RECYCLABILITY ISSUES IN XEF LASERS. (U)
AUS 61 A MANDL, R SLATER, D TRAINOR
AFWAL-TR-81-2085
ML
RECICLABILITY ISSUES IN XeF LASERS

A. MANDL, R. SLATER AND D. TRAINOR

AVCO EVERETT RESEARCH LABORATORY, INC.
A SUBSIDIARY OF AVCO CORPORATION
2385 REVERE BEACH PARKWAY
EVERETT, MA 02149

AUGUST 1981

Approved for public release; distribution unlimited.

PROPULSION LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433
NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At N.A., it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

PROJECT ENGINEER
AFWAL/POOC-3

FOR THE COMMANDER

AIR FORCE/56780/19 November 1981 – 170
This report describes three experiments designed to assess various aspects of XeF laser operation at elevated temperatures. Measurements of the rate of loss of NF₃ and NF₂ in contact with metals and quartz were obtained in one experiment. Nickel, quartz and aluminum appear to be less reactive than titanium, stainless steel and copper.
The feasibility of using metal-filled reactors to scrub F_2 from XeF laser gas mixtures was investigated. Titanium was shown to be a selective F_2 scrubber.

XeF laser performance was studied as a function of NF$_3$ and NF$_2$ mole fractions. These experiments indicate that the presence of NF$_2$ degrades laser performance using a stainless steel cell. The cell construction material appears to play a significant role in determining the extent of degradation.
FOREWORD

This technical report was accomplished under Project 2301, Work Unit 2301S283 "Recyclability Issues in XeF Lasers". The study was performed by the Avco Everett Research Laboratory, Inc. under contract F33615-80-C-2060 and funded by the Directed Energy Office, Defense Advanced Research Projects Agency. The DARPA program manager was Lt Col R. P. Benedict, Jr., and the Air Force program manager was Dr Alan Garscadden, Energy Conversion Branch, Aero Propulsion Laboratory, Wright-Patterson AFB.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. F₂ SCRUBBING</td>
<td>5</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>5</td>
</tr>
<tr>
<td>B. Approach</td>
<td>6</td>
</tr>
<tr>
<td>C. Data And Discussion</td>
<td>10</td>
</tr>
<tr>
<td>D. Conclusions</td>
<td>17</td>
</tr>
<tr>
<td>III. MATERIALS COMPATIBILITY STUDIES</td>
<td>19</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>19</td>
</tr>
<tr>
<td>B. Background</td>
<td>20</td>
</tr>
<tr>
<td>1. Homogeneous Chemistry</td>
<td>21</td>
</tr>
<tr>
<td>2. Heterogeneous Chemistry</td>
<td>24</td>
</tr>
<tr>
<td>C. Apparatus</td>
<td>25</td>
</tr>
<tr>
<td>D. Results</td>
<td>30</td>
</tr>
<tr>
<td>1. NF₂ UV Absorption Cross Section</td>
<td>30</td>
</tr>
<tr>
<td>2. NF₂ Loss Rates</td>
<td>32</td>
</tr>
<tr>
<td>3. NF₃ Loss Rates</td>
<td>37</td>
</tr>
<tr>
<td>IV. ROLE OF NF₂-RADICALS ON XeF LASER PERFORMANCE</td>
<td>41</td>
</tr>
</tbody>
</table>

v
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Relative Laser Output Energy vs The Number of Repeated E-Beam Irradiations on a Single Fill (1-M Device)</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Photograph of the Gas Scrubbing Apparatus</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Schematic Diagram of Gas Scrubbing Apparatus</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Time Dependence of F₂ Loss in a Nickel Filled Reactor at 300°C</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Semilog Plot of Time Dependent F₂ Loss in a Titanium Filled Reactor at 180°C</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>Semilog Plot of Time Dependent NF₃ Loss in a Titanium Filled Reactor at 180°C</td>
<td>12</td>
</tr>
<tr>
<td>7a</td>
<td>Temperature Dependence of F₂ Loss Rate in a Nickel Filled Reactor</td>
<td>13</td>
</tr>
<tr>
<td>7b</td>
<td>Temperature Dependence of NF₃ Loss Rate in a Nickel Filled Reactor</td>
<td>14</td>
</tr>
<tr>
<td>8a</td>
<td>Temperature Dependence of F₂ Loss Rate in a Titanium Filled Reactor</td>
<td>15</td>
</tr>
<tr>
<td>8b</td>
<td>Temperature Dependence of NF₃ Loss Rate in a Titanium Filled Reactor</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>Schematic Diagram of NF₂ Materials Compatibility Experiment</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>Photograph of Material Compatibility Experiment</td>
<td>28</td>
</tr>
<tr>
<td>11</td>
<td>NF₂ Absorption Cross Section Data at 500°K</td>
<td>31</td>
</tr>
<tr>
<td>12</td>
<td>Time Dependence of NF₂ Signal</td>
<td>33</td>
</tr>
<tr>
<td>13</td>
<td>Semilog Plots of NF₂ Loss Rate in 304 Stainless Steel and Quartz</td>
<td>35</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>14</td>
<td>Characteristic Loss Rates for SiO₂, 6061 Aluminum, Nickel, Platinum, 304 Stainless Steel and Copper as a Function of NF₂ Exposure Time</td>
<td>36</td>
</tr>
<tr>
<td>15</td>
<td>XeF Lasering with NF₃, N₂F₄ and NF₂ Donors</td>
<td>42</td>
</tr>
<tr>
<td>16</td>
<td>XeF* Sidelight Fluorescence as a Function of Residence Time for Repeated Irradiation of a Gas Mixture of 0.2% NF₃, 0.5% Xe, and 99.3% Ne</td>
<td>44</td>
</tr>
<tr>
<td>17</td>
<td>XeF* Sidelight Fluorescence as a Function of Residence Time for Repeated Irradiation of a Gas Mixture of 0.1% NF₃, 0.1% NF₂, 0.5% Xe, 99.3% Ne</td>
<td>45</td>
</tr>
<tr>
<td>18</td>
<td>XeF* Sidelight Fluorescence as a Function of Residence Time for Repeated Irradiation of a Gas Mixture of 0.2% NF₂, 0.5% Xe and 99.3% Ne</td>
<td>46</td>
</tr>
<tr>
<td>19</td>
<td>XeF* Sidelight Fluorescence as a Function of Residence Time for Repeated Irradiation of a Gas Mixture of 0.2% NF₃, 0.5% Xe and 99.3% Ne After Pasivation</td>
<td>48</td>
</tr>
<tr>
<td>20</td>
<td>XeF* Sidelight Fluorescence for Various Mole Fractions of NF₂/NF₃</td>
<td>50</td>
</tr>
<tr>
<td>21</td>
<td>XeF* Laser Peak Height for Various Mole Fractions of NF₂/NF₃</td>
<td>51</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

High energy, efficient operation of xenon fluoride lasers has been demonstrated by a number of groups.\(^{1,2,3}\) Subsequently, output energy, laser intrinsic efficiency and specific energy (J/l-AMG) have been shown\(^4\) to increase when the laser is operated at elevated temperature (\(\sim 450^\circ\text{K}\)). Current DARPA programs\(^5\) are investigating the feasibility and limitation in scaling xenon fluoride to high single pulse output at 300\(^\circ\text{K}\) as well as elevated temperatures. Future efforts will be directed to demonstrate that this laser system can be operated in a repetitively-pulsed mode to produce high average power and eventually with closed-cycle operation without significant degradation of the laser performance for extended periods of operation.

At room temperature, the laser mixture shows evidence for little degradation over extended periods of time when repeatedly irradiated with a high energy e-beam (see Figure 1). This suggests that at this temperature, in this laser cavity (stainless steel, aluminized kapton, quartz, o-rings, etc.), the laser gas components are compatible with the cavity materials and the gas phase homogeneous chemistry is favorable for releasing the same

\(^{2}\) Hunter, R.O., Jr. Private communication.

\(^{5}\) Visible Laser Scale-Up (Contract DAAK40-79-C-0197).
Figure 1 Relative Laser Output Energy vs The Number of Repeated E-Beam Irradiations on a Single Fill (1-M Device)
fuel. This suggests that the rate constants which define the rate of change in the fluorine atom density with time favors the re-
formation of NF$_3$, i.e.,

$$F + NF_2 + M \rightarrow NF_3 + M$$ \hspace{1cm} (1)

dominates and/or the production of F$_2$ by the reaction

$$F + F + M \rightarrow F_2 + M$$ \hspace{1cm} (2)

does not cause any loss in laser performance. It is well estab-
lished that F$_2$ is an efficient donor for the production of XeF* in
the upper laser state\(^{(6)}\) but has significant absorption at
the laser operating wavelength of 350 nm. \(^{(7)}\)

At 300°K, the rate for reaction (1) is 100X to 1000X faster
than the rate for reaction (2). This estimate was obtained using
the rate constants available from the literature\(^{(8,9)}\) and the
pressure scaling suggested by Smith and Heustis\(^{(10)}\) for reaction
(1) and applying these to our experimental conditions of pressure
and mixture mole fractions.

At elevated temperatures, consideration of the calcul-
ated\(^{(10)}\) negative temperature dependence of reaction (1) rela-
tive to an assumed temperature independent behavior for reaction
(2), these rates may only differ by 10X to 100X in favor

\(^{(6)}\) Rokni, M., Jacob, J.H., Mangano, J.A. and Brochu, R., App.

\(^{(7)}\) Calvert, J.G. and Pitts, J.N., Jr., Photochemistry (Wiley,

\(^{(8)}\) Tang, K.Y., Hunter, R.O., Jr. and Heustis, D.L., (submitted

of reformation of the NF₃ fuel. Clearly, laser degradation at elevated temperature is a more serious concern. Regardless of these rates and their ratios, however, there will be some buildup of F₂, and perhaps other fluoride compounds, as a result of homogeneous and heterogeneous chemical reactions.

To investigate these effects, we carried out the program described in this final report. Our program consisted of three tasks. The first entitled "gas scrubbing" was undertaken to explore techniques to remove the F₂ from mixtures of F₂, NF₃, Xe and Ne. The second task provided information on the compatibility of NF₃ and NF₂ radicals with likely laser construction materials. The third investigated the impact of NF₂ radicals on laser performance.

The results of these tasks are described in detail in the following sections.
II. F₂ SCRUBBING

A. INTRODUCTION

The rare-gas halide excimer lasers are the most efficient sources of laser radiation at visible and ultraviolet wavelengths. Of particular interest to DARPA is the xenon fluoride laser which can propagate through the atmosphere due to its lasing wavelength of ~ 351 nm.

A typical XeF laser mixture consists of 0.2% NF₃/0.5% Xe/99.3% Ne. Since these rare gases are quite costly, it is necessary for a cost efficient system that the rare gases be recovered and reused, i.e., recycled. A problem, however, is that during reactions that result in the formation of the upper laser level, NF₃ dissociates to form NF₂ radicals and F⁻ ions. After lasing, the XeF lower laser level dissociates and some fraction of the resultant free fluorine atoms will recombine to form F₂ which absorbs at the laser wavelength and, therefore, for any large-scale closed-cycle system must be removed. Recycling the laser mixture, therefore, at a minimum involves separating the F₂ contaminant from the mixture of F₂/NF₃/Xe/Ne.

There are several possible approaches to removing F₂ from the laser mixture; selective distillation, catalytic reaction with Xe, wet (or dry) scrubbing, etc. Since F₂ liquefies at 50°K, distillation is very energy inefficient requiring that the entire mixture be cooled and then reheated after separation. An alternate possibility is to react F₂ with Xe either catalytically or by using a discharge to form XeFₙ (n = 2, 4, 6). Since the xenon fluorides have significantly lower vapor pressures than fluorine (<1 torr at T = 0°C), one could distill the xenon fluoride compounds more economically than molecular fluorine. Alternately, one could use heterogeneous chemistry to selectively react the
fluorine on a surface. Here again there are several approaches possible. There are the wet chemical methods using NaOH or KOH caustic scrubbers to form alkali fluoride salts. These require cold traps to remove deleterious water vapor from the system. There is also the dry chemistry approach using metal scrubbers. This approach takes advantage of the tendency of fluorine to react with metals to form very stable metal fluorides. In this report, we describe the results of experiments in which metal scrubbers were used to selectively remove F₂ from a mixture of F₂/NF₃/

Rare gas.

B. APPROACH

The reactor consists of a stainless steel cell containing either Ni or Ti metal which can be heated to various temperatures. Mixtures containing F₂ and/or NF₃ and a rare gas buffer (He or Ar) are circulated through the reactor and are continuously monitored using a mass spectrometer (Model 100C, U.T.I., Sunnyvale, CA). A photograph of the apparatus is shown in Figure 2 and a schematic diagram is shown in Figure 3.

Premixed gas is introduced into the flow loop with the reactor valves (V2 and V3) closed and the bypass valve (V1) open. A circulating pump is used to pump the gas at a flow rate of typically 6 l/min as monitored by a linear mass flow meter (Teledyne-Hastings, Hampton VA, Model H-10KMS).

Before the valves to the reactor are opened to start an experiment, the mass peaks monitored by the mass spectrometer [m/e (F₂) = 38; m/e (NF₃) = 71, m/e (Ar) = 40] show essentially no change. At the beginning of an experiment, the bypass valve is closed and the two valves connecting the metal reactor are opened. After a transient spike caused by pressure equalization, the mass spectrometer monitors the decay of the fluorine containing species as a function of time. A typical decay curve for F₂ flowing through a Ni filled reactor at 300°C is shown in Figure 4. In this case a mixture of 5% F₂ and 95% He at a total pressure of 128 torr was used. An exponential decay over
Figure 2 Photograph of the Gas Scrubbing Apparatus
Figure 3 Schematic Diagram of Gas Scrubbing Apparatus
Figure 4 Time Dependence of F_2 Loss in a Nickel Filled Reactor at 300°C
about two orders of magnitude is observed with a decay time constant of about 80 sec. In other experiments, the nickel is replaced with a different metal to be tested, e.g., the decay time constant for F₂ in a Ti reactor is significantly faster even at lower temperatures. A typical decay of F₂ in Ti is plotted in Figure 5 together with the system response time.

For our application, we are interested in scrubbing the F₂, i.e., separating F₂ from NF₃. It is, therefore, important to determine the rate of decay of NF₃ under similar conditions to determine if one can remove F₂ in the presence of NF₃ or if the halogens must be removed together. A plot of the NF₃ decay versus time in a Ti reactor at 180°C is given in Figure 6. We observe about a two order of magnitude difference in the decay rates of F₂ and NF₃ under similar conditions. This suggests that by limiting the contact time a selective mode can be achieved and F₂ removed from a typical laser mixture.

C. DATA AND DISCUSSION

A series of measurements of the decay rates of both F₂ and NF₃ in a Ti filled reactor has been performed as a function of temperature. As has already been shown in Figures 5 and 6, however, the reaction rates of NF₃ and F₂ in a Ti reactor at 180°C are substantially different. If we now compare the decay rates as a function of temperature as given in Figure 7, we observe that the F₂ rate is substantially higher for all temperatures up to 180°C. Thus, Ti can be used effectively to eliminate F₂ from a mixture containing F₂ and NF₃. It should be noted that measurements of F₂ removal in a Ti filled reactor were made above 180°C but the rates were comparable to or greater than the system response time and could not be determined.

For comparison, Figure 8 shows the decay rates of F₂ and NF₃ in a Ni filled reactor. Since both the activation energy and the reaction rates for the decay of F₂ and NF₃ in a Ni...
Figure 5 Semilog Plot of Time Dependent F_2 Loss in a Titanium Filled Reactor at 180°C
Figure 6 Semilog Plot of Time Dependent NF₃ Loss in a Titanium Filled Reactor at 180°C
Figure 7a Temperature Dependence of F_2 Loss Rate in a Nickel Filled Reactor
Figure 7b Temperature Dependence of NF$_3$ Loss Rate in a Nickel Filled Reactor
Figure 8a Temperature Dependence of F_2 Loss Rate in a Titanium Filled Reactor
Figure 8b Temperature Dependence of NF₃ Loss Rate in a Titanium Filled Reactor
filled reactor are comparable, there is no temperature at which preferential scrubbing of \(\text{F}_2 \) from the mixture can be easily accomplished.

The error bars in Figures 7 and 8 represent standard deviations about the mean of a set of decay rate measurements obtained at each temperature. The mean is represented by an individual data point (open circle). Some component of this error is not random, but rather is due to a systematic slowing down of the rate as material is processed in the reactor, i.e., passivation of the reacting material. For any particular measurement of the temperature dependence, however, the activation energy remains relatively constant, especially at the higher temperatures. Also, the average of the runs gives the same activation energy.

An interesting difference between Ni and Ti reactors is that the reaction products in a Ni reactor form nickel fluorides which have low vapor pressures at the reactor temperatures. Thus, the surface becomes coated with nickel fluorides which can substantially slow the reaction rate. Nickel fluorides in the form of a green powder have been observed to form in the Ni reactor. On the other hand, Ti reaction with fluorine forms \(\text{TiF}_4 \) which is a volatile gas at the reactor temperature (vapor pressure \(\sim 10 \) 's of torr).

This gas is trapped as it emerges from the reactor (see Figure 3) and forms a white powder on a cold trap surface. At present, it is not clear whether the difference in vapor pressures of the metal fluoride products plays an important role in determining the net decay rates measured here.

D. CONCLUSIONS

A Ti reactor has been used previously in a closed-cycle recirculating system for a rare-gas halide excimer laser.\(^{(11)}\)

In that case, the laser mixture consisted of only F₂ and a rare gas. In our case, we are removing fluorine from a mixture containing both F₂ and NF₃ in a rare gas. For the Ti reactor we have shown selective removal of F₂ in the presence of NF₃ with a rate which is about two orders of magnitude faster than the NF₃ removal rate.

In the Ti reactor, TiF₄ forms and is trapped downstream so that the Ti surface is self-cleaning and one should be able to use up a significant fraction of the Ti charge before it must be replaced. Each Ti atom reacts with four fluorine atoms so that for every mole of F₂ removed from the gas stream a half mole of Ti or about 24 g is consumed.

The rate at which gas must be processed in a closed-cycle XeF laser will be determined by the rate at which F₂ is formed. This rate can be estimated by the limited knowledge of the gas phase kinetics but little is known about the total reaction rate at high temperatures and pressures. Thus, if it takes N pulses before the XeF laser output decreases to an unacceptable level, one would have to process 1/N fraction of the gas on each cycle.
III. MATERIALS COMPATIBILITY STUDIES

A. INTRODUCTION

The objective of this task is to investigate the reactivity and compatibility of some constituents of heated XeF laser gas mixes (namely, gas phase \(\text{NF}_3 \) and \(\text{NF}_2 \)) with a number of structural materials that may be considered for the design of high-power, closed-cycle, efficient XeF laser systems. These fluorine-bearing constituents were chosen because they are the dominant reactive species in the XeF laser mix. \(\text{NF}_3 \) is the primary halogen donor, and \(\text{NF}_2 \) is one of the principal reaction products formed in the homogeneous gas phase chemistry that follows e-beam excitation of neon/xenon/\(\text{NF}_3 \) gas mixes. The structural materials (e.g., stainless steel, copper, aluminum and quartz) were chosen as being representative of the types of materials from which heat exchangers, duct work, mufflers, foils, laser cavities, and optics are constructed. Furthermore, these studies were performed at elevated temperatures (up to 500°K), to include the temperature range at which the XeF laser electrical efficiency is optimized.

In general, material compatibility studies provide input information that can be used to assist in determining a number of important laser design parameters. First, the heterogeneous and homogeneous \(\text{NF}_3 \) reaction rates determine the total \(\text{NF}_3 \) lifetime around the closed-cycle flow loop. This, in turn, determines the \(\text{NF}_3 \) makeup rate required to maintain the proper \(\text{NF}_3 \) density within the laser cavity. At the inception of this work, quantitative \(\text{NF}_3 \)/surface reaction rates were not available although some information regarding homogeneous \(\text{NF}_3 \) loss rates is now becoming available. Second, a knowledge of \(\text{NF}_x \)/surface reaction products and rates determine whether or not gas scrubbers
are required for a given run time, the size and type of scrubbers
needed and the fraction of the flow that should be processed. In
addition, product identification may aid in determining the exist-
ence of unwanted absorbers or other species that interfere with
upper laser state formation or increase quenching losses espe-
cially if these products are highly volatile. Third, the NF_x
/ surface reaction rates determine (at least indirectly), the corro-
sion rate and overall lifetime of the various components of the
flow loop that are in contact with the hot laser gas mix.

In the present studies, we have measured the rate of loss of
NF_3 and NF_2 in the presence of various metals and quartz at
elevated temperatures. The NF_2 loss rate was monitored by an
optical absorption technique and the NF_3 loss rate was monitored
using mass spectrometry. These diagnostics also provided some
qualitative information pertaining to surface reaction products.

Several caveats should be mentioned in regard to interpreting
the results presented below. The NF_3 and NF_2 loss rates re-
ported here pertain to specific samples of metal or quartz, and
may not be generally applicable to other arbitrary metal or quartz
samples of the same material. The reason for this rather conserv-
ative interpretation of the data stems from the variability in
experimental measurements of surface reaction rates. This varia-
bility is associated with difficulties in characterizing and con-
trolling parameters such as surface treatment (especially surface
roughness and impurities) and bulk material structure (disloca-
tions and other defects, bulk impurities) which can have a sig-
ificant impact on surface reaction rates. This situation could
be rectified if a sufficient amount of data is obtained over a
wide range of sample variations (surface and bulk morphology,
alloy composition, sample size and shape, etc.) for each par-
ticular material, but this was outside the scope of this program.

B. BACKGROUND

During the early stages of the program, a literature search
was undertaken to obtain information regarding the homogeneous and
heterogeneous chemistry relevant to NF₃/NF₂ laser compatibility. This study produced a number of references which were extremely useful source materials. (12-14) Among these, Ref. 14 was particularly useful as it contains a two-volume, exhaustive compilation of chemical and engineering data on NF₃. Part A contains evaluated data on the chemical, physical and thermodynamic properties of NF₃. It also contains engineering data related to the storage, handling, toxicology, production and corrosion rates of NF₃ with various materials. Part B is an extensive bibliography containing more than 5000 citations concerning NF₃ properties. In what follows we briefly summarize a few of the salient features of NF₃ and NF₂ chemistry that bear on the present program. All of this information was obtained from the three references cited above.

1. Homogeneous Chemistry

At high temperature and in the absence of walls, NF₃ thermally dissociates in an argon bath into the difluoroamino radical, NF₂, and a fluorine atom via the bond fission reaction (3):

\[
\text{NF}_3 + \text{Ar} \rightarrow \text{NF}_2 + \text{Ar} + \text{F}
\]

(3)

Subsequent chemistry involves only the recombination of the F atoms

\[F + F + Ar + F_2 + Ar \] (4)

and the two-body recombination of \(NF_2 \) radicals

\[NF_2 + NF_2 \rightarrow N_2F_4 \] (5)

The rate constant for the homogeneous thermal decomposition of \(NF_3 \) in argon, reaction (3), has been measured in shock tube studies at higher temperatures (1050-2400 K) than would be encountered in an XeF laser. (15-18) The total pressure range in these studies was 0.4-60 atm of which \(NF_3 \) constituted only a few percent concentration in the mix. In all cases the rate was found to be first order in both Ar and \(NF_3 \) concentration and the rate constant was expressed in the form:

\[k_1(T) = A e^{-\frac{E_a}{RT}} \]

The results of these studies are summarized in Table 1. The agreement between the data in Refs. 15, 16, and 18 is reasonably good, but the discrepancy between these data and that of Ref. 17 is unresolved. Extrapolating the data in Table 1 down to 500 K, we find that the homogeneous process should play a negligible role in determining the overall \(NF_3 \) loss rate in the presence of metals and quartz as measured in Section III.D.3. (15-18)

<table>
<thead>
<tr>
<th>A (cm3/sec) x 1010</th>
<th>E_a (kJ/mole)</th>
<th>P (atm)</th>
<th>T (°K)</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>146.7</td>
<td>0.3-2.4</td>
<td>1100-1450</td>
<td>15</td>
</tr>
<tr>
<td>2.09</td>
<td>125.8</td>
<td>2.7-6.0</td>
<td>1050-1390</td>
<td>16</td>
</tr>
<tr>
<td>8.3</td>
<td>235</td>
<td>0.8-60</td>
<td>1500-2400</td>
<td>17</td>
</tr>
<tr>
<td>677.</td>
<td>200.6</td>
<td>0.8-1.81</td>
<td>1150-1530</td>
<td>18</td>
</tr>
</tbody>
</table>
The rate constant for the reversible dimerization reaction has been measured over the temperature range 344°K-571°K and the pressure range 0.6 - 6 atm. These results indicate that the equilibration in Eq. (5) is rapidly established (milliseconds or less) for the temperature range of interest to XeF lasers. The fractional dissociation, \(a = \frac{\text{NF}_2}{\text{N}_2\text{F}_4} \), calculated from thermodynamics is 0.004 at 1 atm and 0.12 at 10^{-3} atm at 298°K and the corresponding values at 423°K are 0.9 and 0.94, respectively.

2. Heterogeneous Chemistry

The heterogeneous reaction of NF\(_3\) with metals at elevated temperatures has been the subject of a large number of studies. Colburn and Kennedy reported that N\(_2\)F\(_4\) was produced by heating NF\(_3\) in a metal-filled reactor via the overall reaction

\[
2\text{NF}_3 + 2M \rightarrow \text{N}_2\text{F}_4 + 2MF
\]

over the temperature range 375-450°C. Here M is any of a number of various metals (stainless steel, copper, arsenic, antimony, bismuth) that were studied in those investigations. Much of this early work utilized copper that promoted the reaction by the

(23) Francis, W., "The Preparation of Nitrogen Trifluoride and Tetrafluorocephaldehyde", ibid, 1959.
formation of CuF (or CuF$_2$). The N$_2$F$_4$ formation mechanism involves, initially, NF$_3$ attack on virgin metal forming a stable metal fluoride via

$$NF_3 + Cu \rightarrow CuF + NF_2$$

and then N$_2$F$_4$ is formed via NF$_2$ dimerization as the reactor cools.

Following these studies, other work sought to improve reaction yields. Given this proposed mechanism, most of these improvements were directed towards replacing copper with another substance that would generate a volatile metal fluoride and, therefore, provide a continuous exposure of fresh metal to NF$_3$. In this regard carbon (yielding CF$_4$ (b.p. = -127.7°C)) and arsenic (yielding AsF$_3$ (b.p. = 56.3°C)) were extensively studied with varying degrees of success.

C. APPARATUS

Under this program, we initially anticipated using a UV optical absorption diagnostic and a mass spectrometer to monitor the F$_2$ scrubbing (Task II) and materials compatibility (Task I) experiments, respectively. However, during the early phases of Task I, we encountered difficulties in the determination of the NF$_3$ loss rate with metals using the optical diagnostics. These difficulties were found to be related to the presence of interfering species including other NF$_x$ type compounds which also absorb at the NF$_3$ probe wavelength of 193 nm, and which are formed in the NF$_3$/metal decomposition reactions. On the other hand, no such difficulty was encountered in the NF$_2$ compatibility experiments. Rather than attempt to extract the pure NF$_3$ absorption signal, it was decided that mass spectroscopy could be used to perform the NF$_3$ compatibility experiments by unambiguously monitoring the NF$_3$ loss rate using the m/e = 71, NF$_3$, mass spectrometer signal.
In what follows below, we describe the optical absorption apparatus that was used to monitor NF$_2$ materials compatibility experiments. A description of the NF$_3$ materials compatibility apparatus is to be found in Section II.B.

A schematic diagram of the optical absorption apparatus is displayed in Figure 9 and a photograph of the entire apparatus is displayed in Figure 10. Basically, UV light emanating from a cw D$_2$ lamp was attenuated by a heated gas cell containing NF$_2$ and an appropriate metal. NF$_2$ absorbs around 260 nm. The transmitted light was then spectrally resolved and detected by a 0.3 m (GCA/McPherson Model 218) vacuum monochromator and photomultiplier tube (EMI/GENCOM MODEL 9789Q, spectrasil UV grade window). The modulated output of the photomultiplier was fed into a lock-in amplifier (PAR Model 120), and the lock-in output was displayed on one channel of a strip chart recorder. 43 Hz modulation was obtained by a mechanical chopper wheel (Ithaco Corp.) inserted between the light source and cell. The chopper also outputs a synchronous 43 Hz square wave electrical signal that was used to provide phase reference for the lock-in amplifier. An optical reference signal (used for normalization) was obtained by reflecting a small portion of the incident UV beam on to the surface of a glass slide covered with a thin layer of sodium salicylate solution. The resultant visible fluorescence was detected with a 1P28 photomultiplier tube, the output of which was fed into a second lock-in amplifier for display on the second channel of the strip chart recorder.

The D$_2$ arc lamp (Oriel Corp. Model 6311) emitted continuum radiation from \sim185 nm to 490 nm, the short wavelength limit being determined by the transmission characteristics of the quartz lamp envelope. The lamp output was collimated with a UV grade quartz f/1.5 condensing lens positioned about one focal length (~4 cm) from the lamp envelope. The light then passed through two variable size apertures, which defined the probe volume within the gas
Figure 9 Schematic Diagram of NF₂ Materials Compatibility Experiment
Figure 10 Photograph of Material Compatibility Experiment
cell, before entering the monochromator. The monochromator bandwidth (Δλ ≈ 1 nm) and wavelength calibration were determined using a low pressure Hg resonance lamp. An additional dielectrically coated interference filter (Acton Corp., λ_{max} = 172 nm, Δλ ≈ 20 nm) was inserted into the UV beam path when NF₃ probe experiments at 193 nm were performed.

The gas cell was constructed entirely from suprasil quartz. This was done in order to insure that hot NF₂ gas was in contact with metal at one controlled location which was within a finger-like compartment appended to the cell body. The cell was constructed by fusing two optical quality 2.54 cm diameter windows to either end of a 2.54 cm diameter x 10 cm long tube. A long combination gas inlet and vacuum pumping line (30 cm x 0.6 cm diameter) and the finger-like compartment were also fused to the cell body. The long inlet line passed through a hole in the oven wall and mated to the stainless steel vacuum station via a 0.6 cm quick disconnect coupling. The ambient temperature at this junction was always near room temperature.

The gas cell was enclosed within oven walls constructed entirely of firebrick and transite. Small holes drilled into the oven walls allowed the UV probe beam to enter and exit the cell. The oven was resistively heated using Nichrome heaters which were powered by a variac transformer. The Nichrome heaters were located on the floor of the oven. The cell temperature was controlled to within 10⁰K by means of a thermocouple control relay circuit. The cell temperature was monitored at two positions: the bottom of the finger and the top of the cell. These two readings were always within 10⁰K of each other.

The stainless steel vacuum station and gas handling manifold (see Figure 10) were used to evacuate the gas cell, make NF₂/argon mixes and load gas samples into the cell. The base pressure of the vacuum station and heated cell (500⁰K) was about 1 x 10⁻⁶ torr and the net outgassing/leak rate (with the cell hot) was ~ 1 x 10⁻³ torr/min in a volume of about 200 cm³.
Vacuum measurements were made with a Bayard-Alpert type (Vecco Corp. Model RG7) ionization gauge, and gas pressures were measured with a calibrated pressure transducer (Validyne Corp. variable reluctance manometer Model DP7).

Samples of NF$_3$ and N$_2$F$_4$ were obtained from Air Products Corp. N$_2$ was removed from both gases by trapping and pumping at 780K. In addition, NF$_3$ samples were trapped in dry ice/acetone slush baths (190°K) to remove water vapor and NO$_2$.

D. RESULTS

The rate of NF$_2$ loss was followed by time resolved UV absorption at 260 nm, the peak of the strong A - X bound-bound absorption band in NF$_2$.

1. NF$_2$ UV Absorption Cross Section

The NF$_2$ optical absorption cross section was measured at 260 nm. The data displayed in Figure 11 were obtained at 500°K using a 3:1 argon:NF$_2$ mix. The absorption cross section was then obtained from the slope of a straight line drawn through the data points using the relationship,

$$
\sigma = \frac{1}{N} \left[\frac{\ln(I_0/I)}{L} \right]
$$

where L is the optical path length ($=9$ cm) and N is the NF$_2$ density. Using Eq. (8), the cross section was calculated to be 1.3×10^{-18} cm2 at 500°K, which is somewhat larger than the room temperature value, 9.2×10^{-19} cm2, measured by other workers. In addition, relative measurements were made at a few wavelengths on either side of absorption maximum in order to verify that NF$_2$ was the principal absorber in this wavelength region. The resultant continuous absorption curve was characteristic of NF$_2$.

Figure 11 \(\text{NF}_2 \) Absorption Cross Section Data at 500\(^\circ\)K

\[\sigma = 1.3 \times 10^{-18} \text{cm}^2 \]
2. NF_2 Loss Rates

The NF_2 loss rates were measured for hot NF_2 gas in contact with the following materials: quartz, 304 stainless steel, nickel, 6061 aluminum, copper and platinum. The quartz experiments provide a reference measurement with which to compare the loss rates measured with metals added to the quartz cell.

A standardized handling and data taking procedure was adopted in order to minimize systematic errors and to provide meaningful comparisons between data obtained using the different metals. Except for platinum, the metal specimens were each chosen to be eight strips of foil with surface area comparable to the surface area of the quartz cell. In the case of platinum a smaller area of foil was used. All metal pieces were cleansed with an acetone wash to remove organic surface impurities. Prior to taking data, the cell and metal specimens were baked and pumped at 500°K at 10^{-6} torr for ~ 2 hr.

Three loss rates were measured for each metal using a 31 to 1 argon/NF_2 mix containing 2.3×10^{-3} amagats NF_2. This density yields about 50% absorption at 260 nm in a 9 cm cell. The first loss rate was obtained for a mix in contact with virgin metal while the second and third loss rates were obtained after the same metal sample had been exposed to high concentration NF_2 samples (0.16 amagats pure NF_2) for 15 and 30 min periods, respectively. This procedure provided a means to assess the effects of passivation. The passivating samples were added between the first and second loss rate measurement and then again between the second and third loss rate measurement. The NF_2 concentrations quoted here were obtained from N_2F_4 pressure measurements at room temperature using the ideal gas law and thermodynamic calculations which show that N_2F_4 is totally dissociated at 500°K.

A typical time dependent NF_2 absorption curve is displayed in Figure 12 for 304 stainless steel. The absorption increased
Figure 12 Time Dependence of NF\textsubscript{2} Signal
initially as the NF$_2$/argon gas mix enters the cell. This is followed by a steady decrease in absorption (or transmission increase) as NF$_2$ molecules are removed from the probe volume within the cell. For comparison, the baseline measurement (see Figure 13) using only the quartz cell indicates a much slower decay rate under nominally identical conditions. The faster decay rate observed with metal present in the cell is indicative of a chemical reaction between NF$_2$ and metal; the fact that the loss rate depends upon the presence of metal eliminates the possibility that mass transport effects could cause the apparent loss of NF$_2$. It is likely that the reaction involves the formation of metal fluoride compounds in a manner analogous to NF$_3$/metal reactions discussed earlier (see Background). It is also worth noting that the curve shape in Figure 12 suggests that the NF$_2$/metal reaction is initiated as soon as the gas contacts the metal. Otherwise, a flat plateau (or induction period) would have been observed between the rise and fall times. These observations were found to be generally true for all the metals investigated here.

In all cases, the decaying portion of the absorption curves was found to fit a single exponential functional form reasonably well. Typical semilograthmic plots for three runs using 304 stainless steel are displayed in Figure 13 along with the baseline quartz run. Single exponential dependence over at least two characteristic times, τ, is observed for the stainless steel data. The zero time mark was arbitrarily taken to be the peak in the absorption curve, I', (see Figure 12).

Curve I in Figure 13 was obtained for NF$_2$ in contact with virgin stainless steel while curves II and III were obtained after 15 and 30 min passivation periods, respectively. These data indicate that the characteristic times for NF$_2$ loss increase monotonically with increasing time of exposure to NF$_2$, suggesting a passivation effect. Similar behavior was observed for the other metals that were investigated. Figure 14 displays the three characteristic NF$_2$ loss times as a function of NF$_2$ exposure for
Figure 13 Semilog Plots of NF₂ Loss Rate in 304 Stainless Steel and Quartz
Figure 14 Characteristic Loss Rates for SiO$_2$, 6061 Aluminum, Nickel, Platinum, 304 Stainless Steel and Copper as a Function of NF$_2$ Exposure Time
304 stainless steel, copper, nickel, platinum and 6061 aluminum. The reaction rates with aluminum, platinum and nickel are slower than the copper and stainless steel rates. Also, from the slopes of these curves, it appears that the slower reacting materials show a larger passivation effect (i.e., a larger incremental decrease in characteristic time), while the more rapidly reacting materials like copper and stainless steel show a smaller passivation effect.

The most likely explanation for the loss of NF\textsubscript{2} can be explained by heterogeneous chemical reactions forming a strong metal fluoride bond via

\[\text{NF}_2 + \text{M} \rightarrow \text{NF} + \text{MF} \] (9)

where M indicates the metal surface. The reactions forming metal fluorides are favored thermodynamically over the formation of metal nitrides. At present, it is not possible to develop a quantitative model which can predict the observed rates and also explain the differences in rates for different metals. The slow rates measured for aluminum may be the result of the presence of a protective aluminum oxide layer which may be inert to NF\textsubscript{2}. The observed NF\textsubscript{2} loss rate then may reflect the slow diffusion of NF\textsubscript{2} through the oxide layer to the bare metal where reaction can take place. Similar consideration may hold for the other slow reacting materials.

3. NF\textsubscript{3} Loss Rates

As is discussed in Section II, the reactivity of NF\textsubscript{3} on Ti and Ni surfaces was measured as a function of temperature using a mass spectrometer to monitor the decay of NF\textsubscript{3}. In order to assess the effect of heterogeneous chemistry of NF\textsubscript{3} in an XeF laser in which the laser mixture is recycled, we have measured the reactivity of NF\textsubscript{3} with various surfaces with which the NF\textsubscript{3} could come into contact. Measurements similar to those shown in
Table 2. Physical Properties of Reactants and Typical NF₃ Decay Times at 200°C

<table>
<thead>
<tr>
<th>METAL</th>
<th>VOID VOLUME (cc)</th>
<th>PACKING FRACTION (%)</th>
<th>AVG. RADIUS (cm)</th>
<th>τ AT 200°C (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>396</td>
<td>29</td>
<td>0.35</td>
<td>75</td>
</tr>
<tr>
<td>Ni</td>
<td>365</td>
<td>32</td>
<td>0.35</td>
<td>1250</td>
</tr>
<tr>
<td>QUARTZ</td>
<td>240</td>
<td>55</td>
<td>0.7 x 2.4</td>
<td>2700</td>
</tr>
<tr>
<td>Al</td>
<td>230</td>
<td>60</td>
<td>0.32</td>
<td>4500</td>
</tr>
</tbody>
</table>
Figures 7b and 8b suggest an ordering of the reactivity of these surfaces to \(\text{NF}_3 \). The reader is referred to Section II.B for a detailed discussion of the apparatus and experiment used to investigate heterogeneous loss of \(\text{NF}_3 \). The results of these measurements are summarized in Table 2. is the time for the \(\text{NF}_3 \) signal to e-fold at 200°C. The other columns give some of the parameters of the reactant surfaces used. The reactor is made of stainless steel and has a volume of 550 cm\(^3\). Material samples were used in the form of shot and the fourth column gives the average radius of each individual shot.

The loss rate with titanium is clearly faster than with any of the other materials. This is due to the formation of highly volatile TiF\(_x\) compounds, whereas for Ni and Al, refractory fluorides are formed that have negligible vapor pressure at 200°C. The quartz case is interesting because volatile SiF\(_4\) could conceivably evolve as a product. However, the very slow loss rate suggests that the fluorine ligands of \(\text{NF}_3 \) do not readily displace the oxygen in SiO\(_2\). This is in contrast with the well known rapid etching of quartz by HF (or F\(_2\)/H\(_2\)O mixtures) that also evolves SiF\(_4\). The aluminum results could also be explained by the presence of an oxide layer which inhibits the reaction of fluorine compounds with metals. Similar results were found in the NF\(_2\)/aluminum and NF\(_2\)/quartz studies reported in Section III.D.2.

The reaction of \(\text{NF}_3 \) with a metal surface leads to the formation of a metal fluoride and \(\text{NF}_2 \), via

\[
\text{NF}_3 + M \rightarrow \text{MF} + \text{NF}_2
\]

(10)

where M is the metal surface. Directly monitoring the \(\text{NF}_2 \) formation in reaction (10) at 52 amu is difficult since the major species in the cracking pattern of \(\text{NF}_3 \) is \(\text{NF}_2 \) and as shown in
Section III.D.2 when \(\text{NF}_2 \) is formed it also reacts with the metal surface via

\[
\text{NF}_2 + M \rightarrow \text{MF} + \text{NF}. \quad (9)
\]

The NF presumably decays to ultimately form \(\text{N}_2 \) and fluorine compounds. We have not been able to quantitatively determine all the \(\text{NF}_x \) decay rates on metal surfaces using the mass spectrometer although we have seen an overall decay of several \(\text{NF}_x \) species.
IV. ROLE OF NF$_2$-RADICALS ON XeF LASER PERFORMANCE

In an effort to investigate the impact of NF$_2$-radicals on laser operating characteristics, we utilized N$_2$F$_4$ as a source for these radicals. At the appropriate mole fractions of halogen fuel used in XeF laser mixtures, N$_2$F$_4$ is ~1% dissociated at 300°K, 80% dissociated at 400°K and > 99% dissociated at 500°K at 1 AMG total pressure. For 2 AMG, these values are ~1%, 67% and > 99%, respectively.

Using these values for the degree of dissociation and the reaction stoichiometry, i.e.,

\[\text{N}_2\text{F}_4 + \text{NF}_2 + \text{NF}_2 \]

we were able to systematically investigate the influence of the substitution of NF$_2$-radicals for NF$_3$ in laser mixtures. From earlier experiments, we had shown that NF$_2$ radicals and their parent compound, N$_2$F$_4$, could be used as a halogen donor by demonstrating lasing (see Figure 15). These experiments were carried out at high current densities, at 3 AMG density, and detrimental effects such as electron quenching were believed to be dominant and account for the reduction in performance compared to NF$_3$.

Under this program, experiments were performed using e-beam excited laser mixtures at various current densities, mixture pressures, mole fractions and temperatures. The apparatus used for these measurements has been previously described.\(^{(25-28)}\)

(0.2% HALOGEN DONOR/0.5% Xe/BAL Ne)

Figure 15 XeF Lasing with NF$_3$, N$_2$F$_4$ and NF$_2$ Donors
consists of a spatially uniform, high energy e-beam originating from a broad area cold cathode constructed of a series of tantalum blades. The electrons are constrained by an applied external magnetic field and enter the reaction cell through a 2-mil aluminized kapton foil. The gas mixtures in the reaction cell are irradiated by the 250 keV, 10A/cm² or 18 A/cm² e-beam having a pulse-length of 300 nsec. The mixtures studied were 0.2% fluoride compound (NF₃, NF₂ or N₂F₄ and mixtures thereof), 0.5% xenon and the balance neon at total densities from 1 to 3 AMG. The laser cavity was constructed of stainless steel with flat quartz windows fastened to the cell with holders utilizing Viton o-rings as vacuum seals. The entire cell was capable of being heated to over 5000K.

Mixtures were made in 5 liter stainless steel cylinders utilizing neon (Cryogenic, 99.999%), xenon (Cryogenic, 99.9995%), NF₃ (Air Products) and N₂F₄ (Air Products). The mixture to be studied was introduced into the hot cell and the e-beam fired at times chosen to explore gas-solid chemistry effects as well as laser kinetic issues. For example, after filling the reaction vessel with a standard laser mix of 0.2% NF₃, 0.5% Xe and 99.3% Ne, the e-beam could be fired after ~30 sec. This allowed sufficient time for the mix to come to thermal equilibrium with the cell wall temperature and permit the operator to charge and fire the e-beam. In this way, laser data as well as sidelight fluorescence data were collected. Alternately, the gas could be fired on repeatedly and information on its effective residence time be obtained. Since the cell was primarily constructed of stainless steel, some correlation with the data described in Section III could be expected. By repeating this procedure with different mole fractions of NF₃/NF₂ at constant Xe and neon, information concerning the role of NF₂ radicals could be obtained.

With regard to the issue of residence time, consider the data in Figures 16 through 18. These data were collected at 2 AMG density, 5000K by monitoring XeF* population via the radiation
Figure 16 XeF* Sidelight Fluorescence as a Function of Residence Time for Repeated Irradiation of a Gas Mixture of 0.2% NF₃, 0.5% Xe, and 99.3% Ne. (O,Δ,□,● represent experiments conducted on the same nominal mixture at different times.)
Figure 17 XeF* Sidelight Fluorescence as a Function of Residence Time for Repeated Irradiation of a Gas Mixture of 0.1% NF$_3$, 0.1% NF$_2$, 0.5% Xe, 99.3% Ne. (O, Δ represent experiments conducted on the same nominal mixture at different times.)
Figure 18 XeF* Sidelight Fluorescence as a Function of Residence Time for Repeated Irradiation of a Gas Mixture of 0.2% NF₂, 0.5% Xe and 99.3% Ne. (O, △, □, ○, ● represent experiments conducted on the same nominal mixture at different times.)
detected through a sideport using a filtered photodiode. Individual symbols represent repeated irradiation on the same mix at the times indicated. Between fills, the cavity was evacuated prior to repeating the series. The solid datum on Figure 16 at 6 min indicates that within the data scatter, the decrease of the observed fluorescence with time is independent of the e-beam irradiation, i.e., it most likely is due to heterogeneous chemistry effects as were discussed in Section III.

Similar comments are appropriate for the 0.2% NF$_2$ and 50/50 mixtures in Figures 17 and 18. Attempts to passivate this cell to extend the residence time were not effective (see Figure 19). From these data, we conclude that for residence times shorter than 2-3 min, the data are representative of a fresh fill and should be relatively comparable with regard to NF$_2$ vs NF$_3$ effects, etc. It is also in qualitative agreement with the observations reported in Sections II and III that NF$_2$ and NF$_3$ react rather rapidly with stainless steel at elevated temperature.

Using the technique, therefore, of filling the laser cavity and operating the excitation pulse at short times after the fill, information concerning the effect of replacing NF$_3$ with NF$_2$ on the sidelight fluorescence as well as laser output could be collected. The behavior of laser sidelight is an indication of the coupled effects of formation and quenching processes,(29-32) whereas the laser output includes additional effects such as absorption.

Figure 19 XeF* Sidelight Fluorescence as a Function of Residence Time for Repeated Irradiation of a Gas Mixture of 0.2% NF$_3$, 0.5% Xe and 99.3% Ne After Passivation for 20 Minutes. (O, Δ represents experiments conducted on the same nominal mixtures at different times.)
From sidelight and laser pulse temporal signals plots of the maximum peak height vs time (or mix) were obtained. In Figure 20 is shown the effect of increasing the fraction of NF$_2$ relative to NF$_3$ at constant overall fractions of 0.2% halogen. These sidelight data indicate NF$_2$ is a reasonable source for formation of XeF* and/or its quenching influence is similar to NF$_3$; however, there is some loss in overall signal. One possible model might be that the formation reactions which produce the upper laser states are similar with NF$_2$ as a donor with similar branching ratios, but the quenching reactions may be more significant when NF$_2$ is the halide donor. This could be due to an increase in electron density expected when operating with NF$_2$, since its dissociative electron attachment rate constant is smaller. (33) Since electron quenching may contribute as much as 30% for these experimental conditions, (25) if the electron number density increases a factor of 2 for a 100% NF$_2$ mixture, one would expect the signal to decrease by ~25% which is similar to what is observed. This, of course, is speculative; to fully unravel the kinetic details of the impact of NF$_2$ radicals, an entire kinetic program would be needed.

Similarly, the peak height of the laser pulse has been plotted in Figure 21. These data show significant degradation in the laser output when mixtures containing as little as 25% NF$_2$ are lased. Subsequent experiment using NF$_3$ showed no degradation. Since these data were obtained at 500°K in this stainless steel laser cavity, one explanation would involve the presence of an absorber at the laser operating wavelength. Since NF$_2$ has an absorption maximum at shorter wavelengths, (24) either sequential dissociation to produce NF must be invoked and/or the absorber may arise as a result of heterogenous reactions. Regardless, the

(33) Trainor, D.W. and Jacob, J.H., (Unpublished).
Figure 20 XeF* Sidelight Fluorescence for Various Mole Fractions of NF$_2$/NF$_3$
Figure 21 XeF* Laser Peak Height for Various Mole Fractions of NF₂/NF₃
laser degrades significantly. This, of course, is not in accord with the laser signals shown in Figure 15. These earlier data suggested that \(\text{NF}_2 \) is an effective donor, whereas in this cell, at this current density, \(\text{NF}_2 \) does not appear to be an effective halogen fuel. Significantly, these earlier data were taken in a cell of different construction and suggest that the cell composition has a significant impact on the laser results. This is in qualitative agreement with the results described in Section III where various metals were found to be more or less reactive than stainless steel. Clearly, more information regarding the influence of the cells construction on laser operation needs to be collected before projections to closed-cycle operation can be carried out.