ﬂm FIU‘. vurY

IHN'!tlltm]mm“1nuu

H! m 1”

\’(Nf.llﬂilm.t A

UNITED STATES ARMY
COMPUTER SYSTEMS COMMAND

O,
¢‘l’
~
",

THE VERIFICATION OF COBOL PROGRAMS

[This do~vment has bean opproved
{ forrm T o an e aalonite

Lo o

FORT BELVOIR,VIRGiNIA 22080

83 bi -

Z @
0;_76‘5‘("

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

1
SECUR TY CLASSIHICATION OF THIS PAGE ‘When Data Entered) JLNE[AS] 1ED

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2 GOVI ACCESSION NO 3 RECIFIENT'S CoTALDG WUMBER
Ab-RID7 /g
4 TITLE tand Sabtitie) 5 TYPE Of REPGAT & PERIOD COVEHED
THE VERIFICATION OF COBOL PROGRAMS Final

15 January 1975 to
A BRI s G

7 AUTHORIs) ~§ 3 3967-2]

8 CNTHACT OR GRANT NUMBEHs)

DAHCO4-75~C-0011

L. Robinson, M. W. Green, R. E. Shostak and
J. M. Spitzen

g PERFORMING ORGANIZATION NAME AND ADDRESS 10 PRCCRAM FLEMINT, PROJECT, TASK
Stanford Research Institute ABEBA & WOHK UNIT NUMBERS
333 Ravenswood Avenue
Menlo Park, California 94025

1A MO TR AGENCY NAWE % ADOHESS (f il trem Cotratlineg Oftee;

12, REVLAT DATE 13 N0 OF PAGES
1T CONTROLLING OFFICE NAME AND ADDRESS 31 March 1976 196
U. 8. Army Computer Systems Command 15 SLCL Ty CLALG fof this reports
Advanced Technology Directorate
Fort Belvoir, Virginia 22060 Unclassified

Dr. Jimmie Suttle

154, DECI ASSIFICATION DOWNGRADING

U. S. Army Research Office ; ot ruLL
Box CM, Duke Station
- Norgh-—Cara L ng-—23 708 — e -
ln[}!lﬁgg“ﬂaﬁ?bl%ﬁw STAT Fa\-z‘er\%kﬁ)? m.?'?.-‘)ﬁu 4

Distribution Unlimited

17 DISTRIBUTION STATEMENT (of the abstract entered n Block 20 4t ditterent trom report

18, SUPPLEMENTARY NOTHES

19 KEY WORDS (Continue on reverse side (I necessary ana adentily by block number)

Program verification, COBOL, structured programming

30 A ACT (Contame Or erge Sdn ot cerassiry anit rdenc sy, fy 0l k1 anbierd N

This report describes an initial study concerning the feasibility of proving the
correctness (i.e., verification) of COBOIL programs. The report contains: (1) a
study of the COBOL language as related to veritication, (2) the syntax and seman-
tics of a subset of COBOL 71 1n which to perform cxperimenial verification, (3)
design of a system to accomplish COBOL verification in the desired subset, and
(4) procf of a sample COBOL program, The conclusion of the report is that COBOL
verification is indeed teasible. but must be further engineered if it is to be

cost-effective.

oD W 14T 3

L ENCUAQSIE ARG
ENAICR G 0N (B8 D 0T ' A

FoWNE oL D 1 ntned)

fer

—~—

' |

. .
g TN ‘..A

—k

s - :—‘“

March 1976

Final Report
Covering the Period 15 January 1975 to 31 January 1976

THE VERIFICATION OF COBOL PROGRAMS

By: L. Robinson (Project Leader)
M. W, Green
R. E. Shostak
J. M, Spitzen

Prepared for:

U.S. ARMY COMPUTER SYSTEMS COMMAND
FORT BELVOIR, VIRGINIA 22060 -

Contract DAHC-~04-75-0011

STANFORD RESEARCH INSTITUTE
333 RAVENSWOOD AVENUE
MENLO PARK, CALIFORNIA

PSS S ol .

This report was prepared in support of the US Army Computer Systems
Command Research and Development Program. The report was prepared by
Stanford Research Institute under Contract Number DAHC-04-75-0011.

This Technical Report has been reviewed and is approved.

-

(. Stoudlhaeer™

DR.YJOHN STAUDHAMMER /- GIORA PELLED
Technical Advisor / Director, Advanced Technology
‘US Army Computer Systems Command US Army Computer Systems Command

lriDan L3 Prcen—
«/JONATHAN B. PRICE, 1LT SC

Task Action Officer
US Army Computer Systems Command

ABSTRACT

This report describes an initial study concerning the feasibility
of proving the correctness (i.e., verification) of COBOL programs. The

report contains:

(1) A study of the COBOL language as related to verificationm.

(2) The syntax and semantics of a subset of COBOL 74 in which
to perform experimental verification.

(3) Design of a syatem to accomplish COBOL verification in the
desired subset.

(4) Proof of a sample COBOL program.

The conclusion of the report is that COBOL verification is indeed feasible,

but must be further engineered if it is to be cost-effective.

iii

PREFACE

For readers who want only a summary of COBOL verification work,
we suggest reading Sections I, II, III, and VII. The introductions
and conclusions ¢o the remaining sections may also be helpful. A
glossary is provided that defines terms pertinent to program verifi-
cation. We do not suggest reading the Appendix unless the reader is
interested in tae inner workings of the COBOL verification system

and has some background in LISP.

The authors acknowledge the assistance of Jack Goldberg and
Karl N. Levitt in the management of this project, and the techaical
assistance provided by Robert S. Boyer and Bernard Elspas.

FRoLIRLILG Fe ok bhui(-NOT FL

— e g

CONTENTS
N ABSTRACT. . . .+ v v v v v e e e e e e e e e e e e e e
PREFACE i v v e v et s e e e e e e e e e e v
LIST OF ILLUSTRATIONS &+ + v v o o o o o« o o« » « « 1ix
LIST OF TABLES. . . . + v v v v v o o o o o s o s o s o« o« o o« Xt
I INTRODUCTION v ¢ ¢ ¢« o o o o s o o o s o o = 1
A. Introduction.+ « . ¢ 0 v e e e e e 0w e 1
! B. Background and Project Goals « + « « 2
C. Program Verification--Theory . . . « « « « o « o « + 3
b . D. Program Verification for "Real Languages" 5
E. Brief Discussion of the COBOL Language 11l
II ANALYSIS OF COBOL WITH RESPECT TO VERIFICATION 15
A Introduction.« . 4 « v 4 e e« 4+ &« . . 15
B Elementary Data Items 16
f C Tree-Structured Records 17
D FIle@B o « « « o o o o o o o o o o s o s o o o o o« o - 18
\— E. Multiple Definition of Storage Areas 18
F. Assignment and Computation Statements 22
G. Control Statements o o o ¢ o o o o « o o« o 25
H., Conclusions . . . &+ o v o o v v o s o v v o o o o . . 28
II1 THE STRUCTURE OF THE COBOL VERIFICATION SYSTEM 31
A, INtroduction . « . & ¢ v 4 4 e b e e e e e e e .., 31
B. Syntax Analysis and Transduction 32
C. Posttransduction Processing « « « + « « « « o 36
D. Verification Condition Generation 36
E. Conclusions « . « « s + s s+ « « « « « .« 40
g IV SYNTAX OF THE COBOL SUBSET . . . « &+ « o o ¢ o o o+ o o« « « 41
A, Introduction ¢ ¢ . 4 d e 0 e e e e .. 4
" B. DATA DIVISION Features « ¢ ¢ + « s o &+ » - 41
C. Transduction Grammar for the DATA DIVISION 45
D. PROCEDURE DIVISION Features « + « « ¢« o« « « « 48
. E. Transduction Grammar for the PROCEDURE DIVISION . . . 50
\ F. Conclusions ¢ 4 o ¢ ¢ ¢ s o o s o o o o » 53
vii
FRLCEWiNG Fe il bleukKeNOT F1
e e 8

V THE ASSERTION LANGUAGE FOR COBOL VERIFICATION .
A, General .« . « + ¢ ¢ 4+ e e e 4
B. Basic Assertion Language« . .
C. Special Functions for COBOL
D. Abstract Assertions for COBOL Programs . .
E. Conclusions « « « « « o o o .
VI SEMANTICS FOR COBOL VERIFICATION,
A, Introduction ¢ . . 0 e . .
B Posttransduction Processing
C. Verification Condition Generation
D Research Issues in Verification Condition
Generation + & ¢ s 0 e e 4 e e e
VII STRUCTURE AND COBOL VERIFICATION
A, Introduction . . . e e e e e e e e e
B. Structured Control Primitives
C. Restrictions on COBOL Data Operations .
D. Data Bases . « . . « « « « + «
E. Data Abstraction Facilities
F. Top-down Design and Modularity
G. Conclusions . . . « . + « ¢ v ¢ ¢« o e
VIII AN EXAMPLE OF COBOL VERIFICATION
A, Description of Program
B. Assertions s 4 0 . e . .
C. Transduction and Posttransduction Processing
D Verification Condition Generation
E. Proof of a Verification Condition, .
F. Conclusions « . « « « &+ &
IX CONCLUSIONS . . . v v v v o ¢ ¢« o o« o o .
A, General ¢ 0 v i v e e e e e e e
B. A Note on a Programming Environment for COBOL
X REFERENCES « ¢ v ¢« 4 v ¢ o o o s o @
GLOSSARY . . . & v v v ¢« e o v t o o o o o o .
APPENDIX ¢ ¢ 4 v o« v o v v« .

77
77
77
78
82
34

87

87
87

95

10C¢

101
101
101

. 102

103

. 105

106

. 108

109
109
111
112
113
115
116

149
149
150

151

153
155

r

I-1

I-2

II-1

II-2

II-3

III-1

ITI-2

III-3

VI-1

VIi-1

VIII-1

ILLUSTRATIONS

Diagram of a Semiautomatic Verification System .
Structure of the COBOL Language . . « « « « o

Multiple Definition of Storage by the REDEFINES
Statement L 0 0 e w0 e e e e

Multiple Definition of Storage by the RENAMES
Statement ¢ . . . 0 0 e e e e e e

Diagram of Permissible MOVE Operations
Structure of the SRI COBOL Verification System

A Simple Flowchart Scheme

Three Simple Paths of the Programs in Figure III-

Translation of "PERFORM Pl VARYING I FROM 1 BY 1
UNTIL I >N (ASSERT (P I))." . . v « v v v « . .

File Structure for a Typical COBOL System . .

File Structure of the Example Program . . .

2

- 33

. 38

- 91

-104

110

IvV-1

Iv-3

Iv-4

IvV-5

Iv-6

VIII-l

VIII-2

VIII-3

VIII-4

VIII-S

VIII-6

VIII-7

VIII-8

VIII-9

TABLES

Syntax of the DATA DIVISION of the CSV
Features for the DATA DIVISION of the CSV . .

Transduction Grammar for the DATA DIVISION
of the CSV . . & & & « ¢ ¢« o ¢ o o o o o « o @

Syntax of the PROCEDURE DIVISION of the CSV . .
Features of the PROCEDURE DIVISION of the CSV .
Transduction Grammar for the PROCEDURE DIVISION
of the CSV , |, v v v v ¢ o e v o o
Example Program ., . ., . . . ¢ ¢ ¢« ¢ & « o« « o .
Assertions for Example Program+ « « o .
Transduced Example Program (PROCEDURE DIVISION)
Transduced Example Program (DATA DIVISION) .

Example Program after Posttransduction Processing
and Simplification « « &« + « . . .

Significant Paths for the Example Program . . .

Verification Condition for Path (6-6) of the
Example Program o « o s o o o« s o o o

Proof of Verification (6~6) for the Example
Program & 4 ¢ & o o s+ « o s a4 e e o .

Rules of Inference for Proof Presented in
Table VIII-8 & v « ¢ & o« o & o o o o »

xi

3

55
56

57

GO

65

66

117

120

123

125

126

129

132

135

. 146

-'—'——_——'—-———

LobulaG Fek blaK=NOT F1

=

I INTRODUCTION
A. Introduction

The goal of this project has been to study the feasibility of formal
verification of COBOL programs. To do that, we have chosen a subset of
the COBOL and built part of a system to verify programs written in that
subset. We have shown that it is possible to verify COBOL programs, but
that there are many problems yet to be resolved to make COBOL verification
cost-effective. In this report, we outline some of these problems and,

in some cases, propose solutions.

Program verification is not yet applicable to the production of soft-
ware. Although most of the theoretical problems have been solved, tools
must be developed to reduce the volume of material that programmers now
must process in program verification. Among the tools needed are well-

engineered interactive aids and new programming languages.

In our work we have:
(1) Analyzed COBOL with respect to verification.
(2) Selected a subset of COBOL for verification.

(3) Designed an assertion language for formally describing the
intent of a COBOL program.

(4) Designed a system using the INTERLISP language for generating
verification conditions for COBOL programs.

(5) Discussed the implications of structured programming on COBOL
verification.

(6) Presented an example of a verified COBOL program of modest size
(<100 lines in the PROCEDURE DIVISION).

In this section, we discuss the goals and background of the project,

the theory of program verification, the programs verification for "real"

languages, and the structure of COBOL.

In Section 11, we present a detailed analysis of COBOL in relation
to program verification, including general comments about including or
excluding particular language features in the COBOL subset for verification

(hereinafter called the CSV).

In Section III, we describe the structure of the verification system

designed for this project.

In Section IV, we formally describe the syntax of the CSV.

—

In Section V, we describe the assertion language and some rules of

inference for deduction.
In Section VI, we describe the semantics of the CSV. -
In Section VIII, we present an example of a fully verified COBOL program.
In Section 1X, we state the conclusions of the project.

The documented code for the programs that we have designed to assist

in COBOL verification is in the Appendix.

B, Background and Project Goals

The goal of program verification=-""verification" throughout this
report refers to formal mathematical proof-- is to make programs more
reliable. In our work, we make several assumptions. First, a programming
language is a formal medium for expressing solutions to certain types of
problems., Because of this formality, a program can be analyzed logically.
Second, a program (especially a large one) is not necessarily a good
medium tfor stating the problem to be solved. A program states how a

problem is to be solved, not what the problem is.

Program verification is not yet a viable tool to improve software

reliability because: ~r

(1) The programs are too complex,
(2) The assertions are too complex.

(3) The programs have been written in a programming language that
is not amenable to formal description.

The means of soiving the first two problems is that of structuring.l’2

The primary goal of the work described in this report is to solve the

third problem. The other two issues are discussed in this report, but

not emphasized.

Even though program verification may be difficult, we believe that
its usefulness can be increased to approach acceptable limits., The
answer lies in the seriousness of the software problem and in its inherent
naturc. Almost every nontrivial program has some logical flaw; many
commercial programs have so many "bugs" that they do not provide the
service promisced by the vendor. Some programs contain undetected but
potentially damaging errors cven after being tested and debugged for

some time,

The inherent nature of the problem is that informal standards

(English-language specifications) cannot be used to guarantee the correctness

of a program. As the technology matures, some formal notation is usually
developed so that standards can be stated unambiguously and the product
can be checked systematically against its standards. A doctor's pre-
scription is a simple example of such a formal medium that is typically
not checked. Whether or not this checking is done in every case is

usually a matter of cost-effectiveness.

The same thing is true for program verification. We¢ must develop an
unambiguous language for stating standards (i.e., an assertion language)
and techniques for systematic checking (i.e., formal verification). We
can then imagine a scenario in which assertions are written out, but might
or might not be formally checked against the program, depending on cost-
effectiveness. But at least some checking mechanism exists, so that if
the application is critical, the cost can be incurred. Thus, it is
useful to do research in verification techniques and to write assertions
for programs, even if verification is not attempted. An added benefit
of this research is to distinguish 1language features that simplify

analysis of programs, even if that analysis stops short of proof.

This work is an attempt (the first that we know of) to apply
formal verification techniques to COBOL. It is also one of the few
attempts to use verification techniques for any of the commonly used

languages.

C. Program Verification~-Theory

The idea of program verification goes back almost as far as
programming itself: it was first discussed by von Neumann and Goldstine.3
The basic idea is that there is a state that models some external
phenomenon (e.g., differential equations, matrices, payroll records).

The state can be represented by the contents of core memory, the contents
of files, or program variables (at a more abstract level). There is also
a set of elementary operations that change the state., Examples of
elementary operations are machine instructions or statements in higher-
level programming languages. A program defines a (possibly infinite)

set of sequences of elementary operations. When a program is executed,

only one sequence of elementary operations is performed., The selection

e

of one sequence out of the set of sequences defined by the program is

determined by the state just before the program is executed called the

"initial state." Thus, a program is a function from states to sequences —
of operations, If the program terminates, the state just after termination

is called the "final state.'

The user of a program is interested in knowing what the final state
will be’ for a given initial state of the program., Ideally, he will have
a specification, which expresses a mapping from initial states to final
states. It is not immediately obvious whether a program (also a mapping
from states to states) is consistent with the specification. Consistency
between a specification and a program is often called "program correctness."
Program verification is a set of techniques for proving this consistency.

Flovda and NaurS first described this method of verification. The spe.ifica-

tion consists of a statement of the properties that the initial state must
have (the input assertion), and a statement of the relation between the
initial state and the final state (the output assertion). Both input and

output assertions are stated as logical predicates.

The effects of each of the elementary operations on the state must
also be formally described (input and output assertions for these operations ~
are useful for this purpose). The control operations, which do not in
themselves affect the state, must also be axiomatized. A program may in
a small number of statements describe a large (possibly infinite) sequence
ol operations. To achieve verification, inductive agssertions, which break
the program's flowchart up into finite sequences of operations, must be

associated with each of the loops of the program.

Floyd's method is used for proving partial correctness of programs,
A partially correct program is consistent with its assertions only if it
terminates., Termination of a program can be proved separately. Given
input and output assertions, program text (with indugtive assertions), and
the definition of the clementary operations, a set of formulas in first-
order logic can be constructed whose validity is equivalent to the partial
correctness of the program. These formulas are called ''verification
conditions.” A software system that accepts as input the program to be

verified (with input, output, and inductive assertions) is called a

.) W— -“

"verification condition generator."6'7 Verification conditions can be

proved by hand, or can be input to a deductive system or automatic theorem

prover, which attempts to generate a proof. In general, deductive systems

are inadequate for proving verification conditions by completely automatic
means, and many systems are equipped with interactive facilities to allow
users to guide the proof. Deductive systems with interactive facilities

are also called ''semiautomatic verification systems.” A diagram of a

program verification system is shown in Figure I-1,

The application of formal techniques to a particular programming

language environment is often a matter of style. The verification

condition generator incorporates most of the language-dependent features,

because it must translate assertions and statements in the programming

language into expressions in predicate calculus. Some verification

condition generators are based on a particular semantic description of a
language. For example, a verification condition generator for PASCAL

7
(London, Luckham, and Igarashi) is based on the axiomatic description of

PASCAL by Hoare and Wirth.8

Several issues have not been addressed by the mainstream of program
verification: The first issue, termination, has been addressed by
several researchers.G’g’10 It can be treated either with or separately
from the issue of partial correctness. It is important to formalize two
other issues == run-time errors and validity of input data -- if
verification is to lead to software reliability. All three of these
issues have becn grouped, to some extent, into a property called "clean

-"u they are not consldered

termination Al though these issues are¢ important,

during this work, which limits itself to the basic issues of partial

correctness for COBOL programs,

D. Program Verification for "Real Languages'

In this subsection, we attempt to define the concept of a real
programming language by enumerating some of its properties. Particularly
important are the properties of semantic cleanliness and syntactic size
of real languages. We also describe some special properties of programs

for which proof is particularly important when dealing with real languages.

[T

Program Assertions !

b

VERIFICATION i
CONDITION :
GENERATOR

Verification Conditions

\

DEDUCTIVE
SYSTEM

Program Proof

for Counter-E xample
or Nothing)

j @ Human Guidance

SA-3967-2

FIGURE I-1 DiAGRAM OF A SEMIAUTOMATIC PROGRAM VERIFICATION SYSTEM

Y

COBOL is a member of the set of "real" programnming languages, which
are those that are widely used in many applications and for which standards
exist, Real languages are usually, but not always, commercially viable
products., Examples of real languages are COBOL, FORTRAN, PL/I, and (to a
lesser extent) Algol and LISP. The properties that make a programming
language a real language unfortunately also detract from the ease of
verifying programs in that language. Most of these undesirable properties

can be summed under the term "ack of semantic cleanliness.'

The semantics of a programming language describe the meaning of
statements in the language, expressed in some well-defined formal medium.
A language has "clean" semantics if the definition of the language is
elegantly expressible in some formal medium., There are many good reasons

why real languages are not semantically clean:

. Most real languages have many operations. A real language
incorporates the special interests of many groups of users,
whose interests are not always compatible. Large numbers of
features must often be added. These features not only
complicate the semantics of the language, but often violate
the spirit that motivated the initial conception of the language.
PL/1 is a good example of that. In a desire to overcome some of
the difficulties of FORTRAN, COBOL, and Algol, the designers of
PL/I created something larger than any of its ancestors. Con-
sidered alone, the size of real languages is a major obstacle
to verification.

. Most real languages concede syntactic generality in the interest
of an efficient implementation, in either the compiler or the
gencrated code. Examples of these dependencies are limitations
in the number of nestings (COBOL) or in the complexity of an
arithmetic expression in certain syntactic positions (FORTRAN).

. Most real languages must have some features that deal with the
hardware or operating system. The ENVIRONMENT DIVISION and
Communication Module of COBOL are cxamples of these features.
Standardization has served as a uniform interface between the
language and the environment. However, the fact that a variable
is SYNCHRONIZED or that there are 100 logical records in a physical
record will not affect the correctness of a COBOL program, but may
affect the performance of that program.

. Most real languages are the products of an evolving development,
as illustrated by the fact that many real languages have numbers
after their names to indicate the particular dialect in the
sequence (COBOL 74, FORTRAN IV, Algol 60, LISP 1.5). In many
cases, there is a desire for upward compatibility, so that bad
features that could have been eliminated remain--"augmented' by
the improvements.

Most of the important languages were created before the aesthetics
of programming were well established. Thus, many real languages lack
features such as strong typing, block structure, anua flexible procedure
and macro facilities. Structured programming practices are motivated by
a desire to infuse these new aesthetics into the programming world. Perhaps
verification will generate its own set of aesthetics to guide the design
of future programm:ng languages. Finally there is the problem that even
if the semantics of a real language are clean, they are usually stated in
natural language, e.g., in a standards manual.12 A standards manual may
suffice for programmers and language implementers, but it is not directly
applicable to verification, Some attempts have been made to define
language semantics formally (e.g., VDL13 for PL/1). However, as long as
there are no fomal semantics for COBOL, it will be impecssible to prove
the correspondence bhetween a language that is verified and a compiled

version of such a language,

Before solutions to the problems of semantic cleanliness are con-
sidered, there is one major constraint to these solutions: the solutions
must have minimum effect on the languages themselves. There is 2n under-
standable resistance by manufacturers to redesigning the programming
languages that they support, and a similarly understandable resistance
by users to recoding the software that they have written. Thus, the
solution to the verification problem for real languages must be incremental.
Research in new languages that support verification is very important,
but the data processing community will ignore this research unless

verification can be shown to be useful for currently existing languages.

The problem of language size has two aspects; syntactic and
semantic. When a language has syntactic complexity (e.g., COBOL), there
arec many different ways to do the same thing. When a language has
semantic complexity, there are many things that can be done. In cases
where syntactic complexity exists, verification can be done on a program
written in an internal form that is syntactically simple--there is only
one way to do any given thing. Automatic translation from the external
form to the internal form is relatively straightforward. Semantic com=-
plexity is handled primarily by subsetting, which entails choosing a
sutlanguage that includes only the desired semantic features. Some lan-

guage cons tructs are useful (and even necessary), but can easily be misused.

This is precisely the problem with the GO TO. The solution to this type

of problem takes several forms:
(1) Change the language.

(2) Establish management techniques to prevent abuse of the

construct,

(3) Develop a preprocessor for the language that will allow

desirable constructs in place of harmful ones.

For more information concerning these alternatives as applied to

COBOL, see Section VII on structured programming and COBOL.

The semantics of a language can be specified by formulating an abstract
machine whose instruction set is the set of commands in the programming
language. Thus, a formal description of a language is the definition of
such a machine. We define a machine that executes a subset of COBOL pro-
grams by means of a set of rules for generating verification conditions
for the programs. Assuming that such a machine is actually consistent
with a given COBOL compiler (something that may be difficult to determine),

a program that is proved correct--using this verification condition gnerator--
will actually run correctly when compiled by the given compiler. We use
informal arguments to show that our formal definition of a COBOL subset is

consistent with the ANSI standard.12

With regard to the features of a real language that are dependent on
the hardware or the operating system, there are two strategies: to exclude
them or to axiomatize them, Statements in COBOL's ENVIRONMENT DIVISION and
items such as SYNCHRONIZED or the number of logical records per block can
be excluded since they do not affect the outcome of the program. Special
kinds of file input/output and communication with the operating system can
be axiomatized as properties of the abstract machine that defines the pro-

gramming language.

Several kinds of program properties are particularly important for
real languages. There has been very little research done to date in the

statement and proof of these kinds ¢f properties. They are:
(1) Finite machine arithmetic
(2) Clean termination and run-time errors

(3) Vvalidity of input data.

The issue of finite machine arithmetic is particula:ly acute in
COBOL because data items have no more digits than they need for internal
storage, while other languages have the (relatively large) word size of
the machine. Thus, overflow and truncation occur often enough to be of

concern. We consider these items in Section VI,

Clean termination was described earlier in this section. Because
of the limited scope of this project, we did not deal with this issue
in this report. Clean termination assumes the absence of run-time errors.
However, such assumptions cannot safely be made, as is the case in hard-
ware and operating system errors and in situations where input data is
invalid. Run-time errors should be considered in e fforts to verify pro-

grams in real language.

In verification, input data is assumed to be valid (with respect to
type and range of values). One of the greatest difficulties in guaranteeing
the reliability of programs in real languages is that such assumptions cannot
be made. In other words, input data items are frequently faulty, and programs
must be written to account for such situations. A real program will typically
have several degraded modes of performance (without aborting the program),

depending on the severity of the error. For example, even if a single

\J:

record is destroyed, all other records may be processed correctly. There
is a need in program verification to anticipate such occurrences and to

make the input assertions for these programs as weak as possible.

E. Brief Discussion of the COBOL Language

COBOL is an extremely complex language—-both syntactically and seman-
tically. Since we could only apply verification techniques to a small subset
of the entirc language, we had to choose the issues (and parts of the lan-
guage) that represent the most important aspects of COBOL., After briefly
describing some characteristics of the COBOL language, we outline the
coverage of features in the COBOL subset chosen by us relative to the mod-

ularization of ANS COBOL.

COBOL has a rich set of data types and operations. The area of most
immediate concern for verification is called the '"elementary data item.'
All computation in COBOL is character-oriented. Even numeric data items
are treated as character strings with respect to assignment, truncation,

and editing. 1Its control statements are also interesting, if not elegant

10

X

to formalize. Elementary data items form the leaves in a tree-structured

data declaration, of which the nonleaf nodes are called "group data items.'

A record is an entire tree of data declarations.

Input/output is very important in COBOL. Many programs follow the %
acheme :
Open files, initialize;

LOOP: Read input at end go to CLEANUP;
Process data;

Write output;
g0 to LOOP;
CLEANUP: Close files, etc.;
Thus, no useful COBOL program can be proved correct without some axiomati-

zation of input/output.

Full ANS COBOL12 is one of the most complicated programming languages,
containing features that range from strings to interprocess communication.
Thus, the subset of COBOL that we are verifying is small relative to the
entire language, although the subset is a powerful language in itself. The
subset provides arithmetic and relational operations on COBOL numeric data
items, generalized control structures, and sequential input/output. A dia-
gram of the components of the entire ANS COBOL language is shown in Figure I-2.
In Figure I-2 , we indicate the parts of the language handled by the current
verification system. The language is divided into twelve modules, which group
related sets of features, and three levels, which are successively more sophis-

ticated subsets of the modules,
A brief description of the contents of each module follows:

(1) Nucleus--Basic language constructs: control structures,

data items.

(2) Table Handling~-Arrays and subscripting.

(3) Sequential 1/0--Reads and writes sequential files; a

sequential file is a file whose records must be read in

the order that they were written,

(4) Relative 1/0-~Reads from and writes to files whose records
can be accessed in either sequential or random order, via

a unique key that specifies a record's ordinal position ™

within the file.

11

S

FIGURE 1-2

STRUCTURE OF THE COBOL LANGUAGE

1z

R
LEVEL 1 tEVEL 2 LEVEL 3
,;_/4/
S
NUCLEUS v /// ? NULL
TABLE HANDLING I // ? NULL
plsas
TTT T ITIIT, 77
. /s e
SEQUENTIAL 1/O y ? NULL
RELATIVE 1/0 NULL ? ?
INDEXED 1/0 NULL ? ?
SORT-MERGE NULL ? ?
REPORT WRITER NULL . NULL
SEGMENTATION NULL . e
LIBRARY NULL ? ?
DEBUG NULL L4 L]
INTER-PROGRAM
COMMUNICATION NULL ? ?
COMMUNICATION NULL [}]
|
NULL - Nonexistent in ANS COBOL
[I Covered by Current Work
? May be Covered in Future Work
. No |mmediate Plans for Coverage in
Verification System
SA-3967-12

[Rpory

(5) Indexed 1/0--Like relative 1/0, except there can be ;
multiple keys per record and a user can choose an ;

arbitrary key when the record is written,

(6) Sort-Merge--Sorts a file according to fields within its
records, or merges two or more identically sorted files

of similar record structure.

(7) Report Writer--Allows the programmer to generate a
file consisting of report (lineprinter) records solely
by specifying the format of the report, rather than the

algorithm for generating the report.

(8) Segmentation--Allows the programmer to specify the divi-
.

sion of a COBOL program into segments whose object code

can be overlayed in memory.

(9) Library-—-Enables the copying of sections of source code

from centralized libraries.

(10) Debug-~Allows the insertion of special sections of code
for debugging, the execution of which can be switched on

and off by compile~ or object-time switches.

(11) Interprogram Communication--External procedure call and

data-sharing mechanism.

(12) Communication--Message and synchronization facilities for

concurrently executing programs,

The levels are numbered from 1 to 3, in order of increasing complexity.

Most modules have no features at Level 1, as Figure I-2 indicates.

As shown in Figure I~2, our subset of COBOL provides most of the
features of Level 1 and some features of Level 2, in the Nucleus, Table
Randling, and Secquential 1/0 Modules. Most of the features left out
(e.g., ALTER) are those thal we consider undesirable because they sub-
stantially increase the difficulty of verification. Future work should
expand the subset to include most of Level 2 in the aforementioned modules,
and perhaps Level 2 of modules such as Relative and Indexed I/0. We view
modules such as Library and Interprogram Communication as also being straight-

forward to verify, and modules such as Segmentation as not greatly affecting

13

a program's input/output behavior. However, we view the Debug, Sort-

Merge, and Communication Modules as being extremely difficult to verify,

and as being of secondary importance at present.

There is a tendency to structure large COBOL programs around a large
data base that has a unified set of data declarations ttiat can be used by
many programs, This is the aim of the CODASYL report on data bases,14 in
which the global data declarations for the whole system are called "schemas'
and the local declarations for individual programs are called "subschemas.”
Although we have not looked at this report in depth, we find that the
CODASYL report allows almost the same data declarations as COBOL 74 and
permits almost arbitrary programs in COBOL 74 to operate on the shared
data, Thus, we can use the same subsetting restrictions in the declarations
and programs for the data base environment as we use for regular COBOL
programs. We think that the problem of COBOL programs in cooperation can
be better approached if the programs are forced to have consistent data
declarations., Thus, the CODASYL work can by itself improve the reliability
of large COBOL systems and be consistent with our effort in formally veri-

fying COBOL programs.

14

A. Introduction

In this section we present a general analysis of COBOL for applicabil-
ity of verification techniques. We try to identify some important general

issues in COBOL that may have an impact on verification to be prepared for

specific

verification system (Section III). This discussion is different in that

most literature on COBOL does not address formal verification.

If one considers a COBOL program to be running on a formally defined

abstract

define that abstract machine. 1If one encounters language constructs that
are difficult to formally define and that lead to a needlessly complex

definition, programs written in such a language will be difficult to verify.

'* T

IX ANALYSIS OF COBOL WITH RESPECT TO VERIFICATION

work, such as choosing a subset (Section 1IV) or designing the

machine that runs only COBOL programs, then one can try to formally

Often one must simplify the real COBOL language by subsetting it, so as

to attain a tractable formal definition. Our analysis is based on such

criteria.

Inelegances in the formal delinition can result (1) from

machine-dependencies and representation issues that violate the level of

abstraction intended to be provided by a COBOL machine, (2) from a multi-

plicity of special cases that must all be accounted for or (3) from con-

structs that are too general to allow powerful proof procedures to be

applied.

Our

analysis is based on two dimensions of the language--the data

structures and the verbs. The interesting aspects of COBOL are charac-

terized in these two dimensions. Data structures of COBOL are divided

in these

(1)
(2)
(3
1)

Verbs of

(1)
(2)
(3)

categories:

Elementary data items with interesting properties
Tree structured records and arrays of data declarations
Files consisting of many records

Multiple data declarations for the same storage areas.
COBOL are divided into these categories:

Assignment statements
Control statements

Input/output statements.

15

B. Elementary Data ltems

Elementary (nonaggregate) data items can be either DISPLAY (a string
of characters) or COMPUTATIONAL (a string of bits, e.g., machine integers
and floating-point numbers). We decided to consider only DISPLAY data
items--since COBOL's major application is to manipulate character-oriented
data. DISPLAY items are characterized by a PICTURE specification (e.g.,
AAA, XXX, or S999v999), which is a format statement for representing the
data item. A PICTURE specification implicitly declares the type of the
data item to be one of the following: ALPHABETIC, NUMERY(ALPHANUMERIC,
NUMERIC EDITED, or ALPHANUMERIC EDITED. The EDITED data items are those
whose values must be processed to be printed in a special format. The
PICTURE specification also describes the size of the data item, its sign,
and the position of its decimal point. The PICTURE specification relates
to the possible values that a data item can assume so that a two-digit
integer, for example, (PICTURE specification 99), has a maximum value
of 99. 1In FORTRAN, on the other hand, a data item can only occupy the
standard amount of storage space for an object of its type and takes

on the same format each time it is printed.
Our major concern was with NUMERIC data items, for two reasons:

(1) These items are necessary for verifying nontrivial programs.
(2) Something is known about verifying programs in the numeric
domain. (Domains such as strings have had little explora-

tion.)

Originally, we had hoped to cover both NUMERIC and NUMERIC EDITED items,
but the handling of NUMERIC EDITED items turned out to be too compli-

cated to be handled in the allotted time.

Although a NUMERIC data item in COBOL is a character string, in
most cases we consider the real numeric value that the data item repre-
sents. The only time we consider a NUMERIC data item's character string
representation or PICTURE specification is in assignment statements and

arithmetic operations, since truncation and overflow can occur there.

16

—————————————

C. Tree-Structured Records

The "elementary items" are the leaves of the tree-structured record
declarations of the COBOL DATA DIVISION. The nonleaf nodes of the tree
are called '"group data items."” All data items in the tree have '"level

numbers" associated with them. For example, in the data declaration

scheme
01 A

02 B

02 C
03 D

02 E
03 F
03 G,

B, D, F, and G are elementary items; A, C, and E are group data items;

and 01, 02, and 03 are level numbers.

There are several implications of the tree-structure, all following
from the fact that each data item has a context (i.e., its sequence of
ancestors in the declaration tree). This allows lower-level data items to
be referred to by naming an ancestor (e.g., in the MOVE and MOVE
CORRESPONDING statements). It also allows two or more different data
items to have the same name, so long as their contexts can be distin-

guished by qualification. For example, the data declaration scheme

01 A
02 B
02 D
01 C
02 B
02 E

allows references to the two different data items "B IN A" and "B IN C."

A data item can have as many qualifiers as are needed to ensure
uniqueness. We handle qualification in the CSV (COBOL Subset for

Verification).

Arrays can also be considered as group data items whose constituents are
referenced in a special way. For example, an array A with 12 elements

is declared as follows:
02 A PICTURE 999 OCCURS 12 TIMES.

An array element is referenced as in FORTRAN (e.g., A(I)).

17

D. Files

Files are the 708t macroscopic data structures manipulated by COBOL
programs. In fact, the behavior of a COBOL program can be described by
stating properties of the input and output files manipulated by the pro-
gram. Thus, files are not just another feature of the language, but
essential elements. To deal with the semantics of COBOL, we must include

files.

Files in COBOL are structures of records. Sequential files are a
sequence of records. Writing a sequential file adds a record onto the
sequence. To read a sequential file, a prograa :starts by accessing the
first record of the sequence. Subsequent rerd operations access the next
record in the sequence, and so on. Direct access (relative) files and
indexed sequential files are structures o files that can be referenced
either sequentially (in an implicit way) or by key (in an explicit way).
A record of a direct access file has one key that corresponds to its
relative position within the file. A record of an indexed sequential
file can have several keys that are independent of the record’'s relative

location within the file.

We consider only sequential files in this phase of the project.
These files are axiomatized as arrays of records. Fach array has two
variables: one indicates the length of the file and one poi:..: to the
most recently accessed record. We foresee a straightforward
axiomatization of relative and indexed files in the next phase of the

project.
E. Multiple Definition of Storage Areas

In addition to providing a facility for the management of variables,
COBOL also allows the programmer to use multiple definitions for the same

areas of storage--similar to the FORTRAN COMMON or EQUIVALENCE statements.

However, COBOL data items can be of arbitrary size, whereas FCRTRAN data
items come in fixed sizes related to the machine word. The biggest danger
in multiple definition of storage areas is that a well-defined change to

a data item defined in a certain way may cause an ill-defined (or possibly
undefined) change to a data item that is defined differently but shares

the same storage area. This possibility destroys the level of abstraction

that is guaranteed by the concept of a data item in a higher level language.
This level of abstraction is sometimes confused with the lower level abstrac-
tion of the machine's representation for the data item. Since higher level
languages were created to avoid machine representations, overlapping data
definitions circumvent a major purpose of a higher level language. However,
overlapping data definitions improve the efficiency of prog=ams written

in COBOL--even if they detract from their reliability.

COBOL provides three types of multiple data definition facilities:
multiple records for a file, REDEFINES, and RENAMES. The first two
facilities are similar. In both cases, a string of characters that belong
to a data item (either group or elementary) can have another data definition.
The primitive notion is that of a character. An example of REDEFINES is:

02 A.

03 B PICTURE 999,

03 C PICTURE S999.

02 AA REDEFINES A.

03 BC PICTURE XXXXXX.
A graphical description of this data declaration occurs in Figure II-1.
Note that assignment to B or C can change the value of BC, and vice versa.
Note that any assignment to B or C will cause a valid assignment to BC,
depending on the machine-dependent convention for representing the sign in
C. However, there are many assignments to BC that would cause invalid
values for either B or C. Multiple records per file are nothing more

than a redefinition at the top level of the data declaration tree.
RENAMES is slightly different as shown in this example:

02 A.
03 B PICTURE 99.
03 c PICTURE 999.
02 D.
03 E PICTURE 9999.
66 X RENAMES B THRU E.
This declaration is depicted in Figure II-2. The construct allows a new
group item to be defined, possibly to overlap other group items. However,
the definitions of all elementary items are left intact. RENAMES preserves

the level of abstraction provided by a COBOL elementary data item.

19

— PR e ’ -------ll‘i

A
B (999) C (5999) Data Declgration 1
Common Storage
(6 Characters)
BC (XXXXXX) Data Declaration 2
AA
SA~3967-5
FIGURE -1 MULTIPLE DEFINITION OF STORAGE

BY THE REDEFINES STATEMENT

L s

A D Data Declaration 1

Common Storage
{Elementary [tems)

m
(o]
m

X Data Deciaration 2

SA-3967-4

FIGURE 11-2 MULTIPLE DEFINITION OF STORAGE 8Y
THE RENAMES STATEMENT

A

e ———— |

We have left RENAMES, REDEFINES, and multiple~-records-per-file out
of the COBOL subset in this phase of the project. We envision including
RENAMES in some future subset for verification, because it is a formally
well-behaved construct. However, the other two constructs present diffi-
cult problems in the general case. Severe restrictions would be needed
for redefinition at the character level. We would allow the REDEFINES
statement when it does not take use of machine dependencies and underlying

representation conventions.

F. Assignment and Computation Statements

These statements define new values for elementary data items in COBOL.
Statements such as MOVE and MOVE CORRESPONDING are called '"assignment
statements,” while statements such as ADD, SUBTRACT, MULTIPLY, DIVIDE and
COMPUTE are called "computation statements."” In Section II.B, we dis-
cussed how an elementary NUMERIC item possesses both a value and a PICTURE

specification. Consider the statement
MOVE A TO B.,

where A and B are elementary data items. In this type of operation,
truncation and/or conversion may occur if the data items are of different

types.

For now we have obviated the conversion problem by allowing only two
types of data items--NUMERIC and ALPHANUMERIC--with no assignment from
data of one type to data items of the other. However, in full COBOL this
becomes a complex problem, with the addition of NUMERIC EDITED, ALPHANUMERIC
EDITED, and ALPHABETIC type data items. The set of permissible conversions is
described in Figure II-3. The permitted transfers marked by asterisks can
violate the integrity of the receiving data item. These items should either
be prohibited or validated by run-time type checking. There might be some
difficulties, since COBOL does not perform this kind of checking until an
error occurs. For example, use of a numeric data item in an arithmetic
statement to which an alphanumeric data item has been moved, might not be

possible.

Truncation is the deletion of trailing or leading characters because
of an incompatibility of the PICTURE specifications of the sending and the
receiving data items. With ALPHANUMERIC data items, tho rightmost

22

N
* —-
ALPHANUMERICE _{ ALPHABETIC
1
i
~—
S
NUMERIC NUMERIC ALPHANUMERIC
NON-INTEGER EDITED EDITED
SA-13967-3
FIGURE 1I-3 DIAGRAM OF PERMISSIBLE MOVE OPERATIONS
“

23

T

characters are always truncated, unless the receiving item is declared as

RIGHT JUSTIFIED. If the PICTURE specifications of an ALPHANUMERIC item

indicate that it is too big to fit t%ec sending item, spaces are filled in -~
on the right (or left, when the item is RIGHT JUSTIFIED). 1In a MOVE state-

ment among numeric data items, the decimal points are first aligned, then

truncation or filling with zeros occurs at either end to fit the receiving

data item.

We provide an assertion-language function called TRUNCATE (taking a
PICTURE specification and a value as arguments) that describes this operation.
However, there is some question about allowing the widespread use of trunca-
tion in COBOL programs. We believe that indiscriminate use of truncation
is a major cause of unreliability in COBOL programs. In cases where
truncation causes the loss of insignificant digits, this is a comparatively
minor occurrence, although it may cause trouble. However, the truncation
of significant digits of a data item, as the result of a MOVE statement,
can cause serious problems. COBOL was designed to allow significant digits
to be truncated in a MOVE statement. This is a convenient way to obtain the
trailing digits in the destination item. However, it is difficult to tell
whether that was intended or accidental, since both intentional
and accidental uses have the same syntactic notation. If significant

digit truncation were restricted to a statement such as

MOVE TRUNCATED A TO B.

'

then the programmer's intention could be syntactically encoded in the

statement.

Computation statements generate a SIZE ERROR when results produce
oserflow or truncation of significant digits (at run-tihe). This can be
handled explicitly by the programmer by specifying a sequence of statements
to be executed when a SIZE ERROR is detected. Ctherwise a run-time error

is generated.

The statement
MOVE CNRRESPONDING “source™ TO <destination>

takec two group data items as arguments. We define MOVE CORRESPONDING
recurcively., We determine the descendants of the source item and desti-
nation items, and the intersection set of their names. For each element ~

of the intersectinon set whose source item is elementary, a MOVE is executed to

24

the corresponding data item in the destination. Otherwise, a MOVE CORRE-
SPONDING is performed from the source item to the corresponding destination
item of the intersection set. This must be handled in the verification

condition generator. The statement

MOVE <{source> to <{destination>

when used on group data items, indicates a moving of the contents of
memory (without truncation or other processing) occupied by <source> to
the memory area occupied by {destination>. This causes a loss of abstrac-

tion and is not allowed in the CSV.

G. Control Statements

Control statements in a programming language relate the lexical
ordering of statements in a program to the dynamic ordering of execution
of those program statements. A program is a fixed sequence of statements
that defines the lexical ordering. However, when a progranm executes, the
dynamic ordering of statements (the order of execution) depends on the
input data. It is a function of the lexical ordering and of the data upon
which the program operates. Several goals must be attained in choosing

the set of control statements to be used in a programming language:

(1) Efficient description of any algorithm, in terms of
both time and space.
(2) Minimum work for the programmer.

(3) Maximum simplicity and understandability of the control
primi:ives themselves.

(4) Maximum understandability of the programs written using
these control statements.

Goal (1) is satisfied by GO TO and a conditional statement, such as those
contained in any assembler. This goal conflicts, to some extent, with all

of the others. To satisfy Goal (2), language designers have introduced

more complex control statements: e.g., looping constructs, procedures (i.e.,
call and return), case statements, coroutines, signalg, switches, and the
ALTER statement (unique to COBOL). Languages have resulted with a prolifera-
tion of primitives, some of which seem to be invented for a single special

csse. In regard to Goal (3), some work has been done in trying to find

a minimum set of control primitives sufficient for most applications.
Such efforts have also concentrated on eliminating the simplest but most

primitive control statements (e.g., the GO TO), in attempting to satisfy

Goal (4).

In terms of verification, Goals (3) and (4) are the most desirable.
However, in terms of the COBOL subset, Goal (4) can be ignored, because
it is always possible to write an incomprehensible (or difficult to verify)
program using any given set of control primitives. Thus, adherence to
Goal (4) depends largely on how the programs are written, not on the control
primitives available. In any case, the subset should contain primitives

that have an easily describable semantics.

At first glance, COBOL control statements seem to be simple, but
they really contain much underlying complexity--making verification a poten-
tially difficult task. The basic unit of execution is the statement or
sentence. Sequences of statements are grouped together into paragraphs

that are named. Control statements in COBOL take one of four schemes:

(1) Lexical ordering, either within or between paragraphs,
which is the default.

(2) Unconditional transfer, via the GO TO. The object of a
GO TO is a paragraph name. Control resumes at the first
statement of the paragraph.

(3) Conditional execution, via the "IF a b ELSE c¢" statement.
Fither statement b or c¢ is executed, depending on the
value of conditional expression a.

(4) Procedural transfer of control (executing a sequence of
statements and then returning to the point of transfer)
via the PERFORM statement. The object of a PERFORM state-
ment is either a paragraph name, or a pair of paragraph
names (denoting the lexical sequence of paragraphs between
the two names). All statements within the paragraph or
sequence of paragraphs are PERFORMed. This construct can
be used in conjunction with a condition or index variable
to create loops.

: Another aspect of control is the ALTER statement, which makes it possible
i to dynamically change the object of a GO TO statement. In programs with
I

ALTER statements, the lexical structure becomes far removed from the

dynamic structure, and programs with this property are ver: difficult to

26

read. Since the ALTER statement does not do anything that cannot be accom-
plished by flags and conditional statements, we immediately remove it from

consideration in the COBOL subset for verification.

All four types of control statements found in COBOL are also found in
other programming languages, and present essentially no inherent problems.
The difficulties occur in the way that these control statements interact.

One problem is that loops and procedures are handled by the same syntactic

mechanism, the PERFORM statement. The mechanism is different in languages such

as FORTRAN and PL/I. Thus, the same paragraph can be invoked as a procedure

or as a loop body. Procedures and loops are handled differently for veri-
fication. This issue is discussed in Section III. Apother problem is
that a paragraph that appears in a PERFORM statement can also be invoked
by a GO TO or by its lexical order, further complicating verification.

For example, the paragraph P may be invoked in any of the following
situations:

PERFORM P. (procedure call)

PERFORM P VARYING I FROM 1 TO 10.
(loop body)

(unconditional transfer)

GO TO P.
Q.

MOVE X to Y. ¢ (lexical order)
P.

Even though COBOL contains procedures, (a paragraph or sequence of
paragraphs that are PERFORMed), there is no control statement that permits
a direct return. Instead, control must pass to the last statement within
the scope of the PERFORM. COBOL contains a nonexecutable statement that
can be placed at the end of the scope of the PERFORM so that it can be
the destination of a GO TO. This is the EXIT statement, and it must
occur by itself in a paragraph. It resembles the CONTINUE statement of
FORTRAN. Although the execution of procedures may be dynamically nested,
COBOL provides no mechanism for a corresponding lexical nesting (such

as the block structure of PL/I or Algol 60). All procedures in COBOL

27

vy

occur at the same lexical level of nesting. For example, consider the

following scheme:

P1.

PERFORM P2.
GO TO P3.

P2.

P3 .
Paragraph P2 1s at an inferior dynamic nesting to paragraphs Pl and P3,
but has the same lexical nesting. This aspect of COBOL makes programs

less readable.

To handle these complexities in COBOL control constructs, the
verification condition generator must determine the manner in which a
paragraph is invoked and must take appropriate action. There is some
trade-off between the effort involved in verification condition genera-

tion and the length of the verification conditions that are produced. We

discuss such issues in Section IIT.
H. Conclusions
The following features of COBOL present major problems in verification:

(1) Violation of the abstraction provided by COBOL
(2) Consideration of data items as strings

(3) Implementor-defined language features.

These problems are dealt with by excluding the offending features from the
CSV. Strings will be handled in future work, but the other two features
must be continually circumvented, either by exclusions from the subset or

by showing that the offending features do not affect the program's input/

output behavior.

A M aes b aa

Some other features that cause inelegancies in the proof process

are dealt with in the current work:

N (1) Semantically unclean control statements

(2) Finite machine arithmetic.

These issues are symptomatic of programming languages in general, and

we intend--in future work-~to find better ways to approach them.

29

IIT THE STRUCTURE OF THE COBOL VERIFICATION SYSTEM
A. Introduction

The parts of the verification system described in this section have
been implemented using the INTERLISP language15 on a PDP-10 running the
TENEX operating system%6 Although LISP is inefficient and its internal
form is cumbersome to read, it is the easiest and most powerful of languages
for writing programs that process structurally complex data. In future
work, we intend to solve the problem of a cumbersome internal form using
an infix printout routine to print out LISP expressions in the more
natural infix form, without parentheses. However, we will use LISP, with
its inefficiencies, for its advantages until a production system is built.
The code and documentation for the modules of the system we have built
are in the Appendix: the symbol table, the posttransduction processor,
and the verification condition generator. We have borrowed the facilities

for transduction grammars from other work at SRI.17

As deccribed in Section I, to prove a program by using Floyd's method,4
one must:
(1) Derive a set of mathematical formulas called '"verification

conditions” (VCs) whose validity is equivalent to the
partial correctness of the program.

(2) Prove the validity of the VCs, either by hand or with the

aid of a program called the deductive system.

Our approach to verification entails decomposing the process of
producing verification conditions into three parts: syntax transduction,
posttransduction processing, and low-level verification condition genera-
tion. Briefly, syntax transduction allows for the processing of a program
in a syntactically complex (and possibly changing) lanenuage into a less
syntactically complex internal form. Posttransduction processing trans-
lates the first internal form into a second internal form of reduced
semantic complexity.so that the low-level verification condition generator
can be as simple as possible. We have built all of these modules for
COBOL verification condition generation. We believe that this approach
to structuring the verification condition generator has substantially

reduced the effort involved in writing the programs.

31

briodivaeu te.d DheudK=wOD P1ovED

.

The deductive system would be decomposed into two parts: the heuristic
deductive systems and the proof checker. Since the validity of a formula
in first-order logic is undecidable (verification conditions are written -~/
in first-order logic), we need one or more heuristic systems that can
attempt to arrive at proofs, based on strategies depending on particular
high-level domains of inference (e.g., COBOL data structures). These heuris-
tic deductive systems will often have human guidance. To assure logical
soundness, the outputs of these heuristic deductive systems (i.e., the
proofs) must be checked against a strict formal system. A program that
checks a proof for logical soundness is called a "proof checker." The
separation of heuristic deduction and proof checking results from the
fact that we want the heuristic deductive systems to operate at a high
level of abstraction--to take shortcuts and to use powerful rules of
inference--but the proof checker must operate at the most primitive level
of logical deduction. The separation means that only the proof checker
need be correct, to guarantee valid deductions. That is, an incorrect
proof caused by a bug in the heuristic deductive system will be revealed
by the proof checker. We have built no machinery of this type specifically
for COBOL verification, although other work at SRI17 has been using this
approach to make deductions about verification conditions for JOVIAL
programs. We expect to use some of the components of the JOVIAL verifi-

cation system in future work on COBOL.

The structure of the entire verification system is depicted in
Figure 1II-1. Other parts of this section are devoted to the subsystems
developed in this project: syntax transduction, posttransduction processing,

and verification condition generation.

B. Syntax Analysis and Transduction

We use a table-driven language processor for initial processing of
COBOL programs that are to be verified. Syntax transduction is the
process of translating an input program from the standard form, in which
COBOL programs are written by users of the language, to an abstract form
with the same semantic properties but with a uniform structure easily
manipulated by a posttransduction processor (the next phase of verifica-
tion). The transduction phase is especially helpful in dealing with

COBOL, which has extensive syntactic complexities that do not reflect comparable

~’

32

REAL CO80OL

—
Py ANS COBOL Syntax Checked Listing,

PROGRAM (IN
DESIRED SUBSET)

ASSERTIONS

Inciuded n
Current Pro,ect

Not inciuded
in Current
Project HUMAN
INTZRACTION

COMPILER Object Program for Running

TRANSDUCTION
GRAMMAR OF
COBOL SUBSET

TABLE DRIVEN
PARSER AND
TRANSDUCER

COBOL PROGRAM
IN TRANSDUCED
FORM (WITH
SYMBOL TABLE)

SEMANTICS OF

COBOL
TRANSOUCTION

PER
PRQOCESSOR OPERATIONS

{TRANSDUCED
\FORM)
SN S—
COB0OL PROGRAM
szw:vk

IN POST-
TRANSDUCED
FORM
OF COBOL
OPERATIONS
(POST-TRANSDUCED
FORM!

POST-

VERIFICATION
CONDITION
GENERATOR

VERIFICATION
CONDITIONS

1 DOMAIN \\
KNOWLEDGE FOR
COBOL CONSTRUCTS
AND HIGH-LEVEL
RULES OF
INFERENCE

HEURISTIC
DEDUCTIVE
SYSTEMS

PRQOFS OF
VERIFICATION 1
CONDITIONS |
e ™~
P ~
FORMAL
SYSTEM OF
LOGIC

PROOF-CHECKER

.

Indication of Suundness
ol Proof

informat.on Encoded in System
System or Process Document or Program
or Process

SA-3967-6

FIGURE 1111 STRUCTURE OF THE SRI COBOL VERIFICATION SYSTEM

*’N

semantic complexities. The point of the syntactic complexity of a language

is to allow programmers to write in an expressive and natural format. While

such a format is suitable for human consumption, it is inappropriate for the ~
sorts of machine manipulation needed in verification. It is consequently

beneficial to translate the external form to the syntactically much simpler

abstract form that we have devised.

The correspondence between the internal and external forms is specified by

a transduction grammar. Such a grammar consists of a set of BNF produc~

tions to describe the COBOL language, and a corresponding transduction

for each production. A transduction is a LISP program that computes

the abstract form of the language fragment specified by the associated
production. Thus, we translate a COBOL program to an abstract form

(called “Transduced COBOL'") by using a parser to analyze a valid program

into a "parse tree' according to the productions of the grammar, and then
process the parse tree from bottom to top usirg transductions to obtain

the parts of the desired Transduced COBOL program.

Our transduction grammar for COBOL (described in Section IV), together
with various parsing and grammar manipulating tools, not only specifies
the correspondence between COBOL and Transduced COBOL, but also consti- ~
tutes an efficient algorithm for translating between the two languages.
As a result of this translation, while a user may submit to the COBOL
Verifier a general COBOL program (suitably annotated by logical assertions),
parts of the system operating after transduction need to deal only with a
very limited set of semantic primitives. For example, in the PROCEDURE
DIVISION the translation expresses all ADD, SUBTRACT, MULTIPLY, DIVIDE,
COMPUTE, and MOVE sentences (except for the CORRESPONDING option, which is
handled separately) in terms of two semantic primitives SET$ and SETROUNDEDS.
The DATA DIVISION of a COBOL program is also transduced, but to a slightly
different end. Instead of having a program as output, the transductions
for the DATA DIVISION construct a symbol table from the tree-structured
data declarations. This symbol table contains a data item's PICTURE
spcecification, together with its ancestors and descendants in the declara-
<ion tree. This information is used in posttransduction processing and in

verification condition generation for handling roundof!{ and truncation,

34

for disambiguating qualified references to data items, and for interpreting
commands like MOVE CORRESPONDING (see the general description of this

verb in Section II and a specific semantic treatment in Section VI).

Finally, observe the advantage that derives from employing a COBOL
Transduction Grammar (CTG) to drive the transducer. Although we have
made a number of simplifying assumptions for the initial phase of the
project, we can extend the subset of COBOL that is accepted simply by
augmenting the CTG. Such extensions require no modification of the

transducer.

As an example of part of a transduction grammur, consider the
following example, not part of COBOL. For the COBOL transductions see
Section IV. In this example, as in the verification system, the trans-
duced form of the program is an S-expression in LISP.15 The BNF rule
hag two alternatives as follows:

ifthenelse :: = IF boolexp statement ELSE statement.]

IF boolexp statement.,
where the upper-case words are terminal symbols and the lower-case words
are nonterminal symbols. The transduction may look like this:

ifthenelse :: = <IF$ T2 T3 T5> |

<IF$ T2 T3 NIL-~
The angle brackets denote that the symbols between them are to be
assembled into a list. IF$ is a special terminal symbol of the trans-
duced form of the language. Tn (where n is a positive integer) denotes
the transduction of the nth symbol in the corresponding BNF rule. Trans-
duction for terminal symbols is an identity, while transduction for nontermi-
nal symbols is governed by other transduction rules. Thus, T2 refers to
the transduction of "boolexp” in both productions. NIL is the LISP atom

referring to the null list. Thus, if we have the statement
IF x1 THEN x2 ELSE x3.,

its transduction is
(IF$ T(x1) T(x2) T(x3)),

where T(xn) is the transduction of xn (xn can contain complicated arithmetic

or logical expressions).

35

-

C. Posttransduction Processing

A program in transduced COBOL looks much like a COBOL program: the
statements have a one-to-one correspondence,and the control statements
(and many of the verbs) are the ssme. Posttransduction processing
reduces the semantic complexity by operations of the following types:

(1) Translating input and output statements into array

accesses.

(2) Translating MOVE CORRESPONDING statements into MOVE
with elementary data items.

(3) Translating PERFORM constructs into equivalent con-
structs containing assignments, tests, and branches.

(4) Adding machinery for qualification (unique naming) and

truncation.

The result is an equivalent program that is written in a semantically
much simpler language. The posttransduced program is longer than the
program before transduction, however, and a certain trade~off is suggested:
the verification system -~an be made more complex so as to handle programs
in a semantically more complex language, but the intermediate forms
(including the verification conditions) then will be more concise. The
specific igssues (relative to COBOL) 1in this trade-off will be discussed
in Section VI,

The functions performed by posttransduction processing could have
been performed in either the transduction phase or the verification
condition generation phase. We wished to have an internal form (in
Transduced COBOL) that resembled a real COBOL program, so we did not
make the drastic program changes (involving control and verb changes)
during the transduction phase. On the other hand, the design of programs
to generate verification conditions can be an inordinately difficult task
when done on a semantically complex language. Thus, we did not include

posttransduction processing in the verification condition generator.

D. Verification Condition Generation

The output of posttransduction processing 1s a program that contains

only the following kinds of statements:

36

(1) Assignment statements
(2) Array accesses
(3) Branches and sequencing

(4) Tests (IF _ _ ELSE _ statements).

; A posttransduced COBOL program can be thought of as a simple flowchart
scheme, with assertions at particular points in the flowchart graph
and with assignment statements arnd array accesses in the flowchart boxes.
A typical flowchart scheme, with numbered assertions, is depicted in
Figure III-2, The verification condition generator must identify all
simple paths in the program: those with an assertion at the beginning,
some statements in the middle, and an assertion at the end. This involves

. some graph analysis, and yields results as shown in Figure I1I1I-3 when

the graph of Figure III-2 is processed.

The uext stage is to transform each of the simple paths into a
verification condition. We use Hoare's axiomsl8 to show how the four
kinds of statements are handled. In Hoare's axioms, the construction
P{51Q means that if P holds before the execution of statement S, then
Q holds after its execution. In the examples, we use a language con-
taining only assignments, tests, and branches. In Section VI, we show

the correspondence between COBOL and this simple language.

In the case of assignment, we have the following:

; P{X«»e}Q_PDQ);

This means that the correctness of an assignment statement, with respect
to assertions P and Q, is equivalent to the validity of the formula on

the right-hand side, in which expression e has been substituted for the
variable X. For example, this simple assignment to X yields the following

VC that is trivially valid:

X <0 (X «X + 1} Xc<1 =
X<0D>X + 1<1

In the case of array accesses,we describe the following identities:

A(I):- SELECT(A, I)
A(I)« e = CHANGE(A, I, e).

~

37

Ld—--——_——____—' _ — -

-

]
Entry \-/‘
A
A
C ‘g Exit
SA-3967-7
FIGURE 11-2 A SIMPLE FLOWCHART SCHEMA _

O)

.

J
'-_—@ Faise True
¥

—() '-—@

\J
SA-3967-8

THHEE SIMPLE PATHS OF THE PROGRAM
IN FIGURE LI-2

FIGURE HI1-3

The first identity applies only when A(I) occurs on the right-hand side
of the assignment statement. We do not check the bounds of I here. The
— one transformation that applies is
SELECT(A,x)

P{CHANGE(A,I,e)}]Q = P D Q
if x = i then e else SELECT(A,x)

Here x is a quantified variable. An example of verification conditions in

an array assignment is as follows:

(A[3]
(A[3)]

2 A Af4) = D{A[3) « 5) A[4) =1 =
2 A Al4] = 1) D (if 3 =1 then 5 else A[4]) =1

1

Branches are handled by the path analyzer, but a single flowchart box might
still have a sequence of statements inside it. The rule that defines

verification condition for sequencing is as follows:

P{Sl; SZ}Q = P{Sl} R. A RZ{SZ} QAR 2R

2

In actual verification condition generation this rule is usually applied

1

by "pushing" the consequent assertion (Q) through statement S2 and then }
through Sl' This means that two different substitutions are performed
N in Q, the first yielding RI(E Rz), and the second yielding some predi-
cate R

such that the path correctness is equivalent to P DR The

3’ 3°
following is an example of a verification condition for simple sequencing:
X<0 {Xe- X +1; X«X + 2} X<3 =

(X< 0 {X>X+ 1} X<1) A (X<l (K« X+2}X<3)A(X<12X<1)

The effects of branching are largely eliminated by a transduction
to a flowchart scheme. However, this can be dealt with via the following

Hoare axioms:

U

P.{GO TO L}A....AP {GO TO L} A Q{L: _ }

PV ... oQ -] V... V(P>
(P, VP)IDQ : (P DQ)) * 2
Since we are not concerned with the postconditions of the statements, they
are omitted. In this axiom, there must be no more than n statements in the
program that say "GO TO L". In COBOL, we require that assertions be placed
at all labels that are the destinations of a GO TO, so that the assertions

P1 do not have to be written. Instead Piz Qi'

39

The effects of a test are as follows:

P{test: B(true)lQs P A BD Q
P{test: B(false)} Q= P A B2 Q

Two examples of verification conditions arising from a conditional state-
ment are:
X 2 1{IF X < 2 GO TO L1 ELSE GO TO L2} A
X = 1{L1: _ } =

X2 1AX<2D>X=1, and
x>1 [IF X < 2 GO TO L1 ELSE GO TO L2} A

X # 1{L2:_ Y =
X = 1A (X < 2) o XL

The verification conditions (logical formulas) for the program must

then be proved valid for the program to be correct.

E. Conclusions

The method we used resulted in a simple system for generating COBOL
verification conditions, so that most of the processing occurs in the phases

of transduction and posttransduction processing.

40

IV SYNTAX OF THE COBOL SUBSET

A, Introduction

We have used the general guidelines presented in Section II to
choose the syntax of the COBOL subset for verification (CSV). For
each of the DATA DIVISION and the PROCEDURE DIVISION, wc¢ present a
description of the features included in the subset and a discussion
of its transduction grammar, Both the DATA DIVISION and the PROCEDURE
DIVISION have features from the Nucleus, the Table Handling Module and
the Sequential I/0 Module. The features discussed are parts of Levels 1
or 2 in the COBOL language description. In the conclusion to this section,

we discuss possible expansions to the subset,

B. DATA DIVISION Features

The DATA DIVISION contains the declarations for records and variables
associated with files and with the program in general. Table IV—l* con-
tains a list of the features of the DATA DIVISION, and an indication about
whether or not they are allowed in the CSV. Table IV-2 contains a syn-
tactic description of the DATA DIVISION of the CSV, in the same style as
the ANSI COBOL manual. This enables a straightforward comparison of the
CSV syntax with the syntax of COBOL 74 as described in [11}. The features
of the Nucleus deal with declarations for program variables and records.
The facilities used for declaring such variables and records (e.g., PICTURE)
are also used in the declarations of variables and records associated with
sequential files. We enumerate the constructs of the Nucleus first, We
also indicate whether or not a feature is allowed in the CSV. If a feature

is disallowed, we explain why.

WORKING-STORAGE SECTION (allowed). This is the section of the program

that allows for program variables and records that are not associated with

a particular file,

77-items (or Noncontiguous Working Storage) (allowed). These are

individual variables (not records) in the WORKING-STORAGF SECTION.

*
The Tables are at the end of the section.

41

- -““

Data-names or FILLER (allowed). Data-names can be either elemen-

tary or group data items in the declaration tree. FILLER denotes an

unnamed data item. _

JUSTIFIED (disallowed). For an alphabetic or alphanumeric data
item, specifies whether right justification (filling with blanks cn the
left) is performed when a smaller data item is MOVEd to it. Left justi-
fication is the default. This was disallowed because we have not allowed
MOVEs between alphabetic and alphanumeric data items of different sizes

in the CSV,

Level-numbers (allowed). The ordering among level numbers describes

the tree-structure of the data declarations.,

PICTURE (partially allowed). PICTURE specifications enable a des-
cription of the precision and printing information for numeric data items,
and of the size and printing information for nonnumeric data items. The
PICTURE specifications that describe special printing instructions define
edited data items, which we do not allow. The rules of editing and the
assertions ineeded to describe an edited data item satisfactorily were
deemed to be too complex to attempt at this time. The assertions that
we prove in this initial effort deal with the values of data items and ~
not with their printed forms. External form and an adequate formal treat-

ment of string data is a subject for future research.

REDEFINES (disallowed). As described in Section II, we do not allow
the REDEFINES concept because it allows the same area of storage to be
described in two different ways, sometimes violating the abstraction pro-
vided by COBOL, which is based on the elementary data item. We acknowledge
that this construct is a very powerful programming tool, and believe that
some restrictior of REDEFINES might provide much of the power without
adversely affecting the abstraction. For example, a possible A REDEFINES B
might be allowed only if both

(1) B is an elementary data item of form 9(n), A(n), or
x(n). .
(2) A is a group item, all of whose elementary itens are of

the same type as B, If B is numeric, ther no elementary

items of A may have a sign symbol S, but ray have the virtual
decimal point symbol V or precision symbols P, If B v,

42

is numeric, A may be an elementary numeric item having
a virtual decimal point V or precision symbols P,
Thus, a poussible data definition could be:
02 B PICTURE 9(9).
02 A REDEFINES B.
03 Al PICTURE 999 PPP,
03 A2 PICTURE 9999v99
RENAMES (disallowed). RENAMES allows a sequence of contiguously
defined elementary data items (possibly having different ancestors in
the declaration tree) to be referred to by a single group data item.
This allows multiple groupings of elementary data items. It has minor
benefits in the MOVE and MOVE CORRESPONDING among group data items. We
have disallowed the simple MOVE among group data items, so that the cur-
rent benefits of this construct seem small at best. Ultimately we should

be able to incorporate the construct with no great difficulty.

SIGN (disallowed). This feature allows a specification of the
internal representation of the sign of a data item as being leading or
trailing, and whether the sign is a separate character. Since we are not
considering the internal representation of a data item-~only its value--
this feature is of no use in the current subset. Use of this feature does

not affect the correctness of a COBOL program.

SYNCHRONIZED (disallowed), This feature allows the programmer to
specify that a data item is aligned (either to the right or left) on a
machine word boundary. This feature affects only thc performance, and
not the correctness, of a COBOL program: it deals only with a represen-
tation issue.

USAGE (disallowed). This feature allows the programmer to specify
whether a data item is DISPLAY (character-oriented) or COMPUTATIONAL-n
(stored in some format useful to the machine, e.g., binary integer or

floating-point number). This again is a representation issue.

VALUE (disallowed). The initial valuc of a data item can be speci -
fied using this feature. There is no loss of generality by omitting
this feature: a programmer can initialize a data item via an assignment

statement at the beginning of the program.

The Table Handling Module has only a single feature in the DATA

DIVISION: OCCURS (partially allowed). This feature allows the declaration

of a data item to indicate an array. The array cannot be of variable length.

43

T | l

However, it will be straightiorward to incorporate the use of variable-

length arrays into a futurce subsct,

The features o! the DATA DIVISION in the Sequential 1/0
Module permit the declaration of files and their associated records.
The FILE SECTION (allowed) contains zero or more file descriptions
(allowed). Each file description contains one or more record descrip-
tions (allowed), the components of which ar« described below. In the

CSV, only one record description is allowed per file description.

BLOCK (disallowed). This optional feature declares how many logical
records or characters are associated with a particular block (physical
record). The verification system considers logical records only. Use
of this feature does not affect the input/output behavior of the progran,

only its efficiency.

RECORD (disallowed). This optional feature described how many
characters a record occupies, This clause is unnecessary even in full
COBOL 74 (it is placed thercv for redundancy only), so that it can easily

be done away with,

LABEL (disallowed). This feature (required in COBOL 74) allows the
declaration of label records for a file as being either standard (according
to the operating system) or omitted. It is disallowed for the same reason
as the BLOCK clause. VALUE OF (disallowed) is a feature that either checks

or sets a part of the label record.

DATA (disallowed). Tinis optional feature specifies the data records
associated with a t1le. Since the data records of a file are declared in

the file description, this feature is unnecessary,

LINAGE (disaliowed). This optional clause provides a system for
keeping track of pages and lines within a page in a sequential file. It
is useful in the generation of reports, and is omitted from the CSV because

it is of small importance.

CODE-SET (disallowed). This optional clause specifies the character-

code (e.g., EBCDIC or ASCII) used in the external representation of a file

and 1s disallowed bhecause the choice of character code doos not affect the

input/output behavior of a program,

44

ST T T R T e e

C. Transduction Grammar for the DATA DIVISION

The transduction grammar for the DATA DIVISION yields
an internal form (part of Transduced COBOL), but the internal form is
not used in the verification of a COBOL program. However, the¢ trans-
duction grammar also creates a symbol table containing iniormation on
each data item. This symbol table is used by the transductions for the
PROCEDURE DIVISION, for posttransduction processing, and for verification

condition generation.

The symbol table contains information on files and on data items
(both group and elementary). An entry for a file name contains its
type (= FILE) and its corresponding record., An entry for a data item

contains its type (= DATA ITEM) and either:

(1) If the item is a group data item, its ancestors in the
declaration tree (back to the root), its immediate
descendants, and the number of elements (if an OCCURS

clause exists).

(2) 1If the item is an elementary item, its ancestors in

the declaration tree (back to the root) and its PICTURE

specification.

The ancestors (to the root) are used in qualification, and the descendants

are used in evaluating the MOVE CORRESPONDING verb.

The major problem in constructing the symbol table is to take a flat
description of the declaration tree and to make a tree structure out of
it. For example, a COBOL program may contain a data declaration like this:
01 A,
02 B.
03 C PICTURE 99V99,
03 D PICTURE XXX
02 E. PICTURE 999.
02 F.
03 G PICTURE S999.
Although there may be indenting within the tree-structure, spaces are
ignored in parsing, so that the only way to determine the tree-structure is

by means of the level numbers. The transduction grammar makes each item's

declaratior into a list. If the item is a group item, then the group item

45

will be the first element of a list with the descendants forming

another list. The transduced version is as follows:

(((1 A
(((2 B)
((3 C 99V99)
(3 D XXxx))
(2 E 999)
(2 F)
((3 G S999))))))

Here is a graphic representation of the swvmbol table:
SYMBOL LEVEL NUMBER ANCESTOR PATH DESCENDANTS PICTURE
A 1 (BEF)
B 2 (A) Cc m
C 3 (A B) 99v9e9
D 3 (A B) XXX
E 2 (1) 999
F 2 (A E) (G)
G 3 (AEF) 5999

The transduction grammar for the DATA DIVISION of the CSV is shown in
Table IV-3.

D. PROCEDURE DIVISION Features

The PROCEDURE DIVISION contains the actual code and assertions
from which the verification conditions are generated. Table IV~4 con-
tains a list of the features of the PROCEDURE DIVISION, and an indication
about whether or not thev are allowed in the CSV, Table IV~5 contains a
syntactic description of the PROCEDURE DIVISION of the CSV, in the same
style as the ANSI COBOL wanual. We enumerate the constructs of the
PROCEDURE DIVISION (in the Nucleus, Table Handling, and Sequential I/0O
Motules), describing the features and, if excluded from the CSV, the

reasons for exclusion.

ACCEPT, DISPIAY (disallowed). The ACCEPT command allows for input

from a console, or of the day, date, or time., It is disallowed because
console can be simulated by the contents of a sequential ‘ile, Even if
this construct were allowed, the commands issued from the console would

have to be de-cribed as part of an array of records, whose properties

46

are described by assertions. The DISPLAY command is disallowed for

the same reasons,

ADD, SUBTRACT (allowed). All versions of this commana are per-
mitted, including ADD and SUBTRACT CORRESPONDING, All arithmetic state-
ments allow rounding (as well as truncation, the default) and the SIZE

ERROR clause.

ALTER (disallowed)., This command can dynamically alter the flow-
chart of a program by changing the object of a GO TO statement. The
set of possible paths through the program becomes too large to handle
for verification. The effects of an ALTER statement can be simulated by
the use of flags and conditional branches, which limit the number of pos-

sible program paths enough to permit verification.

COMPUTE (allowed). This is a generalized assignment to an arith-
metic expression., The ROUNDED and SIZE ERROR options are allowed.

DIVIDE (partially allowed), MULTIPLY (allowed). We do not allow
the REMAINDER option of the DIVIDE statement, but this option could be

included in a future, expanded subset.

ENTER (disallowed). This verb permits the inclusion of statements
in another language in a COBOL program, and is disallowed for obvious

reasons.

EXIT (allowed). This is a no-op statement that allows exits from
PERFORM blocks (somewhat like the FORTRAN CONTINUE) when the exit state-
ment is contained in a paragraph at the end of a PERFORM bLlock. This

statement must be the only statement in a paragraph in which it appears.

GO (partially allowed). We do not allow the DEPENDING ON option,
which could be included without adversely affecting verification. We
also do not allow an option (to be used with the ALTER statement) in

which a GO TO statement may have no arguments.
IF (allowed). This is the basic conditional statement.

INSPECT, STRING, UNSTRING (disallowed). We do not allow any string

operators in this subset. We hope to include them in a future subset,

MOVE (partially allowed). We allow MOVE between clcmentary data
items and MOVE CORRESPONDING, but we do not allow simple MOVEs betwecen

47

group data items (for reasons discussed in Section II), An issue that

is closely reluted to the MOVE statement is that of type coercion. What
happens if an item of Type A is moved into a variable of Type B? In some
cases there is a simple answer, since the destination type subsumes the
source type (e.g., INTEGER to REAL, ALPHABETIC to ALPHANUMERIC, NUMERIC

to ALPHANUMERIC). 1In other cases, a policy of either automatic con-
version or prohibition must bhe decided upon. In the case of moving a
REAL to an INTEGER, this is solved by truncation. The remaining problems
are ALPHANUMERIC to AIPHABETIC and ALPHANUMERIC to NUMERIC, The first
case is not important because there are no operations on ALPHABETIC data
items that can yiecld errors if the item has an ALPHANUMERIC value. The
second case 1s not so simple: COBOL handles it by allowing a MOVE to be
performed withoat checking, but by flagging an error if an operation is
performed on the destination item. This is disasterous tor verification,
and it also seems harmful to good programming practice. We prefer some
scheme tinat allows checking to be done when a MOVE is performed (perhaps
optionally). Woe also favor an error category to be an optional part of
the MOVE statement: 'ON TYPE ERROR statement.'' There are many advantages
to strongly typed languages, one of which is increased provability. These

proposals are intended to make the type mechanism in COBOL stronger.

PERFORM (allowed). This is the basic textual abstraction and looping

mechanism in COBOIL..

STOP (partially ailowed). We allow this statement without arguments
only (an unconditional stoppage of execution). The STOP with arguments
prints a message on the _perator's console and permits restarting. The

latter option would be difficult to axiomatize.

Some leatures in the Nucleus of the PROCEDURE DIVISION deal with
expressions and data. We enumerate these features here. Qualification
(allowed) enables the same name to be used for two (or more) different
paragraphs or data items, when the ambiguity can be resolved by referring
to a section name or to an ancestor in the declaration tree. This has
added considerably to the complexity ol the symbol table, w.d requires

the verification system to make the names unique (at so..¢ time). The

verification conditions of a prouram that contains iy duplicated names
can becor.e extremoly louy, Clearly the ability to name two things with
48

--—_————_——-“

the same name is desirable (providing for such features as MOVE CORRES-
PONDING, for example). It remains to be seen what restrictiohs are

necessary to allow shorter verification conditions.

Arbitrary arithmetic expressions are allowed in the CSV. However,

we do not allow arbitrary conditions. Relation conditions (partially

allowed) deal with the arithmetic relations », >, < >, =, and £#. We
allow arbitrary relations among numeric data items, but allow only =

and # among nonnumeric data items, Class conditions (disallowed) state

whether a data item 1is alphabetic or numeric, and can easily be incor-
porated into the CSV in future work. However, inclusion of this feature
is closely related to the issue of type coercion (described in the para-

graph on the MOVE statement)., Condition-names and sign conditions (dis-

allowed) could be included in a future subset, but there is no loss of

generality from excluding them. Switch-status conditions (disallowed)

depend on an implementor-defined switch and should not be allowed. Conm-

plex and combined conditions (allowed) are nothing more than the combining of

simple conditions (those described above) with AND, OR, and NOT. Abbrev-

iated combined conditions (disallowed) are a shorthand way of writing

"

complex and combined conditions (e.g., X > Y AND X -~ 2" translates to

" ~

X > Y AND Z"); they are needlessly ditficult to process and also unneces-

sary.

In the PROCEDURE DIVISION of the Table Handling Module, there are two
verbs SEARCH and SET (both disallowed), which deal with indexing variables

(also disallowed). The only operation allowed on tables (or arrays) is
the subscripting operation, in which a table is indexed by an expression,

rather than a special indexing variable.

In the PROCEDURE DIVISION of the Sequential I1/0 Module there are primi-

tives to manipulate sequential files.

CLOSE, OPEN (partially allowed). These statements are allowed, but
without the REEL or UNIT designations that describe a file's implemen-
tation. The OPEN statement is not allowed with the I~0O or EXTEND options,
or with the REVERSED or NO REWIND designations, A file open for both
INPUT and OUTPUT can be simulated (although not efficiently) by having two
files--one for INPUT and one for OUTPUT.

49

B ——

READ, WRITE (partially allowed). The INTO option in READ and the
FROM option in WRITE are disallowed (they involve a MOVE and then the
READ or WRITE operations). The AT END clause in READ is permitted. ~

All clauses in the WRITE statement dealing with pagination are disallowed.

REWRITE (disallowed). This operation deals with files that are open
for both INPUT and OUTPUT, which is not allowed.

USE (disallowed). This statement allows the specification of pro-
cedures for input/output errors. The only error that v.¢ consider is

end-of-file, which is handled with the AT END clause of READ, l

E. Transduction Grammar for the PROCEDURE DIVISION

The trunsduced version of the PROCEDURE DIVISION is used in the
generation of verification conditions. The transductions are usually

a one-to-one translation of COBOL verbs except that

(1) Each verb has only one transduced syntax, subsuming
all alternatives.
(2) All arithmetic assignment statements are reduced to the
same internal form.
(3) Statements implying multiple operations are translated -~

into multiple statements,

Other transformations to the internal form of the program are performed

during posttransduction processing and verification condition generation.

Each COBOI sentence hecomes a list. Each paragraph is a list whose
first element is the keyword PARAGRAPH$, whose second element is the para-
graph name, and whese other elements are its transduced sentences in order,
Each section is 2 list whose first element is the keyword SECTION$, wrose
second element iv the section name (if there are no sections a section
name --FIRSTSECTION--is invented for the section consisting of all para-
graphs), and whose other elements are the transduced paragraphs in order.
To show the structure of the entire PROCEDURE DIVISION, we present the

following simple COBOL program:

Pl (ASSERT 1)
MOVE 0 TO SUM.
PERFORM P2 VARYING I FROM 1 BY 1 4
UNTIL T GREATER THAN N
VASSEAT 2) . '
STOP RUN (ASSERT 3).
P2. ADD A (I) TO SUM.

50

(PROCEDUREDIVISIONS
(SECTIONS FIRSTSECTION
(PARAGRAPHS P1
(ASSERT 1)
(SET$ SUM 0O NIL)
(PERFORM VARYING
(DO$ P1 P1)
(I11 (T 1N))
(ASSERT 2))
(STOP (ASSERT 3)))
(PARAGRAPHS P2
(SET$ SUM
(PLUS SUM
(SELECT A (I)))
NIL))))
To illustrate some interesting features of the transductions at
the sentence level, we present some examples of COBOL verbs and their
transductions, As an example of a simple one-sentence transduction,

the sentence
CLOSE FILELl.
transduces to
(CLOSE FILELl).
The sentence
IF X GREATER THAN O NEXT SENTENCE ELSE GO TO P1.
transduces to

(IF (GT X 0)
NEXT
(Go rP1)) ,

where NEXT can be interpreted by the verification condition generator.

The PERFORM statement is an interesting case. The simple PERFORM,
PERFORM P!l .,
transduces to

(PERFORM (ONCES$)
(DO$ Pl P1)
NIL NIL)
ONCE$ is the option used to denote a single instsnce: the other alter-
natives are ''n TIMES' and VARYING, DO$ indicates that the block of
statements from Pl through Pl are the scope of the PERFORM (this can be
expanded later). The two instances of NIL are places for the exit con-

dition and the inductive assertion, when the statement is used as a loop.

The PERFORM statement with a block of paragraphs,
51

PG ;Nn;mm

PERFORM Pl THRU PN, ,
transduces to

(PERFORM (ONCE$)
(DO$ P1 PN)
NIL NIL).

A simple COBOL loop looks like this:

PERFORM Pl
VARYING I FROM 1 BY 1
UNTIL I GREATER THAN N
(ASSERT (P 1))
(the assertion is some predicate P on I), and its transduction looks like
this:
(PERFCORM VARYING (DO$ Pl Pl)

(I 11 (GT I N)»
(ASSERT (P 1))).

A nested PERFORM of the following form,

PERFORM Pl VARYING I FROM 1 BY 1
UNTIL I > N (ASSERT (P I))
AFTER J FROM 1 BY 1
UNTIL J > M (ASSERT (Q I J)).,

transduces to
(PERFORM VARYING (PERFORM VARYING (DO$ Pl P1l)
(J 11 (GT J M)
(ASSERT (Q I J))»)

(I 11 (GT 1 N))
(ASSERT (P 1))).

All simple arithmetic statements (not CORRESPONDING) transduce to SET$
(if truncated) and SETROUNDEDS (if ROUNDED), The COBOL sentence

COMPUTE X . Y + Z.
transduces to

(SET$ X (PLUS Y Z)
NIL).

The NII. is where the SIZE ERROR clause would go if presecat. Notice that

aritametic and relational operators are translated to a single standard

32

v —
i!
i

form for use in the verification system: PLUS, SUBTRACT, TIMES, DIVIDE,
GT(>), LT(Y), GTQ(>), LTQ(S), EQ, and NEQ. The arithmetic statements
that have multiple results are transduced into multiple statements. For

example, the statement,

COMPUTE X1 ROUNDED, X2 =Y + Z; ON SIZE ERROR PERFORM P1,,
transduces to the pair of simple statements,

(SETROUNDED$ X1 (PLUS Y Z) '
(PERFORM (ONCES$)
(DO$ Pl Pl)
NIL NIL))
(SET$ X2 (PLUS Y Z)
(PERFORM (ONCE$)
(DO$ Pl P1)
NIL NIL)).
All CORRESPONDING operations are separate, since they will be handled in

posttransduction processing. The following sentence,
ADD CORRESPONDING X TO Y.,

transduces to
(ADDCORRESPONDING$ X Y NIL NIL).

F. Conclusions

The subset of COBOL that we have chosen for verification is small
relative to the entire ANSI COBOL language,12 yvet it is a substantial
programming language in itself--as complex as any for which verification

has been attempted.

There are two important things in the Nucleus that are yet to be

axiomatized:

+ The handling of NUMERIC EDITED data items, with possible

restrictions
+ Character strings and their relation to numeric quantities.

Two unresolved issues affecting the ultimate choice of a subset are type

coercion and a restriction of the REDEFINES construct.

In the Table Handling Module, the only major items left out of the

CSV are indexing variables and the verbs that use them, It appears that

53

|
|

B - -—-—-———.——-—-ﬁ . ,

they are easy to axiomatize, but we are unsure of their importance to
COBOL programmers. All operations with indexing variables can be
defined in terms of subscripting, so there is no loss of generality if

we fail to incorporate them.

The major unresolved issue in the Sequential I/0 Module deals with
files that are open for simultaneous input and output. We intend to

incorporate this into future COBOL subsets for verification.

It is not only important to axiomatize a large subset of a "real”
language, but it is also important to be able to state and prove the
important properties of the subset chosen. Thus, the choice of subset

must be judged in terms of what can be proven, as well as its sheer size.

54

R .

N

Tab?.: (V-1

SYNTAX OF THE DATA DIVISION OF THE CSV

GENERAL FORMAT FOR DATA DIVISION

DATA DIVISION.
[FILE SECTION.

l-gg file-name [record-description-entry}] ...] ees

[WORKING-STORAGE SECTION.
o

77-level-description~entry
record-description-entry tet

GENERAL FORMAT FOR DATA DESCRIPTION ENTRY

data-name-1
level-number {FILLER }

. |PICTURE _ :
[, {PIC } IS character-string

[; OCCURS integer-l TIMES]

55

Table IV-2

FEATURES FOR THE DATA DIVISION OF THE CSV

DATA DIVISION Feature COBOL 74 COBOL Subset for i
Verification
Level 1 Level 2 Level 1 Level 2
INucleus
WORKING-STORAGE SECTION x* ' X
77-1tems X X
Data name or FILLER b4 X
JUSTIFIED X
uevel number X X
PICTURE X - *
REDEFINES X
REN AMES X
STGN X
SYNCHRON IZED X
USAGE X
VALUER X
Table Handling ~
OCCURS X x X
Sequential 170 H
FILE SECTION/file descriptions X x
BLOCK contains X X
RECORD contains b
LABEL records b
VALUE OF X X
DATA RECORDS X
LINAGE X
CODE~-SET X
* Feature included.
* (blank)~-Feature nonexistent (in COBOL 74) or omitted (from COBOL subset
for rerification).
* Feature not totually included (in subset)
~
56

e e .

TRANSDUCIION GRAMIAR FUR [de
DATA DIVISION Jf TdE CSV

#root#
datadivision
(rv)

comni3
#

{(dIL)
]
(r1)

datadescription
number dataname
(<T1 12 T3 TW)

Table IV-3

pictureclause occursclause

datadescriptions

datadescription
(KT1H)

datadescription
(<TY 1t T2>)

datadivision
DATA DIVISION

dataname

FILLER
("FILLERS$)

symbol
(r1)

filedescriptor

rD symbol . datadescriptions
(KTV (INSEH(FILE T2 f4:1:1::1)
(PROGN (InN3akrneCORD TH:1:1:2 <T2>)
(GETnLCORL® TH))

>)

datadescriptions

tilesection workingstoragesection
(< DATADIVISION$ T4 [5>)

e

R I

T s tin e . > vt i it o ettt S e

filedescriptors
filedescriptor

(<T1>)

filedescriptor filedescriptors
(<T1 1t T2>)

filesection

it
(NIL)

FILE SECTION . filedescriptors
(<"FILESECTION$! T4>)

is

it
(NIL) —

ARc
(T1)

IS
(T1)

literal

number
(T1)

string

T1)

———————— — —

occursclause
#

(NIL)

OCCURS number TIMES
(T2)

picture

PIC

(T1)
PICTURE
(T1)

- 58 PR

BEST AVAILABLE COPY

pictureclause

W+
(NIL)

semi picture is symbol
(Tu)

semi picture is number
(TW)

recordlist

symbol
(<T1>)

symbol comaa recordlist
(<TY 1 I3D)

semi

it
(NIL)

.

(1)

workingstoragesection
i
(NIL)

WIRKING-3/JORASE SuCTION . datadeclarations

(< WORKINGSTURAGESECTIONS ! T4>)

Table 1V~-4

SYNTAX OF THE PROCEDURE DIVISION GF THE CSV

GENERAL FORMAT FOR PROCEDURE DIVISION

FORMAT 1:

PROCEDURE DIVISION |

{section—name SECTION.

[paragraph-name, { sentence]...]... }...

FORMAT 2:

PROCEDURE DIVISION |

ﬁxuuxruph~name. [sentence] .. } oa

GENERAL FORMAT FOR VERBS

igCEPT identifier

identifier-1 identifi r—éT
AD]){] © B } [’ : ¢ ,] ... TO identifier-m [RQUNDED]

1teral-l , literal-2
1, identifier—n [ROUNDFD] .o {;
ADD identifier-1 1dentifler 2 identifier-3
- literal-1 ’ \literal- li teral-3 o0

GIVING identiiter-m [ROUNDED] [, identifier-n [ROUNDED] 1J...

SIZE ERROR imperative-statement)

-

{7 ON SIZE LERROR 1mperative-statement]
. feorrEsPoNDING | g o i £
ADD taaﬁ——»-——»- identifier-1 10 identifier-2 [ROUNDED]

[; ON S1ZE ERROR imperative-statement]

60

CLOSE file-name-1 E file-name*Z]
COMPUTE identifier-1 ({ROUNDED] [, identifier-2 [ROUNDED]]

= arithmetic—expression [{; ON SIZE ERROR imperative-statement]

identifier-1 , identifier-2
DISPLAY {}1tera1—l _} [literal-2] *0e

pivipg Jrdentifier-l INTO identifier~2 [ROUNDED]
22VIDE f1iteral-1 =2 JOThDRD

[, identifier-3 [ROUNDEDﬂ ..« [; ON SIZE ERROR imperative-statement]

identifier-1 identifier-2 . .
DIVIDE {literal—l INTO {literal-z } GIVING identifer~-3 [ROUNDED]

[, identifier—4 [ROUNDEDj «e. [; ON SIZE ERROR imperative-statement]

identifier=1 identifier—2 . . .
DIVIDE {}iteral—l } BY {literal-z -} GIVING identifier-3 [ROUNDED]
L identifier-4 [ROUNDED} .«s [; ON SIZE ERROR imperative-statement])

EXIT

GO TO {procedure—name-1}

I5

condition: 'sLatement-l ; ELSE statement-2
’ NEXT SENTENCE ; ELSE NEXT SENTENCE

MOVE {1dent1fler—1

literal } 10 identifier-2 {, identifier~3] ...

C S N
MOVE {§§§§%~29§21&9} identifier-1 TO identifier-2

identifier-l .
L i Fier—
MULTIPLY {}iteral-l } BY identifier-2 [ROUNDED]
[, identifier-3 [ROUNDEDi oo [; ON SIZE ERROR imperative-statement]
, fidentifier-1 identifier—-2
MULTI PLY . Y s . e .
{llleral-l }_B__ {literal-Z } GIVING identifier-3 (ROUNDED]
[, identifier-4 [ROUNDED[, cee [; ON SIZE ERROR imperative-statemenq
61

INPUT file-name=l {,
OPEN [OUTPUT file-name=-3
1-0 file—name-=0 [, &

PERFORM proccdure‘name—l
FRAT S

PERFORM procedure*name—l

PERFORM procedurc-nume—l

PgﬁgORM procedure—name—l

1denti£ier—é}

VARYING 3.
——— index-name=-1

- (1qentif1?r—4\
—_ 1lxtera1-d

AFTER ‘identifier=>5
——— index-name-3

BY
— literal-?i

. identificr-8
AFTER 2. .
index-name=.o

identificr-10
BY .
—_ {lltvral-b }

identificer-7 }

.
C
b}

file~name=~21 ..

, tile~-name=4]...

"ilo-name=6] ...

Iﬂﬁg!gﬂ rocedure-name-2
THRU P

THROUGH
THRU

£EEQ!§E rocedure-name—~2
THRU P

procedure-namc-

{dentlfler l} TIMES
integer-1l ——

r—"""

UNTIL condition—.

RT} U procedure-name-
jdentifier-3
FROM index-name~-2
literal-l

UNTIL condition-1

‘identifier=6
FROM index—-name=4
literal-3

UNTIL condition=-2

identifier-9
FROM index-name-6
literal->

UNTIL condition-3]

62

- —_—

j identifier-l} , identifier- . o .
SUBTRACT literal-1l [literal-2 1 FROM identifier—m [ROUI\DED]
N
[, identifier-n [ROUNDED]] ... [; ON SIZE ERROR imperative-statement}
identifier-l , ldentifier-2 identifier—m
SUBTRACT {literal-l } l-, literal-2] v Mgiteral-m }
GIVING identifier-n ([ROUNDED] [, identifier-o [ROUNDED]]
[; ON SIZE ERROR imperative—statement]
SUBTRACT {gg{:ﬁESPONDING} identifier-1 FROM identifier-2 [ROUNDED]
[; ON SIZE ERROR imperative-statement]
WRITE record-name
GENERAL FORMAT FOR CONDITIONS
N RELATION CONDITION:
IS [NOT] GREATER THAN
1S {NOT] LESS THAN
identifier-1 IS [NOT) EQUAL TO identifier-2
literal-1 IS [NOT] > literal-2
arithmetic-expression-1 IS [NOT] < arithmetic-expression=-2
index-name-1 IS [NOT] = index-name-2
CLASS CONDITION :
. o NUMERIC
identifier IS [NOT] {ALPHABETIC}
NEGATED SIMPLE CONDITION :
NOT simple-condition
COMBINED CONDITION :
condition wj condition\]
o
) 63

QUALIFICATION :
data-name-1l
condi tion-name

paragraph-name

SUBSCRIPTING:

data-name
condi tion-name

IDENTIFLER:

} (subscript-1 [, subscript=2 [, subscript-B]])

data—name-1 R%E} data-name-z] [(subscript~1 [, subscript—2 !

MISCELLANEOUS FORMATS

OF

data- - eese
{IN} ata-name-2
{I

o
o

4

} section-name |

3 |

{, subscript-3]} H

Table 1V-§

FEATURES OF THE PROCEUURE DIVISION OF THE CSV

FROCLHUME DIVISBION peature COoBoL T4 COBOL Subset i~r Verification
— Level) Level 2 Level 1 Level 3
Nucleus - - - ==
verbs '“' - - s
ACCEPT x x x 0
I ADD x x x x
i ALTER x x 0 o
i COMPLTE 0 = o x
DISPLAY x x x
DIvIDE x x x A
l‘ ENTER x 3] i
l' EX1T x o x u
: w x x - [}
' 1F x x x
\ INSPECT x o °
J MOMVE x = N x n
. WMLTIMLY x x x x
‘ PERFORM x x x x
‘ »TOP E o -)
) STRING o x 4 o
SUBTRACT x x x x
. UNSTRING 4 x [[
¢ Internal Constructs - - - .-
) Qualification » o x o
, Arithmetic Expressinons 4 x [x
' Condilions - .- -~ --
; Relation conditions = X" x x
| Class conditions x [] [
Condi tion-nemes o x 0 o
} Seitch-status x 0 [o
I Sign conditions x 4 a o
‘ Complex and combined conditions 0 x [<"
, Apbreviated comutned canditions o x v
Size Error x 0 x
Sequential 1 O - - - -
| cLosE x x - o
; p— x y x v
© READ x o - 0
! REWRITE x o 0 0
LSE x x [0
WRITE x x - 0
1lelu Hendling - -- - .
: SEARCH o x ° °
| sET x ° ° °
Subscripting x 0 x o
Indexing x 0 0 °

¢ Featurs tncluded,
*s Nonnumeric squality only.
t Festure not totally included (fn sudset).

$ Feature nonexistent (in COBOL 74) or omitted (f{rom COBOL subset for verification).

Y Mo MOVE bet N Eroup dats Ltems.

** Complex conditions consisting only of simple condltions allownd in subset.

$t Not applicable,

Table IV-6

TRANSDUCTION GRAm~AR FOR TdE
PROCEDURE DIVISION OF TdAE CSV

proceduredivision
PRUCEDJURE DIVISION . paragraphs

(< PRUCEDUREDIVISION$ < SECTION$ 'FIRSTSECTION ! T4>>)
¢ PROCEDURE DIVISION . sections

(< PROCEDUREDIVISIONS$! TW>)

———— e - ————— —_—

at
#
(NIL)
AT
(NIL)
computetarget
computetarget!
(<T1>)

11dentifier , computetarget
(<< SEL$ T1> ¢ T3D)

identifier ROUNDED , computetarget
(<< SEIKOUNDED$ T1> ! Ti))

computetarget i

identifier
(<"SeET$ T1>)

identifier ROUNDED
(< SEILKOUNDEDS T1>)

condition

condition OR condition2
(<T2 1 1I'3>)

condition?2
(T

condition2

condition2 AND condition3
(<T2 TV I

¥ condition3
(TnH)

66

condition3
NIl condition3
(<T1 12>)

conditiony
(TH

conditiony
(condition)
(T2)

simplecondition
(11)

connector
BY
(i1)
FRUM
(TH)
Iniu
(rn
TO
(T1)
corresponding
CORK
(NIL)
CORRe3POWDING
(NIL)
corrop
ADD

("ADDCORRESPONDINGS)
SUBIRACT
("SUBTRACTCORRESPONDING$)

dividearguments
expression JYf expression
(<T1 13>)

expression INTO expression
(<T3 [1>)

67

elseclause

¢
("NEXT)

semi ELSE NEXT SENTENCE
("NEXT)

semi ELSE sentence
(13)

endcondition

#
(NIL)

; at END sentence
(TW)

at wnND sentence
(T3)

errorcondition

f#
(NIL)

¢ ; on S5IZE eRRUR sentence
(%)

expression

+ expression + expression?
(<PLUS T1 T3)

expression?
(I

¥ expression - expression?
(< 3UBTRACT Tt T3»)

expression?

expression2 #* expression3
(< TIMES 1 T3)

expression?2 / ervpression3
(<'DIVIDE T1 T2

expression3
(T1)

expressiony
expression3 #* expressiony
(CEXF T1 13>)

expressiony

(T1)
expressionl
(expression)
(r2)
+ expressiony
(T2)
- expressiony
(<1{IduS T2>)
ZERO
(0)
ZEROuS
(0)
Z2ERO3

(0)
identifier
(T1)

nuuber
(T1)

string
(T1)

expressions

exprassion
<TH)

expression , expressions
(K<T1 ¢ T)

filename

synboi
(rn

filenames

filename
(<T1>)

filename , filenames
(<T1 1 T)

Ttilename filenames
(<T1 ¢ T2>)

identitier
symbol subscriptlist qualifiers

({(if [2 tnen < SELECT
(if I3 then < QUAL T1 ! T3> else T1)
(2> elseif T3 then < 'QUAL T1 { T3> else T1))

S
identifiers
identifier
(<T1>)
identifier , identifiers
(<T1T 1 T3)
indexname :
symbol 5
(1) '
iotype
INPYT
{ OPENIJPUTS$)
OQUTPUT
{ "CPENOUTPUTS$)
is
#
(NIL) e
IS
(NIL)
aof
Id
(Niu)
#OF
(NIL)
on
#
(NIL)
I
(NIL)
~”’

70

operator

ADD
(" PLUS)

DIVIDE
(“DIVIDE)

«ULTIPLY
(“TIMES)

S3UBTRACT
{ "SUBTRACT)

paragraph
paragrapnname . sentences
(< PARAGRAPH$ T1 1 T3>)

paragrapnname
symbol
(fn)
paragrapns
paragrapn
(KTH)
paragraph paragrapns
(<T1) T2>)
perforumbody

procedurename
(< DO$ TV I)

procedurename tnru procedurename
(<'DO$ T1 13»)

—_—— e e ——

performcontrol
UNIIL condition assertion
(<T2 T1 T3>)
expression TIMES assertion
(<T2 IT1 I3)
varying identifier FROM expression BY expression UNIIL condition ;
assertion
{(<TY <I2 T4 6 T8> T9)

—_— e e ————— ——

performcontrols
#

71

(NIL)

performcontrol performcontrols
(<T1 1 I2>)

procedurename

symbol
(T1)

symbol of symbol
(<T1 I3>)

procedurenames

procedurename
(<T1>)

procedurename , procedurenames
(<1) I3>)

e e e — e = e e T T

gqualifiers

#
(NI

of symbol qualifiers
(T2 ! T3>

recordnane
symvol
(11)

re.atignoperaior
Nui relationoperator?
W SELESTe 2 (WQUude EQ)
"NEQ)
{LQUOTE NERQ)
TEQ)
{({QUufe LT)
"GTY)
((Qduir GTQ)
L)
((Quuie LIQ)
o)
({QUOTr GI)
“LTQ)
(HLLP
‘trrcr in reduction of first alternative of relationoperator
relaLionoperalor?

72

-")))

(T1)

relationoperator?2

¢ <
('L

¢ =
("EQ)

$# >
("GT)

EQUAL to
("EQ)

GREATER than
("GT)

LESS tnan
("LT)

rounded

#
(NIL)

ROUNDED
(T1)

section
sectionname SECTION . paragraphs
(< SECTION$ T1 1 TU4>)

sectionname
symbol
(T1)

sections

section
(<T1>)

3ection sections
(<T1 ¢ I2>)

semi

#

(NIL)
L
(NIL)

73

sentence

sentence!
(T1)

sentence?
((1f T1::1 then <'DO$ | T1> else T1:1))

e e i e ot e e S

sentence

CLOS: filenames
(<T1 t I[2>)

EXIT
{(NIL)

GO to procedurename’
(<T1 T3)

IF condition thenclause elseclause

(<T1 T2 13 Th>)

PERFORv performbody performcontrols

((if T3 tnen (for (X R_T2)
in
(REVERSE T3)

do R_ <"PERFORM X:1 R X:2 X:3> finally

(RETURN R))
else < PERFORM “ (ONCE$)
T2 WIL NILY))
READ fillename endcondition
(<T1 T2 I3>)
STOP RUN assertien

(<T1 T3>)

WRITE recordname
(<71 I2>)

assertion
(Ti)

corrop corresponding identifier connector identifier rounded

errorcondition
(<T1 T3 75 6 TT>)

sentence?

COvPUTE computetarget = expression errorconditioh
((for X in T2 collect <! X T4 T5>))
GO to procedurenames DEPENDING on expression

((for I to (LENGTH T3)
collect :

(¢<'IF <'EQ$ T6 I> <'GO (CAR (NTH T3 I))

> “NEXT >)))
OPEN ifotype filenames
((for X in T3 collect <T2 %))
©OVE expression TO identifiers

({for X in T4 collect < SET$ X T2 NIL>))

74

Ve corresponding identitier TO ideantifiers

((for £ in T5 collect < MOVECORR=3SPUNDINGS T3 £>))
ADD expressions GIVING computecarget errorcondition

((for X in T4 collect <! X <'PLUS t T2> T5>))
ADD expressions [JU computetarget errorcondition

((for X in T4 collect <! X <'PLUS X:2 ! T2> T5>))
OSUbTRACT expressions FROM computetarget errorcondition

((for X in (4 collect <! X < SUBTRACI X:2 <'PLUS ! TI2>> T5>))
SUbBTRACT expressions FROr expression GIVING computetarget
errorcondition

((for X in To collect <1 X < SUBTRACT T4 < PLU3S ! T2>> TT>))
wulLIIPLY expression oi computetarget errorcondition

((for X in T4 collect <! X < TIMES [2 X:2> T5>))

MJLTLPLY expression BY expression GIVING computetarget errorcondition

({for 4 in Tu collect <! X < TIAES T2 Tu> T7>))
DLVIDE expression Iilu computetarget errorcondition
((for X in T4 collect <! X < DIVIDE X:2 T2> T5>))

DIVIDE expression IN[U expression GIVING computetarget errorcondition

((for X in T5 collect <! X < DIVIDE T4 T2> T7>))
DIVIDE expression By expression GIVING computetarzet errorcondition
((for X in To collect <! X <'DIVIDE [2 T4> T7>))

sentences
sentencel
(<T1)

sentencel . sentences
(<T1 ¢ T3>)

sentence?
(rv)

sentencel . sentences
(< 01 1 T

siqaplecondition
expression is relationoperator expression
(<T3 1 Tu;

suv3criptlist

i#
(Nio)

(subscripts)
(re)

subscripts

expression
(<T1) -

expression y Subsecripts
(KT1 1 T3>)

than
#
(NIL)
TAAN
(NIL)

thenclause

NEXT S=NTENCE
(“NEXT)

sSemi sentence
(T2)

tnru

THROUSH
(NIL)

THRU
(NIL)

s & s e e S o e e ot

to
#
(NIL)
BTo
(NIL)

—————— i o e o s

varying
AFTEKR
("VARYING)
VARYING
("VARYING)

76

B

P e S i e A

T e g SN D D i e SN AR

ESTAVA!LABLE CCpry

V THE ASSERTION LANGUAGE FOR COBOL VERIFICATION

A, General

The deductive system in a program verification system will attempt
to prove the validity of a formula in first-ordér~log&c, the language of
mathematical theorems. When one builds a formal mathematical system,
one starts with axioms and attempts to prove theorems based .on them, 1In
program verification, the axioms are the semantics of the programming
language, the program, and the assertion language. The theorem states

that the program is correct with respect to the assertions,

Thus, the assertion language must be the language of mathematics
(In this case first-order logic, integers, and real numbers) plus some
constructs that apply directly to COBUL, We have used very few of the

latter--only those that deal with arrays, truncation, rounding, and over-
floew In COBOL data items,

We believe that the inclusion of more language-oriented constructs
in the assertion language will shorten the assertions, making them easier
to read and write, and will also simplify proof. In the last section, we

describe some ideas in that direction that have not been implenented.

3, Basic Assertion Language

There are three elements’of the basic assertion language:
(1) Pirst-order logic witn equality o

(2) Real and integer arithmetic operators and relations
(3) User~defined functions and predicates.

First-order logic contains the quantifiers Y, ¥; the connectives
A, V, =, D; the equality symbol =; and the symbols, predicates, and functions
used in the logical formula. The LISP function names for the quantifiers
and connectives are, respectively: ‘FORALL, EXISTS, AND, OR, NOT, IMPLIES,

and EQ. Often basic set theory 4is useful in connection with first-order

logic.,

The operntions on arithmetic items are simpl; +, -, %, /, and unary

minus (and exponentiation, logarithms, modulo arithmetic). The relations

BEST AVAILABLE COPY 77

are simply =, #, > 2, < and<, All axioms on theseboperations and

relations apply (e.g., ccumutativity and transitivity)., The LISP function
symbols for the arithmetic and relational operators, respectively, are- ‘
PLUS, SUBTRACT, TIMES, DIVIDE, MINUS, EQ, NEQ, GT, GTQ, LTQ, and LT,

Other constructs, such as conditional expressions (from Algol 60)..- . -

are also used., An example of the use of a conditional expression is
x = 1f b then y else z,
and this translates to the loglcal formulsa

bDx=y) A(=bDx=12),"

.

. facility for the user to define functions, predicates, and syn-
tactle constructs 1s also useful, In this context, all special constructs
relating specifically to COBOL could be formally defined., Some strict
laws of definition (such as those in Reference 26)'should be used in
creating new definitions, so that the soundness of any proofs based on

the definitions 1s guaranteed.

The rules of inference are the basic ones for first-order logic (e.g.,

modus ponens). Other "rules' can be derived as theorems.

C. Speclal Functions for COBOL

The special functions that we have used in our assertion language are
concerned with particular features of COBOL arrays and numeric data items,

These functions are described in the following paragraphs.

The SELECT function for array access is briefly described in Section
ITI. It has no definition, except that SELECT(&,i)<r§£urns the Ith value
of the array A, Its value is dhanged via an array a-éignment CHANGECA, I, V),
which changes the value of the Ith element of the array A to V. Its '

formal semantics is described in terms of the following Hoare axiom [é];”

P{CHANGE(A,1,e)}Q

3]

SELECT (A, %)
if x = I then e else SELECT(A,x) .

PQ

78
BEST AVAILABLE COPY

S by’ e e e s g« e

This means that when a single value of array A changes (the Ith value),

a conditional substitution is made for the Ith value of the array only.
However, for a given array access SELECT(A,x), where x is an arbitrary
expression, it may not be known at verification time whether or not x

is equal to I. Thus, the above conditional expression must be substituted

into Q for every instance of SELECT(A,x). We can represent the size of

the array A by the function LENGTH(A).

Two assertion-language functions are associated with assignments

to numeric data items, In a normal assignment statement, truncation

takes place so that the new value of the
PICTURE specification. In an arithmetic
rounding of the least significant digits

In both operations, the most significant

receiving data item "fits" its
statement with the ROUNDED option,
takes place instead of truncation.

digits will be lost ii the abso-

lute value of the item 1s "too big" for its picture specification. We
supply two functions, TRUNCATE and ROUND, to perform these operations;
both functions take a value and a PICTURE specification as an argument,
and return a new value, For eoxample,
TRUNCATE (123.46, 999v9) - 123.4
N
ROUND(123.46, 999V9) = 123.5
i
TRUNCATE (-1234.,56, S999V39) = -234,56 ;
ROUND(-234. 56, 999V99) 234,56 :
We define ROUND and TRUNCATE iun terms of primitive and intermediate-loved
constructs, and then define the intermediate-level constructs in terms og
the primitives presented here:
ABS(v) + absolute value of v
DECIMALDIGITS(p) = number of digits to the right of the virtual
decimal point of p
TOTALDIGITS (p) - total number of digits in p
MOD(v1l,v2) - v1 mod v2
In this case, v is a valuc and p is a PICTURE specification, We define
TRUNCATE and ROUND as follows:
N

79

TRUNCATE (v ,p) =
if ABS(v) > MAXVAL(p)
EESE MAXVAL(p) * PSIGN(v,p)
else (ABS(v) - EXTRADIGITS(v,p)) * PSIGN(v,p)
ROUND(v,p) =
if'ABS(v) > MAXVAL(p)
then MAXVAL(p) * PSIGN(v,p)
else if EXTRADIGITS (v,p) 2 .5 * MINVAL(p)
then (ABS(v) - EXTRADIGITS(v,p) + MINVAL(p)) *
PSIGN(v,p)
else (ABS(v) - EXTRADIGITS(v,p)) * PSIGN(v,p).

The following is a description of the intermediate-level functions:

EXTRADIGITS(v,p) = the absolute value described by the least

"

significant digits left over after "fitting" into

the PICTURE specification described by p

MAXVAL(p) - the maximum absolute value permitted by p
MINVAL(p) = the minimum nonzero absolute value permitted by p
PSIGN(v,n) = the sign of v when 1t "fits" into p.

Thelr formal definitions are as follows:

EXTRADIGITS (v,p) =

Mun(AHS(v)*lODECIMALDIGITS(p) 10TOTALDIGITS(p))/loDECIMALDIGITS(p)

UT()TALI)IGITS(p) DECIMALDIGITS(p)

MANVAT (P (! -1)/10

-DECIM S
MINVAL(P) = 10 DECIMALDIGITS (p)

PSIGN(v,p) = 17 "ST e p A v < O then -1

clse
\ <t le ascortion language construct defined above, MAXVAL(p), can
Ao te-rine whether or not a SIZE ERROR has occurred: §f the absolute value

of “n arithmetic operation exceeds MAXVAL(p), where p is the PICTURE speci-

ficration of the destination.

Based on the above formal definitions, we can develop "rules of

inference” for lemmas) that allow proofs of assertions containing such

functiona.

80

- T

Here is an example of how such functions are used in assertions,
and how rules of inference can be used in simplification and proof. Llet
the PICTURE specificatlons of the variables A and B be 999 and 99, res-
pectively. Then the verification condition for the statement 'MOVE B TO A"

could be described as follows:

P{MOVE B TO A]Q =

A
poo]
P =2 QrpUNCATE (B, 999) .

Since it is known that 0 < B = 99, because of its PICTURE specification,
it therefore "fits" into A without modification. This suggests a rule
of iInference: 1If the PICTURE specifiication of the destination in a MOVE
operation subsumes the PICTURE specification of the source, then the
TRUNCATE function need not be used in the verification condition. The

verification condition then simplifies to

P{MOVE B TO A]Q =

podh
As a second example, let us suppose that A and B have PICTURE specifi-
cations as above, and tnat C has a PICTURE specification of 99. Then
the verification condition for the statement"COMPUTE A = B + " would be

as follows:

P{COMPUTE A - B + C}Q -

A

P QTRUNCATE(B+C,999)

Since the maximum value for the sum of B and C {s 198, and minimum value
is 0, then using the last rule (generalized to arithmetic expressions) we

get
P{COMPUTE A = B + C}Q -
A
o
P = e
We present several examples of assertions that can be made about

COBOL programs., To say that an array A is sorted in ascending order, we

write

81

[P

VX(1 S X < LENGTH(A)-1 D A(X) € A(X+1))

]
or in LISP form

(FORALL X
(IMPLIES

(AND
(LTQ 1 X) .
(LTQ X (SUBTRACT (LENGTH A) 1)))

(LTQ
(SELECT A (X)) _
(SELECT A ((PLUS X 1)))))) .

If we wish to state that a particular value C occurs in array A, we

write

dX(1 < X £ LENGTH(A) A A(X) = C) ’

or in LISP form

(RXISTS X
(AND
(AND
(LTQ 1 X)
(LTQ X (LENGTH A)))
(EQ

(SELECT A (X))

c»)y .
A typlcal input assertion to a COBOL program would give the vaiues of
the input files, and a”typical output assertion would describe the
relation of values in the input files to values in the output files,
In this work, where input files and output files are disjoint, this is
easy to do. However, in cases where a file mayv be open for input and
output, we need a mechanism to distinguish between the initial values
and current values in the file. One solution is fo concatenate a

special character to the file name to denote initial file values, -~~~

D. Abstract Assertions for COBOL Programs

As will be scen in the example, assertions and verification con=-
ditions for COBOL programs may be very long (the verification conditions
are nuch longer than the program itself). A desirable goal of future
verification research is te shorten the verificafion conditions and
asscrtions, to enhance both understandability and provablility., We have
begun to explore some of these issues, and describe‘fhese explorations

here, One way of doing this is to develop primitives for writing abstract

EEST AVAILABLE COPY 82

o wo s = e

assertions for COBOL programs. Abstract assertions could make the
assertions more readable, since they would be shorter, but would they
increase provability? There is still some doubt on that issue. We
present some abstract assertion structures, together with their def-

initions and rules of inference,

In conventional program proving (including the approach taken in
this work), the assertions deal with the values of variables, to the
exclusion of their other attributes. This enables free substitution
of values, but does not permit more powerful inferences to be made, as

could be done when the other information is made available,

The main area of examination to date has been the property of
equality, In conventional equality, the values of data items :.re con-
sidered, so that substitution may take place. We propose first a kind

of equality between data items called "structural equality.” Two data

items are structurally equal i1f and only if either:

(1) Both items are elementary data items having the same

PICTURE specification and the same number of occurrences, or
(2) Both items are group data 1items

(a) That have the same number of immediate descendants, and

(b) Whose corresponding descendants are structurally equal,

This is a static property of COBOL data items, but the programmer may
wish to assert such a property in the program test. This defiinition
will be used in later assertion structures.

]

{ We next define the notion "strong equality,”" Two data items are

strongly equal if and ouly if either:

(1) Both items are elementary data items that are structurally

equal and whose values are equal, or

(2) Both items are group data items that are structurally equal

and whose corresponding descendants are strongly cqual.

Both strong and structural equality are powerful properties to be asscrted

about tree-structured records.

¢

There is a notion ot equaiity connected to the’MOVE statement,
called "wenk equality,” n noncommutative relation among data items.
Let A and B be data items, and let PICB be the PICTURE specification
of B. A 1s sald to be weakly equal to B if and only if either:

(1) DBoth items are elementary data items and B = TRUNCATE (A,PICB),
or ‘ '

{2} DBoth items are group data items

(a) That have the same number of immediate descendants, and

{b) Such that if AI 1s an immediate descendant of A and BI
is the corresponding immediate descendant of B, theh

AI must be weakly equal to BI,

A similar kind of equality related to the MOVE CORRESPONDING statement
may also be defined, called "corresponding equality' (this notion is

not defined here),

A verification condition generator would have to know how to process
assertions containing these abstract constructs, because some COBOL opera-

tions preserve these relations and other operations lnvalidate the relations. ~

The above framework can be extended to cover arbitrary relations on
data items, Although this mechanism is a good way of relating properties

of records, a mechanism for relating records within a file and the records

of two different files would also be useful,

These mechanisms are useful simply because many COBOL programs entail
the movement of data without extensive arithmetic operations on it. The
abstract assertions described above capture some of the notions involved
in data movement, One additional comment is that programmers who structure
thelr programs so that the above-mentioned propertieé hold will probably

be Increansing the reliability of their programs, -The effects of abstract
pesscertions for COBOL on proof will be illustrated in future work.

E. Concluslons

We have shown that the assertion language for COBOL can be extremely

simple, However, the reliance on a simple assertion language may make the

REST AVAILABLE COPRY B4

s

““f'-"-'-'l!!!:!!I-

assertions difficult to read, and the proofs unduly complex. Thus, an

assertion language should be extensible so as to permit the abstract

program properties to be stated concisely, The exact nature of the

extensions to be chosen is a matter for future research.

85

VI SEMANTICS OF THE COBOL SUBSET

A, lgﬁroduction

Semantics of a programming language can never be completely separated

from its syntax. Thus, in Section IV, the transduction grammar for the

CSV has gome relation to the semantics of the language (c.g., the fact that

MOVE, COMPUTE, and ADD are all related, influenced the decision to trans-
duce them to the common primitive SET$). However, most of the semantic
issues are left unincerpreted since we have not yet defined the semantics
of Transduced COBOL., We define these semantics by describing each of the
primitives in Transduced COBOL in terms of a simple language involving
only assignments, tests, and branches. The semantics of this simple lan-
guage are in turn described by the way in which verification conditions
are generated for programs in it, Thus, the semantics of the COBOL sub-
set are contained in the description of the operation of the Posttrans-
duction Processor and the Verification Condition Generator. Both pro-
grams have been abstractly described in Section III of this report., In
this section, we present a more detalled description of both programs,
followed by a discussion of some research issues in verification con-

dition generation.

B. Posttransduction Processing

Posttransduction processing:

(1) Transforms the label structure of the program so
that paragraph names are unique, In COBOL, two
different sections may have paragraphs of thc same

name. The section structure may then be taken out,.

(2) Forms a list of labels with their corresponding
assertions for later usc by the path analyzer (part
of the verlificatlion condition generator) for pro-

ces:ing GO TO statements,

(3) Eliminates the paragraph structure of the program.
A copy of the program, after step (1), has been saved

so that labels can be processed correctly.

87 Frichuwiag bedlh DlaaKe=W0T

FluED

(4) Scans each sentence in the program and translates it into
the simple language to generate a verification conditilon.
o ~—
The sentences transformed are:
(a) PERFORM statements
(b) All 1/0 statements
{c) All assignment statements
(d) All CORRESPONDING statements.
These operations need knowledge of the symbol table as well as knowledge
of the transduced prozram, We now present some simple examples of the
kind of operations performed in posttransduction processing.
Suppose that we start with a very simple COBOL program as follows:
PROCEDURE DIVISION,.
S1 SECTION,
Pl,
(ASSERT (GTQ X 5)).
ADD 1 TO X,
P2,
ADD 2 TO X.
s2 SECTION. /
o
P3.
ADD 1 TO X,
Pl.
ADD 1 TO X,
(ASSERT (GTQ X 10)). (VIi-1)

Its transduced form would be:

PROCEDUREDIVISIONS (SECTIONS S1 (PARAGRAPH$ Pl

(ASSERT (GTQ X 5))

(SET$ X
(PLUS X 1)
NIL))

(PARAGRAPH$ P2 (SET$ X

(PLUS X 2)
NIL)))

(SECTION$ S2 (PARAGRAPH$ P3
(SET$ X
(PLUS X 1)
NIT))
(PARAGRAPH$ Pl (SET$ X
(PLUS X 1)
NIL)
(ASSERT (GTQ X 10]

88

N NIL))

The first stage of posttransduction processing crecates unique labels

as follows:

— (PROCEDUREDIVISION$ (SECTION$ S1 (PARAGRAPH$ (Pl S1)
(ASSERT (GTQ X 5))
(SET$ X
(PLUS X 1)
NIL))

(PARAGRAPH$ (P2 S1)
(SET$ X (PLUS X 2)
NIL)))
(SECTION$ S2 (PARAGRAPH$ (P3 S2)
(SET$ X
(PLUS X 1)
NIL))
(PARAGRAPH$ (Pl S2)
(SET$ X (PLUS . 1)
NIL)
(ASSERT (GTQ X 10]

Notice how the two paragraphs named Pl may now be distinguished because
their section names have been joined with them into a list., The sections

are then taken out:

C(PARAGRAPH$ (Pl S1)
(ASSERT (GTQ X 5))
(SET$ X (PLUS X 1)

(PARAGRAPH$ (P2 S1)
(SET$ X (PLUS X 2)
NIL))
(PARAGRAPH$ (P3 S2)
(SET$ X (PLUS X 1)
NIL))
(PARAGRAPES (P1 S2)
(SET$ X (PLUS X 1)
NIL)
(ASSERT (GTQ X 10]

In the second stage, all paragraph names associated with assertions are
listed to be used later in processing GO TO statements. The list is not

needed for this program but is made anyway. The list is:

(((P1 S1) ASSERT (GTQ XX 10)))

The paragraph structure of the program can now be eliminated as follows:

89

((ASSERT (GTO X 5))
(SET$ X (PLUS X 1)
NIL)
(SET$ X (PLUS X 2)
NIL)
(SET$ X (PLUS X 1)
NIL)
(SET$ X (PLUS X 1)
NIL)
(ASSERT (GTQ X 10)))
Now each sentence in the program is translated into its equivalent form
in a simpler language called "Posttransduced COBOL." The example pro-
gram translates to:
((ASSERT (GTQ X 5))
(ASSIGN X (TRUNCATE 999 (PLUS X 1)))
(ASSIGN X (TRUNCATE 999 (PLUS X 2)))
(ASSIGN X (TRUNCATE 999 (PLUS X 1)))
(ASSIGN X (TRUNCATE 999 (PLUS X 1)))
(ASSERT (GTQ X 10)))
In this case thc assignment statements were augmented to include trun-

cation (note that the PICTURE specification of X is 999).

We now prescnt examples of how other statements in the language are
translated into posttransduced form. The most complicated is the PERFORM
statement. We have decided to handle the paragraphs that make up the
body of the PERFORM statement by expanding them in-line. Another way to
handle the body of a PERFORM statement is to treat it as a procedure call,
with entry and exit assertions describing the effects of the PERFORM state-
ment. There is a clear trade-off here: 1in simple programs (without many
PERFORM blocks that are repeatedly used) the expansion method is pref-
erable, because there are fewer proofs to generate; in more complex pro-
grams the procedure-call method 1s preferable, because the proof of the
PERFORM bhody need only be done once even if the PERFORM block is used many
tlmes. The most interesting options are the PERFORM VARYING and PERFORM
n TIMES becausc they are loops that must be translated into assignments,
tests, and branches. For example, the COBOL statement

PERFORM P} VARYING I FROM 1 BY 1
UNTIL I > N (ASSERT (P 1))

would be translated, as shown in Figure VI-1. There is an initialization

90

N
[~
{\ , ASSERTION
o P{I}
True Next Statement
After PERFORM
False
N BODY OF P1
l I +1
SA-3967-9
FIGURE V-1 TRANSLATION OF "PERFORM P1 VARYING
| FROM 1 BY 1 UNTIL I > N (ASSERT
P -
\-/
g1

of I, a 1list on I and the increment of I. The COBOL statement

PERFORM P1 N TIMES,

would also be translated in the same way., As a detalled example, let

us examine the following COBOL program

PROCEDURE DIVISION,

Pl,
MOVE O TO SUM,
PERFORM P2 VARYING I FROM 1 BY 1
UNTIL I > N (ASSERT (GTQ SUM 0)).
STOP RUN (ASSERT (GTQ SUM 0)).
P2,

ADD A(I) TO SUM. (VI-2)

Its transduced form is as follows:

(PROCEDUREDIVISION$ (SECTION$ FIRSTSECTION
(PARAGRAPH$ P1 (SET$ SUM O NIL)
(PERFORM
VARYING
(DO$ P2 P2)
(111 (GT I N))
(ASSERT (GTQ SUM 0)))
(STOP (ASSERT (GTQ SUM 0]

(PARAGRAPH$
P2
(SET$ SUM (PLUS (SELECT A (I))
SUM)
NIL]

After posttransduction processing it looks like this:

T(ASSIGN SUM (TRUNCATE 999 0))
{BLOCK (ASSIGN I (TRUNCATE 99 1))
(ASSERT (GTQ SUM 0))
(IF (GT I N)
(ENDPERFORM)
(NEXT))
(ASSIGN SUM (TRUNCATE 999 (PLUS (SELECT A (I))
SUM)))
(ASSIGN I (TRUNCATE 99 (PLUS I 1)))
(LOOPASSERT (ASSERT (GTQ SUM O]
(5TOP (ASSERT (GTQ SUM 0)))
(ASSIGN SUM (TRUNCATE 999 (PLUS (SELECT A (1))
SUM]

92

— ~—

Notice how the body of P2 has been expanded and the initializationm,
increment, and test have been included. The loop assertion appears in
two places: at the beginning of the loop, and as part of the loop

(in the LOOPASSERT statement). The statement ENDPERFORM indicates that
control is to be passed to the statement following the PERFORM state-~
ment. If P2 had more than one statement, then the expansion would be

in terms of a list headed by the keyword BLOCK, indicating multiple state-

ments,

All input-output statements must be translated to array accesses.
A sequential file F is represented as a set of arrays (__.ARRAY)-—one for
each elementary item in the record description. There is an array pointer
(F.INDEX) that indicates the record currently being processed. A variable
F,LENGTH indicates the number of records in the file. READ and WRITE
simply perform MOVE operations from the array to and from the file's record
in the program and increment the array pointer. OPEN and CLOSE simply set
the array pointer. For example, the COﬁOL statement

OPEN INPUT X.
has as transduced form
(OPENINPUTS X).
In posttransduction processing it becomes
(SET$ X.INDEX 0).
Note that X.INDEX is the array pointer. The COBOL statement
READ X AT END GO TO P1.
transduces to

(READ X (GO P1)).

Suppose that Y is the record for file X, and the data declaration for

Y is as follows:

01 Y.
02 21 PICTURE 999.
02 Z2 PICTURE S9V999.

93

Y

Then there are to be two arrays: Z1.ARRAY and Z2.ARRAY. The number
of records in the file is represented by the variable X.LENGTH. The
intermediate form of the statement before translation of the assign-
ment statements is
(SET$ X.INDEX (PLUS X, INDEX 1))
(IF (GT X.INDEX X.LENGTH)
(GO P1)
(NEXT))
(SET$ 21 (SELECT Z21.ARRAY(X.INDEX))
(SET$ 22 (SELECT Z2.ARRAY(X.INDEX)).
Note that the AT END option is a test to see whether the current index

is greater than the number of records.

Assignment statements are transformed by using the function
TRUNCATE (p,e)--p is a PICTURE specification and e is an expression--to
truncate the assigned expression to the PICTURE specification of the
destination data item. If the assignment statement has the ROUNDED
OPTION, then the function ROUND(p,e) replaces TRUNCATE. The SIZE ERROR
ontion is transformed into an IF statement, testing the absolute value
of the expression against MAXSIZE(p), where p is the PICTURE specification

of the destination, For example, the COBOL statement

CUMPUI™E X = Y + Z ON SIZE ERROR GO TO P1l.
transduces to
(SET$ X
(PLUS Y 2)
(GO Pl1)).
Suppose the PICTURE specification of X is S999V9. Then the posttransduced
form looks like this:
(IF (GT (ABS (PLUS Y 1))
999.9)

(GO P1)

(NEXT))
(ASSIGN X (TRUNCATE S999vV9

(PLUS Y Z))).
If no SIZE ERROR clause is specified, there is no IF statement. This is
slightly at variance with COBOL 74, since it specities that if a SIZE
ERROR condition occurs and no SIZE ERROR clause is specified, then no

assignment occurs., We intend to remedy this inconsistency in future work.

84

The CORRESPONDING operations have a particularly interesting irans-
formation to posttransduced form. The definition of MOVE CORRESPONDING
A TO B is as follows:

(1) If A is an elementary data item, MOVE A TO B,

(2) Otherwise take all immediate descendants of A that have
the same name as any immediate descendants of B, and put
them in set S. For all elements X in S, MOVE CORRESPONDING
X OF A TO X OF B,

.

As an example, suppose A and B have the following data declarations:

0ol A.
02 C.
03 E PICTURE 999.
02 D.
03 G PICTURE 999.
02 F PICTURE 999.
0l B.
0z C.
03 G PICTURE 999.
03 E PICTURE 999.
02 F PICTURE 999.

The statement
MOVE CORRESPONDING A TO B.
transduces to
(MOVECORRESPONDING$ A B).
After posttransduction processing this becomes the two statements
(ASSIGN (QUAL E C B)
(TRUNCATE 999 (QUAL E C 4)))
(ASSIGN (QUAL F B)
(TRUNCATE 999 (QUAL F B))).

C. Verification Condition Generation

The verification condition generator is given the posttransduced
COBOL program as input. Verification condition generation has two

stages:

(1) Analysis of all the simple paths through the program.

A simple path is a program path that has an entry

93

assertion, an exit assertion and a fixed number of program
statements in between. A list of these simple paths is re-
turned by the path analyzer. The path analyzer must have

semantic knowledge of the following posttransduced statements:

(a) IF

(b) GO TO

(¢) BLOCK (multiple statements in posttransduced program)
(d) ENDPERFORM

(e) LOOPASSERT

(f) STOP

The statements in a simple path are presented backwards
relative to the order of execution. This is necessary

for the next stage.

(2) Creation of the verification condition from the path
description. The exit assertion is pushed backwards
through the program path, This involves substition when
an assignment statement is encountered, and the con-
struction of implications when assertions or IF state-
ments are encountered. The final verification condition

is returned at this stage.

In path analysis all IF statements generate two possible paths--
one for instances when the condition is true and another for instances
when the condition is false. The condition that holds for a paticular
path (either true or false) becomes part of the path as an argument to
the IF statement. Thus, the COBOL statements,

COMPUTE X = Y + 4.

IF X ~ 0 NEXT SENTENCE
ELSE ADD 1 to X.,

transduced and posttransduced as follows:

(ASSIGN X (TRUNCATE 999
(PLUS Y 2)))
(1¥ (CT X 0)
(NEXT)
(ASSIGN X (TRUNCATE 999
(PLUS X 1)))),

96

_

would generate the two partial paths

((IF (GT X 0))
(ASSIGN X (TRUNCATE 999
(PLUS Y Z))))

and

((ASSIGN X (TRUNCATE 999
(PLUS X 1)))

(IF (NOT (GT X 0)))
(ASSIGN X (TRUNCATE 999
(PLUS Y 2)))

for the true and false conditions of the IF, respectively. Note the

reverse order of the statements,

A GO TO statement forms the end of a path, and the assertion attached

to the label of the destination paragraph must be fetched. That assertion

would be found on the global variable LABELASSERTLIST described in the

previous subsection. For example, if there is a posttransduced statement

like this (paragraph L1 occurs only in section S1)

ico Ll)

and LABELASSERTLIST has an entry
((L1 S1) ASSERT (LT P Q)),

then that assertion would be included at the end of any path that ended
with a branch to LI,

All statements appearing in a BLOCK are simply processed individually.

An ENDPERFORM statement generates the exit path from the PERFORM, A LOOPASSERT

statement generates the path around a PERFORM loop. STOP simply ends that

path,

One example of output from the path analyzer is from program VI-1:

[((ASSERT (GTQ X 10))
(ASSIGN X (TRUNCATE 999 (PLUS X 1)))
(ASSIGN X (TRUNCATE 999 (PLUS X 1)))
(ASSIGN X (TRUNCATE 999 (PLUS X 2)))
(ASSIGN X (TRUNCATE 999 (PLUS X 1)))
(ASSERT (GTQ X 5]

97

o

—————

Since it is a straight-line program, there is only one path. Another

example is from program VI-2:

[((ASSERT (GTQ SUM 0))

(IF (GT I N))

(ASSERT (GTQ SUM 0)))

((ASSERT (GTQ SUM 0))

(ASSIGN I (TRUNCATE 99 (PLUS I 1)))

(ASSIGN SUM (TRUNCATE 999 (PLUS (SELECT A (I))

SUM)))

(IF (NOT (GT I N)))

(ASSERT (GTQ SUM 0)))

((ASSERT (GTQ SUM 0))

(ASSIGN I (TRUNCATE 99 1))

(ASSIGN SUM (TRUNCATE 999 0]

This program is a single-loop program and therefore has three paths. The

first path is the exit path from the program when the PERFORM is finished.

The second path is the loop path. The third path is the initialization

path., In both programs, the paths are listed in reverse order of execution.

In verification condition generation a path is converted into a

formula to be proved. The formulae for all the paths are conjoined together,

yielding the verification condition for the entire program. The verification

condition generator moves through the path (listed backwards by the path

analyzer) building the formulae as it goes. Let x be an arbitrary Boolean

expression. If it encounters an (ASSERT x) or (IF x) and the formula is f,
then the new formula is (IMPLIES x f). If it encounters an (ASSIGN V e),

then the new formula has e substituted everywhere for V.
Oune cxample of a completed verification condition comes from program
Vi-1:

{AND
(IMPLIES
(GTQ X 5)
(GTQ
(TRUNCATE
999
(PLUS (TRUNCATE 999
{(PLUS (TRUNCATE 999
(PLUS (TRUNCATE 999
(PLUS X 1))
2))
1))
1))
10)))

98

This formula is valid, because if X is no less than 5, then adding
5 to X will make X no less than 10. The only difficulty is if trun-
tion takes place, but X will always be truncated to 999. Q.E.D.

The second example comes from program VI-2:

(AND (IMPLIES (GTQ SUM 0)
(IMPLIES (GT I N)
(GTQ SUM 0)))
(IMPLIES (GTQ SUM 0)
(IMPLIES (NOT (GT I N))
(GTQ (TRUNCATE 999 (PLUS (SELECT A (1))
SuM))
0)))
(GTQ (TRUNCATE 999 0)
0))

There are three conjuncts (conditions) to be proved. The first condition
(the exit condition) is trivially true: If SUM is no less than 0, then

if I is greater than N, then SUM is no less than 0. The second condition
cannot be met, because even if SUM is no less than 0, adding A(I) to it
could make it less than O, The third condition is trivial: 0 is no less
than 0. However, since the second condition could not be met, the program
could not be proved correct. Imposing stronger conditions at the loop and

initialization points, such as VI(A(I) = 0), would enable the proof of this

simple program.
Note that a program can fail to be verified for three reasons:

(1) The program is wrong--i.e., it has a bug.

(2) The input/output assertions (the specifi~
cations of the program) are wrong.

(3) The program and input/output assertions
are mutually consistent, but the inter-
mediate assertions have been chosen

incorrectly.

Only the programmer (not the deductive system) can determine which of
these is the reason for a program's failure to be proved. However, a
good deductive system may be able to generate a counterexample to enable

the programmer to identify the trouble.

99

D. Research Issues in Verification Condition Generation
(or Posttransduction Processing)

All possible improvements to verification condition generution {(and
posttransduction processing) would be of one kind: add knowledge to the
system to make the verilication conditions simpler. In other words,
perform some of the proof eifort early. The reason for this is that it
may be easier to perform some simplification whea the knowledge is more
readily applicable. For example, elimination of the TRUNCATE operation
could he easily performed when the TRUNCATE operator is inserted (by
means of a simple test); but when a deductive system is in operation,
such a simplification could not be easily made because knowledge of the

maximum size of the source item would be lost,.

In addition to ordinary simplification, verification condition gen-
erators might he designed to handle abstract assertions about COBOL
programs (described in Section V), To do this, a verification condition
generator would have to know which abstract assertions are preserved by
which program statements.

We have vet tu determine the exact nature of the gain to be made
by doing simplification during the verification condition generation pro-
cess. However, we are hopeful that it will yield major improvements in

the efficiency of the program verification process,

100

VIl STRUCTURE AND COBOL VERIFICATION
A. Introduction

We consider four aspects of structure related to the verification

of COBOL programs:

(1) Use of structured control primitives

(2) Restrictions on COBOL operations

(3) Use of data bases in constructing large COBOL systems
(4) Generalized facilities for data abstraction

(5) Top-down design and modularity.

All of these structuring facilities have the goal of reducing the complexity

of the program by breaking it up into manageable units.

B. Structured Control Primitives

The use of a limited set of "well-structured’ control primitives in
writing programs is the practice commonly known as "structured programming."
Instead of the normal COBOL control constructs, the programmer writes in
a block-structured, lexically nested medium (see Section II-G on control

statements) using only the following constructs (as an example):

(1) IF b THEN sl ELSE s2

(2) WHILE b DO sl

(3) DO sl UNTIL b

(4) FOR v = el TO e2 BY e3 DO sl
(5) CASE el OF sl1,...,sn.

The semantics of the above verbs have been described in the literature on
structured programming. In the above expressions, b is an arbitrary con-
dition, si (for all i) is either a single statement or a sequence of
statements preceded by BEGIN and followed by END, v is an arbitrary variable,
and ei (for all i) is an arbitrary expression. The resulting programs are
much easier to read and, on the average, simpler than programs written

using the standard COBOL control primitives. By simplicity we mean having

a small number of control patha through the program. However, for any
program written using structured programming primitives, an equivalent

program that is equally simple can be written using the standard COBOL

101

control primitives. The reason for this is that the complexity of pro-

gram verification depends on three variables:

(1) The number of simple paths in the program
(2) The complexity of the assertions

(3) The number of statements per simple path.

No change in any of the above variables is made simply by changing from
a more restricted set of control primitives (the structured ones) to a
less restricted one (those of COBOL 74). However, we endorse the use of
structured programming primitives, because they tend to lead to simpler
(and thus easier to verify) programs. We also endorse the practice of
training programmers to write programs with nested control schemea
(flowcharts) using the primitives of COBOL 74. This is a necessary first
step towards the improvement of software reliability in a COBOL job shcp.

C. Restrictions on COBOL Data Operations

In the analysis of COBOL (Section II) and the presentation of the
subsget (Section IV), we mentioned that certain data operations were not
amenable to verification. They were:

(1) Automatic truncation of the most significant digits

on a NUMERIC MOVE operation.

(2) Allowing the compiler to permit data operations from

one type to another that could later yield a type error,

such as moving an ALPHANUMERIC value to a NUMERIC data

item.
In the first case, the language permits the programmer to make a mistake
(e.g., accidentally truncate the most significant digits) because it is
syutactically the same as a correct operation. A solution to this problem
is to syntactically differentiate a MOVE operation in which signifticant

digit truncation is intended, for example

MOVE TRUNCATED A TO B.

In the second case, the language permits an operation for which dynamic
type-checking should take place, but does not. Dynamic type-checking,
although inefficient, should be imposed, and a special statement should

be added to the language, such as

MOVE NUMERIC A TO B; ON TYPE ERROR PERFORM P1l.

102

(if A is non-NUMERIC and B is NUMERIC). Just as READ operations have the
AT END clause and arithmetic operations have the ON SIZE ERROR clause,
so should the special MOVE statements have an ON TYPE ERROR clause.

The suggested restrictions would make COBOL programs more reliable,
and would make verification easier (because the verifier must check for

type errors even if the run-time system does not).
D. Data Bases

The files that are modified by a COBOL program or a system of COBOL
programs cam be considered as a single large data base. Thus, the use of
a data base management facility in conjunction with a system of COBOL
programs, has received much attention recently. In fact, the CODASYL Data
Base Task Group14 has produced a structure in which the data description
language is almost exactly like the COBOL 74 DATA DIVISION, and the appli-
cation programs for the data base are almost exactly like the COBOL
PROCEDURE DIVISION.

What do we gain by using this approach? If one locks at the file
layout for a typical COBOL system (see Figure VII-1), there are many
programs, many files, and some files that aie shared by more than one
program. The design decisions involved in the layout of the data are
scattered throughout the ENVIRONMENT and DATA DIVISIONS of all the programs.
The data base management system (DBMS) approach centralizes all the
decisions on the data layout in the scheme for the DBMS. The declarations
for the data visible to each program are the subschemas and are also part
of the DBMS. The subschemas must be consistent with the schema. However,
this approach allows the distinction between physical data declaration

(in the schema) and logical data declaration (in the subschemas). With

this approach decisions can be hidden from the programs that do not need

to know about it. A DBMS is a good tool for the development of large

COBOL systems because it separates the systems analysis (layout of data

and programs) phase of the system development from the coding phase,
something that has always been done in practice but has never been enforced
by the available automated tools. We believe that the DBMS approach will
increase the reliability of the systems produced by using it (with a possible

reduction in efficiency depending on the DBMS system characteristics).

P i s SEE S bl S — ———
j
) 3
‘ F1 F£2 F3 ‘ F6 F5
I
1 i »
~ P1 P2
1 ~—’
\J
Fa FS F3
SA-3967~10
FIGURE VII-1 FILE STRUCTURE FOR A TYPICAL COBOL SYSTEM
N

104

We anticipate no difficulty in using the techniques developed here
for verification of programs using the CODASYL DBMS. However, we also
do not anticipate an inherent gain in the ease of verification simply
from using a DBMS approach, other than that systems designed in this
method will be better structured and therefore simpler. This is because
a DBMS approach does not reduce the complexity of either the programs or
the assertions in a COBOL system. One intuitive reason for not gaining
is that decisions on data declarations and representations are still

shared by the PROCEDURE DIVISIONs of all the programs in the COBOL system.

E, Data Abstraction Facilities

In the last two years, much attention has been given to the issue
of data abstraction. In its simplest form data abstraction associates
a set of abstract operations with a set of abstract data objects (called
a type). All programs wishing to manipulate objects of an abstract type
must call the operations. The calling programs do not need to know the
representation for an abstract object, only its formal properties
(described in terms of assertions written at a level of abstraction
appropriate to the abstract objects being manipulated). Thus, for example,
the users of a stack need only know about the formal properties of PUSH
and POP (the stack's operations) and not about the implementation of a
stack in terms of an array (to store the stack) and a variable (to store

1 0
the stack pointer). Some researchers advocate special languages to

1
facilitate the use of data abstraction, while others” emphasize a formal
medium for describing the properties of a data abstraction. However,
most researchers agree that the method promises to reduce the complexity

of program verification for the following reasons:

(1) The programs are less complex. A single-level program
can be broken up into two levels of simpler programs--
one level that manipulates abstract objects and another
level that implements them. Since complexity of programs
is considered to vary exponentially with their length, it
is probably easier to prove many simple programs than a
few complex ones. There may in fact be less code to prove
correct, because the code for a data abstraction may have
been previously duplicated, but the abstraction process has
put it all in one place. Successive decompositions into

two levels can lead to systems with many levels.

105

e ———

(2) The assertions are simpler. This is probably the most
significant property of data abstraction. Since the
abstract assertions typically contain less information ~
(implementation variables and algorithms are hidden),
they are shorter and thus are easier to manipulate. On
the other hand, the implementation assertions do not have
to deal with how the abstract resource is being used and can
typically be simpler. For example, keyed records can be
implemented either by a hash table or a linked 1list. The
abstraction is simply a function from keys to records-~-all
the information about links and hashing functions is elimi-
nated from the higher level.

Data abstraction has shown some benefits in practical system design.

In another SRI project 1 a general-purpose operating system (whose
major design goal is verifiable security) was designed using a formal
methodology based on data abstraction. The operating system has 13
levels of data abstraction. A major question is whether the kinds of
systems typically designed using COBOL are amenable to data abstraction.
Operating systems have abstractions such as virtual memory segments, file
directories, and processes; but it seems that no such absiractions are
visible within COBOL systems. More research must be done on this matter
to determine whether COBOL programs can take advantage of this valuable
technique. If so, we suggest a preprocessor that allows the distinction
between programs that use a data abstraction and programs that implement

one. The two kinds of programs can be combined in some manner (perhaps

by macro expansion) before the system is run.

Many sophisticated languages (including COBGL) have some data abstrac-
tion built into their basic facilities. Things such as indexed sequential
files and the hiding of input/output buffering are examples of data ab-
straction. Some of COBOL's facilities, such as the elementary data item,
permit abstraction, but are circumvented by other facilities (such as
REDEFINES). In a good data abstraction, the implementation details are

completely hidden from the user of the abstraction.

F. Top-down Design and Modularity

Top-down design is an embodiment of the philosophy that says, 'When
there are many decisions to make in the construction of a program, make
the most important ones first.” This is useful becauc<e each new decision 1

that is made must be consistent with the ones made hefore. Thus, the /

106

-

earlier decisions tend to influence the later ones, and not the reverse.

It would be unfortunate if the lesser decision would influence a more
important one. Data abstraction is one embodiment of this philosophy
because the decision concerning the formal properties of a data abstraction

is made before the decision of how to implement 1t.

22 23
Top-down design, as advocated by Di jkstra and Mills begins with
a statement of the problem to be solved, together with a very abstract
program to solve the problem. The program typically has control state-

ments interspersed with natural language. For example, to sort an array

of length N:

for 1 « 1 to N-1 do
swap the smallest element in A[i]...A[N]
with A[i];

The programmer then makes successive refinements in the abstract program,
incorporating new decisions as they are made, until the final program is
achieved. These decisions can be made concerning either data or algorithms.
This approach seems useful for COBOL programs in deciding the algorithms,
but not the data, because a COBOL program typically consists of many pro-~
grams operating on data that has probably been decided on beforehand
(unless some of the most abstract programs were done during the systems
analysis phase). In general, this is a good way to write programs, because
it increases a programmer's understanding of the programming problem. As
Dijkstra indicates, a programmer doing stepwise refinement can make
"convincing" arguments for the correctness of a refinement. If each refine-
ment is correct and consistent with the preceding ones, then the correctness
of the entire program can be inferred. However, it is impossible to formally
prove the correctness of any program written in a nonformal medium, such as
natural language interspersed with control statements. Thus, top-down
design shows little promise in making COBOL verification easier, except

that it may lead to better programs.
Modularity is an embodiment of two beliefs

(1) Put all related design decisions in one place

(2) Put all separable design decisions in different places.

107

r—vmw,h.& LT

The result is a set of clusters of decisions. Each cluster of decisions
is made only in a distinct module of the system. Data abstraction is a
good example of modularity because the related decisions (concerning

the maintenance of a data abstraction) are all together in a related

set of programs, which is in turn separated from all the programs that
use the data abstraction. Just because a system is broken up into small
programs does not mean that it is modular. For example, a program A that
operates on five files may be modularized into two smaller programs--
one operating on two files and the other operating on three files. This
decomposition is probably modular. However, if A is broken up into two
smaller programs each operating on five files, it may or may not be a
modularization. An attempt to modularize a large COBOL program will
yield benefits only if it shortens or simplifies the assertions of the
larger program. One way to assist this is to describe, for each module,
the set of data items accessed and modified by the module. This may
enable the verification system to simplify the assertions used in the

correctness proof of the module.
G. Conclusions

Some structuring disciplines seem especially promising in decreasing
the cost of program verification, and COBOL verification in particular.
Specific progress in implementing any of the schemes described above has

yet to be made, and is the subject for future research in this area.

108

VIII AN EXAMPLE OF COBOL VERIFICATION

A. Description of Program

In this section we present a COBOL program that we have taken through
the several stages of machine processing to generate verification conditions.
One of the verification conditions is proved in its entirety, and the proofs

of the others are sketched.

We have verifieu a payroll program,which is simple relative to the
complexity of an average COBOL program. The complexity of the program,
which is at the upper bound of practical program verification, will be
revealed in this section. The number of relevant cases is very large,

which is reflected in the number of execution paths through the program.

The function of the program is to update a master file and print
the employees' weekly paycheck, given a master file, containing the
employees' cumulative payroll information, and a time card, giving the
number of hours worked in a week. The file structure of the program is

shown in Figure VIII-1.

The structure of the program at the highest level is as follows,

with appropriate paragraphs in parentheses:

(1) File opening and initialization (OPEN~FILES)
(2) Main processing loop (LOOP)
(3) Files closing (CLEANUP).

The main processing loop consists of three parts:

(1) Reading files (READ-INPUT-MASTER through READ-TIME-
CARD) and checking for end-of-file (GO TO CLEANUP)
and file structure errors (GO TO ERROR-ABORT)

(2) Processing a related set of records (PROCESS-RECORDS)
(3) Writing the output records (WRITE-OUTPUT).

CLEANUP and ERROR-ABORT terminate the program. Record processing has
the following components:
(1) Setting up the output master record (MOVE-ARRAY) with
possible error conditions (GO TO ERROR-ABORT)
(2) Setting up the paycheck record.

T e = e

INPUT-

TIME-CARD-FILE MASTER-FILE

PROGRAM

y

QUTPUT-
MASTER-FILE

OUTPUT-
MASTER-FILE

SA-3967-11

FIGURE V-1 FILE STRUCTURE OF THE EXAMPLE PROGRAM

Y

MOVE-ARRAY sets up a single element of the array in the output master
record, and must be PERFORMed in a loop. ERROR-ABORT terminates the

program.

*
The program is shown in Table VII-1 .

B. Assertions
The numbered assertions of the program occur in the following places: :

(1) Input to the program i
(2) The beginning of the main processing loop
(3) Normal exit from the program

(4) Error exit from the program--file structure error H
(5) Error exit from the program~-record error or overflow

(6) Loop for moving the array information.
The assertions are written out (by number as above) in Table VIII-2.

The input Assertion (1) states that the input files are the same
length, that their name fields correspond, and that the array pointer

of each record is within bounds. Assertions (2), (3), and (6) use the

general invariant for the program, Assertion (7), which states that the

input assertion holds and that for each corresponding file record

(1) The output value for the name equals the corresponding
input value.

(2) The output gross pay has been correctly calculated from
the input gross pay, the salary, and the hours worked
in the current week.

(3) The output hours worked is the sum of the input hours
worked and the hours worked in the current week.

(4) The current week has been incremented from input to
output.

(5) For all members of the weekly hours array (except the
current week), the input value equals the output value.

(6) The output element of the weekly hours array for the
current week equals the hours worked this week.

&
The tables are at the end of the section.

This is the '"essence'" of the workings of the program. Assertion (2)
states that the double end-of-file condition has not occurred and that
all the file pointers are equal. Assertion (3) states that the double
end-of-file has occurred and that the lengths of the input files and of
the output files are equal. Assertion (6) states that the pointers to
the input files are one greater than the pointers to the output files,
that all the variables moved before the loop have been properly processed,

and that I-1 of the array elements have been processed correctly.

Assertion (4) is FALSE. Thus, we must prove that this particular
error condition (having the end-of-file without the other) never happens.
Assertion (5) states that either a rounding error or a name correspondence

error has occurred.

C. Transduction and Posttransduction Processing

The transduced PROCEDURE DIVISION appears in Table VIII-3. The trans-
duced DATA DIVISION appears in Table VIII-4.

Posttransduction processing was then undertaken. Several hand-
simplifications were made after posttransduction processing: the redun-
dant statements were removed (expansion of a PERFORM produces a block
of code--the original~-that is never executed); all unneeded TRUNCATE
statenents were removed (we purposely wrote the program so there would
be no truncation on assignment statements); all redundant qualifications

wer: removed. The resulting program appears in Table VIII-5.

D. Verification Condition Generation

The nrogram of Table VIII-S has 26 simple paths through it. The
large number arises because of the number of IF statements (without
transfers) in the program. For example, if there is a simple path
from Assertion (2) to Assertion (6) that has three IF statements in it

(without transfers), then there are eight (23) possible ways to take the
path, depending on the disposition of each of its constituent IF state-
ments. VYhen an IF statement has a GO TO in it, a new path is generated.
For the program under study, the number of simple paths are as follows

(listed by source and destination assertion number):

112

SN
N WO DS WN
o e e s 00D B

Uluhw?ml\)

Fortunately many of these paths can be eliminated from consideration,
because they are never taken in actual execution of the program. A simple

path of a program is never taken if and only if:

(1) The antecedent of the VC (verification condition for the
path) 1s FALSE.

(2) All paths that lead to the beginning of the path in question
are never taken. For example, two of the error conditions
tested for by the program check whether the files are not of
the same length (2-4) and whether the corresponding NAME fields
are not equal (2-5). These two conditions can never occur,
because Assertion (2) --ates that they do not happen. The
remaining eight paths are as follows:

1-2 1
2-31
2-51
2-6 1
6-6 1
6-2 1
3-31
5-5 1

Of the remaining paths, two (the last two) are trivial, because the input
and output assertions are identical, with no intervening code. Thus, the
VC looks like P- P, a trivial deduction. The output of path analysis
after the elimination of impossible and trivial paths is shown in Table
VIII-6.

There is much to be learned from the hand-simplifications performed
after posttransduction processing and path analysis. The amount of material
would have been exceedingly long without the simplifications. From this
we conclude that incremental simplification at all stages of the verifica-
tion process is useful in being able to keep the volume of material to
the level of understandability. We may also conclude that the level of

complexity (before simplification) of even such a simple program is large

113

-4

indeed. This is one clue to the complexity of software--and how it is

related to the complexity of program verification.

~
Simplification could work in this example because the program was
written so as to be amenable to such optimization of the verification j
process:
(1) All MOVE statements were written so that truncation would
not be needed.
(2) Most names in the program were chosen to avoid the
necessity of qualification.
(3) The control structure of the program was well-designed
so that superfluous paths would not be taken.
Just as there are techniques for writing understandable, modifiable pro-
grams, there are also techniques for writing verifiable programs.
All the verification conditions (VCyg) are not written because they
are verbose. However, we state what each VC means and why it is true:
f1-2) This V.~ states that the input assertion and
etfects of file opening (initializing the file
puinters to 0) is sufficient to prove the null
(initial) instance of the program invariant.
This is true because no records have been processed. -~

(2-3) This VC states that if n records have been processed
correctly, the effects generating two ends of file
in reading one input record guarantee that the output
assertion is true: n records have been correctly pro-
cessed, where n is the number of records in both
input files. The conclusicn is simply a restatement
of the hypothesis.

(2-5) This VC states that if n records have been processed
correctly, then the effects of generating a SIZE
ERROR in processing the (n+1) record, guarantee
that ei1ther a NAME mismatch or a SIZE ERROR must have
occurred in processing one of the records.

(2-6) This VC states that if n records have been processed
correctly, the effects of correctly processing some
of the (n+1)S! record guarantee that:

(a) n records have been processed correctly

1
(b)Y some of the (n+1)S record has been processed
correctly

(c) 2 elerments of the array have been nrocessed
enrrectly.

(6-6) An induction--if

(a) n records have been processed correctly

(b) some of the (n+1)St record has beer. processed
correctly

(¢) m elements of the array have been processed

correctly
then the effects of processing correctly the (m+1)st
array element guarantee (a), (b), and that (m+l)
elements of the array have been processed correctly.
(6~2) If
(a) n records have been processed correctly

(b) some of the (n+1)St record Las been processed
correctly

(c) 52 elements of the array have been processed
correctly

then the effects of processing the remainder of the
record correctly and writing the output files guaran-
tee that (n+l) records have been processed correctly.

E. Proof of a Verification Condition

We now sketch the proof of the verification condition for path (6-6),
which is presented in Table VIII-7. The complete proof of this verifica-
tion condition is contained in Table VIII-8, and the rules of inference
for the proof are contained in Table VIII-9., Formal background for the
proof can be found in any textbook in mathematical logic (e.g., Reference 25).

The structure of the verification condition is as follows:

(AND
(IMPLIES a
(IMPLIES b
c))).
This is logically equivalent to .

(IMPLIES (AND a b)
c)
Thus, we can assume a (the long formula) and b (- I > 52) in the proof of c.
All conjuncts of c, except the last one ((FORALL Y ...)), follow direcly
from identical conjuncts in the formula a. The important subformula that

must be proved is

115

(FORALL Y (IMPLIES (AND (LTQ 1 Y)
(LTQ Y (SUBTRACT (PLUS I 1) 1)))
(EQ (IF (EQ Y I)
(SELECT HOURS-WORKED-WEEKLY-IN
y»
(SELECT HOURS-WORKED-WEEKLY-OUT
(Y)))
(SELECT HOURS-WORKED-WEEKLY-IN (Y))))).

This formula incorporates the semantics of array assignment. The condi-
tional expression (IF) indicates the place where array assignment has

taken place. To prove this condition, we break the formula into two

cases (written in infix form):

YY(l . Y .1 -1 HOURS-WORKED-WEEKLY-OUT(Y) =
HOURS-WORKED-WEEKLY-IN(Y))
HOURS-WORKED-WEEKL.Y-IN(I} = HOURS-WORKED-WEEKLY-IN(I)

The first case follows from formula a; the second case is an identity.

Thus, the verification condition is proved.

The other verification conditions can be similarly proved, but it

would be tedious to do so here. ~
F. Conclusions

We have shown how the proof of a simple COBOL program can expand
into an enormous mass of material (e.g., the verification conditions are
many times the length of the program itself). Fortunately, much of the
volume can be reduced by simplification at various stages of the proof
nrocess. All the verification conditions--although long--are elementary

proofs.

The simplicity of most proofs, together with the sheer number to
be performed, are fundamental reasons why major research should be con-
tinued in semi-automatic deductive systems. Simplification packages ' 3
and interactive programs to help the programmer direct the machine to 1

a proof should also be part of this research in deductive systems. ']

Table VIII-1
EXAvriPLE PROGRAM
DATA DIVISION.
FILE SECTION.

FD INPUT-MASTER-FILE.
01 INPUT-MASTER-KECORD.
02 PERMANENT-INFOAMATION.
03 NAME-IN PICTURE X(35).
03 SOCIAL-SECURITY-IN PICIURE 9(9).
03 WEEKLY-SALARY-IN PICTURL 999V99.
02 VARYING-IWFORMATION.
03 GROS3-PAY-TU-DATE-IN PICTURE 99999V99.
03 HUUnRS-WORKED-1U-DATE-IN PICTURE 9999.
03 CJRRENT-WEEK-In PICTURE 99.
02 AniAY-IJFORMATION.
03 HOUR3-WORKED-WEEKLY-IWN PICTURE 99 OCCURS 52 TIES.

FD OUTPUT~vASTen-FILE.
01 VUTPUT-MA3S{ua-RECORD.
02 PERMAJENT-INFORMATION.
03 NAME-UJUT PICTURE X(35).
03 SOCIAL-SECURITY-QUT PICTURE 9(9).
03 WERXLY-SALARY-OUT PICTURE 999V99.
02 VARYINS-IWFORMATION.
03 GROSS-PAY-TO-DATE~-OUT PICTURE 99399V99.
03 HOURS-WOHKED-TO-DATE-OUT PICTURE 9999.
03 CURRENT-WE£K-OUT PICTURE 99.
02 AfiAY-INFORMATION.
03 huUKS-WORKED-WEEKLY-OUT PICTURE 99 OCCURS 52 TIMES.

FD TIrE-CARD-FILE.
01 TIwE-CARD.
02 NAME PICTURE X(35).
02 JUURS-WORKED-TAIS-WEEK PICTURE 99.

FD PAYCHECK-FILE.
01 PAYCHECK.
02 NAME PICTURE X(35).
02 AMOUN(PICTUR. 999V99.

WORKING-STORAGE 5uCIION.

77 TalS-WE<KS-PAY PICTURE 999V99.
77 I PICTURm 99.

77 FILE-FLAG PICIURE 9.

PROCEDURE DIVISION.

117

MAIN SuECTION.

OPEN~FILES.
(A33ERL 1).
OPEN INPUT INPUT-#ASTEn-FILE.
OPEN IWdPUT TIME-CARD-FILE.
OPEN QUTPUT QUTPUT-MASTER-FILE.
OPEN QUTPUT PAYCHECK-FILE.

LLOP.
(A33ERT 2)
PerQRu RcAD-INPUT-MASTeR THRU READ-TIME-CARD.
IF fILE-FLAG = 2 GO TO CLEANUP.
IF FILE-FLAG NOL = 0 G0 TO ERROR-ABORT.
PERFQORM PROCESS-RACORDS.
PERFOR“ WRITE-QUTPUT.
GO Ty LOuP.

READ-LdPUT~-vAS LK.
READ INPUI-MAS,ER-r'ILE AT END ADD 1 TO FILE-FLAG.

READ~TIME-CARD.
RiApr TIvE~CAAD-+ILE AT eND ADD 1 TO FILE~FLAG.

wRITe-UJTPUT.
WRITE CUIPUT-MASYLn~-RECORD.
WRITe PAYCHECK.

CLEANUP.
(A33eh:).
CLOSE INPUI-MASTeR-rILE.
CLOsE OUTPUT-MASTuR-FILE.
CLuUSL PAYCHECK-+ILw.
STOP RUN (A3Sedl 3).

cndJR-48GRT.
(AD‘SL"A u) .
SioP RUN (ASJuey b,

rrlCES3IdG SECTIUN.

PRUCES3-RECOKDS.

1r NAME-14 WOT = NAME OF TIWE-CARD GO TO ERROR-ABORT.

OVE NAME-IN [y WAme-0UT.

AOVE SUCIAL-SeCUKITY-IN TO SOCIAL-SECURITY-OUT.

AOVE WEoKLY-3ALARY-IN TO WEEKLY-SALARY-QUT.

COnPUTE THIS-WESKS- PAY ROUNDED = WEEKLY-SALARY-IN *
(HUURS~ WOKKED-THIS-WEEK / 40)
D4 SIZE ERROR GO T t£RROR-ABORT.

COWPUTE GROSS-PAY-TO-DATE-OUT = GROS3-PAY-TO-DATE-IN +
TAlo-AEEK3-PAY.

CoPUTe=t! JURS-WORY ED-Tu-DATE-QUT = HOURS-WORKED-TO~-DATE-IN +
HOUPRS-iittKel- [dIS-WEEK.

118

COvIPUTE CURRENT-WEEK-OUT = CURRENI-WEEK-IN + 1.

PERFORM (IOVE-ARRAY VARYING I FRO# 1 BY 1 UNTIL I > 52
(ASSERT T).

COMPUTE HOURS-WORKED-WEEKLY-QUT (CURRENT-WEEK-OUT) =
HOURS-WORKED-THIS-WEEK.

MOVE CORRLOPONDING TIviE-CARD TO PAYCHECK.

MOVE TonlS-WEEKS-PAY TO AMOUNT.

MOVE-ARRAY.
MOVE HOURS-WOHRKED-WEEKLY-Id (I) TC
HOURS-WORKED-WEEKLY~OUT (I).

ERROR-ABORT.

(A3SSEHR: 5).
STOP RUN (AS3eal 5).

118

Table VIII-2

ASSERTIONS £JIR SAMPLE PROGRAM

(1 (AND [FORALL X (IvPLIES (AND (LTQ 1 X)
(LTQ X INPUT-MASTER-FILE.LENGTH))
(AND (EQ (SELECT HAME-IN.ARRAY (X))
(SELECT (QUAL NAME.ARRAY
TIME-CARD)
(X)))
(GTQ 0 (SELECT CURRENT-WEEK-IN.ARRAY
(X))
(LTQ (SELECT CURRENT-WEEK-IN.ARRAY
(x)
51]
(EQ INPUT-MA3IAR-FILE.LENGTH TIME~-CARD-FILE.LENGTH)))
(2 (AND (AS3arl 7)
(LTQ INPUT-MASTeA-FILE.INDEX INPUT-MASTER-FILE.LENGTH)
(EQ FILE-FLAG 0)
(EQ INPUT-MASIEh-FILE.INDEX TIME~-CARD-FILE.INDEX
QUTPUT-MASIER~FILE .LENGTH PAYCHECK-FILE.LENGTH)))
(3 (AND (AsStrL 7)
(GT INPUT-MASTEA-FILE.INDEX INPUT-MASTER-FILE.LENGTH)
(GT TIME-CAHD~-FILE.INDEX TIME-CARD-FILE.LENGTH)
(EQ FILE-FLAG 2)
(EQ INPUT-MASTER-FILE.LENGTH OUTPUT-MASTER-FILE.LENGTH
PAYCHECK-FILE .LENGTH)))
(4 FALSE)
LS (LXISTS X (AND (EQ X INPUT-mASTER-FILE.INDEX) ~
(OR (GT (TIMES (SELECT WEEKLY~SALARY-IN.ARRAY
(X))
(DIVIDE (SELECT
HOURS-WORKED-THIS-WEEK. ARRAY
(x))
oy
999 .399)
(NEQ (SELECT NAME-IN.ARRAY (X))
(SELECT (QUAL NAME.ARRAY TIME-CARD)
(X]
{6 (AND (A33eal 7)
(EQ (SUBTRACT [WPJT-MASILR-FILE.LENATH 1)
(SUBTRACT [IME-CARD-FILE.INDE. 1)
QUTPUT~-MASTER-FILE.LENGTH PAYCHECK-FILE.LENGTH)
(EQ NAME-IN (QUAL NAWME [IME-CARD)
NAME=-UUT
(QUAL NAME PAYCHECK))
LEQ GROS3-PAY-TO-DATE~OUYT
{PLUS GROS3-PAY-TO-DAIE-IN
(ROUND 999V99 (TIMES Wi<KLY-SALARY-IN
(DIVIDE HOURS-WORKED-THIS-WEEK
40)
(EQ HOURS-WOIKED-TU-DATE-QUT (PLUS HOURS-WORKED-TO-DATE-IN

120

HOURS~WORKED-THIS-WEEK))
(EQ CURREN[-WEEK-OUT (PLUS 1 CURRENT-WEEK-IN))
(LTQ 1 I)
N~ (FORALL Y (IMPLIES (AND (LTQ 1 Y)
(LTQ Y (SUBTRACT I 1)))
(EQ (SELECT HOURS-WORKED-WEEKLY-OUT
(Y))
(SELECT HOURS=-WORKSD~WEEKLY-IN
(Y]
(7
(AND
(A33ERT 1)
(FORALL
X
(I4PLIES
(AND (GTQ 1 X)
(LTQ X OUTPUT-MASTEK-FILE.INDEX))
(AND (EQ (SELECT NAME-IN.ARRAY (X))
(SELECT (QUAL NAME.ARRAY TIME-CARD)
(X))
(SELECT NAME-OUT.ARRAY (X))
(SELECT (QUAL NAME.ARRAY PAYCHECK)
(x)))
[EQ (SELECT GROS3-PAY-TO-DATE-OUT.ARRAY (X))
(PLUS (SELECT GROS3-PAY-TO-DATE-IN.ARRAY (X))
(ROUND 939V99 (TIMES (SELECT
WEEKLY-SALARY-IN.ARRAY
(X))
— (DIVIDE (SELECT
HOURS-WORKED-TAIS-WEEK.ARRAY
(x)
403
(EQ (SELECT :JURS-WORKED-TO-DATE-OUT.ARRAY (X))
(PLUS (SELECT 4OURS-WORKED-TO-DATE-IN.ARRAY
(X))
(SELECT HOURS-WORKED-THIS-WEEK.ARRAY (X)
[EQ (SELECT CURREWI-WEEK-OUT.ARRAY (X))
(PLUS 1 (SELECT CURRENT-WEEK-IN.ARRAY (X]
[FORALL Y (IMPLIES [AND (LTQ 1 Y)
(LTQ Y 52)
(NEQ Y (SELECT
CURRENT-WEEK-OUT .ARRAY
(X1
(EQ (SELECT (SELECT

HOURS-WORKED-WEEKLY-OUT .ARRAY
(x))
()
(SELECT (SELECT
HOURS-WORKED-WEEKLY-IN.ARRAY
(x))

(1]
(EQ (SELECT (SELECT AOURS-WORKED-WEEKLY-OUT.ARRAY
(x))

(SELECT CURRENT-WEEK-OUT.ARRAY (X)))

(SELECT dUUR3-WORKED-TAIS-WEEK.ARRAY (X]

127

r—

Table VIII-3

TRANSDUCED EXAWPLE PROGRAM (PROCEDURE DIVISION)

{ PROCEDUREDIVISIONS

{ SECTION$ «IAIN (PARAGRAPH$ OPEN-FILES (ASSERT 1)

(PARAGRAPHS

(PARAGRAPHS

(PARAGRAPHS$

(PARAGRAPHS

(PARAGRAPHS

{ PARAGRAPHS

(OPENINPUT$ IAPUT-MASTER-FILE)
(OPENIWPUTS TIME-CARD-FILE)
(OPENOUTPUT$ QUTPUT-MASTER-FILE)
(OPENOUTPUT$ PAYCHECK-FILE))
LOOP (AS5uRT 2)
(PERFORM (ONCE$)

(DO$ READ-INPUT-MASTER READ-TIME-CARD)

JIL NIL)
(IF (EQ FILE-FLAG 2)
(GO CLEANUP)
(NEXT))
(IF (NEQ FILE-FLAG 0)
(GO £RROR-ABORT)
(NEXT))
(PERFORi (ONCE$)
(DO%$ PROCESS-RECORDS PROCESS-RECORDS)
NIL NIL)
(PERFORM (ONCES$)
(DO$ WRITE-OUTPUT WRITE-OUTPUT)
NIL NIL)
(GO LOOP))
READ-INPUT-MASTCK
(READ INPUT-MASTER-FILE NIL
(SET$ FILE-FLAG (PLUS FILE-FLAG 1)
N1L)})
READ-TIME-CARD (READ TIME-CARD-FILE NIL
{SET$ FILE-FLAG
{(PLUS FILE-FLAG 1)
NIL)))
WRITE-QUTPUT (WRITE OUTPUT~iASTER-RECORD NIL)
(WRITE PAYCHECK NIL))
CLEANUP (ASS=RT 3)
(CLOSE INPUT-MASIER-FILE)
(CLOSE TI®NE~CARD-FILE)
{CLOSE JDUTPUT-MASIER-FILE)
(CLOSE PAYCHFCK-FILE)
(SIOP (ASSERT 3)))
ERROR-ABORT (ASSERT 4)
(STOP {ASS®RT b)

{ SECTIOW$ PROCES3ING (PARAGRAPH$ PROCESS-RECORDS

(IF (NEQ NAME-IN (QUAL NAME
TIME~CARD))
(GO ERROR-ABORT)
(NEXT))
(SET$ NAME-OQUT NAME-IN NIL)
(SET$ SOCIAL-SECURITY-OUT

123

SOCIAL-SECURITY-IN NIL)
(SET$ WEEKLY~SALARY-QUT
WEEKLY~SALARY-IN NIL)
(SETROUNDED$ THIS~WEEKS-PAY
(TIMES WEEKLY-SALARY~IN
(DIVIDE
HYOURS~-WORKED-THI3-WEEK 40))
(GO ERRQR-ABORT))
-(SET$ GROSS-PAY-TO-DATE-OQUT
(PLUS GROSS-PAY-TO~DATE-IN
THIS-WEEKS~PAY)
NIL)
(SET$ HOURS-WORKED-TO-DATE-OUT
{PLUS dJOURS-WORKED-TO-DATE-IN
HOURS-WORKED~THIS~-WEEK)
NIL)
(SET$ CURRENT-WEEK-OUT
(PLUS 1 CURRENT-WEEK-IN)
NIL)
(PERFORM VARYING (DO$ MOVE-ARRAY
MOVE~ARRAY)
(I 11 (CT I 52))
(ASSERT 6))
{SET$ (SELECT
HOURS-WORKED-WREKLY-OUT
(CURRENT-WEEK))
HOURS-WORKED-THIS~WEEK NIL)
(IOVECORRESPONDINGS TIME-CARD
PAYCHECK)
(SET$ AMOUNT THIS-WEEKS-PAY NIL))
(PARAGRAPH$ MOVE-ARRAY (SET$ (SELECT
HOURS-WORKED-WREEKLY-OUT
(1))
(SELECT dOURS-WORKED-WEEKLY-IN
(I
NIL))
(PARAGRAPH$ ERRUR-ABORI (AS3ERT %)
(STJP (ASSERT 51)

124

Table VI[I-4

THANSDUCED EXAnPLE PROGRAM (DATA DIVISION)

RS o

{ DATADIVISIONS
[FILESECTION$ [FD INPUT-mASTER-FILE (((1 INPUT-4ASTER-RECORD)
(((2 PERMANENT-INFORMATION)
((3 NAME-IN X%(35%))
(3 SOCIAL-SECURITY-IN 94(9%))
(3 WEEKLY-SALARY-IN 939V99)))
((2 VARYING-INFORHATION)
((3 GROSS-PAY-TO-DATE-IN 99999V99)
(3 HOURS-WORKED-TO-DATE-IN 9999)
(3 CURRENT-WEEK-IN 99)))
((2 ARRAY-IJFORMATION)
((3 HOURS-WORKED-WEEKLY-IN 99 52]
(FD OUTPUT-MASTer-FILE (((1 OUTPUT-#ASTER-RECORD)
(((2 PERMANENT-INFORJATION)
((3 NAME-OUT X%(35%))
(3 30CIAL-SECURITY-OUT 9%(9%5))
(3 WEEKLY-SALARY-OUT 999V99)))
((2 VARYING-INFORHATION)
((3 GRU33-PAY-TO-DATE-OUT 99999V93)
(3 dUURS-WORKED-TO-DATE 9999)
(3 CURRENI-WEEK-OUT 99)))
((2 AARAY-INFORMATION)
({3 HOURS-WORKED-WEEKLY-0JT 33 52)
{FD TIME-CARD-FILE (((1 [I#E-CARD)
((2 NAME X$(35%))
(2 HOURS-WORKED-THIS-WEEK 93]
(FD PAYCAECK-FILE (((1 PAYCHECK)
((2 NALE X%(35%))
(2 AMOUNL 939V99]
(WORKINGSTOHAGES:CTIONS (77 THIS~WEEKS-PAY 999V99)
(77 1 939)
(77 FILE-FLAG 9)))

125

Table VIII-5

EXAnPLE PROGRAM AFTER POSTTRANSDUCTION PROCESSING
AND SIMPLIFICATION —

((A35zhT 1)
(A3SIGN INPUI-MASTER-FILE.INDEX Q)
(ASSIGN TIE-CARD-FILE.INDEX 0)
(A3SIGN OUTPUT-MASTER-FILE.INDEX 0)
(ASSIGN PAYCHECK-FILE.INDEX 0)
(ASSERT 2)
{BLICK (ASSIGN IWPUT-HMASTER-FILE.INDEX (PLUS INPUT-MASTER-FILE.INDEX
1))
(IF (GT INPUT-MASTER-FILE.INDEX INPUT-MASTER-FILE.LENGTH)
(ASSIGN FILE-FLAG (PLUS FILE-FLAG 1))
(NEXT))
(ALSIGN WAME-IN (SELECT NAsE-IN.ARRAY (INPUT-MASTES-FILE.INDEX)
))
(AS3IGN SOCIAL-SwCURITY-IN (SELECT SOCIAL-SECURITY-IN.ARRAY
(INPUT-MASTER-FILE.INDEX)))
(AS3IGN WEEKLY-SALARY-IN (SELECT WEEKLY-SALARY-IN.ARRAY
(INPJUT-MASTER-FILE.INDEX)))
(A3SSIGN GROSS-PAY-TU-DATE-IN (SELECT
GROSS-PAY-TO-DATE-IN.ARRAY
(INPUT-MASTER-FILE.INDEX))
)
(A3S3IGN HOURS~WORKED-TO-DATE-IN (SELECT
HOURS~-WORKED-TO-DATE~IN.ARRAY
(
INPUT-HASTEN=FILE . INDEX)))
{ASSIGN CURRENT-WEZK-IN (SELECT CURRENT-WEEK-IW.ARRAY
(INPUT-MASTER-FILE.INDEX)))
(AS3T13d HOURS-WORKED-WEEKLY-IWN (SELECT
HOURS-WORKED~WEEKLY-IN.ARRAY
(INPUT-MASTER-FILE. INDEX
WM
(ASSISN TIME-CARD-FILE.INDEX (PLUS TIME-CARD-FILE.INDEX 1))
(I¥ (3T TIME-CARD-FILE.INDEX TIME~-CARD-FILE.LENGTH)
(A3SIGN FILE-FLAG (PLUS FILE-FLAG 1))
(NEXT))
(A33IGN (QUAL NAME [InE-CARD)
(SELECT (QUAL NAME.ARRAY TIME-CARD)
(TIME-CARD-FILE.INDEX)))
(A33Ison HOURS-WORKED-THIS-WEEK
{SELECT AUURS-WORKED-THIS-WEEK.ARRAY (
TIME-CARD-FILE.INDEX)

(IF (EJ FILE-FLAG 2)
(GO (CLEANUP w=AIN))
(NEXT))

(IF (Hbo FILY-FLAG 0)
"GG (EnIR=-ACORT MAIN)Y)
(N4T))

—_—

{BLJUCK (IF (NEQ NAME-IN (QUAL NAME TIME-CARD))
(GU (ERROR-ABORT PROCESSING))
(NEXT))
(Aa3IGN JAME~OUT NAME-IN)
(ASSIGN SOCIAL-SECURITY-OUT SOCIAL-SECURITY-IN)
(ASSIOW WEEKLY-SALARY-OUT WESKLY-SALARY-IN)
{1F (GT [A8S (ROUJU THIS~-WEEKS-PAY (TIMES WEEKLY-SALARY-IN %
(DIVIDE
HOURS~ WORKED- THIS-WEEK 40]
999.99)
(GO (ERROR-ABORT PROCESSING))
{A3S3SIGN THI3-WELKS-PAY (ROUND TAIS~WEEKS~PAY
(TIMES WEEKLY~SALARY-IN
(DIVIDE
HOURS-WORKRED-THIS~-WEEK U40]
(A33IGN JROS3~PAY-TU-DATE-OUT (PLUS GROSS-PAY-TO~DATZ-IN
THIS~-WEEKS-PAY))
(A3SSIGH HUURS-WORKED-TO-DATe-0UT (PLUS HOURS-WORKED-{O-DATE~IN
HOURS-WORKED-TAIS-WEEK))
(ASSIGN CURRENI~WEEK~-OUT (PLuS 1 CURRENT-WEEK-IN))
[BLOCK (A33IGN I 1)
(ASS&ri 6)
(IF (3T I 52)
(ENDPERFOR#)
(NEXT))
(ASSIGN (SHLECT AUURS-WORKED-WEEKLY-OUT (I))
(3ELECT 1 oURS-WCRXED-WEEKLY-IN (I)))
(ASSIGN I (PLUS I 1))
(LOUPASSLnl (ASScr) 6]
(ASSIGN (SELECT ruUnS-wURK&D~wEEKLY~-QUT {(CJRRENT-WEEK))
dOURS-WORKED-TAIS-WEEK)
(ASSIGN (QJUAL WAME PAYCHECZK)
(QUAL NAME TInE-CARD)!
(ASSIGON AMOUNT THIS-WEEK3-PAY))
(BLOCK (A3SIad WTPUT-MASTEr~FILE. INDEX (PLUS
OUTPUT-HASTHRR-FILE.INDEX 1))
{ASSISH OUIPUT-HASILR-FILE.LENGIH (PLUS
QUTPUT-ASTER-FILE.LFTITH 1))
(ASSIGN (SELECT WAME~OUT.ARRAY (OUTPUT-MASTER-FILE.INDEX))
NAME-QUT)
(ASSIGN (3ELECT SOCIAL~SKCURITY-OQUT.ARAAY
OUTPUT~MASTLR-FILE.INDER))
SOCIAL-SsCURITY-0UT)
(A3SIGN (3ELECT WEEKLY~SALARY-OuUT.ARRAY (
OUTPUT-MASTER-FILE. INDEX))
WEEKLY-SALARY-QUT)
(ASSIGN (SELECT GROSS-PAY~TJI-DATE-QUT.ARRAY (
QUTPUT-JASTER-FILE. INDEX))
GROS3-PAY-TU-DATE~OUT)
{ASSIGN (SELECT dOURS-WORKED~1O~DATE-OUT.ARRAY {
QUTPUT-MA3ILER-FILE.TADEX))
HOURS - WORKED-T0-DATE-OUT)
(AS3IsN (3SLLECT CURREWNT-WEEK~OUT.ARKAY (

127

ODUTPUT-MASY e R=-FILE . INDEX))
CURRLN T~ wEEK~0UT)
(ASSTSN (SeLECT duURS-WORKED~-WEEKLY-QUL .ARRAY (
QUTPUT-MASTeR~-FILE.INDEX))
HoJRS-WORKED-WEEKLY-OUT)
(A3315N PAYCHECK~FILE.INDEX (PLUS PAYCHECK-FILE.INDEX 1))
(ASSIGN PAYCHECK~FILE.LENGTH (PLUS PAYCHECK-FILE.LENGTH 1))
{ASSIGN (SELECT (QUAL NAME.ARRAY PAYCHECK)
(PAYCHECK-FILE.INDEX))
(QUAL NAME PAYCHECK))
(ASSIGN (SELECT AMOUNT.ARRAY (PAYCHECK-FILE.INDEX))
AMOUNL))
(G0 (LuvP @A)
{ASSLIT 3
JSUUP (ASSen. 3
CASSen. 4)
CSTOP (AS3ERT 4)))

128

(ASSIGN

(ASSIGN

(ASSIGN
(IF (GT
(ASSIGN
(ASSIGN

{ASSIGN

(ASSIGN

(ASSIGN
(ASSIGN
(ASSIGN

(A3SIGN
(ASSIGN
(IF (GT
(A3SIGN
(AS3ERT
((ASSERT
(IF (GT

(ASSIGN
(ASSIGN
(ASSIGN

Table VIII-6

o SIGNIFICANT PATHS FOR THE EXAMPLE PROGRAM

((ASSERT 2)

(ASSIGN PAYCHECK-FILE.INDEX 0)

(ASSIGN QUTPUT-MASTER-FILE.INDEX 0)

(ASSIGN TIME-CARD~FILE.INDEX 0)

(ASSIGN INPUT-MASTER-FILE.INDEX 0)

(ASSERT 1))

{ (ASSERT 3)

(IF (EQ FILE-FLAG 2))

HOURS-WORKED-THIS-WEEK (SELECT HOURS-WORKED-THIS-WEFRK.ARRAY
(TIME-CARD-FILE. INDEX)))
{QUAL NAME TIME-CARD)
(SELECT (QUAL NAME.ARRAY TIME-CARD)
(TIME-CARD-FILE.INDEX)))
FILE-FLAG (PLUS FILE-FLAG 1))
TIvE-CARD-FILE.INDEX TIME-CARD-FILE.LENGTH))
TIME-CARD-FILE.INDEX (PLUS TIME-CARD-FILE.INDEX 1))
HOURS-WORKED-WEEKLY-IN (SELECT HOURS-WORKED-WEEKLY~IN.ARPAY
(INPUT-MASTER-FILE.INDEX)))
CURRENT-WEEK-IN (SELECT CURRENT-WEEK-IN.ARRAY (
INPIT-i#STER-FILE.INDEX)))
HOURS~WORKED-TO-DATE-IN (SELECT
HOURS-WORKED-TO-DATE-IN.ARRAY
(INPUT-MASTER~FILE.INDEX)))
GROSS~PAY-TO-DATE-IN (SELECT GROSS~-PAY-TO-DATE-IN.ARRAY
(INPUT-MASTER-FILE.INDEX)))
WEEKLY-SALARY-IJ (SELECT WEEKL7-SALARY-IN.ARRAY (
INPUT-MASTER-FILE.INDEX)))
SOCIAL-SECURITY-IN (SELECT SOCIAL-SECURITY-IN.ARRAY
(INPUT-MASTER-FILE.INDEX)))
NAME-IN (SELECT NAME-IN.ARRAY (INPUT-MASTER-FILE.INDEX)))
FILE-FLAG (PLUS FILE-FLA. 1))
INPUT-M4ASTER-FILE. INDEX INPUT-MASTER-FILE.LENGTH))
INPUT-MASTER-FILE . INDEX (PLUS INPUT-MASTER-FILE.INDEX 1))
2))
5)
[ABS (ROUND THIS-WEEKS~PAY (TIMES WEEXLY-SALARY-IN
(DIVIDE
HOURS~WORKED~THIS-WEEK 40)
999.99))
WEEKLY-3ALARY-OUT WEEKLY-SALARY-IN)
SOCIAL-SECURITY-OUT SOCIAL-SECURITY-IN)
NAME-OUT NAME-I{)

[IF (NOI (NEQ NAME-IN (QUAL NAME TIME-CARD]
(IF (NOP (NEQ FILE-FLAG 0)))
(IF (NOT (EQ FILE-FLAG 2)))

(ASSIGN

(ASSIGN

HdQURS-WORKED~THIS-WEEK (SELECT AOURS~WORKED-THIS-WEEK.ARRAY
(TIME-CARD~FILE.INDEX)))
(QUAL NAME TIME-CARD)

129

{ SELECT (QUAL NAME.ARRAY TIME-CARD)
(TIME-CARD-FILE.INDEX)))
(IF (NOT {GT TIME-CARD-FILE.INDEX TIME-CARD-FILE.LENGTH)))
(ASSIGN TIME-CARD-FILE.INDEX (PLUS TIME-CARD-FILE.INDEX 1))
(ASSIGN HUURS-WORKED-WEEKLY-IN (SELECT HOURS-WORKED-WEEKLY-IN.ARRAY
(INPUT-MASTER-FILE.INDEX)))
(ASSIGN CURRENT-WEEK-IN (SELECT CURRENT-WEEK-IN.ARRAY (
INPUT-HMASTER-FILE.INDEX)))
(ASSIGN HOURS-WORKED-TO-DATE-IN (SELECT
HOURS-WORKED-TO~DATE-IN.ARRAY
(INPUT-MASTER-FILE.INDEX)))
(ASSIGN 3ROS3-PAY-TO-DATE-IN (SELECT GROSS-PAY~-TO-DATE-IN.ARRAY
(INPUT-MASTER-FILE.INDEX)))
(ASSIGN WEEKLY-SALARY-IN (SELECT WEEKLY~SALARY-IN.ARRAY (
INPUT-MASTER-FILE.INDEX)))
{A33IGN SOCIAL-SECURITY-IN (SELECT SOCIAL-SECURITY-IN.ARRAY
(INPUT-MASTER-FILE.INDEX)))
(AS3IGN NAME-IN (SELECT NAME-IN.ARRAY (INPUT-MASTER-FILE.INDEX)))
(IF (NOT (5T INPUT-MASTER-FILE.INDEX INPUT-MASTER-FILE.LENGTH)))
{ASSIGN INPUT-MASTuA-FILE.INDEX (PLUS INPUT-MASTER-FILE.INDEX 1))
CASSERT 2V
((AS3ERT 6,
(A3SIGN I 1)
{&35IGN CURRENT-WEEK-OUT (PLUS 1 CURRENT-WEEK-IN))
{ASSLUN HOURS-WORKED-TO-DATE-OUT (PLUS HOURS-WORKED-TO-DATE-IN
HOURS-WORKED-THIS-WEEK))
{A35I6N GRO3S-PAY-TC-DATL-OUT (PLUS GROSS-PAY-TO-DATE-IN
THIS-WEEKS-PAY))
[ASSIGUN THIS-WEEKS-PAY (ROUND THIS-WEEKS-PAY
(TIMES WEEKLY-SALARY-IN
(DIVIDE HOURS-WORKED-THIS-WEEK

o

40]
(IF {NOI (37 [ABS (ROUND THIS-WEEKS-PAY (TIMES WEEKLY-SALARY-IN
(DIVIDE
HOURS-WORKED-THIS-WEEK 40]
999.99)))
CA55T N WERKLY -SALARY-OUT WEEKLY-SALARY-IN)

(ASSIGN SOUTAL-SECURITY-J7T SOCIAL=-SECURITY-IN)
(A53IGH JAME-OUT NAME-IN)
[IF (NOT (NEQ NAME-IN /QUAL NAME TIME-CARD]
(1 (NOT (NEQ FILE-FLAG 7))
IF (MOT (EQ “ILE-FLAG 2)))
{ASSISN dOURS-WORKED-THIS-WEEK (SELECT HOURS-WORKED-THIS-WEEK.ARRAY
{TIME-CARD-FILE.INDEX)))
(ASSIGN (QUAL NAME TIME-CARD)
{3KI.ECT (QUAL NAME.ARRAY TIME-CARD)
(TIME-CARD-FILE.INDEX)))
(1¥ iNul (GT TIME-CARD-FILE.INDEX TIME-CARD-FILE.LENGTH)))
CAUSISN TIMC-CARD-FILE. INDEX (PLUS TIME-CARD-FILE.INDEX 1))
CASSIGN HOURS-WORKED-WEEKLY-IN (SELECT HOURS-WORKED-WEEKLY-IN.ARRAY
(INPUT-MASTER-FILE.INDEX)))
(4 SISN CURRENT-WEEK-IN (SELECT CURRENT-WEEK-IN.ARRAY (
INPUT-MASTER-FILE.INDEX)))

130

(AS3IGN HOURS-WORKED-TO-DATE-IN (SELECT
HOURS-WORKED-T0N-DATE~IN.ARRAY
(INPUT-MASTER-FILE.INDEX)))
(ASSISN GROSS-PAY-TJ-DATE-IN (3ELECT SROSS-PAY-TO-DATE-IN.ARRAY
(INPUT=-ASTER-FILE.INDEX)))
(AS3IGN WwEEKLY-SALARY-IN (SELECT WEEKLY-SALARY-IN.ARRAY (
INPUT~MASTER-FILE.INDEX)))
(A3SIGH SOCIAL-SECURITY-IN (SELECT SOCIAL-SECURITY-IN.ARRAY
(INPUT-MASTER-FILE.INDEX)))
(ASSISN WAME-IN (SELECT NAME-IN.ARRAY (INPUT-MASTZR-FILE.INDEX)))
(IF (NOT (GT IJPUT-MASTER-FILE.INDEX INPUT-MASTER-FILE.LENGTH)))
(A33ISN INPUT-MASTER-FILE.INDEX (PLUS INPUT-MASTER-FILE.INDEY 1))
(ASSERT 2))
((ASSERT %)
(ASSIGN I (PLUS I 1))
(ASSIGN (SELECT HOURS-WORKED-WEEKLY-OUT (1I))
(SELECT JOURS-WORKED-WEEKLY-IN (I)))
(IF (NOT (GT I 32)))
(ASSERT 6))
((ASSERT 2)
(ASSIGN (SELECT AJOUNT.ARRAY (PAYCHECK-FILE.INDEX))
(QUAL AMOUNT PAYCHECK))
(ASSIGN (3ELECT (QUAL NAME.ARRAY PAYCHECK)
(PAYCHECK-FILE.INDEX))
(QUAL NAME PAYCHECK))
PAYCHECK-FILE.LENGTH (PLUS PAYCHECK-FILE.LENGTH 1))
PAYCHECK-FILE.INDEX (PLUS PAYCHECK~FILE.INDEX 1))
{SELECT HOURS-WOKKED-WEEKLY-OUT.ARRAY (
OUTPUT-MASTER-FILE.INDEX))
40URS-WORKED-WEEKLY-0UT)
(A33I3N (SZLECT CURRENT-WEEK-OUT.ARRAY (OUTPUT-MASTER-FILE.INDEX))
CURRENT-WEEK-OUT)
(ASSIGN (3:iLECT AJUR3-WORKED-TO-DATE-CUT.ARRAY ¢
OUTPUT-MASTEK-FILE.INDEX))
HOURS-WURKED=-TO~DATE-OUT)
(AS3SIGN (SELECT 3ROS3-PAY-TJ-DATE-OUT.ARRAY (
OUTPUT-MASTER-FILE.INDEX))
GROSS-PAY~-TO-DATE-QUT)
(A3SSIGN (SELECT WEEKLY-SALARY-OUT.ARRAY (OUTPUT-#ASTER-FILE.INDEX))
AEEKLY-SALARY-0UT)
(A3SIGN (S:iLECT 30CIAL-SECURITY-OUT.ARRAY (OUTPUT-MAITER-FILE.INDEX))
SOCIAL-SECURITY-OUT)
{A33I3N (SELECT NAMZ-OUT.ARRAY (OUTPUT-iIASTER-FILE.INDEX))
NAME=JUT)
(ASSIGN OUTPUT-MASIcR-FILE.LENGTH (PLUS OUTPUT-MASTER-rFILE.LENGTH 1))
(ASSIGN OJTPUT-MASTER-FILE.INDEX (PLUS OUTPUT-MASTSR-FILE.INDEX 1))
(AS3ISN AHMOUNI TAIS-WEEKS3-PAY)
(A3SSIGN (QUAL NAME PAYCHECK)
(QUAL NAME TIME-CARD))
(AS3IGN (SELECT HOURS-WORKED-WEEXLY-OUT (CURRENT-WEEK))
HOURS-WORKED-THIS-WEEK)
(IF (GT I 52))
{ASSERI 6))

[97}
(72}

Uy W
v, W
D QW
zZz =

~ o~ o~
> > 3>

131

. A

Table VIII-7

VERIFICATION CONDITION FOR PATH (6-6) OF EXAMPLE PROGRAM

(IMPLIES
[AND
(FORALL X (IMPLIES (AND (LTQ 1 X)
(LTG X INPUT-MASTER-FILE.LENGTH))
(AND (EQ (SELECT NAMZ-IN.ARRAY (X))
(SELECT (QUAL NAME.ARRAY TIME-CARD)
(xXyn
(LTQ 0 (SELECT CURRENT-WEEK-IN.ARRAY
(XN
(LTQ (SELECT CURRENT-WEEK-IN.ARRAY
(X))
511
(EQ INPUT-MASTEH-FILE.LENSTH TIME~CARD-FILE.LENGTH)
{FoRALL
X
(IePLIES
CAND LT2 1 X)
Lid X DUTPUT-MASTSR-FILE. INDEX))
(ANU (EQ {SILECT NAHE-IN.ARRAY (X))
(SELECT (QUAL NAME.ARRAY TIME-CARD)
(X0
"SELECT NAME-OUT.ARRAY (X))
(SELECT (QUAL NAME.ARRAY PAYCHECK)
(X
[EQ (SELECT GROSS-PAY-TO-DATE~OUT.ARRAY (X))
(PLUS (SELECT 3ROSS~-PAY-TO-DATE-IN.ARRAY (X))
(ROUND 999v99 (TIMES (SELECT
WEEKLY-SALARY-IN.ARRAY
(X))
(DIVIDE (SELECT
HOURS-WORKED-THIS-WEEK.ARRAY
(x))
407
LECT AOURS-WORKED-TO-DATE~QUT.ARRAY (X))
US (SELECT ilOURS-WORKED-TO-DATE-IN.ARRAY (X))
(SELECT HOURS-WORKED-THIS-WEEK.ARRAY (X]
[EQ (SKLECT CURRENT-WEEK-OUT.ARRAY (X))
(PLUS 1 (SELECT CURRENT-WEEK~IN.ARRAY (X]
[FORALL ¢ ' IMPLIES [AND (GTQ 1 Y)
(LTQ Y 52)
(NEQ Y (SELECT
CURRENT-WEEX-~OUT.ARRAY
(x]
(EQ (SELECT (SELECT
HOURS-WORKED-WEEKLY-OUT .ARRAY
(X))

LEQ (SE
(PL

(Y))
(SELECT (SELECT

132

HOURS-WORKED-WEEKLY~IN.ARRAY
(X))
(Y]
(EQ (SELECT (SELECT HOURS-WORKED-WEEKLY-OUT.ARRAY
(X))
(SELECT CURRENT-WEEK-OUT.ARRAY (X)))
(SELECT HOURS-WORKED-THIS-WEEK.ARRAY (X]
(EQ (SUBTRACT INPUT-MASTER-FILE.LENGTH 1)
(SUBTRACT TIME-CARD-FILE.INDEX 1)
OUTPUT-MASTER-FILE.LENGTH PAYCHECK-FILE.LENGTH)
(EQ NAME-IN (QUAL NAME TIME-CARD)
NAME-OUT
(QUAL NAME PAYCHECK))
{EQ GROSS~-PAY-TO-DATE~OUT (PLUS GROSS-PAY-TO-DATE-IN
(ROUND 999V99
(TIMES WESKLY-SALARY-IN
(DIVIDE
5 . HOURS-WORKED-THIS-WEEK 40]
o (EQ AL JRS-WORKED-TO-DATE-OUT (PLUS HOURS-WORKED-TO-DATE-IN
HOURS-WORKED-THIS~WEEK))
(EQ CURRENT-WEEK-OUT (PLUS 1 CURRENT-WEEK-IN))
(LTQ 1 1)
(FORALL Y (IMPLIES (AND (LTQ 1 Y)
(LTQ Y (SUBTRACT I 1)))
I (EQ (SELECT HOURS-WORKED-WEEXLY-OUT (Y))
(SELECT HOURS-WORKED-WEEKLY-IN (Y]
[IMPLIES
(NOT (GT I 52))
N— (AND
[FORALL X (IMPLIES (AND (LTQ 1 X)
(LTQ X INPUT-MASTER-FILE.LENGTH))
(AND (EQ (SELECT NAME-IN.ARRAY (X))
(SELECT (QUAL NAME.ARRAY TIME-CARD)
xm
(LTQ 0 (SELECT CURRENT-WEEK-IN.ARRAY
(X))
(LTQ (SELECT CURRENT-WEEK-IN.ARRAY
(X))
51]
(EQ INPUT-MASTER-FILE.LENGTH TIME-CARD-FILE.LENGTH)
{ FORALL
X
(IMPLIES
(AND (LTQ 1 X)
(LTQ X OUTPUT-MASTER-FILE.INDEX))
(AND (EQ (SELECT NAME-IN.ARRAY (X))
(SELECT (QUAL NAME.ARRAY TIME-CARD)
(X))
(SELECT NAME-OUT.ARRAY (X))
(SELECT (QUAL NAME.ARRAY PAYCHECK)
(X))
(EQ (SELECT GROSS-PAY-TO-DATE-OUT.ARRAY (X))
(PLUS (SELECT GROSS-PAY~TO~DATE-IN.ARRAY (X))

133

(ROUND 999V99 (TIMES (SELECT
WEEKLY-SALARY-IN.ARRAY
(xn
(DIVIDE (SELECT
HOURS-WORKED-THIS-WEEK.ARRAY
(X))
uo)
[EQ (SELECT HOURS-WORKED-TO-DATE-OUT.ARRAY (X))
(PLUS (SELECT HOURS-WORKED-TO-DATE-IN.ARRAY
(X))
(SELECT HOURS-WORKED-THIS-WEEK.ARRAY (X)
[EQ (SULECT CURRENT-WEEK-OUT.ARRAY (X))
(PLUS 1 (SELECT CURRENT-WEEK-IM.ARRAY (X]
(FORALL Y (IMPLIES [AND (GTQ 1 Y)
(LTQ Y 52)
(NEQ Y (SELECT
CURRENT-WEEK~OUT.ARRAY
(x]
(EQ (SELECT (SELECT
HOURS-WORKED-WEEKLY-OUT.ARRAY
(X))
(Y))
{SELECT {SELECT
HOURS-WORKED-WEEKLY-IN,ARRAY
(x))
(Y]
(EQ (SELECT (SELECT HOURS-WORKED-WEEKLY~OUT.ARRAY
(x))
(SELECT CURRENT-WEEK-OUT.ARRAY (X))
(SELECT HOURS-WORKED-THIS-WEEK.ARRAY (X]
(EQ (SUBTRACT INPUT-MAZTER-FILE.LENGTH 1)
(SUBTRACT TIME-CARD~FILE.INDEX 1)
OUTPUT-MASTAR-FILE .LENGTH P \rCAECK-FILE.LENGTH)
(EQ NAME-IN (QUAL NAME TIME-CAFD)
NAME-QUT
(QUAL NAME PAYCHECK))
[EQ GROSS-PAY-TO-DATE-OUT (PLUS GROSS-PAY-TO-DATE-IN
(ROUND 999V99
(TIMES WEEKLY-SALARY-IN
(DIVIDE
HOURS-WORKEU~THIS-WEEK 40]
(EQ HOURS-WORKED-TO-DATE-OUT (PLUS HOURS-WORKED-TO-DATE-IN
HOURS-WORKED-THIS-WEEK))
(EQ CURRENT-WEEK-OUT (PLUS 1 CURRENT-WEEK-IN))

(LTQ 1 I)
(FORALL Y (IMPLIES (AND (LTQ 1 Y)
(LTQ Y 1))
(EQ (SELECT HCURS-WORKED-WEEKLY-IN (Y))
(IF (EQ Y I)

(SELECT HOURS-WORKED-WEEKLY-IN
(n

(SELECT HOURS-WORKED-WEEXLY-OUT
(YD

134

Table VIII-8

PROOF OF VERIFICATIOW CONDITION (6-5) OF EXAMPLE PROGRAM

(1
(AND
[FORALL X (I«PLIES (AND (LTQ 1 X)
(LTQ X INPUT-MA3STER-FILE.LENGTH))
(AND (EQ (SELECT NAME-IN.ARRAY (X))
(SELECT (QUAL NAME.ARRAY TIME-CARL)
(x)))
(LTQ 0 (SELECT CURRENT-WEEK~IN.ARRAY
(X))
(LTQ (SELECT CURRENT-WEEK-IN.ARRAY

(x))
51]
(EQ INPUT-MASIER-FILE.LENGTH TIME-CARD-FILE.LEHGTH)
[FORALL
X
(InPLIES

(AND (LTQ 1 X)
(LTQ X OUTPUT-MASTER-FILE.INDEX))
(AND (EQ (SELECT NAME-IN.ARRAY (X))
(SELECT (QUAL NAME.ARRAY TIME-CARD)
(X))
(SELECT NAME-OUT.ARRAY (X))
(SELECT (QUAL NAME.ARRAY PAYCHECK)
N— (x)))
(EQ (SELECT GROSS-PAY-TJU-DATE-QUT.ARRAY (X))
(PLUS (SELECT GROSS-PAY-TO-DATE-IN.ARRAY (X))
(ROUND 993V99 (TIMES (SELECT
WEEKLY-SALARY-IN.ARRAY
(X))
(DIVIDE (SELECT
40URS-WORKED-THIS-WEEK.ARRAY
(X))
401
[EQ (SELECT H4OURS-WORKED-TO-DATE-OUT.ARRAY (X))
(PLUS (SELECT HOURS-WORKED-TO-DATE-IN.ARRAY
(X))
{SELECT dUURS-WORKED-THI3-WEEK.ARRAY (X)
(EQ (SSLECT CURRENI-WEEK-OUT.ARRAY (X))
(PLUS 1 (SSLECT CURKENT-WEEK-IN.ARRAY (X]
[FORALL Y (IMPLIES [AND (GTQ 1 Y)
(L1Q Y 32)
(NEQ Y (SELECT
CURRENT-WEEK-OUT.ARRAY
(x]
(EQ (SELECT (SELECT
dOURS-WORKEN-WEEXLY-OUT.ARRAY
(X))

-

(Y»

Le

L3

L9

L1

{ SELECT (SELECT
HOURS-WORKED-WEEKLY-IN.ARRAY
(X))
(Y] ~
(EQ (SELECT (SELECT dUURS~WORKED-WEEKLY-OUT.ARKAY
(X))
{SELECT CURRENT-WEEK-OUT.ARRAY (X)))
(SELECT HOURS-WORKED-THIS-WEEK.ARRAY (X]
(EQ (SUBIRACT INPUT-MASTEH-FILE.LENGTH 1)
(SUBTRACT TIME-CARD-FILE.INDEX 1)
QUTPUT-MASTER-FILE.LENGTH PAYCHECK~FILE.LENGTH)
(EQ NAME-IN (QUAL NAME TI.E-CARD)
NAME-OUT
(QUAL NAME PAYCHECK))
TEQ JROS3-PAY-TO-DATE-0UT (PLUS GROSS-PAY-TO-DATE-IN
{ROUND 999V99
(TIMES WEEKLY-SALARY-IN
(DIVIDE
HOURS~WORKED-THIS-WEEK 40]
(EQ HOUR3-WIrRKED-[2-DATE-DUT (PLUS HIURS-WORKED-TO-DATE-IN
HOURS~WORKED-THIS~WEEK))
(£Q CURRENT-WEEK-OJT (PLUS i CURRENT-WEEK-IN))
(LTQ 1 1)
(FORALL Y {ToPLIES {AND (LTQ 1Y)
(LTQ Y (SUBTRACT I 1))
(EQ (SELECT HOURS-WORKED-WEEKLY-OUT (Y))
(SELECT HOURS-WORKED-WEEKLY~IN (Y]
(FORALL ¥ (Liu LISS (AND (LT 1 Y)
(LTQ Y (SUBTRACT I 1))) ~
(EQ (SELECT HJUURS-WORKED-WEEKLY-OUT (Y))
(SELECT HOURS-WORKED-WEEKLY-IN (Y]
(IAPLIES (AND (LTQ 1 Y)
(LTQ Y (SUBTRACT I 1))
{EQ (SELECT HOUR3-WORKED-WEEKLY-OUT (Y))
(SELECT HOURS~WORKED~-WEEKLY-IN (Y]
(AND (LTQ 't ¥)
(LTQ Y (SUBTRACT I 1]
(EQ (SELECT AUURS~WORKED~WEEKLY-OUT (Y))
(SELECT HOURS-WORKED~WERKLY-IN (Y)
(T4PLIES (NOT (EQ Y I))
(EQ (SELECT HOURS-WORKED-WEEKLY-OUT (Y))
(SELECT HUURS~-WORKED-WERKLY-IN (Y)
(EQ (SELECT dJOURS-WURKED-WEEKLY-IN (Y))
(SELECT HOURS-WORKED-WEEKLY-IN (Y]
(IJPLIES (EQ Y I)
(EQ (SELECT HOUR3-WORKED-WEEKLY-IN (Y))
{ SELECT HOURS-WORKED-WEEKLY-IN (Y]
(8Q (3cLEC!l H4UURS-WOKKED-WEEKLY-IN {Y))
(IF (EQ ¥ I)
{Sk.ECT 4)URS-WORKED-WEEKLY-IN (Y))
(SELECT HOURS-WORKED-WEEXKLY-QUT (Y)
CiePLIES (AND (LTG 1 Y)
(LTQ Y (SUBTRACT I 1))

136

(1
(12
{13

[14

£15

(17

{18

(19

[20

(21
(22

(23

(24
L25

(26

(27

(28
(29

{3J

(EQ (SELECT HOURS-WORKED-WEEKLY-IN (Y))
(IF (EQ Y I)
(SELECT HOURS-WORKED-WEEKLY-IN (Y))
(SELECT HOURS-WORKED-WEEKLY-QUT (Y]
(EQ Y I))
(NOT (EQ Y I)))
(EQ (SCELECT HUURS-WURKED-WEEKLY-OUT (¥))
(SELECT HJUURS~-WORKED-WEEKLY-IN (Y]
(I.,PLIES (NOT (EQ Y I))
(EQ (SELECT dOURS-WORKED-WEEKLY-OUT (Y))
(SELECT 4UURS -WORKED-WEEKLY-IN (Y]
(EQ (SELECT HUURS-WORXED-WEEKLY-IN (Y))
(SELECT HOURS-WORKED-WEEKLY-IN (Y]

6 (IMPLIES (EQ Y I)

(EQ (SELECT .JURS-WORKED-WEEKLY-IN (Y))
(SELECT HOURS-WORKED-WEEKLY-IN (Y]
(EQ (SELECT dOURS-WORKED-WERKLY-IN (Y))
(IF (EQ Y I)
(SELECT :HUURS-WORKED-WEEKLY=-IN (Y))
(SELECT HOUR3-WORKED~WEEKLY-OUT (Y]
(I4PLIES (EQ { I)
(EQ (SELECT HOURS-WORKED-#REKLY-IN (Y))
(IF (EQ Y I)
(SELECT H0UURS-WORKED-WEEKLY--IN (Y))
(SELECT HOURS~WORKED-WEEKLY-OUT (Y]
(I<PLIES (OR (AND (LTQ 1 Y)
(LTQ Y (SUBTRACT I 1)))
(EQ Y I))
(EQ (SELECT AOURS-WORKED-WEEKLY-IN (Y))
(IF (EQ Y I)
(SELECT ACURS-WORKED-WEEKLY-IN (Y))
(SELECT HOURS-WORKED-WEEKLY-OUT (Y1
(AND (LTRQ 1 Y)
(LTQ Y (SUBTRACT I 1]
(LTQ £ 1IN
(OR (LTQ Y (SUBTRACT I 1))
(EQ Y 1))
{LTQ Y (SUBTRACT I 1)))
(L™ 1)N
(AND (LrQ 1Y)
(LTQ Y (SUBTRACT I 1)
(OR (AND (LTQ 1 Y)
(LTQ Y (SUBTRACT I 1))
(EQ ¥ I)))
(I4PLIE3 (LTQ Y (SUBTRACT I 1))
(OR (ANMD (LTQ 1 Y)
(LTQ Y (SUBTRACT I 1)
(EQ ¥ I)
(EQ Y I))
(OR (AND (LIQ 1Y)
(LTQ Y (SUBTRACT I 1)))
(EQ Y I)))
(IwPLIES (EQ Y I)

137

(OR (AND (LTQ 1Y)
(LTQ Y (SUBTKACT T 1))
(8Q Y I
(31 (OR (AND (LTQ ' Y)
(LTQ ¢ (SUBTRACT I 1))
(EQ Y 1))
(32 (EQ (SELECT HOURS-WOHKED-WEEKLY-IN (Y))
(IF (EQ Y I)
(SELECT dUUR3=WOhKED-WEEXKLY-IN (Y))
(SELECT dUuR3-WORKED-WEEKLY-OUT (Y]
L33 (IaPLIES (AND (LTQ 1 Y)
(LT Y 1Y)
(EQ (SELECT HOURS-WORKED~WEEKLY-IN (Y))
(IF (53 v I
{3ELECT 4UUR3-WORKED-WEEKLY-IN (Y))
(SELECT HOURS-WORKED-WEEKLY-OUT (Y]
O34 (FORALL Y {L«iPLI£s (AND (LTQ 1Y)
(LTQ Y 1IN
(£ (SELECT AJURS~WORKEL-WEEKLY-IN (Y))
CIF (B Y 1)
(SELECT AOURS-WORKED-WEEKLY-IN

(Y
{SELECT AOURS-WORKED-WEEKLY-OUT
(Y]
V35
CAND

CFORALL X ¢ lePLics (AND (LTQ 1 X)
7y X INPUT-MASTER-FILE.LENGTH))

ANy (EQ (SSLECT JAME-IN.ARRAY (X))
(RRLECT (QUAL NAME.ARRAY TIME-CARD)
(X))
(LTQ O (SELECT CURRENT-WEEK-IN.ARRAY
(X))
000 (SELECT CURRENT-WEEK~IN.ARRAY
(X))
a9,
(NS Tap e © . 5D TIME-CARD-FILE.LENGTH)
X
(TPt e
SANL e &
ST X V. J=dASTER-IL CINDEX))

CAND (e ool NAME- DN ARPAY (XD
SELE T STAL NAMELARRAY TIME-CARD)
(Y
Vel ECT WAME-UUT.ARRAY (X))
(SELECT (QUAL NAME.ARRAY PAYCHECK)
(K1)
P U SELECT IRG.5.-PAY-T)-DATE-OUT.ARRAY (X))
CPIUS {SFLECT GROS3-PAY-TU-DATE-IN.ARRAY (X35
fRYIL 1y {TIAES (SELECT
WEEKLY-SALARY-.N.ARRAY
(X

138

—

i R e

(DIVIDE (SELECT
HOURS~WORKED-THIS-WEEK.ARRAY
(x))
401
(EQ (SELECT 4UURS-WORKED-TO-DATE-QUT.ARRAY (X))
(PLUS (SELECT HOURS-WORKED-TO-DATE-IN.ARRAY
(X))
(SELECT A0URS-WORKED-THIS-WEEK.ARRAY (X)
[EQ (SELECT CURRENT-WEEK-OUT.ARRAY (X))
(PLUS 1 (SELECT CURRENT-WEEK-IN.ARRAY (X}
[FORALL Y (IMPLIES [AND (GTQ 1 Y)
(LTQ Y 52)
(NEQ Y (SELECT
CURRENT-~-WEEK-OUT .ARRAY
(x]
(EQ (SELECT (SELECT
HOUR3-WORKED-WEEXLY-OUT.ARRAY
(X))
(Y))
(SELECT (SELECT
HOURS-WORKED-WEEXLY-IN.ARRAY
(X))
(Y]
{EQ (SELECT (SELECT dJOURS3-WORKED-WEEKLY-OUT.ARRAY
(X))
(SELECT CURRENT-WEEK-OUT.ARRAY (X)))
(SELECT HUURS-WORKED~TAIS-WEEK.ARRAY (X)
(EQ (SUBTRACT INPUT-MASTER-FILE.LENGTH 1)
{ SUBTRACT I'IE~CARD-FILE.INDEX 1)
OUTPUT-MASTER-FILE.LENGTd PAYCHECK-FILE.LENGTH)
(EQ NAME-Id (QUAL NAME TIME-CARD)
NAME-QUT
(QUAL NAME PAYCHECK))
[£Q GRUSS-PAY-TO-DATE-OUT (PLUS GROSS~PAY-TO-DATE-IN
(ROUND 999V39
(TIMES WEEKLY-SALARY-IN
(DIVIDE
HOURS-WORKED-THIS-WEEK 40]
(EQ HOUR3S-WURKED-TQ-DATE~OUT (PLUS HOURS-WORKED-TO-DATE-IN
HOURS-WORKED-THIS-WEEK))

{EQ CURRENT-WEEK-OJT (PLUS 1 CURRENT-WEEK-IN))
(LTQ 1 ID))
{36
(AND

{ FORALL X (IMPLIE3S (AND (LTQ 1 X)
(LTQ X INPUT-MASTSR~FILE.LENGTY))

(AND (E£Q (SELECT NAME-IN.ARRAY (X))
(SELECT (QUAL NAME.ARRAY TIrE-CARD)
(X))
(LTQ 0 (SELECT CURRENT-WEEK-IN.ARRAY
(X))
(LTQ (SELECT CURRENT-WEEK-IN.ARRAY
(X))

138

91)
(EQ INPUT-MASTER-FILE.LENGTd TIviE-CARD-FILE.LENGTH)
[FORALL
X

(LePLIES
(AND (LTQ 1 X)
«LTQ X OUTPUT-MASTER-FILE, INDEX))
(AND (EQ (SELECT NAME-IN.ARRAY (X))
{SELECT (QUAL NAME.ARRAY TIME-CARD)
(X))
(SELECT NAYE-OUT.ARRAY (X))
CT {(QUAL NAME.ARRAY PAYCHECK)
(X
LEQ {SELECT GRUS3-PAY-TC-DATE-OUT.ARRAY (X))
{PLUS (SELECT GRO33-PAY-TO-DATE-IN.ARRAY (X))
(ROUND 993V99 {TIHES (SELECT
WEEKLY-SALARY-IN.ARRAY
()
(DIVIDE (SELECT
HOUR3-WORKED~-THIS-WEEX . ARRAY
(X))
40]
Lo {SELECT NUURS-WCRKED-TO-DATE-OUT.ARRAY (X))
{PLUS (3ELECT HUURS-wWORKED-TU-DAT:S-IN.ARRAY
{X))
(SELECT HOUR3~WORKED-THIS-WEEK.ARRAY (X]
4 (3ELECT CURRENT-WEEK-OUT.ARRAY (X))
PLIS U {3FLECT CURRENT-WEEK-IN.ARRAY (X]
1 (TAPLIES [AND (GTQO 1 Y)
(LTQ Y 52)
(NEQ Y (SELECT
CURRENT-WEEK~OUT.ARRAY
{(X]

&8

\
L FORALL

{EQ (SELECT (SE&LECT
JOURS~WORKED-WEEKLY-~OUT.ARRAY
(X))
(1))
(SELECT (SELECT
HOURS-WORKED-WEEKLY-IN.ARRAY
(x))
(Y]
(ed vonbiel SELECT AOURS-WORKED-WEEKLY-OUT.ARRAY
(X))
(SELECT CURRENT-WEcK-QUT.ARRAY (X)))
{SENECT HOURS-WORKED-~THIS-WEZK.ARRAY (X}
(22 OUBTRACT TWPUT-Y4ASTuA-FILE.LENGTH 1)
s 30ulTHe i T (Lik~CAMD-FILE. "VDEX 1)
JITPIl= A e FILE . LENGTR PAYCHECK~FILE.LENGTH)
fed SAME-Iv (JUAL NAME TT#FE-CARD)
A e T
(AL Ak PAY HECK)Y
pHo Sty DA YL T (PLUS 1R0OS3-PAY-TO-DATE-TIN
CRAUND 992Va3g

- -

) 10

—_—

(TItMES WESKLY-SALARY-IN
(DIVIDE
HOURS-WORKED-THIS-wEEK 40]
{(£Q HOURS-WORKED-TO-DATE-OUT (PLUS HOURS-WORKED-TO-~DATE-IN
HOURS-WORKED-THIS-WEEK))
(EQ CURRENT-WEEK-OUT (PLUS 1 CURRENT-WEEK-IN))

(LTQ 1 1)
(FORALL Y (IMPLIES (AND (LTQ 1 Y)
(LTQ ¥ 1))
(EQ (SELECT HOURS-WORKED-WEEKLY-IN (Y))
(IF (EQ 1 1)
(SELECT A0URS-WORKED-WEEKLY-IN
()
(SELECT 40URS~-WORKED~-WFEKLY~OUT
(Y]
137
(L..PLIES
{NOT (GT I 52))
(AND

[FOKALL X (IMPLIES (AND (LTQ 1 X)
(LTQ X INPUT-ASTER-FILE.LENGTH))
(AND (EQ (SELECT +AME~IN.ARRAY (X))
(SELECT (QUAL NAME.ARRAY TIME-CARD)
(XN
(LTQ 0 (SELECT CURRENT-WEEK-IN.ARRAY
(X
{LTQ (SELECT CURRENT-WEEK-IN.ARRAY

(X))
51]
(EQ INPUT-1ASTER-FILE.LENGTd TIME-CARD-FILE.LENGTH)
[FORALL
X
(IPLIES

(AND (LTQ 1 X)
(LTQ X OUTPUT-MASISR-FILE.INDEX))
(AND (EQ (SELECT WAME-IN.ARR&Y (X))
(SELECT (QUAL NAME.ARRAY TI-E-CARD)
(X))
(SELECT NAME-OUT.ARRAY (X))
(SELECT (QUAL NAME.ARRAY PAYCHECK)
(XN
{EQ (SELECT GRO33-PAY-TO-DATE~OUT.ARRAY (X))
(PLUS (SELECT GROSS-PAY~TO-DATH-IN.ARRAY (X))
{ROUND 993V9a (TIMES (SELECT
WEEKLY-SALARY-IN.ARRAY
(X
(DIVIDE
(SELECT
d0URS-WORKED-THIS-WEEK . ARRAY
(XN
40)
LEQ (SSLECT duJRS-WORKED-TO-DATE-OUT.ARRAY (X))
(PLUS (SELECT AUJRS~WORKED-TO-DATE-INH.A3RAY

141

(X))
(SELECT AQURS-WORKED-THIS-WEEK.ARRAY
(x1
(EQ (SELECT CURRENT-WEEK~-OUT.ARRAY (X))
(PLUS 1 {SELECT CURRENT-WEEK-IN.ARRAY (X]
[FORALL Y (IMPLIES [AND (GTQ 1 Y)
(LTQ Y 52)
(NEQ Y (SELECT
CURRENT-WEEK-OUT.ARRAY
(x]
(EQ (SELECT (SELECT
HOURS-WORKED-WEEKLY-OUT.ARRAY

(X))
(1))

(SELECT (SELECT
HOURS-WORKED-WEEKLY-IN.ARRAY
(X))
(v}
(EQ (SELECT (SELECT HOURS-WORKED-WFEKLY-QUT.ARRAY
(X))
(SELECT CURRENT-WEEK~-OUT.ARRAY (X)))
(SELECT HOURS~-WORKED-THIS-WEEK.ARRAY (X)

(EQ (SUBTRACT INPUT~-MASTER-FILE.LENGTH 1) __

(SUBTRACT TIME-CARD-FILE.INDEX 1)

OUTPUT-MASTER-FILE.LENGTH PAYCHECK-FILE. LENGTH)
(EQ NAME-IN (QUAL NAME TIME-CARD)

NAME-OUT

(QUAL NAME PAYCHECK))
[EQ GRO33-PAY-TO-DATE-OUT

(PLUS GROSS~-PAY-TO-DATE-IN (ROUND 999V99

(TIMES WEEKLY-SALARY-IN
(DIVIDE
HOURS-WORKED-THIS-WEEK 40]

(EQ HOURS-WORKED-TO-DATE-OUT (PLUS HOURS-WORKED-TO-DATE-IN

HOURS-WORKED-THIS-WEEK))
(EQ CUNRERI-WEEK-QUT (PLUS 1 CURRENT-WEEK~IN))

(LTQ 1 I)
(FORALL Y (IMPLIES (AND (LTQ 1 Y)
(LTQ ¥ 1))
(EQ (SELECT HOURS-WORKED=- WEEKLY IN (Y))
(IF (EQ Y I)
(SELECT dOURS-WORKED-WEEKLY-IN
(Y)) .
(SELECT HOURS~WORKED-WEEXLY-OUT
(Y]
{38
(ImPLIES
[AND
[FORALL X (IMPLIES (AND (LTQ 1 X)
(LTQ X INPUT-MASTER-FILE.LENGTH})
(AND (EQ (SELECT NAME-IN.ARRAY (X))
(SELECT (QUAL NAME.ARRAY TIME-CARD)
XN
EEST AVAILABLE COPY

142

(LTQ O (3ELECT CURRENT-WEEK-IN.ARRAY
(X))
(LTQ (SELECT CURRENT-WEEK-IN.ARRAY
(X))
511}
(EQ INPUT-MASIER-FILE.LENGTH TIME-CAXD-FILE.LENGTH)
{ FORALL
X
(IMPLIES
(AND (LTQ 1 X)
(LTQ X OUTPUT-MASTER-FILE.INDEX))
(AND (EQ (SELECT WAME-IN.ARRAY (X))
(SELECT (QUAL NAME.ARRAY TIME-CARD)
(X))
(SELECT NAME-OUT.ARRAY (X))
(SELECT (QUAL NAME.ARRAY PAYCHECK)
(X))
[EQ (SELECT GROS3-PAY~-TO-DATR-OUT.ARRAY (X))
(PLUS (SELECT GROSS-PAY-TO-DAT=-IN.ARRAY (X))
(ROUND 993V99 (TIMES (SELECT
WEEKLY-SALARY-IN.ARRAY
(X))
(DIVIDE
(SELECT
HOURS=-WORKED-THIS-WESK.ARRAY
(x)n
491
[EQ (SELECT H0URS-WORKED-TO-DATE-OUT.ARRAY (X))
(PLUS (SELECT HUURS-WORKED-TO-DATE-IN.ARRAY
(X))
(SELECT AOURS-WORKED-THIS-WEEK.AKRAY
(X]
(EQ (SELECT CURRENT-WEEK-OUT.ARRAY (X))
{PLUS 1 (SELECT CURRENT-WESK-IN.ARRAY {(X]
[FORALL Y (IMPLIES [AND (GTQ 1 Y)
(LTQ Y 52)
(NEQ Y (SELECT
CURRENT-WEEXK-OUT.ARRAY
(x]
(EQ (SELECT (SELECT
HOURS-WORKED-WEEKLY-OUT.ARRAY
{(X3)
(n
(SELECT (SELECT
HOURS-WORKED-WEEKLY-IN.ARRAY
(X))
(Y]
(EQ (SELECT (SELECT AO0UR3-WORKED-WEEKLY-OUT.ARRAY
(X))
(SELECT CURRENT-WEEK-CUT.ARRAY (X))
(SELECT HOUR3=-WORKXED-THIS-WEEK.ARRAY (X]
(EQ (SUBTRACT INPUT-MASTER-FILE.LENGTH 1)
(SUBTRACT TIvE-CAKD-FILE.INDEX 1)

143

OUTPUT-MASTER-FILE.LENGTH PAYCHECK-FILE.LENGTH)
(EQ NAME-IN (QUAL NAME TIME~-CARD) '
NAME-QUT :
(QUAL NAME PAYCHECK))
[EQ GROS3-PAY-TO-DATE-QUT
(PLUS GROS3-PAY-TO-DATE-IN (ROUND 999v9g

(TIMES WEEKLY-SALARY-IN

(DIVIDE

HOURS-WORKED~THI S~ WEEK 40]
(EQ HOUR3-WORKED-TO~DATE~QUT (PLUS HOURS-WORKED-TO-DATE-IN

HOURS-WORKED-THIS-WEEK))

(EQ CURRENT-WEEK-OUT (PLUS 1 CURRENT-WEEK-IN))
(LTQ 1 D)
(FORALL Y (IwPLIES (AND (LTQ 1 Y)
(LTQ Y (SUBTRACT I 1))
(EQ (SELECT HOURS-WORXED-WEEKLY-OUT
(Y

(SELECT HOURS-WORKED-WEEKLY~IN (Y]
(IMPLIES

(NOT (GT I 52)) - R
(AND
[FORALL X (IMPLIES (AND (LTQ 1 X)

(LTQ X INPUT-MASTER~-FILE.LENGTH))

(AND (EQ (SELECT NAME-IN.ARRAY (x))
(SELECT (QUAL NAME.ARRAY
TIME-CARD)
(x)))

(LTQ 0 (SELECT CURRENT-WEEK-IN.ARRAY

(X)))

(LTQ (SELECT CURRENT-WEEK-IN.ARRAY

(X))

51] ‘
(EQ INPUT-MASTER-FILE.LENOTH TIME-CARD-FILE.LENGTH)
[FORALL
X
(IAPLIES

(AND (LTQ 1 X)
{LTQ X OUTPUT~MASTER-FILE.INDEX))
(AND (EQ (SELECT NAME-IN.ARRAY (X))
(SELECT (QUAL NAME.ARRAY TIME-CARD)

(X)) ‘
(SELECT NAME-OUT.ARRAY (X))
(SELECT (QUAL NAME.ARRAY PAYCHECK)
(XN .
[EQ (SELECT GROSS-PAY-TO-DATE-OUT.ARRAY (X))
(PLUS (SELECT GROSS-PAY-TO-DATE-IN.ARRAY
(X))
(ROUND 999v9g
(TIMES (SELECT

WEEKLY-SALARY-IN.ARRAY

(X))
? (DIVIDE (SELECT

HOURS-WORKED=-THIS-WEEK.ARRAY

144 ECST AVA" ABLE COPY

(x))
40]
[EQ (SELECT 40UR3-WORKED-TO-DATE-QUT.ARRAY (X))
(PLUS (SELECT HOURS-WORKED-TO-DATE-IN.ARRAY
(X))
(SELECT HOURS-WORKED-TAIS-WEEK.ARRAY
(x]
[EQ (SELECT CURREJT-WEEK-OUT.ARRAY (X))
(PLUS 1 (SELECT CURRENT-WEEK-IN.ARRAY (X]
[FORALL Y (IAPLIE3 [AND (GTQ 1 Y)
(LTQ Y 52)
(NEQ Y (SELECT
CURRENT-WEEK-OUT.ARRAY
(x1
(EQ (SELECT (SELECT
HUURS~WORKFD-WEEKLY-OUT.ARRAY
(X))
(YN
(SELECT (SELECT
HOURS-WORKED-WEEKLY-IN.ARRAY
(x)
(Y]
(EQ (SELECT (SELECT 4UURS-WURKED-WEZKLY-OUT.ARRAY
(X))
(SELECT CURRENT-WEEK-OUT.ARRAY (X)))
(SELECT d0UR3~WORKED-THAIS-WESK.AARAY (X]
(EQ (SUBRTRACT INPUT-MASTHER-FILE.LENGTH 1)
(SUBTRACT TIME-CAnD-rILE.INDEX 1)
QUTPUT-MASTER-FILE.LENGTd PAYCHECK-FILE.LENGTA)
(EQ NAME-IN (QUAL NAME [IvE-CARD)
NAME-OUT
(QUAL NAME PAYCHECH))
[EQ SROS3-PAY-TU-DATZ-00T
(PLUS GnruS5-PAY-TO-DATE-IN
(ROUND §a9Vy9 (TIMES WELKLY-SALARY-IN
{DIVIDE HOURS-WORKED-THIS-WEEK
493
(EQ HOURS-WORKED-Tu-DATE-OUT (PLUS <UURS-WORKZD-TO-DATZ-IN
HOURS-WORKED-THIS-WEEK))
(EQ CURRENT-WEEK-OUT (PLUS 1 CURRENI-WEEK-IN))

(LTQ v 1)
(FORALL Y (IMPLIES (AND (LTQ t Y)
(LTQ Y I))
(EQ (SELECT AUUR3-WORKED-wWEEKLY-IN
(Yn
(IF (EQ Y ID

(SELECT 1. /URS-WORKED-WEZKLY~IN
(n»

(SELECT HOUJi(S-WORKED-WEEKLY-OUT
(Y]

145

[0 2NN Vs

~J

NoRENRe <]

Table VIII=~-9

INFERENCE RULES FOR PROOF PRESENTED IN TABLE VIII-8

hyp.

IRARERA An}—Ai(lf_iS_n),l
inst., vy, 2

hyp. -
m.p., 3,4

B r+— ADB, 5

A=A o

B A=B, 7

A D x=y AWM D x=z =

X

1l

lf A then y else z

(definition of conditional expression), 6, 8

ded., 4,9

hyp.

hyp.

A, —=A 1, 11, 12

ded., 12, 13

A=A

B a 2B, 15

def. conditional expression, 16, 14
ded., 11, 17

ADB. CODB}— AVCDB, 10, 18

hyp.

A AB— B, 20

Xoymxwy + 1V x =y (x, v integers),
hvp.

AAB B, 20

A, B~ A AB, 23, 24

Bk A vopB, 25

ded., 23, 26

hyp.

B A v B, 28

- -E§!:E;ST'AVAH:ABEE‘CGPY 148

21

30.
31.
32.
33.
34.
35.
36.
37.
38.

hyp.
inst.
gen.
m.p.
ded.

sub.,

ded., 28, 29

AvcCc, ADB, C2BM B, 22, 27, 30

m.p., 19, 31
ded., 20, 32
gen. y, 33

AANBPF A,

A, B~ ADB, 37, 36

Bl-ADB, 38
ded., 1, 39

hypothesis
instantiation
generalization
modus ponens
deduction

substitution

LEGEND

¥xP(x) I~ P(z) if Z is not free in P(x)
P(x) b vzP(z) if Z is not free in P(x)
ADB, A} B

Ak B FHADB

according to free variable rules.

147

X CONCLUSIONS
A. General

This work has shown the feasibility of the verification of COBOL
programs in realistic application areas. The main result of the project
has been to uncover some major remaining difficulties that must be re-

solved to make verification an effective tool.
Achievements of this project are:

(1) Decomposition of the verification process into stages,
making the system easier to implement and to interact
with.

(2) A very effective axiomatization of the COBOL data structures
and control statements, that fits well into the structure
of the verification system.

(3) A process that yields verification conditions that are
simple to prove, although there are many verification
conditions to prove, even for a simple progranm.
The major problems of COBOL verification as encountered in this pro-
Jject are:
(1) Verbosity of the programs, assertions, and verification
conditions.

(2) The semantic complexity of the COBOL language.

These two problems have a trade-off in their solutions. A verification
system that handles the semantic complexity directly makes the verifica-
tion conditions less verbose, but a system that translates the complexity

into simpler units makes the verification conditions more verbose.

The remaining research involved in COBOL verification should be
aimed at making it possible to verify bigger, more complex COBOL programs,
more easily and with more machine aid. This means doing basic research
in techniques to structure the complexity of COBOL verification, while
at the same time engineering the developing system to make things more
convenient for the user. We believe that the following tasks would
yield significant benefits in both of the above areas:

(1) Enlarging the subset of COBOL amenable to verification.

This means dealing with the problem of character strings
and their relation to numeric data.

149

AL hwln G Feuk blanKeNOT FI1.MED

(2) Engineering the parts of the system to make them easier
to use.

(3) Research on deductive systems, including incremental
simplification during posttransduction processing and
verification condition generation.

(4) Work on techniques to help write COBOL programs that are
easier to verify. These would include management tech-
niques to restrict the kinds of programs written and
possible minor syntactic changes to the language.

(5) Extension of the assertion language to make it easier
to state abstract properties of COBOL programs.

(6) Exploration of the use of data abstraction techniques
to enable the verification of large, structured COBOL
programs.

(7) Development of an interactive COBOL environment closely
coupled with the COBOL verification system.

B. A Note on a Programming Environment for COBOL

A COBOL verification system is not like a compiler, because a pro-
grammer cannot submit a program with assertions to the verifier and
receive a verified program as output. Closely coupled interaction with
the verification system is required at all stages of the verification
process, and frequent changes to both programs and assertions are to

be expected.

A program should be developed for verification. Operations required
on these programs (e.g., formal testing, symbolic tracing, debugging)
can be performed optimally under close interaction with the programmer.
T. has Aalso been substantiated25 that interactive programming improves

program reiiability and programmer productivity.

Finally, we feel that programmers will not write assertions for
programs unless such a task is made easy for them by their programmiung

environment. The need for tools designed for this purpose is great.

We feel that building these tools around an interactive interpreter
for COBOL programs is the best way to proceed to the ultimate goal of
making program verification usable. Even if the remaining research
issues are resolved, it will take much time before the best environment
tur verification is achieved. We believe that enough is now understood
about the nature of COBOL verification to enable an effective environ-

ment to te built.

150

10.

i1.

12.

13.

X REFERENCES

L. Robinson and K. N. Levitt, "Proof Techniques for Hierarchically
Structured Programs,' Technical Report, Stanford Research Institute,
Computer Science Group, Menlo Park, California (January 197§),

submitted for publication.

L. Robinson, K. N. Levitt, P. G. Neumann, and A. R. Saxena, '"On
Attaining Reliable Software for a Secure Operating System,”
Proceedings International Conference on Reliable Software, 21-23
April 1975, Los Angeles, California, pp. 267-284 (April 1975).

J. von Neumann and H. H. Goldstine, "Planning and Coding Problems
for an Electronic Computer Instrument, Part I, Vol. 1-3" John
von Neumann, Collected Works, Vol. 5, pp. 80-235, Pergamon Press,
New York (1963).

R. W. Floyd, "Assigning Meanings to Programs," Proceedings American
Mathematical Society Symposium in Applied Mathematics, Vol. 19,
pp. 19-31 (1967).

P. Naur, 'Proof of Algorithms by General Snapshots," BIT 6, pp.310-
316 (1966).

B. Elgspas, K. N. Levitt, and R. J. Waldinger, 'Design of an Inter-
active System for Verification of Computer Programs,'" SRI Report,
Project 1891, Stanford Research Institute, Menlo Park, California
(July 1973).

S. Igarashi, R. London, and D. Luckham, "Automatic Verification of
Programs I: A Logical Basis and Implementation," Memo AIM-200,
Stanford Artificial Intelligence Laboratory, Stanford University,
Stanford, California (May 1973).

C. A. R. Hoare and N. Wirth, "An Axiomatic Definition of the Pro-
gramming Language PASCAL," Acta Informatica 2, pp. 335-355 (1973).

S. Katz and Z. Manna, "Semantic Analysis of Programs," unpublished
paper (1975).

E. W. Dijkstra, "Guarded Commands, Nondeterminacy, and a Calculus
for the Derivation of Programs,'" Proceedings International Confer-
ence on Reliable Software, 21-23 April 1975, Los Angeles, California

(1975).

R. L. Sites, "Clean Termination of Computer Programs,” Ph.D. Disser-
tation, Stanford University, Stanford, California (June 1974).

American National Standard Programming Language COBOL. American
National Standards Institute, New York (1974).

P. Wegner, "The Vienna Definition Language,' Computing Surveys 4,
1, pp. 5-63 (March 1972).

151

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

CODASYL Data Base Task Group Report, Association for Computing
Machinery, New York (April 1971).

W. Teitelman, INTERLISP Reference Manual,Xerox Palo Alto Research
Center, Palo Alto, California (1974).

— ’ ————— . __:-------.!
i
~"

D. G. Bobrow, J, D. Burchfiel, D, L. Murphy, and R. S. Tomlinson,
"TENEX, A Paged Time Sharing System for the PDP-10," Comm. ACM 15,
3, pp. 135-143 (March 1972).

B. Elspas, R. S. Boyer, R. E. Shostak, and J. M. Spitzen, "A
Verification System for JOVIAL/J73 Programs,'" Draft ¥Final Report,
SRI Project 3756, Stanford Research Institute, Computer Science
Group, Menlo Park, California (November 1975).

C. A. R. Hoare, "An Axiomatic Basis for Computer Programming,"
Comm. ACM 12, 10, pp. 576-381 (October 1969).

B. Liskov, "An Approach to Abstraction,” MIT Project MAC, Computa-
tion Structures Group, Memo 88, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts (September 1973).

W. A, Wulf, "ALPHARD--Toward a Language to Support Structured Pro-
gramming," Carnegie-Mellon University, Pittsburgh, Pennsylvania,
unpublished paper (April 1974).

P. G. Neumann, L. Robinson, K. N, Levitt, R. S. Boyer, and A. R.

Saxena, "A Provably Secure Operating System," Final Report, SRI

Project 2581, Stanford Research Institute, Menlo Park, California

(June 1975). c—”

E. W. Dijkstra, '"Notes on Structured Programming,' Structured
Programming, C. A. R. Hoare (ed.), Academic Press, New York
(1972) .

H. D. Mills, "How to Write Correct Programs and Know It," Proceedings
International Contereunce on Reliable Software 21-23 April, Los
snveles, California, pp. 363-370 (April 1975).

E. Mendelison, Intreoduction to Mathematical Logic, Van Nostrand,
Princeton, New Jersey (1964).

M. M. Gold, "Time-Sharing and Batch--An Experimental Comparison
of their Values in a Problem-Solving Situation," Comm. ACM 12,
5 (Mavy 1969).

A. P Morse. A Thcory of Sets, Academic Press, New York (1965).

152

*
GLOSSARY

Abstraction - a technique for hiding particular parts of a phenomenon
(e.g., & programs behavior) to make the other parts of that pheno-
menon easier to understand.

Assertion - a predicate in first-order logic concerning the values of
variables in a program.

Assertion, inductive - an assertion placed within the program text to
break up the program's flowchart into simple paths containing a
fixed number of program statements.

Assertion, input - an assertion that constrains the values of a program's
input data.

Assertion, output - an assertion that relates the values of a program's
input data to the values of its output data.

Assertion language - first-crder logic along with some predefined func-~
tions that express the semantics of domains that may be related
to a programming language (e.g., integers, reals, strings, and
arrays).

Checks, compile-time - any decidable restrictions on a program that can
be placed on its source code, i.e., detectable from the syntax

alone.

Checks, run-time - any restrictions on a program's execution that are
not decidable until the program is executed with a particular set

of input data.

Deductive system - a program that attempts (with or without user guidance)
to generate a formal proof of a verification condition.

Language, real - a programming language that is used in some kind of
software production.

Ordering, dynamic - ordering of the execution of a program's statements,
which is dependent on the input data.

Ordering, lexical - ordering of statements in the source code of a progranm.

Path - a sequence of program statements that is executed for particular
values of the input data; it can be infinite.

Path, simple - a path that executes a fixed, finite number of program
statements for any values of the input data; a program's flowchart
can be broken up into a set of simple paths.

Posttransduction processing - translation of a transduced form of a
programn into another internal form that is suitable for verifica-
tion condition generation.

*
Terms applying to COBOL alone are not defined here. Check Reference
12 for definition.

153

Program verification - the process of proving that the behavior of a
program is consistent with an input assertion and an output
assertion.

Proof checker - a simple program to check the output of a deductive ~
system to see if the proof is logically sound.

Semantics - the rules that determine how any element of a language is
interpreted, in terms of some model.

Simplification - application of algebraic and propositional rewrite
rules to reduce the complexity of a formula.

Structured programuwing - a discipline for reducing the complexity of
programs by using control primitives to guarantee nested flow-
charts. (Note: this is not Dijkstra's definition of the term.)

Subset - a restriction of the syntax of a language that is also com-
patible with the language's semantics.

Syntax - the rules that determine for a given whether a character string
is an elemwent of a particular language.

Termination - a property of a program stating that the program finishes
execution in finite time for particular input data.

Termination, clean - a property of a program that includes termination
and absence of run-time errors.

Transduction - transliation of a program into an internal form defined ~or
by a transduction grammar.

Transduction grammar - a set of rules defining both the syntax of a
language and an algorithm for producing an internal form for a
progran in the language.

Verification condition - a logical formula, produced from a program
in which assevtions have been inserted, that is equivalent to
the logical cvonsistency of the program (according to some semantic
wodel) and the assertions; often referred to in the plural (i.e.,
the verif.cation conditions for a program).

Verificatior condition generator - a program that takes a program and
assertions as .nput, and produces a verification condition.

154

. e —

APPENDIX

CODE FOR COBOL VERIFICATION SYSTEM

The Appendix contains two sections., The first section contains
the INTERLISP code to manipulate transduction grammars, which was not
developed during the current work but was used as part of the system.
This code is not documented. The second section contains the INTERLISP
code for the symbol table (ST), posttransduction processing (PTP), and
verification condition generation (VC). The role of each function is
briefly described, along with its affiliation with one of the three

constituent modules above, |

155

A, Code for Parsing and Transduction

(FILECREATED " 5-JAN-76 13:34:56" NEWPARSE.;3 16507
previous date: " S-JAN-76 11:30:47" NEWPARSE.;?)
(LISPXPRINT (QUOTL NEWPARSLECOMS)
T T)
(RPAQY NEWPALL32COMS ((FNS ® NEWPARSEFNS)
(VARS TLIST OUTCOUNT FIRSTRHSCOL SECONDRHSCOL PRINTFL3G)))
(RPAQQ NEWPARSEFNS
(ABSTRACT ADDFNS ADDCON ADDSTATE COBOLTOXSENSN COMPLETE
COMPLETZP COMPLIS COMPUTFELOOX DELFNS DIF EARLY
ERASIING-INDICES EXTRACT FIND-ERASING~RULES
FLUSHGRAMMAR FLUSHLEFT GETALT GETDOT GETNOTSYMBOL
GETLHS GETILOOK G&TORIG GETORIGPTR GETPARSR GRTRULE
JETIRAN JOVIALTOKENFN LEFTSET MAXSMATRIX MAKEPARSFE
MAXEPARSEY NTERMINALP OUTLINE POWER-S&ST PPC PREDICT
PREDICTP PRETTYSRAMMAR PRINTGRAMMAR PRINTGRAMMAR/R
PRINISTATESET PURIFY PUTRULE PUTRULES PUTTRAN
PUTTRANS SAVEGRAM SCAN SCANP SETPARSE SORTRULES
TERMINALS TESTFINAL TRANSLATE))
(DEFINEQ
(AB3TRACT
[LAMBDA (INPUT TJKENFN)
(COND
((EQ (CAR (QUOTE NEWIRAAIARLOAD))
(QUOTE NOBIND))
(3£7Q HEWSRAMMARLOAD T)
(ATTACH (QUOT+ ##ROOT)
NOUTERAS)
{ADDON (QUOT: ##ROOT)
(LIST (CADR NONTER&4S)
(QUOTE RPAD))
(for NI in SPECIALNONTERMS do (DREMOVE NT NONT4RMS)
(REMPROP NT (QUOT® RULES))
(REMPROP NT (QUOTE TRANS)))
(SEIPARSE)))
(FLUSHLEFT)
[FRPLACA (QUOI< INPUTSTRINJI)
(APPEND IWPUT (LIST (QUOTE RPAD]
[for TOKEN in I{PUT do (COND
((NTEaMINALP TOKENW)
(APPL{#* TOKENFN TOKEN]
(COnD
((EARLY)
(TRANSLATE (MAXEPARSL)))
(T (QUOTe NODGO))
(ADDFNS
[(LAmoDA (X)
(301Q NEWPARSEFNS (APPEND NEWPARSEFNS X 1)
(ADDOW
{LAGBDA (LHS Riis)
(COounv
({NSl (MEM3ER Rd3 (GETP LHS (QUUT& RULES]
(PJTRULE LHS RHS)
(PUTTRAN LHS (QUOTe T1])

157

(ADDSTATE
(LAMBDA (LHS ALT DOT ORIG ORIGPTR LOOK PARSFELIST)
(PROG NIL
(3=TQ HASILTEM (PACK (LISI LH3 (QUOSE #)
ALT
(QUOTE #)
D01
(QUOTE #)
ORIG)))
(SETQ HASHVAL (GETHASH HASHITEM))
{COND
[HASAVAL (SETQ NEWLOOK (DIF LOOK HASHVAL))
{ COND
(NEWLOOK (NCONC HASHVAL NEWLOOK))
(T (RETURN]
(T (SETQ NEWLDIK LOOK)
(PJTHAS:! HASHITEM LOOY)))
(TCONC 3TATYSET (NCOIC (LIST (CONS LHS3 ALT)
D51
(CONS JRIT JORISPTR)
AEWLOOK)
PARSELISTY)
{ SOBOLTOKENFH
i LAuoDA (TOKEW)
(COND
((NUMAERP TIKEN)
{ADUYA (QU0.< number)
(LIST T.XEN)))
((STRINGP TIKEN)
(ADDON (QUOTE string)
(LIST TUKEN)))
({LITATOr TUKEN)
(ADDON (QUOT< symbol)
(LIST TOUKEN))S
((EQ (CAR TUKEN)
(QUOT= AS3ERTI))
CADUON (QUOT- ansertion)
(LIST TOKEN)Y))
(T (£8RIR "Unexpected token'™ TOKEN])
(COMPLETE
[LA~3DA NIL
(FOR 3TATE IN (GET (GEIORIGPTR)
(GETLAS))
DO (PROGN (FRPLACD (QUUT: [iMPSTORZ)
(CDDDDR STATE))
(ADNFRIY (QUOTC TEMPSTORE)
(ADD1 (CTADR 3TATE))
(CAR STATRPTR)
)
(ADDSTAT= (CAAR STATE)
(CDAR STATE)
(ADD1 (CADR 3TATw))
(CAADDR 3TATE)

.

(CDADDR STATE)
(CADDDR STATE)
(CDR (QUOTE TEMPSTORE])

(COMPLETEP
{LAm3DA NIL
(AND (NULL DOl3YwmBOL)

(FMEMB INPUTCHAR (GETLOOK])

(COMPLIS
[LA“BDA (X Y)
(COND
((NULL X)
T)
((NULL Y)
NIL)
((ALPHORDER (CAR X)
(CAR Y))
(COND
((EQ (CAR X)
(CAR Y))
(COMPLIS (CDR X)
(COR 1))
(T TY))
(T JIL])
(COMPUTELVOK
[LAMEDA NIL

(SEIQ T=MPSIURE (FNTH (SETRULE (GETLHS)

(GETALT))

(PLUS 2 (GETDOT]

(COND
{ TEMPSTCRE (COWD

((GETP (CAR TEMPSTORE)
(QUUTE RULES))
(LEFTSET (CAR TEMPSTORE)))
(T (LIST (CAR TEMPSTORE]

(T (GETLDJUK])
(DELFNS
(LAHBDA (X)

(SELQ NEWPARS.FNS (FOR Z IN NEWPARSEFNS UNLES3 (MEMB Z X)
COLLECT 2])

(DIF
{LAsBDA (X Y)

(FOR 2 IV X UNLESS (FMEMB Z Y) COLLECT Z1)

(EARLY
[LA.BDA NIL
(PROG NIL
(3¢.TQ STATES=T (CONS))
(CLRHAS3:H)
(ADDSTATE (CAR NONTERMS)

1 0 1 NIL (CONS (QUOTLE RPAD)

NIL))

(FOR INPUTCHAR IN INPUTSTRING A3 IJPUTX FROM 1

DY

(PROGN [FOR STATEPTR Od (CAR STATESET)

159

DO (CONE
((PREDICTP)
{ PREDICT))
((COMPLETEPR)
(COMPLETE]
[COND
{PRINTFLS
(COND
((EQ PRINTFLG (QUOTE ALL))
(PRIN1 INPYUTX)
(SPACES 2)
(CaNb
((TLR33P (PRIN1T (LENGTH (CAR STATESET)))
19)
(3PACES 1))
(SPACES 2)
(PRINT INPUTCHAR]
(T (PRIN1 INPUTCHAR)
(COND
((EQ TNPUTCHAR (QUOTE RPAD))
(TERPRI))
(T (SPACES 1)
{3t7TQ OLDSTATESET STATESET)
(StTQ STATESET (CONS))
(CLRHASH)
CFOR STAT<PTR ON (CAR OLDSTATESET)
DO (COND
({ SCANP)
(3CAN]
(COND
({CA% JUATESET)
(FRPLACD (QUOT- PREDLIST)
NILY)
{T (PRINT (LIST (QUOTE 3TATE3ET)
(ADD1 INPUTX)
(QUOTe 1I3)
(QUOTE EMPTY)))
(RTURN NIL]
(TeslFINALY)
CnpASING-TADICES
{LAGRDA (RHS)
(for X in RdsS asz [from 1 bind (TEMP) when TEMP(FASSOC X
ERASING-RULES)
anllect <1) TEMP>)
Lk (sACT
{7 AODA (NT 2 T9AN INDICES ANSWERS)
Sor TH
in (QUUILR (Tt [T2 T4 Ts To T7 T8 TG T10)) as RHST
i RAY as N from 1
bindt ((SUSRTST NTL)Y)
CORCLE(LIST NT)
(T.(Qui. TV 1+ T3 T4 W% In I7 I3 79 10)))
74P .

160

[(SETQ TEMP (FA333C N INDICES))
(TCO.4C SUB (CONS TI (CADDDR TeMP]
(T (TCONC SUB (CONS TI (CAR TJ)))
(SEITQ TJ (CDR TJ))
{TCONC DRULE RA4ST)))
finally [TCONC ANSWERS (LIST (QUOTE PUTRULE)
(KWOTE NT)
(KWOTE (CAR DRULE])
(TCONC ANSWERS (LISTI (QUOTZ PUTTRAN)
(KWOTE NT)
(KWOTE (SUBLIS (CAR 5UB)
TRAN TJ)
(FIND~ERASIWG-RULES
{ LAvisDA (NOWTLHMS)
(for NT bind ((R <NIL>)) in NINTXRuS
do (for RdAS in (GETP NT "RULES) 33 TR in (GETP NT TRANS)
a3 I from 1 when RHS=NIL
do (TCOWC R <NT I TR>))
finally (RETURN R:1])
(FLUSAGRAMmAR
[LAiSDA NIL
[COND
((NEQ (CAR (QUOTEL NUNTERMS))
(QUOr< NOBIND))
(PROGN (FOR NT IN JONTER&S DO (REMPROP NT (QUOTE RULES))
(REMPROP NT (QUOTE TRANS)))
(SETQ NONTCRMS NILJ
(RPAQQ NONTERMS NIL])
(FLUSALEFT
[LA“SDA NIL
(FOR Z I NOJTERIS DO (REMPROP Z (QUOTH LEFTS.I)))
(TR 2 IN SPECIALWONT:ER43 DO (RSMPROP / (QUOTE LEFTSATI)
(GETALT
[LABDA NIL
(CDAAR STATEPTR))
(GETDOT
[LAMBDA ANIL
(CADAR STATEPIR])
(3ETDOI3YrBOL
(LAMSDA NIL
(S&iQ TEMPS({URE (FNTH (GETRULE (GETLHS3)
(GETALT))
(ADD1 (JETDOT)
(COND
(TEWP3LORE (CAR TEMPSTORE])
(GETLHS
{LAMBDA WIL
(CAAAR STATEPTR])
(SETLOOK
[LAmBDA NIL
(CADDDR (CAR sSTATEPTR])
(GEIORIG

161

. LAi8DA NIL
(CAADDR (CAR SJATHPTH])
(GEIVRIGPTH
[LABDA Nl
(CDADDR (CAR 3[ATxPTR})

(GEIPARSE
{ LABDA (STATE) .
(<OND

(3TATE (CDDDULR STATE))
(T (CDODDR (CAR STATZPTR))
(GETRULE
LLAunbA {LHES ALT)
{Car (FNTA (GETP LH3 (QUJT: RULES))
ALT))
(JEITRAN
CLAGSDA (Lds ALT)
(CAk {Ni# (GELP Lds (QUQIw TRANS))
ALTD
(JOVIALID XENEN
L LAMBDA L TOKEN)
(Cdws
C{nJonkip TUKEN)
CADDON (QUUT: number)
(LIST TOREN)))
(CANL (LITATOM TOKWN)
(£0 (NCHARS TOKEW)
iR
CAO204 QLT letler)
CLIST TUKENT M)
(WLIVATU TUKEN)
{ADDON (QUOI. symboi)
(LIST TJKEN)))
{T (£#R2OR "Unexpected tcken" TOKEN])
TLERTSN.

CLAS3DA (X)
(SO
(ol P X fadu . LRFTCETY)
VRO (o FALT
! CARKMATAIE X)
,FOr n7 L4 SOFAR
By (UPRUGG (PTR)
(3ZTQ PTR (CONS))
(LCONC PTR (GETP NT (QUOTE LEFTSET)))
(FOR LSYu IN (CAR PTR)
J (FOR Z IN (GETP LSYM (QUOTE LEFTSET))
UNLESS (MEMB Z (CAR PTR))
DO (TCONC PTR Z)))
{(®JT NT (QJOT¥ LEFTSET)
(FOR 7 TV (GETP NT (QUOTE LEFTSET))
UNLESS (GETP Z (QUOTE QRULES))
COLLECT 2}
(GETP Y {(QUOTH LEFTSET])
VAR EMATRTK
162

[LAnBDA (X)
(PROG (LSY.LIST)
(FOR RULEALT IN (GETP X (QUOT. RULE3))
UNLE3S (MEMB (CAR RULEALT)
LSYMLIST)
DO (SelQ LSY#LISI (CONS (CAR RJULEALT)
LSYALIST)))
(PUT X (QUOTZ LEFTSET)
LSYMLIST)
(SETQ SOFAR (CONS X 30FAR))
(FOR LSYw Id LSYMLIST WHEN (AND (GETP L3YM (QUOTH RULF3))
(NOL (MEmB LSY+ 3SOFRY))
200 (MAKEMATRIY LSY«])
(MAKEPARSE
{ LAMBDA NIL
(MAKEPARSZ1 (CAR (CAR STATEIETY
(MAKEPARSE?
[LABDA (STATE)
(CONS (CONS (CAAlt SI{ATE)
(CDAR STATe))
(FOR 3Y«80L IN (GETRULE (CAAR 3TATE)
(CDAR STATE))
A5 I Fr0M 1
COLLECT (COuD
({NOI (GETP 3SYM3OL (QUOTE RULES)))
SYM30L)
{T (AXEPARSE1 (CAR (GET (CDDDODR STATR)
1)
(NTLRMIJALY 4
[LA(BDA (TOKEN)
(NULL (GErP TOKEN (QUOTL [=RMINAL))

{OJTLI .
[LAm3DA (3)
(CID
[(EQ (Cucos1 3)

13}
(321Q OUTCOUNT 0)
(PRINT (PACKC (QuUOILS (13 10)
{T (SEIQ QUTCOUNT (IPLUS OQUTCOUNT (NCHARS 3)))
(PRINT 37)
{ POWER-SET
{ LABDA (S)
(if S
tnen (for X bind ((R <NIL>)) in (POWER-SET S::1)
d0 (ICONC R X) R
(TCONC R <S:1 1 ©)
finally (RETURN R:1))
else <NIL>])
{PpC
{LA:cDA (P)
(FOR X I P WHEN (EQ (PROGT (PRINT X)
(SPACES 1))
(QUOTE %.))

163

CALPC D 9L s PARLDLIST) ~
LoD oY o0u
o CUATEPTR))
Soiw LousT o COMPITULOUK))
‘ sdLe TN RHSALTS AS I FROO 1 DO (ADDSTATE DOTSYMBOL I 0 INPUTX
(CDR (QUOTE PREDLIST))
LOOKY 1)
LEEr DI
Al N
LoLa Y AdGALTS TOEDT 1370 DOTSY.A0L (GETDOT3Y(IBOL))
(Q0T= RULE3])
CPROLY SRAMaAR
CLAGSDA Le TRATLOL SUCOADRHSCOL)
RESNIY
CUNTLL FIRATAASIOL)
“CONG
({59 (CAit (QUOT-. FIRSTRISCOL))
{(OUCTe NOBINDY)
(3n0Q FIRSIRASCOL 20))
‘7 {3nlQ FIRSIRASICOL (CAR (QUOT< FIRSTRHSCOL)
NEDIVI)E
({(NJLL SECUNDRYSCOL)
(CONU
({8 (AR (QUUTY SECONDRHSCOL))
LQULTS NOBIND))
(3ET SUCOWDRHSCOL 40)) ~
1 {3R7¢ 3nCONDRH3COL (CAR (QUOTE SHCONDRHSCOL]
[OQJEL cdF (PACKC (QUOre (13]
[FOR 9T T4 d0903RAS
DL (OUTLIN NT)
(QUTLIN. (QUOTL % :=2))
(FOF { S0s RIST (RHSTX(GEIP NT (QUOTE IRANS]
I4 (3EiP NT (QUOT: RULES))
Co (A7 RA3T (CAR LIETX))
(WillLE (IZE33P OUTCOUNT FIR3TRHSCOL)
) (JITLLds (002§)
(FOR = Id RAS 0V (QUTLING (QUOTE 4)
(QUTLIIE E))
{CO%w
({ I3REAI%RP SECONDRHSCOL 0)
(WHILE (ILESSP OUTCUOUNT SECONDRHSCOL)
DO (OUTLINE (QUOIE 4)))
(PRINT RHSI)))
(OUTLING (PACKC (QUOTE (13)]
(PACKC (QUOTL (0))

{PRINTG A un AR
I LABDA (N TedMs)
(TR T
(TmPRL)
{ I&RPRT)

164

— Y

(TLRPRI)
] (FOR NT IN NONTERMS
DO (TwRPRI)
(PRINT NT)
(FOR X IN (GETP NT (QUOTE RULES)) AS Y
IN (GETP NT (QUOT= TRAN3))
DO (PRIN1 (QUOTE #))
{corld
(X (SPACES 2)
(FOR TOKEN IJd X DO (PRIN1 TOKEN)
(SPACES 1]
(TERPRI)
(PRINTDEF (CLISPIFY Y T)
3)
(TERPRI))
(TERPRIL)
(PRINT (QUOIE __ 1
(PRINTGRAMmAR/R
1 [LAMBDA (NONTERMS FILENAME TRANS)
: (coub
' (FILENAME (OQUTFILE FILENAME)))
(PRINT (QUOTc))
(PRINY (QUOTZ .spacing% 1))
(TERPRI)
(PRINI (QUOTE .nofill))
(PRINI (QUOTZ .nojustify))
(PRIN1 (QUOfL .tab% stops% 8,16,24,32,40))
(TSHPRI)
(FOR NT IN NulTER4S
- DO (PRINT Wi)
(FOR X IJ (GETP NT (QUOLE RULES)) AS Y
IN (GETP NI (QUOTE TRANS))
DO (PRIN1 (QUOIE =))
{ conp
(X (SPACES 2)
(FOR TOKEN Id X DO (PRIN1 TOXEN)
(3PACES 1]

(TERPRI)
(COND
(TRANS (PRINIDEF (CLISPIFY Y T)
3)
(TERPRI]
(PRINT (QUOT:Z .plank% 1))
(TERPRI)
(PRINT (QUOSE smecccccrcccccccccccmeccenc e ————))
(PRIN1 (QUOTZ .blank$ 1))
(TERPRI))
(conD
(FILENAME (CLOSEF FILENAME])
(PRINLSTATESRT
(LA43DA NIl
(FOR STAIPTR O4 (CAR 3 ATESET)
DO (PRIGN (PRIIT (L.SC (JETLH3)

165

(GETALT)
(58TDOT)
(GETORIG)

(GETLOUK]) ~r

(PURIFY
[LAGBDA (NONTERMS)
(PROG ((ANSWERS3 (LIST NIL))
(ERASTNG-RULES (FIND-ERASING-RULES NONTERMS)))
{for NT in NDUT-Ri1S
do (C0:HD
([NEQ (FLENGTH (GETP NT (QUOTF RULES)))
(FLENGTH (GETP NT (QUOTE& TRANS]
(H=LpP NT
" does not nave the same number 2of transductions as rieht hand sides."))

\
/

{for R45 in (GETP NI (QUOTEZ RULES)) as TRAN
in {GE0P NT (QUOTw TRAHS))
1 for [WuICES in (POWER-3SET (ERASING-INDICES
RHS))
when 1ADICES
do (EXTRAZT T RHS TRAN INDICE3 ANSWERS]
(for X in (JAF ANSWER3) do (EvAL X))
{for £ in ERAZING-RULES
do 00T (CAR ERD
(QUUT.Z “RANS;
(for X in {GETP (CAR ER)
(QUOTR RULES))
az Y in (GETP (CAR ER)

(QUOTH TRANS)) -~

when X collect Y))
(PJT (2AKR on)
(QUOTY RULES)
{for X in (GETP (CAR ER)
(QUOTE RULES))

when X collect X])

A A (LHS RAY
(AL PRCE Lol T4ty RIS
RN
SRR
fion T2l (TX0 (QU0T . NONTLiMS))
NCBLD)

(NULL HOuT=RAD))
135TQ NOWTeRMS (L1ISLT LHS)))
(T (CoND
(INJT (JEMH LHS NONTERMS))
(NCUWC1 NONTERMS LASY)
{PUTRULES
CLAMBDA NUA
(PHIG ('
(FOK [Fa0p 2 TO NUM WHEN (PUTRULE (ARG NUM 1)
(ARG NUM I))
DIt (3%0Q NT (ARG NUw 1))

166

(RETURN NI1)
(PUTTRAN
{ LAv3DA (X 1sAN)
(ADDPROP X (QUO{E TRANS)
TRAN])
(PUTIRANS
(LA~BDA NU
(FOR I #¥#OM 2 [J NUw DO (PUTTRAN (AR3 NUdA 1)
(A33 NUA 1)
(SAVEGRA#
[LAMSDA (£ SUPPRE33-SORI)
{Cco:D
({NOT SJPPRs33~SURT)
(30RY (CDR NONTERMS]
{827 (PACK (LIST X (QUOTZ COMS)))
(QUOTE ([COMS #(LIST (CONS (QUOTE IFPROP)
(CONS (QUOTE (RULES TRANS))
NONTERMS]
(VARS SPECIALNONTERMS NONTERMS SPECIALFNPAMRS)
(HAKEFILE X1)
(SCAN
{LaMSDA NIL
(ADDSTATE (GETLHJ3)
(GETALT)
(ADD1 (GETDOI))
(GETORIG)
(GEICRIGPTR)
(GETLOOK)
(GETPARSE])
(3CANP
{LA«BDA JIL
(£Q INPUTCAAR (GETDOT.ST430L))
(3irPAnsE
(LAxsDA NIL
(PJT (QUUCE RPAD)
(QUOTE [ERAINAL)
(QUOTE RPAD))
{for NT in NOWIERMS
do (for RJULE in (GETP NT (QUOTE RULES))
do (for TUKEN in RULE
do (COND
(CAND . © (4 * TOKEN NONTERMS))
..)T (MEMu TOKEN SPECIALNONTERMS)))
(PUT [OKEN (QUOIZ TERMINAL)
TOKEN3)
(SOR[AULES
[LAnBDA (NONT:=AMS)
(FOR NI IN NONTER1S BIND PAIRS
DO (SETQ PAIRS (FOR X IN (GEIP NT (QUOTE RULES)) AS Y
IV (GETP NT (QUOTE TRANS))
COLLECT (CONS X Y)))
[30R. PAIRS (FUNCTION (LAMBDA (A B)
(COMPLIS (CAR A)

167

oA

(CAR B)
(PUT NT (QUOTE RULES)
(FOR X IN PAIRS COLLECT (CAR X)))
(PUT NT (QUOTs TRANS) : ' ’ \../
(FOR Y IN PAIRS COLLECT (CDR Yl)
(TERMIWALS
[LAMBDA NIL
(PROG (ALLRHS)
(FOR NT IJ NONTERMS DO (FOR RULE IN (GETP NT (QUOTE RULES))
DO (SETQ ALLRHS (APPEND RULE ALLRHS]
(FOR WT IN NONTERMS DO (DREMOVE NT ALLRYS))
(SORT ALLRHS) — o
(RETURN (FOR (TOKEN LASTTIKEN) IN ALLRYS
HEd (NEQ TOKEN LASTTOXEN) COLLECT (SRTQ LASTTOXEN
TOKEN)
TOKEN]) *
(Le3TFINAL . oo
[LAM3DA NIL
(PROGN (SZTQ STATEPTR (CAR STATZSET))
(COND
((AND {EQ (GETLHS3)
(CAR NOWTERMS))
(EQ (GETALT)
1)
(EQ (GETDOT)
2))
(QUOTZ SUCCESS!])
(TRANSLATE
L LAMEDA (P)
(COND
((NLISTP P)
P}
((20 (CaR P)
(QUOT= AS3ERT))

APPLY (LIST (QUOTS LAMBDA)
TLIST
(GETTRAN (CAAR P)
~ (CDAR P)))
(FOR PX IN (CDR P) COLLECT (TRANSLATE PX1)

(RPAQQ TLIST (T! T2 T3 [4 IS T6 T7 T8 I9 T10))

(APAQY QUTCOUNT 0) .

(APAQJY FIRSTRHSCOL 12)

(RPAQQ S=CONDRASCOL -1)

(RPAQu PRINTFLS ALL)
(DECLARE: DONTICOPY '

(FILEMAP (NIL (891 16329 (ABSTRACT 903 . 1566) (ADDFNS1570 . 1639)
(ADDON 1643 . 1777) (ADDSTATE 1781 . 2363) (COBOLTOKENFN 2397 . 2796)
(COWPLETE 2800 . 3206) (COMPLETEP 3210 .. 3293) (COMPLIS 3297 . 2/32)
(COMPUTELOOK 3530 . 3821) (DELFNS 3825 . 3927) (DIF 3931 . 4000) (EARLY
4004 . 5209) (ERASING-INDICES 5213 . 5367) (EXTRACT 5371 . 6057) (
FIID-ERASING-RULES 6061 . 6£304) (FLUSHGRAMMAR 6308 ., 6539) (FLUSHLEFT

FEST AVAILABLE COPY Y68

0>03 . 6706) (GETALT 6710 . 6755) (GETDOT 6753 . 6304) (5ETDOTSYMBOL
6008 . 6966) (GEILHS 6970 . 7015) (GETLOOK 7019 . 7071) (GETORIG 707S

. 7127) (GETORIGPTR 7131 . 7186) (SETPARSE 7190 . 7293) (GETRULE 7297

. 7382) (GETIRAN 7386 . 7459) (JOVIALTOKENFN 7473 . 7814) (LEFTSET
7318 . 8385) (4AKEMATRIX 8389 . 8827) (MAKEPARSE 8331 . 88ay) (
AAKEPARSEY 8398 . 9196) (NTRKMINALP 9200 . 9271) (OQUTILINR 9275 . a4sm)
(POWER-S<y 94n4 . 96%1) (P2C 9645 . 9762) (PRSDICT 970n . 10713) (
PRSDICTP 10017 . 19117) (PRETIYGRAMJAR 10121 . 11104) (PRINTGRAMMAR
11108 . 11582) (PRINTGRAM4AR/R 11586 . 12393) (PRINTSTATESET 12397

12582) (PURIFY 12580 . 13525) (PUTRULE 13529 . 13799) (PUTRULES

13803 . 13932) (PUTLRAN 13935 . 14358) (PUTTRANS 14062 . 14159) (
SAVEGRAM 14163 . 14472) (SCAN 14476 . 14638) (SCANP 14642 . 14538)
(SETPARSE 14702 . 15040) (SORLHULES 15044 . 1543)) (THRMINALS 15454

. 158U41) (TESIFINAL 15345 . 16008) (TRANSLATE 167272 . 16326)))))
S{op

169

X

i

B. Documentation and Code for Verification Condition Generation and

Posttransduction Processing

1. Documentation

C

170

-

I —

#ADDCORRESPONDING$ [SENTENCE; PAIR;]
remarks: PTP = Processes an ADD CORRESPONDING statement. i
called by: SENTENCESCAN

CORRESPAIRS ([X,Y; XSONS, YSONS, XSON, YSON;)
remarks: PTP - Returns list of dotted pairs of corresponding elementary
items of X and Y,
called by: #ADDCORRESPONDING$, CORRESPAIRS, #MOVECORRESPONDINGS,
#SUBTRACTCORRESPONDINGS

SONS [QUALNAME; X;]
remarks: ST - Returns the list of sons for a qualified data item.
called by: CORRESPAIRS, ELEMITEMSOF

COMPLETELIST [QUAINAME; X;]
remarks: ST - Returns the comple tely qualified name of a data item.
called by: SONS, PICTURE*, LEVEL*, OCCURS*, VALUE*

QUAL [QUALNAME; ;]
remarks: ST - Appends (QUAL) to a data name if it is unqualified.
called by: COMPLETELIST, AMBIGUOUS

AMBIGUOUS ([NAME; X;]
remarks: ST - returns T if a name is an ambiguous data reference,
NIL otherwise.
called by: COMPLETELIST

QUALIFIEROK [QUALLIST, PREDLIST; 2Z;]
remarks: ST - returns T if a qualified name (QUALLIST) ismt in
conflict with a predecessor list (PREDLIST).
called by: AMBIGUOUS, QUALIFIEROK, COMPLETELIST, MULTIPLE

#ASSERT [SENTENCE; ;]
remarks: PTP - Processes an ASSERT statement.
called by: SENTENCESCAN

ASSERT: [SENTENCE, PTR; X;]
remarks: PTP = Processes an ASSERT statement.
called by: #ASSERT, ASSERT1

MAXSIZE* [QUALNAME; ;]
remarks: ST - Returns the maximum size of a qualified data item.
called by: ASSERTl, #SET$, #SETROUNDEDS j

MAXSIZE [PIC; X,Y,L,R;]
remarks: ST - Returns the maximum size of a PICTURE specification.
called by: MAXSIZE*

PICTURE* TQUALNAME; ;]
remarks: ST - Returns the PICTURE specification for a qualified data
name.
called by: MAXSIZE*

#IF [SENT; ARGl, ARGZ2;)

remarks: PTP ~ Processes an II statement,
called by: SENTENCESCAN

171

SEFNTENCESCAN [TEXT: SENT;] .
remarks: PTP - Scans a program to do post-transduction processing,
called by: #IF, SENTENCESCAN, #PERFORM, PREPROCESS, VC

FOPENIN [L; ;1 ‘
remarks: PI'P - Processes an OPEN INPUT statement.
called by: SENTENCESCAN, #OPENOUT

#OPENOUT IL: ;] T
vemarks: PTP ~ Processes an OPEN OUTPUT statement.
called by: SENTENCESCAN

#OEAD [L; NAME, ITEM;]
remarks: PTP - Processes a READ statement.
called bhy: SENTENCESCAN

ELEMITEMSOF [X;;0
remarks: PTP - Returns the celementary items of a group data item,
called by: #READ, ELEMITEMSOF, #WRITE

RECORDLIST [NAME;;]
remarks: ST - Returns the list of records associated with a given
file name,
called by: #READ, RECORDNAME

HWRTTE [1.; INDEXNAME, LENGTHNAME, ITEM;]
remarks: PTP - Processes a WRITE statement.
called by: SENTENCESCAN

CILE [NAME; ;]
remarks: ST ~ Returns the file associated with a record.
called by: H#WRITE

#TERFORM {SENT; ASSRT, INDEX, FIRSTVALUE, STEP, TERMINATION; FLATSECTEXT]
remarks: DTP - Processes a PERFORM statement.
called by: SENTENCESCAN

FLATTENPARAS [ABPROG: PARA;)
remarks: PTP - Eliminates paragraph structure from a COBOL program
producing a list of sentences.
called by: #PERFORM, PREPROCESS, VC

GATHERPARAS [L1, L2, TEXT: X, Y;]
remarks: PTP - Gathers text in TEXT between the labels L1 and L2,
called hy: #PERFORM : v

#SETE [SENTENCE; ;)
remarks: PTP - Processes a SET$ (assignment) statement.
called by: SENTENCESCAN

#5RTROUNDEDS [SENTENCE; ;]
remarks: PT'P - Processes a SETROUNDED$ (rounded assignment)
statement, :
¢alled by: SENTENCESCAN

REST AVAILABLE CCPY 73

#MOVECORRESPONDINGS [SENTENCE; PAIR;]
remarks: PTP - Processes a MOVE CORRESPONDING statement.
called by: SENTENCESCAN

#SUBTRACTCORRESPONDINGS [SENTENCE; PAIR;)
remarks: PTP - Processes a SUBTRACT CORRESPONDING statement.
called by: SENTENCESCAN

CHANGELABEL [SENTENCE;; SECLIST)
remarks: PTP ~ Replaces labels in sentences by their fully-qualified
(i.e., <paragraph name, section name>) versions.
called by: CHANGELABEL, LABELMAKER

GETNEWLABEL (LABEL;; SECLIST, SulilION]
remarks: PTIP - Returns taie fully-qualified version of a given label.
called by: CHANGELABEL

ERR {X;;1
remarks: PTP - Error routine. Prints argument.
called by: GETNEWLABEL

LASTPARA [SEC; SECTION; ABPROG]
remarks: PTP - Returns the fully-qualified label of the last
paragraph in a given section,
called by: CHANGELABEL

COBOLVCG [PATHLIST; PATH;}
remarks: VC - Actual verification condition generator operaling on
the output of the path analyzer.
called by: VC

VCGl [PATH, FORM;;)
remarks: VC - Recursive auxiliary function used by COBOLVCG.
called by: COBOLVCG, VCGl

CONVERT {PIC; X,Y,Z21,Z,383TEMl, $$TEMZ,Z2;)
remarks: ST - Canonicalizes a PICIURE specification,
called by: INSERTDATA, INSERT?71TEM

DEBUGPRINT {WHAT, WHERE, WHEN;;FLAT]
remarks: PTP ~ Auxil .ary debugging function,
called by: PREPROCE §

PPR iz not defined.

ELEMENTARYP [DATADESCRIPTION; ;1
remarks: ST - Returns T if a variable name represents an
elementary data item, NIL otherwise.
called by: GETRECORD

ERASETABLE {; X, Y: SYMBOLTABLE, TYPES, VALUES]

remacks: ST - Initializes symbol table.
called by:

173

FETCHLABELASSERTIONS [ABPROG; PARA; LABELASSERTLIST]

remarks: ST - Constructs A-list (LABELASSERTLIST) whose entries are

of form <paraname, assertion> of all labelled assertions,
called by: vVvC

ISASSERT (X

rerarks: PTP - Predicate testing for list of form: (ASSERT,.....)
called by: FETCHLABELASSERTIONS, PATHANAL

FILENAME [RECORD; ;) , : IRV,

remarks: PTP - Returns file name corresponding to a given record
called by: ' '

FLATTENSECTIONS [ABPROG; SECTION;]
remarks: PTP -~ Flattens abstract program into a list of paragraphs.
called by: PREPROCESS, VC

GETRECORD [GARBAGE, LEVELLIST, NAMELIST; CURRENTLEVEL, CURRENTRECORD DUMMY,
SETEM1, $$TEM2;]
remarks: ST = Constructs a tree~structured data declaration out of
a flat list,
called by: GETRECORD, GETRECORD*

INSERTDATA [NAME, PREDECESSORS, PICTURE, LEVEL, SONLIST, OCCURS, VALUE]
remariks: ST - Inserts a data item into the symbol table.
called bwv: GETRECORD

NNULLATOM [A; :
remariks: ST - Returns T if the argument is not a null atom, NIL
otherwise. _ N
called by: INSERTDATA

PICTUREQK [PIC; X; PICTURECHARS]
remarks: ST - Returns T if PIC is a permissible PICTURE specification
NIL otherwise, .
called by: INSERTDATA, INSERT771TEM

MULTIPLE [NAME, QUALS; X;]
remarks: ST - Returns T if NAME and QUALS are conflicting qualified
data names., ..
called by: INSERTDATA, INSERT77ITEM

INSERTVALUE [FULLNAME, VALUEEXP;; VALUES])
remarks: ST - Inserts a value designation into the symbol value.
called by: IVSERTDATA INSERT771ITEM

INSERTSYMDOL [NAME;; SYMBOLTABLE]
remarks: ST - Inserts a variable into the symbol table,
called by: INSERTDATA, INSERT77ITEM, INSERTFILE, INSERTPARAGRAPH,

INSERTRECORD, INSERTSECTION
GETSONS [TREE; X;]

romarks: ST - Returns list of names of sons of a group data item.
called hy: GETRECORD

S5 =,.TAVA:LA ILE COPY

174

s

GETRECORD* {[RECORDLIST; X, 77DECS, DATADECS, Y;]
remarks: ST - Takes a list containing possibly many data declarations
and turns it into a declaration bill,
called by:

INSERT77ITEM [NAME, PICTURE, OCCURS, VALUE;;]
remarks: ST - Inserts a 77-item into the symbol table.
called by: GETRECORD*

INSERTFILE [NAME, RECORDLIST;;)
remarks: ST - Inserts a file name, and its corresponding record list,
into the symbol table.
called by:

INSERTPARAGRAPH (NAME, SECTION;;]
remarks: ST ~ Inserts a paragraph name into the symbol table.
called by:

INSERTRECORD [NAME, FILE;;)
remarks: ST - Inserts a record name into the symbol table.
called by:

INSERTSECTION ([NAME;;1
remarks: ST - Inserts a section name into the symbol table.
called by:

LABELMAKER [ABPROG; SECLIST, PARALIST, SECTION, PARAGRAPH, SECTION,
PARAGRAPH, PARANAME, SECNAME;}
remarks: PIP - Replaces all label references (and labels) in program
by their fully-qualified [paraname, sectionname] versions
called by: PREPROCESS, VC

LEVEL* [QUALNAME; ;]
remarks: ST = Returmns the level number of a qualified data item.
called by:

OCCURS* [QUALNAME; ;1]
remarks: ST -~ Returns the number of occurrences of a qualified data
1tem.
called by:

PATHANAL [SENTLIST, ACCUM, SENT; X; PATHLIST, TEMP, LABELASSERTLIST]
remarks: VC - Constructs from list of sentences a list (PATHLIST)
of paths in the program, each path beginning and ending
with an assertion,
called by: PATHANAL, VC

PREPROCESS [ABPROG, FLAG; FLATSECTEXT, FLATPARATEXT, TEXT;]
remarks: PTP ~ Transforms agbstract program, readying it for path
analysis (Now obsolete, superceded by VC).
called by:

175

RECORDNAME |F1LE; ;1

remarks: ST - Returns the record name corresponding to a file,
called by:

SECTIONLIST [NAME; ;] ~/
remarks: ST - Returns the list of sections for a given paragraph name.
called by:

SECTIONP [NAME;;)
rewarks: 3T - Returns T if the argument is a section name, NIL
otherwise,
called by:

VALUE* | QUALNAME; ;]
remarks: ST - Returns the VALUE expression for a qualified data item.,
called hy:

VO PABPROG; PATHLIST, FLATSECTEXT, LABELASSERTLIST; SCANOUT, PATHANALOU1,
VCOUT |
revarks: VO & PTP ~ Takes raw abstract program as input; performs
preprocessing, path generation, and verification condition
gehevration., Returns list (VCOUT) of verification conditions.
called by:

7AP Uy 2l7, MIKEA)
romarks: PUP =~ Internal debugging routine,
called biv:

176

177

(FILECREATED "10-JAN-76 17:34:56" PREPSYMBOL,. ;4 28552
changes to: LABELMAKER SENTENCESCAN
previous date: " 9-JAN-75 20:51:25" PREPSYMBOL. : 3)
(LISPXPRINT (QUOT:E PREPSYMBOLCOMS) -
TT)
[RPAQQ PREPSYuBOLCOMS ((FNS #* PREPSYMBOLFNS)
(DECLARZ: DONTEVALELOAD DORVALABCOMPILE DONTCOPY COMPILERVARS
(ADDVARS (NLAMA)
(NLAML DEBUGPRINT]
(RPAQQ PREPSYrBOLFNS :
(#ADDCORRESPONDINGS #ASSERT #IF #MOVECORRESPONDING #0PENIN
#OPENOUT #PERFORM #READ #SET$ #SETROUNDEDS$
#SUBTRACTCORRESPONDINGS #WRITE AMBIGUOUS
ASSERT1 CHANGELABEL COBOLVCG COMPLETELIST
CONVERT CORRESPAIRS DEBUGPRINT ELEMENTARYP
ELEMITEMSOF ERASETABLE ERR
FETCHLABELASSERTIONS FILE FILENAME
FLATTENPARAS FLATTENSECTIONS GATHERPARAS
GETNEWLABEL GETRECORD GETRECORD#* GETSONS
INSERT77ITEM INSERTDATA INSERTFILE
INSERTPARAGRAPH INSERTRECORD INSERTSECTION.
INSERTSYHBOL INSERTVALUE ISASSERT
LABELJAAKER LASTPARA LEVEL* MAXSIZE
MAXSIZE* MULTIPLE NNULLATOM OCCURS*
PATHANAL PICTURE* PICTUREOK PREPROCESS
QUAL QUALIFIEROK RECORDLIST RECORDNAME
SECTIONLIST SECTIONP SENTENCESCAM SONS
VALUE®* vC VCG1 ZAP))
{ DEFINEQ -
(#ADDCORRESPONDINGS
(LAMBDA (SENTENCE)
(FOR PAIR IN (CORRESPAIRS (CADR SENTENCE)
(CADDR 3ENTENCE))
COLLECT (LIST (COND
((CADDDR SENTENCE)
(QUOTL SETROUNDEDS))
(T (QUOTS SET$)))

(CDR PAIR)
(LIST (QUOTE PLUS)
(CDR PAIR)

(CAR PAIR))
(CAR (CDDDDR SENTENCE])
(#ASSERT
{LA4BDA (SENTENCE)
(A33iKT1 SENTENCE)
(LIST SENTENCE])
(#IF
[LAMBDA (SENT)
(PRUG (ARG1 ARG2)
(SETQ AHG1 (SENTENCESCAN (LIST (CADDR SENT)
[SEIQ ARG2 (SENTENCESCAN (LIST (CADDDR SENT]
L ooMD
((CDR ARG1)

~rnT pURILAELE COPY 178

(Se1Q Anul (LIdDL (QUULIL BLUULK)
ARG1)))
(T (SErQ ARGV (CAR ARG1)
L COnND
((CDR ARG2)
(SEIfQ ARG2 (LIST (QUOLE BLOCK)
ARG2)))
(T (S£I'Q ARG2 (CAR ARG2)
(RETURN (LISf (LIST (QUOTE IF)
(CADR SENT)
ARG1 ARG2))
(#MOVECORRESPONUING$
[LA1BDA (SENTLWCE)
(FOR PAIR IN (CORRE3PAIRS (CADR SENTENCE)
(CADDR SENTENCE))
COLLECT (LIST (QUOTLE 3ET$)
(CDR PAIR)
(CAR PAIR)
NIL])
(#OPENIN
{LAMBDA (L)
(LIST (LIST (QUOlE SET$)
(MKATOM (CONCAT (CADR L)
(QUOTE .INDEX)))
ol
(#QPENOUT
{LAnBDA (L)
(#OPENIN L])
(#PERFORu
[LABDA (SENT)
(PROG ((ASSKI (CADDR (CDDR SENT)))
IWLEX FIRSIVALUE STEP TER.JINATION)
(COuD
({(£Q (CADR SENT)
(QUOre TIMES))
(SETQ INDEX (GENSYH))

{RETURN
(LIST
(cous
{QUOTE BLOCK)
(SENTENCESCAN
(APPEND [LIST (LIST (QUOTE SETS)
INDEX 1)
A3SRT

(LIST (QUOTE IF)

(LIST (QUOTE GT)

INDEX

(CADDDR SR£HT))
(QUOTE (ENDPERFORM))

(QUOTE (NEXT]
(FLATTENPARAS (3JATHERPARAS

(CADR (CADDR SENT))
(CADDR (CADDR SENT))

179

FLATSECTRXT))
(LIST (LIST (QUOTE SETS)
INDEX
(LIST (QUOTE PLUS)
INDEX 1))
(LIST (QUOTE LOOPASSRRT)
ASSAT]
[(FQ (CADR 3redl)
(QUOT= VAKYING))
{(SETQ INDEX (CAR (CADDDR SENT)))
(3=ry FIRSIVALJE (CADR (CADDDR 3uNI)))
(SETQ STEP (CADDR (CADDDR SENT)))
(3h:Q TZAMINATION (CADDDR (CaDDDR 3UI)))
(RerUnRN
(LIST
{CHNS
(U BLOCK)
(S lusCESCAN
{APPEND [LIST (LIST (QUOI= 35T$)
INDEX FIRSTVALIE)
AS3RT
(LIST (CQuOTS IF)
TERMAINATION
(0UOTS (ENDPERFORM))
(QUOLE (NEXT)
(FLATTenNPARAS (SATHERPARAS
(CADR (CADDR SHNI))
(CADDR (CADDR 38NT))
FLATSECTEXT))
((.IS¢ (LIST (QUIOTT SETH)
IINEY
(LIST (QUOTA PLU3)
IIDEX 37%P))
(LIST (ouor, LOOPA33ERT)
(QUITZ ASSERT)
ASSRT]
TVZQUAL L TEDR 3ol
(QUr . (ONCERIY)
ol DL,)CK
N < JCESCAN
FLATTSAPARAS (GATIZ3PARAS
(CADR (CADDR 3ENT))
(CADDR (CADDR 3CNT))
FLAT3ECTEXT)
(T (QUU.S. (3TAANGE CYNTAX Id BLOCK 3INTENCE])

_.,,
(5e

(

Aoty (L)
thPay TONACE (CMKBTOM (CONCAT (CADR L)
(QUOr< .INDEX]

NS
chisT (LIS (QUOTs SeT$)
NAME

180

e

e A ma

(LidL (QUULEL PLUS)
NAME 1))
(LIST (QuUore IF)
[LIST (QuOoTe GT)
NAME
(AKATOM (CONCAT (CADR L)
(QUOTE .LENGTH]
(CADDOR L)
(QUOLE (NEXT]
(FOR ITeM IN [ELEMITEMSOF (CA4R (RECORDLIST (CADR 1]
COLLECT
(LIST (QUor=s 3<T$)
ITEM
(LIST (QUOie 3ZLECT)
(CONS (QUOTL OQUAL)
(CONS (MKATOM (CONCAT (CADR ITEM)
(QUOTE .ARRAY)))
(CDDR ITEM)))
(LIST NAME))
NILD)
(#321%
[LABDA (SEJTLNCE)
(LIST (CO4D
{ (CADDDR SENTEWCE)
(LIST (QUOT: IF)
(LIST (QuOI: GT)
(LIST (QUOT:E ABS)
(LIST (QUOT< TRUNCATE)
(CADR SEMTENCE)
(CADDR SENTENCE)))
(MAXSIZE* (CADR S“HTEWCE)))
(CADDDR SENTEWCE)
(LIST (QUOI. AS3IGN)
(CADR S<NTENCE)
(LIST (QUOCLS TRUNCATE)
(CADR SENTENCE)
(CADDR SEWTENCE]
(T (LIST (QUOfc ASZIGN)
(CADR 3uNTENCE)
(LIST (QUUIZ TRJUNCATE)
(CADR 3cNIENCE)
(CADDR 3TNTENCE]D)
(#SeTROVHUDEDS
L LAuBDA (SCNTEHCE)
(LISL (COuD
((CADDDR 3ZNTENCE)
(LIST (Quors IF)
(LIST (QUOI= GT)
(LIST (QUOLE ABS)
(LIST (QUOTE ROUND)
(CADR SENTENCE)
(CADDR SENTENCE)}))
(MAXSIZE® (CADR SENTENCE)))

181

(CuDDDR SENTENCE)
(LIST (QJOTl~ A3SIGHN)
(CADR Sun rENCE)
(LLST (QUUIe¢ ROUND)
(CADR 31ENTENCE) ~
(CADDR S:ENTENCE]
(T (LIS: (QUOI-. A33Iud)
(CADR 3<NIENCE)
(LIST (QUOi+~ ROUND)
(CADR 3LHIENCE)
(CADDR S&NTENCR])
(#SUBTRACTCOARESPOUDINGS
[LA“BDA {SENTENCE)
(FOR PAIR IN (CORKESPAIRS (CADR 3ENIENCE)
(CADDR SENTENCE))
COLLECT (LIST (COND
((CADDDR SENTENCE)
(QUOTL.. SETRGUNDEDS))
(T (QUIL.: 3.T13)))
(CDR PAIR)
(LIST (QUO.. 3SURTRACT)
(CDR PAIR)
(CAn PAIR))
(CAR (CDDOCR SZ9TENCE])
(4wRIis
PLAWBZA (L)
(PROG [LIVUEXNAML (MKATUM (CONCAT (FIL% (CADR L))
(QUOTF .INDEX]
(LENGTHWAGL (MKATOM (CONCAT (FILE (CADR L))
(QUOYY .LENGTH] ~
(NCOWC
(LIST (LIST (QUdle 5.0%)
IIDEXNAME
(LIST (QUOI< PLJS)
IIDEXNAME 1))
(LISD (QUOLVs 3nT$)
LENGTANAAL
(1,187 (QUOTI~ PLUS)
LERSTANAME 1))
(FOR II=M I.i (ELLMITEMSOF (CADR L))
COLLECT
(LIST (QUU:w SETS$)
(LIST (QUOTt 3£LECT)
(CONS (QUOTIE QUAL)
(CONS (MKATOi1 (CONCAT (CADR IT:EM)
(QUITT .43RAY)))
(CDPR ITEM)))
(LIST I.uDEXNAHME))
IisM NILJ)

g

(a0 [3uJdUS
L LAropA (HALE)
14 agcapts 1 name, eitner qualified or ungualified.
and returas t if it is an imbieuous data ref=rence)

182

\
I
1
\
!
|
1
[

(SETQ NANE (QUAL NAJE))
(GRLATERP (FOR X IN (GETP (CADR NAME)
(QUOIE SLEMS$))
COUNT (QUALIFIEROK (CDDR NAME)

(CAR X)))
1)
(A3SERT1
{LAMBDA (3ENiuaCE PTR)
(conp

((NULL SENTENCE))
((ATJM SENTEWCE))
[(£Q (CAR SeniziCE)
(QUOTL wAX3IZE))
(KPLACA PTR (4A{SIZE* (CADR SiNTENCE)
(T (FOR ¥ OV (CDR 3uNT<dCZ) DO (AS3ERT1 (CAR X)
)
(CHANGEL ABEL
[LArsDA (SENTENCE)
(COuD
((NULL ScSNTENCE))
((ATOM SENTEWNCE))
(T (SELECTQ (CAR 3cNTEJCE)
(RZAD (CHANGELABEL (CADDCR SINTENCE)))
(IF (CHANGELABEL (CADDR SENTENCE))
(CHANGELABEL (CADDDR 3ENTEHCE)Y)
{GO (RPLACA (CDR 32NTEICE)
(GETN&WLABEL (CADR SENTENCE]
(S:T$ (CHANGELABEL (CADDOR SENTENCE)))
(SETROUNDED$ (CHANGELABEL (CADDDR SZENTEHCE))Y)
{DO* (RPLACA (CDR 3EWJTENCZ)
(GEINEWLABEL (CADR SENTENCE)))
(RPLACA (CDDR 3ENT<dCE)
(COND
((MEMB (CADDR 3EWTEANCE)
SECLIST)
(LASTPARA (CADDR SENTENCE)))
(T (GETNEWLABEL (CADDR SENTENCE]
(PERFOR\ (CAANGELA3KL (CADDR SENTENCZ)))
NIL])
(SOBOLVCS
(LAnmbDA (PASHLISL)
(CONS (QUOTZ AND)
(FOR PATA I+ PATHLISI COLLECT (VC31 (CDR PATH)
(CADAR PATd4])
(COVPLETGLIST
[LA:sDA (QUALIAME)
(SEIQ QUAL.JAvE (QUAL QUALNAWE))
(COtiD
((AP IGUOUS QUALNAME)
(HsLP QUALJAME "ambiguous reference'))
(T (FOR X I4 (GETP (CADR QUALNAuE)
(QUOT: ELEmM$))
UJTIL (QUALIFIEROK (CDDR QUALNAME)

183

A3 s e M A R 1 Y

(CAR X))
FINALLY (COND
[X (RETURN (CONS (CADR QUALNAME)
(CAR X)
(T (HELP QUALNAME "is not in symbol table'])
(CONVEAT
[LArioDA (PIC)
(IF (NULL PIC)
Tdad WIL
ELSE
(PROG (X (Y (LIST dIL))
1)
(SETQ X (UNPACK PIC))
(AHILE (LISTP X)
DO (SELECTQ (CAR X)
((9 Vv PSX)
(NCONC1 Y (CAR X})
(SETQ X (CDR XO))
[4$((SETQ X (CDR £J)
(SETQ 21
(PACK (FOR Z IN NLD X
UNTIL (EQ Z (QUOTE %)))
COLLECT Z)))
(ScrQ@ X (CDR X))
(IF (NOT (NUMBERP 21))
THEN (HELP 21
"bad iterative picture))
(PROG [(Z2 (CAZ (LAST YJ
(RPTQ (SUB1 21)
{NCONC1 Y 22]
(HELP PIC bad picture specification)
(ReTURN (PACK (CDR ¥))
(CORAESPAIRS
LLAGBDA (X Y)
{ PRUG (X3043 Y30NS)
(370 K3Ua3 (S0NS X))
(32TQ YSONS (SUA3S Y))
{COD
[(AND XS0.3 YSOHWS)
(RETURN (FOR XSO Id XSONS
JOIJd (FOR YSOM TN YSONS
AHIN (EQ (CADR XSOWN)
(CADR Y30d))
JOIN (CORRR3PAIRS XSNN YSON]
((OF {30s3 YSONS)
NIL)
(T (R.TURN (LIST (CON3 X Y])
(L iBd PRI
LdLAcoDA (wdAl oHoRe wHEN)
TPRUC it
(200w
(/7M. WHEN FLAG)
{TePRI)

184

(PRINT (QUOTCE wmecmcccccmc e e re e ec e))
(TZRPRI)
(PRINT WHERE)
(TLAPRI)
(TZRPRI)
(PPR (EVAL wHAT)))
(T NILD)
(SLEMEJdTARYP
(LAusDA (DATADESCRIPTION) (* tells whether a siven
data descrintion {s of
an elementary item)
(CADDR DATADESCAIPTION])
(SLEAITEUSOF
L LALBDA (X)
(COuwu
((FOR SON IN (SONS X) JOIN (ELEMITEMSOF SON)))
(T (LIST XI)
(ERASETABLE
[LA~BDA NIL
(* initializes the symboltable by clearing the
property lists of all names in the symboltable, then
ciears the variable symboltable.
must be done when performing two parses in a row)
(FOR £ I3 SY..COLTASLE DO (FOH Y I'i TYPES DO (RFMPROP X Y)))
(SEIQ 3YBOLTABLE)
(St TQ VALUES}])
(LnA
{(LAcioDA (X)
(PRINL X)
(RETFROI])
(FETCHLABELASSERTIONS
{LAGBDA (ABPROG)
(FOR rPARA IN ABPROG WHEN (ISA33%RT (CADDR PARA))
D) (SETQ LABEULASSEATULIST (CONS (CONS (CADR PARA)
(CADDR PARAD)
LABELASSERTLIST))
(FILE
[LALSDA (JAME) (* returns the file
corresponding to a given
record name)
(GETP NAME (QUOIc RECORDS$I)
(FILENAME
{LALBDA (RoCOKD)
(Quuise FILENAME])
(FLAT1=nPASAS
L LA«psDA (AcPROG)
(FOR PARA IN ABPROG JOIN (APPEND (CDDR PARAJL)
(FLATTENSECTIONS
(LABDA (ABPROG)
(FOR S<CTION IN (CDR ABPROG) JOIN (APPEWD (CDDR SECTION])
(GATH<rnPARAS
{LAusDA (L1 L2 TeXT)
(FOR X ud ToeXT WHoN (EQUAL (CADAR ¥

185

L)
DO (RETURH (FOR Y ON (REVERSZ X) WHEN (EQUAL (CADAR Y)
L2}
DO (RETURN (REVERSE Y])
(SEINEWLABEL
(LAvisDA (LABEL)
(COnND
{(alQu LABEL)
(Cond

((MEiB LABEL SZCLIST)
{LIST (GETP LABEL (QUOTZ FIRSTPARA))
LABEL))
((4EMB8 (CADR JSoCTIuW)
(GETP LABEL (QuUU:is 3SECS)))
{LIST LASEL (CADR 3ECTION)))
[(EQUAL (LENGTH (GETP LABEL (QUOTZ SECS)))
1)
(LIST LABEL (CAR (GETP LABEL (QUOTE SECS]
(T (ERR (QUOLE (NOW-UNIQUE LABEL REFER:NCE]
(T LABEL])
(SETRECORD
{ LAnSDA (3ARBAGE LEVELLIST NAMELIST)
(% tvnis function takes a flat list of record
descriptions and turns them into a tree ~- in tae
COBOL sense. it iterates through tne list...)
(IF (JLISTP GARBAGE)
Taed (HELP NIL " bad call of GETRZCORD"))
(PROG (CURRENTLEVEL CURRSNTRECORD DUMIY)
(IF (QLISIP (CAR GAXBAGE))
Tda<N (HELP (CAR GARBAGE)
"bad record descriotion™))
(SETQ CURRENTLEVEL (CAAR GARBAGE))
(IF LEVELLIST
TdEw (IF (ILES3P CURARENILEVEL (CAR LEVELLIST))
TdEd (HELP (CRAR GARBAGE)
" bad record
structuret)))
(CONS (EACHTIME (SETQ CURRENTRECORD (CAR GARBAGE))
WHILE (AND GARBAGE (NOT (ILESSP (CAR CURRENTRECORD)
CURRENTLEVELY))
COLLECT (IF (AND (EQP (CAR CURRENTRECORD)
CURRENTLEVEL)
(ELEMENTARYP CURRENTRECORD))
THEN
(* nerz i3 an elementary item at the current level
-- IT I3 placed in the symboltable and the pointer
is moved up)
(INSERTDATA (CADR CURRENTRECORD)
NAMEL IST
(CADDR CURRENTRECORD)
CURRENTLEVEL WN1L
(CAR (NTH CURRENTRECORD
4))

186

L TN, ' . I

ro I ——

(CAR (NTd CURRINTRECORD
5)))
~ (SETQ GARBAGR (CDR GARBAGE))
CURRENTRECORD
ELSEIF (EQP (CAR CURRENIKECORD)
CURRENTLEVEL)
Tdin
(* here is a group item at the current level.
it is put in the symboltable, and the function is
called recursively to handle tne elementary items
tiaat will follow. after returning, the global
variable is reset and the subtree is gathered into
tne fold)
(SEIQ DJMMY
(GETRGCORD (SETQ JARBASE
(COR GARBAGE))
L (CONS CURRENTLEVEL
. ' LEVELLIST)
(CONS (TADR
CURRENTRECORD) '
NAMELIST))) !
(INSERTDATA (CADR CURRENTRECORD) i
NAMELIST NIL ;
CURRENTLEVEL :
(GETSOANS (CAR DUMY))
(CAR (NTH CURRENTRECORD
b))
- {CAR (NTH CURRENTRECORD
5)))
(SETQ GARBAGE (CDR DUfiiY))
(LIST CURRENTRECORD (CAR7 DUMHY))
ELSE (HELP NIL " bad rezord structure')))
GAIBAGE])
{ GECRECORD*

(LAvisDA (RoCORDLIST) (* senarates
T7declarations from
tree-structured
declarations and calls
getrecord on the
tree-structured
declarations)

(FOR (X (TIDECS(LIST NIL))
(DATADECS(LISTI WIL)))
I8 RECORDLIST DO (IF (EQP (CAR X)
77)
TAEN (NCONC1 77DECS X)
ELSE (NCONC1 DATADECS X))
FIJALLY [FOR Y IN (SEIQ 77DECS (CDR T7DECS))
DU (INSERITTITEM (CADR Y)
(CADDR Y)
(CADDDR Y)
(CAR (NTH Y 5]
(RETURN (APPEND (CAR (GETRECORD (CDR DATADECS)))
' N
187

77DEC3))
(GE L'SL) NS
{LAubDA (TRbw)
(FUOR X IN TREE COLLECT (IF (NLI3IP (CAR X))
T1ied (CADR X)
ELSE (CADAR X1)
(INSERITTITEM
{ LAmsDA (NAGE PICTURE OCCURS VALUE)
(* inserts a 77-item toaetner with its picture.
checks for non-unique references, bad picture,
modifies property 1list and symboltable.)
(IF (MULTIPLE NAME)
TraN (HELP NA&E 'multiply defined 77-item?)
ELSEIF (OR (NULL (SETQ PICTURKE (CONVERT PICTURE)))
(NOT (PICTURCOK PICTURE)))
fad (HELP NAME 'bad picture specification™)
ELSZIF (NOT (ATuM OCCURS3))
Td:2N (HELP OCZUR3 "bad occurs expression')
ELSEIF (LISTP VALVE)
TAEN (HELP VALUE "pbad value statement”)
ELS= (ADDPROP NAmME (QUOIC ELEMS$)
(CONS NIL (LIST PICTURE 77 NIL OCCURS VALUE)))
(IJSEALVALUE dANE VALUE)
(IJSERT3YmMBOL NAME])
(IISERIDATA
{LA.3DA (NAME PR:DECES30RS PICTURT LEVEL SONUIST OCCURI VALUE)
(* inserts an entry for a group or elementary data
item. checks for malformed predecessor list, bad
picturzs, and non-unique data references.)
(IF (NNULLATOM PREDECE3SORS)
fuid (HELP (CONS NAME (LIST PREDECESSOR3))
"incorrect oredecessor list")
ELSEIF [NUf (PICTUREOK (SETQ PICTUR: (COWVERT PICTURE]
fdcw (42LP (CONS WAME (LISI PREDECKSSORS))
"incorrect picture specification')
ELSEIF (MULTIPLE NAME PREDECESSORS)
TAEN (HELP (COdS NAME (LIST PREDECESSORS))
"multiply defined elementary item')
ELSEIF (NJOT (NUMBERP LEVEL))
THuw (HELP LEVEL ‘'imnroper level svecification®)
ELSeIF (NJULLATO! SONLIST)
THEn (HELP SJNLIST "not a list of sons')
EL3.IF (NJI (ATuM OCCURS))
TreN (HELP OCCURS "bad occurs expression®)
ELSLIF (LISTP VALUE)
TrleN (HeELP VALUE " bad value statement”)
ELS¢. (ADDPROP NAME (QUOIZ ELEu$)
(COWS PR:IDECESSORS (LIST PICTURE LEVEL SONLIST
OCCURS VALUE)))
(INSERTVALUE (APPEND (LISI (QUOTE QUAL)
NAME)
PREDECESSORS)
VALJE)

188

{(IJ4SEN{3YeiBOL NAcR]))
(INSERIFILE
{ LALBDA (NAME RCCORDLIST)

{(#* inserts list of records pertainine to a given
file. checks for malformed recordlist and multiple

references.)
(IF (JLISTP RECORDLIST)

Tded (HELP NIL 'IPROPER RoCORDLIST")

ELSZIF (GETP NAME (Quuiw FILES))

Tdend (HELP NAME "DUPLICATE RECORD DECLARATION)

ELSE (PUT HAME (QUU:. FILES$)
RECORDLIST)
(INSERL3Y(80L NAGE])
(INSERITPASRAGRAPH
{LAMBDA (NAME SECTIONW)

(* inserts a section for a given paragraph.
two pzragraphs of tne same name must be in different

sections.)

(If (FMEM3 SECTION (GETP NAME (QUOT:E PARAGRAPH3)))
THEW (HELP NASE "APPEARS TWICE Id A SECTION®)
2LSE (ADDPROP NAuE (QUOTE PARAGRAPH3)

3.CTION)
(INSERTSYBOL HALET)
(INSERTALCORD
{ LAuBDA (NAME FILE)

(IF (GETP NAME (QUOT. RECORD$))

THEN (HELP NA#“E "J4ULTIPLY DEFIJED RCCORD")

ELSE (PUT NAME (QuUOTe RECORDS)
FILE)
(INSERTSYM30L NAME])
(INSERT3=CTION
{LAuBDA (NAME)

(IF (GETP NAnE (QUOi. SHECTIONS))

(* inserts a recordname
into the svmboltable,
with its corresoonding
file)

(* inserts a section
name into the
symboltable)

Tand (HELP NAME . ULTIPLY DEFINED SECTION')

sLSE (PUT JAME (QUOTt SECTIONS)
(QUOT= T))
(INSER[3Y:BOL NAIE])
{(I4SER.3YMB0L
LLA#bDA (NAME)

(* adis a symhol to the
zlohal variable that
represents the symbol
tahble)

[SeiQ 5YmsOLTASLE (SORI (CONS NAME (DREMOVE NAWME SYwROLTABLE]

NA.IE])
(INSEnIVALUE
(LA“3DA (FULLWAME JVALUEZXP)
(IF VALUEEXP

Taud (SETQ VALUE3 (CON3 (CONS FULLWAME VALUEEXP)

189

e—

VALUEST)
(ISASSERT
{LAMBDA (X)
(AND (LISTP X)
(EQ (CAR X)
(QUOT: ASSERT))
{ LABEL.AKER
{LAABDA (ABPROG)
(PROG (SECLIST PARALIST)
[FOR SECTION IN {(CDR ABPROGQ)
DO (PUT (CADR 3eCTION)
(QUOTS FIRSTPARA)
(CADADR (CDR SECTIO®)))
(SEQ SECLIST (CONS (CADR SECTYON)
SECLISI))
(FOR PARAGRAPH IN (CDDR SECTION)
DO (SETQ PARALIST (CONS (CADR PARAGRAPH)
PARALIST))
(ADDPROP (CADR PARAGRAPH)
{QUOTE SECS)
(CADR 3SECTION]
{FOR 3uCTION IN (CDR ABPROG)
DO (FOR PARAGRAPH IN (CDDR StCTION)
DO (RPLACA (CDR PARAGRAPH)
(LIST (CADR PARAGRAPH)
{CADR SECTION)))
(FOR SENCENCE IN (CDDR PARAGRAPH)
DG (CHANGELABEL SENTENCE]
(FOP rARANAME IN PARALIST DO (REMPROP PARANAME (QUOTE SECS)))

(FOR SECNAME In SECLIST DO (REMPROP SECNAME (QUOTE FIRSTPARAD)
(LASIPARA

(LAMBDA (S=C)
{¥OR 3ECTION IN (CDR ABPROG) WHSN (EQ (CADR SECTION)
SEC)
DO (RETURN (LIST (CADAR (LAST SECTION))
SECT)
(LEVEL®
{LAMBDA (QUALNAME)
(SETQ QUALNAME (COMPLEI:LIST QUALNAME))
{CADDR (SAS30C (CDR QUALNAME)
{GETP (CAR QUALNAME)

(QUOTE ELEM$])
(AXSIZE

[LA=BDA (PIC)
(* returns thne largest value that will fit in the

picture corresponding to a given qualified variable)
(FOR (X YNIL

Lo
RO)
IN (UNPACK PIC) DO (SELECTQ X
()
(Vv (SETQQ Y T))
(9 (IF Y
190

THEN (SETQ R (SUB1 R))
2LSE (SETQ L (ADD1 L)
(P (IF Y
TukN (SETQ L (SUB?T L))
(SETQ R (SUB1 R))
ELSE (SETO L (ADD1 L))
(SETQ R (ADD1 R]
(HELP PIC "incorrect picture '))
FIJALLY (RETURN (DIFFERENCE (EXPT 10 L)
(EXPT 10 R))
(JAXSIZE®
{LALBDA (QUALWAME) (* gives the maximum
3ize of the value of a
qualified variable)
(MAXSIZE (PICTURE® QUALNAME])
(MULTIPLE
{LAuSDA (NAYE QUALS)
(OR [FOR X IJ (GETP NAME (QUOIL ZILEM$))
Tdor€IS (OR (QUALIFIEROK (CAR X)
QUALS)
(QUALIFIEROK QUALS (CAk X]
(FuEM2 NAME QUALSD)
(NJULLATOM
(LAMBDA (A)
(AND A (NLISIP A])
(OCLURSH*
[LAABDA (QUALNAME)
(SEfQ QUALWAME (COMPLET-~LIST QUALWAME))
(Car (NTH (SA330C (CDR QUALNAME)
(GETP (CAR QUALNAME)
(QUOT: SLEM$)))

51)
(PAIAANAL
[LAnBDA (3cNTLISLT ACCUM 3ENT)
(Conp

((NULL 32d4TLIST)
(LIST ACCU.))
(T
(SEIQ 3&Ni (CAR SENTLIST))
(SELECTQ
{(CAR SENT)
(NEXT (PATJANAL (CDR SENTLIST)
AZCUM))
(A33ER1 (SETQ ACCU:1 (CONS 30LJdT ACCUM))
(3£TQ PATHLIST (CONS ACCHUM PATYLIST))
(PATHANAL (CDR 3&NTLIST)
{LIST 3&NT)))
[SsUP (SETQ ACCUM (CONS (CADR SENT)
ACCUM))
(SETQ PATALIST (CONS ACCUM PATHLISE))
(SeTQ SRATLIST (CDR SLNTLIST))
(COuD
(SEWTLIST (COND

191

bl

[(ISA332AT (CAR 32NTLIST))
(PATHANAL (CDR 3uNTLIST)
(LI3T (CAR 3ENTLIST.
(T NIL)))
(T (QUOTl~ (END]
{30 (Saui{Q TEMP (SAS3JOC (CADR 3ENT)
LA3SLASSLRTLIST))
(coip
{ (NULL TEap)
{3ELP (QUOLE (GOT) TARGET HAS wO ASSERTION]
(SSIQ ACCUmt (COWS (CDR TEMP)
ACCUND))
(SETQ PATHLIST (CON3 4>lUM PATHLIST))
(3%0Q SENILIST (CDR SENTLIST))
(COND
(SENTLIST (COND
[(ISASSIHT (CAR SLATLISTY)
(PATHANAL (CDR SENTLIST)
(LIST (CAH SEMTLIST]
(T NIL)))
(T (QUOL~ (END)
{IF (UdIQ4 (PATHANAL (CON3 (CADDR 3EdI)
(CDR 3ENTLIST))
(CONS (LIST (QUOTZ IF)
(ZADR 3iNT))
ACCUM)
(PATHANAL (CONS (CADDCR S®EAT)
(CDR SENILIST))
(COd3 (LI3T (QUOTE IF)
(LIST (QUaT= NOT)
(CADR SuNI)))

ACCUA]
LALOCK (UNTON (FOR X IN (PATHANAL (CDR 32ENT)
ACCUI)
JOIN (COND
((EQ X (QuOTZ END))
(COND

[{ISAS3AT (CADR SENTLIST))
(PATHANAL (CDDR SEMTLIST)
(.IST (CADR SENTLIST]
(T NIL)Y)
(T (PATHANAL (CDR 3SE4TLIST)
X1
(LJ2PAocL s (SETQ AJZUM (CONS (CADR 36NT)
ACCUMY)
(et PATHLISLC (CO4S ACCUM PATALIST))
(LIST (U05L -ND)))
(BEJUPERFQR. (LISI ACCUM))
(PACHANAL (CDR 3UNTLIST)
(CONS (CAN 3<NTLIST)
Accun])
(PICTJR.®
(LAuBDA (QUALYAME)

192

(SeTQ QUALMAME (COMPLETELIST QUALNAME))
(CADR (SASSOC (CDR QUALNAME)
(GETP (CAR QUALNAME)
(QUOTL KLE#$]))
(PICTUREUK
{LAMBDA (PIC)
(OR (NULL PIC)
(AND (ATOM PIC)
(FOR X In (UNPACK PIC) ALWAYS (FMEMB X PICTURECHARS])
(PREPRUCESS
[LAv3DA (ABPROS FLAG)

(PROG (FLAT3ECTEXT FLATPARATEXT (TEXT (COPY ABPROG)))
(DEBUGPRINT TEXT INPUT-PROGRAM 1) '
(LABELMAKER TEXT)

(DEBUGPRINT CEXT AFTER-LABEL.AKER 2)
(SETQ FLATSECTEXT (FLATTEJSECTIONS TEXT))
(DEBUGPRINT FLATSECTEXT AFTER-FLATTENSECTION)
(SETQ FLATPARATEXT (FLATTEWJPARA3 FLATSECTEXT))
(DESUGPRINT FLATPARATEXT AFTER-FLATTENPARAS 4)
(SAZTQ FLATPARATXXT (SENTEWCESCAN FLATPARATEXT))
{DEBUSPRINT FLATPARATEXT AFTER-SENTZNCESCAN-IN-PREPROCESS 51)
(QUAL
(LAausDA (QUALNAME)
(CoND
((NLISTP QUALNAME)
{(LIST (QUOL= QUAL)
QUALJAME))
((NEQ (CAR QUALNAME)
(QUOTE QUAL))
(HELP QUALNAME "improper qualifier"))
(T QUALWAME])
(QUAL IFIEROK
[LAMBDA (QUALLIST PREDLIST)
(conD
((NLISTP QUALLIST)
T)
({NLISTP PREDLIST)
NIL)
(T (PROG (2)
(SETQ Z (FMEMB (CAR QUALLIST)
PREDLIST))
(RETURN (CO‘'.%
({NLISTP 2Z)
NIL)
(T (QUALIFIEROK (CDR OQUALLIST)
(CDR Z))
(KECORDLIST
(LA:BDA (HNAME)
(GETP NA¢E (QUOl: FILES]})
(RLCORDNAME
LLAMBDA (FILE)
{CAn (RZCORDLIST FILE))
(3eCTIUNLIST

193

LLASDA (NAME)
(GEIP NAME (QUOT: PARAGRAPH$1)
(SECTIVNP
{LAMBDA (NAME)
(GErP NAME -QUOTE SECTION$I)
{SENTENCESCAN
{LAnBDA (TELT)
(PROG NIL
(FOR SE4T IN T ¥T
JoId
(APPEND (ScLECTQ

(CAR SHENT)

(OPENINPUTS (SENTE!CESCAN (#OPENIN SENT)))
(OPENOUTPUTS (SENTEZMCESCAN (#0OPENOUT SENT)))
(READ (SENTZINCESCAN (#READ SENT)))

(WRITS (SENIZICESCAN (#WRITE 3ENT)))

(IF (#IF S&aTI))

(PERFORM (#PERFORM SENT))

(SET$ (#SET$ 3ENT))

(SETROUNDED$ (#SETROUNDED$ 3ENT))

(MOVECORRLSPONDINGS (SENTENCESCAN (

#1OVECORRESPONDINGS SENT)))

(ADDCORRESPONDINGS (SENTENCESCAN (

#ADVCORRESPONDIIGS SENT)))

{ SUBTRACTCORRESPONDINGS (SENTENCESCAN
(

#SUBTRACTCORRESPONDINGS SENT)))

[LOCPASSERT (LIST (CONS (QUOTE LOOPASSERT)
(SENTENCESCAN
(CPR SENT)

(AS3<RT (#ASSERT SENT))
{ DISPLAY NIL)
(ACCEPT NIL)
(LIST SENTI)
(303
(LAnoDA (QUALNAME)
(SETQ QUALNAME (COMPLETELIST QUALNAME))
{(FOR X Id& [CADDDR (SASSOC (CDR QUALNAME)

(GETP (CAR QUALNAME)
(QUOT% ELEM$]

COLLECT (APPEND (LIST (QUOTE QUAL)
X
QUALNAME])
(VALJE®
{LAGEDA (JUALNAME)
(36TQ QUALJAME (COMPLEIeLIST QUALNAME))
(cad (NTH (SA530C (CDR QUALNAME)
(GETP (CAR QUALNAME)
(QUOTE =LEM$)))
6))
(vC
{LAMBDA (ABPROG)
(PROG (PATHLISI FLATSECTEXT LABELASSERTLIST)

194

(LABEL#AKEA ABPROG)
(S£1Q FLATSECTEXT (FLATTANSSCTIONS ABPROS))
(FETCHLABELA3SERTIONS FLATSECTEXT)
(3£1Q SCANOUT (SENT:NCESCAN (FUATTZWPARAS FLATSECTEAT)))
(PATHANAL (CDR 3CANOUT)
(LLSL (CAR 3CANIUT)))
(3c1Q PAT4ANALOUT PATALLST)
(3£TQ VCOUT (COBOLVCG PATYLIST))
(RETURN VCOUT])

(Vegt
{LAnBDA (PATH FORM)
(COnD
({(NULL PATH)
FORM)
(T (3ELECTQ (CAAR PATH)
(ASSERT (LIST (QUOTE IMPLIES)
(CADAR PATH)
#£IRM))
(IF (VCG1 (CDR PATH)
(LIST (QUOTRK IMPLIES)
(CADAR PATH)
FORM)))
(ASSIGN (VCG1 (CDR PATH)
(3UB3T (COND
((AND (LISTP (CADAR PATH))
(EQ (CAADAR PATH)
{QUOTE SELECT)))
(LIST (QUOTR CHAWNSE)
(CADR (CADAR PATH))
{CADDR (CADAR PATH))
(CADDAR PATH)))
(T (CADDAR PAT:H)))
(CADAR PATH)
FORM)))
(VC31 (CDR PATH)
FIR1])
(Zur
[LA4BDA HIL
(PROG NIL
(327Q 242 (COPY AIKE/A))

(R=TURN])

)
{DECLALL: oUd (LVALZLOAD DOLVALACOMPILE DONJCOPY COnPILERVARS

(ADOTUV.Lt NLAGA)

(ADJUTIVAI NLAL DEBUGPRINT)
i
(DECLARG: DO4TCOPY

(ILEWAP (NIL (1274 28412 (#ADDCORRESPONDINGS 1286 . 1628) (#AS3ERT
1632 . 1708) (#IF 1712 . 2202) (#10VECORABLIPONDIAGE 2205 . 2110) (
#OPEATN 2434 | 2524) (#OPENOUT 2528 . 2570) (#PERFORM 2374 . 4493%)
(H#RZAD 44912 . S3d1) (#Susd SOW3 . 53537) (#SETRIUIDEDS 8341 . A1)
(#SUBTHALTCORHG SPOUDINGS H135 . 5U86) (#WRIT= &8990 . 713) (AGRISHIS
142 . 7450) (Ass.aa1 7470 . 7725) (CHANGELABEL 7729 . 3u43%) (ZOBQLVCG

195

4453 . 8589) (COMPLETELIST 8593 . 9005) (CONVERT 9009 . 9667) (
CORRESPAIRS 9671 . 10052) (DEBUGPRINT 10056 . 10346) (ELEMENTARYP
10350 . 10603) (ELEMITEMSOF 10612 . 10724) (ERASETABLE 10728 . 11098)
(ERR 11102 . 11152) (FETCHLABELASSERTIONS 11156 . 11361) (FILE 11365

. 11609) (FILENAME 11613 . 11665) (FLATTENPARAS 11669 . 11753) (
FLATTENSECTIONS 11757 . 11856) (GATHERPARAS 11860 . 12063) (GETNEWLABEL
12067 . 12481) (GETRECORD 12485 . 14789) (GETRECORD* 14793 . 15671)
(GETSONS 15675 . 15800) (INSERT77ITEM 15804 . 16538) (INSERTDATA 1A542

. 17749) (INSERTFILE 17753 . 18183) (INSERTPARAGRAPH 18137 . 185A8)
(INSERTHECORD 18572 . 19014) (INSEAISKCTION 19018 . 19392) (INSERTSYIBOL,
19396 . 19751) (INSERTVALUE 19765 . 19891) (ISASSERT 19895 . 19Q77)
(LABELmAKER 19931 . 20811) (LASTPARA 20815 . 20970) (LEVEL* 20974

. 21130) (MAXSIZE 21134 . 21726) (MAXSIZE® 21730 . 21987) (MULTIPLZ
21991 . 22182) (NNULLATOM 22186 . 22235) (OCCURS* 22239 . 22u418) (
PATHANAL 22422 . 24353) (PICTURE® 24357 . 2u4512) (PICTUREOK 24516

. 24u42) (PREPROCE3S 24046 . 25223) (QUAL 25227 . 25440) (QUALIFIEROK
25444 , 25745) (RECORDLIST 25750 . 25810) (RECORDNANE 25814 . 25872)
(SECTIONLIST 25876 . 25942) (SECTIONP 25946 . 26007) (SENTENCESCAN
26011 . 26816) (30dS 26820 . 27068) (VALUE* 27072 . 27250) (VC 27254

. 27701) (VCG1 27705 . 28314) (ZAP 28318 . 23409)))))
310P

[P TSN RSP AU

196

