
UNITED STATES ARMY

COMPUTER SYSTEMS COMMAND

' 'I

~THE VERIFICATION OF COBOL PROGRAMSi

FU IT SELVOT TlSlo aV A ARMY1

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED
A SIGNIFICANT- NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLYo

SEGuRt TY CL iSIICATION OF THIS I'ACIl: ITV~hlo Da.II L ,-OI IIT 'AQQ

REIORTL)OUMETATON A([BEFORE COMPLE1TING FORM

1 RfEPORT NUMBIER 2 (01./I ACCES;SION NO 3 RECIP"LNr S C,. IALOG NUMBER

AUTHOR(SI Al,-A/t'? r117-I
4TITLE 'r-I S,At,,'e, I TVPF OF REPORT & PERIOD COVERTED

THE VERIFICATION OF COBOL PROGRAMS Final

13 January 1975 to U(R

t colTRACT OR ,RANTI NUMbE RU

L. Robinson, M. W. Green, R. E. Shostak and DH0-5C01
J. M. Spitzen

9 PRFnRIVINC, ORGANIZATION NAML AND AD)DRESS 10 PlioCRAM I.E MENT. Pr;OJECr. iAsK

Stanford Research Institute AE V)KUI UliR

333 Ravenswood Avenue

Menlo Park, California 94025 1.RP11D l Ai
I' CONTROL LINC- OFFICE NAME AND ADDRESS 3 ac 9 9

U. S. Army Computer Syst ems Command I ,S-Ct' CL A',L (of mIs rO!,crt.

Advanced Technology Directorate

Fort Belvoir)Iij&kn i a 22Of()6 ___- Unclassified
14 %1 lo ' 1A ,L NIC Y N AVE 01,)1 1 W I. lIf, 1 'C,' Co, I,'< UPq .

Dr. Jimmie Suttle_______

Ut. S. Army Research Office 15- D! E ASSIr UCTO OWNGRADINI.

Box C1, Duke Station

Distri but ion Unlimited

17 DISTRIU TMn N STATEMEfNT (of 10. 05I-CI ,lllll, 0f1 L 2 Idts-l I t f10-le~ol

In3 :SUPPLLVSENTANY NOTTIS

19 KEY WORDS (Conl'0.,e of, rev~erse swde I rlecesdar wV sIo: II 0.1 tiy L)ork "u~mber)

Program verification, COBOL, structured programming

ThIis report describes an init ial stud'! eonconing the feasibility of proving the

correctness (i e. , veri fi cat ion) of COBOL. prlrgram. . The repori contains: (1) a

situdy of the COBOL lang:uiige as relat ed to v.eri -ti cafion, (2) 1the syntax and seman-

ics of a subset of COBOL1 71 in which to pOtI'flIr t:xperimentD. l verification, (3)

design of a system to accomjp i!3:h COBOL yen ficalion in ttc desired subset, and

(4) proof of a sam'ple 1 01301. prograll. The' corclus-on of !Ie report is that COBOL

verification is indeed tuaibihe. but must be further ci~jzineered if it is to be

ccost-r.i fective. _

DD IIN711473 _

March 1976

Final Report

Covering the Period 15 January 1975 to 31 January 1976

THE VERIFICATION OF COBOL PROGRAMS

By: L. Robinson (Project Leader)
M. W. Green
R. E. Shostak
J. M. Spitzen

Prepared for:

U.S. ARMY COMPUTER SYSTEMS COMMAND
FORT BELVOIR, VIRGINIA 22060

Contract DAHC-04-75-0011 j
STANFORD RESEARCH INSTITUTE
333 RAVENSWOOD AVENUE
MENLO PARK, CALIFORNIA

_ _ _ 2

FOREWORD

This report was prepared in support of the US Army Computer Systems
Command Research and Development Program. The report was prepared by
Stanford Research Institute under Contract Number DAHC-04-75-0011.

This Technical Report has been reviewed and is approved.

DR:JOHN STAUDHAMER / O PELLED

Technical Advisor Director, Advanced Technology
-US Army Computer Systems Command US Army Computer Systems Comand

,,JONATHAN B. PRICE, lLT SC
Task Action Officer
US Army Computer Systems Command

a

I

ABSTRACT

This report describes an initial study concerning the featibility

of proving the correctness (i.e., verification) of COBOL programs. The

report contains:

(1) A study of the COBOL language as related to verification.

(2) The syntax and semantics of a subset of COBOL 74 in which
to perform experimental verification.

(3) Design of a system to accomplish COBOL verification in the
desired subset.

(4) Proof of a sample COBOL program.

The conclusion of the report is that COBOL verification is indeed feasible,

but must be further engineered if it is to be cost-effective.

I

iii

PREFACE

For readers who want only a summary of COBOL verification work,

we suggest reading Sections I, II, III, and VII. The introductions

and conclusions to the remaining sections may also be helpful. A

glossary is provided that defines terms pertinent to program verifi-

cation. We do not suggest reading the Appendix unless the reader is

interested in the inner workings of the COBOL verification system

and has some background in LISP.

The authors acknowledge the assistance of Jack Goldberg and

Karl N. Levitt in the management of this project, and the technical

assistance provided by Robert S. Boyer and Bernard Elspas.

Vi

V ~ ~~~~ -,~b~I.crI

CONTENTS

ABSTRACT i i i

PREFACE v

LIST OF ILLUSTRATIONS ix

LIST OF TABLES Xi

I INTRODUCTION 1

A. Introduction 1

B. Background and Project Goals 2

C. Program Verification--Theory 3

D. Program Verification for "Real Languages".... 5

E. Brief Discussion of the COBOL Language 11

II ANALYSIS OF COBOL WITH RESPECT TO VERIFICATION 15

A. Introduction15

B. Elementary Data Items 16

C. Tree-Structured Records 17

D. Files 18

E. Multiple Definition of Storage Areas 18

F. Assignment and Computation Statements22

G. Control Statements 25

H. Conclusions 28

III THE STRUCTURE OF THE COBOL VERIFICATION SYSTEM31

A. Introduction 31

B. Syntax Analysis and Transduction 32

C. Posttransduction Processing36

D. Verification Condition Generation 36

E. Conclusions 40

IV SYNTAX OF THE COBOL SUBSET 41

A. Introduction 41

B. DATA DIVISION Features 41

C. Transduction Grammar for the DATA DIVISION 45

D. PROCEDURE DIVISION Features 46

E. Transduction Grammar for the PROCEDURE DIVISION . 50

F. Conclusions 53

vii

V THE ASSERTION LANGUAGE FOR COBOL VERIFICATION. 77j

A. General.......................77

B. Basic Assertion Language 77

C. Special Functions for COBOL.............78

D. Abstract Assertions for COBOL Programs. 82

E. Conclusions.....................34

VI SEMANTICS FOR COBOL VERIFICATION. 87

A. Introduction. 7

B. Posttransduction Processing.............87

C. Verification Condition Generation 9

D. Research Issues in Verification Condition
Generation

VII STRUCTURE AND COBOL VERIFICATION 101

A. Introduction 101

B. Structured Control Primitives 101

C. Restrictions on COBOL Data Operations. 102

D. Data Bases 103

E. Data Abstraction Facilities 105

F. Top-down Design and Modularity 106

G. Conclusions....................108

VIII AN EXAMPLE OF COBOL VERIFICATION. 109

A. Description of Program...............109

B. Assertions.....................1l

C. Transduction and Posttransduction Processing 112

D. Verification Condition Generation. 113

E. Proof of a Verification Condition. 115

F. Conclusions 116

IX CONCLUSIONS......................149

A. General......................149

B. A Note on a Programming Environment for COBOL . 150

X REFERENCES.......................151

GLOSSARY..........................153

APPENDIX..........................155

Viii

ILLUSTRATIONS

I-i Diagram of a Semiautomatic Verification System . . . 6

1-2 Structure of the COBOL Language 12

II-1 Multiple Definition of Storage by the REDEFINES

Statement 20

11-2 Multiple Definition of Storage by the RENAMES
Statement 21

11-3 Diagram of Permissible MOVE Operations23

III-1 Structure of the SRI COBOL Verification System . • 33

111-2 A Simple Flowchart Scheme 38

111-3 Three Simple Paths of the Programs in Figure 111-2 . 38

VI-i Translation of "PERFORM Pl VARYING I FROM 1 BY 1
UNTIL I > N (ASSERT (P I)).".91

VII-I File Structure for a Typical COBOL System104

VIII-l File Structure of the Example Program 110

_. ix

TABLES

IV-1 Syntax of the DATA DIVISION of the CSV55

IV-2 Features for the DATA DIVISION of the CSV 56

IV-3 Transduction Grammar for the DATA DIVISION
of the CSV 57

IV-4 Syntax of the PROCEDURE DIVISION of the CSV Go

IV-5 Features of the PROCEDURE DIVISION of the CSV 65

IV-6 Transduction Grammar for the PROCEDURE DIVISION

of the CSV 66

VIII-l Example Program 117

VIII-2 Assertions for Example Program120

VIII-3 Transduced Example Program (PROCEDURE DIVISION) . . . 123

VIII-4 Transduced Example Program (DATA DIVISION) 125

VIII-5 Example Program after Posttransduction Processing
and Simplification 126

VIII-6 Significant Paths for the Example Program129

VIII-7 Verification Condition for Path (6-6) of the
Example Program 132

VIII-8 Proof of Verification (6-6) for the Example
Program 135

VIII-9 Rules of Inference for Proof Presented in

Table VIII-8146

xi

lj., bL A - 0

I INTRODUCTION

A. Introduction

The goal of this project has been to study the feasibility of formal

verification of COBOL programs. To do that, we have chosen a subset of

the COBOL and built part of a system to verify programs written in that

subset. We have shown that it is possible to verify COBOL programs, but

that there are many problems yet to be resolved to make COBOL verification

cost-effective. In this report, we outline some of these problems and,

in some cases, propose solutions.

Program verification is not yet applicable to the production of soft-

ware. Although most of the theoretical problems have been solved, tools

must be developed to reduce the volume of material that programmers now

must process in program verification. Among the tools needed are well-

engineered interactive aids and new programming languages.

In our work we have:

(1) Analyzed COBOL with respect to verification.

(2) Selected a subset of COBOL for verification.

(3) Designed an assertion language for formally describing the
intent of a COBOL program.

(4) Designed a system using the INTERLISP language for generating
verification conditions for COBOL programs.

(5) Discussed the implications of structured programming on COBOL
verification.

(6) Presented an example of a verified COBOL program of modest size
(<100 lines in the PROCEDURE DIVISION).

In this section, we discuss the goals and background of the project,

the theory of program verification, the programs verification for "real"

languages, and the structure of COBOL.

In Section I, we present a detailed analysis of COBOL in relation

to program verification, including general comments about including or

excluding particular language features in the COBOL subset for verification

(hereinafter called the CSV).

In Section III, we describe the structure of the verification system

designed for this project.

In Section IV, we formally describe the syntax of the CSV.

1

In Section V, we describe the assertion language and some rules of

inference for deduction.

In Section VI, we describe the semantics of the CSV.

In Section VIII, we present an example of a fully verified COBOL program.

In Section IX, we state the conclusions of the project.

The documented code for the programs that we have designed to assist

in COBOL verification is in the Appendix.

B. Background and Project Goals

The goal of program verification---"verification" throughout this

report refers to formal mathematical proof-- is to make programs more

reliable. In our work, we make several assumptions. First, a programming

language is a formal medium for expressing solutions to certain types of

problems. Because of this formality, a program can be analyzed logically.

Second, a program (especially a large one) is not necessarily a good

medium for stating the problem to be solved. A program states how a

problem is to be solved, not what the problem is.

Program verification is not yet a viable tool to improve software

rjliability because:

(1) The programs are too complex.

(2) The assertions are too complex.

(3) The programs have been written in a programming language that
is not amenable to formal description.

Tho means of soiving the first two problems is that of structuring.
1' 2

The, primary goal of the work described in this report is to solve the

third problem. The other two issues are discussed in this report, but

not emphasized.

Even thouzh program verification may be difficult, we believe that

its usefulness can be increased to approach acceptable limits. The

answer lies in the seriousness of the software problem and in its inherent

nature. Almost every nontrivial program has some logical flaw; many

comnercial programs have so many "bugs" that they do not provide the

service promised by the vendor. Some programs contain undetected but

potentially damaginV errors even after being tested and debugged for

some time .

The inherent nature of the problem is that informal standards

(English-language specifications) cannot be used to guarantee the correctness

of a program. As the technology matures, some formal notation is usually

developed so that standards can be stated unambiguously and the product

can be checked systematically against its standards. A doctor's pre-

scription is a simple example of such a formal medium that is typically

not checked. Whether or not this checking is done in every case is

usually a matter of cost-effectiveness.

The same thing is true for program verification. We must develop an

unambiguous language for stating standards (i.e., an assertion language)

and techniques for systematic checking (i.e., formal verification). We

can then imagine a scenario in which assertions are written out, but might

or might not be formally checked against the program, depending on cost-

effectiveness. But at least some checking mechanism exists, so that if

the application is critical, the cost can be incurred. Thus, it is

useful to do research in verification techniques and to write assertions

for programs, even if verification is not attempted. An added benefit

of this research is to distinguish language features that simplify

analysis of programs, even if that analysis stops short of proof.

This work is an attempt (the first that we know of) to apply

formal verification techniques to COBOL. It is also one of the few

attempts to use verification techniques for any of the commonly used

languages.

C. Program Verification--Theory

The idea of program verification goes back almost as far as
3

programming itself: it was first discussed by von Neumann and Goldstine.

The basic idea is that there is a state that models some external

phenomenon (e.g., differential equations, matrices, payroll records).

The state can be represented by the contents of core memory, the contents

of files, or program variables (at a more abstract level). There is also

a set of elementary operations that change the state. Examples of

elementary operations are machine instructions or statements in higher-

level programming languages. A program defines a (possibly infinite)

setof sequences of elementary operations. When a program is executed,

\only one sequence of elementary operations is performed. The selection

of one sequence out of the set of sequences defined by the program is

determined by the state just before the program is executed called the

"initial state." Thus, a program is a function from states to sequences

of operations. If the program terminates, the state just after termination

is called the "final state."

The user of a program is interested in knowing what the final state

will be' for a given initial state of the program. Ideally, he will have

a specification, which expresses a mapping from initial states to final

states. It is not immediately obvious whether a program (also a mapping

from states to states) is consistent with the specification. Consistency

between a specification and a program is often called "program correctness."

Program verification is a set of techniques for proving this consistency.

Floyd 4 and Naur 5 first described this method of verification. The spe..ifica-

tion consists of a statement of the properties that the initial state must

have (the input assertion), and a statement of the relation between the

initial state and the final state (the output assertion). Both input and

output assertions are stated as logical predicates.

The effects of each nf the elementary operations on the state must

also be formally described (input and output assertions for these operations

aro useful for this purpose). The control operations, which do not in

themselves affect the state, must also be axiomatized. A program may in

a small number of statements describe a large (possibly infinite) sequence

o1 operations. To achieve verification, inductive assertions, which break

th,: program's flowchart up into finite sequences of operations, must be

associated with each of the loops of the program.

Floyd's method is used for proving partial correctness of programs.

A partially correct program is consistent with its assertions only if it

terminates. Termination of a program can be proved separately. Given

input and output assertions, program text (with indu-tive assertions), and

the definition of the elementary operations, a set of formulas in first-

order logic can be constructed whose validity is equivalent to the partial

correctness of the program. These formulas are called "verification

cn viLi tons. A software system that accepts as input the program to be

verified (with input, output, and inductive assertions) is called a

4

verification condition generator."67 Verification conditions can be

proved by hand, or can be input to a deductive system or automatic theorem

prover, which attempts to generate a proof. In general, deductive systems

are inadequate for proving verification conditions by completely automatic

means, and many systems are equipped with interactive facilities to allow

users to guide the proof. Deductive systems with interactive facilities

are also called "semiautomatic verification systems." A diagram of a

program verification system is shown in Figure 1-1.

The application of formal techniques to a particular programming

language environment is often a matter of style. The verification

condition generator incorporates most of the language-dependent features,

because it must translate assertions and statements in the programming

language into expressions in predicate calculus. Some verification

condition generators are based on a particular semantic description of a

language. For example, a verification condition generator for PASCAL
7

(London, Luckham, and Igarashi) is based on the axiomatic description of

PASCAL by Hoare and Wirth.
8

Several issues have not been addressed by the mainstream of program

verification: The first issue, termination, has been addressed by

several researchers.6,9,10 It can be treated either with or separately

from the issue of partial correctness. It is important to formalize two

other issues -- run-time errors and validity of input data -- if

verification is to lead to software reliability. All three of these

issues have beun grouped, to some extent, into a property called "clean

termination. Although these issues are important, they are not considered

during this work, which limits itself to the basic issues of partial

correctness for COBOL programs.

D. Program Verification for "Real Languages"j

In this subsection, we attempt to define the concept of a real

programming language by enumerating some of its properties. Particularly

important are the properties of semantic cleanliness and syntactic size

of real languages. We also describe some special properties of programs

for which proof is particularly important when dealing with real languages.

5

Program Assertions

VERIrI CATION
CONDITIONLGENERATOR

- Verificatio n Conditions

DEDUCTIVE 4-HmnGiac
SYSTEM HmnGiac

Program Proof
(or Counter-Exsample

or Nothing)
SA-3967-2

FIGURE 1-1 DiAGRAM OF A SEMIAUTOMATIC PROGRAM VERIFICATION SYSTEM

COBOL is a member of the set of "real" programming languages, which

are those that are widely used in many applications and for which standards

exist. Real languages are usually, but not always, commercially viable

products. Examples of real languages are COBOL, FORTRAN, PL/I, and (to a

lesser extent) Algol and LISP. The properties that make a programming

language a real language unfortunately also detract from the ease of

verifying programs in that language. Most of these undesirable properties

can be summed under the term "lack of semantic cleanliness."

The semantics of a programming language describe the meaning of

statements in the language, expressed in some well-defined formal medium.

A language has "clean" semantics if the definition of the language is

elegantly expressible in some formal medium. There are many good reasons

why real languages are not semantically clean:

Most real languages have many operations. A real language
incorporates the special interests of many groups of users,
whose interests are not always compatible. Large numbers of
features must often be added. These features not only
complicate the semantics of the language, but often violate
the spirit that motivated the initial conception of the language.
PL/I is a good example of that. In a desire to overcome some of
the difficulties of FORTRAN, COBOL, and Algol, the designers of
PL/I created something larger than any of its ancestors. Con-
sidered alone, the size of real languages is a major obstacle
to verification.

Most real languages concede syntactic generality in the interest
of an efficient implementation, in either the compiler or the
generated code. Examples of these dependencies are limitations
in the number of nestings (COBOL) or in the complexity of an

arithmetic expression in certain syntactic positions (FORTRAN).

Most real languages must have some features that deal with the
hardware or operating system. The ENVIRONMENT DIVISION and
Communication Module of COBOL are examples of these features.
Standardization has served as a uniform interface between the
language and the environment. However, the fact that a variable

is SYNCHRONIZED or that there are 100 logical records in a physical
record will not affect the correctness of a COBOL program, but may
affect the performance of that program.

Most real languages are the products of an evolving development,
as illustrated by the fact that many real languages have numbers
after their names to indicate the particular dialect in the
sequence (COBOL 74, FORTRAN IV, Algol 60, LISP 1.5). In many
cases, there is a desire for upward compatibility, so that bad

features that could have been eliminated remain--"augmented" by

the improvements.

7

Most of the important languages were created before the aesthetics

of programming were well established. Thus, many real languages lack

features such as strong typing, block structure, ana flexible procedure

and macro facilities. Structured programming practices are motivated by

a desire to infuse these new aesthetics into the programming world. Perhaps

verification will generate its own set of aesthetics to guide the design

of future programming languages. Finally there is the problem that even

if the semantics of a real language are clean, they are usually stated in
12

natural language, e.g., in a standards manual. A standards manual may

suffice for programmers and language implementers, but it is not directly

applicable to verification. Some attempts have been made to define

language semantics formally (e.g., VDL1 3 for PL/I). However, as long as

there are no formal semantics for COBOL, it will be impossible to prcve

the correspondence between a language that is verified and a compiled

version of such a language.

Before solutions to the problems of semantic cleanliness are con-

sidered, there is one major constraint to these solutions: the solutions

must have minimum effect on the languages themselves. There is Pn under-

standable resistance by manufacturers to redesigning the programming

languages that they support, and a similarly understandable resistance

by users to recoding the software that they have written. Thus, the

solution to the verification problem for real languages must be incremental.

Research in new languages that support verification is very important,

but the data processing community will ignore this research unless

verification can be shown to be useful for currently existing languages.

The problem of language size has two aspects; syntactic and

semantic. When a language has syntactic complexity (e.g., COBOL), there

are many different ways to do the same thing. When a language has

semantic complexity, there are many things that can be done. In cases

where syntactic complexity exists, verification can be done on a program

written in an internal form that is syntactically simple--there is only

one way to do any given thing. Automatic translation from the external

form to the internal form is relatively straightforward. semantic com-

plexity is handled pjimarily by subsetting, which entails choosing a

sublanguage that. includes only the desired semantic features. Some lan-

guage cons tructs are useful (and even necessary), but can easily be misused.

' m |8

This is precisely the problem with the GO TO. The solution to this type

of problem takes several forms:

(1) Change the language.

(2) Establish management techniques to prevent abuse of the

construct.

(3) Develop a preprocessor for the language that will allow

desirable constructs in place of harmful ones.

For more information concerning these alternatives as applied to

COBOL, see Section VII on structured programming and COBOL.

The semantics of a language can be specified by formulating an abstract

machine whose instruction set is the set of commands in the programming

language. Thus, a formal description of a language is the definition of

such a machine. We define a machine that executes a subset of COBOL pro-

grams by means of a set of rules for generating verification conditions

for the programs. Assuming that such a machine is actually consistent

with a given COBOL compiler (something that may be difficult to determine),

a program that is proved correct--using this verification condition gnerator--

will actually run correctly when compiled by the given compiler. We use

informal arguments to show that our formal definition of a COBOL subset is

consistent with the ANSI standard.
12

With regard to the features of a real language that are dependent on

the hardware or the operating system, there are two strategies: to exclude

them or to axiomatize them. Statements in COBOL's ENVIRONMENT DIVISION and

items such as SYNCHRONIZED or the number of logical records per block can

be excluded since they do not affect the outcome of the program. Special

kinds of file input/output and communication with the operating system can

be axiomatized as properties of the abstract machine that defines the pro-

gramming language.

Several kinds of program properties are particularly important for

real languages. There has been very little research done to date in the

statement and proof of these kinds Qf properties. They are:

(1) Finite machine arithmetic

(2) Clean termination and run-time errors

(3) Validity of input data.

9

The issue of finite machine arithmetic is particulai
1 y acute in

COBOL because data items have no more digits than they need for internal

storage, while other languages have the (relatively large) word size of

the machine. Thus, overflow and truncation occur often enough to be of

concern. We consider these items in Section VI.

Clean termination was described earlier in this section. Because

of the limited scope of this project, we did not deal with this issue

in this report. Clean termination assumes the absence of run-time errors.

However, such assumptions cannot safely be made, as is the case in hard-

ware and operating system errors and in situations where input data is

invalid. Run-time errors should be considered in efforts to verify pro-

grams in real language.

In verification, input data is assumed to be valid (with respect to

type and range of values). One of the greatest difficulties in guaranteeing

the reliability of programs in real languages is that such assumptions cannot

be made. In other words, input data items are frequently faulty, and programs

must be written to account for such situations. A real program will typically

have several degraded modes of performance (without aborting the program),

depending on the severity of the error. For example, even if a single

record is destroyed, all other records may be processed correctly. There

is a need in program verification to anticipate such occurrences and to

make the input assertions for these programs as weak as possible.

E. Brief Discussion of the COBOL Language

COBOL is an extremely complex language--both syntactically and seman-

tically. Since we could only apply verification techniques to a small subset

of the entire language, we had to choose the issues (and parts of the lan-

guage) that represent the most important aspects of COBOL. After briefly

describing some characteristics of the COBOL language, we outline the

coverage of features in the COBOL subset chosen by us relative to the mod-

ularization of ANS COBOL.

COBOL has a rich set of data types and operations. The area of most

immediate concern for verification is called the "elementary data item."

All computation in COBOL is character-oriented. Even numeric data items

are treated as character strings with respect to assignment, truncation,

and editing. Its control statements are also interesting, if not elegant

10

to formalize. Elementary data items form the leaves in a tree-structured

data declaration, of which the nonleaf nodes are called "group data items.

A record is an entire tree of data declarations.

Input/output is very important in COBOL. Many programs follow the

scheme:

Open files, initialize;
LOOP: Read input at end yo to CLEANUP;

Process data;

Write output;
1o to LOOP;
CLEANUP: Close files, etc.;

Thus, no useful COBOL program can be proved correct without some axiomati-

zation of input/output.

Full ANS COBOL1 2 is one of the most complicated programming languages,

containing features that range from strings to interprocess communication.

Thus, the subset of COBOL that we are verifying is small relative to the

entire language, although the subset is a powerful language in itself. The

subset provides arithmetic and relational operations on COBOL numeric data

items, generalized control structures, and sequential input/output. A dia-

gram of the components of the entire ANS COBOL language is shown in Figure 1-2.

In Figure 1-2 ,we indicate the parts of the language handled by the current

verification system. The language is divided into twelve modules, which group

related sets of features, and three levels, which are successively more sophis-

ticated subsets of the modules.

A brief description of the contents of each module follows:

(1) Nucleus--Basic language constructs: control structures,

data items.

(2) Table Handling--Arrays and subscripting.

(3) Sequential I/O--Reads and writes sequential files; a

sequential file is a file whose records must be read in

the order that they were written.

(4) Relative I/O--Reads from and writes to files whose records

can be accessed in either sequential or random order, via

a unique key that specifies a record's ordinal position

within the file.

1i

LEVEL 1 LEVEL 2 LEVEL 3

NUCLEUS 7/7 '/, NULL

TABLE HANDLING ?~/,,~/ NULL

SEQUENTIAL 1/O07 NULL

RELATIVE 1/O NULL ?

INDEXED 1/O NULL?

SORT-MERGE NULL??

REPORT WRITER NULL NULL

SEGMENTATION NULL 0

LIBRARY NULL, ?

DEBUG NULL0

INTER-PROGRAM
COMNCAINNULL??

COMMUNICATION NL

COMMUNICATION_________________________ _________________NULL,_______________

NULL - Nonexistent in ANS COBOL

=~ - Covered by Current Work

?- May be Covered in Future Work

e- No Immediate Plans for Coverage in
Verification System

SA-3967-12 4

FIGURE 1-2 STRUCTURE OF THE COBOL LANGUAGE

(5) Indexed I/O--Like relative 1/0, except there can be

multiple keys per record and a user can choose an

arbitrary key when the record is written.

(6) Sort-Merge--Sorts a file according to fields within its

records, or merges two or more identically sorted files

of similar record structure.

(7) Report Writer--Allows the programmer to generate a

file consisting of report (lineprinter) records solely

by specifying the format of the report, rather than the

algorithm for generating the report.

(8) Segmentation--Allows the programmer to specify the divi-

sion of a COBOL program into segments whose object code

can be overlayed in memory.

(9) Library--Enables the copying of sections of source code

from centralized libraries.

(10) Debug--Allows the insertion of special sections of code

for debugging, the execution of which can be switched on

and off by compile- or objecL-time switches.

(11) Interprogram Communication--External procedure call and

data-sharing mechanism.

(12) Communication--Message and synchronization facilities for

concurrently executing programs.

The levels are numbered from 1 to 3, in order of increasing complexity.

Most modules have no features at Level 1, as Figure 1-2 indicates.

As shown in Figure 1-2, our subset of COBOL provides most of the

features of Level I and some features of Level 2, in the Nucleus, Table

Handling, and Sequential I/O Modules. Most of the features left out

(e.g., ALTER) are those that we consider undesirable because they sub-

stantially increase the difficulty of verification. Future work should

expand the subset to include most of Level 2 in the aforementioned modules,

and perhaps Level 2 of modules such as Relative and Indexed I/O. We view

modules such as Library and Interprogram Communication as also being straight-

forward to verify, and modules such as Segmentation as not greatly affecting

13

I
a program's input/output behavior. However, we view the Debug, Sort-

Merge, and Communication Modules as being extremely difficult to verify,

and as being of secondary importance at present.

There is a tendency to structure large COBOL programs around a large

data base that has a unified set of data declarations that can be used by
14

many programs. This is the aim of the CODASYL report on data bases, in

which the global data declarations for the whole system are called "schemas"

and the local declarations for individual programs are called "subschemas."

Although we have not looked at this report in depth, we find that the

CODASYL report allows almost the same data declarations as COBOL 74 and

permits almost arbitrary programs in COBOL 74 to operate on the shared

data. Thus, we can use the same subsetting restrictions in the declarations

and programs for the data base environment as we use for regular COBOL

programs. We think that the problem of COBOL programs in cooperation can

be better approached if the programs are forced to have consistent data

declarations. Thus, the CODASYL work can by itself improve the reliability

of large COBOL systems and be consistent with our effort in formally veri-

fying COBOL programs.

14

II ANALYSIS OF COBOL WITH RESPECT TO VERIFICATION

A. Introduction

In this section we present a general analysis of COBOL for applicabil-

ity of verification techniques. We try to identify some important general

issues in COBOL that may have an impact on verification to be prepared for

specific work, such as choosing a subset (Section IV) or designing the

verification system (Section III). This discussion is different in that

most literature on COBOL does not address formal verification.

If one considers a COBOL program to be running on a formally defined

abstract machine that runs only COBOL programs, then one can try to formally

define that abstract machine. If one encounters language constructs that

are difficult to formally define and that lead to a needlessly complex

definition, programs written in such a language will be difficult to verify.

Often one must simplify the real COBOL language by subsetting it, so as

to attain a tractable formal definition. Our analysis is based on such

criteria. Inelegances in the formal detinition can result (1) from

machine-dependencies and representation issues that violate the level of

abstraction intended to be provided by a COBOL machine, (2) from a multi-

plicity of special cases that must all be accounted for or (3) from con-

structs that are too general to allow powerful proof procedures to be

applied.

Our analysis is based on two dimensions of the language--the data

structures and the verbs. The interesting aspects of COBOL are charac-

terized in these two dimensions. Data structures of COBOL are divided

in these categories:

(i) Elementary data items with interesting properties

(2) Tree structured records and arrays of data declarations

(3) Files consisting of many records

(4) Multiple data declarations for the same storage areas.

Verbs of COBOL are divided into these categories:

(1) Assignment statements

(2) Control statements

(3) Input/output statements.

15

B. Elementary Data Items

Elementary (nonaggregate) data items can be either DISPLAY (a string

of characters) or COMPUTATIONAL (a string of bits, e.g., machine integers

and floating-point numbers). We decided to consider only DISPLAY data

items--since COBOL's major application is to manipulate character-oriented

data. DISPLAY items are characterized by a PICTURE specification (e.g.,

AAA, XXX, or S999V999), which is a format statement for representing the

data item. A PICTURE specification implicitly declares the type of the

data item to be one of the following: ALPHABETIC, NUMERT, ALPHANUMERIC,

NUMERIC EDITED, or ALPHANUMERIC EDITED. The EDITED data items are those

whose values must be processed to be printed in a special format. The

PICTURE specification also describes the size of the data item, its sign,

and the position of its decimal point. The PICTURE specification relates

to the possible values that a data item can assume so that a two-digit

integer, for example, (PICTURE specification 99), has a maximum value

of 99. In FORTRAN, on the other hand, a data item can only occupy the

standard amount of storage space for an object of its type and takes

on the same format each time it is printed.

Our major concern was with NUMERIC data items, for two reasons:

(1) These items are necessary for verifying nontrivial programs.

(2) Something is known about verifying programs in the numeric

domain. (Domains such as strings have had little explora-

tion.)

Originally, we had hoped to cover both NUMERIC and NUMERIC EDITED items,

but the handling of NUMERIC EDITED items turned out to be too compli-

cated to be handled in the allotted time.

Although a NUMERIC data item in COBOL is a character string, in

most cases we consider the real numeric value that the data item repre-

sents. The only time we consider a NUMERIC data item's character string

representation or PICTURE specification is in assignment statements and

arithmetic operations, since truncation and overflow can occur there.

16

C. Tree-Structured Records

The "elementary items" are the leaves of the tree-structured record

declarations of the COBOL DATA DIVISION. The nonleaf nodes of the tree

are called "group data items." All data items in the tree have "level

numbers" associated with them. For example, in the data declaration

scheme

01 A

02 B

02 C

03 D

02 E

03 F

03 G,

B, D, F, and G are elementary items; A, C, and E are group data items;

and 01, 02, and 03 are level numbers.

There are several implications of the tree-structure, all following

from the fact that each data item has a context (i.e., its sequence of

ancestors in the declaration tree). This allows lower-level data items to

be referred to by naming an ancestor (e.g., in the MOVE and MOVE

CORRESPONDING statements). It also allows two or more different data

items to have the same name, so long as their contexts can be distin-

guished by qualification. For example, the data declaration scheme

01 A

02 B

02 D

01 C

02 B

02 E

allows references to the two different data items "B IN A" and "B IN C."

A data item can have as many qualifiers as are needed to ensure

uniqueness. We handle qualification in the CSV (COBOL Subset for

Verification).

Arrays can also be considered as group data items whose constituents are

referenced in a special way. For example, an array A with 12 elements

is declared as follows:

02 A PICTURE 999 OCCURS 12 TIMES.

An array element is referenced as in FORTRAN (e.g., A(I)).

17

D. Files

Files are the most macroscopic data structures manipulated by COBOL

programs. In fact, the behavior of a COBOL program can be described by

stating properties of the input and output files manipulated by the pro-

gram. Thus, files are not just another feature of the language, but

essential elements. To deal with the semantics of COBOL, we must include

files.

Files in COBOL are structures of records. Sequential files are a

sequence of records. Writing a sequential file adds a record onto the

sequence. To read a sequential file, a progran ,tarts by accessing the

first record of the sequence. Subsequent refd operations access the next

record in the sequence, and so on. Direct access (relative) files and

indexed sequential files are structures o files that can be referenced

either sequentially (in an implicit way) or by key (in an explicit way).

A record of a direct access file has one key that corresponds to its

relative position within the file. A record of an indexed sequential

file can have several keys that are independent of the record's relative

location within the file.

We consider only sequential files in this phase of the project.

These files are axiomatized as arrays of records. Each array has two

variables: one indicates the length of the file and one poi:..., to the

most recently accessed record. We foresee a straightforward

axiomatization of relative and indexed files in the next phase of the

project.

E. Multiple Definition of Storage Areas

In addition to providing a facility for the management of variables,

COBOL also allows the programmer to use multiple definitions for the same

areas of storage--similar to the FORTRAN COMMON or EQUIVALENCE statements.

However, COBOL data items can be of arbitrary size, whereas FORTRAN data

items come in fixed sizes related to the machine word. The biggest danger

in multiple definition of storage areas is that a well-defined change to

a data Item defined in a certain way may cause an ill-defined (or possibly

undefined) change to a data item that is defined differently but shares

the same storage area. This possibility destroys the level of abstraction

18

that is guaranteed by the concept of a data item in a higher level language.

This level of abstraction is sometimes confused with the lower level abstrac-

tion of the machine's representation for the data item. Since higher level

languages were created to avoid machine representations, overlapping data

definitions circumvent a major purpose of a higher level language. However,

overlapping data definitions improve the efficiency of prog-ams written

in COBOL--even if they detract from their reliability.

COBOL provides three types of multiple data definition facilities:

multiple records for a file, REDEFINES, and RENAMES. The first two

facilities are similar. In both cases, a string of characters that belong

to a data item (either group or elementary) can have another data definition.

The primitive notion is that of a character. An example of REDEFINES is:

02 A.

03 B PICTURE 999.

03 C PICTURE S999.

02 AA REDEFINES A.

03 BC PICTURE XXXXXX.

A graphical description of this data declaration occurs in Figure II-1.

Note that assignment to B or C can change the value of BC, and vice versa.

Note that any assignment to B or C will cause a valid assignment to BC,

depending on the machine-dependent convention for representing the sign in

C. However, there are many assignments to BC that would cause invalid

values for either B or C. Multiple records per file are nothing more

than a redefinition at the top level of the data declaration tree.

RENAMES is slightly different as shown in this example:

02 A.

03 B PICTURE 99.

03 C PICTURE 999.

02 D.

03 E PICTURE 9999.

66 X RENAMES B THRU E.

This declaration is depicted in Figure 11-2. The construct allows a new

group item to be defined, possibly to overlap other group items. However,

the definitions of all elementary items are left intact. RENAMES preserves

the level of abstraction provided by a COBOL elementary data item.

19

A

a (999) C (S999) Data Declaration 1

Common Storage

I I I 1 1(16 Characters)

BC (XXXXXX) Data Declaration 2

AA
SA-3967- 5

FIGURE 11-1 MULTIPLE DEFINITION OF STORAGE
BY THE REDEFINES STATEMENT

A D Data Declaration 1

Common StorageB C E
(Elementary Items)

X Data Declaration 2

SA-3967-4

FIGURE 11-2 MULTIPLE DEFINITION OF STORAGE BY
THE RENAMES STATEMENT

,21

We have left RENAMES, REDEFINES, and multiple-records-per-file out

of the COBOL subset in this phase of the project. We envision including

RENAMES in some future subset for verification, because it is a formally

well-behaved construct. However, the other two constructs present diffi-

cult problems in the general case. Severe restrictions would be needed

for redefinition at the character level. We would allow the REDEFINES

statement when it does not take use of machine dependencies and underlying

representation conventions.

F. Assignment and Computation Statements

These statements define new values for elementary data items in COBOL.

Statements such as MOVE and MOVE CORRESPONDING are called "assignment

statements," while statements such as ADD, SUBTRACT, MULTIPLY, DIVIDE and

COMPUTE are called "computation statements." In Section II.B, we dis-

cussed how an elementary NUMERIC item possesses both a value and a PICTURE

specification. Consider the statement

MOVE A TO B.,

where A and B are elementary data items. In this type of operation,

truncation and/or conversion may occur if the data items are of different

types.

For now we have obviated the conversion problem by allowing only two

types of data items--NUMERIC and ALPHANUMERIC--with no assignment from

data of one type to data items of the other. However, in full COBOL this

becomes a complex problem, with the addition of NUMERIC EDITED, ALPHANUMERIC

EDITED, and ALPHABETIC type data items. The set of permissible conversions is

described in Figure 11-3. The permitted transfers marked by asterisks can

violate the integrity of the receiving data item. These items should either

be prohibited or validated by run-time type checking. There might be some

difficulties, since COBOL does not perform this kind of checking until an

error occurs. For example, use of a numeric data item in an arithmetic

statement to which an alphanumeric data item has been moved, might not be

possible.

Truncation is the deletion of trailing or leading characters because

of an incompatibility of the PICTURE specifications of the sending and the

receiving data items. With ALPHANUMERIC data items, tho rightmost

22

SA-3967-
3

FIGURE 11-3 DIAGRAM OF PERMISSIBLE MOVE OPERATIONS

23

characters are always truncated, unless the receiving item is declared as

RIGHT JUSTIFIED. If the PICTURE specifications of an ALPHANUMERIC item

indicate that it is too big to fit t'e sending item, spaces are filled in

on the right (or left, when the item is RIGHT JUSTIFIED). In a MOVE state-

ment among numeric data items, the decimal points are first aligned, then

truncation or filling with zeros occurs at either end to fit the receiving

data item.

We provide an assertion-language function called TRUNCATE (taking a

PICTURE specification and a value as arguments) that describes this operation.

However, there is some question about allowing the widespread use of trunca-

tion in COBOL programs. We believe that indiscriminate use of truncation

is a major cause of unreliability in COBOL programs. In cases where

truncation causes the loss of insignificant digits, this is a comparatively

minor occurrence, although it may cause trouble. However, the truncation

of significant digits of a data item, as the result of a MOVE statement,

can cause serious problems. COBOL was designed to allow significant digits

to be truncated in a MOVE statement. This is a convenient way to obtain the

trailing digits in the destination item. However, it is difficult to tell

whether that was intended or accidental, since both intentional

and accidental uses have the same syntactic notation. If significant

digit truncation were restricted to a statement such as

MOVE TRUNCATED A TO B.,

then the programmer's intention could be syntactically encoded in the

statement.

Computation statements generate a SIZE ERROR when results produce

o.,erflow or truncation of significant digits (at run-time). This can be

handled explicitly by the programmer by specifying a sequence of statements

to be executed when a SIZE ERROR is detected. Otherwise a run-time error

is generated.

The statement

MOVE CORRESPONDING 'source' TO <destination>

takec- two gr ,up data items as arguments. We define MOVE CORRESPONDING

recurFivelv. We determine the descendants of the source item and desti-

nation ilen's, and the intersection set of their names. For each element

of the intersection set whose source item is elementary, a MOVE is executed to

24

the corresponding data item in the destination. Otherwise, a MOVE CORRE-

SPONDING is performed from the source item to the corresponding destination

item of the intersection set. This must be handled in the verification

condition generator. The statement

MOVE <source> to <destination>

when used on group data items, indicates a moving of the contents of

memory (without truncation or other processing) occupied by <source>
to

the memory area occupied by <destination>. This causes a loss of abstrac-

tion and is not allowed in the CSV.

G. Control Statements

Control statements in a programming language relate the lexical

ordering of statements in a program to the dynamic ordering of execution

of those program statements. A program is a fixed sequence of statements

that defines the lexical ordering. However, when a program executes, the

dynamic ordering of statements (the order of execution) depends on the

input data. It is a function of the lexical ordering and of the data
upon

which the program operates. Several goals must be attained in choosing

the set of control statements to be used in a programming language:

(1) Efficient description of any algorithm, in terms of

both time and space.

(2) Minimum work for the programmer.

(3) Maximum simplicity and understandability of the control

primizives themselves.

(4) Maximum understandability of the programs written
using

these control statements.

Goal (1) is satisfied by GO TO and a conditional statement,
such as those

contained in any assembler. This goal conflicts, to some extent, with all

of the others. To satisfy Goal (2), language designers have introduced

more complex control statements: e.g., looping constructs, procedures (i.e.,

call and return), case statements, coroutines, signals,
switches, and the

ALTER statement (unique to COBOL). Languages have resulted with a prolifera-

tion of primitives, some of which seem to be invented
for a single special

case. In regard to Goal (3), some work has been done in trying to find

25

a minimum set of control primitives sufficient for most applications.

Such efforts have also concentrated on eliminating the simplest but most

primitive control statements (e.g., the GO TO), in attempting to satisfy

Goal (4).

In terms of verification, Goals (3) and (4) are the most desirable.

However, in terms of the COBOL subset, Goal (4) can be ignored, because

it is always possible to write an incomprehensible (or difficult to verify)

program using any given set of control primitives. Thus, adherence to

Goal (4) depends largely on how the programs are written, not on the control

primitives available. In any case, the subset should contain primitives

that have an easily describable semantics.

At first glance, COBOL control statements seem to be simple, but

they really contain much underlying complexity--making verification a poten-

tially difficult task. The basic unit of execution is the statement or

sentence. Sequences of statements are grouped together into paragraphs

that are named. Control statements in COBOL take one of four schemes:

(1) Lexical ordering, either within or between paragraphs,

which is the default.

(2) Unconditional transfer, via the GO TO. The object of a

GO TO is a paragraph name. Control resumes at the first

statement of the paragraph.

(3) Conditional execution, via the "IF a b ELSE c" statement.

Either statement b or c is executed, depending on the

value of conditional expression a.

(4) Procedural transfer of control (executing a sequence of

statements and then returning to the point of transfer)

via the PERFORM statement. The object of a PERFORM state-

ment is either a paragraph name, or a pair of paragraph

names (denoting the lexical sequence of paragraphs between

the two names). All statements within the paragraph or

sequence of paragraphs are PERFORMed. This construct can

be used in conjunction with a condition or index variable

to create loops.

Another aspect of control is the ALTER statement, which makes it possible

to dynamically change the object of a GO TO statement. In programs with

ALTER statements, the lexical structure becomes far removed from the

dynamic structure, and programs with this property are vor; difficult to

26

read. Since the ALTER statement does not do anything that cannot be accom-

plished by flags and conditional statements, we immediately remove it from

consideration in the COBOL subset for verification.

All four types of control statements found in COBOL are also found in

other programming languages, and present essentially no inherent problems.

The difficulties occur in the way that these control statements interact.

One problem is that loops and procedures are handled by the same syntactic

mechanism, the PERFORM statement. The mechanism is different in languages such

as FORTRAN and PL/I. Thus, the same paragraph can be invoked as a procedure

or as a loop body. Procedures and loops are handled differently for veri-

fication. This issue is discussed in Section III. Another problem is

that a paragraph that appears in a PERFORM statement can also be invoked

by a GO TO or by its lexical order, further complicating verification.

For example, the paragraph P may be invoked in any of the following

situations:

PERFORM P. (procedure call)

PERFORM P VARYING I FROM 1 TO 10.
(loop body)

GO TO P. (unconditional transfer)

Q.

MOVE X to Y. (lexical order)

P.

Even though COBOL contains procedures, (a paragraph or sequence of

paragraphs that are PERFORMed), there is no control statement that permits

a direct return. Instead, control must pass to the last statement within

the scope of the PERFORM. COBOL contains a nonexecutable statement that

can be placed at the end of the scope of the PERFORM so that it can be

the destination of a GO TO. This is the EXIT statement, and it must

occur by itself in a paragraph. It resembles the CONTINUE statement of

FORTRAN. Although the execution of procedures may be dynamically nested,

COBOL provides no mechanism for a corresponding lexical nesting (such

as the block structure of PL/I or Algol 60). All procedures in COBOL

27

occur at the same lexical level of nesting. For example, consider the

following scheme:

P1.

PERFORM P2.

GO TO P3.

P2.

P3

Paragraph P2 is at an inferior dynamic nesting to paragraphs Pl and P3,

but has the same lexical nesting. This aspect of COBOL makes programs

less readable.

To handle these complexities in COBOL control constructs, the

verification condition generator must determine the manner in which a

paragraph is invoked and must take appropriate action. There is some

trade-off between the effort involved in verification condition genera-

tion and the length of the verification conditions that are produced. We

discuss such issues in Section III.

H. Conclusions

The following features of COBOL present major problems in verification:

(1) Violation of the abstraction provided by COBOL

(2) Consideration of data items as strings

(3) Implementor-defined language features.

These problems are dealt with by excluding the offending features from the

CSV. Strings will be handled in future work, but the other two features

must be continually circumvented, either by exclusions from the subset or

by showing that the offending features do not affect the program's input/

output behavior.

28

Some other features that cause inelegancies in the proof process

are dealt with in the current work:

(1) Semantically unclean control statements

(2) Finite machine arithmetic.

These issues are symptomatic of programming languages in general, and

we intend--in future work--to find better ways to approach them.

29

III THE STRUCTURE OF THE COBOL VERIFICATION SYSTEM

A. Introduction

The parts of the verification system described in this section have
15

been implemented using the INTERLISP language on a PDP-1O running the

16
TENEX operating system. Although LISP is inefficient and its internal

form is cumbersome to read, it is the easiest and most powerful of languages

for writing programs that process structurally complex data. In future

work, we intend to solve the problem of a cumbersome internal form using

an infix printout routine to print out LISP expressions in the more

natural infix form, without parentheses. However, we will use LISP with

its inefficiencies, for its advantages until a production system is built.

The code and documentation for the modules of the system we have built

are in the Appendix: the symbol table, the posttransduction processor,

and the verification condition generator. We have borrowed the facilities

for transduction grammars from other work at SRI.
1 7

As described in Section I, to prove a program by using Floyd's method,
4

one must:

(1) Derive a set of mathematical formulas called "verification

conditions" (VCs) whose validity is equivalent to the
partial correctness of the program.

(2) Prove the validity of the VCs, either by hand or with the

aid of a program called the deductive system.

Our approach to verification entails decomposing the process of

producing verification conditions into three parts: syntax transdaction,

posttransduction processing, and low-level verification condition genera-

tion. Briefly, syntax transduction allows for the processing of a program

in a syntactically complex (and possibly changing) lanriiage into a less

syntactically complex internal form. Posttransduction processing trans-

lates the first internal form into a second internal form of reduced

semantic complexityso that the low-level verification condition generator

can be as simple as possible. We have built all of these modules for

COBOL verification condition generation. We believe that this approach

to structuring the verification condition generator has substantially

reduced the effort involved in writing the programs.

31

j .. l "-ir k .E

The deductive system would be decomposed into two parts: the heuristic

deductive systems and the proof checker. Since the validity of a formula

in first-order logic is undecidable (verification conditions are written

in first-order logic), we need one or more heuristic systems that can

attempt to arrive at proofs, based on strategies depending on particular

high-level domains of inference (e.g., COBOL data structures). These heuris-

tic deductive systems will often have human guidance. To assure logical

soundness, the outputs of these heuristic deductive systems (i.e., the

proofs) must be checked against a strict formal system. A program that

checks a proof for logical soundness is called a "proof checker." The

separation of heuristic deduction and proof checking results from the

fact that we want the heuristic deductive systems to operate at a high

level of abstraction--to take shortcuts and to use powerful rules of

inference--but the proof checker must operate at the most primitive level

of logical deduction. The separation means that only the proof checker

need be correct, to guarantee valid deductions. That is, an incorrect

proof caused by a bug in the heuristic deductive system will be revealed

by the proof checker. We have built no machinery of this type specifically
17

for COBOL verification, although other work at SRI has been using this

approach to make deductions about verification conditions for JOVIAL

programs. We expect to use some of the components of the JOVIAL verifi-

cation system in future work on COBOL.

The structure of the entire verification system is depicted in

Figure III-1. Other parts of this section are devoted to the subsystems

developed in this project: syntax transduction, posttransduction processing,

and verification condition generation.

B. Syntax Analysis and Transduction

We use a table-driven language processor for initial processing of

COBOL programs that are to be verified. Syntax transduction is the

process of translating an input program from the standard form, in which

COBOL programs are written by users of' the language, to an abstract form

with the same semantic properties but with a uniform structure easily

manipulated by a posttransduction processor (the next phase of verifica-

tion). The transduction phase is especially helpful in dealing with

COBOL, which has extensive syntactic complexities that do not reflect comparable

32

REAL COBOL Syntax Chece Lig

TAL RVN TRANSDUCTION OEAIN

TTRANSDUCEDFORM FWRTH

ENATR POST-TRDCED

Cnrrecr Proec OCONDIIOON

Enclded NOWLDFOR

COBOLc HUMANA COO CNTUCTS
IN~~RACTIOI ANOHIHTLVE

TRINFERENCE

VERIFTOOFCOO

IONDITION OPERATIONS

(Incl yse on PrcsVnu ER IF ONr ~ Ilrao noe nSse

Curr-i~o ProcesCODITON

FIGURE HUMAN STUTR DFTEDUSRIV COBOL VERIFCTIONSTRUMT

semantic complexities. The point of the syntactic complexity of a language

is to allow programmers to write in an expressive and natural format. While

such a format is suitable for human consumption, it is inappropriate for the

sorts of machine manipulation needed in verification. It is consequently

beneficial to translate the external form to the syntactically much simpler

abstract form that we have devised.

The correspondence between the internal and external forms is specified by

a transduction grammar. Such a grammar consists of a set of BNF produc-

tions to describe the COBOL language, and a corresponding transduction

for each production. A transduction is a LISP program that computes

the abstract form of the language fragment specified by the associated

production. Thus, we translate a COBOL program to an abstract form

(called "Transduced COBOL") by using a parser to analyze a valid program

into a "parse tree" according to the productions of the grammar, and then

process the parse tree from bottom to top usirg transductions to obtain

the parts of the desired Transduced COBOL program.

Our transduction grammar for COBOL (described in Section IV), together

with various parsing and grammar manipulating tools, not only specifies

the correspondence between COBOL and Transduced COBOL, but also consti-

tutes an efficient algorithm for translating between the two languages.

As a result of this translation, while a user may submit to the COBOL

Verifier a general COBOL program (suitably annotated by logical assertions),

parts of the system operating after transduction need to deal only with a

very limited set of semantic primitives. For example, in the PROCEDURE

DIVISION the translation expresses all ADD, SUBTRACT, MULTIPLY, DIVIDE,

COMPUTE, and MOVE sentences (except for the CORRESPONDING option, which is

handled separately) in terms of two semantic primitives SET$ and SETROUNDED$.

The DATA DIVISION of a COBOL program is also transduced, but to a slightly

different end. Instead of having a program as output, the transductions

for the DATA DIVISION construct a symbol table from the tree-structured

data declarations. This symbol table contains a data item's PICTURE

spccification, together with its ancestors and descendants in the declara-

.ion tree. This information is used in posttransduction processing and in

verification condition generation for handling roundoff and truncation,

34

for disambiguating qualified references to data items, and for interpreting

commands like MOVE CORRESPONDING (see the general description of this

verb in Section II and a specific semantic treatment in Section VI).

Finally, observe the advantage that derives from employing a COBOL

Transduction Grammar (CTG) to drive the transducer. Although we have

made a number of simplifying assumptions for the initial phase of the

project, we can extend the subset of COBOL that is accepted simply by

augmenting the CTG. Such extensions require no modification of the

transducer.

As an example of part of a transduction grammar, consider the

following example, not part of COBOL. For the COBOL transductions see

Section IV. In this example, as in the verification system, the trans-

duced form of the program is an S-expression in LISP.1 5 The BNF rule

has two alternatives as follows:

ifthenelse :: IF boolexp statement ELSE statement.1
IF boolexp statement.,

where the upper-case words are terminal symbols and the lower-case words

are nonterminal symbols. The transduction may look like this:

ifthenelse :: <IF$ T2 T3 T5->

<IF$ T2 T3 NIL-

The angle brackets denote that the symbols between them are to be

assembled into a list. IF$ is a special terminal symbol of the trans-

duced form of the language. Tn (where n is a positive integer) denotes
th

the transduction of the n symbol in the corresponding BNF rule. Trans-

duction for terminal symbols is an identity, while transduction for nontermi-

nal symbols is governed by other transduction rules, Thus, T2 refers to

the transduction of "boolexp" in both productions. NIL is the LISP atom

referring to the null list. Thus, if we have the statement

IF xl THEN x2 ELSE x3.,

its transduction is

(IF$ T(xl) T(x2) T(x3)),

where T(xn) is the transduction of xn (xn can contain complicated arithmetic

or logical expressions).

35

C. Posttransduction Processing

A program in transduced COBOL looks much like a COBOL program: the

statements have a one-to-one correspondence, and the control statements

(and many of the verbs) are the same. Posttransduction processing

reduces the semantic complexity by operations of the following types:

(1) Translating input and output statements into array

accesses.

(2) Translating MOVE CORRESPONDING statements into MOVE

with elementary data items.

(3) Translating PERFORM constructs into equivalent con-

structs containing assignments, tests, and branches.

(4) Adding machinery for qualification (unique naming) and

truncation.

The result is an equivalent program that is written in a semantically

much simpler language. The posttransduced program is longer than the

program before transduction, however, and a certain trade-off is suggested:

the verification system 7an be made more complex so as to handle programs

in a semantically more complex language, but the intermediate forms

(including the verification conditions) then will be more concise. The

specific issues (relative to COBOL) in this trade-off will be discussed

in Section VI.

The functions performed by posttransduction processing could have

been performed in either the transduction phase or the verification

condition generation phase. We wished to have an internal form (in

Transduced COBOL) that resembled a real COBOL program, so we did not

make the drastic program changes (involving control and verb changes)

during the transduction phase. On the other hand, the design of programs

to generate verification conditions can be an inordinately difficult task

when done on a semantically complex language. Thus, we did not include

posttransduction processing in the verification condition generator.

D. Verification Condition Generation

The output of posttransduction processing is a program that contains

only the following kinds of statements:

36

(1) Assignment statements

(2) Array accesses

(3) Branches and sequencing

(4) Tests (IF ELSE statements).

A posttransduced COBOL program can be thought of as a simple flowchart

scheme, with assertions at particular points in the flowchart graph

and with assignment statements and array accesses in the flowchart boxes.

A typical flowchart scheme, with numbered assertions, is depicted in

Figure 111-2. The verification condition generator must identify all

simple paths in the program: those with an assertion at the beginning,

some statements in the middle, and an assertion at the end. This involves

some graph analysis, and yields results as shown in Figure 111-3 when

the graph of Figure 111-2 is processed.

The ,ext stage is to transform each of the simple paths into a

verification condition. We use Hoare's axioms to show how the four

kinds of statements are handled. In Hoafe's axioms, the construction

P{S}Q means that if P holds before the execution of statement S, then

Q holds after its execution. In the examples, we use a language con-

taining only assignments, tests, and branches. In Section VI, we show

the correspondence between COBOL and this simple language.

In the case of assignment, we have the following:

X
P{X e}Q - P PDQ

This means that the correctness of an assignment statement, with respect

to assertions P and Q, is equivalent to the valdidity of the formula on

the right-hand side, in which expression e V.as been substituted for the

variable X. For example, this simple assignment to X yields the following

VC that is trivially valid:

X <0 {X *-X + l} X< 1

X< 0 D X + l< 1

In the case of array accesses,we describe the following identities:

A(I)z SELECT(A, I)

A(I)*-e E CHANGE(A, I, e).

37

Entry

A

SA-3967-7

FIGURE 111-2 A SIMPLE FLOWCHART SCHEMA

A BB

2 Faise True

SA -3967-8

FIGURE1113 HHit SIMPLE PATHS OF THE PROGRAM
IN GJRE :11-2

The first identity applies only when A(I) occurs on the right-hand side

of the assignment statement. We do not check the bounds of I here. The

one transformation that applies is

SELECT (A ,x)
PtCHANGE(A,I,e)JQ - P D Q

if x = i then e else SELECT(A,x)

Here x is a quantified variable. An example of verification conditions in

an array assignment is as follows:

(A[31 = 2 A A[4] = 1)[A[3] , 5) A[4] = 1

(A[3] = 2 A A[4] = 1) D (if 3 = 1 then 5 else A[41) = 1

Branches are handled by the path analyzer, but a single flowchart box might

still have a sequence of statements inside it. The rule that defines

verification condition for sequencing is as follows:

P(S1 ; S2 IQ - P{S } RI A R2 (S2 Q A R 1 D R2

In actual verification condition generation this rule is usually applied

by "pushing" the consequent assertion (Q) through statement S2 and then

through S . This means that two different substitutions are performed

in Q, the first yielding RI(E R2), and the second yielding some predi-

cate R3 , such that the path correctness is equivalent to P D R . The

following is an example of a verification condition for simple sequencing:

X < 0 {X- X + 1; X+ X + 2} X < 3

(X< 0 {X+X + I} X<I) A (X <I X X + 2i X<3) A (X < 1 DX < 1)

The effects of branching are largely eliminated by a transduction

to a flowchart scheme. However, this can be dealt with via the following

Hoare axioms:

P (GO TO LI A A P {GO TO LI A Q{L: }
I n

(P1v ... V Pn) DQ (PI D Q) V ... V (Pn Qn)

Since we are not concerned with the postconditions of the statements, they

are omitted. In this axiom, there must be no more than n statements in the

program that say "GO TO L". In COBOL, we require that assertions be placed

at all labels that are the destinations of a GO TO, so that the assertions

Pi do not have to be written. Instead Pi Qi"

39

The effects of a test are as follows:

P{test: B(true))Q P A B D Q

P{test: B(false)} Q P /I - B :D Q

Two examples of verification conditions arising from a conditional state-

ment are:

X Z l{IF X < 2 GO TO Li ELSE GO TO L2} A

X = I{Ll: __ I

X 1 ', X < 2 D X= I, and

X'l {IF X <. 2 GO TO Li ELSE GO TO L21 A

X l{L2: I -E

X z 1A -(X < 2) D X01.

The verification conditions (logical formulas) for the program must

then be proved valid for the program to be correct.

E. Conclusions

The method we used resulted in a simple system for generating COBOL

verification conditions, so that most of the processing occurs in the phases

of transduction and posttransduction processing.

40

IV SYNTAX OF THE COBOL SUBSET

A. Introduction

We have used the general guidelines presented in Section II to

choose the syntax of the COBOL subset for verification (CSV). For

each of the DATA DIVISION and the PROCEDURE DIVISION, we present a

description of the features included in the subset and a discussion

of its transduction grammar. Both the DATA DIVISION and the PROCEDURE

DIVISION have features from the Nucleus, the Table Handling Module and

the Sequential I/O Module. The features discussed are parts of Levels 1

or 2 in the COBOL language description. In the conclusion to this section,

we discuss possible expansions to the subset.

B. DATA DIVISION Features

The DATA DIVISION contains the declarations for records and variables

associated with files and with the program in general. Table IV-l con-

tains a list of the features of the DATA DIVISION, and an indication about

whether or not they are allowed in the CSV. Table IV-2 contains a syn-

tactic description of the DATA DIVISION of the CSV, in the same style as

the ANSI COBOL manual. This enables a straightforward comparison of the

CSV syntax with the syntax of COBOL 74 as described in [11]. The features

of the Nucleus deal with declarations for program variables and records.

The facilities used for declaring such variables and records (e.g., PICTURE)

are also used in the declarations of variables and records associated with

sequential files. We enumerate the constructs of the Nucleus first. We

also indicate whether or not a feature is allowed in the CSV. If a feature

is disallowed, we explain why.

WORKING-STORAGE SECTION (allowed). This is the section of the program

that allows for program variables and records that are not associated with

a particular file.

77-items (or Noncontiguous Working Storage) (allowed). These are

individual variables (not records) in the WORKING-STORAGE SECTION.

,

The Tables are at the end of the section.

41

Data-names or FILLER (allowed). Data-names can be either elemen-

tary or group data items in the declaration tree. FILLER denotes an

unnamed data item.

JUSTIFIED (disallowed). For an alphabetic or alphanumeric data

item, specifies whether right justification (filling with blanks on the

left) is performed when a smaller data item is MOVEd to it. Left justi-

fication is the default. This was disallowed because we have not allowed

MOVEs between alphabetic and alphanumeric data items of different sizes

in the CSV.

Level-numbers (allowed). The ordering among level numbers describes

the tree-structure of the data declarations.

PICTURE (partially allowed). PICTURE specifications enable a des-

cription of the precision and printing information for numeric data items,

and of the size and printing information for nonnumeric data items. The

PICTURE specifications that describe special printing instructions define

edited data items, which we do not allow. The rules of editing and the

assertions :ieeded to describe an edited data item satisfactorily were

deemed to be too complex to attempt at this time. The assertions that

we prove in this initial effort deal with the values of data items and

not with their printed forms. External form and an adequate formal treat-

ment of string data is a subject for future research.

REDEFINES (disallowed). As described in Section II, we do not allow

the REDEFINES concept because it allows the same area of storage to be

described in two different ways, sometimes violating the abstraction pro-

vided by COBOL, which is based on the elementary data item. We acknowledge

that this construct is a very powerful programming tool, and believe that

some restrictior of REDEFINES might provide much of the power without

adversely affecting the abstraction. For example, a possible A REDEFINES B

might be allowed only if both

(1) B is an elementary data item of form 9(n), A(n), or

x(n).

(2) A is a group item, all of whose elementary itcj:s are of

the same type as B. If B is numeric, then no elementary

items of A may have a sign symbol S, but ray have the virtual

deciial point symbol V or precision synbols P. If B

42

is numeric, A may be an elementary numeric item having

a virtual decimal point V or precision symbols P.

Thus, a possible data definition could be:

02 B PICTURE 9(9).

02 A REDEFINES B.
03 Al PICTURE 999 PPP.
03 A2 PICTURE 9999V99

RENAMES (disallowed). RENAMES allows a sequence of contiguously
defined elementary data items (possibly having different ancestors in

the declaration tree) to be referred to by a single group data item.

This allows multiple groupings of elementary data items. It has minor

benefits in the MOVE and MOVE CORRESPONDING among group data items. We
have disallowed the simple MOVE among group data items, so that the cur-

rent benefits of this construct seem small at best. Ultimately we should

be able to incorporate the construct with no great difficulty.

SIGN (disallowed). This feature allows a specification of the

internal representation of the sign of a data item as being leading or
trailing, and whether the sign is a separate character. Since we are not

considering the internal representation of a data item--only its value--
this feature is of no-use in the current subset. Use of this feature does

not affect the correctness of a COBOL program.

SYNCHRONIZED (disallowed). This feature allows the programmer to
specify that a data item is aligned (either to the right or left) on a

machine word boundary. This feature affects only the performance, and
not the correctness, of a COBOL program: it deals only with a represen-

tation issue.

USAGE (disallowed). This feature allows the programmer to specify

whether a data item is DISPLAY (character-oriented) or COMPUTATIONAL-n

(stored in sonie format useful to the machine, e.g., binary integer or
floating-point number). This again is a representation issue.

VALUE (disallowed). The initial value of a data item can be speci-

fied using this feature. There is no loss of generality by omitting
this feature: a programmer can initialize a data item via an assignment

statement at the beginning of the program.

The Table Handling Module has only a single feature in the DATA
DIVISION: OCCURS (partially allowed). This feature allows the declaration
of a data item to indicate an array. The array cannot be of variable length.

43

However, it will be -traight'ok'Al'd Io incorporate the use of variable-

length arrays into a future sub .e.

The features o1 thec- DATA DIVISION in the Sequential 1/0)

Module permit the declaration ot files and their associated records.

The FILE SECTION (allowed) contains zero or more file descriptions

(allowed). Each file description contains one or more record descrip-

tions (allowed), the components of which art described below. In the

CSV, only one record description is allowed per file description.

BLOCK (disallowed). This optional feature declares how many logical

records or characters are associated with a particular block (physical

record). The verification system considers logical records only. Use

of this feature does not affect the input/output behavior of the program,

only its efficiency.

RECORI) (disallowed). This optional feature described how many

characters a record occupies. This clause is unnecessary even in full

COBOL 74 (it is placed therei for redundancy only), so that it can easily

be done away with.

LABEL (disallowed). This feature (required in COBOL 74) allows the

declaration of label records for a file as being either standard (according

to the operating system) or omitted. It is disallowed for the same reason

as the BLOCK clause. VALUE OF (disallowed) is a feature that either checks

or sets a part of the label record.

DATA (disallowed). This optional feature specifies the data records

associated with a tlle. Since the data records of a file are declared in

the file description, this feature is unnecessary.

LINAGE (disallowed). This optional clause provides a system for

keeping track of pages and lines within a page in a sequential file. It

is useful in the generation of reports, and is omitted from the CSV because

it is of small imp,-rtance.

CODE-SET (disallowpd). This optional clause specifies the character-

code (e.g., EBCDIC or ASCII) used in the external representation of a file

and is disallowed because the choice of character code do,,s not affect the

input/otl put behavior of a program,

44

!- -

C r u o a r t D DI

C. Transduction Grammar for the DATA DIVISION

~The transduction grammar for the DATA DIVISION yields

an internal form (part of Transduced COBOL), but the internal form is

not used in the verification of a COBOL program. However, the trans-

duction grammar also creates a symbol table containing information on

each data item. This symbol table is used by the transductions for the

PROCEDURE DIVISION, for posttransduction processing, and for verification

condition generation.

The symbol table contains information on files and on data items

(both group and elementary). An entry for a file name contains its

type (= FILE) and its corresponding record. An entry for a data item

contains its type (= DATA ITEM) and either:

(1) If the item is a group data item, its ancestors in the

declaration tree (back to the root), its immediate

descendants, and the number of elements (if an OCCURS

clause exists).

(2) If the item is an elementary item, it.- ancestors in

the declaration tree (back to the root) and its PICTURE

specification.

The ancestors (to the root) are used in qualification, and the descendants

are used in evaluating the MOVE CORRESPONDING verb.

The major problem in constructing the symbol table is to take a flat

description of the declaration tree and to make a tree structure out of

it. For example, a COBOL program may contain a data declaration like this:

01 A.
02 B.

03 C PICTURE 99V99.

03 D PICTURE XXX
02 E. PICTURE 999.

02 F.

03 G PICTURE S999.

Although there may be indenting within the tree-structure, spaces are

ignored in parsing, so that the only way to determine the tree-structure is

by means of the level numbers. The transduction grammar makes each item's

declaratior into a list. If the item is a group item, then the group item

45

will be the first element of a list with the descendants forming

another list. The transduced version is as follows:

(((l A)
(((2 B)

((3 C 99V99)

(3 D XXX)))

(2 E 999)

((2 F)

((3 G S999))))))

Here is a graphic representaiion o the synbol table:

SYMNBOL LEVEL NUMBER ANCESTOR PATH DESCENDANTS PICTURE

A 1 (B E F)

B 2 (A) (C 1)

C 3 (A B) 99V99

D 3 (A B) XXX

E 2 (A) 999

F 2 (A E) (G)

3 (A E F) S999

The transduction grainmar for the DATA DIVISION of the CSV is shown in

Table IV-3.

D. PROCEDURE DIVISION Features

The PROCEDURE DIVISION contains the actual code and assertions

from which the vcrification conditions are generated. Table IV-4 con-

tains a list of the features of the PROCEDURE DIVISION, and an indication

about whether or not tnev are allowed in the CSV. Table IV-5 contains a

syntactic description of the PROCEDURE DIVISION of the CSV, in the same

style as the ANSI COBOL manual. We enumerate the constructs of the

PROCEDURE DIVISION (iti the Nucleus, Table Handling, and Sequential I/O

Mo'hules), describing, the features and, if excluded from the CSV, the

reasons for exclUSioll.

ACCEPT t DISPLAY (disallowed). The ACCEPT command allows for input

from a consml,., or of the day, date, or time. It is disallowed because

console can be simulated by the contents of a sequential 'ile. Even if

this constrtlct were allovcd, the commands issued fron the console would

have to be decribed as part of an array of records, whose properties

46

are described by assertions. The DISPLAY command is disallowed for

the same reasons.

ADD, SUBTRACT (allowed). All versions of this command are per-

mitted, including ADD and SUBTRACT CORRESPONDING. All arithmetic state-

ments allow rounding (as well as truncation, the default) and the SIZE

ERROR clause.

ALTER (disallowed). This command can dynamically alter the flow-

chart of a program by changing the object of a GO TO statement. The

set of possible paths through the program becomes too large to handle

for verification. The effects of an ALTER statement can be simulated by

the use of flags and conditional branches, which limit the number of pos-

sible program paths enough to permit verification.

COMPUTE (allowed). This is a generalized assignment to an arith-

metic expression. The ROUNDED and SIZE ERROR options are allowed.

DIVIDE (partially allowed), MULTIPLY (allowed). We do not allow

the REMAINDER option of the DIVIDE statement, but this option could be

included in a future, expanded subset.

ENTER (disallowed). This verb permits the inclusion of statements

in another language in a COBOL program, and is disallowed for obvious

reasons.

EXIT (allowed). This is a no-op statement that allows exits from

PERFORM blocks (somewhat like the FORTRAN CONTINUE) when the exit state-

ment is contained in a paragraph at the end of a PERFORM block. This

statement must be the only statement in a paragraph in which it appears.

GO (partially allowed). We do not allow the DEPENDING ON option,

which could be included without adversely affecting verification. We

also do not allow an option (to be used with the ALTER statement) in

which a GO TO statement may have no arguments.

IF (allowed). This is the basic conditional statement.

INSPECT, STRING, UNSTRING (disallowed). We do not allow any string

operators in this subset. We hope to include them in a future subset.

MOVE (partially allowed). We allow MOVE between elementary data

items and MOVE CORRESPONDING, but we do not allow simple MOVEs between

47

group data items (for reasons discussed in Section II). An issue that

is closely related to the MOVE statement is that of type coercion. What

happens if an item of Type A is moved into a variable of Type B? In some

cases there is a simple answer, since the destination type subsumes the

source type (e.g., INTEGER to REAL, ALPHABETIC to ALPHANUMERIC, NUMERIC

to ALPHANUMERIC). In other cases, a policy of either automatic con-

version or prohibition must be decided upon. In the case of moving a

REAL to an INTEGER, this is solved by truncation. The remaining problems

are AIPHANUMERIC to ALP.HABETIC and ALPHANUMRIC to NUMERIC. The first

case is not important because there are no operations on ALPHABETIC data

items that can yield errors if the item has an ALPHANUMERIC value. The

second case is not so simple: COBOL handles it by allowing a MOVE to be

performned without checking, but by flagging an error if an operation is

performed on the destination item. This is disasterous lor verification,

and it also seems harmful to good programming practice. We prefer some

schemie tnat allows checking to be done when a MOVE is performed (perhaps

optionally). We also favor an error category to be an optional part of

the MOVE ,tatement: "ON TYPE ERROR statement." There are many advantages

to strongly typed languages, one of which is increased provability. These

proposals are intended to make the type mechanism in COBOL stronger.

PERFORM (allowed). This is the basic textual abstraction and looping

mechanism in COBOL.

STOP (partially ailowed). We allow this statement without arguments

only (an unconditional stoppage of execution). The STOP with arguments

prints a message on the, _perator's console and permits restarting. The

latter option would he difficult to axiomatize.

Some !ltatures i) the Nucleus of the PROCEDURE DIVISION deal with

expressions and data. We enumerate these features here. Qualification

(allowed) enables the same name to be used for two (or more) different

paragraphs or data items, when the ambig-uity can be resolved by referring

to a section nmne or to an ancestor in the declaration tree. This has

added considerably to the complexity of the symbol table, a;-1 requires

the v, ri fication system tt, make the names unique (at S,.e time). The

verification coieiit os o a pr ,Lran, that contains ir p, duIlicated names

can beco,.e extremelya Iv o-. Clearly the ability tc, nIcae two things with

48

iiJ

the same name is desirable (providing for such features as MOVE CORRES-

PONDING, for example). It remains to be seen what restrictions are

necessary to allow shorter verification conditions.

Arbitrary arithmetic expressions are allowed in the CSV. However,

we do not allow arbitrary conditions. Relation conditions (partially

allowed) deal with the arithmetic relations >, ->, < -, =, and A. We

allow arbitrary relations among numeric data items, but allow only

and J among nonnumeric data items. Class conditions (disallowed) state

whether a data item is alphabetic or numeric, and can easily be incor-

porated into the CSV in future work. However, inclusion of this feature

is closely related to the issue of type coercion (described in the para-

graph on the MOVE statement). Condition-names and sign conditions (dis-

allowed) could be included in a future subset, but there is no loss of

generality from excluding them. Switch-status conditions (disallowed)

depend on an implementor-defined switch and should not be allowed. Com-

plex and combined conditions (allowed) are nothing more than the combining of

simple conditions (those described above) with AND, OR, and NOT. Abbrev-

iated combined conditions (disallowed) are a shorthand way of writing

complex and combined conditions (e.g., " X > Y AND X - Z" translates to

"X > Y AND Z"); they are needlessly difficult to process and also unneces-

sary.

In the PROCEDURE DIVISION of the Table Handling Module, there are two

verbs SEARCH and SET (both disallowed), which deal with indexing variables

(also disallowed). The only operation allowed on tables (or arrays) is

the subscripting operation, in which a table is indexed by an expression,

rather than a special indexing variable.

In the PROCEDURE DIVISION of the Sequential I/O Module there are primi-

tives to manipulate sequential files.

CLOSE, OPEN (partially allowed). These statements are allowed, but

without the REEL or UNIT designations that describe a file's implemen-

tation. The OPEN statement is not allowed with the 1-0 or EXTEND options,

or with the REVERSED or NO REWIND desigiiations. A file open for both

INPUT and OUTPUT can be simulated (although not efficiently) by having two

files--one for INPUT and one for OUTPUT.

49

READ, WRITE (partially allowed). The INTO option in READ and the

FROM option in % RITE are disallowed (they involve a MOVE and then the

READ or WRITE operations). The AT END clause in READ is permitted.

All clauses in the WRITE statement dealing with pagination are disallowed.

REWRITE (disallowed). This operation deals with files that are open

for both INPUT and OUTPUT, which is not allowed.

USE (disallowed). This statement allows the specification of pro-

cedures for input/output errors. The only error that ve consider is

end-of-file, which is handled with the AT END clause of READ.

E. Transduction Grammar for the PROCEDURE DIVISION

The transduced version of the PROCEDURE DIVISION is used in the

generation of verification conditions. The transductions are usually

a one-to-one translation of COBOL verbs except that

(i) Each verb has only one transduced syntax, subsuming

all alternatives.

(2) All arithmetic assignment statements are reduced to the

same internal form.

(3) Statements implying multiple operations are translated

i(,., mu1Lltil)e statements.

Other transfo rmations to the internal form of the program are performed

during posttransdiction processing and verification condition generation.

Each COBOL1 sentence becomes a list. Each paragraph is a list whose

first element is thu keyword PARAGRAPH$, whose second element is the para-

graph name, and whose other elements are its transduced sentences in order.

Each section is a list whose first element is the keyword SECTIONS, wj'ose

second elusen],; iHi h ection name (if there are no sections a section

name--FIRSTSECTION--is invented for the section consisting of all para-

graphs), and whose other elements are the transduced paragraphs in order.

To show the structure of the entire PROCEDURE DIVISION, we present the

following simplI, COBO I program:

Pt. (ASSERT 1)
MOVE 0 TO SUM.

PERFORM P2 VARYING I FROM I BY 1

IrNTTL I GREATER THAN N
AS)Sf (l 2).

STOP RUN (AS;ERT 3).
P2. ADD A (I) TO SUM.

50

(PROCEDUREDIVISION$
(SECTIONS FIRSTSECTION

(PARAGRAPHS P1
(ASSERT 1)
(SETS SUM 0 NIL)
(PERFORM VARYING

(DO$ P1 P1)
(I 1 1 (GT 1 N))
(ASSERT 2))

(STOP (ASSERT 3)))
(PARAGRAPHS P2

(SET$ SUM
(PLUS SUM

(SELECT A (I)))
NIL))))

To illustrate some interesting features of the transductions at

the sentence level, we present some examples of COBOL verbs and their

transductions. As an example of a simple one-sentence transduction,

the sentence

CLOSE FILEl.

transduces to

(CLOSE FILE I) .

The sentence

IF X GREATER THAN 0 NEXT SENTENCE ELSE GO TO P1.

transduces to

(IF (GT X 0)
NEXT
(GO P1))

where NEXT can be interpreted by the verification condition generator.

The PERFORM statement is an interesting case. The simple PERFORM,

PERFORM PI.,

transdu'es to

(PERFORM (ONCE$)
(DO$ P1 PI)
NIL NIL)

ONCE$ is the option used to denote a single inst°4nce: the other alter-

natives are "n TIMES" and VARYING. DO$ indicates that the block of

statements from P1 through P1 are the scope of the PERFORM (this can be

expanded later). The two instances of NIL are places for the exit con-

dition and the inductive assertion, when the statement is used as a loop.

The PERFORM statement with a block of paragraphs,

51

PERFORM P1 TI TRU PN.,

transduces to

(PERFORM (ONCE$)

(DO$ P1 PN)

NIL NIL).

A simple COBOL loop looks like this:

PERFORM P1

VARYING I FROM 1 BY 1
UNTIL I GREATER THAN N

(ASSERT (P I)).

(the assertion is some predicate P on I), and its transduction looks like

this:

(PERFORM VARYING (DO$ P1 Pl)

(I 1 1 (GT I N))

(ASSERT (P I))).

A nested PERFORM of the following form,

PERFORM P1 VARYING I FROM I BY 1

UNTIL I ' N (ASSERT (P I))

AFTER J FROM I BY I

UNTIL J > M (ASSERT (Q I J)).,

transduces to

(PERFORM VARYING (PERFORM VARYING (DOS P1 Pl)

(J 1 1 (GT J M))

(ASSERT (Q I J)))

(I I I (6T I N))

(ASSERT (P I))).

All simple arithmetic statements (not CORRESPONDING) transduce to SETS

(if truncated) and SFTROUNDED$ (if ROUNDED). The COBOL sentence

COM,1PUTE X . Y t Z.

tran-duces to

(SETS X (PLUS Y Z)
NJ L).

The Nil, is where the SIZE ERROR clause would go if prescdt.. Notice that

aritnh;,etjc and relation.al operators are translated to a single standard

52

form for use in the verification system: PLUS, SUBTRACT, TIMES, DIVIDE,

GT(>), LT(<), GTQ(>), LTQ(<), EQ, and NEQ. The arithmetic statements

that have multiple results are transduced into multiple statements. For

example, the statement,

COMPUTE Xl ROUNDED, X2 = Y + Z; ON SIZE ERROR PERFORM Pl.,

transduces to the pair of simple statements,

(SETROUNDED$ Xl (PLUS Y Z)
(PERFORM (ONCE$)

(DOS PI Pl)
NIL NIL))

(SET$ X2 (PLUS Y Z)
(PERFORM (ONCE$)

(DO$ P1 Pl)
NIL NIL)).

All CORRESPONDING operations are separate, since they will be handled in

posttransduction processing. The following sentence,

ADD CORRESPONDING X TO Y.,

transduces to

(ADDCORRESPONDING$ X Y NIL NIL).

F. Conclusions

The subset of COBOL that we have chosen for verification is small
12

relative to the entire ANSI COBOL language, yet it is a substantial

programming language in itself--as complex as any for which vcrification

has been attempted.

There are two important things in the Nucleus that are yet to be

axiomatized:

The handling of NUMERIC EDITED data items, with possible

restrictions

Character strings and their relation to numeric quantities.

Two unresolved issues affecting the ultimate choice of a subset are type

coercion and a restriction of the REDEFINES construct.

In the Table Handling Module, the only major items left out of the

CSV are indexing variables and the verbs that use them. It appears that

53

they are easy to axiomatize, but we are unsure of their importance to

COBOL programmers. All operations with indexing variables can be

defined in terms of subscripting, so there is no loss of generality if

we fail to incorporate them.

The major unresolved issue in the Sequential I/O Module deals with

files that are open for simultaneous input and output. We intend to

incorporate this into future COBOL subsets for verification.

It is not only important to axiomatize a large subset of a "real"

language, but it is also important to be able to state and prove the

important properties of the subset chosen. Thus, the choice of subset

must be judged in terms of what can be proven, as well as its sheer size.

54

Tab' IV-1

SYNTAX OF THE DATA DIVISICN OF THE CSV

GENERAL FORMAT FOR DATA DIVISION

DATA DIVISION.

fFILE SECTION.

[FD file-name [record-description-entry] ...]

.WORKING-STORAGE SECT ION.

77-level-description-entry 1
record-description-entry

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY

level-number {FILLER 1

[PICTURE IS character-string

OCCURS integer-1 TIMES]I

55

Table IV-2

FEATURES FOR THE DATA DIVISION OF THE CSV

LATA)IVISION Feature COBOL 74 COBOL Subset for

Verification

___Level 1 Level 2 Level 1 Level 2

Nucleus
t

WORKING-STORAGE SECTION x x

77-i tms x x

Data name or FILLER x x

JUSTIFIED x

ueve(1 numbRjer X x

PICTURE x -

REDEFINFS x

REN AAiES x

sra x

SYNCHRON IZED x

USAGE x

VATUE x

Table Handling

OCCURS x x x

Sequential T/O

FILE SECTION/file descriptions x x

BLOCK contains x x

RECORD contains x

LABEL records x

', UUE OF x x

DATA IZECORDS x

LINAG E x

CODE-SET x

i eattire included.
(blank)--Feature nonexistent (in COBOL 74) or omitted (from COBOL subset

foi ,t'ri fication).
* Feautuce not tctIAlly itl(lUded (in subset)

Table IV-3

rRANSDJCI'ION GiRAv4AR FOR~ rtiE
DArk DIVISION OFt~ fdE CSV

root
0 datadivision

datadescription
Unumber dataname pictureclause occursclause
(<T1 f2 '13 r'4>)

datadescriptions
datadescriptionI (<Ti)
datadescription datadescriptions

((Ti ! r2>)

datadivision
UDATA DIVISION . ilesection workingstoragesection
(< DATADIVISION$ T4 E5>)

datanamne

CFILLEii$)
Usymbol

r 1i

filedescr'iptor
0 t D symnbol .datadeacriptions

((Ti (INJSLtMEFILE T2 f'4:1:l::l)

(GETu.COi~' T4))

57

filed escriptors
filedescriptor

(<Tl>)
filedescriptor filedescriptors

(<T1 ! T2>)

----- ----------------
filesection
It

(NIL)
fiLE SSCTION . filedescriptors

(<'fiLESSCTION$! T4>)

is

(NIL)
II AR~

(T 1)
it IS

(T 1)

literal
II number

(T 1)
II string

(T 1)

occursclause
il

(NIL)
II OCCuRS number TIMES

(T2)

----- -·- ----------------------
picture
If PIC

(T 1)
It PICTlJRE;

(T 1)

----~-A--------------------

58

BEST AVAILABLE COPY

pictureclause

4(NiL)

semi picture is symbol
(T4)

#~ semi picture is number
kr4)

recordlist
symbol

((Tl>)
symbol comma recordlist

((T1 r 3>)

semi

(N ILI)

workirigstoragesection

1/ JrKI-SfDRA3E SitCTION -datadeclarations
((O1KIAGSThJHESECT1ON$ r4>)

59

Table IV-4

SYNTAX OF THE PROCEDURE D)IVISION OF' THE CSV

GENE1WL FORMAT FOR PROCEDURE DIVISION

FORMAT 1

PROCEDURE DIVISION

[section-name SECTION.

[pararaphname1se1ence ... *
FORMAT? 2:

PROCEDURE DIVISION

fara .riph-name . [sen tencc .

GEN ERAL FORMAT FOR VERBS

ACCEPT i-entifier

f nt ci Fidentif'ier-27
~2 1era-i L idetrifier ... TO identifier-n [ROUNIflE]

Hidentilier-n [ROUNDED] ... [;ON SIZE ERROR imperative-statement] -'

f iextifie-fl fidentifier-2 identif ier-31S}literal-i J 'Siterai-2 JL literal-3 J
GI\ITNG idertilier-in [ROUNDED] [,identifier-n [ROUNDED)

1ON SIZE ERROR imperative-statement]

(DD CORRES jI identifier-i TO identifier-2 [.ROUNDED]

ION SIZE ERROR imperative-statement]

6L0

CLOSE file-name-1 [, file-name-2]

COMPUTE identifier-1 [ROUNDED] [, identifier-2 [ROUNDED]]

- arithmetic-expression [; ON SIZE ERROR imperative-statement]

DISPLAY identifier-i1 identifier-21DIS LAY iteral-i [,I literal-2 I .

DIVIDE identifier-i INTO identifier-2 [ROUNDED]
lliterai-i J

identifier-3 [ROUNDED] [; ON SIZE ERROR imperative-statement]

DIVIDE identifier-l NT identifier-2 I GIVING identifer-3 [ROUNDED]

identifier-4 [ROUNDED]. [; ON SIZE ERROR imperative-statement]

DIVIDE dentifier-i fidentifier-2 GIVING identifier-3 [ROUNDED]I literal-i BY literal-2 Jie-

identifier-4 [ROUNDEDJ ... [; ON SIZE ERROR imperative-statement]

EXIT

GO TO [procedure-name-I]

IF ondtio; statenent-I { ELSE staternent-2
IF condition; f NEXT SENTENCE ELSE NEXT SENTENCE

MOVE identifier-l TO identifier-2 (, identifier-3] ...

liteerratlo.
MOE CORRESPON DINGJ-TOietfr2MOEidentifier- TOietfr2

identifier-1
MULTIPLY [iter 1 } BY identifier-2 [ROUNDED]

identifier-3 [ROUNDED] ... F; ON SIZE ERROR imperative-statement]

MULT lit J dentifier-1) 3Y identifier-2 GIVING identifier-3 (ROUNDED]

identifier-4 [ROUNDED .. ; ON SIZE ERROR imperative-statement]

61

-IPU fiecn-fl J , ic me?.

-pN)5jVr ienm- .i I - 'me--'..

-o fie-fa rne 0 , f l,- a e 6

[(T ROUGH ed rfafle-2l
PERFORM proc du re procedure r ~

-nac
2 jicntfir-

tdOUol"ntgf er-I TI E

PROMpirocedurenameI
proceduenaej2 tee

PERFHJ~jpro edurfid ei URO~UGH -} procedureIame2- UNTIL condito n-.'

PERFORM proc'ed ure'-name-' FO{U prede-lm2

ndex-fldme iitciuralna)

(identif ier-

AFTER identifier5 FRM ndexflame-2

indexflame j (iteral-1

(identif ier-) UNTIL coflditiol

Iliterail
-

i idefliif ier-6
FRO i de -f afxC

~~~U {~2V ~ UTIL condition-f2

62



SUBTRACT identifier-l} [ identifier-i FROM identifier-n LROUDED]

T iteral-I l iteral-2

identifier-n [ROUNDED]] ... [; ON SIZE ERROR imperative-statement]

Sidentifier-l identifier-2] (identifier-m)
SUBTRACT [1 i terl-, FROM .7

Ili iteral-i I: iteral-2 . 1 teral-m J

GIVING identifier-n [ROUNDED] I identifier-o [ROUNDED] .

[; ON SIZE ERROR imperative-statement]

SUBTRACT {CORRESPONDINGJ identifier-i FROM identifier-2 [ROUNDED)

[; ON SIZE ERROR imperative-statement]

WRITE record-name

GENERAL FORMAT FOR CONDITIONS

RELATION CONDITION:
IS [NOT] GREATER THAN

IS [NOT] LESS THAN(identifer-1 S [NOT] T identifier-2

literal-1 IS [NOT] > ,literal-2

arithmetic-expression- IS [NOT] < arithmetic-expression-2

1index-name-I J IS [NOT] Jindex-name-2

CLASS CONDITION :

identifier IS [NOT.] (NUMETIC

NEGATED SIMPLE CONDITION:

NOT simple-condition

COMBINED CONDITICN :

condition {{N)conditiorD?

63



QUALFICAION:MISCELLANEOUS 
FORMATS

cond ition-name} [{ ~ daa-am-2

paragraph-name 
section-name]

SUBSCRIPTING:

{data-name (usrp- ,sbcit2 [ usrp-J
cond ition-name j sbcit1 sbcip- usrp-]

IDENTIFIER:

data-name_-i ftj d ata -namne - .. [(subscript-i [ subscript-2

Isubscript-3] )

64



Table lOX-

FEATURES OF THEl PROCIDA IVISION OF THE1 CV

EXIT I 0el2 .I L- 2

ACCPT x 0A 0

~oP(TF 0 0

DSI KG0

SlL OhAk KKK

(INSI KC K0

E I 0'KrU

wKhK 0

I~ e, xr..'K

K K K

CI~KK~OlI"(~A A

T r01 x 00

11 
1, 0

STU-I K 0

KERIXK 0 0

LSE K0 0

KR? FEK K -0

SEAMA

FA_ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _iI,_ _ _ _ _ i
* YKSr 

0XKKO0
LSE .r~ ql(I py

*IT FKLrKKO.i fiIo0IK*K

t Featurefo~xnn (1R COWL 74) Kr KKK(.d I f- CWL *KR..K f., K-r iftORRK(.

_ CK ' tCK IK. C -nI Y KRK? If SIRpl. cKK4KKiK. RxKKKAd in KKR.s.

65



Table IV-6

TAANSDUCfI0N CiRAiifi FOR TrIE
PROCEDURE DIVISION OF Td-E CSV

proceduredivision
# PRuCEDURhE DIVISION .paragraphs

C(PROCEDUAiDIVISION$ <'SE~CTION$ 'FIRSTSECTION I T4>>)
# PROCEDURE DIVISION .sections

(<&PROCEDUREDIVISION$ I T4~>)

at

(NIL)
# AT

(,NIL)

compute target
# computetargeti

((T>)
# identifier , computetarget

(<< SEE$ T1.> i r3>)
Sidentifier ROUNDED ,computetarget

(<<(S~fHOUNDED$ T1) TO.1)

computetarget 1
m identifier

(&S61$ T>)
4identifier ROUNDED
(<SEZiOUNDED$ TI>)

condition
# conaition ON condition2

(<T2 ri r3>)
# condition2

~TI)

condition2
# condition2 AND condition3

(<T2 £1 13>)
If condition3

(7i)

66



condition3
# NJr coridition3

((Ti i2>)
# condition4

(Ti)

condition4l
# ( condition

MT)
# sirnplecondition

(ri )

connector

# BYur

(Ti)

# TO
(TI)

corresponding
#J CORii

(NIL)
# CORR3ONIN,.i

corrop
# ADD

( 'ADDCoRH63P0JDING$)
# SUKrRACT

('SUBTRACTCORRESPONDING$)

divideargaments
# expression if~ expression

((Ti f3>)
# expression INfO expression

(<T3 EM>

67



elseclause

('NEXT)
# semi ELSE NEXT SENTENCE

('NEXT)
# semi ELSE sentence

(r3)

endcondition
#

(NIL)
* ; at END sentence

(T'4)
# at tND sentence

(F3)

errorcondition
#

(NIL)

; on SIZE ERRjR sentence

expression
4 expression + expression2

(<PLUS ri r3>)
# expresslon2

(ri)
# expression - expression2

(< SUbTRACT TI r3>)

expression2
# expression2 * expression3

(< TIMES fl r3>)
# expression2 / eyrpression3

(<DIVIDE Ti r3,)
# expre3sion3

r~ i

expression3
0 expression3 0* expression4

(<-EX" T1 f3>)

68



# expression4

(Ti)

expression4
# ( expression

(2)
+ expression4
(2)
- expression4
(< 'IluS T2>)

# ZERO
(0)

# ZERO6S
(0)

# ZEROS
(0)

# identifier
(Ti)

# number
(Ti)

# string
(TI)

expressions
# expression

((I'i)
# expression , expressions

(<T1 ! T3>)

filename
# symbol

filenames
# filename

(<Ti>)
# filename , filenames

(<T1 I T3>)
# filename filenames

(<TI ! T2>)

identii jer
# symbol suOscriptlist qualifiers

69



((if £2 then <'SELECT
(if £3 then <'QUAL TI I T3> else Ti)

i2> elseit f3 then <'QUAL TI I T3> else Ti))

identifiers
# identifier

(<ir1 )
# identifier , identifiers

(<TI ! T3>)

indexname
# symbol

(£1)

iotype

i INPUT

( OPENI PUT$ )
if OUTPUT

("OPENOuTPUT$)

is

(NIL) --

# IS
(NIL)

of

# 1.4

# F
(NIL)

on

(NIL)
# ,iN

(NIL)

70



operator
# ADD

('PLUS)
i# DIVIDE

(UDIVIOE)
# eOULTIPLY

("TILiES)
# SUBTRACT

('SUbTRACT)

paragraph
# paragrapnname sentences

(<'PARAGRAPH$ Ti I T3>)

paragrapnname
# symbol

paragraphs
# paragrapn

(<Tp>)a n

# paragraph paragrapns
(<Tl1 T2>)

performbody
# procedurename

(< )0$ TI rl>)
# procedurename tnru procedurename

( 'DO$ rl 13>)

performcontrol
# UNfIL condition assertion

(<T2 rl T3>)
# expression TIMES assertion

(<T2 £1 f3>)
# varying identifier FROM expression BY expression UNIIL condition
assertion

(<TI <r2 14 16 T8> r9>)

performcontrols

71



#perforncoltroI performnlcfrOls
((Ti I r2>)

proced urename

# symbol
(T1)

# symbol of symbol
(<Ti f3>)

procedureflames

#A procedureflame
( KTi)

#s proceduarelamfe procedurelamfes

(<Ti! F3>)

qual ifiers

#/ of symbol qualifiers
0,T2 T3>)

4P syr~o.l

4 Nji relatiofioperator
2

NEQ)

(Q}7.LT)

T Q)

LTQ)
(HkLP

'Errcr in reduction of' first alternative of relationoperator.11)))

ii ~ - ppr'a-or2

72



relationoperator2

('LT)

CEQ)

(VGT)
# EQUAL to

CEQ)
# GREATE~R tnarn

V GT)
# LESS tnan

('Lr)

rounded

(NIL)
# ROUNDED

(TI)

section
# sectionname SECTION paragraphs

(&SECTION$ ri I T04)

sect jonname
# symbol

(T)

sections
# section

((Ti>)
# section sections

(CT1 i r2>)

semi

(NL

(NIL)

73



.--
--------------------
sentence 
II sentence1 

( T 1 ) 
fl sentence2 

((if 1'1::1 tnen <'DO$ I T1> else T1:1)) 

---- ·-------------------
sentence1 
II CLOSe filenames 

(<T1 ! f2>) 
II EXIT 

(NIL) 
II GO to procedurename· 

(<T1 f3>) 
II IF condition thenclause elseclause 

c < T 1 :2 n r 4 > ) 
II PEnfORt'l performbody performcontrols 

((if T3 tnen (for (X R_T2) 
in 
( R£VERSE T3) 
do R <'PERFORM X:1 R X:2 X:3> finally 
( Rt:TURN R)) 

else <'PERFORM ' (ONCE$) 
T2 1HL 1HL>)) 

# READ filename endcondition 
(<T1 f2 f3>) 

# STOP RUN assertion 
(<T1 T3>) 

II ~RIT~ recordname 
(<T1 f?.>) 

II assertion 
c r 1 ) 

# cor·rop corresponding identifier connector identifier rounded 
errorcond i t:ion 

(<r1 I3 T5 T6 T7>) 

-----·-----------------
sentence2 
# COMP0TE computetarget = expression errorcondition 

((for X in T2 collect <I X T4 T5>)) 
1t GO to proqed urenames DEPENDING on expression 

((for I to (LE~GTrl T3) 
collect 
(<'IF <'EQ$ T6 I> <'GO (CAR (NTH r3 I)) 

> 'NEXT>))) 
II OPt~~N iotype filendJTles 

((for X in T3 collect <T2 X>)) 
~ MOVE expression TO identifiers 

((for X in T4 collect <'SET$ X r2 NIL>)) 

74 



i V corresponding identilier TO identifiers
((for X in T5 collect < MO VQECOR R SONDING$ T3 >))

# ADD expressions GIVING computeckarget errorcondition
((for X in T4 collect <f X <'PLUS ! T2> T5>))

# ADD expressions rJ computetarget errorcondition
((for X in T4 collect <1 X <'PLUS X:2 I T2> T5>))

v 3U6TrNACT expressions FROM computetarget errorcondition
((for X in i4 collect <! X <'SUBTRAC£ X:2 <'PLUS ! r2>> T5>))

# SUbTRACT expressions FROMi expression GIVING cornputetarget
errorcondition

((for X in To collect (I X <'SUBTRACT 14 <'PLU3 I T2> 7>))
.iuiLIPLY expression zii computetarget errorcondition
((for X in T4 collect <! X <'rIliES f2 X:2> T5>))

it MJLF.IPLY expression BI expression GIVING computetarget errorcondition

((for A in To collect <0 X < TI4ES T2 T4> T7>))
o DiVIDE expression IJfJ computetarget errorcondition

((for X in r4 collect <! X <DIVIDE X:2 r2> T5>))
# DIVIDE expression INfu expression GIVING computetarget errorcondition

((for X in 75 collect <I K <'DIVIDE T4 T2> T7>))
# DIVIDE expression BI expression GIVING computetarget errorcondition

((for X in T6 collect <! X <'DIVIDE r2 r4> T7>))

sentences
# senlencel

(<TI>)
# sentencel sentences

(<fl £1 3>)
# sentence2

# sentence2 sentencej
(<! fl ! 13>)

silplecondition
# expression is relationoperator expression

(K<3 11 rq )

su )criptlisL

4 ( subscripts )
(72)

75



subscripts 
tl expression 

(<T1>) 
11 expression , 

(<T1 l T3>) 
subscripts 

--- ---------
than 
II 

(NIL) 
f1 TrlAN 

(NIL) 

---- ---·---
thenclau>e 

--
II NEXT S~NTEl~CE; 

('NEXT) 
fJ semi sentence 

(T2) 

---------
tnru 
It THROUJH 

(NIL) 
11 TrlRLJ 

(NIL) 

----·-----------
to 

(NIL) 
if T·J 

(NIL) 

~---- ------- ·-------
varying 
11 AF'Tt:K 

( 'VARYI1W) 
f1 VAh Y'L·JG 

( 'VAHY'Il'JG) 

------------

76 

BEST AVA~LABLE CCpy 



V THE ASSERTION LANGUAGE FOR COBOL VERIFICATION 

A. General 

The deductive system in a program verification system will attempt 

to prove the validity ol a formula in first-order logic, the language of 

mathematical theorems. When one builds a formal mathematical system, 

one starts with axioms and attempts to prove theorems based .on them. In 

program verification, the axioms are the semantics of the programming 

language, the program, and the assertion language. ·The theorem states 

that the program is correct with respect to the assertions. 

Thus, the assert.:l.on language must be the language of mathematics 

(in this case first-order logic, integers, and real numbers) plus some 

constructs that apply directly to COBOL. We have used very few of the 

latter--only those that deal with arrays, truncation, rounding, and over­

fl0w in COBOL data items. 

We believe that the inclusion of more language-oriented constructs 

in the asser~ion language will shorten the assertions, making them easier 

to read and wr:Lte, and will also simplify proof. In. the last section, we 

describe some :tdeas in that direction that have not been implemented. 

B. Basic Assertion Language 

There are three elements of the basic assertion language: 

(1) ?irst-order logic wit~ equality 

(2) Real and integer arithmetic operators and relations 

(3) User-defined functions and predicates. 

First-order logic contains the quantifiers V, g; the connectives 

1\, v, ...,, ::J; the equality symbol =; and the symbols, pr_edicates, and functions 

used in tha logical formula. The LISP function names for the quantifiers 

and connectives are, respectively: FORALL, EXISTS, AND, OR, NOT, IMPLIES, 

and EQ. Often basic set theory is useful in connection with first-order 

logic. 

The operations on arithmetic items are simpl; +, -, *• I, and unary 

minus (and exponentiation, logarithms, modulo arithmetic). The relations 

BEST AVAILABLE COPY 77 



are simply =, "', >, :!':, :s:, and< . All axioms on these operations and 

relations apply (e.g,, ~cmmtttativity and transitiv~ty), The LISP function 

symbols for the arithmetic and relational operators, respectively, are. 

PLUS, SUBTRACT, TIMES, DIVIDE, MINUS, EQ, NEQ, GT, GTQ, LTQ, and LT, 

Other constructs, such as conditional expressions (from Algol 60) .. -

are also used. An example of the use of a conditional expression is 

x = if b then y ~ z, 

and this translates to the logical formula 

(b ~X= y) A (~ b ~X= z). · 

' facility for the user to define functions, predicates, and syn­

tactic constructs is also useful, In this context, all special constructs 

relating specifically to COBOL could be formally defined. Some strict 

l0ws of definition (such as those in Reference 26) should be used in 

creating nc:·.v definitions. so that the soundnes·s of any proofs based on 

the definitions is guaranteed. 

The rules of inference are the basic ones for first-order logic (e,g., 

modus poncns). Other "rules" can be derived as theorems. ·-----

C. Special Fu:1ctions for COBOL 

The special functions that we have used in our assertion language are 

concerned with particular features of COBOL arrays and numeric data items. 

These functions are described in the following paragraphs. 

The SELECT function for array access is brie~~y described in Section 

III. ·. th 
It has no definition, except that SELECT(A,I) .returns the I value 

of the nrray A. Its value is changed via an array aasignment CBANOB(A, I, V), 
. th 

which changes the value of the I element of th~ array A to V. Its 

formnl semantics is described in terms ~f the following Hoare axiom [8]: 

P(CHANGE(A,I,e)}Q-

p :-J QSELECT (A, x) 

if x = I then e else SELECT(A,x) 

78 
BEST AVAILABLE COPY 



... . . . .... -- I- - -li- I I I

This means that when a single value of array A changes (the It h value),
th

a conditional substitution is made for the I value of the array only.

However, for a given array access SELECT(A,x), where x is an arbitrary

expression, it may not be known at verification time whether or not x

is equal to I. Thus, the above conditional expression must be substituted

into Q for every instance of SELECT(A,x). We can represent the size of

the array A by the function LENGTH(A).

Two assertion-language functions are associated with assignments

to numeric data items. In a normal assignment statement, truncation

takes place so that the new value of the receiving data item "fits" its

PICTURE specification. In an arithmetic statement with the ROUNDED option,

rounding of the least significant digits takes place instead of truncation.

In both operations, the most significant digits will be lost if the abso-

lute value of the item is "too big" for its picture specification. We

supply two functions, TRUNCATE and ROUND, to perform these operations;

both functions take a value and a PICTURE specification as an argument,

ani return a new value. For example,

TRUNCATE(123. 46, 999V9) -- 123.4

ROUND(123.,16, 999V9) - 123.5

TRUNCATE(-1234.56, S999V)9) = -234.56

ROUND(-234. 56, 999V99) - 234.56

We define ROUND and TRUNCATE in tcms of pri,,,ttive and intermtdiate-l(v( 1

constrL ts, and then def ine the intermediate-h4ivi'l onstru( Is in term.s ol

the primitiv(,s pr'esented her,:

ABS(v) absolute value of v

DECIMALDIGITS(p) number of digits to the right of the virtaial

decimal point of p

TOTALDIGITS(p) - total number of digits in p

MOD(vl,v2) - vI mod v2

In this case, v is a value and p is a PICTURE specification. We define

TRUNCATE and ROUND as follows:

79



TRUNCATE(v,p)

if ABS(v) > MAXVAL(p)

then MAXVAL(p) * PSIGN(v,p)

else (ABS(v) - EXTRADIGITS(v,p)) * PSIGN(v,p)

ROUND(v,p) =

if ABS(v) > MAXVAL(p)

then MAXVAL(p) * PSIGN(v,p)

else if EXTRADIGITS(v,p) ; .5 * MINVAL(p)

then (ABS(v) - EXTRADIGITS(v,p) + MINVAL(p)) *

PSIGN(v,p)

else (ABS(v) - EXTRADIGITS(v,p)) * PSIGN(v,p).

The following is a description of the intermediate-level functions:

ENTRADIGITS(v,p) = the absolute value described by the least

significant digits left over after "fitting" into

the PICTURE specification described by p

'AXVAL(p) - the maximum absolute value permitted by p

N1INVAL(p) = the minimum nonzero absolute value permitted by p

PSIGN(v,p) -he sign of v when it "fits" into p.

lheir torwal d( fiiitions are as follows:

EXTPD 1GITS ( ,p)

CD(AS v) I DE C IMALDIGITS (p), oTOTALDIGITS (p))/ DECIMALDIGITS (p)

Mu}(~FT)OTAIoIGITS() /DECIMALDIGITS(p)

%tA \VA T (p) (10 2)/10

VNIINAI(p) 10 1-D E C IMALDIGITS(p)

P.-,1,\(x ,) -(: j \ F p A v < 0 then -1

\ ! ', ion laliguagu construct defined above, MAXVAL(p), can

i "r:in ..h:hr or not a SIZE ERROR has occurred: If the absolute value

o n aithmK, I,- p,,rtaion exceeds MAVAL(p), where p is the PICTURE spei-

fi,'ation of the destination.

Based on the above formal definitions, we can develop "rules of

Inference' (or lemmas) that allow proofs of assertions containing such

funct tons.

80



Here is an example of how such functions are used in assertions,

and how rules of inference can be used in simplification and proof. Let

the PICTURE specifications of the variables A and B be 999 and 99, res-

pectively. Then the verification condition for the statementNvOVE B TO A"

could be described as follows:

PIMOVE B TO AIQ S

PnA
P QTRUNCATE(B,999).

Since it is known that 0 5 B 99, because of its PICTURE specification,

it therefore "fits" into A without modification. This suggests a rule

of inference: If the PICTURE specification of the destination in a MOVE

operation subsumes the PICTURE specification of the source, then the

TRUNCATE function need not be used in the verification condition. The

verification condition then simplifies to

PtMOVE B TO AJQ

P )A

As a second example, let us suppose that A and B have PICTURE specifi-

cations as above, and tnat C has a PICTURE specification of 99. Then

the verification condition for the statement"COMPUTE A = B * C" would be

as follows:

PICOMPUTE A - B + CJQ

QA
TRUNCATE (B+C,999)

Since the maximum value for the sum of B and C Is 198, and minimum value

is 0, then using the last rule (generalized to arithmvtic expressions) we

get

PtCOMPvnTr A B + CJQ

PDAPD%+C

We present several examples of assertions that can be made about

COBOL programs. To say that an array A is sorted in ascending order, we

write

81



~X(l ~ X ~ LENGTH(A)-1 ~ A(X) ~ A(X+1)) 
or in LISP form 

(FORAIJL X 
(IMPLIES 

(AND 
(LTQ 1 X) 
(LTQ X (SUBTRACT (LENGTH A) 1))) 

(LTQ 

(SELECT A (X)) 
(SELECT A ((PLUS X 1)) )) )) 

If we wish to state that a particular value C occurs in array A, we 
write 

or i:1 LISP form 

(EXISTS X 
(AND 

(AND 

(EQ 

ax(l ~ X s LENGTH(A) A A(X) = C) 

(LTQ 1 X) 
(LTQ X (LENGTH A))) 

(SELECT A (X)) 
C))) 

A typical input assertion to a COBOL program would give the values of 

the input files, and a typical output assertion would describe the 

relntion of values in the input files to values in the output files, 

In this work, where input files and output files are disjoint. this is 

cnsy to do. However, in· cases where a file may-be open for input and 

<)Ut!Jtlt, we need a mechanism to distinguish between the initial values 

and current values in the file. One solution is to concatenate a 

special character to the file name to denote initial file values. 

D. Abstract Assertions for COBOL Programs 

As will be seen in the example,. assertions and verification con­

ditions for COBOL programs may be very long (the verification conditions 

nre much longer than the program itself). A desirable goa~ of future 

vcrif.tcntion research is to shorten the verification conditions and 

assertions, to enhance both understandability and provability. We have 

bogun to explore some of these issues, and describe these explorations 

her(!, One wRy of doing this is to develop primitives for writing abstract 

BEST AVAILABLE COPY 
82 



assertions for COBOL programs. Abstract assertions could make the

assertions more readable, since they would be shorter, but would they

increase provability? There is still some doubt on that issue. We

present some abstract assertion structures, together with their def-

initions and rules of inference.

In conventional program proving (including the approach taken in

this work), the assertions deal with the values of variables, to the

exclusion of their other attributes. This enables free substitution

of values, but does not permit more powerful inferences to be made, as

could be done when the other information is made available.

The main area of examination to date has been the property of

equality. In conventional equality, the values of data items :zre con-

sidered, so that substitution may take place. We propose first a kind

of equality between data items called "structural equality." Two data

items are structurally equal if and only if either:

(1) Both items are elementary data items having the same

PICTURE specification and the same number of occurrences, or

(2) Both items are group data items

(a) That have the same number of immediate descendants, and

(b) Whose corresponding descendants are structurally equal.

This is a static property of COBOL data items, but the programmer may

wish to assert such a property in the program test. This definition

will b' used in later assertion structures.

We next define the notion "strong equality." Two data items are

strongly equal if and only if either:

(1) Both items are. elementary data items that are structurally

equal and whose values are equal, or

(2) Both items are grour data items that are structurally equal

and whose corresponding descendants are strongly equal.

Both strong and structural equality are powerful properties to be asserted

about tree-structured records.

83



There is n notion or equality connected to the MOVE statement, 

called "weal< equality," a noncommutative relation among data items. 

Let A and B be data items, and let PICB be the PICTURE specification 

of B. A is said to be weakly equal to B if and only if either: 

(.l) Both items are elementary data items and B = TRUNCATE(A,PICB), 

or 

(2) Doth items are group data items 

(a) That have the same number of immediate descendants, and 

(b) Such that if AI is an immediate descendant of A and BI 

is the corresponding immediate descendant of B, then 

AI must be weakly equal to BI. 

A similar kind of equality related to the MOVE CORRESPONDING statement 

may also be defined, called "corresponding equality" (this notion b. 

not dcftnecl here). 

A verification condition generator would have to know how to process 

assertions containing these abstract constructs; because some COBOL opera­

tions preserve these relations and other operations1nvalidate the relations. 

The above framework can be extended to cover arbitrary relations on 

data items. Although this mechanism is a good·way of relating properties 

of records, a mechanism for relating records within a file and the records 

of two different files would also be useful. 

These mechanisms are useful simply because many COBOL programs entail 

the movement of data without extensive arithmetic operations on it. The 

abstract assertions described above capture some of the notions involved 

in dntn movGment, One additional comment is that programmers who structure 

their progrnms s.o that the above-mentioned properties b(')ld will probably 

be incre:1slnr.: the re.liability of their programs. ·The effects of abstract 

nsscrtions for COOOL on proof will be illustrated in future work. 

E.· Conclusions 

Wf? have shown that the assertion language for COBOL can be extremely 

~d.mple. However, the reliance on a simple assertion language may make the 

BEST AVAILABlE COPY 



assertions difficult to read, and the proofs unduly complex. Thus, an

assertion language should be extensible so as to permit the abstract

program properties to be stated concisely. The exact nature of the

extensions to be chosen is a matter for future research.

85



VI SEMANTICS OF THE COBOL SUBSET

A. Introduction

Semantics of a programming language can never be completely separated

from its syntax. Thus, in Section IV, the transduction grammar for the

CSv has some relation to the semantics of the language (e.g., the fact that

MOVE, COMPUTE, and ADD are all related, influenced the decision to trans-

duce them to the common primitive SET$). However, most of the semantic

issues are left unincerpreted since we have not yet defined Lhe semantics

of Transduced COBOL. We define these semantics by describing each of the

primitives in Transduced COBOL in terms of a simple language involving

only assignments, tests, and branches. The semantics of this simple lan-

guage are in turn described by the way in which verification conditions

are generated for programs in it. Thus, the semantics of the COBOL sub-

set are contained in the description of the operation of the Posttrans-

duction Processor and the Verification Condition Generator. Both pro-

grams have been abstractly described in Section III of this report. In

this section, we present a more detailed description of both programs,

followed by a discussion of some research issues in verification con-

dition generation.

B. Posttransduction Processing

Posttransduction processing:

(1) Transforms the label structure of the program so

that paragraph names are unique. In COBOL, two

different sections may have paragraphs of the same

name. The section structure may then be taken out.

(2) Forms a list of labels with their corresponding

assertions for later use by the path analyzer (part

of the verification condition generator) for pro-

ces ing GO TO statements.

(3) Eliminates the paragraph structure of the program.

A copy of the program, after step (i), has been saved

so that labels can be processed correctly.

87



(4) Scans each sentence in the program and translates it into

the simple language to generate a verification condition.

The sentences transformed are:

(a) PERFORM statements

(b) All I/O statements

(c) All assignment statements

(d) All CORRESPONDING statements.

These operations need knowledge of the symbol table as well as knowledge

of the transduced program. We now present some simple examples of the

kind of operations performed in posttransduction processing.

Suppose that we start with a very simple COBOL program as follows:

PROCEDURE DIVISION.

Sl SECTION.

P1.
(ASSERT (GTQ X 5)).

ADD I TO X.
P2.

ADD 2 TO X.

S2 SECTION.

P3.

ADD 1 TO X,
P1.

ADD 1 TO X.

(ASSERT (GTQ X 10)). (VI-1)

Its transduced form would be:

,PROCEDUREDIV1 S ION$ (SECTIONS Si (PARAGRAPH$ P1
(ASSERT (GTQ X 5))

(SET$ X
(PLUS X 1)

NIL))
(PARAGRAPH$ P2 (SET$ X

(PLUS X 2)

NIL)))
(SECTION$ S2 (PARAGRAPH$ P3

(SET$ X
(PLUS X 1)

NIT))
(PARAGRAPH$ P1 (SET$ X

(PLUS X 1)

NIL)
(ASSERT (GTQ X 103



The first stage of posttransduction processing creates unique labels

as follows:

LPROCEDUREDIVISION$ (SECTIONS Sl (PARAGRAPHS (P1 Sl)

(ASSERT (GTQ X 5))

(SETS X
(PLUS X 1)

NIL))
(PARAGRAPHS (P2 Sl)

(SETS X (PLUS X 2)
NIL)))

(SECTIONS S2 (PARAGRAPHS (P3 52)

(SETS X

(PLUS X 1)

NIL))
(PARAGRAPH$ (PI S2)

(SETS X (PLUS 1)

NIL)

(ASSERT (GTQ X 10]

Notice how the two paragraphs named P1 may now be distinguished because

their section names have been joined with them into a list. The sections

are then taken out:

[(PARAGRAPHS (P1 SI)
(ASSERT (GTQ X 5))
(SET$ X (PLUS X 1)

NIL))
(PARAGRAPHS (P2 SI)

(SETS X (PLUS X 2)
NIL))

(PARAGRAPHS (P3 52)

(SETS X (PLUS X 1)

NIL))
(PARAGRAPH$ (P1 S2)

(SETS X (PLUS X 1)

NIL)

(ASSERT (GTQ X 10]

In the second stage, all paragraph names associated with assertions are

listed to be used later in processing GO TO statements. The list is not

needed for this program but is made anyway. The list is:

(((PI S) ASSERT (GTQ XX 10)))

The paragraph structure of the program can now be eliminated as follows:

89



((ASSERT (GTO X 5))
(SET$ X (PLUS X 1)

NIL)
(SET$ X (PLUS X 2)

NIL)
(SETS X (PLUS X 1)

NIL)
(SET$ X (PLUS X 1)

NIL)
(ASSERT (GTQ X 10)))

Now each sentence in the program is translated into its equivalent form

in a simpler language called "Posttransduced COBOL." The example pro-

gram translates to:

((ASSERT (GTQ X 5))
(ASSIGN X (TRUNCATE 999 (PLUS X 1)))
(ASSIGN X (TRUNCATE 999 (PLUS X 2)))
(ASSIGN X (TRUNCATE 999 (PLUS X )))
(ASSIGN X (TRUNCATE 999 (PLUS X 1)))
(ASSERT (GTQ X 10)))

In this case the assignment statements were augmented to include trun-

cation (note that the PICTURE specification of X is 999).

We now present examples of how other statements in the language are

translated into posttransduced form. The most complicated is the PERFORM

statement. We have decided to handle the paragraphs that make up the

body of the PERFORM statement by expanding them in-line. Another way to

handle the body of a PERFORM statement is to treat it as a procedure call,

with entry and ('xit assertions describing the effects of the PERFORM state-

ment. There Is a clear trade-off here: in simple programs (without many

PERFORM blocks that are repeatedly used) the expansion method is pref-

erable, because there are fewer proofs to generate; in more complex pro-

grams the procedure-call method is preferable, because the proof of the

PERFORM body need only be done once even if the PERFORM block is used many

times. The most interesting options are the PERFORM VARYING and PERFORM

n TIMES because they are loops that must be translated into assignments,

tests, and branches. For example, the COBOL statement

PERFORM P1 VARYING I FROM I BY 1
UNTIL I > N (ASSERT (P I))

would be translated, as shown in Figure VI-I. There is an initialization

90



ASSERTION
P(I)

I N T ru e Next Statement
After PERFORM

Fa se

BODY OF P1

I I 1

SA-3967-9

FIGURE IV-1 TRANSLATION OF "PERFORM P1 VARYING
I FROM 1 BY 1 UNTIL I > N (ASSERT
(P I,



of I, a list on I and the increment of I. The COBOL statement

PERFORM P1 N TIMES.

would also be translated in the same way. As a detailed example, let

us examine the following COBOL program

PROCEDURE DIVISION.

Pl.

MOVE 0 TO SUM.

PERFORM P2 VARYING I FROM 1 BY 1

UNTIL I > N (ASSERT (GTQ SUM 0)).
STOP RUN (ASSERT (GTQ SUM 0)).

P2.
ADD A(I) TO SUM.

(VI -2)

Its transduced form is as follows:

CPROCEDUREDIVISION$ (SECTION$ FIRSTSECTION

[PARAGRAPH$ P1 (SETS SUM 0 NIL)
(PERFORM
VARYING

(DO$ P2 P2)

(I I I (GT I N))
(ASSERT (GTQ SUM 0)))

(STOP (ASSERT (GTQ SUM 0]
(PARAGRAPH$

P2
(SETS SUM (PLUS (SELECT A (I))

SUM)
NIL]

After posttransduction processing it looks like this:

:(ASSIGN SUM (TRUNCATE 999 0))
[BLOCK (ASSIGN I (TRUNCATE 99 1))

(ASSERT (GTQ SUM 0))

(IF (GT I N)
(ENDPERFORM)

(NEXT))
(ASSIGN SUM (TRUNCATE 999 (PLUS (SELECT A (I))

SUM)))
(ASSIGN I (TRUNCATE 99 (PLUS I 1)))

(LOOPASSERT (ASSERT (GTQ SUM 0]
(STOP (ASSERT (GTQ SUM 0)))

(ASSIGN SUM (TRUNCATE 999 (PLUS (SELECT A (I))
suM]

92



Notice how the body of P2 has been expanded and the initialization,

increment, and test have been included. The loop assertion appears in

two places: at the beginning of the loop, and as part of the loop

(in the LOOPASSERT staLement). The statement ENDPERFORM indicates that

control is to be passed to the statement following the PERFORM state-

ment. If P2 had more than one statement, then the expansion would be

in terms of a list headed by the keyword BLOCK, indicating multiple state-

ments.

All input-output statements must be translated to array accesses.

A sequential file F is represented as a set of arrays (.ARRAY)--one for

each elementary item in the record description. There is an array pointer

(F.INDEX) that indicates the record currently being processed. A variable

F.LENGTH indicates the number of records in the file. READ and WRITE

simply perform MOVE operations from the array to and from the file's record

in the program and increment the array pointer. OPEN and CLOSE simply set

the array pointer. For example, the COBOL statement

OPEN INPUT X.

has as transduced form

(OPENINPUT$ X).

In posttransduction processing it becomes

(SET$ X.INDEX 0).

Note that X.INDEX is the array pointer. The COBOL statement

READ X AT END GO TO PI.

transduces to

(READ X (GO Pl)).

Suppose that Y is the record for file X, and the data declaration for

Y is as follows:

01 Y.
02 Zl PICTURE 999.

02 Z2 PICTURE S9V999.

93



Then there a.re to be two arrays: ZI.ARRAY and Z2.ARRAY. The number

of records in the file is represented by the variable X.LENGTH. The

intermediate form of the statement before translation of the assign-

ment statements is

(SET$ X.INDEX (PLUS X.INDEX 1))

(IF (GT X.INDEX X.LENGTH)
(GO P1)

(NEXT))

(SET$ Zl (SELECT Z1.ARRAY(X.INDEX))

(SET$ Z2 (SELECT Z2.ARRAY(X.INDEX)).

Note that the AT END option is a test to see whether the current index

is greater than the number of records.

Assignment statements are transformed by using the function

TRUNCATE(p,e)--p is a PICTURE specification and e is an expression--to

truncate the assigned expression to the PICTURE specification of the

destination data item. If the assignment statement has the ROUNDED

OPTION, then the function ROUND(p,e) replaces TRUNCATE. The SIZE ERROR

option is transformed into an IF statement, testing the absolute value

of the expression against MAXSIZE(p), where p is the PICTURE specification

of the destination. For example, the COBOL statement

COVfIl7 X = Y -t- Z ON SIZE ERROR GO TO Pl.

transduces to

(SETS X

(PLUS Y Z)

(GO Pl)).

Suppose the PICTURE specification of X is $999V9. Then the posttransduced

form looks like this:

(IF (GT (ABS (PLUS Y L))
9999)

(GO Pl)

(NEXT))
(ASSIGN X (TRUNCATE $999V9

(PLUS Y Z))).

If no SIZE ERROR clause is specified, there is no IF statement. This is

slightlv at variance with COBOL 74, since it specities that if a SIZE

ERROR condition occurs and no SIZE ERROR clause Is specified, then no

assignment occurs. We intend to remedy this inconsistency in future work.

cP4



The CORRESPONDING operations have a particularly 
interesting trans-

formation to posttransduced form. The definition of MOVE CORRESPONDING

A TO B is as follows:

(1) If A is an elementary data item, MOVE A TO B.

(2) Otherwise take all immediate descendants of A that 
have

the same name as any immediate descendants of B, 
and put

them in set S. For all elements X in S, MOVE CORRESPONDING

X OF A TO X OF B.

As an e3:ample, suppose A and B have the following data declarations:

01 A.
02 C.

03 E PICTURE 999.

02 D.
03 G PICTURE 999.

02 F PICTURE 999.

Ol B.
02 C.

03 G PICTURE 999.

03 E PICTURE 999.

02 F PICTURE 999.

The statement

MOVE CORRESPONDING A TO B.

transduces to

(MOVECORRESPONDING$ A B).

After posttransduction processing this becomes the two 
statements

(ASSIGN (QUAL E C B)
(TRUNCATE 999 (QUAL E C A)))

(ASSIGN (QUAL F B)

(TRUNCATE 999 (QUAL F B))).

C. Verification Condition Generation

The verification condition generator is given the posttransduced

COBOL program as input. Verification condition generation has two

stages:

(1) Analysis of all the simple paths through the program.

A simple path is a program path that has an entry

95



assertion, an exit assertion and a fixed number of program

statements in between. A list of these simple paths is re-

turned by the path analyzer. The path analyzer must have

semantic knowledge of the following posttransduced statements:

Ca) IF

(b) GO TO

(c) BLOCK (multiple statements in posttransduced program)

(d) ENDPERFORM

Ce) LOOPASSERT

(f) STOP

The statements in a simple path are presented backwards

relative to the order of execution. This is necessary

for the next stage.

(2) Creation of the verification condition from the path

description. The exit assertion is pushed backwards

through the program path. This involves substition when

an assignment statement is encountered, and the con-

struction of implications when assertions or IF state-

ments are encountered. The final verification condition

is returned at this stage.

In path analysis all IF statements generate two possible paths--

one for instances when the condition is true and another for instances

when the condition is false. The condition that holds for a paticular

path (either true or false) becomes part of the path as an argument to

the IF statement. Thus, the COBOL statements,

COMPUTE X = Y i Z.
IF X , 0 NTXT SENTENCE

E LSE ADD I to X.,

transduced and posttransduced as follows:

(ASSIGN X (TRUNCATE 999

(PLUS Y Z)))
(11" (6,1 N 0)

(NEXT)

(ASSIGN X (TRUNCATE 999

(PLUS X 1)))),

96



would generate the two partial paths

((IF (GT X 0))

(ASSIGN X (TRUNCATE 999

(PLUS Y Z))))

and

((ASSIGN X (TRUNCATE 999

(PLUS X 1)))

(IF (NOT (GT X 0)))

(ASSIGN X (TRUNCATE 999

(PLUS Y Z)))

for the true and false conditions of the IF, respectively. Note the

reverse order of the statements.

A GO TO statement forms the end of a path, and the assertion attached

to the label of the destination paragraph must be fetched. That assertion

would be found on the global variable LABELASSERTLIST described in the

previous subsection. For example, if there is a posttransduced statement

like this (paragraph LI occurs only in section Sl)

(GO L1)

and LABELASSERTLIST has an entry

((LI SI) ASSERT (LT P Q)),

then that assertion would be included at the end of any path that ended

with a branch to Ll.

All statements appearing in a BLOCK are simply processed individually.

An ENDPERFORM statement generates the exit path from the PERFORM. A LOOPASSERT

statement generates the path around a PERFORM loop. STOP simply ends that

path.

One example of output from the path analyzer is from program VI-l:

[((ASSERT (GTQ X 10))
(ASSIGN X (TRUNCATE 999 (PLUS X I)))
(ASSIGN X (TRUNCATE 999 (PLUS X I)))
(ASSIGN X (TRUNCATE 999 (PLUS X 2)))
(ASSIGN X (TRUNCATE 999 (PLUS X 1)))
(ASSERT (GTQ X 51

97



Since it is a straight-line program, there is only one path. Another

example is from program VI-2:

[((ASSERT (GTQ SUM 0))
(IF (GT I N))
(ASSERT (GTQ SUM 0)))

((ASSERT (GTQ SUM1 0))
(ASSIGN I (TRUNCATE 99 (PLUS 1 1)))
(ASSIGN SUM (TRUNCATE 999 (PLUS (SELECT A (1))

SUM)))
(IF (NOT (GT I N)))
(ASSERT (GTQ SUM 0)))

((ASSERT (GTQ SUM 0))
(ASSIGN I (TRUNCATE 99 1))
(ASSIGN SUM (TRUNCATE 999 0]

This program is a single-loop program and therefore has three paths. The

first path is the exit path from the program when the PERFORM is finished.

The second path is the loop path. The third path is the initialization

path. In both programs, the paths are listed in reverse order of execution.

In vtrification condition generation a path is converted into a

formula to be proved. The formulae for all the paths are conjoined together,

yielding the verification condition for the entire program. The verification

condition generator moves through the path (listed backwards by the path

analyzer) building the formulae as it goes. Let x be an arbitrary Boolean

expression. If it encounters an (ASSERT x) or (IF x) and the formula is f,

then the new formula is (IMPLIES x f). If it encounters an (ASSIGN V e),

then the new formula has e substituted everywhere for V.

One example of a completed verification condition comes from program

VI-1:

(.AND

(IMPLIES
kGTQ X 5)
( GTQ

(TRUNCATE
999
(PLUS (TRUNCATE 999

(PLUS (TRUNCATE 999
(PLUS (TRUNCATE 999

(PLUS X 1))
2))

1))
1))

10)))

98



This formula is valid, because if X is no less than 5, then adding

5 to X will make X no less than 10. The only difficulty is if trun-

tion takes place, but X will always be truncated to 999. Q.E.D.

The second example comes from program VI-2:

(AND (IMPLIES (GTQ SUM 0)
(IMPLIES (GT I N)

(GTQ SUM 0)))
(IMPLIES (GTQ SUM 0)

(IMPLIES (NOT (GT I N))
(GTQ (TRUNCATE 999 (PLUS (SELECT A (I))

SUM))
0)))

(GTQ (TRUNCATE 999 0)
0))

There are three conjuncts (conditions) to be proved. The first condition

(the exit condition) is trivially true: If SUM is no less than 0, then

if I is greater than N, then SUM is no less than 0. The second condition

cannot be met, because even if SUM is no less than 0, adding A(I) to it

could make it less than 0. The third condition is trivial: 0 is no less

than 0. However, since the second condition could not be met, the program

could not be proved correct. Imposing stronger conditions at the loop and

initialization points, such as VI(A(I) 0), would enable the proof of this

simple program.

Note that a program can fail to be verified for three reasons:

(1) The program is wrong--i.e., it has a bug.

(2) The input/output assertions (the specifi-

cations of the program) are wrong.

(3) The program and input/output assertions

are mutually consistent, but the inter-

mediate assertions have been chosen

incorrectly.

Only the programmer (not the deductive system) can determine which of

these is the reason for a program's failure to be proved. However, a

good deductive system may be able to generate a counterexample to enable

the programmer to identify the trouble.

99



D. Research Issues in Verification Condition Generation

(or Posttransduction Processing)

All possible improvements to verification condition generation (and "-.

posttransduction processing) would be of one kind: add knowledge to the

system to make the verification conditions simpler. In other words,

perform some of the proof effort early. The reason for this is that it

may be easier to perform some simplification wheal the knowledge is more

readily applicable. For example, elimination of the TRUNCATE operation

could be easily performed when the TRUNCATE operator is inserted (by

means of a simple test); but when a deductive system is in operation,

such a simplification could not be easily made because knowledge of the

maximum size of the source item would be lost.

In addition to ordinary simplification, verification condition gen-

erators might he designed to handle abstract assertions about COBOL

programs (described in Section V). To do this, a verification condition

generator would have to kunow which abstract assertions are preserved by

which program statements.

We have. vet to determine the exact nature of the gain to be made

by doing simplification during the verification condition generation pro-

cess. However, we are hopeful that it will yield major improvements in

the efficiency (if the program verification process.

100



VII STRUCTURE AND COBOL VERIFICATION

A. Introduction

We consider four aspects of structure related to the verification

of COBOL programs:

(1) Use of structured control primitives

(2) Restrictions on COBOL operations

(3) Use of data bases in constructing large COBOL systems

(4) Generalized facilities for data abstraction

(5) Top-down design and modularity.

All of these structuring facilities have the goal of reducing the complexity

of the program by breaking it up into manageable units.

B. Structured Control Primitives

The use of a limited set of "well-structured" control primitives in

writing programs is the practice commonly known as "structured programming."

Instead of the normal COBOL control constructs, the programmer writes in

a block-structured, lexically nested medium (see Section II-G on control

statements) using only the following constructs (as an example):

(1) IF b THEN sl ELSE s2

(2) WHILE b DO sl

(3) DO sl UNTIL b

(4) FOR v = el TO e2 BY e3 DO sl

(5) CASE el OF sl,...,sn.

The semantics of the above verbs have been described in the literature on

structured programming. In the above expressions, b is an arbitrary con-

dition, si (for all i) is either a single statement or a sequence of

statements preceded by BEGIN and followed by END, v is an arbitrary variable,

and ei (for all i) is an arbitrary expression. The resulting programs are

much easier to read and, on the average, simpler than programs written

using the standard COBOL control primitives. By simplicity we mean having

a small number of control paths through the program. However, for any

program written using structured programming primitives, an equivalent

program that is equally simple can be written using the standard COBOL

101



control primitives. The reason for this is that the complexity of pro-

gram verification depends on three variables:

(1) The number of simple paths in the program

(2) The complexity of the assertions

(3) The number of statements per simple path.

No change in any of the above variables is made simply by changing from

a more restricted set of control primitives (the structured ones) to a

less restricted one (those of COBOL 74). However, we endorse the use of

structured programming primitives, because they tend to lead to simpler

(and thus easier to verify) programs. We also endorse the practice of

training programmers to write programs with nested control schemes

(flowcharts) using the primitives of COBOL 74. This is a necessary first

step towards the improvement of software reliability in a COBOL job shcp.

C. Restrictions on COBOL Data Operations

In the analysis of COBOL (Section II) and the presentation of the

subset (Section IV), we mentioned that certain data operations were not

amenable to verification. They were:

(1) Automatic truncation of the most significant digits

on a NUMERIC MOVE operation.

(2) Allowing the compiler to permit data operations from

one type to another that could later yield a type error,
such as moving an ALPHANUMERIC value to a NUMERIC data

item.

In the first case, the language permits the programmer to make a mistake

(e.g., accidentally truncate the most significant digits) because it is

syntactically the same as a correct operation. A solution to this problem

is to syntactically differentiate a MOVE operation in which significant

digit truncation is intended, for example

MOVE TRUNCATED A TO B.

fn the second case, the language permits an operation for which dynamic

type-checking should take place, but does not. Dynamic type-checking,

although inefficient, should be imposed, and a special statement should

be added to the language, such as

MOVE NUMERIC A TO B; ON TYPE ERROR PERFORM P1.

102



(if A is non-NUMERIC and B is NUMERIC). Just as READ operations have the

AT END clause and arithmetic operations have the ON SIZE ERROR clause,

so should the special MOVE statements have an ON TYPE ERROR clause.

The suggested restrictions would make COBOL programs more reliable,

and would make verification easier (because the verifier must check for

type errors even if the run-time system does not).

D. Data Bases

The files that are modified by a COBOL program or a system of COBOL

programs can be considered as a single large data base. Thus, the use of

a data base management facility in conjunction with a system of COBOL

programs, has received much attention recently. In fact, the CODASYL Data

Base Task Group 1 4 has produced a structure in which the data description

language is almost exactly like the COBOL 74 DATA DIVISION, and the appli-

cation programs for the data base are almost exactly like the COBOL

PROCEDURE DIVISION.

What do we gain by using this approach? If one looks at the file

layout for a typical COBOL system (see Figure VII-l), there are many

programs, many files, and some files that aie shared by more than one

program. The design decisions involved in the layout of the data are

scattered throughout the ENVIRONMENT and DATA DIVISIONS of all the programs.

The data base management system (DBMS) approach centralizes all the

decisions on the data layout in the scheme for the DBMS. The declarations

for the data visible to each program are the subschemas and are also part

of the DBMS. The subschemas must be consistent with the schema. However,

this approach allows the distinction between physical data declaration

(in the schema) and logical data declaration (in the subschemas). With

this approach decisions can be hidden from the programs that do not need

to know about it. A DBMS is a good tool for the development of large

COBOL systems because it separates the systems analysis (layout of data

and programs) phase of the system development from the coding phase,

something that has always been done in practice but has never been enforced

by the available automated tools. We believe that the DBMS approach will

increase the reliability of the systems produced by using it (with a possible

reduction in efficiency depending on the DBMS system characteristics).

103

JI



F 1 F2 F 3 F6F5

p 1 P2 $

[:F4 F5F3 F7

SA-3967-1 0

FIGURE V1I-1 FILE STRUCTURE FOR A TYPICAL COBOL SYSTEM

104



We anticipate no difficulty in using the techniques developed here

for verification of programs using the CODASYL DBMS. However, we also

do not anticipate an inherent gain in the ease of verification simply

from using a DBMS approach, other than that systems designed in this

method will be better structured and therefore simpler. This is because

a DBMS approach does not reduce the complexity of either the programs or

the assertions in a COBOL system. One intuitive reason for not gaining

is that decisions on data declarations and representations are still

shared by the PROCEDURE DIVISIONs of all the programs in the COBOL system.

E. Data Abstraction Facilities

In the last two years, much attention has been given to the issue

of data abstraction. In its simplest form data abstraction associates

a set of abstract operations with a set of abstract data objects (called

a type). All programs wishing to manipulate objects of an abstract type

must call the operations. The calling programs do not need to know the

representation for an abstract object, only its formal properties

(described in terms of assertions written at a level of abstraction

appropriate to the abstract objects being manipulated). Thus, for example,

the users of a stack need only know about the formal properties of PUSH

and POP (tne stack's operations) and not about the implementation of a

stack in terms of an array (to store the stack) and a variable (to store

the stack pointer). Some researchers 1 9 ,2 0 advocate special languages to

facilitate the use of data abstraction, while others I emphasize a formal

medium for describing the properties of a data abstraction. However,

most researchers agree that the method promises to reduce the complexity

of program verification for the following reasons:

(1) The programs are less complex. A single-level program
can be broken up into two levels of simpler programs--
one level that manipulates abstract objects and another
level that implements them. Since complexity of programs

is considered to vary exponentially with their length, it

is probably easier to prove many simple programs than a
few complex ones. There may in fact be less code to prove

correct, because the code for a data abstraction may have
been previously duplicated, but the abstraction process has
put it all in one place. Successive decompositions into
two levels can lead to systems with many levels.

105



(2) The assertions are simpler. This is probably the most

significant property of data abstraction. Since the
abstract assertions typically contain less information
(implementation variables and algorithms are hidden),
they are shorter and thus are easier to manipulate. On
the other hand, the implementation assertions do not have
to deal with how the abstract resource is being used and can
typically be simpler. For example, keyed records can be
implemented either by a hash table or a linked list. The
abstraction is simply a function from keys to records--all
the information about links and hashing functions is elimi-
nated from the higher level.

Data abstraction has shown some benefits in practical system design.
2,21

In another SRI project a general-purpose operating system (whose

major design goal is verifiable security) was designed using a formal

methodology based on data abstraction. The operating system has 13

levels of data abstraction. A major question is whether the kinds of

systems typically designed using COBOL are amenable to data abstraction.

Operating systems have abstractions such as virtual memory segments, file

directories, and processes; but it seems that no such abstractions are

visible within COBOL systems. More research must be done on this matter

to determine whether COBOL programs can take advantage of this valuable

technique. If so, we suggest a preprocessor that allows the distinction

between programs that use a data abstraction and programs that implement

one. The two kinds of programs can be combined in some manner (perhaps

by macro expansion) before the system is run.

Many sophisticated languages (including COBOL) have some data abstrac-

tion built into their basic facilities. Things such as indexed sequential

files and the hiding of input/output buffering are examples of data ab-

straction. Some of COBOL's facilities, such as the elementary data item,

permit abstraction, but are circumvented by other facilities (such as

REDEFINES). In a good data abstraction, the implementation details are

completely hidden from the user of the abstraction.

F. Top-down Desig and Modularity

Top-down design is an embodiment of the philosophy that says, "When

there are many decisions to make in the construction of a program, make

the most important ones first." This is useful becau-e each new decision

that is made must be consistent with the ones made hefore. Thus, the

106



earlier decisions tend to influence the later ones, and not the reverse.

It would be unfortunate if the lesser decision would influence a more

important one. Data abstraction is one embodiment of this philosophy

because the decision concerning the formal properties of a data abstraction

is made before the decision of how to implement it.

22 23

Top-down design, as advocated by Dijkstra and Mills begins with

a statement of the problem to be solved, together with a very 
abstract

program to solve the problem. The program typically has control state-

ments interspersed with natural language. For example, to sort an array

of length N:

for i 4- 1 to N-l do

swap the smallest element in Ati].. .A[N]

with A[i];

The programmer then makes successive refinements in the abstract program,

incorporating new decisions as they are made, until the final program is

achieved. These decisions can be made concerning either data or algorithms.

This approach seems useful for COBOL programs in deciding the algorithms,

but not the data, because a COBOL program typically consists of many pro-

grams operating on data that has probably been decided on beforehand

(unless some of the most abstract programs were done during the systems

analysis phase). In general, this is a good way to write programs, because

it increases a programmer's understanding of the programming problem. As

Dijkstra indicates, a programmer doing stepwise refinement can make

"convincing" arguments for the correctness of a refinement. If each refine-

ment is correct and consistent with the preceding ones, then the correctness

of the entire program can be inferred. However, it is impossible to formally

prove the correctness of any program written in a nonformal medium, such as

natural language interspersed with control statements. Thus, top-down

design shows little promise in making COBOL verification easier, except

that it may lead to better programs.

Modularity is an embodiment of two beliefs

(1) Put all related design decisions in one place

(2) Put all separable design decisions in different places.

107



The result is a set of clusters of decisions. Each cluster of decisions

is made only in a distinct module of the system. Data abstraction is a

good example of modularity because the related decisions (concerning

the maintenance of a data abstraction) are all together in a related

set of programs, which is in turn separated from all the programs that

use the data abstraction. Just because a system is broken up into small

programs does not mean that it is modular. For example, a program A that

operates on five files may be modularized into two smaller programs--

one operating on two files and the other operating on three files. This

decomposition is probably modular. However, if A is broken up into two

smaller programs each operating on five files, it may or may not be a

modularization. An attempt to modularize a large COBOL program will

yield benefits only if it shortens or simplifies the assertions of the

larger program. One way to assist this is to describe, for each module,

the set of data items accessed and modified by the module. This may

enable the verification system to simplify the assertions used in the

correctness proof of the module.

G. Conclusions

Some structuring disciplines seem especially promising in decreasing

the cost of program verification, and COBOL verification in particular.

Specific progress in implementing any of the schemes described above has

yet to be made, and is the subject for future research in this area.

108

LW6 no w . . . .. .. . .. . . ... . .. . . . .. . . . .. .. . . . . .



VIII AN EXAMPLE OF COBOL VERIFICATION

A. Description of Program

In this section we present a COBOL program that we have taken through

the several stages of machine processing to generate verification conditions.

One of the verification conditions is proved in its entirety, and the proofs

of the others are sketched.

We have verifieu a payroll program, which is simple relative to the

complexity of an average COBOL program. The complexity of the program,

which is at the upper bound of practical program verification, will be

revealed in this section. The number of relevant cases is very large,

which is reflected in the number of execution paths through the program.

The function of the program is to update a master file and print

the employees' weekly paycheck, given a master file, containing the

employees' cumulative payroll information, and a time card, giving the

number of hours worked in a week. The file structure of the program is

shown in Figure VIII-I.

The structure of the program at the highest level is as follows,

with appropriate paragraphs in parentheses:

(1) File opening and initialization (OPEN-FILES)

(2) Main processing loop (LOOP)

(3) Files closing (CLEANUP).

The main processing loop consists of three parts:

(1) Reading files (READ-INPUT-MASTER through READ-TIME-
CARD) and checking for end-of-file (GO TO CLEANUP)
and file structure errors (GO TO ERROR-ABORT)

(2) Processing a related set of records (PROCESS-RECORDS)

(3) Writing the output records (WRITE-OUTPUT).

CLEANUP and ERROR-ABORT terminate the program. Record processing has

the following components:

(1) Setting up the output master record (MOVE-ARRAY) with
possible error conditions (GO TO ERROR-ABORT)

(2) Setting up the paycheck record.

109



INPLIT-
TIME-CARD-FILE MASTER-FILE

MASTER-FI LE

SA-3967-1 1

-IGURE VI11i FILE STRUCTURE OF THE EXAMPLE PROGRAM



MOVE-ARRAY sets up a single element of the array in the output master

record, and must be PERFORMed in a loop. ERROR-ABORT terminates the

program.

The program is shown in Table VII-l

B. Assertions

The numbered assertions of the program occur in the following places:

(1) Input to the program

(2) The beginning of the main processing loop

(3) Normal exit from the program

(4) Error exit from the program--file structure error

(5) Error exit from the program--record error or overflow

(6) Loop for moving the array information.

The assertions are written out (by number as above) in Table VIII-2.

The input Assertion (1) states that the input files are the same

length, that their name fields correspond, and that the array pointer

of each record is within bounds. Assertions (2), (3), and (6) use the

general invariant for the program, Assertion (7), which states that the

input assertion holds and that for each corresponding file record

(1) The output value for the name equals the corresponding
input value.

(2) The output gross pay has been correctly calculated from
the input gross pay, the salary, and the hours worked
in the current week.

(3) The output hours worked is the sum of the input hours
worked and the hours worked in the current week.

(4) The current week has been incremented from input to
output.

(5) For all members of the weekly hours array (except the
current week), the input value equals the output value.

(6) The output element of the weekly hours array for the
current week equals the hours worked this week.

The tables are at the end of the section.

I11



This is the "essence" of the workings of the program. Assertion (2)

states that the double end-of-file condition has not occurred and that

all the file pointers are equal. Assertion (3) states that the double

end-of-file has occurred and that the lengths of the input files and of

the output files are equal. Assertion (6) states that the pointers to

the input files are one greater than the pointers to the output files,

that all the variables moved before the loop have been properly processed,

and that 1-i of the array elements have been processed correctly.

Assertion (4) is FALSE. Thus, we must prove that this particular

error condition (having the end-of-file without the other) never happens.

Assertion (5) states that either a rounding error or a name correspondence

error has occurred.

C. T ransduction and Posttransduction Processing

The transduced PROCEDURE DIVISION appears in Table VIII-3. The trans-

duced DATA DIVISION appears in Table VIII-4.

Posttransduction processing was then undertaken. Several hand-

simplifications were made after posttransduction processing: the redun-

dant statements were removed (expansion of a PERFORM produces a block

of code--the original--that is never executed); all unneeded TRUNCATE

statements were removed (we purposely wrote the program so there would

be no truncation on assignment statements); all redundant qualifications

wer removed. The resulting program appears in Table VIII-5.

D. Verification Condition Generation

[he nrogram of Table VIII-5 has 26 simple paths through it. The

large number arises because of the number of IF statements (without

transfers) in the program. For example, If there is a simple path

from Assertion (2) to Assertion (6) that has three IF statements in it

(without transfers), then there are eight (2 3) possible ways to take the

path, depending on the disposition of each of its constituent IF state-

ments. When an IF statement has a GO TO in it, a new path is generated.

For the program under study, the number of simple paths are as follows

(listed ny source and destination assertion number):

112



1-2 1
2-3 4

2-4 4
2-5 8
2-6 4

6-6 1

6-2 1

3-3 1

4-4 1

5-5 1

Fortunately many of these paths can be eliminated from consideration,

because they are never taken in actual execution of the program. A simple

path of a program is never taken if and only if:

(1) The antecedent of the VC (verification condition for the
path) is FALSE.

(2) All paths that lead to the beginning of the path in question

are never taken. For example, two of the error conditions

tested for by the program check whether the files are not of
the same length (2-4) and whether the corresponding NAME fields
are not equal (2-5). These two conditions can never occur,
because Assertion (2) b-ates that they do not happen. The
remaining eight paths are as follows:

1-2 1

2-3 1

2-5 1

2-6 1

6-6 1
6-2 1

3-3 1

5-5 1

Of the remaining paths, two (the last two) are trivial, because the input

and output assertions are identical, with no intervening code. Thus, the

VC looks like P2P, a trivial deduction. The output of path analysis

after the elimination of impossible and trivial paths is shown in Table

VIII-6.

There is much to be learned from the hand-simplifications performed

after posttransduction processing and path analysis. The amount of material

would have been exceedingly long without the simplifications. From this

we conclude that incremental simplification at all stages of the verifica-

tion process is useful in being able to keep the volume of material to

the level of understandability. We may also conclude that the level of

complexity (before simplification) of even such a simple program is large

113



indeed. This is one clue to the complexity of software--and how it is

related to the complexity of program verification.

Simplification could work in this example because the program was

written so as to be amenable to such optimization of the verification

process:

(1) All MOVE statements were written so that truncation would

not be needed.

(2) Most names in the program were chosen to avoid the

necessity of qualification.

(3) The control structure of the program was well-designed
so that superfluous paths would not be taken.

Just as there are techniques for writing understandable, modifiable pro-

grams, there are also techniques for writing verifiable programs.

All the verification conditions (VC.) are not written because they

are verbose. However, we state what each VC means and why it is true:

(1-2) This V' states that the input assertion and

effects of file opening (initializing the file
pointers to 0) is sufficient to prove the null
(initial) instance of the program invariant.
This is 'rue because no records have been processed.

(2-3) This VC states that if n records have been processed

correctly, the effects generating two ends of file
in reading one input record guarantee that the output
assertion is true: n records have been correctly pro-

cessed, where n is the number of records in both

input files. The conclusion is simply a restatement

of thc hypothesis.

(2-,) This VC states that if n records have been processed

correctly, then the effects of generating a SIZE
ERROR in processing the (n+l) s t record, guarantee

that either a NAME mismatch or a SIZE ERROR must have

occurred in processing one of the records.

(2-6) This VC states that if n records have been processed
correctly, the effects of correctly processing some

of the (n+]) s t record guarantee that:

(a) n records have been orocessed correctly

(b) some of the (n+l)s t record has been processed

correctly

(c) " elerments of the array have been nrocessed
corre'c t I y.

114



(6-6) An induction--if

(a) n records have been processed correctly

(b) some of the (n+l)s t record has been processed

correctly

(c) m elements of the array have been processed

correctly

then the effects of processing correctly the (m+l)st

array element guarantee (a), (b), and that (m+l)

elements of the array have been processed correctly.

(6-2) If

(a) n records have been processed correctly

(b) some of the (n+l)s t record has been processed

correctly

(c) 52 elements of the array have been processed

correctly

then the effects of processing the remainder of the

record correctly and writing the output files guaran-

tee that (n+l) records have been processed correctly.

E. Proof of a Verification Condition

We now sketch the proof of the verification condition for path (6-6),

which is presented in Table VIII-7. The complete proof of this verifica-

tion condition is contained in Table VIII-8, and the rules of inference

for the proof are contained in Table VIII-9. Formal background for the

proof can be found in any textbook in mathematical logic (e.g., Reference 25).

The structure of the verification condition is as follows:

(AND
(IMPLIES a

(IMPLIES b

( L )).

This is logically equivalent to

(IMPLIES (AND a b)
c)

Thus, we can assume a (the long formula) and b (-n I>52) in the proof of c.

All conjuncts of c, except the last one ((FORALL Y ... )), follow direcly

from identical conjuncts in the formula a. The important subformula that

must be proved is

115



(FORALL Y (IMPLIES (AND (LTQ I Y)
(LTQ Y (SUBTRACT (PLUS I 1) 1)))

(EQ (IF (EQ Y I)

(SELECT HOURS-WORKED-WEEKLY-IN
(Y))

(SELECT HOURS-WORKED-WEEKLY-OUT

(Y)))

(SELECT HOURS-WORKED-WEEKLY-IN (Y))))).

This formula incorporates the semantics of array assignment. The condi-

tional expression (IF) indicates the place where array assignment has

taken place. To prove this condition, we break the formula into two

cases (written in infix form):

VY(l _. Y I - I HOURS-WORKED-WEEKLY-OUT(Y)
HOURS-WORKED-WEEKLY-IN(Y))

HOURS-WORKED-WEEK.Y-IN (I = HOURS-WORKED-WEEKLY-IN(I)

The first case follows from formula a; the second case is an identity.

Thus, the verification condition is proved.

The other verification conditions can be similarly proved, but it

would be tedious to do so here.

F. Conclusions

We have shown how the proof of a simple COBOL program can expand

into an enormous mass of material (e.g., the verification conditions are

many times the length of the program itself). Fortunately, much of the

volume can be reduced t,- simplification at various stages of the proof

r,)cess. All the verification conditions--although long--are elementary

proofs.

The simplicity of most proofs, together with the sheer number to

be performed, are fundamental reasons why major research should be con-

tinued in semi-automatic deductive systems. Simplification packages

and interactive programs to help the programmer direct the machine to

a proof shoul]l also be part of this research in deductive systems.

116



Table VIII-1

EXALiPLE PROGRAM

DATA DIVISION.

FILE SECTION.

FD INPUT-MASTEh-FILE.
01 INPUT-iASfER-hIk.CORD•

02 P ERLqANENT- IN FOi*1AT ION.
03 !4AME-INi PICTUR6 X(35).
03 SOCIAL-SECURIry-IiN PICTURE 9(9).
03 WEEKLY-SALARY-IN PICTURL 999V99.

02 VAR YI NG-IAFORmATION.
03 GROSS-PAY-Eu-DATE-IN PICTURE 99999V99.
03 HuUmS-WOHKED-TO-DATE-IN PICTURE 9999.
03 CJRRENT-WEEK-IN PICTURE 99.

02 AthAY-IJFORimATION.

03 HOU83-W0RKED-WEEKLY-IN PICTURE 99 OCCURS 52 TIO4ES.

FD OUTPUT-LisrAEZ-FILE.
01 JUTPUT-M.AS fCC-RECORD.

02 PERMAdENT-IN FORMATION.
03 NAME-OUT PICTURE X(35).
03 SOCIAL-SECURIrY-OUT PICTURE 9(9).

03 WEEKLY-SALARY-OUT PICTURE 999V99.

02 VARYINj-INFORMATIO4.
03 GROSS-PAY-TO-DATE-OUT PICTURE 99999V99.
03 HoURS-W1KED-TO-DATE-OUT PICTURE 9999.
03 CURRENT-WEEK-OUT PICTURE 99.

02 AfAY-I4FORMATION.

03 hoU6-WORKED-WEEKLY-OUT PICTURE 99 OCCURS 52 TIMES.

FD TII4E-CAHD-FILE.

01 TILIE-CARD.
02 NAME PICTURE X(35).
02 ,oURS-WOfiKED-TdIS-WEEK PICTURE 99.

FD PAYCHECK-FILE.

01 PAYCHECK.
02 NAME PICTURE X(35).
02 AIOUNh PICTUR. 999V99.

WORKING-SIORAGE 6.CTION.

77 rFiIS-WEEKS-PAY PICTURE 999V99.

77 1 PICTUR. 99.

77 FILE-FLAG PICfURE 9.

PROCEDURE DIVISION.

117



OPEN-FILES.
(ASS~r 1).
OPEN~ INPUP INPUr-MIAT-FILE.
OPEN INPUT TI.'iE-CAfRD-FILE.
UPE'4 OUTPUT OUTPT-MASTd-FILE.
OPEN OUTFUT PAYCHECK-F'ILE.

LuOP.
(ASSE~i1 2)
P~t(FORLI R6AD-IA~PUT-elASf6R 'rHRU READ-TIi4E-CARD.
IF F~ILE-FLAG =2 GO TO CLEANUP.
IF FILE-FLAG NOf =0 GO TO ERROR-ABORT.
PEriO~i~ PROCESS-RECORDS.
PERFOR'll WH1ITE-OUTPUT.
GO T'J LuiP.

READ-ItiPUT-kiASfti.
READ INPUi-mASER-FILE AT END ADD 1 TO FILE-FLAJ.

Re~AD lT,,E-CAI D-t-ILE AT E2ND ADD 1 TO FILE-FLAG.

wRil £-uUTPJT.
WRITE 0JrJ?-MA3 IL,.-RCORD.
4H~r?- PAYCHECK.

'CLLANUP.

CLQOSt cPY- ~ L.-I
CLO.)'r 0ur~UT-ilA3T,_R-FILE.
CLuSZ" PAYCHECK-v'IL6.
Si"OP H~UN (A3SLti 3).

S~wP hUN (ASJAi 24

eeCESSIi'O SELAIuN.

PrUCE-XHCOHD's.
ir' NAME-1.4 NOT NAMIE OF fIHE-CARD GO TO ERROR-ABORT.
,iOVE NAME-iA P. 0,-'it,-OUT.
lOVE SJCIAL-SrCUhI'"Y-IN TO SOCIAL-SECURITY-OUT.

MiOVE W LY-S3ALAiiY-Ii' TO WEEKLY-SALARY-OUT.
COi4PQTE 'lT0-WE!,:K3- PAY ROUNDED= WEEKLY-SALARY-IN

( HOURS- 40HKED-THIS- WEEK / 40)
M4 SIZE EiNOR GO TO ERROR-ABORT,

CC ,1h'rv GROS3- PAY-TJ-DATE-OJT =G ROSS- PAY-TO- DATE- IN+

C 9~jTHr4 U R- Wt~r~D~Fu-AT~OUT HOU RS- WORKED- TO-DATE- IN +
AJUS-')KL- 'rIS-WEEK.

118



COrIPUTE CURRENT-WEEK-OUT =cuRaENr-WEEK-IN + 1.
PERFOReA iOVE-AfiY VARYINu 1 F'ROrd 1 BY I JNTIL I > 52

(A.SS~ar 7).
COmPuTz. HOURS-WORKED-WEEKLY-OUT (CURRENT-WEEK-OUT)

HJURS-WORKED-ThIS-vIEEK.
rmOVE CORRLSPONDING rIvIE-CARD TO PAYCHECK.
MlOVE TnIS-WEEKS-PAY T0 AMOUNT.

MiOVE-ARRAY.
MOVE HOURi-WOHKED-WEEKLY-Iii (I) TO

HOURS-WORKED-~iEEKLY-OUT (I).

r;ROR-Aj3ORf.
(A3S6.R± 5).
STOP RUN (ASS~ir 5).

119



Table VIII-2

ASSrTIONS EXJR SAMPLE PROGRAM

(1 (AND [FORALL X (IiliPLIES. (AND (LTQ 1 X)

(LTQ X TNPUT-v1A3TER-E'ILE.LENGTH))
(AND (EQ (SELECT NAmE-IN.ARRAY (W)

(SELECT (QUAL NAME.ARRAY
TIME-CARD)

(W))
(GTQ 0 (SELECT CURRENT-WEEK-IN.ARRAY

(X)))
(LTQ (SELECT CURRENT-WEEK-IN.ARRAY

CW)
51)

(EQ IN PUT-nkA.Sh -FILE. LENG TH TIoLIE-CARD-FILE .LENGTHM))
(2 (AND (ASrh4 7)

(LTQ IN UT- mAS f ,i~-FILE. INDEX I.NPUT-LmASTER-FILE.L.EN3TH)
(EQ FILE-FLAG 0)
(EQ INPUT- HAS th- FILE.-INDEX Tli4E- CARD- FILE. INDEX

OUTPUT-m~ASLERFILE.LENGTH PAYCHECK-FILE.LEN3TH))

(GT IA'PUT-AASErS-FILE. IiJDEX ltNPUT-MASTEii-FILE.LENGTH)
CDT TIME-CAhD-FILE. INDEX TIME-CARD-FILE. LENGTH)
(EQ FILE-FLAG 2)
(EQ INP i -mAs EER- FILE. LENGTH ourPUT-rIASrER-FILE. LENGTH

PAYaHECK-FILE.L ENGTH))
(4 FALSE~)
5 (E XISrS X (AND (EQ X INPUT-r1A~rER-rF1LE.INDEX)

(OR (GT (TIMES (SELECT WEEKLY-SALARY-IN.ARRAY
CX)

(DIVIDE (SELECT
tiOURS-WORKED-THIS-WEEK. ARRAY

CX)
40))

(NEQ (SELECT iNAM~E-I.ARiRAY (X)
(SELECT C QU~AL NAME. ARRAY TIAE-CARD)

CX)
(6 (AND (A33ri 7)

(EQ (SU. 3TRAC T iAPJF-i4ASitA-FILE.LEW,!TH 1)
(SUBTRA .T I'ME-CAH D- FILE. IND'. 1)
ouLrPUT-AASfER-FILE.LEJGTII PAY CHECK-FILE. LENG FH)

(EQ NAME-IN (QLJAL NAME LIMtE-CARD)
NAmE -uU T
(QUAL NAME PAYGHECK))

LEQ ;ROSS-PAY-TJ-UATE-OUT
(PLUS GROSS-PAY-TO-DAIE-IN

(RJUN) 999V99 (TIMEFS %'-'rKLY-SALARY-IN
CDIJIDE HO'JRS-WORKED-THIS-WEEK

40)
C EQ HOURS-W0'IKEb-T13-DATE-OUT C PLUS HOURS-4QRKt.D-TO-DATE-IN

120



HOURS-YIORKED-THIS-WEEK)
(EQ CURHEiUl-WEEK-OUT (PLUS 1 CURRENT-WEEK-IN))
(LTQ 1 I)
(FORALL Y (IilPLIE~S (AND (LTQ 1 Y)

(LTQ Y (SUBTRACT I 1)
(EQ (SELECr IOURS-WORKED-WEEKLY-OUT

(Y))
(SELECT HOURS-WORKED- WEEKLY-IN

(Y]
17

(AND
(AS6ar 1
(IFOR ALL

x
(LIPLIES

(AND (GTQ 1 X)

(LTQ X OUTPUT-f4ASTh-FILE.INDEX))
(AND (EQ (SELECT NArME-IN.ARaAY (X))

(SELECT (QUAL NAI1E.AlihAY TIiIE-CARD)
MX)

(SELECT NALIE-OOT.ARNAY (X)
(SELECT (QUAL NAIE.ARRAY PAYCHECK)

(X))
[EQ (SELECT GROSS-PAY-TO-DArE-our.ARRAY (X))

(PLUS (SELECT GROSS3-PAY-TO-DATE-IN .ARRAY (X))
(ROUi4D 999V99 (TIlES (SELECT

WEEKLY-SALARY-IN .ARRAY
(W)

(DIVIDE (SELECT
HOIJRS-61ORKED-TLAIS- WEEK. ARRAY

M)
40]

[EQ (SELECT iURS-WORKED-TO-DATE-OUTf.ARRAY M)
(PLUS (SELECT diOURS-WOHKED-rO-DArE-iil.ARRAY

WL)
(SELECT rIURS-WOHKED-THIS-WEEK.ARRAY (X]

[EQ (SELECT CURREtil-WEEK-OUT.ARRAY (X))
(PUJS 1 (SELECT CURRENT-WEEK-Iii.ARRAY (X]

[FORALL Y (IrHPLIES (AND (LTQ 1 Y)
(LTQ 1 52)
(NEQ Y (SELECT

CURRENT-WEEK-OUT .ARRAY
(K]

(EQ (SELECT (SELECT
HOURS-WORKED-WEEKLY-OUT.ARRAY

(M)
(Y))

(SELECT (SELECT
HOURS-WORKED-WEEKLY-IN .ARRAY

(M)
(Y)

(EQ (SELECT (SELECT A-OURS-WORKED-WEEKLY-OUT.ARRAY
M)

121



(SELECT CURRENT-WEEK-OUT.ARRAY (X).))
(SELECT OUR3- WOa KOD- IdIS- WEEK. ARA Y (K]



Table VIII-3

TRANSOUCED EXALiPLE PROGRAM (PROCEDURE DIVISION)

(PROCEDUREDIVISION$
[SECTION$ i4AIN (PARAGRAPH$ OPEN-FITES (ASSERT 1)

(OPENINPUT$ IPUT-MASTER-FILE)
(OPENIiJPoT$ TIME-CARD-FILE)
(OPENOUTFUT$ OUTPUr-MASTER-FILE)
(OPENOUTPUT$ PAYCHECK-FILE))

(PARAGRAPH$ LOOP (ASSuRT 2)
(PERFORM (ONCE$)

(DO$ READ-INPUT-MASTER READ-TIME-CRD)
NJIL NIL)

(IF (EQ FILE-FLAG 2)

(GO CLEANUP)
(NEXT))

(IF (NEQ FILE-FLAG 0)
(GO ERROR-ABORT)
(NEXT))

(PERFORI (ONCE$)

(DO$ PROCESS-RECORDS PROCESS-RECORDS)
NIL NIL)

(PERFORM (ONCE$)
(DO$ WRITE-OUTPUT WRITE-OUTPUT)
NIL NIL)

(GO LOOP))
(PARAGRAPH$ READ-INPUT-SA3TCh

(READ IPNPUT-ASTER-FILE NIL
(SET$ FILE-FLAG (PLUS FILE-FLAG 1)

NIL)))
(PARAGRAPH$ R6AD-TImE-CAPD (READ TIME-CARD-FILE NIL

(SETS FILE-FLAG
(PLUS FTLE-FLAG 1)
NIL)))

(PARAGRAPH$ WRITE-OUTPUT (WRITE OUTPUT-MASTER-RECORD NIL)
(WRITE PAYCHECK NIL))

(PARAGRAPH$ CLEANUP (ASSZRT 3)
(CLOSE INiPUT-AAS:ER-FILE)

(CLOSE rliiE-CARD-FILE)
(CLOSE JUTPUT-MASfER-FILE)
(CLOSE PAYCHFCK-FILE)

(SrOP (ASSERt 3)))
(PARAGRAPH$ ERROR-ABORT (ASSET 4)

(STOP (ASSEtiT 4)
[SECTION$ PROCESSING (PAAAGRAPH$ PROCESS-RECORDS

(IF (NEQ NAME-IN (QUAL NAME
rIME-CARD))

(GO ERROR-ABORT)
(NEXT))

(SET$ NAME-OUT NAME-IN NIL)
(SET$ SOCIAL-SECURITY-OUT

123



SOCIAL-SECURITY-IN NIL)
(SE:T$ WEEKLY-SALARY-OUr

WEEKLY-SALARY-IN NIL)
(SETROUNDED$ TBIS-WEEKS-PAY

(TIMES WEEKLY-SALARY-IN
(DIVIDE

HOURS-WORKED-T9I3-WEEv 40O))
(GO ERROR-ABORT))

(SET$ GROSS-PAY-TO-DATE-OUT
(PLJS GROSS-PAY-TO-DATE-IN

THIS- WEEKS- PAY)
NIL)

(SErs HOURS-WORKED-TO-DArE-OUT
(PLUS dOURS-WORKED-TO-DATE-IN

HOU RS- WORK ED-Tii IS- WEEK)
NIL)

(SET$ CURRENT-v)EEK-OUT
(PLUS 1 CURRENT-WEEK-IN)
NIL)

(PERFORM VARYING (DO$ MOVE-ARRAY
MOVE-ARRAY)

(I 1 1 (GT I 52))
(ASSERT 6))

(SET$ (SELECT
HOU RS-WORKED-WEEKLY-OUT

(CURRENT-WEEK))
HOURS-WORKED-THIS-WEEK NIL)

(iAOVECORRESPONDING$ TIME-CARD
PAYCHECK)

(SET$ Ai'iOUN r HIS-WEFKS-PAY NIL))
(PA P.GRAPH-$ ILOVi2-ARRAY (SET$ (SELECT

HOURS-WORKED-WEEKLY-OUT
(I))

(SELECT HOURS-WORKED-WEEKLY-IN
(1))

NIL))
(PAIRA38API{$ ERROR-A6ORf (ASSERT 5)

(ST6P (ASSERT 51)

124



Table Vl11-4 1

ThANSDUCED EXAiPLE PROGR~AM (DATA DIVISION)

(DATADIVISION$
LFILE3L.CTION$ [FD LIPUr_,AASfER-FILE (M( INPUT-AASIER-RECORD)

(((2 PERMAiAiNT-INFORMATION)

(( NA~IE-IA X%(35%))
(3 3OCIAL-SECURITY-IN 9%(9%))
(3 WEEKLy-SALARY-IN 939V99)))

((2 VARyINGIFT .1ATION)

(( GRO33.-PAY-TO-DATE-IN 99999v~99)
(3 HOURS-WORKED-TO-DATE-IN 9999)
(3 CURR6NT-WELEK-IN 99))

((2 ARn AY-IdFkORMATION)
(( HOUHS-WORKD-JEEKLY-'l 99 52)

LFD OuTPur-,AA3fr~r-FILE (((1 OUTPUT-m'ASThF"-BtCORD)

(((2 PERLANENT-INFORmATION)

(( NAME-Uur X%(35%))
(3 SOCIAL-SECURITY-OUT 9%(9;))
(3 WEFKLY-SALARY-OUT 999V99)))

((2 VAYA-NO~-AIN

(( GHuSS-PAY-T3-DATE-OUT 99999 V99)
(3 ijtRSWOKED-TO-DATE, 9999)
(3 CORIRENf-WEEK-OUT 99)))

((2 Ak38Y-INFOfwIATION)
(( HJURS-vi1ORKD-WEEKLY-OJT 52)

[F~D TILAE-CAr(D-FILE (W( HIiE-CARD)
((2 NA.-iE X%(35%))

(2 tIOUHS-WOR KED-THIS- WEEK 91
(FD PAfCi6CK-FILE ((1 PAfCHECK)

((2 NAL!,E X%(35%))
(2 Ail4OU141 999V991

(WO8KILNGS!TOAGSCfION$ (77 TriIS-WEEKS- PAY 999 V99)
(77 I 9W~9
(77 FILE-FLAG 9))

125



Table VIII-5

EXA..LLE PROGRAM AFTER POSTTRANSDiJCTION PROCESSING
AND SIMPLIFICATION

(ASSIGN iiPu r-MAsZERi-FILE. INDEX 0)
(ASSIGN Tli iE-CArD- FILE. INDEX 0)
(ASSIGN JUTPUT-i4AsrE,-FILE.INDEX 0)
(ASSIGN PAYChECK-FILE.INDEX 0)

BL2CK (ASSIGN IJPUT-MASfER-FILE. INDEX (PLUS INPUT-iIASTER-FILE.INDEX

(IF (GT IAPUT- iASfth -FILE. INDEX INPUT-MASTER-FILE. LENGTH)
(ASSIGN FILE-FLAG (PLUS FILE-FLAG 1))

(NEXT))
(A36IGIN NMi~E-IN (SELECT NAijE-IN .ARRAY (INPUT-v1ASMRE-FILE. INDEX)

(ASS"IGN SOCIAL-SrCURIT'-Ii (SELECT SOCIAL-SECURITY-IN.ARRAY

(INPUT-iviASrfER-FILE.INDEX)))

(ASSIGN iEEKLY-SALARY-IA (SELECT WEEKLY-SALARY-IN. ARRAY
( INPiJT-viASTER-FILIE. INDEX))

(ASSIGN GROSS-PAY-TO-DATE-IN (SELECTr
GROSS-PAY-TO-DATE-IN .ARRAY

(INPuT-ivAsrER-FILE.INDEX))

(ASSIGN H0URS-WORKED-TD-DATE-IN (SELECT
HOURS-40RKED-TO-DATE-IN.ARRAY

IN PJ f-iA3rEi-FILE. INDEX))
(ASSIGN CURR6NT-WE6K-IN (SELECT CURRENT-WEEK-IN .ARRAY

(INPUT-iMASTER-FILE. INDEX)))
(A33D14 ROURS-W~rtKED-WEEKLY-Ii4 (SELECT

HOURS-WORKED-WEEKLY-IN .ARRAY
(IN4PUr-mAsrER-FILE. INDEX

'A55I"3N TImiE-CARD-FILE.INDEX (PLUS TItiE-CARD-FILE.INDEX 1))
(IF (3T TIcqE-CAaD-?ILFE.INDEX TfIrE-CARD-FILE.LENGTH)

(ASSIGN FILE-FLAG (PLUS FILE-FLAG 1))
(NEXT)

(A;SIGN (QUAL NAME rIviE-CARD)
(SELECT (QUAL NAME.ARRAY TIME-CARD)

(rIME-CARD-FILE. INDEX)))
(A3SIS;i HO 11S- WOR KED -THIS- WEEK

(SELECT riuURS- WORKED- THI3- WEEK. ARRAY
TIME-CARD-FILE. INDEX]

(it ',, FILE-FLAG 2)
GO (CLEANUP -,AIN))
(ANFXT))

(IF (JJE FI,.>-FLAG3 0)
'."G("- -L>R AAIN))
(Ntxrn)

126



(BUJCK (IF (NEQ NAkiE-IN (QUAL NAAE rII~E-CAH1D))
(GU (ERHOH-AdORT PR0CE.3.MI~lG))
(NE~XT) )

(k.SIGN aJiiE-c)UT NAiME-IN)
(ASSIGN SOCIAL-SECURITY-OUT SOCIAL-SECURITY-IN)
(A631'GR 4EEKLT-SALkRY-OUT 4ES:KLY-SALARY-IN)
[IF (CIT £ABS (ROUAU THIS-WEEKS-PAY (TIMES WEEKLY-SALARY-IN

(DIVIDE
HOlURS-4ORKED- r4iS-4EEK 401

999 .99)
(GO (ERROH-AbiORT PROCESSIWC))
(ASSIGN MrI3-WEE~KS-PAY (ROUJND TdIS-WEEKS-PAY

(TIM4ES WEEKLY-SALARY-IN
(DIVIDE

HOURS-vWORKED-THIS-WEEK 40]
(A SSIGN 3RQS3-PAY-TOJ-DATE-OUT (PLUJS GROSS-PAY-TO-DATE-IN

THIS-WEEKS-PAY))
(kSSIGN tiURS-WGRiKEO-' CO-DA'rh-OUT, (PLUS HOURS-W0RKED-±E-DATE-IN

HOU RS- WOR KED- TIS- WEEK))
(ASSIGN CURREN2'-WEiK-OUT (PLoS 1 CURRE-Nf-WEEK-IN))

[BLOCK (ASSIGN 1 1)
(ASSLil 6)
(IF (Jr 1 52)

( ENDPE,4FOMc)
(NSXT))

(AS3SIGN (SELECT H JRS-WURKED-WESKLY-OUT (1))
CSELECf .. ?URS-W0R,'rD-WESKLY-IN (IM)

(A.IC (PLUS I 1)
(LOJPAL'Sr..- (ASS,:ri,' 6]

(ASSIGN (SELECT ri~-R~3WEL-UT(CJ R6.'I~- WEEK)
rQU RS-WOf KED- 1313- WEEK)

(A-3SIGN (QUAL LJAM'E ?AYQ4C~-K)
(QUAL NAm~E 'oiE-cA D)'

(ASSIGN AiiOUNT THIS-WEEKS -PAY)~
(BLOCK (33SSIGN JUT PUT-iAASTtir-FILS. INDEX (PLUS

JUTPJT.ASTERFILE -I NDEX )

OU,-PUT-.,iASrER-FfLLE.LF' T,- rH1)
(ASSIGN (SELECT AAl~l-OUdT.ARRAY (UPT IREL.ME)

N Am'E-OUT)
(AS0'IGN (SELECT' SOCIAL-5$ECURITY-OUT.AR~tAY k

OUTPUT-LIAA~rL9-FILE.INDEX')
SOCIAL- SS--C U MTY -OUT)

(ASSIGN (SELECT WEEKLY-SALARY-OuT.ARRAY
OUTPUT-iAAS'.1-FILE. INIDEX))

WEEKLY-SALARY-OUT)
(ASSIGN (SELECT GAOSS-PAy-rJ-DATE-JUI.ARAY

OUTPUT-GIASTi'R-FILF. IAIM))
,ROSS-PAY-TJ-DATE-OUT)

(AS)SIGN (SELECT dO)H.t-WOHKEO)-&O-DArC-OOT .ARRAY I
OUTPUT-i'iASLR-FILE.lADEX))

dh)U RS- WOE ICED-TO-DAT E-OLJT)
(AS61IGN (SELECT CURt{~.dT-WEEK-OUT . ARRAY

127



OUTPJ -AASY i~li-FILE . INDEX)
CUK~ii.,N f- K-UT )

(A3SI,] N (SECLECT ctJRS-W)RKI CD-WEEKLY-OU .A1RRAY
Ou'rPUT-t1ASft.R-FEILE. INDEX))

Ho RS-WORKED-WEEKLY-OU'r)
(A351'3N PAY~iECrK-tILE.INDEX (PLUS PAYCHECK-FILE.INDEX1)
(ASSIGN PAYCIIECK-iIlE.LENGTri (PLUS PAYCHECK-EFILE. LEN GTH 1))
(ASSIUiN (SELECT (QIJAL NAME.ARRAY PAYCHECK)

(PAYCHECK-FILE. INDEX)
(QUAL NAME PAYCHECK))

(ASSIQN (SELECT AMOUNT.ARRAf (PAYCh-ECK-FIuE.INDEX))
Ai1qOUN)

(AS liAT 3)

13 S'P (AJS3fl 1')

128



Table VIII-6

IN, SIGNIFICANT PATHS FOR THE EXAMPLE PROGRAM

((ASSERT 2)
(ASSIGN PAYCHECK-FILE.INDEX 0)
(ASSIGN OUTPUT-MASTER-FILE. INDEX 0)
(ASSIGN TItME-CARD-FILE.INDEX 0)
(ASSIGN INPUT-KASTER-FILE. INDEX 0)
(ASSERT 1))
((ASSERT 3)
(IF (EQ FILE-FLAG 2))
(ASSIGN HOURS-WORKED-TtIIS-WEEK (SELECT HOURS-WORKED-THIS-WEEK.ARRAY

(TIME-CARD-FILE.INDEX)))
(ASSIGN (QUAL NAME TIM-CARD)

(SELECT (QUAL NAME.ARRAY TIME-CARD)

(TIME-CARD-FILE. INDEX)))
(ASSIaN FILE-FLAG (PLUS FILE-FLAG 1)
(IF COT TIA'E-CARD-FILE.IN4DEX TIME-CARD-FILE.LENGTH))
(ASSIGN TIMKE-CARD- FILE. INDEX (PLUS TIME-CARD- FILE. INDEX 1)
(ASSIGN HOURS-WORKED-WEEKLY-IN (SELECT HOURS-WORKED-WEEKLY-IN.ARPAY

(INPUT-M4ASTER-FILE. INDEX)))
(ASSIGN CURRENT-WEEK-IN (SELECT CUIRRENT-WEEK-IN.ARRAY(

(ASSION HOURS-WORKED-TO-DATE-IN (SELECT
HOURS-WORKED-TO-DATE-IN .ARRAY

(INPUT-MASTER-FILE. INDEX)))
(ASSIGN GROSS-PAY-TO-DATE-IN (SELECT GjROSS-PAY-TO-DATE-IN.ARRAY

(INPUT-MASTER-FILE. INDEX)))
(ASSIGN WEEKLY-SALARYIA (SELECT WEEKLY-S'ALARY-IN.ARRAY(

INPUT-M1ASTER-FILE. INDEX)))
(ASSIGN SOCIAL-SECURITY-IN (SELECT SOCIAL-SECURITY-IN.ARRAY

(I14PUT-M.ASTER-FILE. INDEX)))
(ASSIGN NAi4E-IN (SELECT NAM4E-IN.ARRAY (IN PUT-M.ASTER- FILE. INDEX)))
(ASSIGN F~ILE-FLAG (PLUS FILE-FLAu 1)
(IF (OT INPUT-A'ASTL R-FILE.INDEX INPIT-MASTER-FILE.LENITH))
(ASSIGN INPUT-MASTER-FILE.INDEX (PLUS INPUT-M4ASTER-FILE.INDEX 1)
(ASSERT 2))

((ASSEr T 5)
(IF (GT [A8S (ROUND THIlS-WEEKS-PAY (TIMES WEEKLY-SALARY-IN

(DIVIDE
999 99))HOURS-WORKED-THIS-WEEK 40)

(ASSIGN WEFKLY-3ALARY-OUT WEEKLY-SALARY-IN)
(AiJ3IGN SOCIAL-SECURITY-OUT SOCIAL-SECURITY-IN4)
(ASSIGN NAME-OUT NAME-Id)
[IF (NDX (NEQ NAME-IN (QUAL NAME TIME-CARD]
(IF~ (NOr (NEQ FILE-FLAG 0))
(IF (NOT (EQ FILE-FLAG 2)))
ASSIGN riOURS-WORKED-THIS-WEEK (SELECT ciOURS-WORKED-THIS-WEEK. ARRAY

(TIME-CARD-FILE. INDEX)))
(ASSIGN (QUAL NAME TIME-CARD)

129



(SELECT (QUAL NAME.AH RAY TIME-CARD)
(TIiAE-CARD-FILE. INDEX)))

(IF (NOT (GT TILME-CARD-FILE.INDEX TIME-CARD-FILE.LENGTH)))
(ASSIGN TIM4E-CARD-FILE. INDEX (PLUS TIME-CARD-FILE. INDEX 1)
(ASSIGN HJURS-WORKED-WEEKLY-IN (SELECT HOURS-WORKED-WEEKLY-IN. ARRAY

(INPUT-MASTER-FILE. INDEX)))
(ASSIGN CURRENT-WEEK-IN (SELECT CURRENT-WEEK-INAkRRAY(

INPUT-MASTER-FILE. INDEX)
(ASSIGN HOURS-WORKED-TO-DATE-IN (SELECT

HOURS-WORKED-TO-DATE-IN .ARRAY
(INPUT-MASTER-FILE. INDEX)))

(ASSIGN GROSS-PAY-TO-DATE-IN (SELECT GROSS-PAY-TO-DATE-IN.ARRAY
(INPUT-MASTER-FILE. INDEX)))

(AS3IGN AEEKLY-SALARY-IN (SELECT WEEKLY-SALARY-IN.ARRAY
INPUT-MASTER-FILE. INDEX)))

(AS3SIGN SOCIAL-SECURITY-IN (SELECT SOCIAL-SECURITY-IN.ARRAY
(INPUT-mASTER-FILE. INDEX)))

(ASSIGN NAME-I, (SELECT NAME-IN.ARRAY (INPUT-MASTER-FILE.INDEX)))
(IF (NOr (Sr, INPUT-MASTEFH-FILE.INDEX INPUT-iMASTER-FILE.LENGTH)))
(AS SIGN lNPJT-MASfhR,-FILE. INDEX (PLUS INPUT-MASTER-FILE. INDEX 1)

(ASSESI 6

(ASSIGN 1 1
l.L ;IGN CGENT-WEEK-OUT (PLUS 1 CURRENT-WEEK-IN))

A6316N HOD RD-WORKED-TO-DATE-OUT (PLUS HOURS-WORKED-TO-DATE-IN
HOURS-WORKED-THIS-WEEK))

(ASSIG_!N GROSi:-PAY-TC-DAT _--OUT (PLUS GROSS-PAY-TO-DATE-IN
THIS-WEEKS-PAY))

ASSIdN THIS-WEEKS-PAY (ROUND THIS-WEEKS-PAY 00
(rIMES WEEKLY-SALARY-IN

(DIVIDE HOURS-WORKED-THIS-WEEK
40]

(11F (N01' (3," 'AB (ROUND THIS-WEEKS-PAY (TIMES WEEKLY-SALARY-IN
(DIVIDE

HOURS-WORKED-THIS-WEEK 40]

.. SKLY-AAR-iU aEEKLY-SALARY-IN)
,'ASIG 1 :: 11 NjI~-h' SOCIAL-SECLIRITY-IN)

' 514JASFiE-.JUT NAME-IN)
, NaT (NEQ NAME-IN 'QUAL NAME lIME-CARD)

NOT fNS NEQ WILE-FLA3 0)))
I- (Nj (EQ ?ILE-FLAGO 2)))

(A3'J3 HO'UR'-WORKED-TqTS-WEEK (SELECT HOURS-WORKED-THIS-WqEEK.ARRAY

(A--l,-4 (QAL AME711ME-CRD)(TIM4E-CARD-FILE. INDEX)))

(SDET QUAL NAME.ARRAY TIME-CARD)
(TlME-CAiiD-FILE. INDEX)))

Nk Nl (GT TMiE-CARD-FILE.INDEX TIM.E-CARD-FILE.LENGTH))
.. ~ TIL-CAD-FLE.IDEX(PLUS TIME-CARD-FILE.INDEX 1))

(:IhHOUJRSl-4JhKEP-UEEKLY-IN (SELECT HOU RS- WORK ED- WEEKLY- IN. ARRAY
(INPUT-MASTER-FIL.E. INDEX)))

, I U.RRi,,T-WEFK-IN (SELECT CURRENT-WEEK-IN.ARRAY(
INPUT-MASTER-FILE. INDEX)))

130



(ASSIGN HOURS-WORKED-TO-DATE-IN (SELECT
HOURS-WORKED-TO-DATF-IN .ARRAY

(INPUT-MASTER-FILE. INDEX)))
(ASSIGN GROSS-PAY-TO-DATE-IN (SELECT GROSS-PAY-TO-DATE-IN.ARRAY

(INPUT-AlAST.ER-FILE. INDEX))
(ASLIGN wEEKLY-SALARY-IN (SELECT WEEKLY-SALARY-IN4.ARRAY(

lNPJT-M4ASTER-FILE. INDEX))
(ASSIGN SOCIAL-SECURITY-IN4 (SELECT SOCIAL-SECtJRITY-IN.ARRAY

INPUT-MASTER-FILE. INDEX)
(ASSI3N NAME-IN (SELECT NAME-IN.ARRAY (INPUT-MASTtER-FILE.INDEX)))
(IF (NOT (GT IJPUT-i4AST6fi-FILE.INDEX I!PUT-AASTER-FILE.LENOTHM
(ASSIGN INPUT-M4ASTEiR-FILE.INDEX (PLUS INPUT-MASTER-FILE.INDEY 1)
(ASSERT 2))

((ASSERT 6)
(ASSIGN I (PLUS I M)
(ASSIGN (SELECT HOURS-WORKED-WEEKLY-OUT (I))

(SELECT HOURS-WORKED-WEEKLY-IN (IM)
(IF (NO! (CT I 52))
(ASSE, T 6))

((ASSE'i 2)
(ASSIGN (SELECT AilOUNT.ARRAY (PAYCHECK-FILE.INDEX)

(QUAL AMOUNT PAYCHECK))
(ASSIGN (SELECT (QUAL NAME.ARRAY PAYCHECK)

(PAYCHECK-FILE. INDEX))
(QUAL NAME PAYCHECK) )

(ASSIGN PAYCHECK-FILE.LENGTH (PLUS PAYCHECK-FILE.LENGTH Ml
(ASSIGN PAYCHECK-FILE.INDEX (PLUS PAYCHECK-FILE.INDEX 1)
(ASSIGN (SELECT HOURS-WORKED-WEEKLY-OUT.ARRAY

JUTPUT-r-ASIER-FILE .INDEX))
iURS-WURKED-WEEKLY-OUI)

(ASSIGN (SELECT CURRENT-WEEK-OUT. ARRAY (OUTPUT-MASTER-FILE. INDEX))
CURREN r-'vEEK-OUT)

(AS3IGN (SEzLECT AOURS-WORKED-7O-DATE-OUT.ARRAY
JUTPUT-MASTEk-FILE. INDEX))

H3URS-WCORKED-TO-DATE-OUT)
(ASSIGN (SELECT -]ROSS-PAY-TO-DA7TE-OUT.ARRAY

OUTPUT-MIASTER-FILE. INDEX)
GROSS- PAY-TO-DATE-OUT)

(A3613N (SELECT WgEEKLY-SALARY-OUT.ARRAY (OUTPUT-tATER-FILE.INDEX))
4EE.LY-SALARY-OUT)

(ASSIGN (SE--LECT SOCIAL-SECURITY-OUT.ARRAY (OUTPJT-IATE-FILE.INDEX))
SOCIAL-SECURITY-OUT)

'ASSIG3N (SE LECT NAME-OUT.ARRAY (OUT.PUT-fIlASTER-FILE.INDEX))
NAME-OUT)

(ASSIGN OUTPUT-M4ASTE-R-FILE.LENGTH (PLUS GUTPUT-MASTER-FILF.1LENGTH 1)
(ASSIGN OUTPUT-mtAsrER-FILE. INDEX (PLUS OUTPUT-1MASTcR-FILE. ItDEX 1)
( A 3.;3N AMOU~ll TAIUS--WEEKS- PAY)
(ASSIGN (QUAL NAME PAYCHECK)

(QUAL i'AAME TIM4E-CAR9D))
(ASSIGN (SELECT AURS-WORKED-WEEKLY-OUT (CURRENT-WErK))

HOURS-WORKED-THIS-WEEK)
(IF (GT I 52))
(A3SEH1f 6))

131



Table VTII-7

VERIFICATION CONDITION FOR PATH (6-6) OF EXAMPLE PROGRAM

(IM~PLIES
[AND
LFORALL X (IMPLIES (AND (LTQ 1 X)

(LTQ X INPUT-MASTER-FILE.LENGTH))
(AND (EQ (SELECT NAM-IN.ARRAY CX))

(SELECT (QUAL NAME.ARRAY TIME-CARD)
(W)

(LTQ 0 (SELECT CURRENT-WEEK-IN.ARRAY
(W)

(LTQ (SELECT CURRENT-WEEK--IN.ARRAY
M)

511
(EQ P-1AE-FE KT9TIME- CA RD- FILE. LENGTH)
L FORALL

x

(ANP LTQ' '
CTPUT-:,: L-R- FILE. INDEX)

(AN E~ QS -LECT NAD';E- IN. ARRAY WX)
(SELECT (QUAL NAME.ARRAY TIME-CARD)

:>ELECT NAfiE-OUT.ARRAY CX))
S-".,CT (QUAL NAME.ARRAY PAYCHECK)

(EQ SELECT GROS.S- PAY-TO-DATE-OUT. ARRAY CM)
(PLUS (SELECI 3ROSS-PAY-TO-DATE-IN.ARRAY (X))

(ROUND gq9V99 (TIMES (SELECT
WEEKLY-SALARY-IN .ARRAY

CX)
(DIVIDE (SELECT

HOURS-WORKED-THIS-WEEK. ARRAY
(W)

401
J". 'ELECT HL-PU RS-WORKED-TO-DATE-OUT . ARRAY (X))

(PLUS (SELECT HOURS-WORKED-TO-DATE-IN.ARRAY (X))

(2ELFCI HOURS-WORKED-THIS-WEEK.ARRAY CXI
[E( (SE~LECT CI)RRENT-WEEK-OUT.ARRAY CX)

(PLUS I (.--,LECT CURRENT-WEEK-IN.ARRAY (XI
FORALL f 'IMPLIES [AND CGTQ 1 Y)

CLTQ Y 52)
(NEO Y (SELECT

CURRENT-WEEK-OUT. ARRAY
CX1

(EQ (SELECT (SELECT
HOURS-WORKED-WEEKLY-OUT .ARRAY

MX)
(Y))

(FELECT (SELECT

132



HOURS-WORKED-WEEKLY-IN .ARRAY

(Y]

(EQ (SELECT (SELECT H0OURS-WORKED-WEEKLY-OUT.ARRAY
WX)

(SELECT CURRENT-WEEK-OUT .ARRAY (W)

(SELECT HOURS-WORKED-THIS-WEEK.ARRAY (XI

(EQ (SUBTRACT INPUT-MASTER-FILE.LENGTH 1)
(SUBTRACT TIME-CARD-FILE.INDEX 1)

OUTPUT-MAS TER- FILE. LENGTH PA YCH ECK- FILE. LENG TH)

(EQ NAME-IN (QUAL NAME TIME-CARD)
N AME-OUT
(QUAL NAME PAYCHECK))

(EQ GROSS-PAY-TO-DATE-OUT (PLUS GROSS-PAY-TO-DATE-IN
(ROUND 999V99

(TIMES WE'EKLY-SALARY-IN
(DIVIDE

HOURS-WORKFD-THIS-WEEK 40)

(EQ A.hIJRS-WORKED-TO-DATE-OUT (PLUS H0URS-WORKED-TO-DATE-IN
HOURS-WORKED-THIS-WEEK)

(EQ CURRENT-WEEK-OUT (PLUS 1 CURRENT-WEEK-IN))
(LTQ 1 1)
(FORALL Y (IMPLIES (AND (LTQ 1 Y)

(LTQ Y (SUBTRACT I 1)
(EQ (SELECT HOURS-WORKED-WEEKLY-OUT (Y))

(SELECT HOURS-WORKED-WEEKLY-IN (Y]

[IMPLIES

(NOT (GT I 52))
(AND
(FORALL X (IMPLIES (AND (LTQ 1 X)

(LTQ X INPUT-MASTER-FILE.LENGTH))

(AND (EQ (SELECT NAME-IN.ARRAY MX)

(SELECT (QUAL NAME.ARRAY TIME-CARD)

CX)

(LTQ 0 (SELECT CURRENT-WEEK-IN.ARRAY
(W)

(LTQ (SELECT CURR'SNT-WEEK-IN .ARRAY
(X))

51]

(EQ INPUT-MAsTrER-FILE. LENGTH TIME-CARD-FILE. LENGTH)

(FORALL
X
(IMPLIES

(AND (LTQ 1 X)

(LTQ X OUTPUT-MASTER-FILE.INDEX))
(AND (EQ (SELECT NAME-IN.ARRAY (W)

(SELECT (QUAL NAME.ARRAY TIME-CARD)

WX)
(SELECT NAME-OUT.ARRAY WX)

(SELECT (QUAL NAME.ARRAY PAYCHECK)

(X)))

(EQ (SELECT GROSS-PAY-TO-DATE-OUT.ARRAY MX)

(PLUS (SELECT GROSS-PAY-TO-DATE-IN.ARRAY MX)

133



(ROUND 999V99 (TIMES (SELECT
WEEKLY-SALARY-IN. ARRAY

Wx)
(DIVIDE (SELECT

HOURS-WORKED-THIS-WEEK. ARRAY
(X)

[EQ (SELF,'CT HOURS-WORKED-TO-DATE-OUT.ARRAY (X)
(PLUS (SELECT hOURS-WORKED-TO-DATE-IN.ARRAY

MX)
(SELECT HOURS-WORKED-THIS-WEEK.ARRAY (XI

[EQ ( S~l1ECT CUR RENT- WEEK-OUT. ARRAY MX)
(PLUS 1 (SELECT CURHENT-WEEK-IH.ARRAY (XI

[FORALL Y (IMPLIES [AND (GTQ 1 Y)

(LTQ Y 52)
(NEQ Y (SELECT

CURRENT-WEEK-OUT. ARRAY
(Xl

(EQ (SELECT (SELECT
HOURS-WORKED-WEEKLY-OUT .ARRAY

(X))
(Y))

(SELECT (SELECT
HOURS-WORKED-WEEKLY-IN .ARRAY

CX)

(EQ (SELECT (SELECT HOURS-WORKED-WEEKLY-OUT .P.RRAY
(X))

(SELECT CURRENT-WEEK-OUT.ARRAY (X)))

(SELECT HOURS-WORKED-THIS-WEEK. ARRAY (XI
(EQ (SUBTRAC;T INPUT- MA -TER -FILE. LENO TH 1)

(SUBTRACT TIAE-CARD-FILE.INDEX 1)
OUTPUT-MASTFR-FILE .LENGTH FiifkIECK-FILE .LENGTH)

(EQ NAM~E-IN (QUAL NA!1E TIME-CAFD)

QUAL NAME PAYciECK))
[EQ G]ROSS-PAY-TO-DATE-OUT (PLUS GROSS-PAY-TO-DATE-IN

(ROUND 999V99
(TIMES WEEKLY-SALARY-IN

(DIVIDE
HOURS-WORKED-THIS-WEEK 40]

(EQ HOURS-WORKED-TO-EATE- OUT (PLUS HOURS-WORKED-TO-DATE-IN
HOURS-WORKED-THIS-WEEK))

(EQ CURRENT-WEEK-OUT (PLUS 1 CURRENT-WEEK-IN))
(LTQ 1 1)
(FORALL Y (IMPLIES (AND (LTQ I Y)

(LTQ Y I))
(EQ (SELECT HOURS-WORKED-WEEKLY-IN (Y))

(IF (EQ Y I)
(SELECT ',OURS-WORKED-WEEKLY-IN

(Y))
(SELECT HOURS-WORKED-WEEKL"Y-OUT

CY])

134



Table VIII-8

___ PROOF OF VEAIFICATIOIJ CONJDITION (6-5) OF EXAMPLE PROGRAM

(AND
[±FORALL X (IMiPLIES (AND (LTQ 1 A)

(LTQ X INPUT-rMASTER-FILE.LENGTHI))
(AND (EQ (SELECT NAME-IN.ARRAY (X)

(SELECT (QUAL NAME.ARRAY TIME-CARL)
(W)

(LTQ 0 (SELECT CURRENT-WEEK-IN.ARRAY
(W))

(LTQ (SELECT CURRENT-WEEK-IN .ARRAY
WX)

51]
(EQ IA PUT- KAS rER- FILE. LENGT9 TIM.E-CARD-FILE.LENG3TH)
[FOR ALL

x
(IciPLIE03

(AND (LTQ I X)
(LTQ X OUTPUT-MASTER-FILE.INDEX))

(AND (EQ (SELECT NAiME-IN.ARRAY (X))
(SELECT (QUAL NAME.ARRAY TIME-CARD)

(M)
(SELECT NAr4E-OUT.ARRAY WX)
(SELECT (QUAL NA iE.ARRAY PAYCHECK)

(W)
LEQ (SELECT GROSS-PAf-f0-DATE-0U T.ARRAY (W)

(PLUS (SELECT GROSS- PAY-TO-DATE- IN.ARRAY (W)
(ROUND 999V99 (TIMIES (SELECT

WEEKLY-SALARY-IN. ARRAY
(W)

(DIVIDE (SELECT
'1OJRS-WORKED-THIS-WEEK. ARRAY

(W)
40)

LE (SELECT iOURS-WORKED-TO-DATE-OUT.ARRAY (X))
(PLUS (SELECT HUURS-WORKED-TO-DATE-IN.ARRkY

MX)
(SELECT HoURS-WORKED-THIS-WEEK.ARRAY (XI

(EQ (SELECT CURAENI-WEEK-OUT.ARRAY (M)
(PLUS 1 (SELECT CURNENJT-WEEK-IN.ARRAY (XI

[F'ORALL Y (IM1PLIES CAND) (GTQ 1 Y)
(UTQ Y 52)
(NEQ Y (SELECT

CURRENT-WEEK-OUT. ARRAY
(X]

(EQ (SELECT (SELECT
diOU RS- WORKET)-WEEKLY-OUT .ARRAY

(W)
(Y))

135



(SELECT (SELECT
HOURS-WORKED-WEEKLY-IN .ARRAY

(W)
(Y]

(EQ (SttLEC' (SELECT dJURS-WORKED-WEEKLY-OUT.ARRAY
(W)

(SELECT CURRENT-WEEK-OUT.ARRAY (X))
(SELECT HOURS-WORKED-THiis-WEEK.ARRAY (XI

(EQ (SUBiERACT INPUT-iIASTEH-FILE. LENGTH 1)
(sutbTRACT TIME-CA8D-FILE. INDEX 1)

OJTPUT-M4ASrER-FILE.LENGTH PAYCHECK-FILE.LENGTH)
(EQ NAME-IN (QUAL NAME TlI,iE-CARD)

H AViE-OUT
(QUAL NAMAE PAYCHECK))

IEQ jROSS-PAY-T6-DATE-OJT (PLUS GROSS- PA Y-TO- DATE- IN
(ROUND 999 V99

(TIMES WEEKLY-SALARY-IN
(DIVIDE

HOUR-WORKED-THIS-WEEK 401
(EQ HOR-CKDP-A~7C(PLUS HJURS-WORKED-TO-DATE-IN

HOURS-WORKED-THIS-WEEK)

(EQCURENTWEE-OU ~p(S~CURRENTi-WEEK-IN))
(LTQ 1 1)
(FORALL Y 'FPLLE AND (LTQ 1 Y)

(LTQ Y (SUBTRACT I 1)
(EQ (SELECT HOURS-WORKED-WEEKLY-OUT (Y)

(SELECT HOORS-dORKED-WEEKLY-IN (Y)
'L2 (FORALL Y (-.1q TZS (AND (LTQ I Y)

(LTQ Y (SUBTRACT I M)
(EQ (SELECT IURS-WORKED-WEEKLY-OUT (Y))

(SELECT HOURS-WORKED-WEEKLY-IN ( Y]
L3 (IAPLIES (AND (LTQ 1 Y)

(LTQ Y (SUBTRACT I 1)
(EQ (SELECT HOURS3-4ORKED-WEEKLY-OUT (Y))

(SE-LECT HUURS-WORKED-WEEKLY-IN (Y]
~4 ( AND ( LTQ :Y)

(LrQ Y (SUBTRACT I 1J
P-) (EQ (SELECT H,)ORC'-WORKED'I-WEE-KLY-OUT (Y))

(SiELECT driDRS-WORKED-WEEKLY-IN (Y]
[6 (T iPLIES (NOT (EQ Y I))

(EQ (SELECT HOURS-WORKED-WEEKLY-OUT (Y))

(SELECT riu)URS-WOHKED-WEEKLY-IN (Y]
1-7 (EQ (SELECT HOURS-WJRKED-WEEKLY-IN (Y))

(SELECT HOURS-WORKED-WEEKLY-IN (Y]
LH(ILILIE.G (EQ Y I)

(EQ (SELECT iOURS-WORKED-WEEKLY-IN WY)
(SELECT HOURS-WORKED-WEEKLY-IN (Y]

L9 (E.Q (SLo;HJURS-W~hKED-WEEKLY-Il rY))
(IF (EQ Y I)

(ZELECT HOURS-WORKED-WEEKLY-OUT (Y]
LIo :.rLIES (AND (LTQ 1 Y)

(LTQ Y (SUBTRACT i 1))

13 6



(EQ (SELECT dOURS-WORKED-WEEKLY-IN Y))
(IF (EQ Y I)

(SELECT dOURS-WORKED-WEEKLY-IN (Y))

(SELECT tiOURS-WORKED-WEEKLY-Odr (Y]
(11 (EQ Y I))
(12 (NOT (EQ Y I)))
[13 (EQ (SELECT HOURS-WURKED-WEEKLY-OUT (M)

(SELECT tiURS-WORKED-WEEKLY-IN (Y]
14 (IiPLIES (NOr (EQ f I))

(EQ (SELECT dOURS-WORKED-WEEKLY-OUT (Y))
(SELECT HOURS-WORKED-WEEKLY-IN (Y]

L15 (EQ (StLECT -iUURS-WORKED-WEEKLY-IN (Y))
(SELECT HOURS-WORKED-WEEKLY-IN (Y]

£16 (IMPLIES (EQ Y I)
(EQ (SELECT ,iOURS-WORKED-WEEKLY-IN (M)

(SELECT iOURS-WORKED-WEEKLY-IN (Y]

L 17 (EQ (SELECT dOURS-WORKED-WEEKLY-IN (Y))
(IF (EQ Y I)

(SELECr iuURS-dORKED-WEEKLY-IN (Y))
(SELECT riOUR3-WORKED-4EEKLY-OUT (Y]

£18 (IMPLIES (EQ I I)
(EQ (SELECT HOURS-WORKED-WEEKLY-IN (Y))

(IF (EQ Y I)
(SELECT HOURS-WORKED-WEEKLY-.IN (Y))
(SELECT HOURS-YWORKED-WEEKLY-OUT (Y]

[19 (IL.IIPLIES (OR (AND (LTQ 1 Y)
(LTQ Y (SUBTRACT I 1)))

(EQ Y I))
(EQ (SELECT AOURS-WORKED-WEEKLY-IN (Y))

(IF (EQ Y I)
(SELECT iCURS-WORKED-WEEKLYIN (Y))
(SELECT HOURS-WORKED-WEEKLY-OUT (Y]

[20 (AND (LTQ I Y)
(LTQ Y (SUBrRACT I 1]

(21 (LTQ i I))
(22 (OR (LTQ Y (SUBTRACT I ))

(EQ Y I)))

(23 (LQ Y (SUBTRACT I )))
(24 (L-' 1 Y))
L25 (AND (Li'Q I Y)

(LTQ f (SUbTRACr I 1]
(26 (OR (AND (LTQ 1 Y)

(LTQ Y (SUBTRACT I )))
(EQ Y I)))

[27 (I,-iPLIES (LTQ Y (SUBTRACT 1 1))

(OH (AND (LTQ 1 Y)
(LTQ Y (SUBTRACT 1 1)",

(EQ iI
(28 (EQ Y I))
(29 (OR (AND (LrQ 1 Y)

(LTQ Y (SUBTRACT I I)))
(EQ Y 1))

L3J I,'iPLIES (EQ f I)

137



(OR (AND (LTQ IY)

LTQ Y ( SUE31h AJ -- I))M
(E:Q y 11

~31 oti k AN D ( LTQ )
(L TQ f(SIThTRAki' I 1)

(EQ Y IM)

~3, (EQ ( SELECT -i31ThS-WGHKED-WEEKLY-IN ( Y))
(IF (EQ f I)

(SE2LECT AjU.R3-WhKED-WE2EKLY-Il4 (Y))

(SELECT Auh.u:S-WJRKED-WEEKLY-OUT (Y]

L 33 (1, PLIES ( AND (L TQ IY)

(EQ (SELEcr -i> :S-'.-'OKED-WEEKLY-lDJ (Y))
(IF ( t'2 I)

kELECI :i3UR3-WQRKED-WEEKLY-IN (M)

HLCTiURS-WORKED-WEEKLY-OUT (Y]

-,4 Ot RALLY L~iPL1. ( AND (LIQ 1 Y)
(!>Q y I))

(SLLECC iOURS-WORKED-WEEKLY-IN
(y))

k ELEC'T AiOLJS-WORKED-WEEKLY-OUT
(Y]

35

VO RA LL X 1,.Lr AN P~ X)
L2,Q X INPUT-iAASTFR-FILE.LENGTH))

SQ SELECT 4AME-IN.ARRAY (X))
'SELE:CT (QUAL NAME.ARRAY TIME-CARD)

(W)

".'Q 3 (SELECT CURRENT-WEEK-IN.ARRAY
(x))

(S;,LECf rJRRENT-WEEK-IN.ARRAY
X))

4") ILE LENGTH)

X ),JI .- A IHFL.NDEX)
AIN~L 0 C -- - At AY (X)

141- NAME_.!ARRAY r:i,'E-CARD)

SE C." QJAL NAME.ARRAY PAYCHECK)

si:LEcr Q3-D PAY-- J-DATE-OUT.-ARRAY (CX))

[41S ;'.LCT ('.OSS- PAY-Ti-DA E- IN .ARRAY (X)"
)Vf'Vl I IAE3 ( SELECT

WEEKLY-SALARY.-4N.ARRAY
(x'

1 38



(DIVIDE (SELECT

(EQ (SELECT iURS-WORKED-T-DArE-OUT.ARRAY W)
(PLUS (SELECT HOURS-WORKED-TO-DATE-IN.ARRAY

Wx)
(SELECT rdOURS-WDBKED-T.,jIS-WEEK.ARRAY (XI

[EQ (SELECT CURRENT-WEEK-OUT.ARRAY Mx)
(PLUS I (SELECT CURRENT-WEEK-IN.ARRAY (XI

[FORALL Y (IMPLIES (AND (GTQ I Y)
(LTQ Y 52)
(NEQ Y (SELECT

CURRENT-hqEEK-OUT .ARRAY
(XI

(EQ (SELECT (SELECT
HOURS-WORKED-WEEK(LY-OUT.ARRAY

(Y)) 
M

(SELECT (SELECT
HOURS-WORKED-WEEKLY-I.N.ARRAY

WX)
CY]

(EQ (SELECT (SELECT tdOURS-WORKED-WEEKLY-OUT.ARRAY
W)

(SELECT CURRENT-WEEK-OUT. ARRAY (X)))

(SELECT HUULRS-WORKED-TrIS-WEEK.ARRAY (XI
(EQ (SUBTRACT INPUT-M4ASrER-FILE.LENGTH 1)

(SUi3TflAT rIAE-CAHD-FILE.IWDEX 1)
OUTPUT-iAASTEii-FILE.LFWGTH PAYCHECK-FILE.LENGTiI)

(EQ NAPIE-1. (QUAL NAME riiiE-CARD)
N A±E- OUT'
(QUAL NAME FAiCtIECK))

(EQ GROSS- PAY-TO-DATE-OUT (PLUS GROSS- PAY-TO- DATE- IN
(ROUND 90999

(TIMES WEEKLY-SALARY-IN
(DIVIDE

HOURS-WORKFD-THIS-WEEK '40)
CEO HOURS-Wu,3KED-10-DArE-O)UT (PLUS HJURS-WOBKED-TO-DATE-IN

HOURS-WORKED-THIS-WEEK))
(EQ CURRENT-viEEK-GUT (PLUS I CURRENT-WEEK-IN))
(LTQ I M))

L36
(AND

~FORALL X Ctl?LIES3 ( AND ( LTQ 1 X)
(LTQ X INPUT-R4AST' R-FILE.LENGTH))

(AND (EQ (SELECT NAME-1IN.ARRAY MX)
(SELECT (QUAL NAME.ARRAY TIPIE-CARD)

MX))
(LTQ 0 (SELECT CURRENT-WEEK-IN.ARRAY

(X)))
CLTQ (SELECT CURRENT-WEEK-IN.ARRAY

MX)

139



£ FORALL
x

(AND (LTQ 1 X)
kLTQ X OUTPUT-A~SrEH-FILEINDEX))

(AND (EQ (SELECT NAME-IN.ARRAY (X))
(SELECT (QUAL NAV4E.ARRAY TIME-CARD)

MX)
(SELECT NALIE-OUT.ARRAY (W)
(SEJLECT (QUAL NAi1E.ARiRAY PAYCHECK)

(EQ (SELECT GRUSS-PAY-rG-DATLE-OUT.ARRAY (W)
(PUS (SELECT G ROSS- PAY-TO-DATE- IN .ARRAY (W)

(ROUNO 939V99 '(TI ES (SELECT
vlEEKLY-SALARY-IN .ARRAY

(DIVIDE (SELECT
APUIRS-WO0RKED-THIS-W4EEX(. RRAY

C X))
~40J

:.k SELE"T !§R-CK-T-AEOTHAY(X))
(PLU-S (SEIECT !i3URS-wORKED-Tj-DATE.-IN ARRAY

(W)
(SELECT HBURS-yORKED-THIS-WEEK.ARRAY (XI

£. SELECr CUiRRF~f-WEEK-OUT.ARRiAY (X))
PLJS (SFEECT CUPRENT-WEEK-IN.ARRAY (XI

FhALY [.PIc AND (GTQ 1 Y)
(LTQ Y 9?)
(NEQ Y (SELECT

CURRENT-WEEK-OUT. ARRAY
(Xi

\EQ (SELECT (SELECT
HO0URS-WORKED-WEEKLY-OUT .ARRAY

MX)
Y(W

(SELECT (SELECT
HOURS-WORKED-WEEKLY-IN. ARRAY

WX)
(Y)

3~. ELECT NUOURS-WORKE D-WEEKLY-OUT.ARRAY

(SEIL7CT CURRFNT-Wt.EK-OUT.ARRAY (W)
SYLti UR3-WORKED-TifS-,4FEK. ARRAY (XI

1.4 ~~A PU,-A'AS[FEr-F ILE. LENG T,- 1)
3U~r'i-IIE-LiA-Ji:- FILE. ' DEX 1)

VPJL-sA ri -F 1, U.LENGTH PAYOHECK-FTLE.LENGTH9)

R, A, ( PLU 3 ;PO SS- PA Y- TJ-DATE- IN
RUUND 10V?9



(TtIES WE EKLY-SALARY-IN
(DIVIDE

HOURS- WORKED-THI 3-4EEK 40O)
(EQ tiOURS- WORKED-TO-DATE-OUT (PLUS HOURS- WORK ED-TO-DATE-IN

HOUIRS- WORK ED- THI S- WEEK))
(SQ CURRFNT-WEEK-OUT (PLUS ICURRENT-WEEK-IN))
(LTQ 1 1)
(FOFRALL Y (Ii4PLIE3 (AND (LTQ I Y)

(LTQ Y 1))
(EQ (SELECT HJURS-UORKED-WEEKLY-IN (Y))

(IF (EQ y I)
(SELECT ioURS-WORKED-WEEKLY-IN

(Y))
(SELECT iOURS-WORKED-UFEKLY-OUT

(Y3
L3

7

(I, iPLIES
(NOT (GT I 52))
(AND

[FOhALL X (IMPLIES (AND (LTQ 1 X)
(LTQ K INPUT-.-ASrER-FILE.LEN~rH))

(AND (EQ (SELECT M'AEI.AR C)
(SELE~r (QUAL NAME.ARRAY TIME-CARD)

(W)
(LTQ 0 (SELECT CURRENT-WEEK-IN.ARRAY

(X)
(LTQ (SELECT CURRENT-WEEK-IN.ARRAY

WX)
51)

(EQ IAP0T-i-ASrEH-FILE.LENUT1 TIME-CARD-FILE.LENGT4)
[FORALL

x
(IoPLIES

(AND (LTQ 1 A)
(LTQ X OUTPUT-MASrEIR-FILE. INDliX))

(AND (EQ (SELECT AAME-INi.ARRAY (W)
(SELECT (QUAL NAME.ARRAY TIA-E-CARD)

00)
(SELECT NAM~E-OUT.ARRAY WX)

(SELECT (QUAL NAME.ARRAY PAYCHECK)
(W)

[EQ (SELECT GRCSS-PAY-rO-DATE-OUT.ARRAY kX))
(PLUS (SELECT GROSS-PAY-TO-DATE-IN.ARiAY (M)

(ROUND 991V9Q (TIMES (SELECT
WEEKLY-SALARY-IN .ARRAY

M)
(DIVIDE

('.'ELECT
cOURS-WORKED-THIS-WffEK. ARRAY

EQ (SELECT diURS-UORKE D-TO-DATE-OUT.ARRAY (X))
(PLUS (SELECT iORS-WORKED-PJ)-DATE-It .A9RAY

141



[ 38 

(X)) 
(SELECT rlOURS-WORKED-THIS-WEEK.ARRAY 

(X] 
[EQ (SELECT CURRBNT-WEEK-OUT.ARRAY (X)) 

(PLUS 1 (SELECT CURRENT-WEEK-IN.ARRAY (X] 
[FORALL Y (IMPLIBS [AND (GTQ 1 Y) 

(LTQ Y 52) 
(NEQ Y (SELECT 

CURRENT-WEEK-OUT.ARRAY 
(X] 

(EQ (SELECT (SELECT 
HOURS-WORKED-WEEKLY-OUT.ARRAY 

(X)) 
( y)) 

(SELECT (SELECT 
HOURS-WORKED-HEEKLY-IN. ARRAY 

(X)) 
(Y.} 

(EQ (SELECT (SELECT HOURS-wORKED-wF:EKLY-OUT.ARRAY 
(X)) 

(SELECT CURRENT-WEEK-OUT.ARRAY (X))) 
(SELECT HOURS-WORKED-THIS-WEEK.ARRAY (X] 

(EQ (SUBTRACT INPUT-MASTER-F'ILE.LENGTli 1) 
(SUBTRACT TIME-CARD-FILE.INDEX 1) 
OlJTPUT-l"'ASTER-FILE. LENGTH PAYCl!ECK-FILE. LENGTH) 

(EQ NAi"iE-IN (QUAL NAME TIME-CARD) 
NAI'1E-OUT 
(QUAL t~Ar-1E f'AYOiECK)) 

[EQ GROS3-PAY-TO-DATE-0UT 
(PLUS GROSS-PAY-TO-DATE-I~ (ROUND 999V99 

(TIMES WEEKLY-SALARY-IN 
(DIVIDE 

HOURS-WORKED-THIS-WEEK 40] 
(EO HOURS-WORKED-TO-DATE-OUT (PLUS HOURS-WORKED-TO-DH.TE-IN 

HOURS-WORKED-THIS-WEEK)) 
(EQ CUnRE~f-WEEK-OUT (P~US 1 CURRENT-WEEK-IN)) 
( LTQ 1 I) 
(fORALL Y (IMPLIES (AND (LTQ 1 Y) 

(LTQ Y I)) 
(EQ (SELECT HOURS-WORKED-WEEKLY-IN (Y)) 

(IF (EQ Y I) 
(SELECT rlOURS-WORKED-WEEKLY-IN 

( y)) . 
(SELECT HOURS-WORKED-WEEKLY-OUT 

(Y] 

( h:t>LIE~; 
[ f1ND 

[~ORALL X (IMPLIES (AND (LTQ 1 X) 
(LTQ X INPUT-MASTER-FILE.LENGTHi) 

(AND (EQ (SELECT NAME-IN.ARRAY (X)) 

BEST AVAILABLE COPY 

(SELECT (QUAL NAME.ARRAY TIME-CARD) 
(X))) 

142 



(LTQ 0 (SELECT CURRENT-WEEK-IN.ARRAY
(W))

CLTQ (SELECT CURREIT-WEEK-IN.AHRAY
W)

51]
(EQ IWPUT-MASh-iFILE. LENGTA TIi1E-CAFRD-FILE LENGTH)
[FOR ALL

X
(IMPLIES

(AND (LTQ 1 X)

(LTQ X OUTPUT-MASTE-FILE.IIDEX)
(AND (EQ (SELECT JAA'E-IN.ARRAY CX)

(SELECT (QUAL NAME.ARRAY TIi4E-CARD)
WX)

(SELECT NA±IE-OUT.ARRAY WX)
(SELECT (QUAL NAME.AHRAY PAYCHECK)

WX))
[EQ (SELECT UGROSS-PAY-TO-DATPE-OUT.ARRAY CM)

(PLUS (SELECT GfROSS-PAY-T0-DAT;;E-IN.ARRAY MX)
(ROUND 999V9 (r~iES (SELECT

WEEKLY-SALARY-IN .ARRAY
CX)

(DIVJIDE
(SELECT

HOURS-WORKED-T~IIS-WEEK. ARRAY

~401I
LEQ (SELECT -iOURS-WORKED-TO-DAr'E-OUT.ARRAY CX)

(PLUS (SELECT tioURS-WORKED-TO-DATE-IN.ARRAY
CX)

(SELECT -CUiS-WRKED-TIS-WEEK.ARRAY
CX]

[EQ (SELECT CJRREN-l-WEEK-OUT.ARRAY CX))
(PLUS I (SELECT CURR3ENr-vlEE-K-IN.ARRAY (XI

[FORALL Y (IMPLIES [AND CGTQ 1 Y)
(LTQ Y 52)
CNEQ Y (SELECT

CURRENT-WEEK-OUT .ARRAY
(XI

(EQ (SELECT C(SELECT
HOURS-WORKED-WEEKLY-OUT .ARRAY

CX/)
C(y))

(SFLECT (SELECT
HOURS -WORKED-WEEKLY-IN .AR' AY

WX)
(y]

(EQ (SELECT (SELECT -JR3-WORKED-WEFEKLY-OUT.ARRAY
(W)

(SELECT CURRENT-WEEK-CUTr.ARRAY (W)
(SELECT tiUHS-WORKFD-THIS-WEFEK.ARRAY (XI

(EQ (SUBTRACT INPUr-I1ASTEHt-FILE.LENCTH 1)
(SUBTRAUT rIoE-CArhD-FILE. INDEX 1)

143



OUT PUT-t•!ASTER-FILE. LEl~GTH PAYQ-! ECK-FILE. LEI'lGTH) 
(EQ NAME-IN (QUAL NAME fiME-CARD) 

NA1'1E-O!JT 
(QUAL NAI'!E PAYOiECK)) 

[EQ GROSS-PAY-TO-DATE-OUT 
(PLUS GROS3-PAY-T0-DAT8-IN (ROUND 999V99 

(TIMES WEgKLY-SALARY-IN 
(DIVIDE 

HOURS-WORKED-THIS-WEEK 40] 
( EQ rlOlJ R3- \vOR KED- TO-DATE-OUT (PLUS HOURS-WORKED-TO-DATE-IN 

HOURS-WORKED-THIS-WEEK)) 
(EQ CURRENf-WE~K-OUT (PLUS 1 CURRENT-WEEK-I~)) 
(LTQ 1 I) 
(fOR ALi_. Y (It JPLIE.3 (AND ( LTQ 1 Y) 

(LTQ Y (SUBTRACT I 1))) 
(EQ (SELECT rlUURS-WORKED-WEEKLY-OUT 

( Y)) 

( livlflLIES (SELECT rlOURS-WORKED-WEEKLY-IN (Y] 

·• 

( NOT ( GT I '.52) ) 
(AND 

[FOHALL X (IMPLIES (AND (LTQ 1 X) 
(LTQ X INPUT-MA3TER-riLE.LENGTH)) 

(AND (EQ (SELECT NAME-IN.ARRAY (X)) 
(SELECT (QUAL NAME.ARRAY 

TIME-CARD) 
(X) ) ) 

(LTQ 0 (SELECT CURRENT-WEEK-IN.ARRAY 
(X) ) ) 

(LTQ (SELECT CURRENT-WEEK-IN.ARRAY 
(X)) 

51 ] 
(EQ INPUT-MASTER-FILE.LENJTH TIME-CA~D-FILE.LENGTH) 
[ FORALL 

X 
(It-JPLIES 

(A!'W (LTQ 1 X) 
(LTQ X OUTPUT-MASTER-riLE.TNDEX)) 

(AND (EQ (SELECT NAME-IN.ARRAY (X)) 
(SELECT (QUAL NAME.ARRAY TIME-CARD) 

(X) ) 
(SELECT NAME-OUT:ARRAY (X)) 
(SELECT (QUAL NAME. ARRAY PAYCHECK) 

(X) ) ) 

[EQ (SELECT GROSS-PAY-TO-DATE-OUT.ARRAY (X)) 
(PLUS (S£LECT GROSS-PAY-TO-DATE-IN.ARRAY 

(X) ) 
(ROUND 999V99 

( TI l'1ES (SELECT 
WEEKLY-SALARY-IN.ARRAY 

(X)) 
(DIVIDE (SELECT 

HOURS-WORKED-THIS-WEEK.ARRAY 

144 

• 



MX)
1401

[EQ (SELECT 30UFR3-WORKEfl-T0-DATE-OUT.ATRRAY M)
(PLUS (SELECT iiOJRS-WORKED-TO-DATE-IJ .ARRAY

MX)
(SELECT rHOURS-WORKED-Td-U5-WEEK. ARRAY

(Xl
[EQ (SELECT CURREdi'-WEEK-OUT.ARRAY (X)

(PLUS 1 (SELECT CURRENT-WEEK-INARRAY (K]i
[FORALL Y (IPLIES [AND (GTQ 1 Y)

(LTQ Y 52)
(NEQ Y (SELECT
CURRENr- dEEK.-OUT.ARRAY

(XI
(EQ (SELECT (SELECT
H0JRS-W0RKFD-WEEKLY.-0UT.ARRAY

Mx)
My)

(SELECT (SELECT
-bJ0RS-W0RKED-W4EEKLY-IN .ARRAY

MX)

(Y3
(EQ (SELECT (SELECT i-URS-gUORKED- iETKLY-0uT.ARRAY

MX)
(SELECT CJRRE 4T-WEEK-OUT.ARRAY (M)

(SELECT HOlUR3-WORKED-TAIS-WE' K.A.iAY (XI
(EQ (SUHrRAJT INPUT-MASTER-FILE .LENGTI 1)

(3U8TRACT ZIME-CAnD-i'ILE. INDEX 1)
OUTPUT-itAST>- FILE. .LtiIGTH PAYCHECK-FILE.LEN3T~i)

(EQ NA,-iE-i.4 (QUAL NAM'E HF~i1-CM)
,qAIE-OUT
(QUAL NAM~E PAYCHECK))

IIEQ ;ROSi-PAY-Tj-DAT.-'-JT
(PLUS D;HSS-PAY-7D-DATE-.'

(ROJ4D 9Q4V99 (IME 3 WEE(LY-SALARY-IN
DIVIDE HdHS- WORK ED-THIS-WEIEK

40)
(EQ HJURS-W3iKED-T,,;-DATE-a0U7 (PLUS 4URS-'l0RK--D-T0-DArE-IN

HOU RS- CR KED-TH-IS- WEEK))
(EQ CURRrNT-WEEK-OiJT (PLUS I CURRFNr-wEF.K-IN)
(LTQ 1 I)
(FO(RALL Y (CIPLIES (AND (LTQ 1 Y)

(LTQ f' 1))

(EQ (SELECT .10JRS-WORKED-4ESKLY-IN
MY)

(IF' (EQ Y 1)
(SELECT i,;RS-W0RK7-D-WE--KLY-IN

(y) )
(SELECf HGJLS-WORKED-WEEKLY-OUT

(Y]I

145



Table VIII-9 

INFERENCE RULES FOR PROOF PRESENTED IN TABLE VIII-8 

1. hyp. 

2. f\ A ••• A A
11 

l- Ai (1 ~ i ~ n), 1 

3. inst. y, 2 

~~. hyp. 

5. m.p.,3,4 

6. B 1- A:JB, .5 

7. A= A 

8. B rA:=;B, 7 

A:::: x=y A""""'\1\:::l x::rz-9. 

x = if A then y else z 

(definition of conditional expression), 6, 8 

LO. dod., 14,9 

11. 

1 ') 

l ' J_ __ , ... 

hyp. 

hyp. 

A, ,A i--B, 11, 12 

li;. ded., 1.2, 13 

15. 
. (. 
j_ 0. 

A = .\ 

B l- A ~::Jl3, 15 

17. def. conclitional expression, 16, 14 

JS. ded.,ll,l7 

19. A:::>B. C=>B f--A VC~B, 10, 18 

20. hyp. 

21. A t\ B f-- B, 20 

22. x < y :_) x ~~ y + l v x = y (x, y integers), 21 

?~l. hyp. 
,, /1 n f- B, 20 " 
A, B f- A A n, 23, 24 

26. Bf- A v n, 25 

27. rlod. , 23, 26 

28. hyp. 

29. nt- A v B, 28 

- -BEST·AVAitABI:I:!'COPY 
146 

.. 



30. ded., 28, 29

31. A v C, A D B, C D B I- B, 22, 27, 30

32. m.p., 19, 31

33. ded., 20, 32

34. gen. y, 33

35. A A B I- A, 1

36. A, B - A D B, 37, 36

37.B - A D B, 38

38. ded., 1, 39

LEGEND

hyp. hypothesis

inst. instantiation VxP(x) F- P(z) if Z is not free in P(x)

gen. generalization P(x) I-VzP(z) if Z is not free in P(x)

m.p. modus ponens ADB, A - B

ded. deduction (A H- B) - A : B

sub. substitution according to free variable rules.

147



IX CONCLUSIONS

A. General

This work has shown the feasibility of the verification of COBOL

programs in realistic application areas. The main result of the project

has been to uncover some major remaining difficulties that must be re-

solved to make verification an effective tool.

Achievements of this project are:

(1) Decomposition of the verification process into stages,
making the system easier to implement and to interact
with.

(2) A very effective axiomatization of the COBOL data structures

and control statements, that fits well into the structure
of the verification system.

(3) A process that yields verification conditions that are
simple to prove, although there are many verification
conditions to prove, even for a simple program.

The major problems of COBOL verification as encountered in this pro-

ject are:

(1) Verbosity of the programs, assertions, and verification

conditions.

(2) The semantic complexity of the COBOL language.

These two problems have a trade-off in their solutions. A verification

system that handles the semantic complexity directly makes the verifica-

tion conditions less verbose, but a system that translates the complexity

into simpler units makes the verification conditions more verbose.

The remaining research involved in COBOL verification should be

aimed at making it possible to verify bigger, more complex COBOL programs,

more easily and with more machine aid. This means doing basic research

in techniques to structure the complexity of COBOL verification, while

at the same time engineering the developing system to make things more

convenient for the user. We believe that the following tasks would

yield significant benefits in both of the above areas:

(1) Enlarging the subset of COBOL amenable to verification.
This means dealing with the problem of character strings
and their relation to numeric data.

149

Ji



(2) Engineering the parts of the system to make them easier

to use.

(3) Research on deductive systems, including incremental

simplification during posttransduction processing and

verification condition generation.

(4) Work on techniques to help write COBOL programs that are

easier to verify. These would include management tech-

niques to restrict the kinds of programs written and

possible minor syntactic changes to the language.

(5) Extension of the assertion language to make it easier

to state abstract properties of COBOL programs.

(6) Exploration of the use of data abstraction techniques

to enable the verification of large, structured COBOL

programs.

(7) Development of an interactive COBOL environment closely

coupled with the COBOL verification system.

B. A Note on a Proramming Environment for COBOL

A COBOL verification system is not like a compiler, because a pro-

grammer cannot submit a program with assertions to the verifier and

receive a verified program as output. Closely coupled interaction with

the verification system is required at all stages of the verification

process, and frequent changes to both programs and assertions are to

be expected.

A program should be developed for verification. Operations required

on these programs (e.g., formal testing, symbolic tracing, debugging)

can be performed optimally under close interaction with the programmer.

25
T, has also been -ubstantiated that interactive programming improves

program reliability and programmer productivity.

Finally, we feel that programmers will not write assertions for

programs unless such a task is made easy for them by their programming

environment. The need for tools designed for this purpose is great.

We feel that building these tools around an interactive interpreter

for COBOL programs is the best way to proceed to the ultimate goal of

making program verification usable. Even if the remaining research

izsues are resolved, it will take much time before the best environment

t ,r ,erification is achieved. We believe that enough is now understood

about the nature of COBOL verification to enable an effective environ-

ment to [e built.

150



X REFERENCES

1. L. Robinson and K. N. Levitt, "Proof Techniques for Hierarchically

Structured Programs," Technical Report, Stanford Research Institute,
Computer Science Group, Menlo Park, California (January 1975),

submitted for publication.

2. L. Robinson, K. N. Levitt, P. G. Neumann, and A. R. Saxena, "On

Attaining Reliable Software for a Secure Operating System,"
Proceedings International Conference on Reliable Software, 21-23

April 1975, Los Angeles, California, pp. 267-284 (April 1975).

3. J. von Neumann and H. H. Goldstine, "Planning and Coding Problems
for an Electronic Computer Instrument, Part II, Vol. 1-3" John

von Neumann, Collected Works, Vol. 5, pp. 80-235, Pergamon Press,

New York (1963).

4. R. W. Floyd, "Assigning Meanings to Programs," Proceedings American

Mathematical Society Symposium in Applied Mathematics, Vol. 19,
pp. 19-31 (1967).

5. P. Naur, "Proof of Algorithms by General Snapshots," BIT 6, pp.310-
316 (1966).

6. B. Elspas, K. N. Levitt, and R. J. Waldinger, "Design of an Inter-
active System for Verification of Computer Programs," SRI Report,
Project 1891, Stanford Research Institute, Menlo Park, California
(July 1973).

7. S. Igarashi, R. London, and D. Luckham, "Automatic Verification of
Programs I: A Logical Basis and Implementation," Memo AIM-200,
Stanford Artificial Intelligence Laboratory, Stanford University,
Stanford, California (May 1973).

8. C. A. R. Hoare and N. Wirth, "An Axiomatic Definition of the Pro-

gramming Language PASCAL," Acta Informatica 2, pp. 335-355 (1973).

9. S. Katz and Z. Manna, "Semantic Analysis of Programs," unpublished

paper (1975).

10. E. W. Dijkstra, "Guarded Commands, Nondeterminacy, and a Calculus

for the Derivation of Programs," Proceedings International Confer-
ence on Reliable Software, 21-23 April 1975, Los Angeles, California

(1975).

11. R. L. Sites, "Clean Termination of Computer Programs," Ph.D. Disser-
tation, Stanford University, Stanford, California (June 1974).

12. American National Standard Programming Language COBOL. American
National Standards Institute, New York (1974).

13. P. Wegner, "The Vienna Definition Language," Computing Surveys 4,
1, pp. 5-63 (March 1972).

151



14. CODASYL Data Base Task Grou Reort, Association for Computing

Machinery, New York (April 1971).

15. W. Teitelman, INTERLISP Reference Manual,Xerox Palo Alto Research

Center, Palo Alto, California (1974).

16. D. G. Bobrow, J. D. Burchfiel, D, L. Murphy, and R. S. Tomlinson,

"TENEX, A Paged Time Sharing System for the PDP-IO," Comm. ACM 15,
3, pp. 135-143 (March 1972).

17. B. Elspas, R. S. Boyer, R. E. Shostak, and J. M. Spitzen, "A

Verification System for JOVIAL/J73 Programs," Draft Final Report,

SRI Project 3756, Stanford Research Institute, Computer Science

Group, Menlo Park, California (November 1975).

18. C. A. R. Hoare, "An Axiomatic Basis for Computer Programming,"

Comm. ACM 12, 10, pp. 576-581 (October 1969).

19. B. Liskov, 'An Approach to Abstraction," MIT Project MAC, Computa-

tion Structures Group, Memo 88, Massachusetts Institute of Tech-

nology, Cambridge, Massachusetts (September 1973).

20. W. A. Wulf, "ALPRARD--Toward a Language to Support Structured Pro-
gramming," Carnegie-Mellon University, Pittsburgh, Pennsylvania,

unpublished paper (April 1974).

21. P. G. Neumann, L. Robinson, K. N. Levitt, R. S. Boyer, and A. R.

Saxens, "A Provably Secure Operating System," Final Report, SRI

Project 2581, Stanford Research Institute, Menlo Park, California

(June 1975).

22. E. W. Dijkstra, "Notes on Structured Programming," Structured

Programmin, C. A. R. Hoare (ed.), Academic Press, New York

(1972).

23. H. D. Mills, "How to Write Correct Programs and Know It," Proceedings

International Confereice on Reliable Software 21-23 April, Los

_;. (, i i frrn i, , p. 363-370 (April 1975).

2-1. E. Mendelson, Introduction to Mathematical Logic, Van Nostrand,

Princeton, New Jersey (1964).

25. M. M. Gold, "Time-Sharing and Batch--An Experimental Comparison

of their Values in a Problem-Solving Situation," Comm. ACM 12,

5 (May 1969).

?(V A. P Morse. A Thcorv of Sets Academic Press, New York (1965).

152



GLOSSARY

Abstraction - a technique for hiding particular parts of a phenomenon
(e.g., a programs behavior) to make the other parts of that pheno-
menon easier to understand.

Assertion - a predicate in first-order logic concerning the values of
variables in a program.

Assertion, inductive - an assertion placed within the program text to
break up the program's flowchart into simple paths containing a
fixed number of program statements.

Assertion, input - an assertion that constrains the values of a program's

input data.

Assertion, output - an assertion that relates the values of a program's
input data to the values of its output data.

Assertion language - first-order logic along with some predefined func-
tions that express the semantics of domains that may be related
to a programming language (e.g., integers, reals, strings, and
arrays).

Checks, compile-time - any decidable restrictions on a program that can
be placed on its source code, i.e., detectable from the syntax
alone.

Checks, run-time - any restrictions on a program's execution that are
not decidable until the program is executed with a particular set
of input data.

Deductive system - a program that attempts (with or without user guidance)
to generate a formal proof of a verification condition.

Language, real - a programming language that is used in some kind of
software production.

Ordering, dynamic - ordering of the execution of a program's statements,
which is dependent on the input data.

Ordering, lexical - ordering of statements in the source code of a program.

Path - a sequence of program statements that is executed for particular
values of the input data; it can be infinite.

Path, simple - a path that executes a fixed, finite number of program
statements for any values of the input data; a program's flowchart
can be broken up into a set of simple paths.

Posttransduction processing - translation of a transduced form of a
program into another internal form that is suitable for verifica-

tion condition generation.

Terms applying to COBOL alone are not defined here. Check Reference

12 for definition.

153



Program verification - the process of proving that the behavior of a

program is consistent with an input assertion and an output

assertion.

Proof checker - a simple program to check the output of a deductive

system to see if the proof is logically sound.

Semantics - the rules that determine how any element of a language is

interpreted, in terms of some model.

Simplification - application of algebraic and propositional rewrite

rules to reduce the complexity of a formula.

Structured programwing - a discipline for reducing the complexity of

programs by using control primitives to guarantee nested flow-

charts. (Note: this is not Dijkstra's definition of the term.)

Subset - a restriction of the syntax of a language that is also com-

patible with the language's semantics.

Syntax - the rules that determine for a given whether a character string

is an element of a particular language.

Termination - a propcrty of a program stating that the program finishes

execution in finite time for particular input data.

Torminaticn, c!c.an - a property of a program that includes termination

and absence of run-time errors.

Transduction - translation of a program into an internal form defined

by a Lransduction grammar.

Transdiction grammar - a set of rules defining both the syntax of a

language and an algorithm for producing an internal form for a

program in the language

Verification condition - a logical formula, produced from a program

in which assertxuns have been inserted, that is equivalent to
the ]ogical consistoncy of the program (according to some semantic

todel) and the assertions; faften referred to in the plural (i.e.,

the verif-cat.on conditions for a program).

Verification condition generator - a program that takes a program and

i sertions as ,nput, and produces a verification condition.

154



APPENDIX

CODE FOR COBOL VERIFICATION SYSTEM

The Appendix contains two sections. The first section contains

the INTERLISP code to manipulate transduction grammars, which was not

developed during the current work but was used as part of the system.

This code is not documented. The second section contains the INTERLISP

code for the symbol table (ST), posttransduction processing (PTP), and

verification condition generation (VC). The role of each function is

briefly described, along with its affiliation with one of the three

constituent modules above.

155



A. Code for Parsing and Transduction

156



(FILECREATED It 5-JAN-76 13:3'4:56" NEWPARSF..;3 1650?

previous date: 11 5-JAN-76 11:30:47" NEWPARSE.;?)
(LISPXPRI[4JT (QUOTL NEWPARSL COMS)

T T)
(OPAQj NEWPA~TSXOA S ((FNS 0NEWPARSEFNS)

(VARs rLIST OUTCOUNT FIRSTRHSCOL SECONDRHSCOL PRINTP'La)))
(RPAQQ NEWPARS ,FNS

(ABSTRACT ADDFNS ADDCN ADDSTATE COBOLTO)KrNFN C0OMPLFTE
COi1PLETEP COM'PLI3 COMPUrELOOK DELFr'S DIF EARLY
EP.ASING-INDICES EXTRACT FIND-ERASING-RULES
FLUSHGRAMA'AR FLUSHLEFT GETALT 3FTDOT GETOTSYM90L
GETLHS GETLOOK GETORIG GETORIGPTR GErARSF IETRU1LE
3ETrRAA JOVIALTOKENFN LEFTSET MAKFMATRI( MAKEPARSE
M'AKEPAR3E1 NTERMINALP OUTLINE POWER-SET PPC PREDICT
PREDICrP PRETTY-JRAMMAR PRINTGRAMAR PRINTGPPLMMAR/R
PRI~fsrATESET PURIFY PLITRULE PrITRULES PUJTTRAN
PUTTRANS SAVEGRAM SCAN SCANP SETPARSE SORTRULES
rERAMIqALS TESTINAL TRANSLATE))

(DEFIAiEQ
( A 63r iAC; r

:LALmBDA (INlPUT TjKENFN)

((EQ (CAR (QUOP NEW3RAA.iiLOAD))
(QUOTE~ NOBID) )

(SEiQ J4EWGRAi'frARLOAD T)
(ATIACH (QUOF-l; ##ROO1')

NO.17 ERAS3)
ADDDIA (QUOT-. ##RO017)

(LISP tCADR NONTE'RLiS)
(QUDT:Y RPAD))

(for NP in SPECIALNON'TERMS do (DREMOVE NT NONTRMS)
(RU4PROP NT (QUC)T-- RULES))
(REMPROP NT (QUOTEP TRANS)))

(FLuSHLEFT)
[FRPLACA (QUUP-, INPUTSTRIJfl)

(APPENJD I,4PUF (LISP (QUOWF RP40]
[for TJKF.rN in I,1PUT do QONJD

((NPt'AI~LPTOKEN)
(APPLf* TOKENFN TOKEN]

(COND
( (EAiLY)

(THANSLAT'S (MAKEPARSO))
(P (QUOfr NOGODI

(A DLEN3
~LAiL)JDA ( X)

(S.-i Q IN4P ARSt.FNS ( APPEND NEWPARSEF'NS X I
(AD DDO i

ELA.WbDA (LHS R~i5;)
(CO L'J

([N~j: (MEMER iRS (GETP LHS (QUOTE RULES]
(PJTHULE LHS RHS)
(PUTrRAN LHS (QUOTE T13)

157



ADD051ATE

[LAvi&OA (l-HS ALT Dl01 ORIG OBIGPTR LOOK PAHSELIST)
(PROG NIL,

(3S-rQ HA.'TEAl ( PACK (LISP IHS (QUO'E #i)
ALT
(QUOTE C)
DOI
(QuorE #)
OHI3))

(SETQ HAS4VAL (GETHASH HASHITEM))
(CON.)

[HASAVAL (SEPQ NEWLOOK (DIF LOOK tHASHVAL))
(CO ND

(NEWLOOK (NCONC HASilVAL NEWLOOK))
CT (RETURN]

(T (SETQ NEWLOOK LOOK)
(PlJTHASU! HASHITEM LOOK)))

(TCONC .3'ATI'SFT (NCOAC (LIST (CONS LHS ALT)

(CONS ODR! )RIO;PTR)
iEWILOOK)

')OBOLT K LNFN
LLA,-jDA ( TJ E~i

(COND
((NG:ILSE2P TJKENi)

(A oiOSt (QUiO.' nurnber)

((SPRBINOP TOKEN)
(ADDON (QUOPE string)

(LISf rOKENM)
(kLirATO,,i TOJKEN)

(ADDON (Quore- symhol)
(ISP~ fuKEN)),'

((EQ (CAR b JKENV
(QuOPr, ASSEHM)

40005N (QUO?:. -i,,rt~ion)
(LI 1SP r "' EN )))

(I (1i'RsOH "Unexpected token" TOKEN])
(CO,,IPLET b

[LA,-13DA NI~L
(r'OR iA'rE IN (SEr (GEP",3RIGPTR)

(GErLdS))
DO (PRDC;N (F.RPLAJ-D (QUOPZ. fPAPSTORI-)

(CDDDR SfATE))
( ADIP R~t' 1QJO': FELIPSTORE)

(ADD1 (CADR STATE))
(CAR 37ArPPTR)

ADDSFA>., (CAAH STATE)
(CDAR SP'ATE)
(ADD1 (CADR SfAmn))
(CAADDR STATE)

158



CCDADDR STATE~)
(CADDDR STATE)

(COMP~rEP(CDR (QuorE TEMPSTOREI)

[LALIBDA NIL
(AND (NULL DO1K-iYa-BOL)

(FiiEr4B INPLJTCHAR (GETLOOKI)
(COL-1PLIS

[LAm~BDA CX Y)
(CO ND

((NULL X)
T)

((NULL Y)
NIL)

((ALPHDRDE. (CAR X)
(CAR Y))

(CO ND
((EIQ (C4XR X)

(CAR W)
(COiIPLIS (CDR X)

(CDR Y))
CT FM)

('r AIL])
C CO iUT EL UDK

[LA1'i3DA NIL
[EiQ T--> PSFJRE (FNTH (GErRULE (GETLHS)

(GETALT))

(PLUS 2 (GETDOT]
(COND

[rEMPSFORE (CONJD
C(GETP (CAR TEMPSTORE)

(QUOfE RULES))
(LEFTStA' (CAR TEMPSTORE))

(T (LIST (CAR TEMPSTOREJ
(T (GETL~jK])

(DEL FNS
C LAiBDA MX

(SEI'Q HNEWPAi3S.-FNS (FOR Z IN NEWPARSLEFNS UNLES3 (MFrLAB Z X)
COLLECT ZI)

(DIF

CLAe'LDDA CX Y)
(FOH Z 1'4 X UJ'ESS (FJ1EMB Z Y) COLLECT ZI)

(EARLY
[LA, iBDA NIL

(PROG NIL
(s~rQ SfATE3.-J (CONS))
C CLRH ASr)
(ADos1'ATE (CAR NONIERMS)

1 0 1 NIL (CONS (QUOrE RPAD)
NIL))

[FOR IL4PUTCt{AR IN iNPUrsTRING A-, IAPUTX FROM 1
DO

(PROG;N (FOR STAi'EPTR Oil (CAR STATESET)

159



DO (CON~ll

(( PREDICTP)
(PREDicr)

((COMPLETEP)

C COND (COMPLETE]3

P RI A rFL3
(CO ND

((EQ PRINTFPLS (QUOTE ALL,))
(PRIN1 INP'JTX)
(SPACES 2)

(Tlrs3iP (PRTN1 (,EN4GTN (CAR STATESEMf)
10)

(SPACE3 1)

(SPACES 2)
(PRINT INPUTCHARI

f (PRINI INPUTCHAR)
(CO ND

((EQ TNPUTCHAR (QUJOTE RPAD))
(TERPRI))

(T (SPACES 31
(SL"EQ OLDSrATFsET STATESET)
(SETQ S1'ATESET (CONS))
'CL H dA S )
FOR '3!AiPTR ON (CAR OLDSTATESET)

DO (CONt)
((SCANP)
(SCAN]I

)(~i'.ATESET)
(F'RPLACD (QUCT-' PREDLIST)

NIL))
(PRINT (LisI'(r P SrATESET)

(ADD1 INPUTX)
(QUOIS IS)
(QUOfE S]MPTY))

(RIURN A'Iu3

t LAAPlDA (Fri
f1or X in RdAS a3 from 1 bind (TEMP) when TEH'P(FASSOC X~

ERASING-RULES)

A,)DA ( N Fr :9AN INDICES AISvWERS)
jVor T

ri TQo (I PP T5 To 77 T8 Tq T10)) as RH.ST

b~in,(! Wi;;.IA

160



do (2;3AD
[(S TQ MAXP (FASSJC N INDICES))

CTCO;JC SUB (Mi~S TI (CADDDR TEMrPI
(T (rCOrNc SUB (CONS TT (CAR TJ))

(SErQ TJ (CDR TJ))
(TCOA'C DRULE RAST))

finally [TCONC ANS.dERS (LIST (Quorc PUTRULE)
(KWOTE NT)
(KWOTE (CAR DRULE1

(TCONC ANSWERS (LISf (QUOTE PUTTRAN)
(KWOTE NT)
(KWOTE (SUBLIS (CAR SUB)

TRAN T])
(FIND-ERASI4U-RULES

LLAi~inDA (NONJTi MS)
(for NT bind ((R <NIL>)) in N3NrwR'iS

do (for RHS in (GiETP NT 'RULES) 33 TR in (,,ETP NT TRANS)
a3 I from I when RHSxNIL
do (TCONC R <NT I TR>))

finally (REiTURN R:11)
(FLUSdGtiAvh~AR

LLALii!DA NIL
ECON.)

((N'EQ (CAX (QUOTt NiNTERiAS))
(QUOi>;, NOBIND))

(PROG3N (FOR NT IAJ kiONTERo~S DO (REMPROP NT (QUOVe RULES))
(REMPROP NT (QUOTI TRANS)))

(SEFQ NONTCRS NIL]
(HPAQQ NONTtERMS NIL])

(±FLOSaLEE'r
E LAviBDA NIL

(FOR Z IJ NJ~rERiiS DO (REMPROP Z (QdOrr LEPT3.,L1)
(?)R Z T14 SPEC IALAOi'nRLSts DO (REMPROP Z (Quorr' LEF'TS'I'T])

(GErALT
[LAobDA NIL

(ODAAR SrATEPTR])
(GETDOr

[LAii~bDA NIL
(CADAi SfATEPrRi)

(3ETDO iSYiit3OL
LLAv'inDA NIL

[Sta'Q TIEMPS17JREi (FNTH (GETHULE (GErLHS)
(GETALT))

(ADD1 C3ETDor]

(ThmPSL'ORE (CAR TEMPsrORE])
(GEf~i"

tLA,-13DA NIL
(CAAAh STATEPTRI)

(, ETLUOK
[LArjJDA NIL
(CADD)DR (CAR rArEPTRJ)

161



.LA,.it3DA NIL

(CAADDR (CAti -- ATh PT~i)
(GE1JHIjPTH
f LA.43DA A16~

kCDADOR (CAH SfAi' PTRJ)
(GErPAR3E

L LA.LBPDA (STATE)
( 2QND

(S3ATE (CDDDUR SFr.E))
(T (CDDDDR (CAR STAr3PTRI)

(' ETHULE
LLA,.,51A Lr3 ALT)

(Citr ( FNrd (~JErP LHS Q3>RLE)

[LAdDA (LHS ALT)
(C Ah 'k' N (CiEFP Lri. (QU~fi>. TRANS))

AL")

J,)I AlZ -N A

~A:)N(JUOTPK number)

A\K. kLLiA,-i M T&K )

( WC(NNA3 1')KFJ)

( Ll;A'Cui 1IKEN)
(ADDON (QUO2 symbol)

( LIST l9KE'N))
T. riiD "Unexonted token" TOKEN))

A: J)A (f)

, ~ ~ F v£ r R3(SV

H VRG) ( PTR)
(37rQ PTR (CONS))
(LCOL4C PTR (GETP Nr (QUOTE LEFTSET))
(FOR LSY~i IN (CAR PTR)

Da (FOR Z IN (GETP LSYM (QUOTE LEFTSET)
JNLESS3 (MIEXB Z (CAR PTH))
Dn ( rCo~c PTR Zf)

(DJp NT ('U LEFTSET)
('~oR 7 r4 (cS:,,p NT (QUOTE tLEFTST)

UNLESS (GETP Z (QUOTE RULES))
COLLE~CI z)

(JEFTP Y (QU'Mt , 1,EFTSETI)
1A-.EMA r:,iix

162



[LALmBDA MX
(?ROG (LSYeLisr)

(F'OR HULEALT IS (GEr? X (QUOT, RULE-5))
UNLESi (ME'4 (CAR HULEALT)

LSYMLIST)
DO (S610 LSYd-LISr (CONS (CAR RULEALT)

LsYALisr)))
(PUT X (QUOrE LEFrSETr)

LSY~'Lsr)
(SETQ SOFAH (CONS X SOFAR))
(FOR LSYV, Ii LSYmILISr JP~eN (AND (GET? LSYM (WU~)T RUYFU)

(WfJ (AEiB LSYi 39kAi)

(LAAKEPARS--
[LAMBDA NIL

(MAKEPARSr~l (CAR (CAR srATE3Er))
(iAAKEPARSE 1

LiBSDA (STATE)
(CONS (CONS (CAAii S.'ATE)

(CDAR STATW)
(FOR 3Y~ISOL IN (GETRULE (CAAR 3rATE)

(CDAH STATE))
A5 I F800~ I
COLLECT (COFND

((V~i (GETP SYABOL (QUOFE RULES))
sy"1i3OL)

(T (u1AKEPAHRiF1 (CA9 (GET (CDDOOR STAT; )
3)

(NILRrIIAAL±'
LLAiiDA (TOK&a)

(NULL (%3E P TOKEN (QUOrL itRMIiAL)
(OJTLIvi,

£LA.m3DA (3)
(J Q~

13)
(S&-iQ OUJTCOJNT 0)
(P'RIM1 (PACKC (QUOrc (13 103

(T (SECIQ OUTCOUWNj (IPLUS OUTCOUNT (NOHARS 3)))
(PRINI .31)

(POW4ER-56r
LAAvilDA (S)

(if' S
tneri (for X oind ((R <NIL>) in (POWER-SET S::1)

do (tCONC R X)
(rCONC R (5:1 I V>)

f'inally (REfURN R:0)
else (NIL>j)

(Pk'c
CLAv'IUDA (P)

(F'OR X Ii P WHENW (EQ (PROGI (PRIN1 X)
(SPACES 1)

(QUOS'E%4

1.63



A~ F)II P T-H

1, - P'JT'UL1 uK) )

I RH ;AL r AS I F~RO, 1 DO (A DUSTATE DOTSYt4BOL 1 0 IN PUTX
(CDR (QUOTE PREDLIST))

LCD KY I

3LLQDOTY,,a3OL (G ETDor3yitaoL))
(U .RULE31)

(,Q (C"A:( (QUOT. FI3RSi'RSCOL))

SiiQ i'tHiHACDL20))
7C (SL3 FSZHiJO (CAR (QUOi'~ F IR.SRHSCOL)

:0!4

EQ (.CARi (QUOPHr ScCONDRHSCOL))
QU1CNO3I'iD))

(SLPQ -COWiDRHSC0L 40))
(i (S~e5COUNDRH3COL (CAR (QUOTE SPCOND)HSCOL]

[JJL. & ACKOK (QUOcK (131
!4TR T-~4 161LK' S
>(JUTLL'k NT)

i " RHSVF (RHSTX(GEfp 14T (QUOTE fRANS]
31E ( P NT QUT RULES))

L,>< Q RHi3 (CAR :'UiSTX)

(iiWL E >3..ES3P OUTCOUNJT FIRST.RHSCO)L)

k,2*H -- IJ HHS Di ()UTLINS, (QUOFFC i

(OLITLIl E))
(CO1U'
(Jo REAr -RP SECONDRtISCOL 0)

(WHiLE (1[LES.SP OUTCOUNT SECONDRRSCOL)
DO (OUTIINE (QUJOFF %))

k(UULI L (PACKC (QUOTE (13]
(PAC-KC (QlUOf>3 (0])

Hl iA'n A H

164



( rLHPRI )

(FOR NT IN NONTEMS
DO (r .RPRI)

(PRINT NT)
(FOR X IN (GETP NT (QUOTE RULES)) AS Y

IN (GETP NT (QUOTE rRANS))
DO (PRINI (QUOTE #))

(X (SPACES 2)
(FOR TOKEN Id X DO (PRI11I TOKEN)

(SPACES 1)
(TERPRI)
(PRINTDEF (CLISPIFY Y T)

3)
(TERPRI))

(TERPRI)
(PRINT (QUOTE _)

(PRINTGRAM.i AR/R
[LA 4BDA (NONTEHMS FILENA'ME TRANS)

(CO AD
(FILENAME (OUTFILE FILENAME)))

(PRINT (QuOfr ))
(PAIAt (QUOfr .spacing% ))
(TERPRI)
(PRINf (QUOf .nofill))
(PRINi (QUOTE .no justify))
(PRIN1 (QUOfL .tab% stops% 8,16,24,32,40))
(T- PRI)
(FOR NT IN 41TiRHM

DO (PRINT 4±)
(FOR X IA (GETP NT (QUOfE RULES)) AS Y

IN (GETP Nr (QUOTE TRANS))
DO (PRINI (QUOTr =))

[COND
(X (SPACES 2)

(FOR TOKEN IN X DO (PRINI TOKEN)

(SPACES i]
(TE8PRI)
(COND
(TRANS (PRINFDEF (CLISPIFY Y T)

3)
(TERPRI]

(PRINI (QUO*- .blank% 1))
(TERPRI)

(PRINT (QUOf ---------------------------------------
(PRINt (QUOTE .blank% 1))

(TERPRI))
(COND

(FILENAE (CLOSEF FIL'Ai4E])
(PRI fSfATESr

[LAi3DA NiL
(FOR ,3AfiPTR JA (CAR 3'ATESET)

ioo CPA),3N (Pqi.,l' (L.' (3ETLHz;)

165



GUE ALrF)

(3MO F)
( GE'OR 10)

( PURIFY (GETL'DK)

[LAL~i3DA (,.4E S
(PRC, (LANSWERs (LIST NIL))

(ERA~-RULES ( FIND- ERA.S i G- RULES NONTERIIS))
(for NI in N:)N2LR.iS

do (Cg.'J'
[ENEQ (FLENGTiA (GETP NT (QUOTE RULES))

(--LEN('Trl ( 3ETP NT (QUOTE. TRANS]
(HE-LP NT

lovs rnot ,.ave the sa.e nuiher of transductions as right hand sides."))

f,-r '4, H i n( 3ETF N I ( QUO 1 1 RU LES) ) as IRAN
in ~ t Q'J.P N' RAWS)
i9 fo 'iE3 i n P( 6E R- SE r ( ERA SI NG -IT I CE S

RH3))
when i)q1K'to
J,- (E-XTRA-T ;rRHS TRAA INDICES ANSWERS]

(for X i rn '<AP ANSWEHS) Jco (EVAL V)
(for EYv RA:.l10- RUL1ZS

Jo~V(CAP E11

(for X in (G3ETP (CAR ER)
(QUOTE RULES))

Y in (mrFP (CAR ER)
(QUOTE TRANS))

when X ocitect Y))

(QOWRUL-E3)
"o X in (3Erp (CAR ER)

(QUOTE RULES))
when X collect X])

(--~ ~ H.; R,

C .)r (A1 \ ( JS NON-1ERS))

(CVQNd(:l RC1 (lI',ES LAS)

(' N'il WtI- (IE'IRL (AHS NUM 1)M

(AfRG NUN V)
o (~>QNT (AHNG NJ,i M)

166



(RETURN Nrl)
( PUTTR AN

LLA,,aDA (X iiAN)
(ADOPROP X (QUOr'E TRANS)

rr(ANI)
(PUTiiRANS

ELAva3DA N UA
(FOR I FMxOM 2 £0 NUii DO (PUTTHkN (AR3 NUM 1)

(ARI NUM4 13)
(SAitEGRAl
LLAM6DA (X . UPREi3-SORC)

(COAD
((Air1 SjPR63SS-SURI)

(SORT (CDR NONTERMS]
[S,-1f (PACK (LisI' x (QuorZ cocis)

(QUOT& (CCOMS *(LIST (CONS (0UOTE IFPROP)
(CONS (QUJOTE (RULES TRANS))

NO!JTERMS]
(VARS SPECIALtqONTERMS NONTERiIS SPECIALF?)AL'ES)

(iiAKEF'ILE XD)
(SCAN

[L0h6DA NIL
(ADDSTArE CGETLHS)

SGE TALT )
(ADDI (GETrom)
(GErORIG)
(GErORIGPTR)

(GEFPARS)

(SCANP (~PRIJ

[LAvit3DA AIL
(EQ IiiPUTCdAx (3ETDOT.fil3OL])

(.35 ,pPA,3t
[LAu-i!DA NIL;

(PiTr (QUJ h', RAD)
(QUOTE iEIIIAAL)

(QUOTE RPAD))
(for NT in NOfRM~S

do (for RULE in (GETP NTr (QUOTE RULES))
do (for TOKEN in RULE

do (CONO
((AND , '~. TOKEN NONTFRMS))

" P(iME, TOKEN SPEC14L.RONTEMIS))
(RUTr fOKEN (QU0I'4 TERMiINAL)

TOKEN 3)
(SORfAULES

ELAriLbDA (NONrt~rMS)
(F'OR NZ' IN NONTERoiS BIL1D PAIRS

DO (SETQ PAIRS (FOR X IN (GErp NT (QUOTE RULES)) AS Y
14J (GETrP NT (QUOTZ rRA,4s))
COLLECT (CON~S X Y)))

[SOH,' PAIRS (FUNCTION (LA,143DA (A 3)
(COj4PLIS (CAR A)

167



( TSRMI1~AL.S 

( C.\R B) 
(PUT NY (QUOT2 RULES) 

'(F'OH X HJ PAIRS COLLECT (CAR X))) 
(PLJT NT (QUOT.:. TRAilS) 

(FOR Y IN PAIRS COLLECT (CDR Y]) 

[ LA1•!BDA NIL 
( PROG ( ALLRHS) 

[FOR NT LJ NONTERHS DO (FOR RULE IN ( GETP NT ( QUOr8 RULESj j 

DO (SETQ ALLRHS (APPEND RUL~ ALLRHS] 
(fOR NT IN NONTERr-1S DO ( DREMOVE NT ALLR~S)) 
( SO R r A L L RH S ) 

(RETURN (fOR (TOKEN LA3TIJKEN) IN ALLRHS 

WH~~ (NEQ TOKEN LASTTO~EN) COLLECT (S~TQ LASTTOKEN 
TOT<Ei~) 

( l'C:3l'FldAL 
[LM13DA lHL 

(PROG~ (S~TQ STAf8PTR (CAR SfAT~SET)) 
( COND 

((AND (EQ (GETLH3) 
(CAR N01n'ERMS)) 

(SQ (GETALT) 
1) 

(EQ (GETDOr) 
2) ) 

( TRANSL,A'l'r: 
(QUOI~ SUCCESS!]) 

L LAt·lBDA ( P) 
(CONO 

( ( NLISl'P P) 
P) 

((2Q (CAR?) 
( QUOT::: ASSERT)) 

D\ 
L I 

(T (APPLt (LIST (QUO!S LAMBDA) 
fLIST 

(GETTRAN (CAAR P) 
(CDAR P))) 

TOK8N]) 

(FOR PX IN (CDR P) COLL~CT (TRANSLATE PX]) 

( RPAQ..) TLIS'f (Tl T2 T3 f4 f5 T6 T7 T8 !9 T10)) 
(~PAQJ OUTCOUNf 0) 
(RPAQQ fiRSfHHSCOL 12) 
(RPAJJ S~CO~DR~SCOL -1) 
(RPAQ~ PRINTFLG ALL) 

(DECLAR~: DON~COPt 

UILE11AP (NIL (89i 16329 (ABSTilACT 903 • 1566) (ADDFNS 15-10 • 16~9) 
(ADDON 1643. 1777) (ADDSTAT~ 1781 • 2393) (COBOLTOKENFN 2397. 2796) 
( CDl'IPLETt: 2800 . 321)6) (COl'lPLET~P 3210 • 3293) (COHPLIS 3:?97 • ~532) 
(COr·tE'\JTr:LOOK 3530 . 3821) (DELFNS 3825 • 3927) (DIF 3931 • 4000) (EARLY 
400~ . 5209) (ERi\SII~G-IImiCES 5213 • 5367) (EXTRACT 1:)371 • 60'57) ( 
~'Ir·lD--crlASUG- F!IJL;.; 3 6061 . 63o:n ( FLUSHGRAr·MAR 15308 • 6539) ( FLUSHLI!:FT 

f"'EST AVA!LABLE COPY 
168 

, 

• 



6)o3 6706) (GETALT 6710 6755) (GETDOT 6759 6804) (GETDOTSYMBOL
6o06 6966) (GErLHS 6970 7015) (3ETLOOK 7019 7071) (GETORIG 707S

7127) (GErJRIGPTR 7131 7186) (GETPARSE 7190 • 7?93) (GErRULE 7297
* 7382) (GETfRkN 7386 . 7459) (JOVIALTOKENFN 7473 • 7814) (LEFTSET

7618 8385) (,AKEMATRIX 8389 . 8827) (MAKEPARSE 8831 . 889Q4) (
.tAKEPARSEI1 869. 9196) (NThNRMINALP 9200 9271) (OUrLI:Jl 9275 46!)
(POoE-S-i 9464 96'41) (OC 9645 q762) (PREDICT 9766 1011) (
PR6DIcrP 10017 1!)117) (PRETlYGRAMAIAR 10101 . 11104) (PRINTGRAMMAR
11108 11582) (PRINTGRA4viA/R 11586 . 12393) (PRINTSTATESET 12397
. 12512) (PURIFY 12536 13525) (PUTRULE 13529 13799) (PUrFULES

13803 13982) (PUTfRAN 13985 - 1458) (PUTTRANS 1406? . 1415q) (
SAVEGRAM 14163 14472) (SCAN 14476 . 14638) (SCANP 14642 . 14698)
(SETPARSE 14702 15040) (SORfA ULES 15041 15453) (TERAINALS 15U54

. 15841) (TESfFINAL 15645 169bb) (TiNSLAT!" 16'7) . 161?6)))))
S 70 P

169



B. Documentation and Code for Verification Condition Generation 
and

Postt ransduc tion Process ing

1. Documentation

1

170



#ADDCORRESPONDING$ [SENTENCE; PAIR;]

remarks: PTP - Processes an ADD CORRESPONDING statement.

called by: SENTENCESCAN

CORRESPAIRS [X,Y; XSGNS, YSONS, XSCN, YSON;)
remarks: PTP - Returns list of dotted pairs of corresponding elementary

items of X and Y.
called by: #ADDCORRESIONDING$, CORRESPAIRS, #MOVECORRESPONDING$,

#SUBTRAC!TCORRESPOND ING$

SONS [QUALNAME; X;]
remarks: ST - Returns the list of sons for a qualified data item.
called by: CORRESPAIRS, ELEMITEMSOF

COMPLETELIST [QUALNAME; X;]
remarks: ST - Returns the completely qualified name of a data item.

called by: SONS, PICTURE*, LEVEL*, OCCURS*, VALUE*

QUAL [QUAINAME;;]
remarks: ST - Appends (QUAL) to a data name if it is unqualified.

called by: COMPLETELIST, AMBIGUOUS

AMBIGUOUS [NAME; X;]
remarks: ST - returns T if a name is an ambiguous data reference,

NIL otherwise.
called by: COMPLETELIST

QUALIFIEROK [QUALLIST, PREDLIST; Z;]
remarks: ST - returns T if a qualified name (QUALLIST) is mt in

conflict with a predecessor list (PREDLIST),

called by: AMBIGUOUS, QUALIFIEROK, COMPLETELIST, MULTIPLE

#ASSERT [SENTENCE;;]
remarks: PTP - Processes an ASSERT statement.
called by: SFNTENCESCAN

ASSERT: [SENTENCE, PTR; X;]
remarks: PTP - Processes an ASSERT statement.

called by: #ASSERT, ASSERT1

MAXSIZE* [QUALN1ME;;]
remarks: ST - Returns the maximum size of a qualified data item.
called by: ASSERT1, #SET$, #SETROUNDED$

MAXSIZE (PIC; X,Y,LR;]
remarks: ST - Returns the maximum size of a PICTURE specification.

called by: MAXSIZE*

PICTURE* rQUAI2AME;; I
remarks: ST - Returns the PICTURE specification for a qualified data

name.
called by: MAXSIZE*

#IF [SENT; ARG1, ARG2;)
remarks: PTP - Processes an IF statement.
called by: SENTENCESCAN

171

. . .1. . . . . . m , ,| |- m " - L



SENTENCES CAN rTEXT; SENT;] 

romnrJ.:!'i: PTP- Scuns a program to do post-transduction processing. 
called by: #IF, SENTENCESCAN, #PERFORM, PREPROCESS, VC 

# OI'EN' w r L ; ; J 
remarks: !Yl'P- Processes an OPEN INPUT statement. 
called by: SENTENCESCAN, #OPENOUT 

#OPEN OUT [ L;; J 
rC'marks: PTP - Processes an OPEN OUTPUT statement. 
called by: SENTENCESCAN 

#RE!\D [L; NAME, ITEM;] 
remarks: PTP- Processes n READ statement. 
called by: SF.NTENCESCAN 

ELEMITE.MSOF [X;;] 

remark~': PTP- Returns the elementary items of a group data item. 
ca 11 c•cl b~·: #RE/\.D, ELEMITEMSOF, #WRITE 

RECOR:JLIST !N.<\~!E:; J 
rcm:1rks: ST - Returns the 1 is t of records associ a ted with a given 

f t l~' n8.me. 
called lJy: #l\E/\.D, RECORDNAME 

itWlUTE [L; l:'IDEXNiHiE, LENGTHNAME, ITEM;] 
remarks: PTP- Processes a WRITE statement. 
called hy: SENTENCESCAN 

r·rx_,:~ [N:WE;;] 

remar·ks: ST- Returns the file associated with a record. 
calJ.crl by: #WTUTE 

t;DERFORM !SENT; ASSHT, INDEX, FIRSTVALUE, STEP, TERMINATION; FLATSECTEXT] 
.!'f'.'!'1,>rks: I"l'P - Processes a PERFORM statement. 
c;:llc)d by: SENTF:NCESCAN 

r.·; ,J\Tn:N PJ\1~.'\S I Al3l 'HOG: PARA;] 

rcnt.t!'k:;: PTP - Eliminates paragraph structure from a COBOL program 
prr~ucing a list of sentences. 

called by: #PERFORM, PREPROCESS, VC 

GATl!ERPi\IU\~ [Ll, L2., TEX1; X, Y;] 

t•cmarks: PTP - Gathers text in TEXT between the lnbols Ll and L2. 
called by: #PERFORM 

t'SET$ [ ~~r:NTENCE; ; ] 

remarks: PTP - Processes a SET$ (assignment) statement. 
called by: SENTENCESCAN 

tt:~; ETHO lJN OED$ r S EN'lT..N CE; ; ] 

rornark~j: PTP - Processes a SETROUNDED$ (rounded assignment) 
s La t(~men t. 

callt!d by: SI<:NTF:NCESCAN 

BEST AVAILABLE COPY 
172 



#MOVECORRESPONDING$ [SENTENCE; PAIR; I

remarks: PTP - Processes a MOVE CORRESPONDING statement.
calle by: SENTENCESCAN

#SUBTRACTCORRESPONDING$ (SENTENCE; PAIR;)
remarks: PTP - Processes a SUBTRACT CORRESPO1NDING statement.

called by: SENTENCESCAN

CHANGELABEL [SENTENCE;; SECLIST1
remarks: PTP - Replaces labels in sentences by their fully-qualified

(i.e., <paragraph name, section name>) versions.

called by: CHANGELABEL, LABELMAKER

GETNEWLABEL (LABEL;; SECLIST, SKAiION]
remarks: PTP - Returns tie fully-qualified version of a given label.
called by: CHANGELABEL

ERR [X;;]
remarks: PTP - Error routine. Prints argument.

called by: GhTNEWLABEL

LASTPARA ISEC; SECTION; ABPROG]
remarks: PTP - Returns the fully-qualified label of the last

paragraph in a given section.
called by: CHANGELABEL

COBOLVCG [PATrHLIST; PATH;]
remarks: VC - Actual verification condition generator operating on

the output of the path analyzer.
called by: VC

VCGI [PATH, FORM; ;]
remarks: VC - Recursive auxiliary function used by COBOLVCG.

called by: COBOLVCG, VCGI

CONVERT [PIC; X,Y,Zl,Z,$$TEMl, $$TEM2,Z2;]
remarks: ST - Canonicalizes a PICIVRE specification.
called by: INSER'TDATA, INSERT771TEM

DEBUGPRINT [WHAT, WHERE, WI EN;;FLAT]
remarks: PTI' - Auxil arv debugging function.
called by: PREPROCE S

PPR is not defined.

ELEMKN'IARYP IDATADESCRIPT ION;;)
remarks: ST - Returns T if a variable name represents an

elementary data item, NIL otherwise.
called by: GETRECORD

ERASETABLE 1; X, Y: SYMBOLTABLE, TYPES, VALUES]
rera,,ks: ST - Initializes symbol table.

called by:

173



FETCHLABELASSE!t'I'IONS [ABPROG; PAP.A; LADEtASSERTJJIST] 
romnrks: ST- Constructs A-list (LABELABSERTLIST) whose entrie• are 

of form <pnrannme, assertion> of all labelled assertions. 
called by: VC 

ISASSERT [X;;] 

re!T'arks: PTP- Predicate testing for list of form,(ASSERT ••••• ) 
called by: FETCI~ELASSERTIONS, PATHANAL 

FILENAME [RECORD;;] 

l'cmarks: PTP - Returns file name corresponding to a given record 
called by: 

FLATTENSECTIONS [ ABPROG; SECTION; J 
remarks: PTP- Flattens abstract program into a list of paragraphs. 
called by: PREPROCESS, VC 

GETRECORD [GtJ~BAGE, LEVELLIST, NAMELIST; CURRENTLEVEL, CURRENTRECORD, DUMMY, 
s,~,TEMl, S$TEM2; J 

r~marks: ST- Constructs a tree-structured data declaration out of 
n flat list, 

call,~d hy·: GETI1ECORD 1 GETRECORD* 

TNSEI\TDATA ['!\Ai\m, PREDECESSORS, PICTURE, LEVEL, SONLIST, OCCURS, VALUE] 
remarks: ST- Inserts a data item into the symbol table. 
called by: GETRECORD 

?;NULLA TOM [A; ; l 
remarks: ST - Returns T if the argument is not a null atom, NIL 

otherwise. 
called by: INSERTDATA 

PICTUTIEOK [PIC; X; PICTURECHARS] 
r~marks: ST -Returns T if PIC is a permissible PICTURE specification 

NIL otherwise. 
cnllec! by: INSERTDATA, INSERT771TEM 

~!ULTIPLE [NAME I QUALS; X;] 
remarks: ST - Returns T if NAME anti QUALS are conflicting qualified 

cia ta names. 
called by: INSERTDATA, INSERT77ITEM 

INSERTVALUE fFULLNA.ME, VALUEEXP;; VALUES] 
remarks: ST- Inserts a value designation in~o the symbolvalue. 
called by: INSERTDATA, INSERT77ITEM 

INSERTSYMDOL fNAME;; SYMBOI,TABLE] 
remarks: ST- Inserts a variable into the symbol table. 
cnlled by: INSERTDA'rA, INSERT77ITEM, INSERTFILE, INSERTPARAGRAPH, 

IN SERTHECORD 1 INSERTS ECr I ON 

GETS<J.'l S [THEE; X;] 

romnrks: ST - Returns list of names of sons of a groop data item. 
cnllcd hy: GETRECORD 

L:ST AVAlLABLE COPY 

171 



GETRECORD* [RECORDLIST; X, 77DECS, DATADECS, Y;]
remarks: ST - Takes a list containing possibly many data declarations

and turns it into a declaration bill.
called by:

INSERT77ITEM [NAME, PICTURE, OCCURS, VALUE;;]
remarks: ST - Inserts a 77-item into the symbol table.

called by: GETRECORD*

INSERTFILE [NAME, RECORDLIST;;)
remarks: ST - Inserts a file name, and its corresponding record list,

into the symbol table.

called by:

INSERTPARAGRAPH [NAME, SECTION;;]
remarks: ST - Inserts a paragraph name into the symbol table.
called by:

INSERTRECORD [NAME, FILE;;)

remarks: ST - Inserts a record name into the symbol table.
called by:

INSERTSECTION [NAME;;]
remarks: ST - Inserts a section name into the symbol table.

called by:

LABELMAKER [ABPROG; SECLIST, PARALIST, SECTION, PARAGRAPH, SECTION,
PARAGRAPH, PARANAME, SECNAME;]

remarks: PTP - Replaces all label references (and labels) in program
by their fully-qualified [paraname, sectionname] versions

called by: PREPROCESS, VC

LEVEL* [QUALNAME;;]
remarks: ST - Roturns the level number of a qualified data item.

called by:

OCCURS* [QUALNAME ; ;]
remarks: ST - Returns the number of occurrences of a qualified data

i temn.

called 
by:

PATHANAL [SENTLIST, ACCUM, SENT; X; PATHLIST, TEMP, LABELASSERTLIST]
remarks: VC - Constructs from list of sentences a list (PATHLIST)

of paths in the program, each path beginning and ending
with an assertion.

called by: PATHANAL, VC

PREPROCESS [ABPROG, FLAG; FLATSECTEXT, FLATPARATEXT, TEXT;)
remarks: PTP - Transforms abstract program, readying it for path

analysis (Now obsolete, superceded by VC).

called by:

175



RECORDNX%11E I FILE; I
remarks: ST - Returns the record name corresponding to a file.

call(i1 by:

SECTIO:;IIsdT (NAME; ;1
remarks: ST - Returns the list of sections for a given paragraph name.

called by:

SECTINP jNAviE;;]

retuarks: ST - Returns T if the argument is a section name, NIL
otherwi se.

cailcei by:

VAJXE* QUAL 2NE; ;
!'ma'ks: ST - Returns the VALUE expression for a qualified data item.
callied by:

VC !A1U.OC; PATIatLLT, FLATSECTEXT, LABELASSERTLIST; SCANOUT, PATHANALOU1,
X'COLT J

rp.z4-.: \C & PTP - Takes raw abstract program as input; performs
proprecce.siig, path generation, and verification condition

generation. Returns list (VCOUT) of verification conditions.

c'LI~i by:

k Z;; /, N, MIKJ. A
rr: arks,: 1'P- Internal debugging routine.

Called hv:

176



2. Code

177



'~' .. ~~··••J•I•·---... -· ,,._ .. _ _,,_.,,,._._ ___ ., ________ .... -illllllltllf....,. ~~·~ 

(FILECREATED 11 10-JAN-75 17:34:56 11 PR8PSYt180T ... ;4 ;?851i~ 
chan~?;cs to: LABEL1•JAKEfl SENTENt:ESCAI~ 
previous date: 11 9-JAN-76 20:51:25 11 PREPSYt'180L.;1) 

( LISPXPRI Wf ( QUOf8 PREPSn1BOLCOMS) 
T T) 

[ RPAQ~ PREPSYt·1BOLCOMS ( ( F'NS * PREPSYMBOLF'N.S) 
(DECLAR~: DONTEVAL@LOAD DO~VAL@COMPILE DONTCOPY COMPILERVARS 

( ADDVARS ( NLAMA) 

( RPAQ~ PRSPSYl'JBOLPNS 
( NLAI''IL DEBUGPRHlT] . 

(~ADDCORRSJPONDING$ #ASSERT #IF #MOVECORRESPONDING~ fOPENIN 
#OPENOUT #PERFORM #R~AD #SET$ #S8!ROUNDP.Dt 
#SUBTRACTCORRESPO~DING$ #WRITE AMBIGUOUS 
ASSERT1 CHANG€LABEL COBO~VCG COMPLETELIST 
CONVERr CORRESPAIRS DEBUGPRINT ELEMENTARYP 
ELEMITEM30F ERASETABLE BRR 
FETCHLABELASSERTIONS FIL8 FILENAME 
FLATT8NPARAS FLATTEN.SECTIONS GATHERPPRAS 
GETNEWLABEL GETRECORD GETRECORD* GETSONS 
INSERT77ITEM INSERTDATA INSERTFILE 
INSERfPARAGRAPH INSERTRECORD I~SERTSECTION 
INSERTSYMBOL INSERTVALUE ISASSERT 
LABELdAKER LASTPARA LEV8L* i'1AXSIZE 
MAXSIZE* MULTIPLE lllllULLATOM OCCURS* 
PATHA~AL PICTURE* PICTUREOK PRF.PROCBSS 
QUAL QUALIFIEROK RECORDLIST RECORDNAMR 
SECTIONLIST SECTIONP SENTENCESCAN SONS 
VALUE* VC VCG1 ZAP)) 

DSFUEQ 
It ADO CO Hii t::_s P01·Jt) I NG t 

[LAM6DA (S~NTSNCE) 
(fOR PAIR IN (CORR~SPAIRS (CADR SENT8NCE) 

(CADDR 3ENTENCE)) 
COLLECT (LIST (COND 

((CADDDR SENTENCE) 
( QUO-ft: .3STROUNDED$)) 

(T (QUOTS S8;$))) 
(CDR PAIR) 
(LIST (QUOTS PLUS) 

(CDR PAIR) 
(CAH PAIR)) 

(CAR (CDDDDR SENTENCE]) 
( IIA3:3r:RI' 

[LA~BDA (S~NT~~CE) 
(AJS~HT1 SENTENCE) 
(LIST St:rHErJCE)) 

( I! I f' 
[ LA1·1B DA ( St~N'l') 

( PfUG ( ARG1 AKG2) 
[S8TQ AHG1 (SENT8NCESCAN (LIST (CADDR S~~T] 
[SSfQ ARG2 (SENTENCESCAN (LIST (CADDDR SE~T) 

((CDH ARG1) 

178 



ARGM)
(T (SErQ ARGI (CAR~ ARG11

jCOiAD
((CDR ARG2)

(SEIQ ARG2 (LIST (QUOrE BLOCK)
ARG2))

(T (SEfQ ARG2 (CAR AR~G23
(RETURN (LISf (LIST (QUOTE IF)

(CADR sE.NT)
ARGi ARG2])

(1MOVECORRE3PONOuING$
L LAo8~DA (SEN r~CE)

(F'OR PAIR IN (CORRESPAIRS (CADR SENTENCE)
(CADDR SETITENCE))

COLLECT (Lisr (QUOf6 SET$)

(CDR PAIR)
(CAR~ PAIR)
NIL])

(#OPENIN
[LAmBDA (L

(Lisr (LIST (QUOfL SET$)
(r4KATOM (CONCAT (CADR L)

(QUOTE .INDEXM)
071)y

(#OPENOUT

(#OPENI1 LI)
(1IPEfRFOR~i

LLAmBDA (SriNT)
(PROG ((ASSfif (CADDR (CDDR SENT)))

LIACEX FIRSfVALUE STEP TERiINArION)
(CO i'D

[("-Q (CADR SENT)
(QUO -X' TIM4E3))

(SETQ INDEX (GENSYM)
(RE; LURN

(LISt
(Coli

(QUOfE BLOCK)
(SoN tENCESCAN

(APPEND (LIStl (LIST (QUOTE SETt)
INDEX 1)

ASSrC
(LIST (QUOTE IF)

(LIST (QUOTE GT)
INDEX
(CADDDR SENT))

(QUOTE (ENDPERFORM))
(QUOTE (NEXT]

(FLATrENPARAS (GATHERPARAS
(CADR (CADOR SENT))
(CADDR (CADDR SCNT))

179



FLAT9ECTEXT))

(LAST (LIST (ouOT . si;Tt)
INDEX
(LIST (QUOTE PLUS)

INDEX 1))
(LIST (QUOTE LO-OPASRT)

[(FE) (cADR Sr~il.) AS

(QJIL:- VA IYING) )
(SE1Q I'41EX (CAH (CADDOR SEIMT)

(s~QFIR3;2VALJE (CADR (CADDDR J))
(SEfQ STIEP (CADDR (CADDDR SENT)))
(StQ r Z;iMINATI(JN (CADDU)R (CA)IDR S"W 2))
(R j AN

(QO.BLOCK)

(APPENO) ILIS'i (L T LA (QUO>' 3;-T$)
INiDEX FI9STVALrJTE)

(LIST (CUOT-1 IF)
T P, R A4 I N AT I3 N

(UO (ENDPERFORM1))
(UI (NEXT]

(FLAT',r';,PA AS (GATiiRPARAS
(CADR (CADD,9 SpNf))
(CADDP (T-ADDR S;7NT))
'L AT SF7EMET)

(L1S (LIT (QOTS ETf)

LIST oic PLIJS)
I:4DEK 3- o) )

(LIL (Q~r~2LOOPASSEFRT)
(LI!ST (03"1' ASSERT)

ASSiRT]

( 3, U' :J CES3 CA N
(~A>PARA-7 (GATIEAPARAS

(CADR (CADDR SENT))
(CADDR (CA~t)R SCrT)
-L AT3S CTIE XT]

(QUJOI .INDEX)

N AME

180



INAvI'E 1))
(LIST (QUOfc IF)

[LIST (QUOrE GT)
NAr4E
( 1 KATOM (CO4CAT (CADR L)

(QuoIE .LEAGT41
CCADDA)R L)
(QUOEC- (NEXT]

(FOR ITEMr Ili (ELEMITE!4SOF (CAR (PECORDLISi' (CADR Ll

COLLECT
(LISf (QUOr,- SllT$)

(LIST (QUOZI S-'LECT)
(CONS (QUOTE OUAL)

(CONS &IKATOM (CONCAT (CADR ITEM)
(QUOTE .ARRAYM)

(CDDH ITEM))
(LIST NAME)

NIL])

[LAIo±3DA (S&4TLN'CE)
(LIST (GOJD

((CADDDR SENTEL4CE)
(LIS! (QUOr.' IF)

(LIsr (QUOr-l GT)
(LIST (QUOFrS ABS)

(LIST (QUOVe TRUNCATE)
(CADR SSITENCE)
(CADDR SEITENCE))

(MAXSIZ0* (CADR S f*NIBCEM)

(CADDDR SEN'TEN~CE)
(LIST (QUOIL AS-SIGN)

(CADR S NI'NCE)
(LIST (QUOfS TRUNCATE)

(CADR SENTENCE)
(CADDR S~'1TENCE1

(T (LIST (QUOfL. A2-IGN)
(CADR 3' NTENCE)
(LIST (QU~iX LRJLNCArE)

(CADR 3ENfENCE)
(CADDR SFNJTINCE])

(vSJnfJLJi)ED$
L.LAt~adDA (SL Nr&CE)

(LIS E (CO',ID
I (CADDDR S.ENTENJCE)

(LISf (QUOi-'J IF)
(LIST (QUO:!: GT)

(LIST (QUO2E ABS)
(LIsr (QUOTE ROUND)

(CADR SENTENCE)
(CADDR SEN1TENCE)))

(mAK(SIZE* (CADR SiENTENCEM)



(LIST (QjJf A'35rGH)
(CADR 3,:,,AENCE)
(LI'Sf (QUO:,'. ROUND)

(CADR .3lLAT~.NCE)
(CADDR S--NlE~iCE1

(f (LIS" (QUUC'. AiiIGJ)

(CADR 3;,NiiENCiO)
(L:ST (QUO.', ROUND)

(CADR Sf IZi'NCE)
(CADDR SrLNTNC']))

L LA;,IBDA (stLNrENcE)
(FOR PAIR I.J CCORHErAPAIRS (CADR iiN iNCE)

(CADDR S6,14TEiNCE))
COLLECT (LIST (COND

((CADDDR SETENJCE)
(QUOPIY SETHQUND DW)

(T (QujJI cfS
(CDR PAI9)
(LIS! (Qtjoh", .sUFTRAC'P)

(CDR PAIR)
(C-Arl PAIR))

(--Ar (CDD>A, SiN FE)JCE]

L LA %3DA(L
(PRj, [LIAiEXNA1LI! (tAKATJM (CONCAr (FILS (CADR L))

(QUOrF .INDEX]

(LENG3THdaA.;L (MKATOM (ToNcAr (FiLF~ (CADR L))
(QUi'E .LFAGTH]

(NC3.'1C
(LISY (LISr (QJOI> s<s

IJDEXNAAE
(!,-S (QUOFKl PLJS)

I JOENAM 1)

L i A;T N A.I E
T, 1 i3 (QUJOE'. PLUS)

(1-l',1 C1,1: (ELIEMITKmSOF (CADR L))

c:OLIIEc r

(Lisr (QUGVL 3SrLECT)
(CONJS (QU-WE QUAL)

(CONS (fAKATOM (CONCkr (CADR ITT',M)
(OU~rS .41RAY)

(LISF I~iDEXNAA1E))

L LAvD)JA (AAiE)
;4 *cccpts i nqme, ' tner qualified or unquaifiel.

and r,-tlr-i3 t 'fi-, iS 3n -imbi~tiou data refqrpnce)

182



(SEIrQ NAIiE (QiJAL NAAE))
(GRGATERP (FORX IN (GETP (CADR NAME)

(QUOIS ELEMr$))
COU,'r (QUALIFIEROK (CDDR NAME)

(CAR W)

(A iSil'T I
[LAILLSDA (3ENi't.'CE PTR)

(CO NO
((NULL SENTENCE))

[EEQ (CAR Sn~icACE)
(QUOr. ,iAX.3TZE))

(RPLACA PTR (AA4SIZE' (CADR .rfNE

(TI (FORX 04o (CDR SNrI--,c--) DO (ASSE0ri (CAR X)
XDI

(CrHANGELASEL
LLAiIDA (s~NrENCE)

(COADi
((NULL S--NTENJCE))

((ArOi'l SENTEOCE))
(T (SELEcrQ (CAR SrNTEACE)

(READ (CHAtJGELABEL (CADIJDR SLINTEN~CE))

(IF (CHANGELABEL (CADDR S2~'TENCE))
(CHANGELABEL (CADDDR 3FNTENCE)))

[GO0 (RPLACA (CDR S-:TP-4CE)
(GETN WLA6ETL (CADR S)7NTENhCE]

(S~r$ (CHANGELABEL (CADDOR S.' NTEWiCW)
MSf.ROu, DED$ (CHANGELABEL (CADDDR STNTEPJCE)M

[DO$ (RPLACA (CDR 3E.,T7I'JCE)
(GErNEWLABEL (CADR Sf TENCE))

(RPLACA (CDDR 3ET~CE)
(Coln,

SECLIST)

(LASIPARA (CADDR 3LiNTENCE))
(T (GETNEWLABEL (CADDR SENr-o!'icEJ

(PERFOR&1 (C6ANGELA4,L (CADDB SENTE ]CF2))

(COJ4S (QUO~c A.AD)
(F'OR PArI I. PATHLISf COLLECT (VCjl (CDR PArq)

(CADAR PAT;4])

E LAkiDA (QUALriAk!E)
(SE rQ QUAL1APE (QUAL QUALNAkiE))
(CONIi

((AtIbIGiUOUS QuALNAIE)

(H6LP QuALAAME "arnbiquous refernrce,))
(T (VOR X 14 (GErp (CADR QUAL.ALIE)

uriL (QUALIFILROK (CODD QUALNAME)

183



(CAR X))
FINALLY (COND

[X (RETURN (CONS (CADB QUALNAME)
(CAH X1

CT (hELP QUALNAHE "is not in symbol tabl-ll)

(CONiVEiiT
LLAvinDA (PIC)

(IF (NULL PIC)
fiAJ 'UL

(PROO3 (x (Y (LisT AIL))
Zi)

(St2'Q X (UNPACK PIC))

(dHILE (LISFP X)
DO (SELECTQ (CAR X)

((9 V P S X)
(NCO4C1 Y (CAR X)

S ETQ X (CDR X))
[((SE'rQ X (CDR X))

CS~rQ zi
(PACK (FOR Z IN OLD X

UNTIL (EQ z (QuorE %)
COLLECT Z))

(SiSfQ X (CDR X))

(IF (NOT (NUMBERP Zi))

THEN (HELP Z1
'Ibad iterative oicture'))

(PROG ((Z2 (CW (LAST YJ

(RPTQ (SUBI Zi)

(NCOIC1 Y Z21

(flELP PIC bad picture soecification))

(1irTUPN (PACK (CDR Y])

(,;0f- PAIRS
LLA"I3DA (X Y)

(PRi (XSU 4JSY&D4S)
(SLKQX~u~S(SEWS X))

(S&T Q f'30Ns (SJ:43 Y))

[(AND XS3,.3S YSOWS)
(HLCFURN (FOR XSOA I14 XSONS

J014 (FOR YSOPI TA YSONS
4HC1N fEQ (CADR X3011)

(CADR Y30W)

JOIIl (CORRE-SPAIRS XSON~ YSON)

(WR X,3jaj YSONS)
,NIL)

Cf(~FU (LISI, (Colls X YD)

491--'4HN FLA,7)

184



(TERPRI)

(TmrPRI)
(TERPRI)
(PPR (EVAL WHAT))

(T N~IL])

CELEMEA rARYP
[LAiiDA (DATADESCHIPTION) (* ells whether a 1 iven

data descrintion is of
an elementary item)

(CADDR DATADS.uPTI0N])

LLAi.zDA (X)
(CO4j

((FOR SON IN (SONS X) JOIN (ELEMITEMSOF SON))

(xASFTABLE
[LAi-iEDA NIL

(* initializes the syinboltable by clearing the
property lists of all names in the symboltable, thien
ciears the variable symboltable.
must be done when performning two parses in a row)

(FORi A 1-' SY~i6OLTA3LE DO (FOR Y I'! TYPES DO (BP1MPROP X Y))
(SEEQ .3Y,'3OLTAbLE)
(SrQ VALUES])

ELAvioDA MX
(PRIAh X)
C RETF HO ' )

(FE £CLABELASSE.RfIONS
iLA.aZ3A (AziPROG)

(F'OR rA~iA IN AbPROG WHEN (ISASS? 1T (CADDR PARHA))
D') (SCT% LA3ELASSE FLIST (CONS (CONS (CADR PARA)

(CADDR PARA)
LABEL A3SERTLI ST I

[LA~idDA (AAt.iE) (A returns the file
correrponding to a given
record name)

(GET? NM-E (QUO-Cc RE~CORD$])
(FILENA,.iE

CLAid3DA (RK-COhD)
(QbwrLv FILENAMbE])

C FLAg 1 -kPAiAS
LLAkitDA (ALPROG)

(FOR PARA IN ABPROG JOIN (APPEND (CDDR PARA])
C FLATIENSECTIN3

[LA,16DA CABPROG)
(FO8 SriCTION IA (CDR ABPROG) JOIN (APPEND (CDi)R SECTION]i)

(GSAfti- rtP iAS5
(LA~auDA (LI L2 TrXT)

(FOR X JA TtrXT WH- N (EQUAL (CADAR X)

185



DO (RTURAI (FOR Y ON (REVERSE X) WHEN (EQUAL (CADARi Y)

(GEMELABELDO (RErURN (REVERS,* YD

LLAeidDA (LABEL)
(CONO

L(afOvi LABEL)
(CONrD

((i4Er1B LABEL S- CLI ST)
(LIST (GET? L.ABEL (QUOrl] FIRSTPARA)

LABEL))
((AELi48 CCADR .rCTId4)

(aErP LAB3EL (QUUI'-- SECS))
(L.Sf LABEL (CADR SECTIONZ)))

((EQUAL (LENGTH (GET? LABEL (QUOTE SECS))
1)

(LIST LABEL (CAR (GETP LABEL (QUOTE SECS]
(I (ERR (QUOCE (NOO-UNIQIJE LABEL REFEB--7CE]

Ir LABEiLI)
(S61ANCORD

[LA~itiDA (\3AiBAGE LEVELLIST NAm1ELIST)
(* tnis function takes a flat list of record
descriptions and turns them into a tree -- in t-'e
COBOL sense. it. iterates through thie list...)

(IF (A'LISrP 3ARBAGE)
Tir~i (HELP RIL " bad call of GETRrMCRD11))

(FROG (CURRi NMLVEL CUBRc PuRECORD DUiaY)
(IF ((qLISi'P (CAB GA,,IACGE))

T3..N (HLLP (CAR GARBAGE)
"bad record description,'))

(S~rQ CUBBEiATLEVEL (CAAR GAABA3E))
(IF LEVELLIST

S(IF (ILESSP CURREi4-LEVEL (CAR LEVELLIST))
TdiEN (HELP (CAAR GARAGE)

"bad record
structure,'))

(CON~S (EACIHrIME (SETO CURRENTRECORD (CAR GARBAGE))
vHiiLt. (AND GARBAGE (NOT (ILESSP (CAR CURRENTRECORD)

COLLECT (IF (AND (EQP (CAR CURRENTRECORD)
C URRBEN TLEV EL )

(ELEMENTAtRYP CURRENTRECORD))

(~hera 13 aii elementary itemr at the current level
-IT I3 Placed in tie symboltable and the pointer

is moved up)
(I.AS'MRDATA (CADR CURREN'TRECORD)

NAMELIST
(CADDR CURRENTRECORD)
C(JRRENiTLEVEL NIL
(CAR (NTH{ CURRENTRrCORD

4))

186

A



(CAR (NTH CURR'TNTRECORD

5)))
(sErQ GARBAGE (CDR GARBAGE))
CURREN TRECORD

ELSEIF (EQP (CAR CURRENI'ECOPO)
CURRE4TLEVEL)

THEN

(' here is a group item at the current level.
it is put in the symboltable, and the function is
called recursively to handle tne elementary items
tiat will follow, after returning, the global

variable is reset and the subtree is gathered into
tne fold)

(SE2Q DJMMY
(GErRSCORD (SETO 3ARBkGE

(CDR GAR9AGE))
(CONS CURRENTLEVEL

LEVELLIST)
(CONS (CADR

CURREN~rRECORD)

NAMELIST)))
(INSER'rDATA (CADR CURRENRECOR)

,AMELIST NIL
CURREATLEVEL
(GErsoNs (CAR DUM.iFY))
(CAR (NTH CURRENTRECORD

4))
(CAR (NTH CURRENTRECORD

5)))
(SEI"Q GARBAGE (CDR DUtkiY))
(LIsr CURRENTRECORD (CAI DUM,-1Y))

ELSE (HELP NIL " bad record structure')))
GA.1BAGE])

(cGE;!HCORD*
LLAviDA (R,.CORDLISr) (' separates

77declarations from
tree-structured

declarations 3nd calls

getrecord on the
tree-structured
declarations)

(FOR (X (71DECS(LIST NIL))
(DATADECS(LISr iL)))

IN RECORDLIST DO (IF (EQP (CAR X)
77)

TEN (NCONC1 77DECS X)
ELSE (NCONC1 DATADECS X))

IJAALLY [FOH Y IN (SE-Q 77DECS (CDR 77DECS))
DO (IASChI77ITEM (CADR Y)

(CADDR Y)
(CADDDR Y)
(CAR (NTH Y 5)

(R9TURN (APPEND (CAR (GETRECORD (CDR DATADECS)))

187



77DEC3])
GOE SUA .3

C LAL-iDDA (TL)
(FOR X IN TREE COLLECT (IF (N.LI31P (CAR X))

T'AEN (CADR X)
ELSE (CADAR X])

( IASE 1771rEM
LLA dDA (NA-IE PICTURE OCCURS VALUE)

(* inserts a 77-item togetner with its picture.
checks for non-unique references, bad picture,
modifies property list and symboltable.)

(IF (AULrIPLE NAmIE)
Tir-N (HELP NAimE "multiply defined 77-item')

ELSEIF (OR (NULL (SErO PICTURE (CONVERT PICTURE)))
(NOT (PICTURCOK PICTURE)))

f,i£ (HELP NA .E 'bad picture specification")
ELSEIF (NOT (AruM OCCURS))

T3EN (HELP OCCURS "bad occurs expression")
ELSEIF (LISrP VALUE)

TAEN (HELP VALUE "bad value statement")
ELSE (ADDPROP NAiiE (QuorE ELEi$)

(CONS NIL (LIST PICTURE 77 NIL OCCURS VALUE)))
(IJSEiIVALJE NA;IE VALUE)
(IJSERTSYm-BOL NAHE])

(IJScRIDArA
LLA,13DA (NA4E PR!DECESSORS PICTURE LEVEL SONLIST OCCURS VATJE)

(* inserts an entry for a grouD or elementary data
item. checks for malformed predecessor list, bad
picture, and non-unique data references.)

IF (Ni ULLATOM PREDECESzORS)
rtii (HELP (CONS NAME (LIST PREDECESSORS))

"incorrect oredecessor list")
ELSEIF [Nuf (PICTUREOK (SETO PICTURE (CORVERT PICTUREI

fi L (&iLP (CONS NAvME (LISt PREDECSSORS))
"incorrect picture specification")

ELStIF (M i ,TIPLE NA.E PREDECESSORS)
THEN (HELP (COdS NAmE (LIST PREDECESSORS))

'multiply defined elementary item')
ELS.IF (NOr (NUMBERP LEVEL))

TH_, (HELP LEJEL 'imoroper level soecification")
ELSr.IF (NULLATOM .SOLI3T)

r'AEN (HELP 3j3LIST "not a list of sons'-)
ELSJIF (N4Jf (AluM OCCURS))

T:wrN (HELP OCCURS "bad occurs expression')
ELSL'IF (LISTP VALUE)

TtrN (HELP VALUE " bad value statement")
ELS' (ADDPROP NAME (QUOI ELE,4$)

(CONS PHRDECESSORS (LIST PICTURE LEVEL SONLIST
OCCURS VALUE)))

(IASEtiCVALUE (APPEND (LISf (QUOrE QUAL)
NAME)

PREDECESSORS)
VALJE)

188



(1I4SEtA 3YNJOL NAm~Ej)
(LasurFlLt

(LALijDA (NAME RLGCRDLIST)
(h inserts list of records pertainin' to a given
file, checks for malformed recordlist an~d multiple
references.)

(IF' (aLISIP )RECORDLIST)
Tilkii (HZ LP NII. 'IIAPROPER RvCORDLIST')

ELS37IF (GETP NAA-E (Qu~f,. FILEW)
Tthr, (HELP NAi2E "DUPLICATE RECORD DECLARATION)

ELSL,- (PUT N~AME~ (QUO','; FILE$)
Xr..CORDL IST)

(I'4SEf3Yii8OL LAtIE])
(i~4sIhrPARA3RAPH

IiLAL'1BDA (NAAE SECTION)
(* inserts a section for a given oaragravh.
two peragraphs of the same name must be in different
sections.)

(IF (Fm'EMi SECTIJN (GETP NAm~E (QUOTE PARAjRAFH)))
TiE (HELP NAAE "APPEAR~S fWICE IN~ A SECTION")

ELSE (ADDPROP NAo-E (Quort- PARAGRAPH$)
3L.CT ION)

(IASE~trALCORD
LLALII3DA (NAME FILE) ('inserts a recordn'v'e

into the symboltable,
with its corresvondine
file)

(IF (GETP NAME (Quort. FECORDW)
TH~EN (HIELP NArAE 11AULTIPLY DEFIAED RECORD")

E.LSE (PUT N~AM'E (QUOlrt, RECORD$)
FILE)

(lINS.RrsYN3oL NA,-E))
(IAS6RTS3CTloN

(LA1,a3DA (NA±ME) (insets a section'
n'3',e in~to the
sy"boltable)

(I? (arEp imk, (Quol, stcnIowJ)
lcu~t (HELP NAME '&iiULTIPLY DEFIrJED SECTION')

LSE (PUT W~AiE (QUOTE SECTION$)
(Quor-1 T))

(IiaSE~fSY:,OL NAdE])
(IJSE~i,*3Y,1dOL

L LAribDA OW~'E) (0 ad1is a 3ymhol to the
qlol)al variable thiat
recpreseits the s9nnbol
table)

[SC~LQ )Ye'iOLTAdLE (SORE (CO.4S NAM4E (DRE.4OVE 4AME SY~i-ROLTABLE]
NA, E 1)

(LkiODA (?ULuJ4AME JALUEEXP)
(IF VALUEEA.P

TALzA (SETQ VALUEZ' (CONS (CONS F'ULLIJAM~E VALJEEXP

189



VALUES])

CLAvIbDA MX
(AND (LIST? X)

(EQ (CAR X)
(Quort, ASSERT))

(LABELo~AKER
(LAi,,1DA (ABPROG)

(PROG (SiECLIST PARALIST)
[FOR Sk&CTION IN (CDR ABPR4G)

DO (PJT (CADR SECTION)
(QUOr-E FIRSTPARA)
(CADADR (CDR SECTIOJ)

(S~fQ S6~CLIST (CONS (CADR SECTION)
SECLISr)

(FOR PARAGRAPH IN (CDDR StdCTIOg)
DO (SETQ PA.RALIST (CONS (CADR PARAGRAPH)

PARALIST))
(ADOPROP (CADR PARkGRAPI)

(QuorE SECS)
(CA DR SECTION)

C.FOR StrCTION IN (CDR Ai3PROG)
DO (FOR PARAGRAPH 1N (CDDR SECTION)

DO (HPLACA (CDR PARIAGRAPHI)
(Lisr (CADR PARA.GRAPH)

(CADR SECTION))
(FOR St 4CNCE IN (CDOR PARAGRAPH)

DO (CH{AN3ELABEL SENTENCE]
(FOR ?-ARANAMIE IN~ PARALIST DO (REM4PROP PARANAME (QUOTE SECS)))
(FOR SECHAmiE IN' SECLIST DO (IlEMPROP SECNDIME (QUOTE FIRSTFARAJ)

(LASrPAIA
C L AN~SDA (SEC)

(FOR sEaTION IN (CDR ABPROG) WHEN (EQ (CADR SECTION)
SEC)

DO (RruRN (LIST (CADAR (LAST SECTION))
SEC))

(LEVE,*
(LAv'irDA (QUAL4AM~E)

(SETQ QUALNdAME (COs1PLE1.1-11ST QUALIA4 E))
(CADDR (SASSOC (CDR QUALNAME)

(GET? (CAR QUALNAtiE)
(QUOTE ELEM$J)

kv iAXSIZE
(Lk-ibDA (PIC)

(* returns the largest value that will fit in the
picture corresponding to a given qualified variable)

(FOR (X YNIL
LO
RO)

INJ (UNPAC.K PIC) DO (SELECTQ X
(S)
(V (SETQQ Y TM

[9 (IF Y

190



T~imN (SETO R (SU31 R))
eL.SE (SETO L (ADDi LQ

(P (IF Y
rdiJ (SEfQ L (SUBI W)

(SETO 4 (SUBi R))
ELSE (SETO L (ADD1 L)

(SETO R (ADMI 9J
(HELP PIC "incorrect Dicture'))

FIALLY (R~rURN4 (DIFFERENCE (EXPT 10 L)
CEXPT 10 R))

(,IAXSI ZE*
L LAi~iBDA (QUALAIM4E) (g ivns the ',axiviur

size of the value of a
qualified variable)

(rIAXIZE (picrURE*~ QJALNAM4E1)

LLAAIZ3DA (NA.IE JALS)
(OR [FOR X IJ (GErP NAM1 (QUOfL -LEM$))

£ TiirhIS (OR (QUALIFIEROK (CAR X)
QUALS)

(QUALIFIEROK QLJALS (CAR X3
(FiEiAB NA1ME QUALSI)

(NIULLATJM
ULALDA (A)
(AND A (NL1SrP A])

(OCC;URS'
[LAiDA (QUAL,4AME)

(SEEQ QUALqM-E (COMPLErr.LIST QUALOIN))
(CAti (NTH (SA.S3OC (CDA QUALMAME)

(GET? (CAR QUALMAME)
(QUOT!, LEM$)))

511)
(PAiAANAL

[LANi-iDA (SnNTLISr ACCU14 SENT)
(CO ND

((NP.. SEATLIST)
(LlSI ACCU1i))

(SENf S~flf (CAR SrNTLIST))
(SELECTQ

(CAR SEAr
(NEKT (PAr3ANAL (CDR uaxrL13T)

A,'CUmi))
(A.SSrti (SETQ ACCUd' (CONS 31;ilr ACCUrI))

(Si~rQ PATHLIST (CONS ACCIJM PATH{LIST))
(PA'rHANAL (CDR SS.NTLisr)

(LIST S NT))
[s~kup (serQ ACCUM (CONS (CADR 3UNI)

AC CU 4) )
(S~rQ PATr1I,-.3r (CONS ACZCUL4 PATHLISl))
(sarQ SP.4Tisr (CDR 3bNTUST))
(COA0

(SEt'IrIST (COND

191



NISA33:' T (CA3 ;siNTLI.ST))
(PAT'IANAL (CDR s1,NrLisr)

(LISr (CAR 3NTIST7)
(T NIL))

(T (QUOr,- (EAD)
C40 (ScJQ TEMP (SASSJC (CADR SENY)

LA3ELASS.RTLIST)
ICOA;D

(NULL Tplp)
(3ELP (QUOftC (GO0.) rARGEr HAS NO ASSERTION]

(SLfQ AC23UvI (C04~3 (CDR TCM-P)

(S~PQ PATi-ILIST (CONS q.-U14 PnrHLIST))
(SnrQ 3041,LI3T (,,DR SL NM'IST)
(CO:ID

(SEM6LIST (CO14D
L(ISASS1;4'T (CAR $iff;TLI ST))

(PRA'~ANAL (CDR SENTLIST)
(LIST (CAR~ SEt!TLIST3

cr NIL)))
(r (Quor-l (END)

ILI (U,410A (PATHANAL (CONS (CADDR 364f)
(CDR SErgrLtST))

(CONS (LIST (QUOTre 1F)
(CADR 3 Nl)

(PArijANAL (CONS (CADDCH SS-IT)
( CDR fS>, 1ST)

(CON3 (LI-ST (QUOTtr; IF)
(1,13r (.QU00?- NOT)

ACCUJIl
1thL)C( (U)Nli, (FOR X IAJ (PArHANAL (CDR 3$SNT)

ACCUMi
Joli. (COND

((EQ X N~JOIZ END))
(COND

[(ISASSt ,T (CADR SENTLIST))
(PAT-4ANAt. (CDDR SF~lIYE3T)

(LIST (CAOR SIMUTr3
(r ul~))

(T (PAr'HANAL (CDR S6,47LIAT)

k .- P-)-,, SEQ A .2UA (CONS (CkDR 31:NT)

(3t~Q DAfH~LIL' (CO~lS ACU~ii PAT4L1I'-))

(PAi>{ANAL (COR 3'N rLIST)
(CO'4S (CAri 3>MfLtST)

C LAidiA (QUAL4,AME)

192

h6i -



(Sk.fQ QtJALNME (COMPLErELIST QUALNAM4E))
(CADR (SASSOC (CDR QiJALNAZIE)

(GErp (CAR QUALNAMiE)
(Quori. ELE[4$])

(PICTUREUK
[LAL~bDA (PIC)

(OR (NULL PIC)
(AND (ATOM PIC)

(FOR X Ii (UNPACK PIC) ALWAYS (FMEMB X PICT[JRECHARSI)
(PR6Pk~UCEss

1LA06DA (AnPROJ; FLAG)
(PROG (FLAr3 CTEXT FLATPARArExr (TEXT (COPY ABPROG))

(DEBJGPRIi4T TEXT INPUT-PROGRAMr 1)
(LABELMAKER TEXT)
(DEBUGPRIAT 1"EXT AFrER-LABEL.aAKER 2)
(SEYCQ FLAT3ECTEXT (FLATTEASECTIONS TEXT))
(DEBUGPRIAT FLATSECTEXT AFTER-FLATTENSECTION 1)
(scrQ FLATPALRATEXT (FLATTE4PARAS FLATSECTEXT))
(DEfBJJrhRi~r F~L.ATPARATEXT AFTER-FLATTEqPARAS 4)
(SETQ FLATPARAVhXT (SENTELICESCAN FLATPARATEXT))
(DEBUJ;PRIiql FLATPARATEXT AFTER-SENT--NCESCAN-IN-PREPROCES9 51)

(QUAL
I LA~'iLDA (QUALqJkiE)

(CO ND
((Nisrp Q'JAL:AME)

(Lisr (QUOIL QUAL)
QUALAAME))

((NEQ (CAR QUALNMlE)
(QUOYE QUAL))

(HELP QUALNAME "improper qualifier"))
(T QUAL.4ANE])

(QUALIFIL8OK
[LAVIBDA (QUALLIST PREDLIST)

(CORi'D
((NLISrP QUALLIST)

T)
((NLISTP PREDLIST)

NIL)
(T (PROG (Z)

(SETQ Z (FMEMB (CAR QUALLIST)

(RETURN (COI, RDLS)

((NLISTP Z)
NIL)

(T (QUALIFIEROK (CDR OUALLIST')
(CDR Z))

(FH.CORDLisr
LLki6DA ODAAE)

(GErP NAmiE (QdOft tILEW]
(Rt CI3RDNAjIE

LLAvj8DA (F'ILE)
"CAni (RECORDLIST FIKEJ)

193



ILA,-i3DA (NILE)
(GErP NAeiE (QUOT-l PARAGRAPH$3)

C LAvibDA (NkIE)
(GErp HAiAE *'QUOrE SECTION$])

(SNTENcCESCAN
CLAL-i8DA (Ti):)

(PROG. NIL
(F'OR SE.41 IN I

JOIN
(APPEN'D (SELECTQ

(CAR SEN)
(OPENINPUTt (SENTEXJCESCAN (#OPENIN SENT))
(OPENOUJTPUT$ (SENT6flCESCAN (#OPENOUT SENT))
(RE~AD (SENT- CESCAN (#READ SENT))
(WRlIX (SE.NrEnCESCAN~ (#WRITE 3ENT)))
(IF (#IF sE~r))
(PERFO~RM (#PERFORM SE%4T))
(Swrs (#SET$ SENTD))
(SETROUiDED$ (#sErROUNDED$ SENT))
(ilOVECORL3PONDING$ (SENTENCESCAN

UL1OECR3O~~iU$SENIM)
(ADDCORRC3POADING$ (SENTENCESCAN(

#ADiC0RRt!SP0i'WIJG$ SENJT))
(SUBTRACTCORRESPONDINGt (SENTENCESCAN

#SBq ;ChEP~lIG SENT'))
CLOOPASSERiT (LIsr (CONS (QUOTE LOOPA3SERT)

( SEN TEN CE SCAN
(CDR SENT]

(ASS- i, (#ASSERT SENT))

(DISPL AY NIL)
(ACCEPT NIL)
(LIST SENT])

CLAi'JwDA (QUALOAI'E)
(s~rQ QUALNAM'E (COM'PLEtHLIST QUAL.NAME))
(r'OR X IN [CADDDR (SASSOC (CDR~ QUALNAME)

(GET? (CAR QUALNAME)
(QUOTF ELEM~)

COLLECT (APPEND (LIST (QUOTE QUAL)
X)

QUALNAME II
(V LjE*

[LAki6DA ( dAL~AE)
(SrQ QUALlAa4E~ (COMPLEftLIST QUALKAM'E))
(k;Ari (NVH (SA3.3,C (CDR QUALNAME)

(GE'rP (CAR QUALNAtME)
(QUOr , tLEMW)

b))
(VC

CLA'ILDA (ABPROG)
(PROG (PATHLisL' FLATSECTEXT LABELASSERTLIST)

194



(LA8ELLmAKSA A3PROG)
(SENQ FLAfSiCTExr (FLATTL" S,-CTIONS ABPROG))
(FfKAE~SRIN FLArssCTEXT)
(SEN' 5SCANOUT (SENTLNCESCAN (FLATrrliPARAS FLATSECTR.XT))
(PATHANAL (CDR SCANOUT)

(3STQ i%~fANALOUT PATdLIST)
(Si TQ VCOUT (CDBOLVCG PArHLIST))
(RE~TURN VCOUTJ)

(VuLG
[LAmrDA (PATH FORM)

(CON4D
((NULL pArd)

FORM)
(T (SELECTQ (CAAR PATH)

(ASSERT (LIST (QUOTE IMPLIES)
(CADAR PATH)

(IF (VCG1 (CDR PATH)
(LIST (QUOTE imPLEs)

(CADAR PATH)
FORM)))

(ASSIGN (VCG (CDR PATH)
(.SUBST (COND

((AND (LIST? (CADAR PATH))
(EQ (CAADAH PkTH)

(QUJOTE SELECT))
(Lisr (Quort, CHAii3E)

(CADR (CADAR PATH))
(CADOR (CADAR PATH))
(CADDAR PATH)')

(r (CADDA.1 PATI)
(CADAR PATH)

FORMM)
(VC31 (CDR PATH)

LkwJDA AJIL
(PROG Nl:

(-rQZ-,- (COPY -IKE/A)

(DEC L Amt: LKJ, ' LVAL4LOAD lO-VAL@COM'PILE DONi>ZOPf COrIPI',ER\TARS
(AD )TjVo, NLAviA)
(AYjT3WI4.i NUAIL DEBUiPRIA1T)

(DECLAr': )jajrOOp
C- 1IuE&iAP (Nu, (1274 23412 (#ADDCORRESP0NDINGA 1236 .1628) (4AASSERT

l1'32 -1706) (#IF 1712 -2?02) ( IJVCO~--' ?205 . ?'I)(
-)OPCiJI.j 2414 2524) (#OPE;'flUT ?528 .2571)) (OPERFORM 2r;74 44
(#RS7AD 4:412 53'41) 0,'S~L 504 5387) (#Srq')UlTED$ 55Cfl l

~ ;PoJDIHJ.~6135 .64kB6) C #R 11 490 -71 1) ,I(JH
(1'4" 4i (k33-til 747) 7r2)) (CrIANGELABEL 772q WU3l) ( OBOLVCG

195



6456 . 8589) (COMPLETELISr 8593 . 9005) (CONVERT 9009 . 9667)
CORRESPAIRS 9671 . 10052) (DEBUGPRINT 10056 . 10346) (ELEMENTARYP
10350 10608) (ELEMITEMSOF 10612 . 10724) (ERASETABLE 10728 110Q8)
(ERR 11102 . 11152) (FETCHLABELASSERTIONS 11156 11361) (FILE 11-65

11609) (FILENAME 11613 . 11665) (FLATTENPARAS 1166Q 11753) (
FLATTENSECTIONS 11757 . 11856) (GATHERPARAS 11860 . 12063) (GETNEWLABEL
12067 12481) (GETRECORD 12485 . 14789) (GETRECORD' 14793 • 15671)
(GErsoNs 15675 . 15800) (INSERT77ITEM 15804 . 16538) (INSERTDATA 16542
. 17749) (IASERTFILE 17753 • 18183) (INSERTPARAGRAPH 18137 . 1896B)

(INSExrRCORD 18572 . 19014) (INSERSECTION 19018 . 19302) (IMSPRTSYABO',
19396 19761) (INSERTVALUE 19765 . 19891) (ISASSEFT 19895 . 19077)
(LABELrLKER 19981 20811) (LASTPARA 20815 . 20970) (LEVEL* 20974
* 21130) (MAXSIZE 21134 . 21726) (iAXSIZE* 21730 . 21987) (MULTIPL?

21991 - 22182) (NNULLATOM 22186 . 22235) (OCCURS* 22239 22418)
PATHANAL 22422 . 24353) (PICTURE* 24357 . 24512) (PICTUREOK ?4516
. 24642) (PREPROCE3S 24646 . 25223) (QUAL 25227 25440) (QUALIFEEROK

25444 23746) (RECORDLIST ?5750 . 25810) (RECORDNAiE 25814 . 25872)
(SECTIONLISr 25876 . 25942) (SECTIONP 25946 . 26007) (SENTENCESCAN
26011 . 26816) (S0NS 26820 . 27068) (VALUE* 27072 . 27250) (VC 27254
. 27701) (VCG1 27705 28314) (ZAP 28318 28409)))))

9OP

196


