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TRANSITION TO DOUBLE MACH STEM FOR NUCLEAR EXPLOSION AT
104 FT HEIGHT OF BURST

I. INTRODUCTION

In a nuclear height-of-burst (HOB) detonation the spherical blast
wave reflects from the ground, initially producing a regular reflection
region. When the shock reaches a ground range approximately equal to the
HOB an abrupt transition to Mach reflection occurs. This transition is
responsible for an airblast environment more severe than the surface burst
nuclear case. Qualitatively, it can be thought of as a partial flow stagnation
in the Mach region that leads to the production of two static pressure peaks.

A 1 Kiloton (1 KT) atmospheric nuclear explosion at a HOB of 104 feet has
been simulated using the two dimensional FAST2D code (Ref .1l). Figure 1

illustrates the shock structure. The calculation predicts the transition of the

shock from regular reflection to double Mach reflection. Because the

spherical waves are expanding and thus decreasing in Mach number as well as angle of
incidence with the ground, they create a dynamic Mach stem formation. In comparision b
to planar shocks on wedges one finds them to be qualitatively alike. The appearance of
double peaks in the pressure and density profiles (versus time and distance) is
interpreted as the point of transition. Other interesting phenomena such as the
rollup of the contact surface generating a vortex ring and the associated 3
phenomenon of toeing out of the first Mach stem can be observed.

The ability of the calculation to accurately predict the gasdynamic effects
both temporally and spatially is due in part to the shock capturing and adaptive
rezone features of the FAST2D code. A minimal number of very fine zones was placed
around the shock front and these zones then moved with the first Mach stem to

prevent shock smearing and distortion. This calculation is the first attempt to )

model the nuclear HOB case through the use of a Flux-Corrected Transport (FCT)

algorithm (Ref. 2).

Manuscript submitted August 24, 1981,
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Fig. 1 - Mach stem structure from HOB




The results of this calculation agree well with the pressure-distance
curve generated by the high explosive (HE) data of Carpenter (Ref. 3) and the
analysis of Kuhl (Ref., 4). The peak overpressure of the first shock at .he time
of tramsition is about 4300 psi. Our simulation was run to 11.6 ms (total
time with t, = 3.76 ms), which corresponds to pressure peaks of about 2000 psi.
In the regular reflection region the peak values tend to be about 20% low due to
the clipping of the FCT algorithm and inacéuracies in the initialization of the
flow. Reducing the minimum zone size from 5 cm to 1 cm ia a one-dimensional
test calculation eiliminated this discrepancy, however. In the two-peak regions
the agreement between the experimental data and the values presented here is
very good. The resolution of the calculation is adequate for studying quali-
tatively the characteristics of the flow field. For future work we recommend

that the transition region be explored with improved resolution.




II. DESIGN OF PROBLEM

The problem of a 1-KT nuclear detonation at 104 ft (31.7m) HOB was chosen
since it can be scaled conveniently to various HE tests. The use of the 1lKT
standard is also expendient; one could, however, have used realistic initial
conditions, such as the Los Alamos Scientific Laboratory RADFLO or Air Force
Weapons Laboratory (AFWL) SPUTTER calculations. A simple constant ambient

3

atmosphere was used with a density of 1.22 x 10 g/cm3 and pressure 1.01 x

106 dyne/cmz. To relate the energy and mass densities to the pressure,

a real-air equation of state (EOS) was used. This "table-lookup' EOS is derived
from Gilmore's data (Ref. 5.) and has been vectorized for the TI Advanced
Scientific Computer at NRL (Ref. 6). Figure 2 illustrates the effective gamma
versus specific energy per unit mass for different values of the density. The
internal energy density used in the call to the EOS is found by subtracting
kinetic energy from the total energy; this can be negative due to phase errors
in the fluid variables. When this occurs, the value of the pressure is reset to
zero.

The transition from regular reflection to double Mach reflection is known to

occur at a ground range approximately equal to the HOB. Therefore, the size of the

mesh should be roughly twice the HOB in both directions. The upper boundary i
should be far enough away from the blast front to be noninterfering. We set the

boundaries at 5.5 x lO3 cm for the radial direction and 1.035 x 104 cm for the ?
axial direction. The fine grid in the radial direction contained 140 out of

200 total zones, each 5 cm in length. The largest zones initially filled the
right section of the grid and were 80 cm in length. A smoothing involving 40
zones was performed between the region to guarantee that the zone sizes varied
slowly. In the vertical direction the fine grid contained 75 out of 150 total
zones, each 5cm in length. Beyond that region the zones increased geometrically

by a factor of 1.112.
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Placement of the fine grid at the origin (ground zero - the point at which
first reflection occurs) was determined to be optimum for capturing peak pressures
in the airblast wave front. Thus, as the expanding wave moved along the ground
surface, the fine grid was always locked to it, and each point along the incident
blast front encountered the same spatial gridding as it approached the ground.

By treating each point of the incident front in the same manner, we insured that

the calculation was internally consistent and that the computed transition point

was accurate to within the limits of the resolution. Finally, we point out that,

as a section of the incident blast wave propagated within the fine grid, the

wave steepened. The size of the fine grid was sufficient to insure that the incident
wave had reached the maximum steepeness prior to intersecting the ground.

The initialization provides a strong shock with Mach number MI = 12. This
speed and the need for restart capability led to the choice of 200 timesteps
as an interval for the spatial display (''snapshots'"). The dump interval that
resulted was ~ At = 0.3 milliseconds. These dumps were stored on magnetic tape
and postprocessed.

Additional diagnostics were implemented in the calculation. Stations were
created to gain information from fixed spatial positions within the calculational
grid. These 25 physical variable sensors were placed along the ground and stored
values of the energy and mass densities and velocity for every timestep. From
this information one can construct static and dynamic pressure curves.

III. COMPUTATIONAL DETAILS

The evolution of the nuclear HOB flow field was modeled numerically with the
FCT code FAST2D (Ref. 7). FCT yields accurate and well-resolved descriptions
of shock wave propagétion without the necessity of a priori knowledge of the
essential gasdynamic discontinuities in the problem. Additionally, the code has a

general adaptive regridding capability which permits fine zones to be

concentrated in the region of greatest physical interest while the




remainder of the system is covered with coarse zones. Figure 3 depicts the grid
setup initially and at transition to the double Mach stem structure. The rezone
algorithm is programmed to track the Mach stem with the fine grid.

The transport algorithm used a low-phase-error phoenical FCT algorithm in a
model called JPBFCT, an advanced version of the ETBFCT algorithm described in Ref 1.
The linear part of this algorithm is fourth-order accurate spatially in advection
problems with a given constant velocity and has a (nonlinear) flux-corrected
antidiffusion needed to model shocks correctly. Finally, the transport subroutine
is written in sliding-rezone form, which means that the mesh at the beginning and the
end of the timestep need not be the same. Since the algorithm is one-dimensional,
timestep splitting is employed to solve the 2-D problem.

The fluid transport routine JPBFCT is fully vectorized and requires about
2 us per meshpoint-cycle. This time would have been still less if a vectorized
fully two-dimensional routine had been used, since the 1-D loops are too short to
permit full advantage to be taken of the vector capabilities of the NRL ASC. The
table lookup in the EOS was also fully vectorized, so that pressure calculations
required about 207% of the time needed for the hydrodynamics. These two items
took up nearly all of the running time in the blast calculation itself. The cost

of initialization was negligible, but the diagnositics cost up to 307 as much as

the hydrodynamics, depending on how many of the various possible quantities were
actually plotted. This latter number would be greatly reduced if the plot routines
were fully vectorized.

A version of the AFWL 1 KT standard (Ref 8) was used to initialize the energy,
density and velocity (flow field) at 3.76 milliseconds. The corresponding shock
radius was 103.9 ft (31.6§ m) peak overpressure of 1645 psi (1.134 x lO4 K Pa).
Because some areas of the grid were very coarse, interpolation onto the grid was
performed. After the 1 KT flow was laid down inside a radius of 104 feet (31.7 m)

the fine~zoned grid was activated to follow the peak pressure as it moved along
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Fig. 3 - Adaptive gridding. The grid at initialization and at
transition point (lines are drawn for every other zone, lines
in fine-zone region are indistinguishable).




the ground surface, modelled as a perfectly reflecting boundary. This region
comprised 140 zones, and a switch was set to keep 40 of these zones ahead of
the reflection point. Permeable boundary conditions were used on the top and
right edges of the mesh; i.e., density, pressure and velocity were set equal
to ambient preshock conditions. Reflecting conditions were applied to the
left and bottom,

The timestep was recalculated at every cycle according to the Courant

condition

(Axi,Ay.)

dt = 0.5 min % ,
+Hv]) .
i, © VD

(1)
where ¢ is the speed of sound and (V[ is the modulus of the flow speed. This
could have been relaxed somewhat by allowing violation of the local Courant
limit at points ("hot spots'") far from the region of chief physical interest.
The total elapsed time in the 2-D calculation, 7.6 ms, required 5600 cycles.
Three types of diagnostics were employed, all in the form of plots made
by post processing a dump tape. The first type of diagnostic consisted of CRT
contour plots of density and static pressure, and arrows indicating the magnitude
and direction of the velocity field, obtained at the dump intervals (every 200
cycles). The second type was pressure-range curves at z=0, obtained by finding
the pressure peak(s) along the ground at each dump interval and hand-plotting
them on the same graph. The third type consisted of pressure histories at a series
of 24 stations, obtained by saving the energy and mass densities and the veloci-
ties at every cycle.
v. RESULTS AND PHENOMENOLOGY
This calculation has been done to understand the violent effects of 1 KT

of energy being released in the atmosphere at a HOB of 104 ft (31.7m). A strong

spherical shock is created in the surrounding air, and reflects from the grcund.
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The outward-traveling airblast is then conposed of two parts: one reflected
upward approximately normal to the ground, and the original spherical blast,.
The peak pressure is coincident with the intersection of the two waves. This
intersection continues to move outward until the angle of the spherical shock
with respect to the ground reaches a critical value and the transition to a
double Mach stem occurs. As shown by Ben-Dor and Glass (Ref. 9), this angle
depends upon the incident strength of the shock (Fig. 4). Shocks with Mach
numbers greater than 10 are not shown. Initially, the Mach number for the HOB
simulation is well above 10, The Mach number at transition is approximately
11 and the angle is less than 50°. From Fig. 4 the corresponding region is

double Mach reflection.

Figure 1 has been labeled with the notation of Ben-Dor and Glass (Ref. 9).
It should be noted that what is generally regarded as the second Mach stem
is in fact the second reflected wave, which is part of the second Mach struc-
ture, To be consistent, one must label the second Mach stem as M_ at the

1

indicated location. The definition used is the state of the fluid one
obtains by passing through one shock wave (Ml) or two shock waves (R and Rl).
The first reflected wave R becomes the incident wave for the second Mach
structure. Density contours are shown in Fig. 5 for an planar shock on
wedge with a Mach number of 7 and an angle of 50°. The complimentary
figure illustrates the proper labeling of the multiple waves. Comparison
of Fig. 5 and the HOB simulation (Fig. 6) shows that corresponding waves
can be identified. Differences between the planar shock on wedge and the
HOB can be explained in terms of the unsteady nature of the HOB case (a
spherically expanding wave that continuously decreases in Mach number and
angle.) Although the term irregular Mach reflection has been used to

describe the complex shock structure that evolves from HOB events, we believe it

to be very regular and explainable as a double Mach reflection that evolves as a

function of time.

10
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The HOB numerical simulation begins just before the shock first reflects
from the ground. As a summary of how the flow field then develops, we pre-
sent snap-shots at the important stages. (A more complete display is presented
in Appendix A). Figure 6a indicates the pressure and density contours
and velocity vectors at t = 3.18 ms. In Fig. 6b the reflected shock is shown
moving upward, the outward flow begins to stagnate at the ground (tramsition).

Fig. 6¢c, at t = 5.99 ms, shows an enlargement of the shock front, and the development
of the Mach stem, slip surface and second Mach stem. The angle of the shock

with respect to the ground is increasing with time, so that the effective wedge
angle is decreasing. From the work of Ben-Dor and Glass one expects a transition

to double Mach stem to occur at approximately 45°. The angle in Fig. 6b is about

45° and the shock front has entered the transition phase. Figure 6d shows the

fully developed shock structure at 7.79 ms. Toeing out of the first Mach stem

can be also seen in the contours of Fig. 6d and occurs as the fluid rolls

forward where the slip line would otherwise intersect the ground. The velocity

field in Fig. 6d also shows this detail.

Note the reflected shock properties (that part of the structure that contains
the second Mach stem Ml). The reflected shock propagates rapidly through the high
temperature fireball, due to the high local sound speed. The shape of this reflected
wave is a primary difference between the HOB case and the planar wave on wedge case.
The other major difference, of course, is the spherically expanding blast wave which

. . -2
decreases in strength approximately as r

13
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An effective way to quantitatively evaluate the calculation and observe
in detail the transition to a Mach stem regime can be seen by examining the
station data. The station sensors were placed in the bottom row of the cal-
culation 100 to 200 cm apart. In Table I the maximum pressure recorded for

each station along with the location can be found.

Besides giving a reliable value for the peak pressure to be used for
constructing the pressure-distance curve, these data allow one to see effects
fixed in space but varying in time, Figure 7 is a superposition of the pressure
profiles from stations 15 to 24 (the transition region). Noteworthy is the
profile from station 17, which is the first staiion to record a second peak on

the back side. At station 19, 200 cm further away from ground zero, the second
peak is almost equal to the first. The visible transition (as seen
in Fig. 6b, occurs at a ground range between 3100 cm and 3300 cm (stations
19-21) revealing a dominant second peak and a “first peak" (i.e., first
scen by the sensor) that is about half the magnitude of the second. The
second peak does not exhibit a sharp almost discontinuous rise and then a
rapid but slower decrease along the back side. 1Instead, it has the appearance
of a density compression. This behavior has dramatic consequences for mi-
litary planners because the pressure-distance curve is modified ond the
dynamic pressure is enhanced. ’

The analogous profiles for dynamic pressure are presented in Fig. 8.
Again data from stations 15 to 24 is utilized. The development of the
second peak and its correlation with the Mach stem formation can be observed.
There is, in addition, a noticeable increase in the first peak values (station
15 to the maximum at station 18). After the structure becomes visibly
resolved (station 20 and beyond) the second peak resembles a rounded profile
suggesting the formation of a stagnation region beliind the first peak (Mach

stem) .
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1
Table 1
Station No. Location (cm) Time (sec) Pres (dynes/cmz)
1 2.0000E 02 2.25E-04 8.11E 08
2 4.0000E 02 2.80E-04 7.92E 08
3 8.0000E 02 5.28E~-04 7.17E 08
4 1.0000E 03 7.23E-04 6.73E 08
5 1.2000E 03 9.54E-04 6.24E 08
6 1.4000E 03 1.23E-03 5.65E 08
7 1.6000E 03 1.54E-03 5.21E 08
8 1.8000E 03 1.91E-03 4.70E 08
9 2.0000E 03 2.34E-03 4 ,54E 08
10 2.2000E 03 2.81E-03 4.14F 08
11 2.3000E 03 3.07E-03 4.03E 08
12 2.4000E 03 3.35E-03 3.92E 08
13 2.5000E 03 3.62E-03 3.82E 08
14 2.6000E 03 3.88E-03 3.73E 08
15 2.7000E 03 4.19E-03 3.37E 08
16 2.8000E 03 4, 48E-03 3.33E 08
17 2.9000E 03 4.79E-03 3.05E 08
18 3.0000E 03 5.11E-03 3.01E 08
19 3.1000E 03 5.41E-03 2.33E 08
20 3.2000E 03 6.06E-03 1.96E 08
21 3.3000E 03 6.49E-03 1.79E 08
22 3.4000E 03 6.82E~03 1.87E 08
23 3.5000E 03 7.28E-03 1.85E 08
24 3.6000E 03 7 J73E-03 1.69E 08
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Fig. 7 - Station pressure data (nos. 15-24)
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Finally we consider the pressure-distance relation for the HOB case.
In Fig. 9 we compare the results of the numerical simulation with the data
of Carpenter and with empirical analysis. Carpenter's data are based upon
careful HOB experiments with 8 1b PBX9404 spheres. The empirical analysis
was based on a 1 KT nuclear free air curve and HOB construction factors.
The calculated values in the regular reflection regime are 20% low, which
may be attributed to a combination of FCT clipping, the resolution of the grid,
and inaccuracies in the initialization of the flow field. During and after Mach
reflection, the peaks remain low until the Mach stem structure has grown large
enough to be resolved on the mesh. By the time it occupies a region of 15 cells
high and 35 cells wide, the peak pressures are in good agreement with the HE
data and the empirical analysis,

Other attempts to model the transition region have been made. Needham and
Booen (Ref. 10) present results of a 1100 1b pentolite sphere at 15 feet HOB. The
general phenomena of the flow field can be seen from their simulation. When a
pressure distance curve is constructed from this calculation, one finds that in the
regular reflection region their results are 15% to 307% high relative to theory.
After transition to double Mach reflection the first peaks are 20% low while

the second peaks are 40% low (Ref. 4).

V. SUMMARY

The airblast from a 1KT nuclear event at 104 ft HOB has been numerically
simulated with the FAST2D computer code. The results give insight to the
formation and subsequent evolution of the Mach stem, the triple point, and
the contact discontinuity. The transition from regular reflection to double

Mach reflection is predicted. We suggest that the first signal for

19
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transition is the appearance of a second peak behind the shock front due to
stagnation in the flow. Comparison with the pressure-~distance curves of
Carpenter and Kuhl indicates agreement within 20%. Both first and second

peaks are predicted with similar accuracy.
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APPENDIX A. DETAILED TIME HISTORY OF CALCULATION
The following figures comprise a temporal history of the numerical

simulation. FEach page contains pressure contours, velocity vectors,

density contours, and the corresponding grid for a particular time.

The series begins at to =0 (tI = 3.76 ms) and continues to tF = 8.28 ms.
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1kt AT 104 ft HOB
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1kt AT 104 ft HOB
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Tkt AT 104 ft HOB
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1kt AT 104 ft HOB
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1kt AT 104 ft HOB
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1 kt AT 104 ft HOB
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1 kt AT 104 ft HOB

TIME =7 05 msec
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1kt AT 104 ft HOB
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1kt AT 104 ft HOB
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KIRTLAMD AFS, 4™ 57117
Q1CY ATTM MTES—C R HFENNY
01CY ATTN NTEDR--1
N1CY ATTN NTED 2 MATALUCC!
O1CY ATTN MTF 2 PLAMCANCH
O1CY ATYN NT D PAYTCN
D1CY ATTIN NTEN-A
01CY ATTN MT©S-6
N1CY ATTM SiL
NICY ATIN nEY
DICY ATTN NTFS-§
OICY ATTN NTEf
01CY AYTTN NEY

pIPECTOR
ATR UNIVERSITY LIpPACY
NEPAR TMENT OF THE A1k Frefr
MAXWELL AFB, &L 2¢112
{NESIPFS NC CM01)
01CY ATTN AUL-LSE
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CECAQRTMENT CF YTHFE AIP FCPRCF

ASSTISTANT CHIEF rF STAFF
INTELLIGFMCE
NEPAPTUMENT OF THF AlC FORCE
WASHINGTON, DC  2G7r

O1CY ATTIN IN FY 4A520

ASSISTANTY CHIEF [F STAFT
STUDIFS & ANALYSES
DEPARTMENT OF THF AlP Froce
WASHINGTOM, DC 20320

Q1CY ATTN AFR/SAVT (TECH L 13}

ASSISTANT SECRFTAPY IF THE AF
RESEARCH, DEVELOPMENT £ LNGISTICS
DEPARTMENT OF THF AL? RCRCF
WASHINGTON, DC 27227
01CY ATTNM SAFALP/CEO FOR STRAT £ SDACE SYS

BALLISTIC MISSILFE AFFICF /N

AIR FOPCF SYSTEMS CC¥MAND

MORTOM ArFB, CA 97409

(MIMYTEMAY)

OLCY ATTN MMNYM 5 KALANSKY
01CY ATTM MNVYH ¥ CELVECCHIN
01CY ATTN MNN W CFPARTREE
O1CY ATTN MNMXH D GAGE k
01CY ATTN 4MNNY

DEDUYTY CHICFE nE STARE
PESEARCH, DEVELNPN¥SNT, £ ACC
DESARTVENT NF TEF AP Frprr
WASHINGTCNM, OC 20230
ND1CY ATTN AFEDRUL N ALFYANDONY
Q1CY ATTN ArpoQoy
21CY ATTN AFPOQI
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a

CFPARTMENT GF THE ALP FCRCE

DESUTY CHIEF OF STAFF
LAGISTICS € ENGIMNFERIANA
DEPARTMENT OF THT alI° [CRCF
WASHINGTYCN, DC  20372C

OICY ATTN LEFF

CCMMANDER

FOREIGN TECHNCLNCY CIVISIOM, AFSC

WRIGHT-PATTERPSNN AFR, Mk 454133
OICY ATTN NIIS LIPRARY

CCMMAMNDER
POF AIR DEVELTPMENT CENTER, AFSC
GRYFFISS AFB, NY 13441
(CESIRFS NC CMMOT)
NICY ATTN TSLP

STRATEGIC AIR COMMANC
NEPAPTYENT NF THE AlP FrpCe
CFFUTT AFB, NB 6R117?

O1CY ATTN NRI-STIAFr LIRO2QY

01CY ATTN XPFS

O1CY ATTN IMT g MCYINAEDY

VELA SEISVOLNGICAL CRATFR

312 MONTGNMERY STRFET

ALEXAMDIRA, VA 22114
01CY ATTN G "LLPICK
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NEBARTMENT OF ENSRGY/NOE CCNTRACTORS

DEPAP TUFNT QF ETVERAQY
ALBUCUEFCIE OPERATICNS CEFICT
P C BOX 5499
ALBUQUIERQNIE, NY ETL1S

01CY ATTN €C7TID

NEPARTMFMT NF ENFPAY
WASHIMGTYCY, NC 22545
01CY ATTN CuHA/RDETY

NDEPARTMENMT NF EMEPGY
NEVADA OPERATITNS OFFICE
PO anX 14109

LAS VEGAS, NV 139114

01CY ATTN MAIL & PECCRAOS FOR TECHNICAL LIPPARY

LAWRENCE LIVEPHMNRE NATICM AL L AR
PO BACX R0OR
LIVERMAIRE, CA 94550

01CY ATTM 1--7°C 7 OCNG

OICY ATTN ) -205 § HEAPST (CLASS L-292)
O1CY ATTN L -390 N MCOPRIS (CLASS L=59%)

OlCY ATTN L-7 J KAEN
o1CY ATTN SLTMN
01CY ATTM L 427 R SCHCCK

O1CY ATTN TECHNTCAU TAFQ NFOT, LIPPARY

ol1CY ATTN L-2CN T BLIKCVICH

L7S ALAMPS NATINMAL SCIENTIFIC LAR

MATL STATIGCN S09¢
P N BOX 146€73
LS ALAMDS, MM AT754S

(CLASSYFIFL FNLY TC MAIL STATICN 5000)

:7fwié-

O1CY ATTM P WHITTAKER

BLEY —AFFM-PorpnLcpp

01CY ATIN C KELLER

01CY ATTMN .M STanfEoon M7 Je
01CY ATTN MS ¢4 (1 ASS PEO™DY

0 W7 MO T i Es
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CIPARTMENT OF ENMFRGY/DOF CONTRACTORS

LOVELACE PRICMENICAL £

FRVIPONMENT AL 2C<Cr INSTITLYF, INC.
P O BROY 5899
ALBUQUFRQYF , NM PT7115

O1CY ATTN R JCNES (UNC)L CNLY)

NAY. PINCFE NATIGYAL L2BCRPATARY
NICLEAR DIVISIOH
X~172 LABR RECARNDS NIVISIOM
o 0 RMNX X
CA¥X PINGF, TM 27819
DLCY ATTN CIVIL DEF PES pRNyY
01CY ATTN CEMT2AL ©2SCH LTRRARY

SAMDIA LABGRATFPICS
LIVERMARE LABNRATORY
P O BOX 949

LIVERMIRE, CA 94557

SAMNIA MATINNAL 1 AR
P O enx s5f00
ALLBUQUERNUIT, N 87185
(ALL CLASS ATTN SEC CONTPOL NFC FOR)
01CY ATTN A CHAZAN
NICY ATTN t HILL
O1\CY ATTN ORG 1250 u RPORM
01CY ATYN A CHAOTA

NICY ATTIN W RCHERTY ﬂﬁ'ﬂviwkgf"’f
D1CY ATTN 314! el s

N1CY ATTN L VORTMAM

D11 2 5 Bamsber 7
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DFEPARTYFMT CF DEFENSF CUNTRACTORS

ACHREX Cr°pP,

485 CLYDF AVFNYyD

MOIINTAIN VIEW, CA 947242
01CY ATTN C “CLF

LEROSPACE CO95,
P C AROX 92957
L3S ANGFLF<, (4 S00O0°
NICY ATTN H YIRCZLS
NI1CY ATTN TECHNICAL TNFCPVATICON SEOVICES

AGBABIAN ASSOCIATFS

250 N NASH ST2EFT

EL SEGUNDN, CA 90245
OICY ATTN M AGRABIAN

ANALYTIC SE°2VICES, INC.
400 ARMY-NAVY Fovc
APLINGTOM, VA 22202

NICY ATTN § HMESSFLBACHE®

APPLIED PFSEARPCH ASSFCIATES, INC
2601 WYCMING BLY" NE SUITFE b-1
ALBUQUERAQUE, N £AT112

OI1CY ATTM J FFRATICHM

O1CY ATTM N KFIGHINS

ACOLTIED THFNRY, INC.
1010 WFSTWCND PLVE
LNS ANGFLES, CA ShN24
{? CYS IF UNCLASS re 1 CY TF CLASS)
o1cyY ATTM J Topp 1o
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CepARPTHENT NE DEFENSE CCNT2ACTORS

APTEC ASSNCIATES, IMC.
26046 EDEM LANTING Prpn
HAYWAPD, CA 94545

N1CY ATTM S GTILL

ASTRON PESARCH & ENGIMNFERING

1901 OLD MIDOLFFITILED WAY #1%

MOUNTAIN VIEW, TA 64743
01CY ATTN J KFUMTINGTCN

AVCD RESFARCH & SYSTFVS CRONP
201 LOWELL STREET
WILMINGTON, MA 71837

O1CY ATTM LIBRAPY AF20

BOM COPP.
7915 JOMES BRAMCH DPIVE
MCLFAN, VA 272122

01CY ATTM A4 LAVACNTINC

O1CY AYTN T MEIAHPCPS

NDICY ATTN CORPCRATE JICnARY

ROM PO,

P 0 ACX 9274

ALBUQUFPNIE, NV 87116
01CY ATTN R HENSLFY

SNEINMG CO.

P O BOX 3707

SEATTLF, WA 9R124
01CY ATIN S STRPACK
QICY ATTN AFRCSOACF LIPRAPY
01CY ATTN M/S 42737 P CARLSON
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NEPAPTVENT QOF DEFFNSE CCMYRACTORS

CALIFCRNIA PESEAPCH £ TECHNOLCHRY, INC.
6269 VARTEL AVENLFE
WODDLAND HILLS, CA G1367

OICY ATTN LIBRARYV

01CY ATTN K KREYEMHAGEN

OICY ATTM M ROSFNELATY

CALTIFORNTA RESEAPCH & TECRYCLCRY, INC.
40%9 FIRST STREFTY
LIVERMORE, CA <4585C

DICY ATTN D NRDOHAY

CALSPAN C£0ORD,

P 0O ROX 47N

BIFFALD, NY 14225
O1CY ATTN LIRRA"Y

DEMVFR, UNIVERSITY rF
COLCRADO SEMIMARY
OFNVFR RFSFARCH INSTITUTF
P O BOX 12127
DEMVFR, CO 380210
{DNLY 1 caPy NF CILASS RPTS)
01CY ATTN SEC NFFICFR FOP J WISOTSKI

EGEG WASH. ANAIYTICAL Sw(CS CTR, INC.
P O eRMY 1021°

ALBYOYERNUVE, M B7114

N1CY ATTN LIPTANY
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CECARTMENT OF DEFFNSF CCNTPACTORS

FRIC H. WANG
CIVIL ENGINEEPING °SCH FAC
UNIVERSITY OF Nry “EYICP
UNIVFRSTITY STATICN
o0 nnNx 25
ALBUCUERAQUE, N* FR7171
01CY ATTN J L Av"D
01CY ATTYN ° Lrong
OICY ATTN M BAYM
01CY ATTN J ¥OVARANA

GARD, INC.

7449 N NATCHEZ AVFMLE

NILFES, IL 60448 E
01CY ATTN G NEITHAPOAT ['iMCL ONLY)

GENESAL ELECTRIC Cn,

SPACE DIVISINN

VALLEY FPRGE SPACF CEATEP

® 0 BOX 8555

PHILADELPHIA, 24 19101 J
O1CY ATTN M 3CPTINEP

GENERAL RESEA2CH CORP.

SANTA PARSARA NTVISICM

P 0 BNY 6770 ’

SAMTA RARBARA, C2 92111
01CY ATIN TIr

HU-TECH LABS, INC.

PG ROX 1686

SAMTA MCMICA, CA 90406 1
01CY ATTN 8 HAPTENPALY 4
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DEPARTMENT OF DEFFMSFE (CCNTRACTORS

HARTZOMS TECHNOI CGY, INC,
7830 CLATPEMONT MESA RLVD
SAN DIECD, CA ©7111

N1CY ATTN R KPUGFR

IIT RESFARCH TMSYTITLTYE
In W 25TH STPEFT
CHICAGN, TL 692414
01CY ATTN P ' FLCK
01CY ATTN * JCHNSEN
O1CY ATTN DOCUMENTS LIRS APY

INFCRMATION SCIFMCE, INC.

123 W PADRE STPEFT

SANTA RARBARA, CA 232105
01CY ATTN W DUN7 IAK

i Tk Gt S AT s

INSTITUTE FOF DEFFNSE ANALYSFS
400 ARMY-NAVY DRIVF
ARLINGTON, VA 22207

01CY ATTN CLASSTFIED LIRRARY

J D HALTIWANGER COMSLLT ENG SVYCS j
RM 106A CIVIL ENCINFFPING BRI LN
208 M ROMINE STRFET
NRARANA, Tt 618101
O1CY ATTM W HALL

Jo Ho WIGGINS CC., INC.
1650 S PACIFIC FCAST FIGHWAY 4
REDONDN BEACH, C» GC277

O1CY ATTN J fCLLINS
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DEPARTMENT OF DEFENSE CCNTRACTNRS

KAMAN AVIDYNF
83 SECOMD AVEMUF
NORTHWEST INDUSTFIAL PARK
RIPLIMGTCN, MA N13n3
CICY ATTN ¥ VLETENLK
01CY ATTM LIDRaARY
OlICY ATTN ™ Hreng
0I1CY ATTMN E CPISCIINE

KAMAN SCIFNCES CrPny,

DD ROY T46D

cnLorRaAnn SPPINGS, CC ANG13
OICY ATTM D SACHS
O1CY ATTYN F SEELTCN
NICY ATTN L18PARY

KAMAN TEMDPO
816 STATE STREET (2 70 CRAWER N9)
SAMTA BARRARA, CA 92102

01CY ATTM DASIAC

LOCKHEED MISSILFS € SPAMF CC., INC.
P 0O BpX 504
SUINYVALF, CA 94086

OLCY ATTN J WFISNEF

01CY ATTN TYIC-LTIBRARY

MATIN MARTETTA (02",

P O BOX 5837

NPLANNG, FL  32RS5
o1CY ATTM G FCTIFC

MAOTIM VAPIETTA (nor,

°© 0 BOX 179

DENVEP, CO 2020
NICY ATTN G FPEVER
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CIPARTMENT OF DEFENSE CONTRAMTNPRS

MCOCNNELL DCUGLAS crep,

5301 BNLSA AVENUE

HIINTINGTCY BCACH, ra c2¢47
01CY AYTN Y pHERnvAN
NDICY ATTYN P HALDRIN
OICY ATTM D pFAY

MCNOVNELL NOIGLAS cren,

3855 LAKEWEND aniy fyaen

LONG BEACH, CA A F ¢
01CY ATTN M PCYTER

MERRPITY CASES, INC.

P O BCX 1204

REDLAMDS, CA 92277
01CY ATTIN J Mr2177
DICY ATTM LIFPARY

METFCRQOLCGY RESEARCH, TAC,
462 W WOONARUCPY ©CA)
ALTADEMA, CA Q10N

O1CY AYTN W GPFIN

MISSTION PESCADCH CnRo,
P O DPAWES 719
SANTA RA23A2A, CA n7]0>
(ALL CLASS: ATTN: <rC NFC FOP)
0ICY ATTN C LCNSWIPT 4
O1CY ATTM G MOCAFT(s

PACIFIC-SIERRA PESTARCH (CNFRP,
1456 CLOVERFIFL? BLVD
SAMTA MCNICA, (A 974C4

01CY ATTN Y 2PNNE




NEPAOTMENT OF DEFENSFK CCNTPACTORS

PACIFTC-SIERPA PESEARCH (CNPPO,
WASHINGTON PPERATIMNNS
1471 ATILSCON 3LVD
STTF 11060
ARLINGTON, VA 22209
01CY ATTN N GORULEY

PACTFICA TECHNTLCRY

P D BMX 149

DEL MAR, CA 092114
OICY ATTN K BICRK
01CY ATTM G XENT

| OLCY ATTN TErH LIPRARY

T

PATFL FNTFRPRISTS, INC.

P 0 ROX 1531

HUMTSVILLE, AL 2591C '
D1CY ATTN M DPATEL

i

PHYSTCS INTERMATICNAL CP., 3
2700 VERCEN STZrCY
! SAN 1LEANDFD, CA €4S577
: 01CY ATTN L PEHRMAMY
O1CY ATTM TTCRVNICAL LIBPARY
! nICY ATTM F rp2f
NICY ATTN || THFYSEN
J1CY ATTM E SAuFR 1

R £ N ASSPCIATES
> 0 POX 96655
MAPINA CEL RFY, Ca  6r291 ?

D1CY ATTN R PNOT '

NI1CY ATTIN & Kit

0l1CY ATTN § LFUTS

ALCY ATTN W MPISHT

0InY ATIN ) CAPPENTFP

NICY ATTN TECRNTCAL TNFMPPATICN CEMTER




CEPAPTMENT CF DEFENSF CCNTRACTORS

PAND CORP,

L70N MATYN STRETT

SAMTA “PNICA, €A cao40¢
01CY ATTN C vrw

SCIEMCE APDLICATIONS, INC
RADTATION INSTRUNERTATICH RARY
4615 HAWKINS, NE
ALBUQUERQUE, K%  37)rq

O1CY  ATTIN J NTSyCh

SCIFNCE APOLICATIC:S, INC.

P 0O 80X 2351

LA JCLLA, CA 62039
D1CY  ATTMN H HILSCN
OLCY ATYN TECHNICAL L I80ADY
NICY ATTYN 2 SCHyayc

SCIEMCE APODLIMATINNS, INC.
101 COMYINENTAL PLv©o
FL SEGUNNN, CA 90245

271CY  ATTN 7 HGVE

SCIENCE Aa°oLICATI3NS, [NC.

2450 WASHINGTCN AVEAUE

SAN LEANDRO, CA 94577
01CY ATTN D BERNSTEIN
AICY  ATTN D “MAXYELL

SCIENCE AOPLICATICNS, INC.
PO EROX 1393
MCLEAM, vA 22102
01CY ATTN J CCCKAYNE
01CY ATTY B CHAMBE®S 111
O1CY ATIN M KNASEL
Q1CY ATIN W LAYSCN
01CY ATTN R SJIFVERS
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DEPARTHENT NF DEFEMSE CCNTRACTORS

SOUTHWEST RESEAPCH INSTITUTF
P O DRAWER 225112
SAN ANTCNIN, TX 78274

01CY ATTN A MENZFL

O1CY ATTM W JAKER

SRI IMNYEPNATICNAL

333 FAVENSKWOrD AVEMUE

MEMLO PARK, CA 94075
DICY ATTM G APRARAVALA
NICY ATTIN LIgpaA”Y '
N1CY ATTN J CrLTCN ;

SYSTFMS, SCIENCE & SCFTWARFE NG E

P 0 80X 82473

AL BUIDUERNIJE MM e7]1ag
N1CY ATTN C NEFYHA®

e

SYSTEMS, SCTENMCF & SFETUARE, IMM.
P 0O BANX 1620
LA JOLLA, CA 92018
DICY ATTN J PARTEEL
N1CY ATTN T PIVEY
O1CY ATTN D GRTNE
A1CY ATTN LIROARY
N1CY ATTM C MASTING :
01CY ATTN K PYATY
NCY ATTN € DISULYES
, 01CY ATTN T CuEooy

SYSTF4S, SCIFNCE & SCOFTwARE, INC,
11200 SUNRISE VALLEY [PIVE
RESTOM, VA 2204}

NICY AYTN J MDYy
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DEOARTVENT 0OF DEFENSE COMTRACTORS

TELEDYME BPOWN FNGINFFOINT
CIHIMMINGS PESEA?(CH 2ApPK
HUMTSVILLF, AL 29877
01CY ATTN J RAVENSCPAFT
N1CY  ATTN J MCSHAT

YERPA TrK, INC.

420 WAKARA WAY

SALT LAKE CITY, LY €41C2
01CY ATTMN A ABNNI-SAYER E
ND1CY ATTN LIRRARY 3
D1CY ATTN A JIPNSS 3
01CY ATTM S GREEN E

TFTRA TFCH, I*C.

30 M POSEMEAN RLV)

PASADFNA, CA 91107
N1CY ATTN L HWANG

YeW DEFENSE £ SPACFE SYS GrNUup

NMF SPACE PARK

RENONDT BEACH, CA 7C2719
D1ICY ATTN N LTIPNER
01CY ATTM TECHNICAL INSPPMATICM CENTEP
D1CY ATTN T MAZZICLA

Yow DEFENSE £ 3SPACE SYS gerup
; ) ® 0 ROX 1310
SAN BEPNARDIMC, CA 62497
01CY ATTN 6 HULCHE®
01CY ATTIN P naT
01CY ATTN E uCNG




CeoaoTwrnT CF DEFFENSE CCNTRACTORS

UNMIVFPSAL ANALYTICS, ING.

7740 W MANCHESTEC giv(

nt AYA DFL REY, A gczct
O1CY ATTM F FIELN

WEINL INCER ASSNC., CCHNSLITINC SNGINEELRS
117 E 59TH STREET
NEW YORK, NY 10n2?

O1CY ATTN T SZNOLEF

Q1LY ATTN M PAPEN

WEIDL INGER ASSNC., CCMSULLTING ENGINFFPS
300N SAND HILL PCAD
MCMLO PARK, CA S492°%

QICY ATTN J T STNREFS

Chief Doentiot

;W&amb KXo bsraZory Gonen
({Mcbwwz -

Wasbenitin, D.C.. 20375

(o0Cy AL ;ﬁw
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DCPARTVMENT OF BFFFMNSE

ASSTSTANT TOY "HE SCECPETARY TF NEFFNSC
fATCMIC ENEPSY)
WASHINGTNY, DO 203n]

D21CY ATTM EXTCHTIVF ASSISTANT

DIQECTNR
DEFENSE COMMUNITATICAS ACTNCY
WASHTNATON, Df 27778
(AR® CM¥OYT: ATTN CCCE 240 FCR)
NIEY ATTN CNF 370 € Llep

DICECTNAR
NEFENSE TMTELLIGTMCE ACFACY ]
WASHIMGTCr, 0BC 20371 '
NICY ATTN RNS=23 (TECH LI°)
N1CY ATTN N 4%
01CY ATTN DT 17
NICY ATTM NT-) 3
OICY ATTN N8 4C F CEAPRELL

DIRECTOR
DEFENMSF NUCLFAR AGENCY
WASHINSTOM, DO 29375
D2CY  ATTV SPES
C1CY ATTN SPSS 5 ULLRICH 1
NICY ATTN S9SS€ T CEEVY
04CY ATIM TITL

DEFEMSE TECHNICAL INFCPYATICN CEMTER
CAMERON STATTINM
AL EXANDRTA, YA 22314
(12 IFf NPEN PUB, PTHFRRISF 2 N NINTEL)
20Y ATTN N {

CHATRNMAN
NEPARTMENT CF DEFEMSE FXFLO SAFETY BCARD
HOFFMAM 3LNG 1, PM £56-C

2451 EISENHOWEP AVERNLF

ALEXANDRIA, VA 22272)
DICY ATTM CHATIRMAN




DEPARTVENT OF NEFFNSFE

COMMANDER

FIFLD COMMAND

DEFENSE MUCLEA? AG:EANCY

KIRTLAND AF8, NV Q711F
21CY ATTM ECTvOTr
01CY  ATTN FCT
NICY ATTM FOPER
01CY ATTN FCTT

CHIEF

FIELD COMMAND

DEFENSE NUCLFAR aSFN(CY

LIVEPMORE RPAMNCH

P N ROX 878 L-317

LIVERMORC, CA 345350
01CY ATTN FCP7L

DIRECTNR
JOTNT STRAT TGRT D ANMNING STAEE
OFFUTY AF8
MAAHA, NB €8113
01CY ATTN )1 A
N1ICY ATTN DNXT
01CY ATTN ¥PFES
O1CY ATTN MRIT_STINCA | [frADY
QICY ATT' JLTp-»

COMMANDANT
NATQ SCHNOL (SHAPE)
APC NEY YCRK 9172
O1CY ATTN 1t S POCUMENTS CFrICER

HNDER SECY NF NEF FOR RSCH £ £vgnn
DEPARTMENT QF IEFEMSE
WASHTNGTCN, DG 27301

N1CY ATTN STRATFGIC £ SOPACF SYS (€S)

RY 3F129




B e s

CTHER GTVERNMENT

CEMTRAL INTELLIGFMCE ANFNLY
WASHINGTOMN, NC 295%¢
OLCY ATTN NSwe/mMEC

DEPARTMENT OF THE IATRCIC?
RURFEAY CF MINCES
BLDG 20, DENVER FFDECAL CEMTER
DEMNVER, C AN225
((UNCL C™vLY))
01CY ATTN TECE LIP (UAZL CNLY)

DIPECTOR

FENFRAL EMERGFMCY “tANACENENT AGENCY
NATIONAL SEC OFC “ITIGATION £ RSCH
1775 1 STREET, %

WASHINGTON, DC 27477

(CALL CLASS A2TTM 9105 DOC CCNTPRPCL FCR))
OICY ATTN MITIGATICN 4 RSCH DIV







