancy could be counter-productive if time is spent constructing
- zest data that don’'t significantly increase one’s confidence in the
correctness ol a program. The aim of this experiment is co detect
- Tecuncant Dutant operators by statisrical methods. The subjects are
diviced into two groups. Each group is given several programs ané asked to
—
Cevelop test dzta by doing mutatior aralvsis. Some cf the programs contain
3 -— bugs which the subjects are to zry to find. The diiference Detween groups
is iIr what mutant operators thewv mavy apply to the programs. Group Il is
an
allowec to use 2.1 implemented operators while group 2 mav use all but cthe
- operator(s’ in cuestion. The variables to be compared are the number oI i
bugs locatec and the time used in locating them.
[S N i
Several other exveriments are currently being formulated, such as .
1
experiments tc evaluate executing only some mutants versus executing all
-
mutants or given test data. We plan to report on these experiments in &
- future paper.
]
- |

TEEZ CPMS SYSTEM

L e ot et e

72

The design of a CTOBOL pilot autation svstem, called CPMS, <5 12 .:s
inal stages at Georgia Tech. The COBOL subset [or this 2ro-ect :onsists
of a single COBOL procedure with sentences of the MOVE, COMPUTE, T,
PERFORM, READ, WRITE tvpe as its control structuras, character and decimal
scalar vartables wicth the récord feature as its data strucczures, and up T)
-wo secuent-.a. input and two sequential output Files as Its I/0 strucctures.
The nmutant operators of CPMS will be similar to those of PIMS with major
additions for data structures and I/0.

The CMS design is based on ?TMS: an interactive man—machine sysiam O
seri>rm the autant rtest for programs written in the COBOL subpset. CPMS,
qowever, will be more flexible than PIMS in its experimental capabilities.

Aside from applving program mutation to a new language, the aajor
issue addressed in C?™S is the I/0 problem, which was avoided in PTMS and
ZXPSR. As {n FORTRAN, a COBOL amutant may fail in one of three wavs: i: mav
have an execution fauwlt, it may time out, or it may produce iacorrec:
answers. 3ecause the output of an average COBOL »rogram -ends =0 De 3uch
arzer than that of an average TORTRAN program, 1: is not clear whether
thera i3 an efficient way to check for this third «ind of failura. Ve
iatend te try the folilowing scheme:

(1) A nutant fails if iz :ries to - 4 a loager record than the

program raad.

tn

(2) A mutant fails i reads ‘fewer (=more) records than th

o
r

program read.
(3) A auctant fails if it writes Jewer (more) records than :he
program wrote.

(4) A nutanc fails if it produces riles tha: are unequal I3 =he

i23

files thar the orogram produced. Hera the user specs

e e MR, ittt . -

73
wnetner a s:trong or &z weak ecgualicty cneck 1s to be usei. Twc
files are strongly ecqual if their records match character for
character; theyv are weakly equal if the ncn-blank characters
o their records ma:ch.
We hope that the vas: majority of the COBOL mutan:s will fail before step &
is involved. Of course, we are nof certain whether a mutant tha: fails on
some steps of the scheme should not be allowed to continue anywav. Part of
the COBOL mutatiorn project will be experimenting to find a realistic

definition of mutant failure on I/C.

STRONGER SUBSTANTIATION OF THE COUPLING EFFECT

we have already reported or an experiment [5] involving Hoare’'s FINT
prograw (7] that supplied empirical evidence for the roupling effect. The ;
experiment went as follows:
(1) We derived a test data set T of 49 cases to pass the mutan:
test. (The large size of T was due to our inexperience.)
{(2) For efficiency reasons, we reduced T heuristically =o a test
data set T consisting of seven czases on which FINT alsc
passed the mutant test.
(3) Randow k-order mutants of FIND, k>i, were generated. .4
k-order mutant cowmes from k applications of mutant operators
on the program P.)
(4) The k-order mutants of FIND were ther executed on T°.
The coupling effect says that the non-equivalent k-order mutants of FIND
will fail on T'. Note that step 2 biases the experiment against the

coupling effect since it removes the man-machine orientarion of our

épproach to testing. We would have been quite happy to find a

L — e L *

74

counterexample to the coupling effect for PIMS, since i: would have 1illoweg
us -0 imorove the set of mutant nperators. “he resulis oI The axoer:zen:,
chongh, gave evidence that we had chosen a well coupled set oI 1autant

operators for PIMS:

< Number of k-order nmutants Numper successful 2n 77
2 21100 19
>2 1500 0

e 19 successful mutants were shown to be equivalent to FIND. 've
zoncentrated on the k=2 case since, intuitively, the aore one autates FILT
e nore likely one is to get a program that violates the compectent
programmer assumption.

The major criticism of the experiment concerns step 3. Since the

~order autants that compose the k—-order mutants are indepentantly

w
(44

dravn, the resulting k—order mutant is likely to be very unstable and
sub‘ect to quick failure, in contrast to the more desirable case wnere the
k~-order mutant contains subtly related changes tha: correspond to the
subtle errors programmers rfind so hard to detec:t.

The current experipent on the coupling erffect, wnich uses ZXPER rather
than ?7MS, omits step 2 above and aakes the following important change =3
step 3:

’(3) Randomly generate correlated «—order autants Of Zhe :rogram.

By correlated we mean that each of the k applications of autran: operators

-~

[g]
10

@121 {1 -some wav be relatad o all of cthe others —-= :thev zould Ior instan
2 fact the same statement of ?, or the same variable name, or -he same
stat2ment label, or the same :onstant. Once agaia, i P sasses :"e Tmuranc

[{']

sT wiIh test data 7, the coupling effect says that the :orTelatad «=orzer

autants of ? wll fail on T.

g

27 this experizent thr2e »>rograms 1ire seing usac: TIND, 3

w—_-—” soman iU S

75

TRIANG. STKSTM is a prograr that mein:tains a stachk anc a.i10Ws Ine stancdarc
operations oI clear, push, pop, anc¢ top. TRIANG is a prograc tha:z, g:iver
the leng:ths of the three legs of a triangle, categorizes the irnpu:l as no:

recresenting a triangle or as representing & scalene, isosoleses or

XS
(4]
=g
1]

he resuits ¢

il

ecul-.aterz) ctriangle [3]. The following is a summary of

axpeTriment so far:

PROGRAM k=2 kw3 k=4

number successes nunber successes number successes
TIND 3000 2 3000 C 3000 &
STKS M 3000 3 3000 C 300C C
TRIANG 3000 1 3000 1 3000 o

Ir all cases, the successful correlated k—order murants have been shown o
be equivalen: tc the origimal program. The detailec results of the
experiment on TRIANG are listed in the appendix.

We have vet to find a non=-trivial counterexample to the coupling
effect Ior our FORTRAN svstems. The one successful 3~order mutant of
TRIANG deserves closer examiration; indeed, we initially felt :ha;c i1t was a
non-eguivalent mutant. The mutant is

SUBROUTINE TRIANG(I,J,K,MATCH)

(9]

INTEGER I,J,K,MATCE

MATCE 18 QUTPUT FROM THE ROUTINE:
MATCE =] IF TRIANGLE IS SCALENT
MATCE = 2 IF TRIANGLE IS ISOSCELES
MATCE = 3 IF TRIANGLE IS EQUILATERAL
MATCH = 4 IF NOT TRIANGLE

s NesNeNeNaNaNe!

2 IF (I.LE.O0.OR.J.LE.Q0.OR.K.1LE.Q0) GOTO 500
MATCH=0
IF (I.NE.J) GOTO 10
MATCH=MATCE+]
5 10 IF(I.NE.K) GOTO 20
MATCH=MATCE=+2

DN I SN S UX R
n

0

MQO,: change statement ¢ o MATCH=MATCH-K

-

i 2¢ IF(Z.NE.K) GCTO 30
MATCE=MATCE=3

oo v
ty O

C e

76

Sols 30 IF(MATCH.NE.D) GOTO 120
NN F(I+J.LE.K) GOTO 500
T8 T(JX.LE.I? GOTO 3500
320 IF(I+~.LE.J) GOTO 5CO
2 MATCH=1
22 RETURN
22028 100 IF(MATCH.NE.l) GOTO 20C
2316 IF(I=J..E.K) GOTO 500
T 110 MATCH=2

28 RETURN
23 32 200 TIF(MAICH.NE.2) GOTO 30C

MC.: change statement 29 to IF(MATCH.NE.K)

30022 TF(IK.LE.J) GOTO 30C
2z GOTO 110

I.03% 300 IF(MATCH.NE.3) GOTO 4(0¢C
3n 37 F(JK.LE.I) GOTO 500

MZ.: :Rhange statement 36 to F(J+J.LZ. 1)

B GCTOo 110
3 400 MATCH=3
S0 RETURN
al 300 MATCH=4
&2 RETURN
ZND

Note czhat the correlation is with respect to variable X. The autant
5ceractors xol and MOZ produce incorrect mutants while XOE oroduces a3 =urant
ecuivalent to TRIANG. Yet the 3-order correlated autanz is =cuivalent 2
T TANG.

This zakes a deautiful illustracion of the part of :he rrogrammang
orocess that program mutation is trying to exploit. Us.ng the constanl I
tn s=azements 9 and 29 is an arbizrarv but coubpled decision, Inceec, YOU
tan replace both iastances of 2 bv any positive constant (or anv wariadle
“rose value Joesn’ T cnange bYetween :the execution of scataments 3 anc .

inC FAu zef an 2quivalent program -- reolace JnNLY one 1astance anc vou I2

[¥)

am ingsrTec: 2rogram. L1 1 sense, the cconstant D oia sTataments

=37 wo:Ld Se ~alled ia the terincliogy of Zomal loegi: a3 toune aria

rﬁ—— = e N

- . &
77
- 3CYNOWLEDGEMENTS -
we wisn to zhank Alan acree, Tir buad, Jir Burns, Pozh DeMillc, Id.e ‘
b]
Mar:izn, and Dan Si. Andre for their contributions to Ihe program mutaction
- eZfori anc¢ aiso to thank Marv-Claire Van Leunen fcr the careful edi:ing anc !
stviistic mutations she has made to our initial draZt. .
-

- i ;
[}

- ‘.
.

- t

Pl

[99)

(W]

I

(¥)]

-~

r—v‘— e e e

78 -
TLEERENCES
' T.A.3udd, R.a.DeMlllo, R.J.1ipton, and F.S5.S5avward, "The Zesizn of a
Prototype Mutation System for Program Testiag', Procaedings of the
a7

4
8 Vational Computer Conference, pp. 523-927.

T.A.3udd and R.J.Lipton, "Mutation Analysis of Jecision Table
Programs”, Proceedings of the 1378 Conference on Information Sciznces
and Svstems, pp. 3+6=349.

L.A.Clarke and J.L.wWoods, "Program Testing Using Svmoolic Ixecution'
presented at the Navy Laboratorv Computing Commitcee Svmposim on
Software Specification and Testing Technology, april 1978.

R.A.DeMillo, R.J.lLipton, and F.G.Savward, "PROGRAM MUTATICN: A New
Approach to Program Testing', presented at the Navy Laboratorv
Computing Committee Svmposium on Software Speciiicazion and Testing

Tecnhnology, April 1978.

R.A.DeMl1lo, R.J.Lipton, and 7.G.S5ayward, "Hdiacs on Tast
Selection: Help for the Practicing Programmer', Computar ..,s ‘april
1978), pp. 34=4l.

M.Geller, "Test Data as an Aid in Proving ?wogram Correc:iness”, i:n
?roc. of the Third ACY Syvmp. on the ?rinciples 27 Programmin
Languages (1975), pp.209-218.

Z.A.%.Boare, "Alzorithm 53 FIND', Comm. of the AlM +,1 lapril 1941,

D
-~ 321
Pe Jadoe

the Path Analvsis .es:;1g Strategy', IZZIZ

v.Z.%owden, "Reliabiliczy of
.3 (3eprt. 1376), pop. 108-2ls

Trans. on Soft. ZIng. SE-2

“.Z.%wden, "Yethodology for the Ganeration cf 2rcgrazm Test lata',
TZZEZ Trans. on Computers C=24,5 (May 1973), op.33+-3060.

A.Lew and D.Tamanaha, "Decision Table Programming ind Reliabi

?roc. 9f the Second International ConZ. »n Rel:aple 3Soczware
op. 343=348,

“.J.0sterweil and L.D.Fosdick, "Some Zxperiances
Program Apalyzer', AFIPS Confarence Proceed:ings 235 (.57
5. 909=915.

VAN

7.Ramamoorthy, S.F.Fo, and W.T.Chen, "Can the Automaczad Gene
rogram Test Data'', IZEE Trans. on Soit. Zag. 32-1.+ (Dec. 1°
0.293-300.

J

79

APRENDIX i

This appendix lists the output generated by IXPER and an associated
axperimental subsystem for performing the correlated «-nrder mutation

- ex~ariment on program TRIANG.
LISTING OF THE PROGRAM BEING MUTATED

SUBROUTINE TRIANG(I,J,K,MATCH)
(1 .LE. 0 .OR. J .LE. O .OR. K .LE. 0) GOTO 500
MATCH = 0
IF(: .NE. J) GOTO 10 -~ A
MATCH = MATCH + |
IF(I .NE. K) GOTO 20
MATCH = MATCH + 2
IF(J .NE. K) GOTO 30
t MATCH = MATCH + 3
30 TF(MATCH .NE. 0) GOTO 100
IF(I + J .LE. K) GOTO 500
- F(J + K .LE. I) GOTO 500
F(Il + K .LE. J) GOTO 500
MATCH =]
- RETURN
ce IT(MATCH .NE. l) GOTO 200
(I - J .LE. K) GOTO 500
- .10 MATCH =2
RETURN
200 F(MATCH .NE. 2) GOTO 300
T(I - K .LE. J) GOTO 500
GO0TO 110
300 IF(MATCH .NE. 3) GOTO 400 3a
IF(J = X .LE. I) GOTO 500 36
= GOTO 10
400 MATCH = 3

[&9)
~d

-

(Yol N0 SRR VTN DU RN I)

b

(&)
-—
(97

[P —

O~ W
f< BT 73 N U 2 BRI

— s he

[PV £t
Y n
fis IS - IRRT BV AN R I ISR

LI Pl D L2 13 1302 820D 528D 4 bee 4ee
st b

()
O o

.
Ay

RETURN

= 300 MAICH =4
RETURN :
IND

4
-

'S
(]

T3T TASI NUMBER

80

I3TING OF THE TEST CASEZS ON WHICH TRIANG PASSES THE MUTANT

_,
]

il

[]
Llll-\’wa—~O\Om\AO\uuL Wt -

[P SFEO

—
[N

17

T2 0202 41219 19 192 1919
SO Wty — O
£ O = O O = O NN WDD W — Lo

3

[US I PO RNV I |
ty r

-
S}

(W
& W
— s p

y)
N WO O WLIULU W e

w o)
o wn

'
~1
—
o

G LENGTHS

-

r— r— []
WM ~1 0O WLWOWWII O U W D E LT — — WO W WH O WULNGGE BIv— O

WS G- - - OUN O~ WO OO ™ NIV LT — @O

—

—
™R O O

TZeT -
TRIANGLE TYPT (NeNCT A -
TRIANGLI, S=SCALINE, =
ISOSOLISE, ZT=Z0UTLATIRAL,

N
N
5
N -
N
N
N -
T
N
N
N
N
I
- 3
- i
. 4
Aj :
N - 4
N o
-\‘V 2
.\" -
N
N
N -
: !
S - 1;
S !
N :
3
I —
S —-—
s 1
S

i

“MUTANT STATE FOR ALL PROGRAM UNITS

TOR EXPERIMEMNT "EIGAT.EXP " THIS

NIMBER OF TEST CASES = 37
- NUMBER OF MUTANTS = 1026
NUMBER OF DEAD MUTANTS =
NUMBER OF LIVE MUTANTS = 0 (
- NUMBER OF ZQUIV MUTANTS = 71
NUMBER OF MUTATABLE STATEMENTS =
- GIVING A MUTANTS/STATEMENT RATIO

8]

STATISTICS FOR PASSING THE MUTANT TEST ON TRIANG

IS RUN 3

955 (93.17%)

0.0%)
(6.97)
«2
CF 24,43

MUTANT ELIMINATION PROFILE FOR ALL PROGRAMS

MUTANT TYPE TOTAL
~= CONSTANT REPLACEMENT 30
SCALAR VARIABLE REPLACEME 126
SCALAR FOR CONSTANT REP. 60
~ CONSTANT FOR SCALAR REP. 170
SOURCE CONSTANT REPLACRME 36
UNIARY OPERATOR INSERION 208
= ARITHMETIC OPERATOR REPLA 83
REATIONAL OPERATOR REPLA 80
LOGICAL CONNECTCR REPLACE 5
o STATYMENT ANALYSIS a2
STATEMENT DELETION a2
RETURN STATEMENT REPLACTM 38
_ GOTO STATEMENT REPLACEMEN 128

DEAD LIVE
30 100.0% 0
120 95.2% 0
60 100.0% 0
168 98.8% 0
36 100.0% ¢
149 72.7% 0
61 96.8% 0
76 95.0% 0
6 100.0% 0
42 100.0% 0
42 100.0% 2
7 97.4% 0
128 100.0% 0

9.0%
O. Oz
c.C%
Q.C%
c.0%
0.0%
0.0%
0.0%
"\ c-
J.3h
Z.0%

-~ ~ o
Ve e

0.0%

ECUIV

SHENGN NS
'R VR B

.
(%)
A

CHD) - O O
. . .

>
]

a2t
Y ittt

>
X3

U
QD) D IO DI2ONrO0O
"~

Q) Ut
. o T .
.

82

RESULTS TOR THE GENERATION OF 2-ORDER MUTANTS OF TRIANG

KT R AR AR A EA KRR AR A A K E TR R RARK Y AR R R AR A A AR R KR A AR A AR AR K AR A AR AR R KA R ARk >

X AT E R RN KA R A AR A AR A A AR R AR AR AR R AR AKX R AR AR A KA AR AR A XA P A XA KRR RT AR AR RNy
THE TCLLOWING 2-ORDZR MUTANT OF TRIANG SUCCEEDED

MUTANT PHYSICAL RECORD IS 428
STAUEMENT 1 CHANGED FROM
IF(I ..E. ¢ .OR. J .1E. 0 .OR. K .LE. 0) GOTO 500

hanlal

" IF(I .1E. -0 .OR. J .LE. 0 .OR. K .LT. 0) GOTO 500

MUTANT PEYSICAL RECORD 1S 726
STATEMENT 13 CHANGED FROM
37 TF(MATCH NE. () GOTO 100

-
-

3C IT(MATCE .GZ. () GOTO 100

R R E R AR RRERARE RXRARI KA R AR A KA AR A KA AR A AR A A AR KA AR AKX AR KRR AR TR
R R T XK R AR KRR AR A R XA A Rk R R TR AR KRR A A AR A AKX T X AR KKK R R TR AR

wWITE THE ORDER AT 2
THEz NUMBER OF CORREILATED MUTANTS OF TRIANG DRAWN WAS
Or THCSE THE NUMBER COF LIVE DRAWS WERE 1

3000

PROFILE OF EQUIVALENT COMPONENTS

NO. EQU MTS NIMBER DRAWN NO. SUCCESSFUL
0 2819 ¢
1 180 0
2 1 1

PROFIZZ OK METHOD OF 2-ORDER MUTANT FAILURE

2518 TERMINATED BUT PRODUCED WRONG ANSWERS
{ HAD AN ARITRMETIC FAULT
O HAD AN ARRAY INDEXING ERROR
O EXECUTED A TRAP STATEMENT

127 REFERENCED AN UNDEFINZD VARIABLE

ATTIMPTED TO DIVIDE BY ZERO

IXCEEDED THE TIME LMMIT

ATTIMPTED TLLEGAL DATA COERSION
ATIEMPTED 7O ALTER A READ ONLY VARIABLE

3¢}

1]
n
Vi oyt o

'

’-. » - . v o ﬁ - i I
- 83
%
RESULTS FOR THE GENERATION OF 3-ORDER MUTANTS OF TRIANG
~ kﬁﬁ*t**i*****t******ﬁi*ant****ﬂ*ﬁ*a*t*Q*t-tanun:t--**tttat:*n*:arta:wtx
t**t**ﬁ*****t****t**********Rttt***i*.*illtttﬂtt*tt:t***tﬂ***aitt:l!ﬂ'
= ~gF FOLLOWING 3~ORDER MUTANT OF TRLANG SUCCEEDED
- 4UTANT PHYSICAL RECORD IS 204
STATEMENT 29 CHANGED FROM
200 IF(MATCH .NE. 2) GOTO 300
TO
- 200 IF(MATCH .NE. K) GOTO 300
MUTANT PHYSICAL RECORD IS 147
- STATEMENT 36 CHANGED FROM
IF(J + K .LE. I) GOTO 500
T
- F(J + J .LE. I) GOTO 500
MUTANT PHYSICAL RECORD IS 180
- STATEMENT 9 CHANGED FROM ;
MATCE = MATCH + 2 :
TO
- MATCE = MATCH + K
x*t**t****t*****************
********************************i**************t******t***********t*ﬂw
- WITH THE ORDER AT 3 4
THE NUMBER OF CORRELATED MUTANTS OF TRIANG DRAWN WAS 3000 :
OF THBOSE THE NUMBER OF LIVE DRAWS WERE 1
PROFILE OF EZQUIVALENT C(MPONENTS :
- ‘ NO. EQU TS NUMBER DRAWN NO. SUCCISSFLL
0 2743 b
- 1 249 !
2 8 0
3 0 0
h .
PROFTLE ON METHOD OF 2=ORDER MUTANT FAILIRE
- 2419 TERMINATED BUT PRODUCED WRONG ANSWERS
0 HAD AN ARITIMETIC FAULT
O HAD AN ARRAY INDEXING ZRROR
- 0 EXECUTED A TRAP STATEMENT
202 REFERENCED AN UNDEFINED VARIABLS
9 ATTEMPTED TO DIVIDE 3Y ZERO
- 57 EXCZEDED THE TIME LIMIT
0 ATTEMPTED ILLIGAL DATA COERSION
322 ATTEMPTED TO ALTIR A READ ONLY TARIABLE
(%)

84

PESULTS FOR THZ GENEZRATION OF 4=ORDER MUTANTS OF TRIANG

w1T= THRZ ORDER AT “
THE NI™MBER OF CORRELATED MUTANTS OF TRIANG DRAWN WAS 300C
o7 THOSZI THE NUMBER OF LIVE DRAWS WERE 0

PROFILE OF EOQOUIVALENT COMPONENTS
NC. ZOU MTS NUMBER DRAWN NO. SUCCESSFTL

2644
338
18

C

0

W R e D
OO O OO

PROFILE ON METHOD OF 4-ORDER MUTANT FAILURE

2308 TERMINATED BUT PRODUCED WRONG ANSWERS
HAD AN ARITEMETIC FAULT

HAD AN ARRAY INDEXING ERROR

EXECUTED A TRAP STATEMENT

REFERENCED AN UNDEFINED VARIABLE
ATTEMPTED TO DIVIDE BY ZERO

EXCEZDED .THE TIME LIMIT .

ATTEMPTED ILLEGAL DATA COERSION
ATTEMPTED TO ALTER A READ ONLY VARIABLE

t)

[

~Ii
Uy Dt ¢ B DO O

I
«©>

T

=1 T

)

85
1978 "ASQC TECHNICAL CONFERENCE TRANSACTIONS—CHICAGO

PROGRAM MUTATION AS A TOOL FOR MANAGING
LARGE-SCALE SOFTWARE DEVELOPMENT

Richard DeMillo

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332

Richard Lipton and Frederick Sayward
Department of Computer Science

Yale University

New Haven, Connecticut 06520

INTRODUCTION

Several approaches to aid in the design, implementation and debugging of large-
scale software have recently emerged. Examples are restricted modularization (14),
structured programming {(14)., and program verification (9,10). However helpful they
may be to programmers and low-level managers, the effects of these techniques cannot be
utilized throughout a software project management hierarchy since they are qualitative
rather than quantitative: managers should not be expected to understand code and/or
sophisticated mathematics.

In this paper we explain how an important phase of software development, testing,
can be managed effectively by use of the new program testing approach known as prograr
mutation (15). Program mutation provides as a side effect the qualitative type of ir-
formation that managers need to monitor software development and personnel performance.
The basic idea is: given a program module and its test data, program mutation provides
a measure, in terms of a percentage, of how "well"” the data actually tests the module.
The higher the percentage, the more adequately the program has been tested. A program
mutation system produces the percentage and users increase the measure by either aug-
menting the data in a controlled fashion or by answering "hard"” questions about the
module which are posed by the system. This process iterates until a satisfactory
testing percentage is obtained. Meanwhile, the program mutation system records all
the involved information in a data base which can be querried at any time by members
at all levels of the project hierarchy to obtain reports containing relevant informa-
tion on the project's testing status. For example, the project manager may wish to
know only the testing percentages of all program modules while a programmer may wish
to review in detail some or all of the questions and answers previously recorded for s
given module.

In section 2 we detail the theory of program mutation as a program testing tool.
Section 3 explains what types of information various members of the project hierarchy
would draw from the mutation system and how that information would be used as a manage-
ment tool. These concepts are illustrated in terms of a hypothetical compiler con-
struction project. Finally, in section 4 we present another application of program
mutation: monitoring software procurment.

THE PROGRAM MUTATION METHODOLOGY
Program testing is an inductive science which addresses the following fundamentai
question:

“If a program is correct on a finite number of test cases,
is it correct in general?"

Finite test data which implies general correctness is called adequate test data and
since adequate test data cannot in general be derived algorithmically (4) program
testing cannot be deductive. Recently. path analyais (1,2,5,6) and symbolic execution
(7,8) have emerged as methods which allow one to gain confidence in one's test data's
adequacy. Although as with any inductive science, it is possible to make false infer-
ences with path analysis (3), the basic idea is undeniable: test data which exercises
all flowchart control paths of a program at least once must be better than test data
which doesn't. Symbolic execution is associated to path analysis since, among other
things, it attempts to derive test data which exercises all paths of a program.

Unlike previous software reliability methods, in program mutation we make the

86
1978 ASQC TECHNICAL CONFERENCE TRANSACTIONS—CHICAGO

following -tnunpcion{

Experienced programmere write programs which are either correct
or are "almost" correct.

That is, in the mutation terminology,

If a program is not correct, then it is a "mutant” - it differs
from a correct program by simple well-understood errors.

There is empirical evidence which supports this natural premise (l1l).

Boehm has found (12) that errors fall into three categories: clerical, logical,
and misunderstanding of specifications. 1In the above assumption we do not explicitly
mention errors due to programmers misunderstanding specifications; rather, it appears
we are dealing exclusively with clerical errxors. While a system which would solve the
clerical error problem would be quite useful, program mutation does even more: indeed,
below we explain how the use of the program mutation methodology can lead to the detec-
tion of all three error types.

With the "experjenced programmer assumption”, the mutation method is:; take a pro-
gram P which is correct on some test data T and subject it to a series of mutant opera-
tors, thereby producing mutant programs which differ from P in very simple ways. For
example, if

I = I+1
is a statement in P, then

I= 3I-1
I = 142
I =1I+0 (i.e., a no-op)

are all simple changes which lead to three mutants of P. The mutant programs are then
executed on T. If all mutants give incorrect results then it is very likely that P is
correct {i.e., we can infer with high confidence that T is adequate). On the other
hand, if some mutants are correct on T then we can infer that either:

(1) The mutants are equivalent to P,
(2) The test data T is inadequate, or
(3) The program P is incorrect.

If it cannot be determined that P is incorrect from this information, then T must be
augmented and the mutation method re-applied in an attempt to make the non-equivalent
mutants which are correct on T subsequently fail. This augmentation process forces
the programmer to examine P in detail with respect to the mutants.

At first glance it would appear that if T is determined adequate by mutation anal-
ysis, then P might still contain some complex errors which are not explicitly mutants
of P. To this end there is a coupling effect which states:

Test data on which all simple mutants fail is so sensitive that it is
highly likely that all complex mutante must also fail.

That is, if a program passes tests for all possible simple errors then it has been
implicitly tested for all possible complex errors. It is in this effect that the
power of program mutation to detect the so~called logical errors of Boehm (12} is
revealed. Experiments which substantiate the coupling effect are reported in (13).

Using program mutation as a tool for obtaining reliable software is a highly
interactive process whose success depends in part on human judgement. Due to the
following issues, the programmer must re-examine in critical detail both his progra~
and its specif!~aiions and why he made the decisions that led to the construction of
his program. The crucial issues which must be addressed by the users include:

(1) Which mutant operators should be applied to the program?
(2) Are the program and its mutants correct on the given test data?
(3) 1Is a given mutant equivalent to the program?

It is here that specifications errors are discovered. Note that it is possible for a

A -

87

1978 ASQC TECHNICAL CONFERENCE TRANSACTIONS—CHICAGO

mutation system to provide the users with information which greatly facilitates sesul-
(\ ving these issues: indeed, a mutation system can cven resolve them automatically irn
some cases.

[In using & program mutation system, a programmer specifies to the system his pro-
gram, test data, and the mutant operators he wishes to be applied. The system then
generates and executes the mutants on the test datu and produces a report indicating

: which mutants are correct on the given test data. The determination of mutant correct-

- . ness is done in one of two ways: (1) by direct comparison of the mutant output with
the program's ocutput, or (2) by a user-supplied algorithm which examines the output of
the mutant. In both cases the system asks the user whether or not the program is
acceptable on the test data. However, determination of mutant failure is done by the

E system.

Upon examining the report, the user may re-run the system and augment his test
| data in an attempt to make the remaining mutants fail. He may also specify that adda-
' tional mutant operators be applied to the program. The system produces another report
: -~ . of the same nature as the first for the user to examine. This cycle continues until
{ ' the user ies satisfied that his current test data adequately tests his program.

- MANAGEMENT ASPECTS OF PROGRAM MUTATION

e Successful large-scale programming projects rely on a hierarchical flow of infor-
mation and decisions. A fragment of such a project structuring is represented in
figure 1. In addition, there is a recognizable time-ordering of events for gathering

PROJECT MANAGER

” l
[]

CHIEF PROGRAMMER 1 CHIEF PROGRAMMER e CHIEF PROGRAMMER M
- | | :

I i
b PROGRAMMERS PROGRAMMER PROGRAMMERS
TESTERS TESTERS TESTERS

[Figure 1. Hierarchical Management Organization

information and making decisions which correlates with the hierarchical management
structure. Events such as "decide input file structure"”, "gather documentation from
the submodules of module M1", "begin testing module M5" provide transformations of the
programming task, replacing the as yet incomplete project with the next stage as deter-
mined by the most current information. The management hierarchy generally parallels

{ the modular decomposition of the programming task. This can be seen directly in

L figure 2 where we illustrate a decomposition of a miltiple pass compiler.

During the test phase of the project the mutation system records a wealth of
information in its data base and this data is used to produce reports which directiy
— influence decision-making throughout the project hierarchy. The type of information
drawn from the mutation system and its uses vary depending on the project hierarchy
level of the querrier. 1In this section we sketch some possibilities for the three
levels illustrated in figures 1 and 2. Additional possibilities can readily be imag-
) (ined. The general idea is: the higher the querrier is in the project structure, the
7 less programming oriented is the gathered information.

Project Manager's Report

The project manager periocdically meets with the chief programmers to evaluate the
[project’'s testing status. Also, the assignment of personnel and the evaluation of
personnel performance are done at this level. The project manager's report would con-
tain information such as:

(1) The name of each module.

2)
(3)
(4)

(5)
(€)

88

1978 ASQC TECHNICAL CONFERENCE TRANSACTIONS—CHICAGO

COMPILET PROJECT

MACHINE
SCANNER PARSER CODE DEPENDENT
MODULE MODULE GENERATOR OPTIMIZATION
l L MODULE MODULE
’ ,)
SUBMODULES SUBMODULES SUBMODULES SUBMODULES

Figure 2. Modular Decomposition of a
Multiple Pass Compiler

The chief programmer responsible for each module.
Plots of the mutant elimination percentage vs. time for each submodule.
For each submodule, (a) the number of mutants, (b) the number and the

" percentage of eliminated mutants, (c) the number and percentage of mutants

deemed equivalent, and (d) the number and percentage of non-eliminated
mutants.

For each module, the number and type of assigned personne..

For each submodule, the number and type of assigned personnel.

This information can be used by the project manager to help do the following:

(98]
(2)

(3)

(4)
(5)

Monitor adherence to the project's testing pert-chart.

Decide whether an acceptable level of testing has been obtained for a
given module or submodule.

Re-assignment of personnel to work on modules where the mutant elimination
percentage is low.

Rewarding personnel who achieve high mutant elimination percentages.
Pinpointing responsibility for modules which fail after having been judged
acceptable.

Chief Programmer's Report

A chief programmer should be familiar with the program code of all the submodules
but he doesn't necessarily do any of the programming himself. He meets daily with his
subordinate personnel. The type of information contained in a chief programmer's
report would include:

(1)
{2)
(3)
(4)
(5)

(6)
n

The names and program code for each submodule of his module.

The personnel assigned to each submodule.

Plots of the mutation elimination percentage vs. time for each submodule.
The mutant operators being applied to each submodule.

For each submodule, (a) the number of mutants, (b) the number and the
percentage of eliminated mutants, (c) the number and percentage of mutants
deemed equivalent, and (d) the number and percentage of non-eliminated
mutants.

Listings, in coded forms, of mutants determined equivalent.

Personnel responsible for classifying mutants as equivalent.

This information can be used by the chief programmer to do the following:

(1)

(2)

Suggest to the programmers additional mutant operators for a given
submodule.

Ask a programmer to justify his judgement of mutants as equivalent. The
chief programmer may want to know, for instance, why it does not matter

if a certain variable can be mutated without changing the effect of the
submodule. That is, why is his submodule so insensitive to that mutation?

89

1978 ASQC TECHNICAL CONFERENCE TRANSACTIONS—CHICAGO

(3) Determine that a given submodule has been acceptably tested and
prepars evidence on this decision for presentation to the project

manager.

Programmer’'s and Tester's Report

These personnel are concerned mainly with the details of program code and data
and thus their reports will be the most lengthy. The type of information would
include:

(1) A listing of the submodule code.

(2) The current test data for the submodule.

(3) The mutant operators currently being applied to the submodule.

(4) For the submodule, (a) the number of mutants, (b) the number and the
percentage of eliminated mutants, (c) the number and percentage of mutants
deemsd equivalent, and (d) the number and percentage of non-eliminated
mutants.

(5) Profiles of the information in {4) with respect to the mutant operators
currently being applied.

(6) Listings, in coded form, of the non-eliminated mutants.

(7) Listings, in coded form, of the mutants determined equivalent.

This information could be used by programmers and testers to do the following:

(1) Augment the current test data so as to eliminate mutants on the next
mutation run.

(2) Augment the set of applied mutant operators for the next mutation run.

{(3) Classify non-eliminated mutants as equivalent.

{(4) - Determine that the submodule has been adequately tested and prepare
evidence of this for presentation to the chief programmer.

SOFTWARE PROCURMENT ASPECTS OF PROGRAM MUTATION
Government agencies and profit making industries are currently finding that pur-
chasing software from specialized software vendors is more econcmical than in-house
development. The contracts generally consist of the specifications for the software
and a date on which the software and test data on which the software meets the speci-
fications are to be delivered. Occas:onally, some test data is given with the speci-
fications.

Two problems for the contractor are apparent in the above scheme: (l) at any
time during the contract period the puchaser has no indication as to how "close” the
software is to being ready, and (2) upon delivery, although the software works correct-
ly on the supplied test data, there is no way to measure the quality of the purchased
software. We see program mutation as a partial solution to the first problem and a: a
definite sclution to the second.

Since program testing is the final stage of software development, a contractor
can specify that the vendor indicate at what point testing commences. Assuming that
the vendor is using a mutation system, the contractor can monitor the final stage of
development by having the vendor periodically report mutant elimination percentages.

TO evaluate the delivered software, on® can specify in contracts that the test
dats of modules must eliminate a certain percentage of the mutants with respect to
"standard"” mutant operators. Here there are many options. Software not passing this
quality test may be rejected or there could be a substantial financial penalty to the
vendor. In this case it is not essential that the vendor use a mutation system, only
that the contractor have one available to evaluate the final product. Also, note that
the contractor is not concerned with equivalent mutants; rather, a simple tast (whaich
can be entirely computerized) dependent solely on the mutant operators is used. Cur-
rently, we have little information on which mutant operators should be employed in this
test; however, experiments to answer this question are underway. We have observed
empirically (13,15) that the percentage of equivalent mutants tends to bDe about two.

SUMMARY

Program mutation is an important new tool in the field of program testing which
has applications in other fields. Above it has been explained how, unlike other cur-
rent programming methodologies, a program mutation system can provide quantitative
information which can be used throughout the management hierarchy of a large program-
ming project. furthermore, program mutation has an important application in that it
can be incorporated into contracts for software procurment. 1t provides purchasers of
software with a means of measuring the quality of the delivered product.

ot

90 -

1978 ASQC TECHNICAL CONFERENCE TRANSACTIONS—CHICAGO

\ -
ACIKNOWLEDGEMENT
N k We acknowledge the work of Tim Budd and the other members of tne Yale University
Testing Group for help in implementing and experimenting with the prototype mutatic
system developed at Yale University.

-—
REFERENCES
! l. C. V. Ramamoorthy. S. F. Ho, and W. T. Chen, "1 the Automated ueneration ot
Program Test Data," ILEL Transactions ox Sof!w:r trifnecr.ny Sk-i,4 (December —
; - 1976), pp. 293-300.
j 2. W, E. Howden, “"Methodology for the Generation of Program Test Lata," 447
| Trgnaactiona on Computers C-24,5 (May 1975), pp. 554-560.
i -
/ 3. W. E. Howden, "Reliability of the Path Analysis Testing Strategy," JEFF
l Transactions on Software Engineering SE-2,3 (September 1976}, pp. 208-214.
1 4. J. B. Goodenough and S. L. Gerhart, "Towards a Theory of Test Data Selectior,’ —-—
IEEE Transactiong on Software Engineering SE-1,2 (June 1975), pp. 156-173.
5. J. C. Huang, "An Approach to Program Testing," Co~pufing Surveys 7,3 (September
1975}, pp. 113-128, w—
6. E. F. Miller and R. A. Melton, "Automated Generation of Testcase Datasets," in
Proceedings of the First International Conference on Reliable Software, SIJFLA’
Notices 10,6 (June 1975), pp. 51-58§.
-
7. L. Clarke, "A System to Generate Test Data and Symbolically Execute Programs,"”
IEEE Transactions on Software En;ineering SE-2,3 (September 1976), pp. 215-222.
8. J. King, "Symbolic Execution and Program Testing,” (orvmnications of the ACM -
19,7 (July 1976), pp. 385-394.
9. R. London, "The Current State of Proving Programs Correct,” in Proceedinge .
the ACM National Conference, 1972, ACM, New York, pp. 39-4€. —
10. S. Hantler and J. King, "An Introduction to Proving the Correctness of Programs,”
Computing Surveys 8,3 (September 1976), pp. 331-353.
11. E. A. Youngs, "Human Errors in brogramming,” J»-crrnas’ ol Jowrdl of Man -
Machine Studies 6 (1974), pp. 361-37v.
12. B. Boehm, "Software Design and Structuring," in Frastic:! Strategiee “or
. Developing Large Software Systerms, Horowitz (Editor), Addison-Wesley, 1975, -
PE. 103-128.
13. R. DPeMillo, R. Lipton, and F. Sayward, "Hints on Test Data Selection," to
appear in Computer, April 1978.
-
14. Special Issue: Programming, AJM Jomputing Surveurs 6.4 (December 1974),
pp. 209-319.
{ 15. R. DeMillo, R. Lipton, and F. Sayward, "PROGRAM MUTATION: A Method of Determining -

Teat Data Adequacy,” submitted to the Third Int. Conf. on Soft. Eng. (1978).

LCS 640:70:000 —

AD-AL07 77% GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A-=ETC F/6 9/2
PAPERS ON PROSRAM TESTING? (U) .
1979 R A DEMILLO. R J LIPTON: F G SAYWARD NOOO14=79=C-0231

UNCLASSIFIED GIT=1CS~79/04

.. NL

1

91

STABILITY OF TEST DATA FROM PROGRAM MUTATION

James E. Burns

School of Information and Computer Science
GEORGIA INSTITUTE OF TECHNOLOGY
Atlanta, GA 30332

1. INTRODUCTION

Program testing is an expensive part of program development. A

significant partion of this cost may go into the creation of high quality

test data. In an active environment, it is rare for a program to ¢:

unmodified over a long period. Considerable effort can be saved if test

data created for earlier program versions can be shown to be satisfactory

for testing new versions.

The second section of this paper briefly introduces a promising
new tool for program testing, program mutation. Program mutation has
the attractive qualities that it aids in finding good test data sets
and also provides a quantitative measure of how good they are. Section
3 describes the experiment performed to test the hynothesis that test
data produced by program mutation tends to be stable. The final two

sections give the results of the experiment and draw conclusions.

2. PROGRAM MUTATION

Program mutation is a recently developed technique for creating
high Euality test data. A brief description of the technique is given
here, but the reader is referred to references [1-4] for a more complete

explanation, _especially regarding motivation.

This work was supoorted in part by U.S. Army
Research O0ffice Grant #DAAG29-78-G-0121.

LYY HIU P .-

92

The central idea of program mutation is the construction of a
set of "mutants” of the target program. A mutant is a copy of the
target program which differs only by a single “mutation”. A mutation
is a transformation of a program statement in a way which simulates
typical program errors. For example, one mutation 4s to modify the
value of a literal constant -~ the FORTRAN statement "1 = I+3" might
be changed to "I= I+2". Some mutants may turn out to be equivalent,
functionally, to the target program. The remainder should be distin-
guished from the target program by sufficiently powerful test data.

§ Test data which is able to distinguish all non-equivalent mutants of
2 target program must thoroughly exercise the program and, hence,
provide strong evidence of the program’'s correctness.

Let P be a program and M(P) be the set of mutants of P.
(Note: M(P) depends on the language of P and the set of mutations

chosen. We assume a fixed language and a fixed set of mutations

for purposes of discussion.) Let Q(P) be the subset of M(P) that
are functionally equivalent to P. For a given set of test data, T,
an element me M{P) is said to be eliminated by T if and only if
there is at least one element of T which distinguishes m from P,
otherwise, m is said to be Live. Now we may define the .adequacy of

T Pb
for P by M(P) - L(T.P) - Q(P)

M(P) - Q(P)

A(T,P)

100% x

where

L{T,P) = {meM(P) | mis live for P under T)

When A(T,P) = 100%, we say that T is adequate for P. If no element of
T can be removed without reducing the adequacy of T, then T is said to

be reduced.

— 93
- Adequacy provides a quantitative measure of the thoroughness
l - with which a set of test data exercises the target program. Unfor- ﬂ
tunately, this measure may be difficult to compute since Q(P) is
- usually difficult to determine. However, the following approximation
to A(T,P) is usually sufficiently accurate since, (empiriciaily), Q(P)
| is rarely greater than 5% of M(P):
(. M(P) - L(T,P)
| - A*(T,P) = 100% '«
! M(P)
| Note that A'(T,P) always approximates A(T,P) from below. Also, if
,E part of Q(P) can be easily determined, the approximation can be
{ - improved.
E
- 3. STABILITY QF TEST DATA
Intuitively, the stability of a set of test data refers to how
- powerful it is in testing programs which are slightly modified versions
of the program faor which the test data was developed. The adequacy ~
measure gives. a means of quantifying this concept with the following
- definition.
Let P be a set of closely related programs, {Pl'PZ""'Pn}'
- Assume that all the programs in P will correctly accept the same !
i
set of test data, T. Then the stability of T refative Zo P is given g
by
- s(T,p) = min A(T.Pi)
15is<n
- We also define an approximation to this measure by
S'(T,P) = min A'(T,Pi) ‘
b 1<i<n ;
!
o
32¢

94 -
The stability of T is, of course, highly dependent on P. ke -
wish to determine whether or not test data produced by program mutation
lis relatively stable for P chosen to be sufficiently “similar” to h
the program for which the test data was created. For this experiment, -
ten sorting algorithms were chosen, (see Appendix A). Since these
programs are functionally identical, they are certainly highly similar. -
There is some motivation for using functionally identical programs in
this study since one type of program modification is the replacement of -
an algorithm with @ functionally identical but more efficient one. -
If test data produced by the program mutation method is stable, high
g values of the stability measure would be expected. More complex -
| algorithms would be expected to have higher values of the measure
! since they would tend to require stronger test data. -
Each of the algorithms listed in Appendix A was coded into the -
subset of FORTRAN accepted by the PIlot Mutation System (PIMS) developed
at Yale University. PIMS automatically generates the set of mutants which - i
are to be eliminated by test data. Test cases may be entered inter-
actively and tested by the PIMS interpreter against the mutants. The
living mutants may be examined through the system to aid in selecting -~
additional test data.
Test data was developed for each program in the set independently. -
An attempt was made in each case to eliminate all mutants which could not -
be identified as being functionally equivalent to the original program.
{In all but three cases, all non-equivalent mutants were eliminated.) -

The resulting test set were then reduced toc remove any inessential test
cases. Finally, the test set for each program was run against each of
the other programs to determine the number of mutants eliminated in each

case.

327

-

- ' 4. RESULTS I
. The raw results of the experiment described above are presented i

- :

in Table 1. The programs are ordered by the number of mutants produced

by PIMS, which is a rough measure of t.air complexity. Table 2 gives

r

the number of living mutants left by each test set with all mutants

r

which could be determined to be equivalent removed. The adequacy

measures, A'(T,P) and A(T,P), and stability measures, S'(T,P) and .

r

r
" WY OGN OGN Y ar W N 2B AN 5 & W W W=

S(T,P), are given in Tables 3 and 4.

Two sets of test data, (I and J, produced by Quicksort and the
Natural Two-way Merge Sort), provided very strong test data with stability
measures of over 98%. In fact, the test data from Quicksort was able
to eliminate more mutants of the Merge Exchange (H) and the Natural
Two-way Merge Sort (J) than the data created using the PIMS system
directly. This may result in part from the large number of test cases
(14) required by Quicksort.

The remaining test sets did not produce impressive stability
measures over this set of programs, although Heapsort (F) did achieve
a respectable 88.6%. However, if the twé most complex programs (I & J)
are removed from the set used to compute the measure, ail of the

test sets have stability measures near 90%.

5. CONCLUSIONS
If all of the test sets produced in this experiment had proven
to have had very high stability measures, we could conclude that there

was evidence that test data from program mutation was stable. This

A P e g gt e e A e v

96
TABLE 1 -

Number of [.ive Mutants

i Program / ¢ of Mutants
A B c D E F G K 1 J

Test Set (# cases) 167 240 266 274 282 830 1094 1233 1838 2292
A (8) 8 11 9 12 15 128 78 168 567 1104 -
B (6) 8 8 6 10 15 127 71 159 547 1087
c (5) 8 10 6 9 10 98 71 154 421 1094 -
D (5) 8 11 7 & 8 52 72 142 548 555
E(4) 10 15 12 13 8 56 81 166 788 563 ‘
F o (8) 8 9 6 8 23 69 75 247 300
& (6) 8 9 7 10 8 79 50 152 409 1084
H (5) 8 8 6 8 25 68 42 246 517 -
1 (14) 9 8 6 8 26 50 32 132 54
J (6) 10 12 7 10 8 25 55 43 193 74 -
-—
“JABLE 2 -
Number of (Live - Equivalent) Mutants
! Program -
Test Set{ A B € D E F 6 H I 3 y
A 0 3 3 3 7 105 28 138 439 1067
B 0 0 0 1 7 104 21 129 418 1044
c 0 2 0 0 2 75 21 124 293 1054 -
D 0 3 1 0 0 29 22 112 420 512
E 2 7 6 4 0 33 31 136 660 520 -
F 0o 1 0 0 0 0 14 45 N9 257 |
d c 1 1 1 0 56 0 122 281 1041 - :
H 0 0 0 O 0 2 18 12 118 414
I 1 0 0 o0 0 1 0 2 & M - i
J 2 4 1 0o 2 5 12 65 3
326 -

‘

’ - - - - » . i
..L-----ilu-i-nlu--n-u-Il-l-Il---nn-m--.--- Mcton St i s B A

—

97

TABLE 3
Approximation of Adequacy : % A'(T,P)

Program ;
Test Set. A 8 C 0 £ F G H [J 'Sle.P)
A 95.7 95.4 96.6 95.6 94.7 84.6 92.9 86.4 69.2 51.8 | 51.3 |
8 95.7 99.2 97.7 96.4 94.7 84.7 93.5 87.1 70.2 52.6 | 52.6
c 95.7 95.8 97.7 96.7 96.5 88.2 93.5 87.5 77.1 52.3 { 52.3
D 95.7 95.4 97.4 96.7 97.2 93.7 93.4 88.5 70.2 75.8 { 70.2
E 94.7 93.8 95.5 95.3 97.2 93.3 92.6 86.5 57.1 75.4 | 57.1 1
F 95.7 96.3 97.7 96.7 97.2 97.2 93.7 93.9 86.6 86.3 | 86.6
G 95.7 96.3 97.4 96.4 97.2 90.1 95.4 87.7 77.7 52.7 | S52.7
H 95.7 99.2 97.7 96.7 97.2 97.0 93.8 96.6 86.6 77.4 | 77.4
[94.7 99.2 97.7 96.7 97.2 97.) 95.4 97.4 92.8 97.6 | 92.8
J 94.7 95.0 97.4 96.4 97.2 97.0 95.0 96.5 89.5 96.8 | 89.5
TABLE 4

Adequacy : % A(T,P)

Program
Test Set A 8 C D £ F G H I J iS(T,P)
A 100 98.7 98.8 98.9 97.4 87.0 97.3 88.5 74.3 52.8 | 32.8
8 100 100 100 99.6 97.4 37.0 98.0 89.3 75.5 53.6 | 53.6
c 100 99.2 100 100 99.3 90.7 98.0 89.7 82.9 53.1 | 53.i
0 100 98.7 99.6 100 100 96.4 97.8 90.7 75.4 77.2 | 75.4
E 98.9 97.0 97.6 98.5 100 95.9 97.0 88.7 61.4 76.9 | 61.4
F 100 99.6 100 100 100 100 98.7 96.3 93.0 83.6 | 88.6
G 100 99.6 99.6 99.6 100 93.1 100 89.9 83.6 53.7 | S53.7
H 100 100 100 100 100 99.7 98.3 99.0 93.1 78.9 | 78.9
I 99.4 100 100 700 100 99.9 100 99.8 99.8 99.5 | 99.4
J 98.9 98.3 99.6 99.6 100 99.7 99.5 98.9 96.4 98.6 | 98.3

98

would imply that it would not be necessary to re-analyze a program
every time a small change was made to it. The negative result implies
instead that the test data may not be stable, especially if the change
made‘to a program increases it complexity. Thus, it is prudent to
perform mutation analysis on revisions to programs; however, it is
likely that previously derived test data will provide a good starting
point for mutant elimination. In many cases it will be unnecessary

to generate any new test cases at all.

331

rI'IIIIlllllllllllllllllllllllllIlllllIlllllllllllllIlIllIIIllllIlI!!!!!!!!!!!E!!I!E!!!&z: ,

99

References

(1] Budd, T. A. and R. J. Lipton, "Mutation Analysis of Decision
Table Programs," Proc. of the 1978 Johns Hopkins Conf. on
Information Systems and Sciences, p. 346-349.

{2] Budd, T. A., R. J. Lipton, F. G. Sayward and R. A. DeM{llo,
"The Design of a Prototype Mutation System for Program Testing,”
Proc., 1978 NCC, p. 623-628.

(3] DeMillo, R. A., R. J. Lipton and F. G. Sayward, "Hints on Test

Data Selection: Help for the Practicing Programmer," Computer
' 11(4), (Aprii 1978), p. 34-41.

(4] DeMillo, R. A., R. J. Lipton and F. G. Sayward, "PROGRAM MUTATION:
- A New Approach to Program Testing," Infotech/SRA State of the
Art Report : Program Testing (to appear .

100

Volume 7, number 4

INFORMATION PROCESSING LETTERS

June 1978

A PROBABILISTIC REMARK ON ALGEBRAIC PROGRAM TESTING

Richard A. DEMILLO

School of Informarion and Computer Science, Georgia Institute of Technologv, Atlanta, GA 30332, USA

Richard J. LIPTON

Computer Science Department, Yale University, New Haven, CT 06520, USA
I 4

Received 8 August 1977; revised version received 27 March 1978

Software reliability, program testing

Until very recently, research in software reliability
has divided quite neatly into two — usually warring —
camps: methodologies with a mathematical basis and
methodologies without such a basis. In the former
view, “'reliability” is identified with “correctness” and
the principle tool has been formal and informal veri-
fication [1]. In the latter view, “reliability” is taken
to mean the ability to meet overall functional goals
to within some predefined limits [2,3]. We have
argued in [4] that the latter view holds a great deal
of promise for further development at both the prac-
tical and analytical levels. Howden [5) proposes a
first step in thus direction by describing a method for
*“testing’’ a certain restricted class of programs whose
behavior can — in a sense Howden makes precise —
be algebraicized. In this way, “testing” a program is
reduced to an equivalence test, the major components
of which become

(i) a combinatorial identification of “‘equivalent”

structures;

(ii) an algebraic test

hEh,

where f;, i = 1, 2 is a multivariable polynomial
(multinomial) of degree specified by the pro-
gram being considered.

In arriving at a method for exact solution of (ii),
Howden derives an algorithm, that requires evaluation
of multinomials f(x, ..., X»,) of maximal degree d at
O{(d + 1Y™] points. For large values of m (a typical

case for realistic examples), this method becomes
prohibitively expensive.

Since, however, a test for reliability rather than a
certification of correctness is desired, a natural ques-
tion is whether or not Howden's method can be im-
proved by settling for less than an exact solution to
(i).

We are inspired by Rabin [6] and, less directly,
by the many successes of Erdos and Spencer {7] 10
attempt a probabilistic solution to (ii). Using these
methods, we show that (ii) can be tested with proba-
bility of error € * with only O(g(¢€)) evaluations of
multinomials, where g is a slowly growing function of
only €. In particular, 30 or so evaluations should pive
sufficiently small probability of error for most prac-
tical situations. The remainder of this note 1s devoted
to proving this result.

Let us denote by Py q(m, d) the class of multi-
nomials

feey o xm) ¥ 0

(over some arbitrary but fixed integral domain) whose
degree does not exceed d > 0. We define

P(n, d, r) = min Prob{1 €x, <r, f(x;,x,,)* O}
FEPLo(m. d).

* See Rabin's account of algorithms that may err with fixed
probability [6].

193

101

Volume 7, number 4

We think of P(m, d, r) as the minimal relative fre-
quency with which witnesses to the non-nullity of a
muitinomial of the appropriate kind can occur in the
chosen interval. We will derive a lower bound p for
P(m, d, r). Then (1 — p) is an upper bound on the
error in selecting a random point from the m-cube.
We then iterate the procedure by ¢ independent ran-

‘dom selections to obtain a small probability of error

(1 - p)’. Notice, in particular, that since a polynomial
of degree d has at most d roots (ignoring multiplicity),
the largest probability of finding a root must be at
least the probability of finding a root by randomly
sampling in the interval 1 € x; <r; thus

Xl,d. nN=1-dr.
Now, consider some
Fxg o X, VMEO

of degree at most d. But there are then multinomials
{gi}ica, not all £ 0, such that

d
fxq o X V) = Z(:, &t o X)) V'
i-

Let us suppose that g € Pxo(m, d). Thus
Prob{1 < x,; <r, fixy, ..., X, ¥) # 0}
2 Prob{ gx(xy. ...,) # 0 and y is not a root}

2 P(m, d, r}1 —d/r).

INFORMAT'ON PROCESSING LETTERS

Junc 1978

Continuing inductively, we obtain a lower bound
in P(m, d, r) as follows:

Pim, d,)= -dir)y". (1)
But
_ m
lim (1 = d/f)™ = lim [1 o1 (d’"ﬂ
mesoo m-voo m r
= exp(--dm/r) (2)

Combining (1) and (2), we have for large m, r = dm,

Pm, d, dm)=e ! .

Thus, with ¢ evaluations of f for independent choices
of points from the m-cube with sides r = dm, the
probability of missing a witness to the non-nullity o
flixy, ..., xm) is at most

(1 -e B

Table 1 shows the probable error in testing =0
by ¢ evaluations of f at randomly chosen points for
some typical values of d, m, , t. Notice that for
dm =r, t = 30, this is already <1075,

References

f1) Z. Manna, Mathematical Theory of Computation
(McGraw-Hill, New York, 1974).

Table 1

Probable error in testing f(x, X,,,) = O (degree < d) by 7 random evaluations in {1, ..., r}

[t - Pmd.n)!

dm , r+ 10 =20 =30 r=50 [=100

10 10 10x 10-3 106 x 10— 1x10-° 109 x 10-12 12x 10-2!
20 10 233x 1073 54 x10°3 13% 10-3 695 x 10~6 483 x 10~9
50 10 935 x 1073 873x 10~3 816 x 10~3 713x 1073 509 x 10~3
102 10 ~1 ~1 ~1 ~1

10 102 61x 1012 <10-20 <1020 <10-20 ~0

20 102 38x 10-9 1x 1015 <10-20 <10—20 ~0

S0 102 88x 10-6 8x 10~% 704 x 10~15 <10-20 <10-20
103 102 ~1 ~1 ~1 ~]

10 103 <10-10 <10-20 <10-20 ~0 ~0

20 103 9x 10-18 <1020 <1020 ~0 ~0

50 103 76 x 1015 <10-20 <10-20 ~0 ~0

194

B e s e e A

ae o et L

102

»
Volume 7, number 4 INFORMATION PROCLESSING LETTERS

12] J.R. Brown, M. Lipow, Testing for softv yre reliability, 15) WE.
Intern. Conf. in Reliable Software, SIGPLAN Notices,

fune 197%

Howden, Algebraic program testing, Compurer

Science Techncal Report No. 14 (Novemher 1974,
10, b, (June 1975) S18-527.

UC-San Diego, La Jolla, (A,
13] A.L Llewelyn, R.F. Wilkins, The testing of computer

software, 1969 Conf. on Software Engineering, 189199,

{4] R.A. DeMilio, R.J. Lipton, A.J. Perlis, Sacial processes York, 1976) 21 - 40,
and proofs of theorems and programs, Fourth ACM
Svmposium in Principles of Programming Languages
() appear in CACM).

17 P. Erdos, . Spencer, Probabilistic Me
natorics (Academic Press, New York, 1974)

{61 M.O. Rabin, Probabiljstic algorithms, in). Jrgub. o |
Algorithms and Complexity (Academic Press, New

thods in Contn

195

S

103

MUTATION ANALY.:l UP DECISION TABLE PROGRAMS

Timotity A. Budd

richard J.

Lipton

Department of Computer Science
Yale University
New Haven, Connecticut 06520

I. INTRODUCTION

For years computer programmers have been
testing programs on small sets of test data in
order to infer correctness, on the assumption
that if the program works correctly on a certain
set of "hard"” test data, it will probably work
correctly on any data. Of course, most program-
mers have little more than an intuitive idea of
what represents "hard" data. Expressed in such
vague terms, such faith is obviously not well
founded.

Recently interest has increased in formali-
zing the theoretical aspects of program testing
[4,7). As 1n this earlier work, we can give a
formal interpretation to the ideas of program
testing as follows: We can view a program R
as being a function from an input domain to an
output domain. For every program R we can
assume there exists a function P which R was
intended to compute, The corzectness question
can then be phrased as "is R a realization of
the function F ?2"

Previous work has been directed toward
finding a predicate P over the space of pro-
grams and input domains such that, for a given
function F and program K , i1f a set of test
cases T satisfies P(T,R) and R correctly
computes F on T , then we can infer that R
is a realization of F The results of {4}
show that such a predicate must always exist.
However, that does not imply that testing 1is
easy: it need not be the case that T is fi-
nite or that P be decidabie.

To give a more concrete example: For any
logical expression we can construct a program
which computes the value of that expression
over a set of boolean inputs. Suppose we have
such a program and wish to assert that it is the
constant function FPALSE. Any predicate which
will satisfy the above will imply that either
1} T must in some cases be exponential in the
size of the program, or 2) P must solve an NP-
hard problem [1].

Given then the djtficulty of the task of
finding test data that will without doubt show
that a proyram 1s correct, the goals of mutation
analysis are much simpler. 1In mutation analysis
we define a predicate P as before, and in ad-
dition we have some measure M of the "syntac-
tic distance” between programs. The thceorem we
then hope to prove is: Given a function F and
program R then if a set of test cases T sat-
1sfies P(T,R) and R correctly computes F on
T then either 1) R 1s a correct realization
of F , or) R 1is (in terms of the measure)
very far away from ALL programs that correctly
relaize

Informally, the latter condition can be
stated by saying if R 18 incorrect, it as in-
correct in a very radical fashion. Of course,
the truth and/or utility of such theorems de-
pends very strongly on the predicates and
measures chosen. Previous papers on mutation
analysis have demonstrated a large body of em-
pirical evidence showing that for a very real:s
tic problem domain (FORTRAN programs) there .s a
relatively sasy to verify predicate and a natural
measure for which that theorem seems to be true
[2). The present paper presents for the firsc
time analytical results for a simpler problem
domain.

This paper proves analytically a theorem
similar to the one described above, but for the
problem domain of decision table programs. In
section II we formally define decision table
programs. In section IIl1 we define a measure or
the space of decision table programs, and intro-
duce the concept of mutation. Section IV con-
tains the main results of the paper, leading up
to a formal theorem similar to the one given
above. In section V we comment on the complex-
ity of mutant analysis, as cpposed to explicit
enumeration, and conclude the paper with some
open problems and directions for future resear:h.

II. DECISION TABLE PROGRAMS

Decision tables are a method of organizing
rules that specify the conditions under which
certain actions are to be performed. Dec:ision
tables are chiefly used in business and data pr. -
cessing applications [5,6]}, although in (4] they
are used as a means of organizing test data se-
lection predicates.

We can abstract the notion of a Decisior
Table Program as follows [5,6]. We have first «
set of n Conditions and a set of p Acticns.
The conditions are a set of predicates in some
language, say English or FORTRAN. The actions
are given in the same language, and are assumec
to be independent; that 1s, the results of ex:m-
cuting any eubset of the actions are independer:’
of the order in which they are executed. (Alter-
natively, we could merely define an ordering cn
the actions.) The actions are also assumed @
be detectable; that 1is, given ainput and output
data, it is possible to tell precisely what a.-
tions were executed on the input to produce the
output.

The declsion table itself is then compesed
of two matrices: an n by m condition matr:ix
and a p by m action matrix. We say the pr.
gram contains m RULES where each rule corres-
ponds to a cross section along columns of the
condition and action matrices.

346

b o e e

104

Slements of the condition wattlx contaln
ne - ¢ three values: Y, N or * (read YES, NO

3t DON'T CARE) . Elements ¢t tie action matr.x
Loerarn one uf two values: X or blank.,

To exeoute the proyram .u,. a selecteda data
o nt we proceed as foliows: first we evaluate

ez o! the conditions on the data, forming a

ve tor of s1ze n Jontaining YES/NO values.

we then consider edch of the M rules (in some
pecified order). It any rule is SATISFIED

i e sense that for each position in the

1w that contains a Y the Jata satisfies the
113 cated condition, and fasln to satisfy the
¢oaditions associated with o N, then the actions
part of the rule 1s executed.

It for each possible data item there i1s at
lvi~t one rule that can be satisfied we say the
drecision table is COMPLETE. We say 1t 1s CON-
~13TENT 1f there is at most one rule. There
are mechanical methods to determuine whether an
arortrary decision table program i1s compl-te
ar 2 or consistent [S].

We can assume that no two rules specify
exa-tly the same set of actions. We can do this
w.t2ut loss of generality since two rules that
spe o1ty the same actions can be combined with at
» it the addition of one rew condition row.

.11. ERROR3 AND MUTATIONS

We will say a program 1s correct if it cor-
revtiy realizes the function 1t was intended to.
A jrogram 1s incorrect if 1t 1s not correct;
*h.t 15, there is at least one point at which
tl+ program and the function compute differing
tenalts,

Glvea a decision table program P, let S

oo e set of all Jdecision table programs having
th. same conditions, actions and number of rules
a~ P . The definiticon implies that each pro-

4raroan S can differ from P only in the
c.tr1en it contains in 1its natrices.

#2 will say a program : 1s radically
:novrrect 1f not only does 1t not correctly cem-
; ime the function it was :ntended to, but no
+ro4rdin 1n S computes this function either.

A xadically incorrect program cannot just have
4 few table entries wrong, but must be wrong i1
:*» Cunditions, actions, or 1n the number of
rcles 1t contalns.

refine a subset M of 5 (in [2} these
ate -;alled the mutants of P) to be the set of
} roirams formed by making changes to a single
«try 1w the tables representing P . We carn
<.nsify these changes into four types as fol-

'

Wl
it] CHANGE: A Y or N entry i1s changed to « °.
Tily 2 CHANGE: A Y 1s charnged to a N or vice
versa.
CHANGE: A * s changed to a Y or N.
CHANJE: An X 1s changed to a blank or
Vice versa.

Nuti.e tiiat even 1f P is complete and. or
onsiwtent, members of M need not share this
tonerty,

It may happern that certaln members of M
..l be equivalent to P , that is, will evalu-
2+ odentically to Foon all inputs. An egui-

-
& oW

ey

3

Valent amtunt cannet be prodaced by a type o
thange, siuce 1t d type 2 change 1s made the set
of values a0 satlsfy the onditions of the

Arigings e oS catally lis)uint from that

which st sty the altered rale. Notice also
tinat, by the assumpti.n ot detectablilty, no type
4 ciange an produce a: egquivalent mutant. If
any ogurvalent mootant carn be produced by o rype

1 chang, let B be this mutant and rejecat the
previoas ;r - edure, After a tounded number of
such ate. 70 s, we thern have a program P equi-
valent too the original such that the cnly egui-
valent my' ¢ ts of P oare produaced by a type 3

hoaege
Haviag accomplished the procedure described

sto the jrevious paragraph, we construt a test
ot -ch that every mutant chat is not eguri-
vatent t- P Jiffers on at least oune data point

d in T . We shall have more to say about the
conttruction of T in section IV, Such a test
set is called adequate in [2].

We will now consider what the construction
of such a4 test set tells us about P

IV. CORRECTNESS PESULTS

In this section we will denote the decision
table jroviram under consideration by P . We
dencte by P, the 1th rule, that 1s, the cross~

sectren of the condition and action matrices
taken ulong the 1th column.
For trevity we will state the following con-

ditiors on:e. They are assumed to hold in all
theorems Ji1ven.
1) F 1s consistent, although it need not
e complete.
2) The only mutants equivalent to P are
produced by a type 3 change.
i} Fach element d of the test set T
satistios a rule, and the results of P
«n d are correct.

LEMMA t: Ftor ecach ruie P in P, there exists
a data point d 1in 4 satisfying the conditions
of Py

PROOF: If we assume to the -ontrary that no data
item satlsties some rule, then the act:ion por-
tion of that rule can be mutated in any fashion
with no perceptible change, contradicting the
assumption concerning the construction of T

THEOREM 1: No program P' an S that differs
from P by at least one type 4 change can evalu-
ate correctly on each data point in T .

PROVF: The prooft is a simple pigeon-hole argu-
ment . My Lemma 1, tlere 1s at least one data
1tem that executes every rule., By assumption,
eacl rule's actions are unique and detectable,
hence any program that evaluates correctly on

T must coentain at least the m action parts of
P . But 1o proyram in S can contain more
rules, herce the result fellows.

Therem | amplies a one-to-one correspon-~
dence tvtweern rules 1 b and rules 1p any other
program . 5 that evaluates correctiy on T .

We will use this fact implicitly in what follows.

LEMMA 0: Any frograr P' in § that 1s not

N

equiviaiort ¢ Fobut tha* «valtda s ety
on T must contain 4t lvas! one chanje tlart, by
1tselt, would produce a4 nun-equavdient votant.
PRWL: Assume that P' and 2 Jduifter Ly

CONGLIUCt s juiva-
lent mutants. By construction, wWe sve that P°
and P Jiffer by type 3 changes. But i(he fact
that these are equivalent changes implics that
within each rule the counjunction ¢f the condi-
tions P and P' have 1n common 1s sufficient
to imply the conditions at each of the disputed
pcints, P must be equivalent to P’

changes that, by themsclveas,

hence

The remainder of thls section is devoted
to showing by cases that there cannot be any
program P' 1n S that 1is not equivalent to
P but that evaluates correctly on T

Assume we have a program P' 1in S that
1s not equivalent to P but that evaluates cor-
rectly on T By Lemma 2, there must be at
least one change between P and P' that if
made to P would produce a non-equivalent
mutant. Let P* be the mutant so formed, with
Py (F*,) 1ndicating tiie singie rule that has
been altered.

Theorem | tells us that the change could
not have been of type 4; the next three theorems
show us 1t cannot have been o! typues 1, 2 or 3
either.

THEOREM <. ne difference between P and P*

cannot re a type 3 chanye.

PRCCF: Assume we have a program for which the
hypothesis hclds but deny the conclusion. Since
P* 1s not eqguavalent to P there exists an
element d in T such thar P(d) and Pr*{d)
differ. But this can only happen if d satis-
fies the conditions associated with P, but not

those of pe But one can see then tlat no

other chanyge that can be made to P* will
allow d to satisfy its conditions. Since
P(d) exe.uted the correct actions and 0 other
rule have the same actions, a contradiction is
obtained.

THEOREM 3: The differerice between P ..} P*

cannot be a type 2 change.

PROOF: Assume as before we have a program tor
which the hypothesis 15 true but deny the con-
By Lemma 1, there exis8ts some element
d 11n T that natisfies the conditiuns 1n the
original rale. since 1 (annot poussibly satis-
fy an)y ruie that inciudes tne change :.nder con-
si1deraticn, the fact that we were satisfied with
the actions of P on d and no other rules can

clusion.

have these same actions gives us a contlradiction.

THEQREM 4: The difference between P and P*

cannot be a type 1 change.

PROOF: Assume we have a program tor wi.ich the
hypothesis 1s true but deny the conclusion. By
construction, there exists an element d4 11 T
such that P and P* differ, but this ‘an only
mean that d satisfies P* and not o

Since we were satisficd with P{(d) there must
exist at least one more change of type . v 3

105

34u

totweeln B and the associated ruile i P
wiich allows us to reject d ain F' . Furtie:
more, this change cannot produce an equlvaler
mutant. bul using Theorems 2 and J this G.ve.

us a contradiction.

Combining Theovrems 1-4 then gives us the
main result of this paper.

THEOREM S: If P evaluates correctly on T
then either P 1s correct or it is radically
incorrect.

V. THE CUMPLEXITY OF MUTANT ANALYSIS

If we think of each of the n conditioun:
as dividing the space cf possikle test cases in
two, there are then possibly 27 potential
categories a test case could fall into. A test
procedure that operated by explicitly constru -
ting a representative from each of these cate
gories might then require an exponential rnumber
of test cases (in the size of the matrix). Wwe
shall see that mutaticn analysis requires sig-
nificantly fewer test cases.

It is not difficult to see that 1f 1t s
possible to differentiate a program P frowm o
mutant P* , then 1t 15 possible to differ«r-
tiate it with a single test case. Since Llher.
are at most 2nm+np mutants, we have the f.l
lowing theorem.

THEOREM 6: If for a given program P there
exlsts an adequate test set T with respect .
the mutant operations, then there exists a te:.t
set T' with no more than 2nmtnp elements
that is also adequate.

The theorem 1s strengthened by the fact
that the constructive method of mutant testinu,
that is, choosing a mutant and finding a test
case to eliminate :it, results in a test set of
no more than the indicated size. Furthermore,
1t 18 probable that the test set w.ill be much
smaller, since empirical evidence suggests that
a single test case may eliminate a large nunbnr
of mutants [3].

VI. CONCLUSIONS

In this paper 1t has been shown that by
tising mutation aralysis a relatively small se*
of test cases (l:inear 1n the size of the deci-
sion table, versus exponential for explic:t
enumeration) can be used to infer a very stro:
conclusion concerning the correctness of a pr -
gram. We can show, using our methods., that 1°
a program satisfies these test cases then if _¢
1s 1ncorrect, it 1s incorrect in a very dramat::
fashion, and 1t may be possible, using other
methods (say specification), to insure tha:
this 1s not the case.

This result 1s in striking contrast to tr.e
usual view, which holds that testing 1s of el-
most no help in showing a program correct. In
view of the complex problems associated with
program proving, we fell 1t makes good econamid
sunee Lo investigate the capabilities of test:::
performed 1n a systematic and rational fash:ion

These results suggest a paradigm for re-

106

Sedrel 1 other modess ot jruyramming. Poss: -
:rlyties for future work are lirear recurrences
WL ISP type functions), or pattlal recurs:ive
tunctions,

on the other hand, i1n [2) a number of em-
yirival observations of FUORTRAN programs are
a:ven that fortify the hope that a theory along
the lines of the une jpresented here might be
developed tor that probler domain.

Taken all together, this data suggests that
in the future inutation analysis may becume an
important new tool in the tield of program
testing.,

ACKNOWLEDGEMENTS: We would like to thank Fred
Jiyward for a careful reading ol an earlier
draft, and Richard Ladner for helping to sim-
i taly some of the theorems.

‘i) A. Aho, J. Hopcroft ard J. Ullman.
Che Design and Analyste of domputer
Algortthms.
Addison-Wesley, Reading, Mass., 1976.
.<] R. DeMillo, R. Lipton and F. Sayward.
PRUGRAM MUTATION: A Method of Determining
Test Data Adequacy.
To be presented at the ONR and Navy Compu-
ting Labs workshop on sSoftware Technol-
ogy Transfer (April 1978).

3] R. DeMillo, R. Lipton and F. Sayward.
"Hints on Test Data Selection.”
To appear in Computer, Vol. LL(4), April
1978,

{4} J.B. Goodenough and S.L. Gerhart.
"Towards a Theory of Test Data Selection.”
IEEE Tpran. on Software Engineering, SE-1,2
{(June 1975).

[~} M. Montalbano.

Decision Tubles.

Science Research Associates, Chicago, 1974.
v.] S.L. Pallack, H.T. Hicks and W,J. Harrison.
2 Desriston Tabies: Theory and Fractice.

John Wiley Sons, New York, 1971.
(7] R.T. Yeh (ed.).

Jurrent Trends in Prograrming Methodologys,

Vol. II,
Prentice-Hall, Englewood Cliffs, N.J.,
1977.

This work was partially supported by ONR Grant
NUGU14-75-C~0752 and NSF Grant MCS-76-814H4o.

349

T —————————— e L

-y

|

1.

ving

scme

aroving a program correct we prove that either a)

the program is correct, OCR b) no program 1in this

107

PROVING LISP PROGRAMS USING TEST DATA

_—— e —

Yale University
Department of Computer Science
New Haven, Ct.

and

University of California at Berkeley
computer Science Division

Berkeley, Calif.

INTRODUCTION

An idea proposed in [1] is the concept of pro-
individual programs correct with respect to

larger class of programs. That is, instead cf

108

class realizes the intended function. It is assumed
that most programmers at least know if the function
they are trying to compute can be realized in some
large c¢lass of programs, and therefore from a
theoretical point of view the introduction of this
disjunction may make the task of validating programs

vastly easier.

A previous paper has analysed programs written
in a decision table format [4]). In this paper we
will be concerned with 1lisp programs composed of
CAR, CDR and CONS with lisp predicates composed of
CAR, CDR and ATOM. Similar classes of programs have

been studied in [5,6,7].

Associated with each S~Expression X we can con-
struct a binary tree as follows: Consider the infin-
ite binary tree where each left arc 1is marked CAR
and each right arc CbR (call this the complete
CAR/CDR tree.) Starting with X at the root of the
tree, travel down each arc in turn taking the
appropriate CAR or CDR. Prune the compl2te tree each
time you reach an atom. The resulting finite binary
tree will be <called the projection of X (or
PROJ(X]). An example is shown in figure 1. Notice
the PROJ(X] is a representation of the structure of

X, and in invariant under the renamings of the atoms

of X.

DN PRV

ey

A

ad

109

Ae can 1lefine a relation ¢ as follows. Given
two S-expressions X and Y we will say X < Y if
PROJ(x] is the intersection of PROJ[(X] and PROJ[Y].
Using <tnis relation one can show the set of lisp
structures form a lattice. (The proofs can be adap-
ted from Summers(7], although he defines the projec=

tion slightly differently.)

We will make the conventioan that all S=-
Expressions (we will use the less clumsy expression
point) have unique atoms. Certainly if two programs
agree on all such points they must agree on all
inputs. Hence we c¢can do this without loss of gen-

erality.

We will call a lisp program a Selector program
if it is composed of just CAR and CDR. We will call
it a Straight line progiam if it is a selector pro=-
gram or is formed by CONS on either selectors or

other straight line programs. We will <c¢all it a

Predicate program if it has the following form

COND(ATOM(Gi(X)) -> P1(X)
T =-> P2(X))
Where the G's are selectors and the P's are straight

line programs or other predicate programs.

Assume we have a function F which we know can

ce computed 0y a program in some schemata class S.

110

We have a program P in S which we wish to show com-
putes F. We assume we have some method of verifying
that P(X)=F(X) on a finite number of test cases (say
by hand calculation.) We wish to show that there
exists a finite set of test cases T such that if P
correctly computes F on every element of T then
either 1) P correctly computes F for all inputs, or
2) no program in the schemata class S correctly com-
putes F. This goal is similar to that of mutation

analysis [1-4].
Call such a test set Adequate.

We then wish to discover conditions under which

we can construct adequate test data.

2. STRAIGHT LINE PROGRAMS

-

wWe will say a program P(X) is Well formed if
for every occurrence of the construction CONS(A,B)
it is the case that A and B do not share an immedi-
ate parent in X. The intuitive idea of the defini-
tion should be clear: a program is well formed if it
is not doing any more work then it needs to. Notice

that being well formed is an observable property of

programs, independent of testing.

We can define a measure of the complexity of

straight 1line programs by their CONS-depth, where

377

m

CONS-depth is defined as follows:

1)

Q)

The CONS-depth of selector function is zero.

The CONS~depth of a straight line program P(X)
= CONS\P1(X),P2(X)) is 1T+MAX(CONS~-

depth(P1(x)), CONS-depth(Pz))).

LEMMA 1: If any two selector programs compute
identically on any point X, they must compute
identically on all points.

PROOF: The only power of a selector program |is
to choose a subtree out of its input and return
it. We can view this process a selecting a
position in the complete CAR/CDR tree and
returning the subtree rooted at that position.
Since there 1is a unique path from the root to
this position, there 1is a wunique predicate
which selects it out. Since atoms are unique by
merely observing the output we can 1infer the
subtree which was selected. The result then

follows.

LEMMA 2: If two well formed programs compute
identically on any point then they must have
the same CONS-depth.

PROOF: Assume we have two programs P and P

] 2
and a3 point X such that PI(X) = P2(X) yet the

CONS—depth(P1) < CONS-depth(Pz). This then

112

implies that there is at least one subtree in
the structure of P2 which was produced by CON- -
Sing two straight line programs while the same
subtree in P1(X) was produced by a selector,
But then the objects P2 CONSed must have an -
immediate ancestor in X, contradicting the fact

that P2 is well formed. -
THEOREM 1: If two well formed straight line -—
programs agree on any point X then they must
agree on all points. -
PROOF: The proof will be by induction on the -
CONS-depth. By 1lemma 2 any two programs which
agree at X must have the same CONS-depth. By -
lemma 1 the theorem 1is true for programs of
CONS~-depth zerc. Hence we will assume it 1is
true for programs of CONS-depth n and show the -
case for n+1.
If program P1 has CONS-depth n+1 then it must
be of the form CONS(P11,P12) where P11 and P12 have -
CONS=-depth no greater then n. Assume we have two
programs P1 and P2 in this fashion. Then for all Y:
P1(Y) = PZ(Y) IFF -
CONS(P11(Y),P12(Y)) = CONS(P21(Y).P22(Y)) IFF
Hence by the induction hypothesis P1 and P2 -

°7G

o
\ 113
)
' must agree for all Y. 1
= We define a test point to Generic if by itself
1t constitutes an adequate test set as defined in
the introduction.
Corollary: For any well formed straight line 1lisp
~ program, and unique atomic point for which the func-
tion is defined 1s generic.
- 3. PREDICATE PROGRAMS
de can view the structure of a predicate pro-
gram as a opinary tree. Associated with each interior
- node is a predicate and associated with each leaf is
a straight line program (see figure.)
We will call a predicate program Well formed if
1) each of the straight line programs associated
- with each leaf are well formed, and
- 2) for each leaf on the space of all possible
inputs there is at least one item which passes
all conditions leading to that leaf and causes y
- the associated straight line program to be exe-
cuted.
Notice that whether a program is well formea or
! — not 1s an observable fact independent of testing.
- 280

i, sk - U So YIS —-

114

For notation we will denote the leaves going
from left to right by 1. iz1,..n. Let ey i=1,..n be
the set of straight line programs associated with
the leaves. We will assume that for no i,j i#J is it
the case that e is equivalent to e.. Notice again

J
theorem 1 gives us an effective method to test this.

Given a well formed predicate program P is S we
construct a set of n data points d1, N dn such
that di follows the path to leaf li and executes the
program e correctly. Call this set T1. There is an

obvious effective procedure to generate such a test

set.

LEMMA 3: Given any well formed program P in S which
evaluates correctly on each element of T, at least
one data point di in T must exercise every straight
line leaf program in P,

PROOF: Assume we have a program P' satisfying the
hypothesis but for which the conclusion is false. By
the pigeon hole principle there must be at least two
points di and dj which were evaluated by different
leaves in P but which are evaluated by the same leaf
in P'. Let f denote the straight line program which
evaluates these points in P°. Since the d points are
generic this implies that e; 1s equivalent to f. But
also ej is equivalent to f. Hence e, must be

equivalent to ej which is a contradiction.

115

Corollary: Given any well {ormea prcgram P in S
whlich evaluates correctly on each element of T, the
leaf programs of P’ are simply a permutation of

those of P.

It might seem that exercising ali the paths of
P* is sufficient to show it is equivalent to P. But
this is not the case. We might simply have con-
sistently chosen the right path for the wrong
reason. To rule out this possibility requires a more
stringent set of test cases. We construct this test

set in the following manner.

For each leaf li and for each element dj in T1
construct a point dij in the following way. Consiaer
the infinite CAR/CDR tree. color each point RED
wnich 18 tested and found to be atomic on the path
.eading to the leaf li‘ Color the points which are
rested and found to be non atomic BLUE. As long as
L1t 15 not contalned 1n a subtree rooted at a red
scint and coes not contain a blue point in its sub-
tree, coclor a point red if it is atomic in dj' AS
~ong as it 1s not contained 1in a subtree rooted at 3
red point, color a point bdlue if it is not atomic in

a 1S then the smallest unique atomic point

o 3y

wnere the red colored vertexes are atomic and the

J_Jue vertexes non atomic.

116

Denote by T the set 'I'1 augmented wWwith these

points.

THEOREM 2: Any well formea program P' in S which
agrees with P on T must agree with P on all points.

PROOF: Assume we have a program P which satisfies
the nhypothesis, yet there 1s a point X such that

P{(X) and P'(X) differ.

The point X must be evaluated by some 1leaf li

in P, hence it must satisfy all the constraints

associated with that leaf.

This point is also evaluated by a leaf program
e, in P'. By lemma 6 some data item dj in T also
executes this leaf program. This implies that no
matter what the constraints are on this path in P°
(and we make no assumptions about what they might

be) they cannot interfere with the constraints along

the path leading the li'

But this then necessarily implies that point

d would be evaluated by e,

i in P and ey in P' where

ij
K £ % . inc -
« o 1. Since le
lier theorems a contradiction is obtained.

1s alsc generic using the ear=-

Corollary: There is an effective procedure to con=-

struct an adequate test set for predicate programs.

3r4
(]

117

4. RECURSIVE PROGRAMS

We will define a class of programs (én) as

tollows:
Tne input to the program shall consist of two sets

of variables: Sele:tor variables , denoted x,,

X, and Constructor variables , denoted y,, ...y,.

a program will consist of two parts, a program body
and a recurser.

A program body consists of n statements, each sta-

tement composed of two parts. The first part is a
Predicate of the form ATOM(t(x,)) where t(x,) is a
selector function and x; a Selector variablie. The
second part is a straight line output function cver
the selector and constructor variables.

A recurser is divided into two parts. The construc-
tor part is composed of p assignment statements for
each of the p constructor variables where Yy is
assigned a straight line function of the selector
variables and y;- The selector part is composed of m
assignment statements for the m selector variables
s¢ that Xy is assigned a selector function of
itself. The following diagram should give a more

intuitive picture of this class of programs.

Program P(xl....xm,y1,.r.y)

p1(xi]) =-> f1(x1,...xm,y1,...y)

peapey mn

118
p2(xi2) -> fz(x1,...xm,y1,...yp)
pn(xin) -> fn(x1,...xm,y1,...yp)
Y, <= 31(y1,x1,...xm)

y_ <= gp(yp,x1,...xm)

p

X <= hm(xm)

Given such a program, execution proceeds as follows:
Each predicate is evaluated in turn. If any predicate is
undefined so is the result of the execution, otherwise if
any predicate is TRUE the result of execution is the
associated output function. Otherwise if no predicate
evaluates true then the assignment statements in the
recurser and constructor are performed and execution con-

tinues with these new values.

We will say a variable is a predicate variable if it
is tested by at least one predicate. Similarly it is an

output variable if it is used in at least one output

function. A variable can be both a predicate and an out-

put variable.

We will make the following restrictions on the pro-

grams we will consider:

1) every recursion selector and every constructor must be

119

non trivial.

2) every variable is either a predicate or an output
variable.

3) there is at least one output variable

4) (freedom) for and 1<k<n and 1>0 there exists a set of
inputs which cause the program to recurse 1 times before
correctly exiting by output function k.

5) each output function is unique.

6) every constructor variable appears totally in at least

one output function.

Given a program P in Gn. let § be the wunion of 61

for i=1,n.

Let us assume we Xnow, on independent grounds, that
a correct program P' exists in §, furthermore that no
predicate, output function, selector or constructor in P'
has a depth greater then some constant u>3.
GOAL: We wish to construct a set of test inputs with the
property that any program P in § which executes correctly
on these values must then be equivalent to P'. The
existence of such a test set would then imply (under the

assumption that at least one correct program exists in §)

that P is correct.

we will use capital letters from the end of the

alphabet (X, Y and 1Z) to represent vectors cf inputs.

120

Hence we can refer to P(X) rather then

P(x1,...,xm,y1,...,yp). Similarly we can abbreviate tne
simultaneous application of constructor functions by C(X:

and recursion selectors by S(X).

We will use the initial greek letters to represent
positions in a variable, where a position is defined by =z
finite CAR-CDR path from the root. When no confusion can
arize we will frequently refer to “position d in ¥

whereby we mean position 4 in some X4 in X.

We can form a lattice on the space of inputs by say=-
ing X <Y if and only if for all selector variables Xy in
X are smaller then their respective variables in Y, and

similarly the constructor variables.

We can define the notion of "Pruning X at position
d" as follows: We will say Y is X "pruned at position <
if Y is the largest input <X where d is atomic. This pro-
cess can be viewed as simply taking the subtree 1in X

rooted at d and replacing it by a unique atom.

If a position € (relative to the original input) is
tested by some predicate we will say that the position in

question has been touched.

The assumption of freedom asserts only the existence
of 1inputs X which will cause us to recurse a specific

number of times and exit by a specific output function.

387

Ty

121

JQur first lemma snows that this can be made constructive.

LEMMA 1. Given 1> 0 and 1 < i < n we can construct an
input X such that P(X) is defined and while executing X P
recurses 1 times before exiting by output function 1.

PRCOF: Consider m+p infinite trees corresponding to the
m+p input variables. Mark in BLUE every position which
is touched by a predicate function and found to be non-
atomic in order for P to recurse 1 times and reach the

ith predicate. Then mark in RED the point touched by the

1th predicate after recursing 1 times.

The assumption of freedom implies tnat no blue ver-
tex can appear in the infinite subtree rooted at the red
vertex, and that the red vertex can not also be marked

blue.

Now mark in YELLOW all points which are touched by
constructor functions in recursing 1 times, and each
position touched by the itn output function after recur-
sing 1 times. The assumption of freedom again telis us
that no yellow vertex can appear in the infinite subtree
rooted at the red vertex. The red vertex may, however,
also be coloreda yellow, as may tne blue vertexes. It 1s
a simple matter -o then construct an input X such that
1) all BLUE vertices are non atcmic in X,

2) The RED vertex 1s atomic. and

I) all YELLCW vertexes are containec in X (tney may be

122

atomic)

It is trivial to verify that such an X satisif.ec

our requirements. A

Notice that the procedure given in the proof of
lemma 1 allows wus to find the smallest X such that the
indicated conditions hold. If « is the position touchec

5y the predicate after recursing 1 times call :this

point the minimal « point, or X

Freegdom implies no point can be twice touched, hence

the minimal d point is a well defined concept.

Given an input X such that P(X) is defined, let
FX(Z) be the straight 1line function such that Fx(X) =
P(X). Note that by the property of being generic, Fy 1is

defined by this single point.

LEMMA 2: For any X for which P(X) is defined, we can con-
struct an input Y with the properties that P(Y) is
cefined, Y > X and Fy £ Fy.

PROQOF: There exist some constants 1 and i such that on
input X P recursed 1 times before exiting by output func-
tion i. Let the predicate Pi test variable x. and let sj

J
be the recursion selector for this variable.

There are two cases, depending upon whether the cut-

put function f. is constant or not. If f. is not a con-

389

e Yoo

123

stant tnen since X is bounded there must be a minimal k >

1 such that the predicate pi (sK (xj)) is undefinea.

B8y lemma 1 we can find an input Z which causes P to
recurse Kk times before exiting by output function i. Let
Y = X union Z. Since Y > Z P must recurse at least as
much on Y as it did on Z. Since the final point tested 1s
still atomic P(Y) will recurse k times pefore exiting by

output function 1.
It is simple to verify the fact that FxtFy.

The second case arises when fi is a constant func-
tion. By assumption 6 there is at least one output func-
tion which is not a constant functicn. Let fi be this
function. Let the predicate Py test variable xj. The same
argument as before goes through with the exception that
15 may happen by chance the P(Y) = P(X) (i.e. P(Y)
returns the constant value.) In this case we increment K

by 1 and perform the same process and it cannot happen

that P(Y) = P(X). A

LEMMA 3: If P touched a location d, then we can construct
two inputs X and Y such that P(X) and P(Y) are dJefineq,
ana for any P’ in §. if P(X) = P'(X) and P(Y) = P (Y)
then P' must touch dq.

PROQF: Let Z ve the minimal d point. By lemma <& we can

construct an 1input X such that P(X) is defined, £ > I anc

FX £ FZ. et Y be X pruned at «.

124

We first assert that P(Y) is defined and FY = FZ' To
see this we note that every point which was tested by P
is computing P(Z) and found to be non atomic is alsoc non
atomic in Y. 4 is atomic in both, and if the ocutput func-

tion was defined on Z then it must be defined on Y which

is strictly larger.

Now suppose there existed some program P' such that
P'(X) and P (Y) were computed correctly but P' did not
touch d. We see immediately that this cannot happen since
all other positions are either the same in X and in Y or
they exist in X but not in Y. Hence if P'(Y) 1is defined

it would imply FX = FY, a contradiction. A

Define the positions which P touches without going'

into recursion to be the primary positions of P.

Given a program P to test our first task is then tc
construct a set of test inputs using theorem 1 which
demonstrate that each of the primary positions must be

touched.
Observe that this set contains at most 2n elements.

We will say a selector function f factors a selector
function g if g is equivalent to f composed with itself
some number of times. For example CADR factors CADADADR.
we will say that f 1is a simple factor of g if { factors g

and no function factors f, other then f itself.

125

Let uJs Jenote by J, 1=z1...,m :tne simple factors of

- cacn of the m recursion selectors. That is, for eacnh 1t

there 1s a constant li such that the recursion selector

s =olt)
X i
Let q = GCD(li i=1, ,m)
Let S be the simultaneous recursion selector where
- . .th o by/a .
tne 1 term is gy . Hence the recursion selectors of P
can be written as S9
We now construct a second set of data points in the
rollowing fashion:
- For each selector variable Xt
1) X 1S an output variable used in output function fJ'
= et o be the position first tested by pj after P(X) has
_ recursed to a depth of at least u2. Then wWwe generate the
. minlmal d polint.
- 2, %, 1s not an output variable, but is a predicate vari=-

aocie. Let d be the first time a josition with aJeptn

>
greater then u~ 1s touched 1n X, - First generate the :
minimal d point, then using lemma 3 generate two inputs

“nlch demonstrate that position d must be touched.
Notice that we have aaded no more then 3Im points.

THZOREM 1: If P' is in § and P computes correctly >-n all
21ata polnts computed so far. then the recursion selectors

of ?' must de powers of g .

G

126

PROOF: Observe the fact that if X4 is an output variable
in P, it must appear as a result in at least one input X
in our test data space, hence if P'(X) is correct X, must

be an output variable for P’ also.

The proof of theorem 1 will then rest on the fol-
lowing two cases.
Case 1. If L3 is an output variable. By construction
there exists some X in our test data space such that P(X)
recurses to a depth of at least 3u (<U2) before exiting
by the jth output function, where Xy is an output varia-

ble in f_.
e i 3

th

Assume that the i recursion selector in P' is not

a power of oy . Then somewhere before the ith variable has

recursed to a depth of u their paths must diverge.

Once the ‘1th

variable steps past the points where
the paths 1in the two programs diverge it can never have
access to the subtrees used in P by fj in 1its output.
Hence P' on X must halt before the it" variable has

recursed to a depth of u.

But if that is the case then its output functions
cannot access subtrees rooted any deeper then 2u. By con-
struction the correct output requires trees which can
only be accessed by going at least 3u deep, hence a con-
tradiction is obtained.

Case 2: 1If Xy is not used as an output variable.

QR

127

assume the recursi0n selector of x 1n P 1s not a pcwer

-

of o, . Then once tne variadles x, rave recursed past the
Jepth u they Wwi1ill te 1n totally different subtrees of

tneir lnput (see figure 3.)

By construction 1t 1s requiredq tnat P° touch a point
whose deptn _-s at least 3u. P' must therefore touch this
point before the ith variabple dJdiverges from the patn
taken Oy P, neace Z2for2 iL .23 7z: ~2ached a deptn of u.
But by definiticn P’ cannot touch any points deeper tnen

cu iIn this region, hence a contradiction is obtainea. A

Theorem 1 gives us a way to demonstrate that a pro-
gram Q must have the same recursion selectors, up to a
cower, as does P. Ae now wish to derive a clightly
stronger result. We wWwill show that tnere exists a con-
stant r such that the recursicn selectors of ? are

exactly st

Note that by definitica we Xnow that ST (that is.

tne maximum deptnh of any function in s") is less tnen u.

THEQOREM 2: If P' is in § computes correctly on all the
points we have so far computed, then there exists a 2con-
stant r such that the recursion selectors of P are

exactly st

PRCCF: We xnow by thecrem 2 that the recursion

selectors of P must be powers of o . For eacn 1<ilm

-~
PRSI

128

construct the ratio of the power of o, in P tc that of
P. Let X4 be the variable with the smallest such ratio
anc xJ be the variable with the largest. From the fact
that these ratios are different we will obtain a contrad-
1ction.

Case 1: xi is an output variable. By construction there

is an 1input X such that P (X) must recurse on X t¢c a

depth of at least uc

before outputing by a output func-
tion which uses xi . This implies that P must recurse at
least u times. Since in comparison to the program P the
variable xj is zaining at least one level each recursion
we have that either 1) P'(X) 1is undefinecd because xj ran
o>ff the end of its input, or 2) P'{(X) must halt before it

has recursed to a depth of u(u=1) in Xy in which case it

cannot have produced the correct output.

The argument in the case where x; 1is a predicate
variable, ©but not an output variable is almost the same

and is here omitted. /\

By lemma 3 we know that if P touches a location d,
then we can construct a pair of inputs with the property
that any program P° in § which executes correctly on
these two 1inputs must also touch d. We now present the

converse lemma.

LEMMA u4: If P works correctly on the test data so far

constructed, ana does not touch a location «, then we can

345

1 1 . »)
- : N *1--ﬁn‘--.nﬂﬂ--d-ﬂﬂ.ﬁﬁﬂﬂdﬂ..‘.ﬂ...ﬂ.ﬁh“‘

Sonstruct two 1nputs { and Y Wit Lne groperty tnav ar.y
2 1in 4 whicn executes <orrectly cn all tnis data musc
also not touch tne position d.

PRCOF: Let x, pe tne variable containing 4. Let v tre
maxlimum deptn any varlable has ootained just after tne
Lon

recursion selector passes the aepth of d. Let X be a

set of complete trees of deptn v+2u, pruned at d.

[}

There are two cases, depending upon whetner ?P(X) 1

defined or nact.

{3

case 1: P(X) 1s not defined. Assume P’ touches . Let
oce the minimal point in 7 (we need not bHe able to ccn-
struct this point.) We see tnat I<X. 3ut this then
implies that P ' (X) must be defined, a ccntradiction.

Case 2: P(X) is aefined. By lemma ' we can construct arn

input Z>X so that ?x £ F,. Let Y te I pruneg at q.

Assume P(X)=zP (X) and P(Y}=P ({) ana °° touches d.
If P(Y) 1s wuncefinea we are done. siice P (Y) mus. de
cefined. So assume P(Y) 15 21efined. .n this case., since -
Joes not tcocuch d, FY=FZ£FA' But 1f P tcouchec d. thas
since x<Y we woulu nave szFy, a contradiction. N

Next we snhow that the primary positicns of P must

ve exactly those of P.

Let o R be an criering of the primary posSi-
tions of P such that the depth of tne pesition tested by

c, 13 less then or ezual tce the zZepth of that tested oo

A€ Know the recursion seirectors of P are
This gives us at most u possipilities.

possibility we proceecd in turn as follows:

Assume position o4 (1 = 1,.. n) is not primary in

P'. We can construct a polnt which is then tested by P
earlier then Pi by imagining the root input was actually
the result of one recursion, and then looking at the
position o, in relation to tne earlier root (see figure

L)

Now one of two cases arises. Either
the new position is not touched by P, or

the new position corresponds 0 a2 position Pj Jj<i.

In the first case we can construct two inputs which
demonstrate the position in gquestion must not be touched.
The second case immediately rules out s’ as the recursion
selector, since by 1nduction Pj is primary to P and

nence P' would not by an element of §.

Notice we have increased our test case size by no
more then 2nu elements. The resulting test case then

gives us the following theorem.

THECREM 3: If P (X) = P(X) for X in our test set, then

the primary positions of P are exactly those of P.

[
L)
~J

13

Notice also tnat by the zZeneric property that tn:.s

also i1mplies the following corollary:

THECOREM 4: The output functions of P are exactly those

of P.

Once we have that the primary positions of P are
exactly those of P, we can now return to the problem of
showing that the selector functions of P must pe s9.
Consider each of the alternative possibilities for s” (no
more then U of them.) Since the rates of recursion of P
angd P' differ, one of three cases must arise. Either
1) P' touches the same point twice (which means P' is not
in § and is out of the running.)

2) P' touches a point which P fails to touch, or

3) P touches a point which P' fails to touch.

Since we only need to test for the last two condi-
tions we need augment out test case with no more then 2u

coints.
we then have the following theorem:
THECRFM S: The recursion sSelectors of P' must be exactly

those of P.

fushing onward we next want to consider the recur-
s.on constructors. Once wWwe have the other elements fixed,

nowever, the constructeors are almost given free. All we

g8

132

need do 1s to <construct p data points so tnat the ;:”
Jata point causes the program P to recurse once and ex:i%
using an output function which uses the ith construccor
variable. By the generic property and the fact that tne

ith

entire constructor variable is then open to inspec-

tion we have the the next theorem.

THEOREM 6: The recursion constructors of P' must be

exactly those of P.

What remains? Well the order in which the primary
positions are tested is the only thing we have not nailed
down. For each primary position d add xd to our test

data. We leave it to the reader to verify:

THEQOREM 7: The order of predicate evaluation in P- is

exactly that of P.

Counting the size of our test set, we see now that
it contains no more then 3(n+m)+2(p+u+nu) points. Com=-
bining all the theorems proved in this section we then

have our main result, which states:

THEQOREM: Given a program P in §, there exists a set of no

pa.

more then 3(nem)+2(p+u+nu) elements such that if P’
any program in § which computes the same results on this

set as P does, then P must be equivalent to P.

COROLLARY: Either P is correct or no »orogram in §

r— —

133

realizes the intenaged function.

5. AN EXAMPLE

The following example, taken from (6], will be used

1 - to illustrate some of the ideas here presented.
- The program is given by (6] as follows:
1 - (REVDBL
(LAMBDA (ARGY)
(COND
((NULL ARG1) NIL)
- (T (APPEND (REVDBL (CDR ARG1))
(LIST (CAR ARG1) (CAR ARG1]) .
i — We will translate it into the following form.
- REVDBL(X,Y) = ATOM(X) -> Y
Y <~ CONS(CAR(X),CONS(CAR(X),Y)))
- X <= CDR{(X)
= Using the formula ziven in the main theorem, we see
that a test set exists for this program containing no
" more then 20 points. However, if one follows the
- arguments given in tnis paper, one finas that actually
tne three points given in figure 5 suffice. This 1illus-
- trates the point that we have actually Dbeen rather
- iiberal in ocur counting, and usually a much smaller test
set can be {ound then the limit stated i1n our main
- result.
L

- - = R - ‘

(1]

€21

(5]

(61

(73

134

R.A. DeMillc, R.J. Lipton and F.G. Sayward, "PROGRAM
MUTATION: A new Approach to Program Testing~,
presented at the Navy Laboratory Computing Committee
Symposium on Software Specificationa and Testing
Technology, April 1978.

T.A. Budd, R.A. DeMillo, R.J. Lipton and F.G.

Sayward, "The Design of a Prototype Mutation System
for Program Testing", Proceedings of the 1978

National Computer Conference, pp 523-637.

R.A. DeMillo, R.J.Lipton and F.G.Sayward, "Hints on
Test Data Selection: Help for the Practicing Pro-
grammer"”, Computer, 11,4 (April 1978), pp34-41.

T.A.Budd and R.J.Lipton, “Mutation Analysis of
Decision Table Programs", Proceedings of the 1378
Conference on Information Sciences and Systems”, pp.
346-349, ’

S. Hardy, "Synthesis of LISP functions from Exam-
ples”, Proceedings of the Fourth International Joint

Conference on Artificizl Intelligence.

D.E.Shaw, W.X.Swartout, and C.C.Green, "Inferring
LISP programs from Examples", Proceedings of the

Fourth Internaional Joint Conference on Artificial
Intelligence. '

P.D.Summers, "program Construction from Examples”,
Ph.D. Thesis, Department of Computer Science, Yale
University, New Haven, Ct., 197S.

[

j—

NIl

135

/\

NN,

\ 2N /\’

Z e_; q Q‘, Q‘ e > ¢

?l ;- Pa arc Pradicore;

el)-~.es> avye SMIj'* [y ne

Pr‘u “\V?AW‘S

‘p' AR 2..

-
NT L

136

r—

q“'l

ana

137

The design of a prototype matation system

for program testing*

by TIMOTHY A. BUDD, RICHARD J. LIPTON and FREDERICK G. SAYWARD

Yale University
New Haven, Connecticut

and

RICHARD A. DEMILLO

Georgsa Insntute of Technology
« Atlanta, Georgia

INTRODUCTION

When testing software the major question which must al-
ways be addressed is *'If a program is correct for a finite
number of test cases, can we assume it is correct in gen-
eral.’* Test data which possess this property is called Ade-
quate test data. and, although adequate test data cannot in
general be derived algorithmically,' several methods have
recently emerged which allow one to gain confidence in
one’s test data's adequacy.

Program mutation is a radically new approach to deter-
mining test data adequacy which holds promise of being a
major breakthrough in the field of software testing. The
concepts and philosophy of program mutation have been
given elsewhere.? the following will merely present a bnef
introduction to the ideas underlying the system.

Unlike previous work, program mutation assumes that
competent programmers will produce programs which, if
they are not correct, are ‘‘almost’ correct. That is, if a
program Is not correct it is a ‘‘mutant’’—it differs from a
correct program by simple ¢rrors. Assuming this natural
premise. a program P which is correct on test data T is
subjected to a series of mutant operators to produce mutant
programs which differ from P in very simple ways. The
mutants are then executed on T. If all mutants give incorrect
results then it 1s very likely that P is correct (i.e., T is
adequate). On the other hand, if some mutants are correct
on T then either: (1) the mutants are equivalent to P, or (2)
the test data T is inadequate. in the latter case, T must be
augmented by examining the non-equivalent mutants which
are correct on T: a procedure which forces close examina-
tion of P with respect to the mutants.

At first glance it would appear that if T is determined
adequate by mutation analysis, then P might still contain
some complex errors which are not explicitly mutants of P,

* This rescarch was supported in part by NSF Grant MCS76-81486 and U.S.
Army Reseasch Grant DAAG-29-76-G-0338.

To this end there is a COUPLING EFFECT which states
that test data on which all simple mutants fail is so sensitive
that it is highly likely that all complex mutants must also
fail.

Readers wishing a further exposition of the ideas of mu-
tation and substantiation of the assumptions made are re-
ferred to References 2 and 10.

THE SYSTEM

A pilot system has been built to implement mutation anal-
ysis on programs written in a subset of FORTRAN. The key
features of this system are summarized in Figure 1. The
system itself consists of 10,000 lines of FORTRAN code.
and required six man months to design, implement and
debug.

Notice we claim the system is man/machine interacihve.
In general an attempt is made to assign tasks to both the
user and the machine processors which are best suited to
using their particular capabilities. One way to see this 1s to
view the system as a sort of ‘Devils Advocate'’. which
when confronted with a program asks very difficult ques-
tions about the motivation behind it ("*why did you use this
type of statement here, when an alternative statement works
just as well?"'). The job of the human is then to provide
justification (in the form of test data), which will give an
answer to such questions.

An overview of the structure of the system is given in
Figure 2. We point out that the language FORTRAN was
chosen for the first implementation merely as a matter of
convenience since it is in common use and there is a large
body of sofiware in existence to experiment on. The hean
of the system (roughly that shown within the dotted box) s
however, language independent, and given a sufficiently
general internal form to iniplement a new language one
would merely write a new input/output interface. Projects
are currently under way to implement mutation analysis on

138

National Computer Conference, 1978

INTERACTIVE

MACHINE INDEPENDENT

LANGUAGE INDEPENDENT STRUCTURE
MODULAR DESIGN

INTENSIVE MAN/MACHINE INTERACTION

Figure 1—Key features of the pilot mutation system

COBOL and C (an ALGOL like language) using the struc-
ture represented by the box contained in the dotted lines.

An attempt was also made to keep the structure of the
system largely machine independent. The system was orig-
inally programmed to run on a PDP-10 at Yale University.
Currently we are in the process of transferring it to a CDC
7600 at the Georgia Institute of Technology.

A single run of a mutation system divides naturally into
three phases the RUN PREPARATION phase, in which the
necessary variables to send to the mutation executor are
defined, the MUTATION phase, in which the actual muta-
tions are produced and executed, and the POST RUN phase,
in which results are analyzed and reports are generated. In
the following we will describe in more detail the structure
and effects of each phase.

The role of the run preparation phase is to initialize the
various files and data buffer areas used by the mutation
executor. It is characterized by a very interactive nature.
The first object the user is requested to supply is the name
of the file on which the FORTRAN subroutine resides. Then
depending on whether PIMS has been run previously on this
routine (in which case the internal form is stored on one of
the many files PIMS constructs, see below) the subroutine
is parsed into a concise internal format which is subse-
quently interpreted to simulate execution of the program. A

r—-—""—->"—-"—-—-- |
|
!
)
! |
| FILE WANDLEX \
|]
| I
|
! |
| |
| [
I]
o I [TL
N nARAGER
DrTIaraACe T ! CENEMATION
I !
| I
| |
!
[|
' I
[|
! MTANT EXRCUTOR :
!
| |
Lo = J

IF (A .LT. X(2)) ¥V =]

[SCALAR. A)]
[ARRAY1. X])
[CONSTANT. 2]
(AOP.SUBSCRIPT)
[ROP.LT])
[TRF.O]
[SCALAR. p)
[CONSTANT. 1]

[ASSIGN.O)
Figure 3

fragment of the internal code generated for a given statement
is shown in Figure 3.

The user is then interactively prompted for the test data
on which the program and mutants are to be tested. After
each test case has been specified the original program 15
executed on the test case and the results displayed so that
the user may satisfy himself that the results produced are
indeed correct.

After the test data has been entered the user is prompted
for a listing of which mutant operators he wishes to enable.
At present there are 25 mutant operators. These range from
very simple low level ones. such as replacing each data
occurrence (where a data occurrence 1s a scalar, constant
or array reference) with all other syntactically correct data
occurrences, to very high level mutations, such as deleting
statements or altering the control structure of the program.
A more detailed description of the mutations performed can
be found in Reference 3.

Instead of constructing multiple copies of the program.
for each mutant a short (four word) description of the mu-
tation to be performed is kept. Each time the mutant i« to
be run the original program is then mutated according to the
contents of this descriptor.

After the user has specified to the system his program,
test data and the mutant operators he wishes applied, the
system then enters the MUTATION phase. During this
phase there is no user interaction. Mutation descriptor rec-
ords are read in, one by one, and the mutation is produced
The mutant program is then executed on the test dat: and
marked either **dead,”’ meaning it produced resul:- LuTering
from the orniginal program on at least one test case, or “‘liv-
ing."" A dynamic record is kept of the number and percent-
age of living mutants of each mutation type.

When all the mutant programs have been tested the post
run phase is entered. In this phase statistics are displayed
indicating the results of the mutation run. In addition the
user can interactively view descriptions of those mutations
which have survived. He can also specify that certain re-

139

The Design of a Prototype Mutation System

RUN
PREPARATION
PHASE

Parse the program

J

Read the test data

Create the mutation Internal
descriptor records Form
File

0L

Test
Data
File

~—
<>

Information
File

(

POST RUN
PHASE

MUTATION
PHASE

Execute the mutants, Display results
keeping counts on

live mutants

and

Produce permanent
records

Figure 4

ports be generated in order to provide a detailed permanent
record of the mutation run.

At this point, or at a later date, the user can re-run the
system and augment his test data in an attempt to make the
remaining mutants fail. He may also specify that additional
mutant operators be applied to the program. This cycle can
continue until the user is satisfied that the current test data
adequately tests his program.

There are several files the system produces in order to
store information from one run to the next. Yhese are shown
in Figure 4, which outhnes the major functions of each
phase. The internal form file stores the parsed version of the
program. The test data file stores for each test case the test
data input and the results of execution of that test data. The
mutants information file keeps the mutant descriptor records
plus vanious other counts on what types of mutants have
been produced.

A COMPARISON OF PIMS TO OTHER DATA
TESTING SYSTEMS

Various systems have been discussed in the literature for
increasing confidence in the adequacy of test data, as the
PIMS system does, or automatically constructing test data

which meets some criterion. In this section we will repont
on experiments which show that the PIMS system is an
improvement in this area over other systems which have
been proposed.

The most widely known method of constructing test data
automatically are those systems which utilize path analy-
sis.*"7 Essentially, these procedures attempt to construct
data which force each .. tement to be executed at least
once, and furthermore which transverse each feasibie flow
path through the code at least once. In some cases, such as
loops. only an approximation to this can be made as the
number of flow paths may be infinite. Here it is usual to just
construct data which cause the loop to be executed at least
twice.

These same objectives are met with mutant analysis in a
number of ways, some directly by mutant operators, others
indirectly by the coupling effect. There are mutants which
cause cach statement in the original program to be replaced
by a TRAP statement, a special type of statement which 1f
ever executed causes the program to immediately abort.
Obviously, then if there is some statement in the program
which is never executed, changing that statement to a TRAP
statement will not alter the output of the program and hence
will easily be detected.

Checking that every decision path is taken is essentially

e

140

National Computer Conference, 1978

DO 10 I=1.J

0 CONTINUE

SE=asSCRIRTISE=S

DO 10 I=1.1

10 CONTINUE

A LIVE MUTATION IF THE LOOP 1S

ALWAYS EXECUTED ONLY ONCE.
Figure $

the same as checking that every predicate in the program
evaluates-at least once to both true and false. If this is not
the case, say the predicate always evaluated to TRUE, then
we can mutate the predicate in any way we desire as long
as it retains this property of always remaining TRUE. These
types of mutations are also usually quite obvious and easily
detectable.

Mutation analysis can also insure that each loop is trav-
ersed at least twice. The only way a loop can be traversed
only once (and all loops must be traversed at least once to
pass the TRAP statement mutations) is if the terminating
condition is the same as the starting condition. But in this
case the mutant which replaces the terminating condition by
the starting condition will survive (see Figure 5). This 1s
once more easily detected.

With this. mutant analysis possesses all the capabilities of

SUBROUTINE BSERCH(X.Y.N.A.IHIGH.LOW.ERR)
INTEGER X(N).Y(N).N.A.IHIGH.LOW.EFR.MID

C BINARY SEARCH PROCEDURE, IF X COMN'AINS A ON RETURN
C X(IFIGH) = A.IHIGH=LOW. IF NOT X(LOW) < A < X(1HIGH).
C T1F A 1S OUT OF RANGE ON RETURN ERR CONTAINS 1

ERR = 0

IF ((X(1)-A).CT.0) GOTO 11
IF ((A-X(N).LE.0) GOTO S

11 ERR =]
RETURN

5 LOW = |
IHIGH = N

6 1F ((IHIGR-LOW-1).NE.0) GOTO 7
RETURN

7 MID = (LOW+IHIGH)/2
1F ((A-X(MID)).GT.0) GOTO 10
IRIGK = MID
GOTO 6
19 LOW = MID
GOTO &
END
Figure 6

Replace 1F ((IHICR-LOW-1).NE.0) wOTO
by IF ((IHIGH-LOW-1).41.0) GUTU 7

Replace MID = (LOWHIHIGH) ‘0
by MID = (LOW+IHICH)-!
Figure 7

path analysis systems which have been discussed in the
literature.

Another class of systems for which extensive claams have
been made are those which detect uninitialized vanables and
dead code.® Uninitialized variables are caught as a conse-
quence of the interpretation process in the mutant system
Dead code is easily caught since an assignment made to a
dead variable can be mutated in any way whatsoever and
the program will remain the same.

A third class of systems for which there has recently been
much discussion involves symbolic execution of the program.
In one study® Howden analyzed 12 programs contamning a
total of 22 errors. He found that symbolic execution would
catch 13 of those errors, while path analysis would discover
only nine. In a similar study we estimated that mutation
analysis, using only the mutant operators in the present
PIMS system, would uncover 18 of the 22 errors. Of the
remaining four, three would probably be discovered if we
added two new mutant operators which the authors simpiy
had not thought about. Hence, mutation analysis is in certain
cases an improvement over symbolic execution.

As an example of the very subtle errors which mutation
analysis can discover consider the program to perform bi-
nary search shown in Figure 6. If it happens that N=] when
the subroutine is called (i.e., the vector to be searched
contains only a single element) then it is not difficult to see
that the program will loop indefinitely. It is not clear that
either symbolic execution or path testing would be sufficient
to discover this error.

When mutant analysis is applied to this program there are
two mutants generated (shown in Figure 7) which can only
be eliminated by a test case consisting of one element.
Hence the error is easily detected using mutant analysis.
(There is a second error in this program which is also un-
covered by mutant analysis. The discovery of that second
error is left to the reader).

FUTURE WORK

There are several directions in which work is currently
being pursued with respect to mutation analysis and the pilot
mutation system. The most obvious is to show he * a similar
system might be built around another language, and research
is under way to construct systems for COBOL and for C.

Another area of study is the design of an easy to use
language for the description of test cases which allows for
a vanety of features. Test datasets can often be quite
lengthy, yet two test cases can be very similar. Also, a user
often wishes just to construct a number of random test cases
following some specification. (Some of the pitfalls of using
random data to test programs are discussed in Reference 10

L e s

141

The Design of a Prototype Mutation System

where 1t 1s seen that mutation analysis can help in deriving
“'good’’ random test data.) Finding an easy yet powerful
method of solving this problem is the goal of one area of
research.

Finding a method to detect equivalent mutants is another
area currently being pursued. It is often the case that a
mutation will not produce a significantly different piogram
(replacing the sequence 1=1J=1 with the sequence I=] J=]
is a trivial example). We have observed that programs tested
have between one and two percent equivalent mutants. A
method to automatically detect and remove equivalent mu-
tants would allow us to provide even more significant meas-
ures of the adeguacy of a test data set.

We point out that as a consequence of the modular design
of the pilot system either of the above two major extensions
can be added without a significant reprogramming effort.

A final area of current interest is the study of mutant
operators. Certain operators seem to have a much greater
ability to detect errors then others. Analysis of data along
these lines would allow us to discover an order of application
of mutant operators which would maximize the cost/benefit
raho.

CONCLUSIONS

It has been shown that the ideas of program mutation can
be quickly and easily implemented as an interactive system
for program testing. The resulting system represents a cost
effective engineering approach to testing real world soft-

ware. Large subroutines (over a hundred statements long}
have been analyzed by our system with relative ease.

Mutation is a method of program testing which will sig-
nificantly raise the level of reliability in both new and exist-
ing software, and is a major advance in the area of software
testing.

REFERENCES

1. Goodenough, J. B. and S. L. Gerhart, ““Towards s Theory of Test Dsta
Selection,”' IEEE Tran. Soft. Eng.. SE-1,2, June 1975, pp. 156-173.

2. DeMillo, R., R. J. Lipton and F. Sayward, *'PROGRAM MUTATION—
A Method of Determining Test Data Adequacy,”’ in preparation

3. Budd, T. and F. Sayward, *‘Users guide to the Pilot Mutation System,””
Yale University Tech. Rep 114, 1977.

4. Ramamoorthy, C. V., S. F. Ho, and W. T. Chen, *"On the Automasted
Generation of Program Test Data,'” IEEE Trans. on Soft. Eng.. SE-2.4,
Dec. 1976, pp. 293-300.

S. Howden, W. E., ‘'‘Methodology for the G of Program Test
Duata," JEEE Trans. on Comp., C-24.5, May 1975, pp. 554-560.

6. Huang, J. C.. **An Approach to Program Testing.”' Computing Surveys.

7.3, Sept. 1978, pp. 113-128.

Miller, E. F. and R. A. Melton, *"Automsted Generation of Tesicase

Datasets,”” Proc. Ist Int. Conf. on Reliable Software, SIGPLAN Notices

10,6, June 1975, pp. S1-58.

. Osterweil, L. J. afd L. D. Fosdick, **Some Exp

~

with DAVE—A

Fortran Program Analyzer.”” AFIPS Conference Proceedings. Vol. 4%,

1976, pp. 909-915.

Howden, W. E., ‘'Symbolic Testing and the DISSECT Symbolk Evai-

uation System,”’ IEEE Trans. on Soft. Eng., SE-3.4, pp. 266-278

10. DeMillo, R., J. Lipton and F. Sayward, ** Hints on Test Data Selection.””
to appear in Compuler. April 1978.

hd

142

HEURISTICS FOR DETERMINING EQUIVALENCE OF PROGRAM MUTATIONS

Douglas Baldwin
and
Frederick Sayward
Department of Computer Science
Yale University
New Haven, Connecticut 06520
ABSTRACT
A mutant of a program P is a program M which is derived from P by making
some well-defined simple change in P. Some initial investigations in the
area of automatically detecting equivalent mutants of a program are
presented. The idea is based on the observation that compiler
optimization can be considered a process of altering a program to an
equivalent but more efficient mutant of the program. Thus, the {nverse

of compiler optimization techniques can be seen as, in essence,
equivalent mutatuion detectors.

1.0 INTRODUCTION

A mutant of a program P is defined as a program P’ derived from P by
making one of a set of carefully defined syntactic changes in P. Typical
changes include replacing one arithmetic operator by another, one
statement by another, and so forth. Program mutation has been used by
DeMillo, Lipton and Sayward as the basis for an interactive program
testing system [2]. The theory behind this system is that a set of test
data T adequately tests a program P if all mutants of P are distinguished
from P by efther failing to produce any result or producing a different
result for some element of T. On the other hand, 1f a mutant performs
identically to P then elther T does not fully test the program and
further cases must be developed, or the mutant is equivalent to P.

Obviously it {s impossible to develop test data that distinguish between

143

equivalent forms of the same program, and thus {t is desirable that
equivalent mutants be excluded from the testing process. Unfortunately,
user recognition of equivalent mutants has proven to be a difficult and
tedious task. Thus it is important that the system aid the user by
either automatically detecting equivalent mutants or by posing questions

which provide insights on how to do so.

Our goal is to develop heuristics by which equivalent mutants can be
recognized. The heuristics are primarily derived from techniques used to
optimize compiler code, since the process of optimizing compiler code can
be thought of as producing a series of mutants which are equivalent to
the original program. 1t is thus expected that some of the tests
developed to determine when an optimization is equivalence preserving can

be applied to determine when a mutation is equivalence preserving.

Once a body of heuristics has been developed to detect equivalence
of mutants it will be possible to develop a program to actually recognize
them in a program testing system. This system will probably be very
similar to the optimization phase of a compiler. It will generate some
representation of each mutant which can be easily manipulated and apply
the heuristics described below to determine i{f it is equivalent to the
orfpinal. 1f so then the mutant will be flagged as equivalent and will

be excluded from future testing runs.

2.0 PROGRAM MUTATION

as defined above a mutant of a program is a second program derived
from the first through carefully defined syntactic transformations.

rrogram mutation i{s the process of forming mutants from an input program.

144

The work described here is intended tc find ways of determining
equivalence of mutants derived as part of a process for testing FOR.ZAN
programs on the EXPER {4] testing system. The mutations made by EXPER
are chosen so as to duplicate as closely as possible the mistakes which a
good programmer might make in coding a FORTRAN program. Thus many of the
mutants involved, such as DO-loop end replacement, are specific to

FORTRAN. The mutations of interest are described below:

1. Constant Replacement: Replacement of a constant, C, with C+l or C-l.
kEx: A=1 becomes A=0.

2. Scalar Replacement: Replacement of one scalar by another.
Ex: A=B becomes A=C.

3. Scalar for Constant Replacement: Replacement of a constant with some
scalar variable
Ex: A=2 becomes A=B.

4, Constant for Scalar Replacement: Replacement of some scalar variable
with a constant.
Ex: A=B becomes A=2.

5. Source Constant Replacement: Replacement of one constant in the
program with some other constant found in the program.
Ex: A=3 becomes A=] where the constant 1 appears in some other
statement.

6. Array Reference for Constant Replacement: Replacement of a constant
with an array reference.
Ex: A=] becomes A=B(l).

7. Array Reference for Scalar Replacement: Replacement of a scalar
reference with an array reference.
Ex: A=B becomes A=C(1).

8. Comparable Array Name Replacement: Replacement of a reference to one
array with a reference to the same element of another array of the
same size and shape.

Ex: A=B(1,3) becomes A=X(1,3).

9. Constant for Array Reference Replacement: Replacement of an array
reference with a constant.
Ex: A=B(l) becomes A=3.

10. Scalar for Array Reference Replacement: Replacement of an array
reference with a refereance to a scalar,
Ex: A=B(l) becomes A=C.

1.

_ 12.
B 13.
B 14.

15.
_ 16.
_ 17.
— 18.
- 19.
- 0.
- 21.
- 22.
] 23,

Array Reference for Array Reference Replacement: Replacement of one
array reference by another.
Ex: A=B(1) becomes A=C(2).

Unary Operator Insertion: Insertion of one of the unary operators
! (absolute value), - (negation), ++ (increment by 1) or

-- (decrement by 1) in front of any data reference.

Ex: A=B becomes A=-B.

Arithmetic Operator Replacement: Replacement of one arithmetic
operator (+,-,%,/,**%) with another.
Ex: A=B+C becomes A=B-C.

Relatio: al Operator Replacement: Replacement of one relational
operator (.EQ.,.LE.,.GE.,.LT.,.GT.,.NE.) with another.
Ex: IF(A.EQ.B) GOTO 1 becomes IF{(A.NE.B) GOTO 1.

Logical Conne ‘tor Replacement: Replacement of one logical conractor
(.AND., .OR.) with the other.
Ex: A.AND.B becomes A.OR.B.

Unary Operator Removal: Deletion of any unary operator.
Ex: A=!B becomes A=B.

Statement Analysis: Replacement of any statment with a trap
statement whose execution causes immediate failure of the program.
Ex: GOTO 2 becomes CALL TRAP.

Statement Deletion: Removal of any statement.
Ex: GOTO 2 is removed, i.e. becomes CONTINUE.

Return Statement Replacement: Replacement of any statement by a
RETURN statement,
Ex: A=0 becomes RETURN.

Goto Statement Replacement: Replacement of any GOTO statement with a
GOTO to a different label.
Ex: GOTO 1 becomes GOTO 3.

DO Statement End Renlacement: Replacement of the end label in a DO
statement with some other label.
Ex: DO 2 I=1,10 becomes DO 1 I=1,10.

Data Statement Alteration: Changing the values assigned by a DATA
statement,
Ex: DATA A /2/ becomes DATA A /1/.

Unary Operator Replacement: Replacement of one unary operator by
another,
Ex: A=!B becomes A=+4B,

146

Obviously some of the mutations described above can produce mutants
which are equivalent to the original program. For instance, replacing
A=0 with A=10 does not change a program. It might be hoped that
detection of equivalent mutants would be easy, since the mutations
involved are so simple and well defined. Unfortunately this is not the
case. It is easily shown that the general problem of determining the
equivalence of two primitive recursive functions is undecidable [1]. If
we let Pl and P2 be FORTRAN routines corresponding to two arbitrary
primitive recursive functions we can show that the equivalence of mutants
is undecidable. Consider the following program to which the mutation

"GOTO Statement Replacement" has been applied:

GOTO 1
1 Pl

STOP
2 P2

STOP

The resulting mutant looks like:

GOTO 2
1 Pl
STOP
2 P2
STOP

Plainly these programs are equivalent if and only {f Pl and P2 are
equivalent. Since the equivalence of Pl and P2 is undecidable, the

equivalence of the mutant and original programs must also be undecidable.

The eas{est way to show that two programs are not equivalent is to
find some input on which they produce different outputs. This {s the
basic function of EXPER as a program testing tool, and thus many mutants
do not need to be tested for equivalence. At any given stage those

mutants which produce the same output as the original program on all test

147

data are called live mutants. Obviously it is only the live mutants to

= which sophisticated equivalence tests must be applied at all., Since the
equivalence problem for program mutants is undecidable, any equivalence
- testing process will not always be able to detect all equivalent mutants.
- Thus the final decision about whether a mutant is equivalent to the
original program might have to be left to the user. The goal of the
- testing process should be to make one of three decisions about any
mutant:
l. It is definitely equivalent to the original program.
= 2. It might be equivalent to the original program, but the information
needed to make this determination is not completely available., The
system should identify the needed information and ask the user to
- supply 1it.
3. None of the known tests are able to determine whether the mutant and
-— the original are equivalent. The system is unable to help the user
at all.
3.0 OPTIMIZATION TECHNIQUES
Almost all of the techniques used in optimizing compiler code can be
- applied in some way to decide whether a mutant is equivalent to the
- original program. Some are useful only in very limited sets of
situations, whereas others can be applied to many types of mutation. All
- the techniques discussed below can be applied widely enough that it would
be worthwhile to implement them in an actual equivalence tester.

The easiest way to implement these techniques is in conjunction with
a flow graph of the program being mutated. A flow graph is a directed
graph in which each node represents a statement or group of statements

through which program control flows linearly (basic blocks). Thus any

148

node in the flow graph represents a fragment of code which 18 entered
only at the first statement of the block and exited only from the last.
Furthermore there are no loops or branches within the node. The edges of
the flow graph represent branches within the program from one basic block
to another. Efficient algorithms exist for generating flow graphs from
programs, for instance the process outlined by Schaefer ({5], pages
12-20). Thus {t is reasonable to expect such a representation to be
avallable to the equivalence tester. Furthermore, since mutants are so
similar to the program from which they are derived, it will be easy to
derive the flow graph of the mutant directly from the flow graph of the
original in most cases. In the discussion below it is assumed that the
equivalence tester can examine programs at the statement and token level;
whether these entities are i{individual nodes in the flow graph or packed

many per node 1s irrelevant.

The various optimization techniques which seem applicable to testing

nutant equivalence are listed below.

3.1 Constant Propagation

Constant propagation involves replacing expressions involving
constants with other constants to eliminate run-time evaluation.
Generally the compiler keeps track as far as possible of the value of
each variable throughout the program. At any point where an expression
involves only variables whose values are known the result of the
expression can be computed at compile time and placed in the program as a
new constant. Thus this optimization applied to the code fragment

A=l

Bm=2
C=A+8

mm.m.,.. -

149

would produce the equivalent code

A=}

B=2

C=3

An elegant scheme for global program analysis is given by Kildall

[3}. This scheme assoclates with each statement of the program a pool of
data which are being propagated through the program. Such data pools can
be used for constant propagation by letting the elements of the pool be
ordered pairs whose first element represents a variable and whose second
element represents a value. Other applications of this approach to
program analysis are discussed below. This scheme is {deally suited to

the needs of an equivalence tester.

3.2 Invariant Propagation

Invariant propagation is similar to constant propagation in that it
involves associating with each statement of the program a set of
invariant relationships between data elements. For instance, invariant
propagation will note such things about a program as “X<0" or "B=1". As
indicated by the last example constant propagation is a special case of
invariant propagation. This technique is of limited use in compilers,

but {8 very powerful for detecting equivalent mutants.

Invariant propagation can be implemented using Kildall’s scheme for
constant propagation by replacing the varifable and value pairs with
triples of the form <{object>, <relation>, <object>. Each <object>
represents either a variable or constant, and <{relation> 1is one of the
algebraic relations <, >, =, ¢, >, or <>. The only difficulty is that an

invariant propagation algorithm should be able to replace a strong

150

relationship with a weaker one (i.e. replace "A=1" with "A>1"). The
propagation algorithm should also be able to apply transitivity to deduce

relationships such as "A<O" from the relationships "A<B" and '"'B<O".

3.3 Common Subexpression Elimination

One of the optimizations frequently performed by compilers is to
recognize subexpressions which occur many times but only need to be
evaluated once. For instance, in the code fragment

A=X+Y

B=X+Y+Z
The expression "X+Y" 1is evaluated two times. The common subexpression
can be eliminated by evaluating it once and assigning the result to a
temporary variable T, yielding:

T=X+Y

A=T

B=T+Z

Kildall (3] demonstrates how his scheme for global analysis can be
applied to common subexpression elimination. In this application the
data pools are sets of expressions which are partitioned into equivalence
classes such that all expressions in equivalence class E have the same
value. Thus the example above might have sets as shown below, where "|"
divides equivalence classes: (Note the addition of a CONTINUE statement
to show the set after the assignment to B.)

A=X+Y {}
BuX+Y+2 {A,X+Y)}
CONTINUE {AX4Y | B,X+Y+4Z A+Z}

Note that the algorithm described by Kildall generates equivalent

151

expressions which are not used in the program, such as A+Z in the same
- partition as X+Y+Z above. This feature allows the widest possible range

of equivalent expressions to be recognized.

3.4 Recognition of Loop Invariants

A common optimizing technique removes code from inside loops 1f the !

execution of that code does not depend on the iteration of the loop.

Thus a loop of the form

DO 1 1=1, 10
A(1)=0
— 1 B=0

would be replaced by

DO 1 I=1, 10 ‘
1 A(I)=0 {
B=0
Since many of EXPER’s mutations change the boundaries of loops,
s
- techniques for recognizing when code can be removed from a loop can be
useful in detecting equivalences. Conditions for detecting operations
- which can be removed from loops are given by Schaefer ([5], pages
1
122-134). 1
- 3.5 Hoisting and Sinking :
- Hoisting and sinking are related to removal of code from loops in
that they involve moving code which would be repeated several times tc a
- place where it will only be executed once. Thus the code fragment
IF(A.EQ.0) GOTO 1
- C=0
B=2
GOTO 2
1 C=1
= B=2 ,
2 etc.

- =% Lo

152

could be replaced by
B=2
IF(A.EQ.0) GOTO 1
c=0
GOTO 2
1 Cc=1
2 etc.
Here the assignment B=2 has been hoisted to a position before the
conditionally executed part of the program. Similarly sinking involves
moving code to a position after some set of blocks. Mathematical rules

for detecting the feasibility of hoisting or sinking are given on pages

115-119 of Schaefer [5].

3.6 Dead Code Detection

Dead code detection involves the identification of sections of a
program which will either never be executed or whose execution is
irrelevant., An example of typical dead code is the fragment below, in
which the second assignment to A kills the first:

A=B+C
A=0

Schaefer {5] discusses rules for detecting dead code of this form on

pages 156-161.

Another example of dead code 1s the case in which one or more basic
blocks of a program are not connected to the rest of the flow graph.

Then, as long as there is only one entrance to the program some section

is never executed and can be removed entirely. This case is not expected

to arise very often in programs written by humans, but mutations may
easily make a large part of a program inaccessible from the entry node.

For example, consider the following mutant of a program:

153

A=l
RETURN
B=A+2
etc
Here the insertion of the RETURN statement has made everything between it
and the next label which is referenced in a GOTO inaccesible. This type
of dead code is easily detected by examining the flow graph of the

program in question.

4.0 APPLICATIONS

Each of the above optimization techniques can be applied to detect
equivalent mutants arising from one or more of the mutations applied by

EXPER. Each is discussed below.

4.1 Constant Propagation

Constant propagation is most useful for detecting cases in which a
mutant is not equivalent to the original program. Any mutant which could
affect the known value of a variable can be detected in this fashion.
The mutants most easily checked using this scheme are those involving
replacement of one data reference with another (Constant Replacement,
Scalar Replacement, Scalar for Constant Replacement, Constant for Scalar
Replacement, Source Constant Replacement, Array Reference for Constant
Replacement, Array Reference for Scalar Replacement, Array Name
Replacement, Constant for Array Reference Replacement, Scalar for Array
Reference Replacement, Array Reference for Array Reference Replacement,
and Data Statement Alteration). Equivalences which may be detected, but
with lower probability, are those involving changes to expressions

(Arittmetic Operator Replacement, Unary Operator Removal, Unary Operator

154

Insertion, and Unary Operator Replacement). It is possible that
equivalences involving actual changes to the program flow could be
detected, but it should be much easier to detect these by comparing the

flow graphs.

The mechanism for testing equivalence of mutants using constant
propagation is as follows: At all points subsequent to the mutation
compare the constant pools of the original program and the mutant. If
they differ {t {s likely (though not certain) that the nutant 1is not
equivalent to the original program. The following example demonstrates

this form of detection:

Original Program Mutant Program
Code Constants Code Constants
A=] A=2
B=A+2 (A1) B=A+2 (A,2)
etc (A,1),(B,3) etc (A,2),(8,4)

Here a mutation has replaced the assignment of ! to A with an assignment
of 2. The change in the program 18 reflected in the changed constant
pools following the mutation. Unless the assignments to A and B are dead
it {8 reasonable to assume that the mutation i8 not equivalent to the
original, and to try to develop test data which substantiate this

assumption,

A firm test of non-equivalence can be made if one of the output
variables appears in the constant pool for a RETURN statement. Then {f
the known value of this variable differs between the mutant and original
programs we know that they are not equivalent, since they return
different values on identical inputs., Obviously this test is valid only
if some path exists from the entry node of the program being tested to

the exit in question. This question can be resolved through dead code

155

detection.

4.2 Invariant Propagation

As shown above invariant propagation is really a super-set of
constant propagation, and thus it can be used to test all the sorts of
mutants discussed under constant propagation. However since a great deal
more information is carried by invariant relationships than by equality
to a constant, this technique 18 far more powerful than constant
propagation. It {s particularly useful for testing the equivalence of
mutants involving unary operators (i.e. Unary Operator Removal, Unary
Operator Ingertifon, and Unary Operator Replacement). In many cases these
operators only affect an expression if 1t has a certain relationship to
0. For example, taking the absolute value of an expression only changes
the program i{f that expression evaluates to a value less than zero;
negating an expression does not change anything if that expression always
evaluates to 0, and so forth, These facts can be used as shown in the

following example:

Original Program Mutant Program
Code Invariants Code Invariants
IF(A.LT.0) GOTO 1 IF(A.LT.0) GOTO 1
B=A A>0 B=!A A0

In this case the conditional allows us to determine an invariant (A>0),
which in turn allows us to determine that the mutant program is

equivalent to the original, since taking the absolute value of a positive

quantity is a no-op.

The power of {nvariant propagation {s vastly increased if the
propagation and testing algorithms can take advantage of transitivity and

replacement of one conditfon by a weaker one. Both of these features are

156

demonstrated below:

Original Program

Code Invariants
A=0
CONTINUE A=0Q
1 B=A A>0,A<S
C=1B AZQ,A(S,B-A
A=A+] A>0,A<5,B=A
IF(A.LT.5S) AZO,A(S,B-A
GOTO 1 A>0,A<5,B=A
Mutant Program
Code Invariants
A=0
CONTINUE A=Q
1 B=A Azp,A<5
C=B A>0,A<5,B=A,C=B
A=A+ A29,A<S,B-A.C-B
IF(A.LT.S) A>0,A<5,B=A,C=B

GOTO 1 A>0,A<5,B=A,C=B
Note that the algorithm for generating invariant pools recognizes the
loop in this program and is thus able to determine an upper bound on A.
Obviously the invariants shown assume that no other branches to label 1
exist. The relation A=0 1is replaced with the weaker A>0 when the
statement A=A+l 1s detected at the end of the loop. Applying
transitivity to the mutated pair C=!{B and C=B allows us to decide that

the mutant is equivalent to the original since B=A and A>0.

There is one important feature of EXPER which is useful in

generating {invariant pools: EXPER can perform run-time checks of array

bounds. Thus the following statements generate the invariant pool shown:

Code Invariants
DIMENSION A(5)
A(J)=0 le,JiS

Because EXPER checks array bounds any program aborts if J is less than 1
or greater than 5 in the assignment to A(J). Thus any program or mutant

for which the given invariants did not hold prior to executing the

_— e T T T T

157

assignment would have failed, and thus would obviously not be a correct

program.

4.3 Common Subexpression Elimination

Kildall’s equivalence partitions{3] provide an excellent way to
handle mutations in assignment statements. Changing an arithmetic
operator changes the expression placed in the equivalence class of the
variable to which the assignment was made. Similarly, mutations which
change an operand or destination in an assignment will produce changes in
the equivalence classes following the assignment. Thus comparing
equivalence classes can show that the mutant and original differ. As an

example, consider the program and mutant shown below:

Original Program

Code Equivalence Classes
A=R+C
etc. {A,B+C}
Mutant Program
Code Equivalence Classes
A=B-C
etc. {A,B-C}

Comparing the two sets of equivalence classes shows that A has a
different value in the two programs. As with constant propagation, we
can assume that the mutant is not equivalent to the original program, and

that test data should be developed to verify this assumption.

Common subexpression detecticn can also be used to show that a
mutant {8 equivalent to the original program. If the mutation has
changed part of an expression E to E°, but E and E’ are in the same

equivalence class, then the mutant {8 equivalent to the original program.

The example below demonstrates this situation:

158

Original Program

Code
A=B+C
D=B+C
X (A+E)=0

Equivalence Classes

{A, B4C)
{A,B+C,D}

Mutant Program

Code
A=B+C
D=B+C
X(D+E)=0

Equivalence Classes

{A,B+C}
{A,B4C,D}

Since A and D are in the same equivalence class we can conclude that the

mutation (replacing A with D in the subscript) did not change the

program. Note that since the equality of A and D is determined through

assignment of a common expression this equivalence would be hard to

detect using a simpler heuristic such as invariant propagation.

4.4 Recognition of Loop Invariants

Many mutations change the
is the DO-loop End Replacement
operator can also alter loops.

include more or less code than

size of loops. The most obvious of these
operator, although the GOTO Replacement
In cases where a loop has been changed to

in the original, recognition of loop

invariants can be used to decide whether or not the change is
significant. Examination of the flow graphs should make cases in which
loops have changed fairly easy to detect; thus it is easy to decide when
to apply these tests. The basic application simply involves deciding
whether or not the excess code (that is, the code which does not appear
in both loops) 1s loop invariant, If it is then the expansion (or
contraction) of the loop has not changed the outputs of the program. As

an example, consider the following code:

159
Original Program Mutant Program
DO 1 I=1,10 DO 2 I=1,10
A(L)=0 A(L)=0
1 CONTINUE 1 CONTINUE
2 B=0 2 B=0

The mutation above expanded the DO-loop to include the assignment of O to
B. Since this assignment is loop—invariant it does not matter whether it
is done 10 times inside the loop or | time outside it. Thus the original

and mutant programs are equivalent.

4.5 Hoisting and Sinking

These tests are used in situations similar to those in which testing
of loop-invariants {s used, except that they apply to cases in which the
code skipped or included by a branch is changed. Candidates for this
sort of change include GOTO Replacement and Statement Deletion. In these
cases the mutant and original programs are equivalent if the code added
to or removed from a basic block can be hoisted or sunk out of that

block. Consider the following example:

Original Program Mutant Program
IF(A.EQ.0) GOTO 1 IF(A.EQ.0) GOTO 2
A=A+1 ' A=A+]

2 B=0 2 B=0
GOTO 3 GOTO 3

1 B=0 1 B=0

3 ete 3 etc

In this case B is set to zero regardless of whether we do it at line 2 or
Iine 1. A more compact form (s produced by holsting the assignment to B,
namely

B=0

IF(A.EQ.0) GOTO 3

AwA+]
3 etc

Because this hoisting is possible the mutant i{s equivalent to the

s e : .

160
original program.
Because the code skipped by the statement "GOTO 3" can be hoisted
the branch is unnecessary. Thus the hoisting test will also show that

the mutant derived by deleting this branch i{s equivalent to the original

program.

4.6 Dead Code Detection

As mentioned above this test is very important in guaranteeing the
reliability of tests based on invariant propagation (including comnstant
propagation). 1t can also be used to test the equivalence of some
mutants in its own right. The equivalences which are most likely to be
detected by this technique are those arising from smutations that alter
the flow graph in some way. Such mutants include Statement Analysis
(since this mutant replaces any statement with an abnormal exit),
Statement Deletion (1if GOTO or RETURN statements are deleted), Return

Statement Replacement, and GOTO Replacement.

The best way to use dead code detection to test mutants of this form
is to examine the flow graphs of the two programs. If any node appears
in the mutant which is not connected to the rest of the graph it is
reasonable to expect that the mutant is not equivalent to the original.
(The only exception being the case in which the disconnected node
consists only of dead assignments. This situation is discussed in
general below). An example involving Return Statement Replacement {is

shown below:

161
Original Program Mutant Program
Code Flow Graph Code Flow Graph
A=l | | A=] |]
| i ttadd
B=2 | | RETURN
| L e
C=3 | I C=3 | |

The RETURN statement has broken the original single node into 2 nodes
with no connection between them. Thus one can conclude that since code
which is executed in the original program (assuming the node is
accessible in the first place) is not executed in the mutant, the two are

different.

A slightly different application of dead code detection involves
making sure that mutated code is not inaccessible or dead in the first
place. If it is then the mutant must be equivalent to the original
program. This application is identical to the application in compiler
optimization where code is identified as dead and excluded from the final
output. It applies to all mutant operators. An example of this sort of

analysis in testing equivalence is shown below:

Original Program Mutant Program
A=] A=2
A=B+C A=B+C

Here the first assignment to A is killed by the second assignment, and
thus any change to its right-hand side is insignificant. A more drastic

example shows inaccessible code. Again, the mutant to code which can

never be executed is unimportant.

Original Program Mutant Program
GOTO 1 GOTO 1
A=2 A=-2
1 etc 1 etc

e i

162

Some cases in which a mutation has killed a block of code can be
detected by using fnvariant propagation. The program fragment shown

below shows how this can happen:

Original Program

Code Invariants
IF(A.GT.B) GOTO 1
FLAGI=. TRUE. A<B
IF(A.LT.B) GOTO 2 A<B
FLAG2=.TRUE. A=B
2 etc A<B

Mutant Program

Code Invariants
IF(A.GT.B) GOTO 1\
FLAGl=,TRUE, ACB
IF(A.LE.B) GOTO 2 A<B
FLAG2=,TRUE.
2 etc ACB

Here the mutation has replaced the test A<B with the test A<B. However,
the invariant pool tells us that A is always less than or equal to B, and
thus the branch will always be taken, and the assignment to FLAG2 {is
dead. Note that without knowing the relationship between A and B it is

impossible to determine that this assignment is dead.

5.0 AN EQUIVALENCE TESTING POST-PROCESSOR FOR EXPER

The above ideas for determining equivalence can be applied in a
post-processor to EXPER in order to reduce the time spent by the user
dealing with equivalent mutants., This procegsor should be run after the
mutants have been executed on the test data, since experience shows that
as many as 90 per cent of the mutants can be eliminated on the first
testing run. Of the remaining mutants, those which are found by the
post-processor to be equivalent are flagged as such and the user need not

consider them further. Only thoge which are not found to be equivalent

163

are analyzed by the user to {mprove his test data. At any point the user
can manually over-ride the post-processor by declaring a live mutant to
be equivalent to the original program or by declaring one that was

thought to be equivalent to be live again.

The analysis proceeds much as it would in a compiler, with a few
exceptions which arise due to the fact that we do not necessarliy want to
produce efficiently optimized code. For instance, it is not important
that we worry about compiler-generated constants, since they can never be

mutated.

The first step is to express the original program as a flow graph,
as discussed above. This step may be done as part of EXPER’s parsing or
other processing of the program. As each live mutant is tested for
equivalence to the original program a flow graph is generated for it. 1In
many cases this flow graph will be isomorphic to the original so that
only the contents of one node need to be modified. In more complex
cases, where the shape of the flow graph is changed, the mutant’s flow
graph can still be derived from the original. EXPER represents mutants
as a descriptor record describing the change made to the original
program. These records fully describe the mutant, and thus allow the
mutant’s flow graph to be derived without re-generating it from a source

program,

Just as it is expected that mutant flow graphs can be efficiently
derived from the original flow graph, it is also expected that the
invariant and common expression pools described above will not have to be
computed for each mutant. Instead, the pools for the original can bde

computed at parse time and the mutant’s pools derived from them. As

164

suggpested above, many mutations cause a relat{on to chaunge, move an
expression from one equivalence (lass to another, or make similarly
limfted changes in the pools. These changes can be easily detected using
the descriptor record of the mutant, and can be made as local
modifications to the pools. Obviously, care will have to be taken that
any side effects of these local changes are detected, but doing so should

be significantly less expensive than regenerating the entire pool.

The invariant and common expression pools described above can be
combined into a single pool by replacing the individual variables or
constantsg involved in invariant relationships with the equivalence class
sets used to recognize common expressions. Note that using this scheme
the relationships "equal to" and "not equal to" do not need to be
explicitly represented, since if two objects are in the same set they
must be equal, whereas i{f they are not in the same set they must be
unequal, If the entire structure of sets and relationships 1is
represented as a directed graph whose nodes correspond to sets and whose
edges to relationships (obviously the edges must be labelled as to what
relationship) then the problem of applying transitivity becomes one of
simply following either edges labelled ">’ and ‘>’ or edges labelled ‘<’
and "<’ until either the desired relatlonship is derived or no edges with
the appropriate labels remain. Note that no cycles can occur which
involve such paths. Assume such a cycle did exist, for Iinstance a path
using only edges marked ‘<’ or ‘<’ from node A to node B and back to node
A. Since a path from A to B exists, transitivity implies that for any X
in A and Y 1a B, X<{Y. However, because a path from B to A exists we also
have the statement Y{X. Because X and Y are in different sets we know

that X is not equal to Y, and thus the derived relationships are

165

contradictory.

Representing the pools in this manner allows a great deal of
flexibility in testing equivalences. The following example shows how

this can happen:

Original Program

Code Invariant & Expression Pool
= A=B+C
D=E+F {A,B+C}
_ IF(B4+C.LE.D) GOTO 1 {A,B+C},{D,E+F}
fr - X(A+G)=0 {A,B+C}>{D,E+F}
i etc.
— Mutant Program
Code Invariant & Expression Pool
A=B4C v
D=E+F {A,B+C} 4
= IF(B+C.LE.D) GOTO 1 {A,B+C},{D,E+F} :
X(D+G)=0 {A,B+C}<{D,E+F}
etc,

In this example the conditional branch allows a relationship between B+C

-— and D to be deduced. Because the relationship 18 then applied to all

elements equal to either B+C or D we can conclude that replacing A with D]
in the subscript ylields a mutant subscript which is always greater than
the original subscript. This fact suggests that the mutant is not

equivalent to the original.

Once the modified invariant pool described above is formed it is
ugsed to aid the detection and removal of dead code. Once dead code has
1 been removed the mutant and original are compared to see 1f they are
- obviously equivalent. If so, the mutant is placed in the equivalent

mutants pool and not procesed further.

166

Since dead code is irrelevant to the state of the program, removing
1t will not make the invariant pools incorrect. However, it may be
possible that removing dead code enables i{nvariant conditions to be

strengthened. The following example shows how this can happen:

Original Program Mutant Program
A=0Q A=0
IF(C.GT.D) GOTO 2 IF(C.GT.D) GOTO 2
IF(C.LT.D) GOTO 1 IF(C.LE.D) GOTO 1
A=A+] A=A+]
1 etc 1 etc.

The mutation above is a case in which changing a conditional (C.LT.D
became C.LE.D) kills a block of code. The section of code killed 1is the
increment of A. Because of this increment the strongest statement that
can be made about A at label 1 is A>0. Because the Increment of A is
dead in the mutant this invariant can be tightened to A=0, assuming no

other branches to label 1 exist.

Those mutants which have not been eliminated by manipulation of the
flow graphs are then tested for equivalence based on loop invariants or
the possibility of hoisting. Any equivalences thus found are placed in
the equivalent mutants pool. Again, it is often possible to apply these
tests to the original program at parse time and deduce their results on a
mutant from the mutant’s descriptor record. Only rarely will it be

necessary to actually test the mutant.

The final phase of the post-processor applies the invariant pools
generated in the first phase to actual detection of equivalent mutants.
In this phase many mutants may be automatically eliminated, especially
those involving unary cperators. This is also a convenient place to

provide user interaction in the equivalence determining process. The

167

processor would be driven by a set of rules describing sufficient
conditions for equivalence of a mutant to the original. For instance,
there might be a rule concerning absolute values which can be
conceptualized as "Insertion of absolute value preserves equivalence if
its argument is greater than or equal to 0". When the processor is
unable to decide whether a rule is applicable by itself, it turns to the
user for help. This help is requested by forming a question from the
rule and posing this question to the user. For example, if an absolute
value operation has been inserted in front of a variable which does not
appear in the invariant pool for that statement the processor could
prompt "Is X always greater than or equal to 0?". If the user replies in

the affirmative the mutant is flagged as equivalent.

6.0 REMARKS

It has been shown above how many techniques from compiler
optimization can be applied to detect equivalent mutants of a program.

Several areas remain to be explored however.

In the EXPER system only first order mutations are considered

(i.e. mutants coming from one program change), but conceivably some
higher order métants may be worthy of consideration. In many cases the
heuristics described here can be extended very easily to detect
equivalent mutants of higher order. It is also true that in many cases
equivalence can be tested transitively, i.e. if program P is equivalent
to P’ and P’ is equivalent to P’‘ then P is equivalent to P’’. However,
it is often true that a high-order mutant can be equivalent to some

nrogram without having intermediate mutants equivalent to eitker. For

168 |

fnstance the following program fragments are equivalent:

IF(1.EQ.1) GOTO 1 -
and
:, IF(--I.EQ.0) GOTO 1
However, neither is necessarily equivalent to either of the intermediate -
mutants
IF(1.EQ.0) GOTO 1 -
or
IF(--I.E0.1) GOTO 1
Fortunately the problem of equivalcnce of high order mutants i{s not a -

serious problem because of the Coupling Effect: Test data that screens

out all first order mutants will screen out all higher order mutants (2].

f:
! Thus only first order mutants need to be considered in evaluating test §

data j

A more interesting problem involves the detection of equivalences |
which are very dependent on the form in which the programmer has chosen

to express his algorithm. As an example consider the fragment below

which tests whether or not a number N is prime. - ?

IF(N.LE.2) GOTO 3 ,
L=N-1
DO 1 1=2,L
IF(N.EQ. (N/I)*I) GOTO 2
CONT INUE _
3 PRIME=.TRUE.
RETURN
2 PRIME=.FALSE.
RETURN -

—

It i8 really only necessary to let the DO loop run from 2 to
INT(SQRT(N)). The test N.LE.2 means that only N greater than or equal to
3 will be used as upper limits for the loop. Since INT(SQRT(3))=l,

INT(SQRT(N))XN-2. Thus the mutation which replaces L with --L in this

169

loop is equivalent to the original. Because the equivalence of this
mutant is so closely related to the conceptual nature of the program it
seems very difficult to automatically prove it. This prodleam might be
solved through the interactive part of the post-processor. Specifically,
it is easy to find out where the mutant occurred, and the processor could

simply ask '"Is it acceptable for this loop be executed from 2 to L-1?".

Several techniques for detecting equivalent mutants have been
described. These techniques should be capable of finding a significant
number of cases in which a mutant is equivalent to the original program,
since experience indicates that most equivalences are very simple ones.
Often they involve the insertion of the absolute value operator, a case
that i{s particularly easy to detect using invariant propagation. More
complex equivalences can be tested interactively with the user. The
questions thus posed should help the user decide whether or not to

manually declare a mutant equivalent to the original program.

Several questions concerning equivalence detection remain open. At
several points in the above discussion it is asserted that the data
needed to determine equivalence (e.g. flow graphs, invarifant pools, etc.)
can be derived efficiently from the corresponding data for the original
program and the mutant’s descriptor record. While these assertions are
undoubtedly true in many cases, exactly how often remains unknown.
Further experimentation is required in this area, particularly with
regard for the following questions:

1. 1In what fraction of the cases is it necessary to generate a flow
graph for a mutant from scratch?

2. In what fraction of the cases 1s {t necessary to regenerate the
invariant pools for a mutant?

ram s

170

It 18 unlikely that a change to an invariant pool will affect only
that pool. On the average, how many pools will be affected? How
does the cost of determining all affects compare to the cost of
re-computing the invariant pools?

REFERENCES

Davis, Martin Computability and Unsolvability (McGraw-Hill Co., New
York, New York: 1958).

DeMillo, Richard A.; Lipton, Richard J.; and Sayward, Frederick
G. "Hints on Test Data Selection: Help for the Practicing
Programmer” reprinted from Computer 11, 4 (April 1978), pp. 34-43.

Kildall, Gary A. "A Unified Approach to Global Program Optimization"

in Conference Record of ACM Symposium on Programming Languages,
pp. 194-205, 1973,

Lipton, Richard J. and Sayward, Frederick G. "The Status of Research
on Program Mutation", reprinted from Digest for the Workshop on
Software Testing and Test Documentation, Dec. 1978, pp. 355-373.

Schaefer, Marvin. A Mathematical Theory of Global Program
Optimization (Prentice Hall, Englewood Cliffs, N.J., 1973)

7

CFP™S USFRS CUIDE

Allen Acree

- July 1, 1979

Document CP¥S_1.1

R B

172

The COCL Filet Mutation System (CFMSY is beinag
dovelore| at the feor ;ta Institute of Technolcay by Allen
ftcree, <ich Pevillo, Jeuanne Hanks, ard fred Suoyward. It is
“ased in nart on the cllot Yutation Syster (P1Ms) for
FoNT0AaN desianed st Yale University, and irplemented at Yale
Hriversity, fecrnia Tnatitute ot Techrolony, and the !nijver-
city of California, PPerkelv,

“rogoram ~utation 1s 3 metheodolouy for proarar testinqy,
Tha anderlyinn assuTction 1 that ornarammers rroduce
rreirams that are, in some <sense, nearly correct. The qgoal
of the mutaticn systen is to #1d in the selection of gqood
*epct data ky takinag a-dvantaae of this fact. A mutation of 23
arogram P is a procram P' that differs from £ in only 3
sinale minor chanae, such as substitutinaga one wvariable for
jnother in an assianment or changing a + to a8 = in an arith-
~otic excression., Usually the nueber of simple mutants of P
1r~ws nAuadratrically with the size of P, Naturally, some of
trhese mutations will produce mutant rroqgrams that are func~
tionally enuivalent to the original, but for tte others we
should he abte to find test data that will Adistinguish
netween the ouriginal croasaram and any mutant,

cpevs 1s desianed to take as input a4 fixed proaram &,
4nd to automatically produce mutants of it according to a
set cf mutant overatnrs, The system will then accept test
cases from the user, run the original proaram ard all its
~utants on it, and tell the user how many mutants have heen
"kilted", (A =mwutant ic killed when 3t fajls by program
faulr or rroljuces 3 fifferent output than the original
vreqram™.) The aim, of course, 1s to kill all the mutants,
or at least to kill erouyah so that the user 1s reasonabhly
certain that those remainina are tunctionally enquivalent to
the origqinal and could never be killed, At this point the
user has a set of test data that is sufficiently powerful to
Jdistinauish between the oriainal proaram and all its simple
(nonegquivalaent) mutants. rccordinra to the coupnling

rycothesis this test data will alsc he sufficiently powertul
*+n distingquish rnetween the oriaoinal proaram and any other
rroaram "close" to it (Multinle mutations.) This
nynothesis has been rrcved for certain classes of programs
and for certain Asfiniticons of '"close'", and theoretical work
continges in thiys area. Pececnt experiments with higher or=
Aar mutants of FORTRAYN routines also support this

fynnthesis,

Thus the user can, with the aid ot (P“S, oproduce test
fata that will distinaguish hetween the proaram used as input
ant any noroaram close” to it, Since we assume that the
~roaram used as iroput 1is close to a correct proagrar, the
test Jata will Ye sufficient to distinauish hetween the in~
rur rroaoram and the correct crograr, if they are not
eryivalent, So the test data will He sufficient to

Jemonstrate proqgram correctness, to a hiaqh deqree ot
certainty.

IMPLEMENTATION NOTES

The user of (P™MS yrovides the name of the file contain-
int1 the source program, This program should he in the sud>=-
set of the COLCL tanquane snecified elsewhere, CPMS rarses
this source roaram into an internal form suyitable for
interpretive execution. This internal form is also suitable
for "decomnilation'", and the user is provided with a decon-
riled version of his proaram. This "source Listing’ may not
ha textually identical to the oriainal source, hut it should
be equivalent.

The system then nroduces an internal file of atl
mutations of the oriainal nronram. These 3are stored, not as
complete nroarams, nu* rather as <htort descriptions of how a
mutant is to pe create!, Thne user is then asked to provide
a file or files of test data for his pronram, These files
ray be created outside CFMS usina the editor, or they may oe
created "on the fly" in (PYS, with editing carability being
restricted to backspace and line delete. However the user
choses to provide the input files, C(PMS dinterpretively
executes the source oroaqram on this test data, saving the
nutput. The user may examine the outrut and decide whether
or not to accent it. 1f he does, then the test data is run
against all enabled mutants, and the results of eacht are
compared to the results of the source, A mutant rrroducing a
different result is marked "killed". The wuser is tnen
rresented with a statistical summary, If he wishes, he 7may
also examine more detaileo information about the mutarts
still tivinag., Then the cycle repeats until either an error
is uncovered ir the oriainal rroaqrar, or the user is satis-
fied that all remeinina mutants are eauivalent to the
original. A CP™S exneriment may be interrupted ang
continued tater, with the system savira all information
neressary for the resumption of the run.

In response to the expersence of tryina to transfer
FIvs fr nne environment to another, we have decided to try
tn do ac ich os rossinle to isolate machine dependencies.
At the risk of nossihle inefficiencies, we will concertrate
recferences to file access technioues, character storaqe,
word lenath, and such mochine- and operating system=-
degendent features in a few smill routines, bor examoale,
PIMS contained 72 random access calls in the PFC FORTRAN
dillect. Fack of these had to he rewritten as a FRIVMOS call
during the transfer rocedure. In c0¥S, all random access
will be throuabh the routines RKEARAN and WRTRAN, Those two
(small) routines are all that need to Le mndified to inter=
face P¥S with 4 difterent operatinn system, Some machine
derendency is toleratedi in the internpretive execution phiase

174

of (CPYMS, since this is the most time-consuming rchase of tne
Tutation :;rocess. However, this dependency is kept to a
mirimum even here, The tufters wused in interpretively
executing nproarams are inteaner arrays of one or two
iimensions. Thre sizes of the arrays are parareters. we as=—
sume in Jdesicnina trese arrays that a single integer
consists of 3t Least 14 »its, (i,e. inteners are restric-
tel, wherever rossible, ta a ranqge nf +/= 72782)

VOTES 9N Tf CORCL FILOT MUTATION SYSTE™

1. Wwe limit ourselves tn 2 simple subset of the lanouage.

2. e limit ourselves to *wo nonrewindable senuential innut
fitles and two nonrewindable sequential outprut files.
This shouln he sufficient for such common applications
as makine sorted transacrions anainst a sorted master
tile and croducirg a4 trarsaction report and An updated
raster file,

T, Ragther thar providine for a "rredicate subroutine'” as in
PIYS we il simply check Tutant outnput anainst original
~rogram outuut toy determine whether they have read the
same number of inrut records an” nroduced identical out-
~nut files. It is helieved that just checking record
counts on irnut and cutrut will eliminate many mutants
without more detail comparisons,

L, Muytations to "= rerformed:

1 NECIVAL ALTE®ATION - Move imerlied decimal in
numeric items one nlace to the left or riaht, if
possitle,

? RFVERSFE Two-LFVIL TABRLE DPIMENSIONS

$ NCCUFRS CLOUSEF ALTFRATION -~ Add ar subtract one
from an nccurS clause,

4 INSERT FILLER = of lenath one hetween two itenms
in a record,

5 FILLER S17F ALTERATICN = Add or subtract one
from ltenatrn.

-

R

10

11

12

13

14

15

16

17

1%

21

2?2

23

2h

25

B

175

FLEMENTARY JTE™ REVERSAL

FILE RFFFRENCE ALTFRATION

STATEMENT NELETION - Reolace by null operation,
GO TO ==> PERFORM

PERFORM ==> 50 T0

THEN = ELSU RFVERSAL - Neaate condition,

STOP STATEMFNT SURSTITUTTION

THRU CLAUSE FXTENSION

TRAP STATFMENT RIPLACFMFNT

SUPSTITUTF ARITHMITIC VERK

SUISTITUTE OFFRA,OR IN COYIUTE S
FARENTHFSIS ALTERATION - Move one parenthesis)
one place to the left or right |

R
ROUNDED ALTERATION - Chanqge KCUNDED to ;
truncation, and vice versa.]
MOVF REVEKSAL - reverse cdirection of move in 9

sitnle %NVt & T0 d, if the result would he legal
in COA0OL,

LT CAL OFITRATNR KEPLACEMENT

SCALAR FO~ SCALAR RFPLACFMFNT = Substitute one
(non=table) iter reference for another, where !
the result wculd re Lleaal.

FoLSTANT FOR OCONSTANT REPLACEMENT

CANSTAMNT FNOR SCALAR RFPLACENMFENT

SCALAR FOK CONSTANT REFLACEVENT

NUYERTIC COMSTAMNT APJUSTYENT

176

COBOL SURSET ACCEPIED BY (CEMS

ERRNL I AT BAE T 0 g Y

FUQGRAM=ID. proaram=name,

[AUTHNR, corment-entry.]

- —-———

LIASTALLATION. comment=entry.)

TrAaTl=wRITTEN, corment=entry.]}

(CATE-COMDILEN. comrment=-entry.]

[otCux1TY, cormment=entry.)

[CEvpARKS. comrent-entry.]

- =

P A I T -]

(S URCT=CD"2yJfk. comment=entry,)

(CoJECIzCOYRUTLE. comrent-entry.]

TeofCleL=r22ts, 0 [Cu) IS mnemonic=name]

P - R il -

_—— i e - -——-—

SELECT file=name 6SSIuv TO {ILPUTY | INPUT2 | OUTPUTY
CUTENT Y o)

Fo file-name KECORD CONTAINS dintecer CHARACTFES
TLARFL RFCOKNS AWk {STAtDARD | Q®ITTED)]

e ceamnm-- P

level=nuaber {data=-name | FILLER)
[EENEFINES data-name=?)
[{rICIUEE | PICY TS character-strinal

[QCCURS dinteger TIYFS]
(VALUE 15 literal)

1/
|
- !
{
- (WORKING=STQRALE SECTICN.
{77 Llevel ertries.,]
- {recorti entriers _1...)
~ PRDCEDURL DIVISIOLN.
(piragrach=name.)
= ADD {ident=1 | Lit=1} [ident=? | lit=2)... {T0 |
GIVING) igent-m
CROUNDPEDY (ON S]2(ERRQF imoerative~statement] .
CLOSE filename-1 Tfilename-21 .., .
-~ CoOMPUTE identifier [KOUNDER] = arithmetic-expression
(ON SIZF ERRQR imrerativel 1
b
- pIVIDE (ident=1 | Lit=-1) (INTO | BY) {ident=2 | Lit=-2) |
(GIVING ident=-%) [20y40ed) [ON SIZE L&RQF imrerative) .
-A
£x1l. .
L]
gD TO nrocedure-name=1 [[obrocedure-pame=-2] ...
NEPENDING ON ddentifier] . d
If condition {statement=1 | KLEXT STATEMENT) .
[ELSE (staterment-2 | NEXI STATEM{NTY 1 .
bt YOVE idert~1 10 i-dent-? [ident=3],
. YULTITLY {(ident=-1 | (ye=1) #y {ident=C | Lir=2)
- [3IVING ifent=37 r2CuuntL) [OL SIZC EREQP imcerative) .
ey [IveLT filename=1 [trlename=-2])
- (0ygI2uT filename-? [(filename=41]
DERENRY (rocedure-name=1 [IkRU ~rocedure-name=2]
({1dent=1 | inteaer=1} TI1%ESY .
READ filerame RICOKRN [INTQ identifier)
AT END imnerative
2100 hU.
SUITIRACT (ident-1 | tit=1} [1dent=2 | Lit=2] .., tROV
{1dent-m | Lit=m)

(GIVING ddent=n] rrouunEp) [ON SI2F ERROR imnerativel .

£ record=narme [F50¥ identifier-1)
R ADVANCIMG {ident=2 | inteaer | mnemonic)} LINES] .

12> e

i
$-t

mi—

r-v-———'-""-'—‘—"—'-—-'—‘ i

178

TuE (Pug RuN

The four nohases of the (PMS run are the FNTRY phase,
the FRE=-RUN rhase, the MUTATION nhase, and th POST=-RUN
rhase. The FMTRY phase 15 executed only when the user first
enters the system, Thereafter the PKF=RUN, MUTATION, and
PeST=RUN ~hasoes 3re execcted cyclically.

I. The entry [hase.

The gession will Yegin when the user enters the system by K
toajina in and tynina seq cprsiagp (In either upper or lower =\
case.) 1f all is well, the systenr will respon-i:

WELCOME TO THE COBOL PILOT MUTATION SYSTEM

followed hy:

PLEASE ENTER THE NAME OF THE COBOL PROGRAM FILE:

The yser shoula Hdc just that, (PYS creates several working
files of its own, whose nimes are variations of the source
file name formed hy adainy suffixes to it., The system
checks to see if those workina files already exist., TIf they
46, th? user can either cAantinue the frevious run on that
source file where he left off, or he can start over from
scratch, Therefore, if the workino files already exist, the
system dsks:

DO YOU WANY TO PURGE WORKING FILES FOR A FRESH RUN ?

1f a naw run i1s needed the system heginrs with the message
PARSING PROGRAM

A <yntax error in the source nrogram automatically abarts
rhe CPYMS run, Tte user must correct the error ani re-enter
the systenm, frrors are renorted to the user as a source
~rnqra~ Line number an' the probat le cause.

The systen the 1ssues the messdsqes
SAVING INTFRNAL FORM
CREATING MUTANT DESCRIPTOR RECORDS

1. Tre tre-run pnase,

Ir this nhase the user supplies test data and turns on
mrytants, The system asks

00 YOU WANTY TO SUBMIT A TEST CASE ?

and the user stoult respand YFS or NC., The system will ask
WHERE IS INPUTT ?

(if there 3s a SFIECT statement for THFUTT)

te wrich the user should respond HFRF or <filename>

T it s wFPF, the user enters the input data tirectly, eni-
1n: wi*th the control=¢ for end of tile,

The syster then goes tnrouqgh the same procedure for INPUTZ,
if it has been named Iin 5 SILECT statement,

At this point the system sill execute the rrocram
interpretively on the test input., After finishina, the odut-
cut on files NUTPLUTT 2and OUTHUT?2 will be displayed . The
user is asked:

€

'

~

;e

179

IS THIS TEST CASE ACCEPTABLE ?

To which the user should respond YES eor MO,

It YIS, the test case (innut and output, alona with the time
used, and counts ot records read) are cataloqued for later
use with mutant proqrats. Lt NO, the test case 3s purqed
from memory.

Tris process of entering test cases iterates until all innut
coses for this pass have been entered.

At this time the syste~ will ask

WHAT NEW MUTANT TYPES ARF TO BE CONSIDERED ?

Tre user should respond ALL or NONF or SELFCT or shtould give
the numbers of the mutant tyces to be userd rext, SFLECT
causes the system fto list each tyre that has not yes been
considered, and then ask for types.

The list nof numnbers shnuld be terrinated with the command
STOP.,

111. The ¥ytation Phase

At this time the test cases vill e run anainst the mutant
frogram. The time that this takes derends on the numbher cft
test cases oresented, the lenath and "aensity' of the
proaram, an1 the types ot mutants currently beinc
considered.

After all the test cases have heen executea for each mutant
still alive, the system will display the statistics of the
run, indicatino the numner ot mutants created and the number
still alive of each tyse that has teen considered, as well
NS summary counts of nyw the dead rmutants cdied.

Tv. The Cost=Pun Phase

New the user has a chunce to view the mutants still rerain-
ina (either all of thern, or selected tyres, or one randonly
selected mutant of each tvred, or re can send information
atout the run to an outnout file for later nrintina. 7Yoo end
tte pont=-run ntase the yser tyres either HALT, ending the
seesion, “ut savina the temporary files for future resump-
than, or LOOF sendina the system back in a loop to tre cre-
ruri phayse to enter mare test “at, and/or consider new mutant
tvres.,

The user mav termingte the Session at any time the a command
1s requested by tyrin: KI1LL.,

The user can recerive an exrrlanation of his options at many
prrynts In the cyecle by tvpinag HILL,

180

OTHER WORK TN TROGRESS

mutation analysis ‘tepends on our ability to restrict our
attention to single mutations, to avoid &4 combinatorial ex-
~losicn in the numner of mutations performed, This 1is
justitied ny the cougling hypothesis that cays that ary test
4ata that is strona enouah to distinguish hetween a orogram
and all its noneauivalent sincle rutants is also strona
enouch to distinauish the oriaginal program from more comolex
mutants. A version of CP¥S has heen prepared to test this
rynothesis hy reandomly sampling higher order mutants,
executina them on test data ttat has Heen found sufficient
tor tirst order mutants, and reportina any hiaoher order
rutants that are not eliminated, alonyg with statistics on
how all of the other mutants were sliminated. It is hoped
twat this will nrovide us with an estimate of the likelihood
that a more compilcaten error would escane detection in the
mut4ation rrocess.

181

PILOT MUTATION SYSTEM (PIMS)
USERS' MANUAL

by

Donald M. St. Andre

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

o

182

TABLE OF CONTENTS

CHAPTEPR
I. INtroduUeEtioN. ceeeeocecesscossoscassnnsncans

11. Theoreti1cal OVErViIiew. . . oeeeeeeooeocooncons
I11. PIMS User’'s GUIAP .. ceeecerecannssacsoccosss

IV. Implementation Ang
Portability DISCHESION. i eeeenesncsccncnons

V. QUMM AT Yo s e veseoencocesonsssosssncaasssesnesses
APPENDICES

A. Error MessSdnNes ., ..cieeeececvosscsnssocsncccnsnsse

5. FORTRAN Larcuace SubhSet .. .i.iieeeeonas ce e e

C. Corrmands ANC AbbreviatiIONS . ieeeoecereseas .-

D. Description 0f The “utations fFerforrec,.....

. Enterino Anc Modifyino Files,. ..ot ienneas

Fe Sample PIMS RUN. . ceeecetoseanccanssoasnsosnas

BIELIOGPAPHY , cueuceecseoesocoreccsscoasosananscncnasns

183

CHAPTER 1
INTRODUCTION

A familiarity with the PRI“CS operating system and
the file management system, as applied to the PRINME-LOQN
computer, and a familiarity with the Scftware Tools
Subsysten [17])] is eassured. Petailed discussion nf the
respective command syntax will be avoided excent where
required for clarity or completeness,

This parer is a discussior of the coerational
processes and the imrlementation of 2 rilet system for
rerforming program mutations. Since this is an orerational
discussion] will not attemrnt 3 detailed thecretical study.
Such studies are available in [14,15].

1 will also describhe the opreration of =~ rilot
mutation system for cerforminc mutaticrs on FORTRAN
subroutines as a mears for testine rroaranm correctness, Tre
syster will accept an innrut file which ic assumec tou contair
a FORTRAN subroutine wvalid 1in the lancuace subset (see
Appendix R) ., hutations are generatecd according to orerator
commands and each mutant 1s checked for correctness.

The system is divided into three operational rrhases:
a pre-run phase, 3 mutation ohase, and & recst-rur phese, In
the nresent im;lerentation, the entire system is resicdent ip
approximately A7¥ words of virtual memory. The phacses are

independent enougqh procedurally that they may te overlayed

184

for use on a smaller merory contiaouratior.
In the nre-run rhase files are orened or createcd and

instructions are accepted for the rrocecssinc ir otrer

phases. If an "internal-forr" file cces not exist, & runr is

called an dinitial run. Throuahout 3l1 ¢rases of system

operation, activities are different for initial ang

subsequent runs,

In the wmutation phase, rutart*ts are createcd and

tested. It is the mutatiorn nhasse theat 15 the central nart

cf the systerm. Purirg the post=-run phkase, statistics are

displayed about the mutatiors testecd thue +far i~ the

processinag. In addition, files are <closed for use in

subsequent runs. One feature of the systen cesian 1is the

ability to execute the three phaces in secuerce an< then

loop back tc the nre~=run phase for acdrtionsl rrocessine,

In this manner, a wuser c¢an orerate the sycstenm ang nair

insight which s ther used in tailorina the resronsec ir the

next pass. This repetitive refinerent of the test —cata

contributes aqreatly tc the rarid conrveroence on a set of

acceptatb-le test datal14].

185

CHAPTER 11
THEORETICAL OVERVIEW

An increasing g(rocductivity burden cr sottrare
developers has contributec to the increasecd use of several
aids for the desian, implementation anrad detuaginc of
large-scale scoftware procducts, However, ttese @aicds are
intended for the actual frrograrmers and firct-Llevel
management. They rrovide gualitative descrirtions rather
than quantitative informption thst may re used throuchout a
management hierarcty. The tyrrical nanager will ash
guestiors Like, "HMow clese is the rroject tc somethina that
the wusers will find acceptatle as a first release?" and,
"How well has the prcgrar been tested?" The techrioues of
modularization[14], structurec rroaramrinc{i143, and fronrar
verification[9,1C] do not seem to answer these and sinilar
ouestions. This lack of answers arpears uniderstandable
tecause management should not te exnected to understand
programming lanauanes and/or sophisticatec mathematics. 1r
thic chapter, we will explain how a new testing aprrcach
known as program mutation[15) can he used tc rmanage scitware
effectively.

A statement of the proqram testina problem, as seen
by wanaqement, micht be: GCiven a nronramr rmocdule ard its
associated test cdata, hos well deces the data test the

module-=in quantitative terms? To solve tris protlem,

--

-

186

proarar mutation provides a3 aquantitative wmeasure ¢! thre
“goodness’” of the test cata. e make the assufption that
the hetter the test data (i.e., the more conrlete) the rore
thorougoh 2 proaram has teen tested. Anc in a3 scnewhat
simplicstic fashion, the more trorouch the testing, the more
corficerce can te rlaced in a rroarar's correctness.

A pilct syster which nerforms rrcoramr mutationl?1S)
rroduces a "score'" which irdicates the adeauacy of thre test
deta. The users attempt to imnrove uron thris "score' by
either aucrenting the test data or by ansverino "cuestions®
atout the proarazm being tested. These ouestions address thre
essernce of the prooram by forcing the user to comr-are
alternate fcrms 0of & oiven statement arc tc nake a nmecisior
whtether the many forns are enuivalent. Thkis rrocess of
supplyino test datu, Answering cuestions and interyretina
results continues interactively until the user is satisfieq
with the cguality of the tect data. teanvhile, all of the
data rerains available at each iJteratiorn for mangcerme:nt
review so that & quantitative answer to "how well a procram

has heen tested” can be cbtained,

Futation Methodology

Program testing cannot bhe deductive,. We krow

since rroaram testina attemrts to cerive firite teses ~.*.

which implies oeneral correctness., Tect rata of .

AD=ALOT TTH#

UNCLASSIFIED

GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A~=EYC F/&é 9/2

PAPERS ON PROGRAM TESTING/ (U}

1979 R A DEMILLO» R J LIPTONs F & SAYWARD NOOO14=79=C-0231

6IT=ICS=79/04

N

187
is known as "adeouate test data.” Ancd, since adequate test
data cannot 1in oeneral be cerived alaorithmicallylsl],
oroarar testina is not deductive,. for this inductive

process, we are therefore tryira to arswer a furdarental
ouestijor, "If a prooram is correct on scre finite numter of
test cases, is it correct in general?"” Several nmethoc have
ereroed vhich alloy one to aain confidence 1in test oats
adequacy. These methods include path analysis(1,2,5,¢] and
an associated technique, symbholic execution(7,2]), The tasic
idea of rath analysis s tc exercise all control raths
within a program, Svmholic execution atterrts tc derive thre
test data necessary to do this. Test data known to exercise
each flcwchart path at least once is tetter thar test cata
that does not. 1t should te arrarent that the possibility
of faulty analysis is very reall3].

Let wus approach the prcbler of testina from 3
differert viewprint and assume that experierced grocrammers
write orogrars which are either correct or are "alrmost®

correct. Stated more formally:
1f a ;.rogram is not correct, ther it s
a "mutant”--that is, it ciffers fror a
correct proaram by simple, well
understood errors [11].
Errors have heen found to bhe caused bty one cf three bhroad
catenaories{12)]. First, the specifications may be

misunderstood. Second, the sprecitfications may be

imp:lemented incorrectly these are the so-called "locical

PP S Y

WL

188

errors," Third, the errors wmay te of a2 purely clerical
nature. The grogram mutation methodolcay car lead tc the

detection of all three errcr types[1¢],

CHAPTER 111
PIMS USER'S GUIDE

This document, 1in conjunction with the apcencices,
describes how to use a terminal to orerate FIMS or the
PRIME=4CO computer. ALl ccmrunicatiors tc FIMS must be in
capital letters. Lower case letters are treated as errors
by PIMS,

PIMS consists of three sequentially executecd rhases
which are called the "Fre=Kun Phase,” the ““utation Fhase,"”
and the '"Post=-kKun Phase,” Throughout these rhases errors
may occur; and the types of errors detectecd by PIVS, the
error fmessages, anc¢ PIMS'! resction to errcrs are described
in “"PIF¥S Error Messaaes" (see Anpendix 2). In this chapter
it is assurec that no errors take nlace,

In the Pre-kur Phase the user tells FIVS what rrooran
is to undergo mutation analysis, cescrites those asrects of
the progran and the test datuy needed by F]J"L to execute
rutations, describes the types of mutations he warts done,
and partially describes the contents of his output file.
The user may also reguest that certain status inforration te
displayed on the terminal. Puring the Fre=Run FPhase the
user may terminate his rur, Lleavine his transient files
unchanged, by issuing a XKILL response as a reply to any PINS
prompt for irput.

In the Mutation Ffhase PIMS creates and executes

190

mutants. There is no user inrnteraction curira this ([hase,
In the Post-Run Phase the user caons letes his
description of his output file, He may also recuest that

certain status informaticn be disrlayec on the terrmiral.

Ruynning PIMS

In the explanations and exarrles t.at follow, "sStace"

ctharacters are siagnificant and should te wused exactly as
shown, In addition, any response tc a terminal guesticn
should te terminated by a '"carriage-returrn” or "newline"

character as approrriate for the user's csrecific ternmiral,
To begin the executinon of PIMS the user tyres the +tolloaine
command:

0K, SEG RUM>PIMS (see note btelow)
PIMS responds, as soon as it hes been loaced, bty disrlayino
the following message

PRE=-RUN PHASE

ALL INPUT MUST RE IN LUPPEP (CASE

Non=casual users of PIMS should consult with the PIMS
statf for details about login and file inteority.

- 191]
!

- The Pre-Run Phase

— The Pre-Run Fhase consists of six senventially
i

- executed parts, sore ontional depending cn whtether cr not

- PIMS is being run for the first tire on the civen rrocaram,

= PIMS requests the name of the Faw Froarar file bty disrlayirg

the following message:
ENTER THF RAW PROGPAYM FILE NAM[.

- Kaw Program files are created usina a text editor rrior to

entering PINS., A short tutorial on wusing this editor s

available as a lLooir option (see also Arrencdix), The user

_ types, on the next lire, exactly six characters which tell
. — PIMS the file in which the raw proaram resides. THis atso
- sets the file nomenclature conventionr,

192

PIMS File-Name Conyentien

The raw proaram file name is exactly six characters.

Wwe renresent this six character name ty the symbol <namre>.
Then the PI¥S system files are created and may be accessed
with the following suffixes.

<nare>.l.....Internal Form File

<name> T.....Test Nata File

<name>.C.....Correctress lNescriptor File

<name>.¥.....*Yutant Information File

<name>.C.....Rkepcrt Nutput File

<name>.D.....New Test Data tile

<name>.N.....New Mutant Inforratior File

<name>.P.....Predicate-subroutine internal file

NOTE: The user ic referrecd to Arcendix F for the

details of creating, editinc, anrcd mzintainina the

ras progran files vhich will te nrocessed bty FPIMI,

FI¥5 deiermrines the run tyre, either an dinitial run

on the rrogram or a subsecuent run, bty searchiro for a file
with the six character name entered anc a suffix of “.I" 1%
this file is found, the rum is considered to re a subsenuent
run: jf it 1s not found, the run is considered initial.
0nce the systen determines that a run §s subsecuent, the

user 1is qiven the opportunity to discard all previcus files

and start over.

turinga an initiat rur, PI¥S accerts instructions
about the routine being tested and ary asscciated test
cases. These instructions consist of tre sub=-rarts as

Amscribed below.

dad

r - Y

193

(1) classification of the Formal Parameters

PI¥S requests that the user cateqorize each forrmal rarameter

(for illustrative purposes let the variat.le be nared X) hy

successively displaying, until all raraneters are

- cateqorized, the following messaaqe:
CATEGORIZFE FORMAL FPARAMETFR

The wuser then types the keyword corréesfonogina to one ut the
categories INPUT, OUTPUT, or INPUT/OUTPUT, or tyres KRELP 5 f
-— he has forgotten details ano warts FI¥S tc display the

command keywords.

(2) Mutant Correctness Option
To determine whether mutant correctness is ceterrined by the
"predicate subroutine" methocd or the '"same as the rroaram"
- method, FI®S displays the followinn nessace:
IS MmMuvany COKRFCTINTSS NEFEVDENT ON A FREDICATE
SUPRCUTINE?
TYPE YES OR NO
- The user types in the appropriate reply. If YES is entered,

PI®S displays the predicate subroutine statement it has
found in the fPredicate Subroutine File, The user creates

this file prior to any initial runs with the aprrorriate

194

file name as described under file mane converticons.

PREDICATE SUPRAUTINE STATEMENTY
{the precicate suhroutine nane ana tformal
parameters)

At this point PI¥S ir readv to receive the tect Aata tro~
the wuser and sianifies tris hy disrlayira tre talla.ing

ressage:

HOW MANY TEST CASFS tKF TC HE SPHECIFIED?

The user enters an arnrcrriste count. for each test case,
PI¥S prompts the user to erter values for tte incut forral
rarameters of the program, First FI¥S recuests the values
of the scalar frarameters, then the cne cdimensional array
formal rarameters, anc finally the twe cdirensional arrays,
atl in a manner to be described below. *renuests for a
specific test case are sicnalled bhy PIMS disclayine the

followinc messaaqe:
SPFCIFY TEST (CASF i:

The values of the scalars are recuested tv PIM;, $ive at a

time, until all scalars are satisfied, ty iterating the

message

ENTEK VALUES FOR V1 v2 VX V4 VS

195

The wuser then inputs the rumpers. Shoulo the user have &
larae volurme of test data, he may enter the keyword FILF at
this point. The system will ask for 2 file name and reac
the test case data from that file. Sinale dimensionec
arrays are irput one at a ti-e by FI™S recuestina values for
sctecific array elerents until all values have Leen entered.
fer examrle, let the array Lte named *» arc its Cdimensior te
7. (MNCTF PI%S oqets this dimension fror the rrocran's
CIMENSICN statement-=~it must te either a constant or an

input formal parameter scalar varieble.) The sessior woulcd

be as follows: PIMS displays

ENTER VALUES FOR 2(1) A(2) A(3) A(LY K(S)
The user would enter five nurbers. PI¥S thern displayes
ENTEF VALUES FOR A(¢) A(7)

The user would enter the final two rumters, FINC ther
rereats this rrocess tor anuther one cimensional array or
qoes or to reaquest values for the twe cimensional arrays.

In the case where o user warts to input array
prartially defined, he enters UKD rather than a numbter for
the undefined array elenments. Onty numeric data of the
tyre, INTEGER, may be prrocessed. FI¥S reouvests the values

for two dinensiored array elemerts ir a manner similar tc

that for single dimensioned arrays. The values are

requestec in row-major corder, five at o time. Ffor exarrle,

196

it A is of dimension (2,7) PINMS will nmabe tte followine four

prorrte
FNTEF VALUES FOR e (1,1 A(1,2) A (1,7 PO, 00
AC1,5)

N FNTER VALUES FORP ACT,4) ACT,7)

ENTER VALUES FOR A(2,1) A(2,2) *r(2,%3) £(2,L)
£(2,5)
ENTER VALUES FOR AK(2,6) #(2,7)

(4) Additional Test Cases

wher additional test cases <can be acdaoec to the test case
file of the given rrogram, FI»S disclays the followinag

message:

HOW MPANY NEW TEST CASFS FOF THIS FUN?

The wuser then enters the arpronriate count. FPI*S ther
rromi-ts the user to srecify the new test cases in the same
manner ac¢ described atnve in the "(reatior c¢f tte Test GLatea
File" sursection, The result is tn extend the Te<st INata

File. Test cases cannot be yeleted.

W
(1o 4
"o
-
©c
L
[Le]
(B
E
C
-
L
o)
~r
—
[0
[Je]
1
7
"y
10
(=}
W
-
Q.
1]
-~
4]
Q.

(5) Addition ef and

o see if new types of mutants are to be considered for this

rur, FI¥S displays tre followina recsace:

197

- WHAT NEW TYPES OF “UTANTS /RI T0 PF COLSIDIRED:
- At this point the uscer has several crtiors. he may tyre in
_ any of the following rerlies
NONE - Part (5) terminates.
- HELP ===--= PI™S displays all the code names cof tre
- mutant types as deccribed in frgendix (. Fart (°)
is then re-executed hy PIFS,
ALL ====—- fvery tyne cf rutatior ~ill he !
- considered, Ffart (%) terminates. L
- T1 T2 ... Tn ==-=-- T1 ... Tn zre coce rares of }
mutant tyres (see Apnendix (). Futarts of thre
- listed tyres will hHe <considered for this anc
subsecguent PIFS runs. Fart S) ie then
{ - re-executed hy PIMS,
- SENSF T1 T2 ... Tn =---- FI¥S disnlays which cf
the Lliste¢d mutant types are currently reinc
- consicdered and which are rct, Fart (5) is thren i
1 — re-executec by PI¥S %
i
_%
_ SENSE ~-=--- PI"S disrlays which of the rossitle :
mutant tvpes are currently heiro cons%dered and
1
- which are rot. Part (5) is then re-executed oy i
PIvS,

o et i A

T . A L

DU

198

SFLECT T T2 ... TIn ----- Tre user srecifies trc -

PI1""S which of the mutants he wishes tc know ¢!l cut.

(6) Display and Qutput of Past Results

In order to inform the user, in ron=initial rurs, that Tart

(6) kRas pequn, PIMS disrlays tne follovirag fessace: —
FEVIFWw PREOVICUS RUM FroinL TS

At trkis point the user tas three crticns: (1) te ray

reouest that certain informaticn corcerrine the rutart

- status hefore this run e cisrlaven, (2) he ray recuest that -

similar information he inclucec in hic outerut *ile, or (%)

he may request that the rmutaticon rhace of FINML ‘te stertec,

PR

Nrrtion three is reguestec vy typinc MLTaTE, The other tac

h —_— {
options cause this disrlay tc bLe re~executec, sccerrlisted i
by a repeated displayira of tre "REVIEL.,." resSace, Tre _ E
infornation which car be dis-layed or included in the cutput %
B file is the followinn: - é
|
: - (3) Disrlayine Information —_ i
ALl requests to display infermatior on the screen
beain with the word DJSPLAY. tlext there 1S A Srace -
i followed by a keyword which describes the inforration
tc be put on the screen. The keyworcds are tre ,
:
tollowina: - 1
i
. \]

199

HEADFR === The rrocram sutrcu®*ine staterent ancd
the <classification of the ¢(roqram'sg formal

rarameters are disclayed,

CORFECTMESS === The rethod cf cdeterrininc rutant

correctness an-+, rossibly, the sut.routine
statement of the nredicate sut routine are

displayed.

TITLE === The F1¥S run title is cisclayed.

STATUS === The rutants' status tefore this run

is disrlayed

(t) Cutputtine Inform:tior

ALl requests to have information incluned in the
user's output tile beqgir with the wecr+ CUTPUT, ‘'vext
there is a space follawed ty 2 keywnrd describino the
type cf information to tLe included in the outrut |
file. The keyword is tre folloewino:

TESTCASES === The nrnrevicus test cases are

included.

TESTCASF n === The snecified case, "n" is

displayed.

The Mutation Phase

There is no user interactior durinc the mutation phase. Ir

200

the event of a fatal processina error the host orerating

system will issue appropriate cdiganostic messacee,

The Post-rup Phase
The Ffost=-Pun Phase consists c¢cf ocone noart which is
similar to part (6) (Display and Qutjut of fast ~esulte) cof
the Fre-Fun Phase. It car le called "risglay and {utput of
New Results.”" 1In oroer to infor~ the user that the fost=fun

Fhase Fas begur, FIMS disrlays the fcllewira messaage:

FOST=RUMN FHASEH

At this point the user has three ortions: he ray recuest
that <certain inforratianr concernina the rnutart results fer
this rur and the mutent status after this run te disrlayed,
he may reauest that similar informaticn ac well as rmutant
vrogram listirnas he included in his Outrut file, or he mav
request that the PI™S run terrinate. The first two ortions
will be described helow. The third option is reaquested ny
typine STOP and in each c¢f the former two ortions the

Post~Run Phase ré-cycles hy FI"S disrlayine trte follesing

message:

FOST RUN RESULTS

The information which can be disrlayed ¢r included in the

output file is the followinag:

A

201

(1) pDisrlay of Inforration

Al reguests to display information on the screen teoin
vitt the word DISPLAY, MNext there is ~ snace followead
by a keyword describina the infoarmation to Fe rut on
the screen, The keywords are the followira:

(i) HEADFR ~ Same as in the Fre-fFun Fhase.
(1) CORKECTINESS - Sare as in the Fre-Run Phase.
(i33) TITLF = The FINS run title is disrlayed.

(iv) RESULTS - The mutant results for this run &sre
cisrlayed.

(v) STATUS = The mutants' status zfter this run is

tisnlayeéc.

(2) Outrut of 1rformation
All recuests tc have intormation ircluced ir the ULser's

output file beain with the voro NLIFUT, rYext there 1s
a srace followed by a keyword describirec the type of
irformation to te included in the ovtrut file. Tre

keywords are tre followina:

(i) TESTCASES - The new test cases are included.

(ii) MUTBNTIS =~ This hkeyword must be follcwed by
additional keywords oa2s follows: (The absence of

keywords implies the 3LL keyworc.)

bt X ™ | R .

N S SV SOR

S ARy

—a

202

(3) ALL - A listina of 2Ll the live mutants i«

included,

(b)Y RANDOM = A Llistirc of ore randomly scelectec
live mutant of each possitle rutant tyre havinc

live mutants i1s included.

(c) ALL T1 T2 ... Tn = & Llistirec of all tre tive

mutants for each of the qgiver tyres is inclucded,

(¢) FRaNDO™ T1 T2 ... Tn - A listinc of one
randomly selected live rutant fcr eact of the

given mutant types is includeqd.

(e) KELF = FI¥S disnlays the code names of the

rutant tyres as describec ir trperdiy [,

The default for all mutznt types is no listing. (nce a
user decides to Llist a rutant tyre, via cither &n AlL
cr a RANDOM, he cannct Llater switch to nc listine for

the type. However, he ray switch fror ALL to FeNDON oFf

from RANDOM to ALL for any mutant type,.

203

CHAPTER IV

IMPLEMENTATION AND PORTABILITY DPISCUSSIONS

Implementation

The PIMS rprograr dis written in FORTFAN as a
feasibility study of automatic pregrar mutaticns. Ir othter
worcds, we acdressed the cuestion: “"fan the concegt of
rroorar mutation be implererted in AN zutoumated system with
reasonable runtime and comgutational sirplicitv?"” The tor

levels are depicted in the fnilowing cdiagran.

Driver~~-==PRERUN=~=~==CLRYTY,CIFILE,CCFILE CTFILE, C¥MFILL,
| DISPLY,FILEQY ,GETNEN CETTIYF ,LTINFO,
| MMRECS,NFWTST ,WRAST , ursTeT

-=MPHASE=====CLFTTY,DISPLY,YERGED,PERGEN , NI WIU,
| YOLOMU
|

“=FOSTRN=====CLRTTY, CLENUP, PISFLY NFwFES, w Ew
ffeyond these levets, the control peths are relatively
difficult to anatyze from a raintenance rroocrarrer's Dpoint
of view, The systerm dato structures are alrest entirely
nararetric and allocation is cortained 1in multiple (COMMON
blocks. The L(argqe numter of these blocks ard their
extensive use permits many side-effects to take place a5 the
result cf procedures invoked at every level. These siage
effects alsc qreatly corclicate the icsues concerninc the

scape-of-control of procedures cver their vzriables.

204

PIMS executes in a pagecd ervironrert Aas g sinole
inaae with about €7k bytes c¢f address <pace reauvired for
hoth the data and the executanle code. Since the nreqram ¢
logically divided into three distinct —rhases, *he address
srace could te reducen with Little impact on e¢xecutior or
operation by implementatino the task as overlays or
~

serarately executed proarams, This acrroach is reccrrerdec

tfor implementina the PINS rrouqgram on nest ririceorputers.

purinag the irmrplementation of FIMS or the FPEIVE-LD(,
much collatoration took rlace tetweer the research arour=s at
Yale University and at Georaia Techk. *~y efforis vsed &
sixteen-Lit rachine, the PRI"F=400D, while tre Yale effort
used a 36-hit machirne, the DECsyster=1(0. The only rediun
available for transporting rroarams anc dats tetween these
two systems was nine-track magnetic tare,.

althouah hoth verocors claimec to suptort ANSI
compatible magnetic tares, files coulo rot te writter ty one
system and read by the other withcut some forr ot
intermediate processing, A list of this processing

includes:

1) Records which were written with §7 characters rer

record anc ore record rer tlock usecd cifferent rethons

205

ot indicating the endg-of-record. Srecifically, ODEC
wrote an R2-character record with two trailira nulls
(kinary Zeroes) while PFIMf exiected ar ‘(C~ctaracter

record which included the two nulls.

2) Disk files with ertedoed carriace-return/line-feea
secuences causec general! havoc on both systers, The
line-feeds usually hsd to te rermovec bLefcre ary

rrogress was made in processing the files.

A second and laraoer set ¢t procblers was enccunterecd
when FORTPAN source files were mcved bLetween the two
systerms, Obvious protlems cdevelorea &5 a result ot the
difterina word Llenaths and associated ib?eoer maoritude,
The impact of many of these rrohlems was lessenecd by the
PRIME FORTRAN odeclaration for lonc-intecers, I°TFEGER®S,
which srecifies a 32-bit integer. Ir order to rterforr the
same functions on divers computers, it woulcd be necessary to
constrain all imclementations. A discussior of those
constraints is presented helow,

First, all integer qusntities shoutld te kept withir
the range =32,767 to +32,7¢7. This would allow the systen
to function on sixteen-b5it machines that do not provice any
lonag integer forms,

Second, the packing of multicle fields of Jata per

integer variable should he avoired. This racking s also

T ———— et IR 4

N AR

206

inefficient for the larce word mactines, bhut there are
severe unpackina protlems for the sixteer-tit pachires, In
our case, a Z2t=bit word wes usecd or tre FECsyster-=1' tc
contain two nine-bhit and one eichteen~tit tields. ~® were
able to implement this using a8 lonc inteaner anc obtair twe
eight-bit and one sixteern-tit fields. This loss of
maanitude has not causecd wrohlems to date, Fxt anced ranoce
can be obtained Ly segmentinn the wuse of the system tc
nrocess smaller prrocrams,

Third, the <character rrocessinc that is done in the
compiler and command processor should te ccne e€ither with
inteaer tokens subject tc the first constrsint. [¢ Srtecer
tokens are not desirable, then at least characters stculd te
nrocessec in FOKTRAN £1 format. The A1 grocessire will
decrease the efficiency for the laroe word rachines scain,
but the character routines will be portahle. ¢ ccod machire
independent "strinc subroutine' packace woulc frctatly te a
tetter choice here.

Fourth, venrdcr surplied features ard all 1/C srould
pe imhedded in user writter (rocedures. Ir some cases, this
will merely add a Llayer of run=-time Llinkage with tF
parameters to the user routine teino recse” directly tc the
vendor feature or I/(routine. However, ttis Llayer allows
other system routines to te substituted ano coce acoes to
provided for the behavior cf another technirue. PFodifvirc a

sinale inrbedded routine is muyct easier thar searctina tor

—an:

et e

207

atl of the uses of a specific staterent throuabout an ertire

system irplementationr.

We helieve that the ataove techriogues should te used

in future implementation efforts. They were not used in our

system but the tenefits of ttese technicues hecare arrarent

as we tried to rsss more ancd mcre FOFTPEN source data

tetween machines.

208

CHAPTER V
SUMMARY

A prograr rmyutation cystem was built anc is roa
orerational on a FRIMF=4{ ninicompouter, The wuyser may
specify an input date file that contains & ecubtrcutine whict
is wvalid 1in a8 certair subset of the F"RTR&:. frocrarmirg
lanauace. This suhroutine i rarsed, interrretec with wuser
sprecified test cata and the user is oiver tre orrortunity of
determining the cnrrectness of this *terct data either
manually or throughk the use of a predicate sutroutire that
will vetermine the correctness cf this Lase routine,

Once the user thinks he has an =2dercuzte tect -data
set, this tase rroaran is mo~ified ir severcl ««ays anc
executed again after each mocification. These nodifications
are calle”d wmutants ard esch rutanrnt will either survive or
die curinno 1its executionr. All mutartes thr t troduce
incorrect results or will not be valid subset proorams will
die, Those rmutants that produce <correct results will
indicate to the user that further analysis is needecd.

vhen further analysis s necessary the Lser '« .°*
determire that either a live mutant is eouivalent with otter
mutants and discard the equivalent nutants manually, or a
live nmutant might be elirinated by auorentinc the vest aqata

set. The test Jdata cset is then modifiec as reguired and the

rutants that renain live are executed acair, Fach time, the

209

rrograr will recort wvarious statistics atcut the Llive
mutants reraininag. when the wuser 1is csatisfiec «ith
completeness of cdata achievec, the nrocess stors, We nOow
say that an accentatle level of test data acenLacy tas heer
reached. 1In nore cuantitative teres, sore fercentane of the
total mutants will remain Live at this point. Ffor tests of
the same subroutine, we interpret this percentage to mean,
The test data that shows the lowest number of Live mutants
at the time of comparison, has the most adecuate test data.
We use this measure of test cats adequacy tc infer that the
subroutine with the more acequate test Fdatez has beer tected
more thorouahly. 1n addition, the subroutire that res reen

tested mcre thoroughty is more rrohably the most correct.

el R -

Procram ™Mutation is a wvaluatbtle asset in groaram
testing. The methocolocy nreatly recuces the tire and
effort reouired tc find errors in these procrams stuciec
thus far. Althouah there is a wealth of FCFTRA.N software ir
the world today, it is difficult to obtain and modity
real-world software for anaylsis. Tris protlem i¢ the toric
of current research.

The PIMS cystem discucsed above was not desionec witt

the property of such torics as crcrtability and

maintainability. 1 would like te suooest trat trese torics

210

are suitable for investication in their cwr rinkt, Tte idea
of proarar mutatior g currently teinc extercec to full
AMSI=1G69 FORTRAN, CrRCL, ance FASCAL with the hcre that bty
examininag the effects ot *the rettedclocy in several
nrograrminn larouages, some insighkt ray te chtained irtc the

methodolcgies of prouranr testinc in general.

r" e e <“

; 211
-
APPENDIX A
-]
) ERROR MESSAGES |
-
This Adocument descrihes the errore cetected ty FPIMS
- during the interactive grhases of a FI¥S run, the ressanes
displayed by PI"S on detection of an errcr, anc tre actions
b takenr hy PIMS after firdina ar error. The err~rs are
divided into two classes: fatal 2and rnon~-fatal, with fatal ﬁ
-
errors recsultino in an asbcrt of the rIMS run, fatel errors
- only cccur durino the Pre~fur Frase of FIV¥S. The nrccurence
of a fatal error or the wuser erterirc KILL durino the
- Pre-RFur Fhacte of FI®. leaves all transient tiles =as they
- vere before the FIMS run kegan. Nr.ce the user 1ssuves & 6O
—

cormmanc, thus siaonallino the end of tre Ffre-tun Phlase, he
i will nct be able to issue a ¥YJLL.
ve alsc arour the errors inte thecse whkich nccur
- durinc rarsing the progoram and those wmhich cccur strictly as ﬂ
bad respronses to prompts made ty PINS, Farser errors always 3
are fatal and the FIMS parcer 1is desiared tc albort or

cetection of a first errcr. That is, if the proorar has

multiple syntactic errors, the PI®S rarser will orirnt ar H
- error mec<sage for only the first of trem,

NOTE :
- The wuser should never end a FIMS rur bty a CIPL-F.

The CTRL=-F terminaticn will cause furthker FIMS rumns to
perforr unpredictably.

WP ¥ s+ 2.

212

Parser Error Messages

The ressaoces which tte user ray enccunter curira the
carsing of either the routine which is teinn testec or cf
the rrecicate sutroutine are very simil.r tc those cererate~n
ty ary FORTRANM conniler. Since a kncwleroe of FORTEZN S
~rerequisite tc a meanincful use of the FINMS syster, ar
uynderstardina of typical corriler Ajzcncstics 18 assumer.

Ore asrect of the FI7S diacnrstics trat is differert
from that of a tvoiczl conpiler is the fatal nature of
conpciler diagnostics. In the event that eny comrile~tire
error is encountered within =z rocule, the error 1is rercrted
at that point and the comrile is #rorte<. Tlere 1< nc
atterpt ot compile-time error trace-tack or recavery. 11
ary errors are rerortec, the user is acdviser tc scan the
remainder of the routire marvatly for cther syrtax errecrs
vrior tc @a resubmission to FIMS, This rarnual scar steoule

save mar and machine time curin¢ the Fre~run FPhase.

213
—
L
L]
Interactive Error Messages
—
Pre-Run Phase
- (3) The Srogram Mame
(1) Messzoe: ILLEGAL FILE NANT
— kctior: Fereat cart (a).
- (72) Message: NON=EXTSTENT PAL ERQOCGRAVM FILF
Action: fepeat prart (a).
- (3) “essage: FILE NANE CONFLICT = CUTHUT FILE /
FLRFADY EX]ISTS
Action: t'one. Serves as a warnirc, 1
- {
1
(B> The Run Tyre
L]
(1) “essaae: ILLFGIL REPLY b
Action: hepezt rart (k).
L]
. (2) Messaoe: PRCCRAM NOT IN THE FINS FCRTRAN SURSET f
Action: Abort
- 4
- (3) Message: THE FOLLOWING TEANRSIENT FILIT ART
MISSING:
e .
Lction: Abcort
]
- (4) Message: THF FOLLOWIME THRANSIEANT FILFS ALFRFEDY
ExIsT:
Action: Abort
(¢) Tronram anc Test Cases '
= (1) Message: ILLEGAL CLASSIFICATION
Action: (A) Display the lecal classification codes.,
(R) Pereat part (c=1) or the same parareter.

(2) Message: ILLFGAL RFFPLY 4
Action: Repeat Frogram and Test (aces

214

(3) “essaqge: PFEDICATE SUFFOUTIHY FILE DOES NCT

i FAIST
Action: Abort

(L) Message: AR P REDICRTF SUCECUTINE crrerne
SFQUENCE
pction: (#) Disnlay the proorar's forral narcreters
and their classificatians,

(r) Display the rredicate sutrovtine
statement.

(C) Atcecrt

(S) ¥essnmoe: ILLEGAL VALUE
Action: Rereat the reauest for <cata on the sare
irput forral parameter(s)., User's irfut icrcrer,

i (¢) Message: NOT ERGLGH DATA SUFPLIED
tction: Ferezt the reauest for deta on the sare
irprut formal rarameter(s). User's dirrut Jarcrec.

(4) sdciticnal Jest Cases
(1) Messaaqe: TLLEGAL VALUE
sction: Fereat the recuest fcr Cdate or the sarve
irput formal rarareter(s). User's irrut jorcrecd.

(72) Messaoe: NOT ENOLIGE DATA SUFFLIED
Action: fereat the request for gata or tte save
ynout formal [arameter(s). User's irput icncrer.

(e) todition of and Status of Yutant Types (crnsicerecd
(1) Messaqge: ILLFEGAL RPIPLY
Action: (A) DPisplay all lecal rerlies.
(R) Fereat part (e).

(?) Message: ILLCGAL MUTANT TYFE
Action: (A) Display the codec names of the rutant

types.
(R) Fepeat rza2rt (e).

(3) Messace: THESE MUTANT TYPES wElAf ALFEADY ON:
Action: None, Serves as a warrina. The aoather

(¢)

215

siecified mutant types which were cft are ncv or.

nisclaying and Outputtino of Fast Fesulls
(1) “essage: ILLEGAL RFGUEST
Action: (A) risplay the leaal renuests for rart (f).
(R) hepeat part (f).
cerecal Errors
(1) Messaqe: PRAGRAM FPRILS
hction: (A) Display the test case cn which it tails.
(F) Cisclay the way in which it failed,
(c) vut (A) snc¢ (¢) ir the cutrut file.
(nh) thort
(2) Message: FRENICATE SURROUTIME FATLS
Actior: (R) [isplay the test case or vhich it fails.
(P) pisplay the way in which it tails,
(C) Fut (A) ancd (R) in the output file.
(D) tbort
(3) Message: QUTFUT FILE FXISTS - TYFF KILL CF
CONTINUE.
Action: Abort on ¥rILL, celete cutcut file on
CONTJINUE.,
(4) Messaoe: TOC MUCH PATA CR FRULTY SYHTAX
pction: Rereat the revious prorrpt for nureric
input.
(S) Messaqe: JLLEGAL VALUE
Action: Repeat the rprevious prorpt for nureric
input.

(b)

216

3
Action: (the legal recuests for

h

(

a
R) Repeat the Fost-+iur Fhase.

ILLECAL MUTANT TYPE.
(AY Display all lesal rutant

(R) tepeat the Fost=-hur

Message:

—--th;or: tyres.

Phase.

thre

217

APPENDIX B
FORTRAN LANGUAGE SUBSET

This appendix describes the FrRIRIN subrset lar.nuzaqe
whose programs can te tested wusina the Pilot Mutation
System. Only the syntax of this subset, srecified ir an
extended RMF (see telow), is given. The syrtax rresented is
in a "pure” form with the mundane aspects of FARTKZIE syntax
assumed. These include the followina: 1) staterents start
on a newv line and arcear ir "card" colurns 7=72, 2) cclurn ¢
is the statement continuatior colurn, 3) statemert latels
appear in columns 1-°, 4) nares have lercths of €& or Lless
characters, and 5) commert statemerts bave a € in cclunr 1,

The PI¥S FORTR2N syt set has the followine twe
semantical restrictions: 1) ali varial les nust te
declared, and (2) keywords, suct as [O ancd END, cannct te

used as variable names.

10

Laprguage Subset Overview

The subset of the FCRTRAN Llancuane chosern tofr this
implementation of FI¥S is such that IMNTECER processinc of
nureric data is possible, & proaram must be a SUCFCUTINE
subprogram with an ootional parameter list. Ffarameters and
other variables must be declarea using INTFE2ER or PIMINSION

declarations. Arravs may te either Ore or twe dimensional

r—— pro——

e

218

ard nay be sgecified in the INTEGFKN staterenrt.

The acceptatle control structures incluce the
lonical=-1¢, toevo, nested-0¢C, corvitue, ard RITURY
Arithretic expressiors may include ary cf tte creratrrs: +,
-, *, / or **, Logical exyressiors &re restricted *o the 1¥
ctaterent and must te one of: AL, .CFR,, oOr LT as

use ir ~any FORTRAN systers. Nureriec values sheoulcd be rert

withir the range =32,767 to +32,7¢7 cue toc the nzture of tne

- PRIVE=4{{ sixteen bit architecture,
) BNf Description of the Language Subset
~- Standara RNF s auamented with the fcecllowine four

abtreviations:
(1) Llist appendix = <y> ::= <x=~tist> 35 ecuivalent to

<y> ::= <x> | <x> <y>

(2) comrmalist arpendix = <y> ::z <x=ccrnglict> 93s
eauivalent to
<y> ::z <x> | <x> <v>

4

(3} option =~ <y> ::= <x> [<2>] is ecuivalent to

<y> ::= <y>] <x> <72>

(4) choice = €y> :1:= <x> {<w> | «z>} is ecuivalert to

<y> 1:= &x> <w> | <x> <2>

L

219
- Programs
<t rogram> :s:= SURRQUTINE <rrogram-rare> (
-—
) <formal-arqument-comanalist>)
- <declaration-statenent-list>
<cexecutable-statement-list> |
[— 3
END
formal Arguments
- <formal-argument> ::= <variat-le-rame>
I = Deglaratiop Statements
<declaration-statemert> ::= INTEGER <declaration-cormalist?>
]
<declaration> ::= <scalar-decl> | <array-decl>
S
, <scalar-decl> ::= <variatle-nane>
<array-decl> ::°= <one~din-array=-decl> | <twe-dir-array-cecl>
[+
<one-dim-array-decl> ::3 <variahle-name> (<lymit>) i
hd .
) <limit> ::= <positive-integer> | <variarle=-rare>
= <two~dim-array-decl> ::= <variarle-name> (<lirmit=rair>)
4
- <limit-cair> z:= <limit> , <lirit>
S
Executable Statements
<executable-statement> ::= {<tahel>) <staterment>
[

220

<label> ::= <positive-intecer>

<statement> ::= <simrle-statement> | <corditional=-statenent>

| <do-loon=-statenent>

Simple Statements

<simple-statement> ::= <acto-staterent> |
<assiorment-statement>

<continue-statement> | <return-statement>
<goto-statement> ::= {CC TC | (CT0)} <latel>

<assianment-statement> ::=x <reterence> ~

<arithmetic-exrression>
<contirue-statemrent> ::= CCONTINUE

<return-statement> ::= RETUF"’

<conditional=-staterert> ::= 1f (<lcoical-exrressior>)

<simple=-statement>

<do=-loor-statement> ::= <ingdex-part>
<outer-ioor=-body>

<loor-end>

<index=gpart> ::= DN <latel> <incdex> = <inityal> , <terriral>

221

[, <increment>)
<outer-Llnor-body> ::= <auter~-lcop-statement-List>

<auter-lcor-statement> ::= {<label>]
{<simnle-statement> |
<concditional-staterert> |

<inner-do-loor> J}

<irner=-cdo-loop> :t:= <index=part>
<loor=tody>

f{<lcor=-end>)
<lncp-hody> ::= <loor=staterent=list>

<loor-statement> ::= [<label>]

{<simple-statement> | <coniditional-cstatenert>)
<loor=-end> ::= <larel> <locp=-erd=-statement>

<loop-end-statement> ::= <cortinue-statement> |
<assignment~statement> |

<conditional=-statement>

<scalar-reference>

A
-
2
o
[,]
b4
v
..
.e
n

<initial> ::= <scalar-reterence> | <rositive-integer>
<terminal> ::= <scalar~reference> | <pcsitive-integer>
<increment> ::= <scalar-retference> | <fcsitive-integer>

222

Arithmetic Expcessions

<arithmetic-expressicn> ::= [<arithnetic-exirecsion> {(+ |

-}) <aed>
<ael> ::= [<ael3> {(* | /}] <ae2>
<ae?> ::= [<ae?> »*] <ael>

<ae1> ::= <prinmitive-ae> | - <ael> | (

<arithmetic-expression>)

<primitive-ae> ::= <reference> | <irtecer>

Logical Expressiops

<loaical-expression> ::= [<luarcal=-exrression> (k. <le?2>
<le?> ::= [<le2> . A%r.] <le>

<le1> ::= <rrirmitive~le> | rCT. «<let> | (

<lcaical-expression>)

<primitive-le> ::= <aritrretic=-exyressior> <relational-or>

<arithretic-expression>

<relational=op> ::= LT, | JLE. | J€G. | NE. | .c1. |

«GF.

Data References

<reference> ::= <scalar~reference> | <array-ore-reference>

<array-two-reference>

223
- .
<scalar-reference> ::= <variable~-name>
- <array-one-reference> ::= <varjabtle-nare> (<simile-uve>)
- <array-two-~reference> ::= <variatle-nare> (<sir-le-ae> ,
<simple-ae>)
L
<simple-ae> ::= [~]) ([(<positive-intener>]
- <scalar-reference> {+ | =)
<positive-inteager> |
—
[~] <scalar-retererce> |
<positive-integer>
[~
- Identifier Names
<grogram-named> ::= <rame>
[
<variable=-nare> ::= <nare>
L)
<name> ::= <letter> [<alphameric-list>]
<letter> ::= A | C | C | D} €| F | & | h |1
- I NjJe R Ge RS T LUl Vv Y
<alphameric> ::= <letter> | <dinitd>
<digit> ::= <zero> | <positive-digit>
—

<zero> ::= 0

<positive=dinitd ::= 1 | 2 | * | & | S| &6} 7

224
Constants
<constant> ::= <inteoer>
<integer> ::= <rositive-intecer> | <zerc-list> | -

<positive-intecer>

<positive-integer> ::= <rositive-dicit> [<aoiait=-list>]

APPENDIX C

COMMANDS AND ABBREVIATIONS

This aprendix descrites the corrancds anc their
abbreviations that are used tn comrunicate with PIMS curine
the interactive chases. The commands for srecifyinc mutant
tyres follow.

The wuser specifies rutant tyres to PI™S Py usino ttre
followina three character a“treviatiors., An zbhlirevietior
marked * means the mutant tyce 3s not currertly imflerentec.
There are no "full word" cormangs fcr specifying mutant
tyres.

(a) rata Declaratior Mutatiors

(1) ALD = Array Limit Lefault Inserticn

(ii) ALF = Two Fimensioral Array Lirit Ferrutation

(b) Data Reference Mutatiorse

(i) CRP k = Constant herlacement. Thec value k>=1 cives
the neighbcrhood (i.e., ¢ +/= &k) ¢t tte replacinc
constants. The wuser may chocse nct to srecify k, in

which case a default vatue of k=1 is assumed (see

Appendix D),

(i1i) SVF = Scalar Variatle Feplacerent

(173) SFC - Scalar Vvariable for Constant Fealacements

(iv) CFS = Constant for Scalar Variatle leclacerent
(v) C2° - Corparable Array Neme Ferlacerent
f (vi) CFA - Constant fcr Array Feterence ferlacerert

(vii) SFA = Scalar Vvariatle tor trray fFeterence

& werlacement
(vivti) AFC = Array teference ftour (crstart Fegplacerert

(ix) AFS =~ Array keference for Scalar Variatle

keplacerent

(x) AIP - Two NMimensionz=l frray Incdex Fermutaticn

*(xi) SVI k = Scalar Variable Irmnitiolization Insertion.
The value >0 cives tre 14k set cf initializanc values,
The user may chcose not to specity k, in which case &

default value of k=i is assumed.

(c) Operator Evaltuation Mutationrs
(i) ACK - Arithretic Orerator hkerlicerent
(i1) RPOR - Relational Crerator keplacenmrent
(ii3) LCR - Logical Connecterr hkeplacerent
*(jv) APP = Arithrmetic “recedence Fernutation

*(v) LPP =« Longical frecrgence Flerrutation

227
] {a) Control Mutations
- (i) GLR - Goto Lahel Rerlacerent
(i) PAN - Path Analysis
(i11i) CSI - Continue Statement Insertion
(iv) CSD - Continue Staterent Detetion
*(v) ILD - Inner Do Laor Pecounling
B 1
- *(vi) DIA - Do Loor Incdey tlteration ;
(vii) FSR = Return Statemert Re lacemeart
- 4

EE Y P RSSO dsitan,

228

APPENDIX D

ODESCRIPTION OF THE MUTATIONS PERFORMED

Tris appendiy describes the typres of first crcer
mutations which the #iln* Mutation Syster considers ancd sore
other mutations, marked with a "*", which ray be consicderen
in future extersions of FIVS., The wordinc usen” ic tied to
the syntactic categories defined in the "“FCRTKAN Larcuaqe
Subhset” (see Appendix P)., “nly those proorams which are 1r

the subset lancuage are considered te be valid mutations.

Array Limit rPefault Insertion iJs accorplishes by
replacinc each scalar reference in an array derlaratior hry
1.

Two Mirensional Array Limit fermutation is
accomplished by exchangin~ each two dimensional array

declaration Llimit rair.

The following sets are referenced in cdefininc the
mutation operations in this section:

p --- set of all array refererces arpeariro in the

proaram.

A e

SRUEY.. . SV 2

229

C -~=- set of all conrnstagnts appearire 1in exepcutatle

statements of the rroararmr,

K --- the set {-k,-k+1,...,-1,0,1,...,k=1,F) where k> C

is suppliecd by the user

¢ =~-- set of all scolar variatle names appearinc in

executakble statements of the nrocrar

vVl --- set of all one dimensicnal array names arfpearina

ir executat le statements of the procrar.

V2 --~ set of all tvo dimensionat array rares argearine

in executable statements nf the nroarar.

1. C(onstant Renlacerent
Fach constant ¢ appearing in any executarle statement ¢
renlaced by rerbers of the set

{e-k,c=k+1,...,c=1,¢c*1,0cepC¥k). 1f k=0 is sup~liec, thern

ne constant rerlacements are rroduced bty PINMS,

. Scalar Variatle Rer.lacement

fach scalar variable s appearina in any executable statement

is replaced by members of S$S=-{s) .

7, Scalar variable for Constant Feplacement

Fack constant ¢ appearina ir any executatle statement* s

rerlaced by members of §

230

4. Constant for Scalar Variable Keplacemer.t
fach scalar variable s arpearing in sry executable statcrent

is replaced by rembers of (.

€. Conparible 3rray Nane Ferlacemment
Each instance of w1 in V1 apprearina in any executable
statement 1is renlaced bty merbers cf V1-{v1), fachk irstance

of v2 1irn. V2 appearing in eny executable staterent 15

replaceac by members of Vve=-{(vZ).

6. Constant for Array Reference Renlacerent
Fach 1instance of ar in A arrearine ir ar executabhle

statement is reprlaceoc by nemters of (.

7. Scalar Variable for Array Reference terlacement

fach instance of ar in # atrgpearirg in zn exectahle statement

is reclaced by members of £.

8. Array keterence for Constant kreplacerment
fach instance of ¢ in C appeariraq ir ary executatle

statement is replaced by membters of A

9. Array Reference for Scalar Variatle FReplacerent
Fach 1instance of s in S appeariro ir any executable

statement is replacec by memters of ¢

231

10. Two Dimensional Array Index Perrutation

Each instance of references to two cimensioral arrays has

its indecies permuted

*11. Scalar Variable Initialization Insertior

for each s in § the initial value ot s is set to merbers of

K.

Operator Evaluation Mutations

1. Arithmetic Operator Replacenment
fach instance of a binary cperator bto is rerlacec ty merhers

of the set (+,-,+,/,**}={bo). Fach instance of unary = s

eliminated.

2. FRelational Cprerator Feplacerent

Each instance of 2 relational operator reo is renlaced by

members of the set {.LT,,.LE.,.EG.,.NF.,.CT,,.GE.}=-(ro).

I, Logical Connector Replacerent
Fach instance of .AND. 1is replaced by .0F., each instance

of L.OR, is replaced bty .&NC., and each instance of _NOT,

is eliminated.

*4L, Arithmetic Frecedence Permutation

fach arithmetic erpression containing>1 arithretic orerators

232

is reclaced hy each cf its distinct alternztive tarces,

*5. Loqgical Frecederce Fermutation
Fach logical expression containing>1 locical connectors 13

replaced ty each of its distinct alternative terses,

Control Mutationsg

The followinn sets of statement lebel<c are referencec
in gefining the mutation operations in ttis section:

L === set of atl statement lanels ir the rrocoran=.

TRFY === used to rerresent a statement whick is

auaranteecd to ccuse a proorar interrurt

1. rotc Label Feplacerment

fach instance of L in L in ary qotc statement is replactec by

members of L-{L}.

2. Fath analysis

Fach sirple statement (including those which are imtedded in
conditionals) and each conditional statenert is replaced by
TRAP, Cach index part of each do loor statement has a TRAP
irserted as its subsequent statement. This checks that each
control rath is traversec at least once and can easily be

extended to see 1if each path is traversed any nurhber of

times.

233

3. (antinue Statenert Insertion
E 4
tach do loop which does not end on a continue staterent K3

rade tc do sc

4, C(Continue Statement Deletion
fach do loop which ends on a continue statement is made to

end on the preceedinc statement,

+*+S. Inrner 0o Loop Decougpline
Inner do loons which enc on the same cstetement as their
centaining do Lloor are nade tr end on a Serarate, rossibly

duplicated, statement,

*(, Dc Loor In-dex Alteration
plthougt trkis typve of mutation is nct currertly implemerted
as a separate type, v s mutationrns car be rroducec as a

result of data mutations (see above).

7. Return Statement kerlacerent

Each non-return simple staterent (includinc those which are
imbedded in conditionals) ang each conditional statement is
rerlaces by a return statement, Cach irdex rart of each do

loor statement has a return staterent inserted as its

sutseguent statement,

S

i -
234 ;
i
- —
a -y
; -
APPENDIX E
ENTERING AND MODIFYING FILES
frouyrams are normally enterec into the cecrmputer usiro -
— the PRINOS[12] Text Fditor (Fh). Thie editor 1S @ Line
—y
orientec text processor whose line pointer s always located
- at the last Lline orocessed (whether the rrocessinc is -
arintina locating, wmovino ~wmointer, etc.). The Fditer
ccerates ir one of two moces, I'PUT rode or FDIT moce. -
- when creatina 3 new file, the Fditor is invoked bty
-
tycing 4
— - N
gr, €0
which places the £ditor in tte INPUT reocde, bher. modifyina -
N an existino filte, the Fditor is invohked ty typine
-—
0k, En filenare
- -
which rlaces the ¢Etditcr in the EPIT node. The "filename”
specified is the six-character name assiocreoc tc the ras -
- rrogram file being createc or modified, At ary time, the
-
user may type a carriage return (c/r) with no other
- characters precedirg it. This is kncwn as & "null -
response," This null response will switch the fditor fror
the EDIT mcde to the INPUT mode or trom INFUT mode to FR1IT -

mode .

, > . ——— — —— 2 Aot et i mer s

235

INPUT mMode

The INPUT mode iséusej when erterina text information
into a file (e.n., creatinc a nrogram). The worc IAPLT is
disclayed at the user's terminal to indicate that the [ditor
has entered the INPUT mode. The c/r key will termirate the
current line of text and pre-are the fditor to receive a new
line. Tabulation is accomplished with the bhackslash (\)
ctaracter. Each btackslash reprresents tre first, second,

c

etc. tab setting; the tak stors are at columns ¢, 1%, and

0. The wuse of c¢/r withk nc text rrecedinag it ruts the

Editor in EDIT mode.

EDII Mode

The ENIT mode is used when the conterts nf a file are
to be modifiea. Yore than S0 commands are availatle,
although we will only describe a surset of the svailahle
conmmanrs *hat should suffice +tnor wmcst furposes. The
commands are described later in this aprendir.

In the EDIT moce, the Editor maintains an internal
line rointer at the current Line (the last lire processed).
The comnands TOP, ROTTOM, FIND, ancd LCCATE, move this
pointer, The VWHEFE command disrlays the current Line
nurber; FPOINT moves the pointer to a specified Line nurher.
The MONE NUMPFP command causes the Llire number to be

fisplayed whenever a Lline of text s displayec. all

236

commands for locatior and modification hecir urocessing with
the current Lline, The use of c¢/r with no text rrececira it

ruts trke Fditor in INPUT mode,

Typoagraphical Error Correction

ln eitrer moce the user mey ccrrect errors in tygrinc
hefore tre terminatina (c/r) is tyned., 1te last ctrracter
entered is deleted, rovine from richt to lett, ore character
for eacht racksnace(+/s) tycecd. Tre entire current Llire may
tre deleted by typrinn the delete(del) <craracter. The
character (BE/s) is ottained vty hocldiro tre key rarkexs “CTIRL"™
or "(CCHTRPOL" and then strikinrg the key "U," rny Line
fcllowed by the delete character is nutl, art A (c/r) at

that point will switch the editor intc the slterrate rode.

Saying Files

Crderly termination of an Ecitor session is done fror

the 01T mode. The command:

FILE filename

writes the current version of the edited file to the disk
under the specified filename. The file will te created if
it did not previously exist or it will te cverwritten if it

voes exist. 19 an eryistine file 1is teirc nrodifiea, the

conmand:

aag

b 237
= FILE
- writes the new version tc the cdisk with the old filename.
- After the executior cf the FILE command, thte Fditcr s
terminated and control returns to FRI¥(S signifiea by:
- “CK," on the user terminal.
- Other Useful JTechnigues
— The followina general descrintions will aid the wuser
- in adapting to the PFIM0OS Editor.
- Any number of lines may be moved frem one lecation to
— another wusing the DUNLOAD cormand. [UNLOAL celetes these
- lines as it writes ther into ar auxiliary file. ELOAD
-
cormand Lloads the new auxiliary file data at the desired
point, Any number of lines ray he copiec from one Llocation
_ to another using the UKLOAD command. UKLCAD works the same
— as DUNLOAD excert that tINLOAD® doues nct delete the Llines as
- they are being written.
- R Any Lline the begins wvith a lecal FORTFAN statenent
- number may be locatec with the FINC cemranc.
- The MODIFY command s used when 3 line must be
altered but the relative column aliaormrent must remain the
= same.
-

- R ' . Y . |
- = .. - AR S s

htmiia il i . iecsiinih, . NPT S SRR AL

238

EPITOR Command Summary

The follnwing is an alphabetical list of some of the
availatle (Etditor commands. for a detailed descrirtion of
all corrands, the user is referred tc the tcditer Hfeference
Sectior of TvF MEW USER'S GUINF TO EPITCF AND RUNOFF[167,
Tn the followinc descriptions, the raraneter "string”™ is any
series of ASCII characters irctudina leadirc, trailinc, or

emtedded bhlanks.

EPPEND StrinNfd.e..ceeesssesnesschli-nencds strinc to the ercd of

the currert lire,

BOTTOF ieeererarencensesesesCVPS the rointer teycns the

last Lline of the file.

CHANGE /st1/st2/(r] [G).......kerlaces <st1 with st? for r
lines. I1f G is ecrnittec, cn'y
the first occurrence of st1 on
each line is charged; it ¢ is
fresent, all occurrences on -

lines are charaed.

DELETE [P)...cesueeeeaceansasDeletes n lines, including the
current line. The default

value ¢f r 3¢ one,

239

DUNLOAD filename [(Nn).........Teletes n lires from the
currert file ancd writes ther
into filerare. The ocetault

vilue of r is ore.

FILE [filename).e.eceeeuveansabirites the contents of the
current file intco filenare and

GUITS toc FRIMNCS,

FIND StriNQececececsscnsecssss™Oves the pointer to the first

line hbecinning with strinc,

INSFRT StrinCuec.sececsececosssslnNecerts the strinoc after the

current Llire.

LOAD filename...cccaeeseseasslcads text from filename 1ntc
the currert tile followinc the

current line.

LOCATE StriNQececescecases.ss™Moves the rointer forward tc
the first Line containing
string. The strina ray
corntain Lleadinog ard trailina

hlanks.

MODE NUMHER..,ceeavessaseacssshisprlays Line numbers in front

ct displayed lires,

MODE NNUMBRER .ceesvsesessncasslUrNS off the L(ine number

240
—
4
-
display.
NEXT [{+]|-} J (n)......cc...MOves the poirter n lyres, -
- forwarc 14 r is jositive anc
Fackwarc 1f n is necative.
-
FCINT [r)ieieeeeenecenneannaa™oves the pointer tn Line n, ;
PRIMNT [M)ieeeeacensnnssasessalisrlays the current lire or r - :
- lines heainrina with the
———y
current Llire.
- . q 3
AUl T e eeeesevscsssscscssnacsassstierminadates the ecitirg session i
- without fitirq the currert
—y
tile.
—
CETYPL StriNT..ceceescuasecasaThe current line s rerlace? ty
- string. -
- TP it e eavecssnsssansesssccssasOlVves the rcinter one line J
o~y
before the first line of text.
-
unLoar filername [(Nn)..........Coptes n Llines intc filenzre.
_]
. . q N
WHEP L ceeevenosccsnaccssensaseslisnlays the current Line
5
- number,
q
- Other Capabilities Outside Ihe EDITOR - ,

- fFrom time to time the user will rrotahly wish tc view -

— T

241

the contents of a file, delete an existina file or chtanae

the name of an existine {file. These ceratilities exist

outside of the fcditor facilitins. 1In order to view a file

at the user's terminal, the user types

rY, SLIST filename

where filename is the nare ot the file to te listec. Lpon

comnletion of the listina, control is returned to FRINOS,

files may be deleted with the PRIMOS commana

0K, DELETE filename

where filename 1s the name of the file to Fre oceleted. A

user may not delete a file that he does not own or that has

been aprropriately protectec,

Fites may be reramed »ith the FRIVNOs ccrrand

0¥, CNAME oldname newname
where oldname is the currert name of the file anc newname 1is

the desired new file name., } user may not rename a file

that he does not own or that has been arprorriately

protected.

< - ‘
N

—

242

-
;
-
| APPENDIX F -
- SAMPLE PIMS RUN -
- The following is a cory cf the terninal nialoc frenm
an 3initial PINS run. Scme cf the Lires were ctance~ tc fit
them on the raace, but the inforration rresenter ie -
unchangec,
-
- 0K, SEG RUN>PIMS
PRF=-RU. PHASE =
ALL INPUT ™MUST RF I+ UPPEF CASF
_ ENTER THE RAW PROGRAN FILE “P2™E
JRST(?2 -
CATEGOPIZE FOKMAL FARAMETER N
PFOG
- 1 SURRQUTINE SOFTC2(r ,A) -
2 C *BURPLF SOFT = ALLOGW EARLY TEFMINEZTION
3 INTEGEF N, A{(N)
. 4 INTEGER 1
) INTEGER T -
A INTEGER SORTED
7 C
- 8 IF (N.LF.1) GOT~ 2Ch -
g 100 CONTINUTF
10 SORTED = 1
~ 1 pe 2¢0C 1 = 2,M -
12 IF (ACI=-1).LE.ACI)) GCTC 20C
13 T = A(I-1)
—- 14 A(l1=1) = A(CD)
15 ACI)= 1 -
- 16 SORTEND = T
17 200 CONTINUCL
- 18 If (SORTED.NE.1) GOTO 10(C -
19 3IN0 CONTINUF
2C RETURNW
- 21 FND
TYPE NEYT COMMAND -
INPUT
CATFGOPIZF FORMAL FRRAMETER A
10 -

1S MUTANT CCRRFCTNESS DEPFNDENT ON A PREDICATE SUEKCUTINE?
TYPE A YES OR NO *H kR
NO - .

{ : 243
L]
HOW MANY TEST CASES ARF T0 PBE SRECIFIED?
2
- SPECIFY TEST CASE 1
tNTER VALUES FOR
N ’
5
- ENTER 5 VALUES FOR ARRAY &
- 1234 5
TEST CASE NUMRER 1
- PARAMETERS ON INPUT
N = <
PARAMETERS ON OUTFUT
L - A « M= 1
, A « 2)= 2
A ()= 2
A C 4)= A
{ ~ A ¢ 5S)= 5
THE PAW PROGRAM TOOF 1¢ STEFS 10 EXECUTF THIS TEST CASE
HIT RETURM TO CONTIANUE
oy
PLEASE VEPIFY THAT GATA IS (ORRECT
TYPE A YES CR NO Thw
- YES
SPECIFY TEST CASE 2
~ ENTER VALUFS FOR
N ’
b 5
~ ENTER S VALUES FOR ARPAY &
99 =99 -55 (" 58
- TEST CASE NUMBREFR ?
PARAMETERS ON INFPUT
N = 5
- A « 1)= GG
3 « 2)= -9
A ¢ V= -55
A (W= r
- A { S)= Sn
PARAFETERS ON QUTPUT
~ A t 1= ~0Q
- A « 2)= -5¢
A ¢ 3= N
A ¢ 4)= 50
A ¢ %)= ey
b THE RAW PROGKAM TOOK S1 STFPS TO FXECUTE THIS TEST CASC
HIT RETURN TO CONTIWUF
- PLEASE VERIFY THAT DATA IS CORRECT
TYPE A YES OR NnO A hww
YFS
- WHAT NEW TYPFS OF MUTANTS AR[C YO FE COCLSIDCOREC ?
ALL

244
MUTATION PHASE
POST RUN PHASF
NUMRFR OF TEST CASES = ’
NUMPER COF LIVt MUTANTS = 31
NUMRER OF MUTANTS = 24l
PERCENTAGF OF FLIMIMNATED MUTANMTS = [O

MUTANT TYPES AND LIVE MUTANTS FRCFILFS

TYPE MUTANTS LIVE* TYPF MUT/INTS LIVF» TYPE PUTANTS LILVF
- ALD 1 O CRFP 1¢ L SVR L2 L SEC A2 Fa
CFS 30 2% CFer 12 C» SFa 24 i# AFC I
AFS 12 (O¢» AQF 12 (0= RCR 15 S# GLF L Te
- PAN 16 1 cse 1 (W RSk 15 S+
MUTANT ELIMINATION METHOD PFOFILE
_ METHOD COUNT#* NMETHOD CCUNT* ¥ETHRCD COUNT»
TIVMED=-OUT 24+ REF UMDVAK 4L74% SUFSCF Frr Thw
ARTH FAULT 0% PDCONLY ViR O+ TRPAP STMT 15*
EQUIV U* 2EFO DIV O* WRON(ANS 75+
- POST RUN RESULTS
HELP
COMMAMDS CAN USUALLY RE ACHEIVIATER 10
- TWO LETTERS, COMMAMDS ARF AL FOLLOWS
HELP - DISFLAY Tv1% HELF PACFE (CAMNOT APRRIV.)
KItL -~ ARQFRT THE CLEEFMT PUM (CENACT ADERTIV,)

PROGRAWM - TYKFL THF PRULGRANM PEING PUTATED

- TESTCASE N- TYPFf THE TESTCAST N
MUTANTS - TYPF PLL THF LIVE ™UTA*TS

FUTANTS (KFYWORP) (YEYWRRTr) ., (XCYWCFD)
= - TYFF ONLY XUTANTS CF THE SFECIFIED

MUTANTS SELECT - SFLECT THE MUTANTS MPIMU
MUTANTS KEYWORDS = SEE THF FEYWCRDPS FCFR
HFEFADEF = DISPLAY THE PIMS RUN HFAPER

B CORRECTNESS = RISFLAY Twf ®ETHQODM OF CETEFMINING

CORRECTNESS

STYLE

TYer

KESULTS = DISPLEY THE KESULTS FOF MUTANTS CFEATEN

- IN THIS RU®

STATUS = OISPLAY THE STATUS CF ALL MUTANTS

- PREVIOUS PUNS)
HALTY - STCP THE CUFPPEANT PINMS RN
LOOP - ITERATE THE CHRPENT RUM
OUTPUT TESTCASES = JUST THAT,
OQUTPUT MUTANTS - OUTPUT ALL LIVE MUTIAMNTS

OUTPUT ONLY MUTANTS OF THF INPTICATER TYPF

QUTFPUT MUTANTS RANDOM - GUTFUT ONE FAIDCM MUTANT OF

EACH TYFE

OUTPUT MUTANTS FANDPOM (KFYWORD) (FEYWCKD)

POST PUP RFESULTS

HALT

(rEYWOFR?™)

OUTPUT MUTANTS (KEYWCFD) (rfFYwCkD) ... (KFYWORD)

MUTANTS TYPES

(INCLURINE

245
~ BIBLIOGRAPHY
— (1) C.V.Raranoorthy, S.f.ho, and w.T.Chen, "On the Autcovsted
Generation of Frogram Test Nata", JEFf Transactions on
Software Enpineering SC~2,4 (DNec 1v7¢&), rc 2S3=30(.
= (2] w.f.Howden, "“ettodolooy faor the Cereration of fronrar
Test Clata”, ICEE Transactions on Corputers C(=-24,¢ (VMay
1975), pr SS4=S5AC,
L
[3) w.E.Howden, "Reliability of the Fath Aralysis Testirn
Strategy"., IFEE Trarsactions on Software krcineerine SF=-2,3
N (Sept 1576), reo 20°~214.,
{&4] J.F.Goodenouah and S.L.Cerhart, "Tcwatcs a Theory ot
- Test Data Selection", TEEE Transzctiocns on Software
Enoineerinag SE=1,2 (June 157S), pp 156=1T72.
{5) J.C.Huang, "An Arproach to Proagrar JYestinc", Comruting
- Surveys 7,2 (Sept 1575), pp 1172-127.
(6] E.f.Miller amnd R.A.Melton, “aAutnmater Ceneratior of
— Testcase Patasets”, in Frocedinas of the First Trterrztioratl
Conference on Feliahle Software, SIGPLAM Nctices 1C,7 (June
- 1975), nn S1-S¢,
~ (73 L.Clarke,) Syster to Cenerate Teet razta anc
Symtolically fxecute Proorems®, TEFE Transactions or
Software Enaoineerina SF-2,3 (Sept 1676), rr 215-222.
- :
&3 J.king, "Symbolic Executior and C(froaranr Testinc",
Communications of the ACM™ 16,7 (July 197¢6), tr 2%5=3G/,
3 L
{5) R.London, "The C(Current State of Frovina froarams
Correct", irn Procedinos of the ACM National Corference,
1972, AC™, hew York, pp 39-46.
L
[1r) S.Hantler and J.Kina, "tn Introouction to Frovinc the
Correctness of Prcgrems”, Corputing Surveys &, (Sert 147¢),
- pr 331-353.
{11) F.A.Younas, “Human Frrors in Frcoramming",
] - International Journal ot Man Machine Studies (¢ (1974), po
361-376.
{121 E.Boehm, “Softmare Pesign and Structurime”, inp
- Practical Strategies for Developina Larne Software Systers,
Horowit2z (Fditor), Addison-4Wesley, 1975, pp 102-12%,
- (131 F.oeMillo, P.Lipton,and F.Sayward, "rints on Test Data

246

Selection"”, IEEE Conmputer, vol. 11, no. L, Aeoreil 197, oy
=41,

[14) Sprecial Issue: Proarammino, ACM (emputimg Surveys 6,4
(Dec. 1674), rp 2009-319¢

{151 rR.re¥illo, Kk.lLitton, F.Sayward, "FLCCKAM™ NUTATION: A
vethod of heterninincg Test Nata Acdenuacy'™, State of tre Art:
Frogram Testing, SRB/INEOTECH, 1975,

[1¢) F. peMilio, f. Sayward, "Froorar Mutaticn 2s & Tool
for Nanagina Larae Scftware [leveloprent,” Trares. S6th
veetira for %Suality Control.

[17) SCFTWARE TOOLS SURSYSTE™ USER'S GUICLE, (GIT=1CS-78/02),
Georgia Institute of Technolegy, Sertenter, 167¢.

(12] FCRTRAN PROGRAMMEFR'S GUIDE, POF2CS7, Prinme (omputer,
Incorgorated, Framinaham, "acsachusetts, Noverter, 1977,

£19] THEL NEw USFF'S GUICE TO ERITOR &ND RUNOFF, PBK2104,
Prime (omputer, Incorparated, framinchar, “acsachusetts,
Ncvember, 1977.

1
|

