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surfaces. The medium below the irregular boundary 1is characterized by S
complex permittivity and permeability. For slightly rough surfaces, the
full wave solutions for the incoherent scattered fields are shown to be
in agreement with the perturbation solution. However, when the major
contributions to the scattered fields come from the region of the rough
surface around the stationary phase (specular) points, the full wave solu-
tions are in agreement with the physical optics solutions. Thus, the full
wave solutions which reduce to the perturbation, the physical optics and
the geometrical optics approximations in special cases, precisely deter-
mine the limitations of these approximations and reconcile the differ-
ences between them.'

The full wave splutilons satisfy duality, reciprocity and relizability

{ relations in electromagnetic theory and they are invariable under coord-
inate transformatiaqfis.

R S —— -

" ] PART 2: SCATTERING CROSS SECTIONS FOR COMPOSITE RANDOM SURFACES ~= FULL
WAVE ANALYSIS,

The full wave approach to rough surface scattering is applied to
composite models of rough surfaces. In this work the principal distin-
guishing features of the individual rough surface is its correlation dis-
tance. Thus this model can be applied to scattering by rough seas as
well as hilly terrain. /It is shown that the full wave approach accounts
for both specular scatter and Bragg scattering. The scattering cross
section for the composite surface, with two or more roughness scales, is
shown to be a weighted sum of the scattering cross sections for the
individual rough surface heights. Shadowing effects are accounted for
explicitly in the analysis. The full wave solutions satisfy reciprocity,
duality and realizability relationships in electromagnetic theory.

UNCLASSIFIED

SECURITY CLASSIFICATION OF Yu'® PAGE/When Data Entered)

13




I-1

PART 1

SCATTERING CROSS SECTIONS FOR RANDOM ROUGH SURFACES

w‘dlv

-=-FULL WAVE ANALYSIS

Ezekiel Bahar

Electrical Engineering Department

University of Nebraska-Lincoln

Lincoln, Nebraska 68588

Abstract

The full wave approach developed earlier to evaluate the radiation fields

scattered by deterministic two dimensionally rough surfaces is used here to

determine the scatrering cross sections for random rough surfaces. The medium

below the irregular boundary is characterized by complex permittivity and

permeability.

For slightly rough surfaces, the full wave solutions for the

incoherent scattered fields are shown to be in agreement with the perturbation

solution,

However, when the major contributions to the scattered fields come

from the region of the rough surface around the stationary phase (specular)

points, the full wave solutions are in agreement with the physical optics solutions.

Thus, the full wave solutions which reduce to the perturbation, the PﬁysicalQE;ics

and the pgeometrical

optics approximations in special cases, precisely determine

the limitations of these approximations and reconcile

the differences between them.

The full wave solutions satisfy duality, reciprocity and realizability

relations in electromagnetic theory and they are invariable under coordinate

transformations.
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1. Inuroduction

The full wave solution for the scattercd radiation field by deterministic
two dimensionally rough surfaces (Bahar 1980) is applied, in this paper, to problems
of scattering and depolarization by random rough surfaces. The results .f this
analysis are compared with the solutions derived from two general approaches to random
rough surface scattering problems: the perturbation technique and the Kirchoff-Physical
Optics approximation (Ishimaru 1978). The perturbation technique, which applies to
surfaces that are slightly rough was used by Rayleigh (Strutt 1896) and extended by
Rice (1951), Barrick and Peake (1968), Barrick (1970, 1971), Wright (1966) and Rosich

and Wait (1977), Valenzuela (1978). The Kirchoff-Physical Optics approximation technique

TTE T Giee By o B AN Cols WY ke WM s X D = T

was applied to surfaces with radii of curvature that are much larger than the wavelength

X

-

of the electromagnetic excitation (Beckmann and Spizzichino, 1963, Beckmann 1968,

Ament 1953).

po.
;.

The principal elements of the full wave approach are (Bahar 1980): (a) Complete

expansion of the fields into vertically and horizontally polarized waves. The i

complete spectrum of the waves consists of the radiation fields (considered
here in detail) and the surface and the lateral wave terms (Bahar 1973a,b).

(b) Imposition of exact boundary conditions at the irregular interface between

two media y > h{(x,z) and y < h(x,2z) characterized by complex electromagnetic
parameters € and U for exp(iwt) time harmonic excitations. Thus approximate
impedance boundary conditions are not used in this work. (c) Use of Green's

theorems tc avoild term by term differentiation of the complete expansions.

ik

(d) Conversion of Maxwell's equations into rigorous sets of coupled first-

APPSR

order differential equations (generalized telegraphist's equations) for the ‘
wave amplitudes. (e) Use of a variable coordinate system thLat coaforms with the
local features of the rough surface. Thus there are no restrictions on the height
or slope of the rough surface, and both uvpward and downward scattering of the

incident fields are accounted for in the analysis. The offects of shadowing can

al=o be included in the full wave analysis. The full wave solutions are shown tu

. PN T A A 23 " perey . L =~ =
o - e a—— gy i, -
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satisfy duality, reciprocity and realizability relationships in electromagnetic
theory (Bahar 1980).

For the convenience of the reader, the full wave solutions for the radiation
fields scattered by deterministic two-dimensionally rough surfaces, are summarized
in Section 2 since they constitute the starting point of the present analysis.
0f particular interest in this work is the bistatic scattering cross section per
unit area for rough surfaces (See Appendix A) (Barrick 1970, Ishimaru 1978).

The full wave solutiong for the scattering cross sections are developed first for
slightly rough surfaces in Section 3. 1In this special case the full wave
solutions are shown to be in complete agreernent with the scattering cross sections
for the incoherent (diffuse) fields (Barrick and Peake 1968).

In Section 4 of this paper, the full wave approach is applied to rough surfacus
with normal height distributions. 1In this section it is shown that if a high
frequency stationary phasc approximation is made to the full wave solutions, the
expression for the scattering cross section reduces to the Kirchoff--Physical Optics
solutions, (Beckmann and Spizzichino 1963, Ishimaru 1978), with the exception
that here, consistent with reciprocity, the Fresnel reflection coefficients are
evaluated at the stationary phase points, rather than at the angle of incidence
with respect to the reference plane.

Except for scattering in the specular direction with respect to the
reference plane (eﬁ - Oi), the perturbation and the physical optics solutions are
not in agreement even for slightly rough surfaces. Since both the perturbation
and physical optics solutions are derived here (as special cases) from the full
wave solution, the limitations of each of the two special approaches are
examined and the differences between these two solutions are reconciled. Thus
it is shown that the physical optics solutions cannot be used when the major
contributions to the scattered fields do not come from regions of the rough surface

around the stationary phase points. As a result, the perturbation solution

—




1-3

(and not the Physical Optics solution) should be used for slightly rough surfaces,
even when the radii of curvature for the rough surfaces are much larger than the
wavelength,

For very rough random surfaces, it is shown that in agreement with the Physical
Optics solution, the scattering cross section is proportional to the probability
density function for the rough surface slopes. However, even at high frequencies
these solutions cannot be used when the incident or scatter angles are much larger
than the mean value of the rough surface slope (see Section 4).

The full wave approach is not limited to slightly rough surfaces or to the
special cases when the stationary phase approximations are valid. However, in these
two special cases the full wave solutions simplify significantly since they do not
depend explicitly on the slopes of the rough surface. In Section 5 the relation-
ships between Physical Optics, Geometrical Optics, Perturbation and the Full Wave
solution are summarized.

It is interesting to note that in order to obtain the perturbation solution
(as a limiting case of the full-wave solution), it 1s assumed here that the slope
of the rough surface is small but no restrictions are wade on the height of the
rough surface. Thus, the perturbatio: solution derived here contains both the
incoherent (diffuse) scattered fields (Rice 1951, Barrick and Peake 1968, Barrick
1970, 1971, Wright 1966, Rosich and Wait 1977, Valenzuela 1978) as well as the

coherent scattered fields (see Section 3 and Appendix A).

e




2. Formulation of the Problem

The starting point for the present analysis of scattering and
depolarization by random rough surfaces is the full wave solution for the
scattered radiation field by deterministic, two dimensionally rough

surfaces (See Fig. 1):

y - h(x,z) = f(x,y,2) = 0 . (1)
The incident and scattered radiation fields are decomposed intoc a complete
spectrum of vertically and horizontally polarized components with respect

to the reference plane normal to Ey. Denoting the incident and scattered

fields by the superscripts i and f respectively and the vertically and horizontally

polarized components of the fields by the superscripts V and H respectively,
the electric and magnetic fields E and Il can be expressed in matrix
notation as follows:

\

(EV1 Vi £VE (HVf

G" = =n , G o= =7 ) (2)

1
where n, = (po/co)1 is the intrinsic impedance for free space. The full
wave solution for Gf is (Bahar 1980)

£ in fo i .. =f =i = .= oo ]
G =G, I C TFT exleko(n n’) rSJU(fs)dA n G
A

|

: G, cal,abhet - 3)
An exp(iwt) time dependence is assumed and the constant Go is given by
G = -ik expl-ik rfj/ZTTrf %)
o o - o i
1
where ko = m(po/co)1 is the free space wave number and

~-f f -f £, . _f f - f - f f -
T - = i
r n ) < (31n00 cos¢ a + c056o ay + sine0 sing az) (5)

is the position vector to the observation point. The position vector

i
|
T
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to the source is

i ir A1 i- i - S S g
r =-r n = -r ilsinb® cos a - cosf a + sinf®” sin | 6
. o (:) x o y o ¢ aZ)J » ( )

=i . . . - N
in which n” is the direction of propagation of the incident waves.

The position vector to the rough surface is

;s = x5x+ h(x,z)gy + zaz =T - f(x,y,z)sy , (7)
in which f(x,y,z) is given by (1). The elementary area of the rough
surface 1s
dA = n dx dy/(E-Ey) , (8)

in which n is the unit vector normal to the rough surface:

- - r = _ ~ 2 2. %
n=VE/|vE] = [ h oa + ay h, 8,/ (h +1+n)
I siny cosdsx + cosy ;y + siny sind 52 , 9)
and
h = 3h/3x , h_ = 3h/3z . (10)
x z

A local Cartesian coordinate system with coordinate surfaces normal to

the unit vectors El’ n, and 53 is employed to derive the full wave solution:

"

The vertically and horizontally polarized components of the incident and

= 0 X(sx x E)/I;x X EI, 52 = n and 53 = (5; x 5)/{5x x E[ 11)

scattered electric and magnetic fields with respect to the local plane,
normal to the unit vector E, are denoted by the subscript n.

They are related to the compcnents with respect to the reference plane

through the transformations
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and ‘. \ N
gt b Lt e
£ £ fa v v
G = =T G = ’ (13)
VH £ f Hf
E S C E
By G
in which C; and ST are the cosine and sine of the angle between the local
plane of incidence and reference plane of incidence normal to the unit vectors
Sai and EHi,respectively. Thus they can be expressed in terms of the
scalar product and the scalar triple product:
i i _ - ,=n A _ . 1 _ r= =n -is
Cp = coSv T aggtayy o Sy 7 osinv = lagaynd o (14)
where
= -i - -n _ =i o=y =i =
ag; = (n"x ay)/!n X ay] s ay, = (a'x n)/|n"x n| (15)
Similarly CW and Sw are the cosine and sine of the angle between the local
plane of scatter and the reference plane of scatter normal to unit vectors
-n - . . .
aye and aHf,rebpectxvely. Thus
f_ o f o .o £f_ . f_ = -n -f
CW = cosyT = apeean. SW siny lagg age D , (1l6)
where
- -f - -f - -n -f -, =f =
= = = 17
age = (a'x ay)/ln x ayl » age = (a'x n)/|n x n| 17)
PQ 3 . . =fn -in
The elemeuts F” *(P,Q=V,H) of the 2x2 local scattering matrix F(n ,n )
in (3) are (Bahar 1980)
o 2 G AP eos (o 68t (1-1/e )+ Ump deos (6™ §) ]
cngVWV 00 r 171 o o r r (18a)
o ) i fn f i fn ’
@ n N n N e
o i fn i f n in_
, 2cTdy (¢ (:‘,‘tf“cos(«p n~¢m)—SmSn)(l—l/u Y+(l-c )c03(¢>f ¢ )y
.in HH S r L1l ) r T
€, Foo= In in fo_ & W fn > (18b)
+
(C, *+C /n ) (C+C /n)(C +C )
, -sin(&n—ﬁn)ZC Chn [(l—l/L.)Cm—(l—l/p )dh]
anFHV - 00 r’ 71 r’"] (18¢)
o i .in,,_fn in, .fn ’
€ +n )™ S m ) e of?
_ sin(¢P-g™)2ccPn [ (1-1/p )cR(1-1/0
CLnFVH - oor r’ 1 ro 71 (18d)
o in, In fn, f  in _ fn ’
(Co ¥y /e, ey, *+ ¢ )

g T

- —————

e el

~
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in which the dimensionless quantities n , 1n , ¢ and . are the refractive .
r r r

index, relative intrinsic impedance, relative permittivity and relative

permeability,respectively,

L Ky W,
n_ = (alul/eopu) M AN (EI/Z_)
(&)

By

lul
i

. el/co, W = ul/uo . (19)

The media for y > h(x,z) and y < h(x,z) are denoted by the subcripts o and 1

respectively. The permittivity and permeability for medium 1 can in general,

i
be complex to account for dissipation. The cosines and sines of the angles of
L. : : . in
incidence and scatter (with respect to the local coordinate system) - and
o]

ein in free space, v > h(x,z), arc given by:

¢ = cose™ = —;l'ﬁf , Cfn = cosefn = Bf-ﬂ s (20a) '
o o) o (8] !
S P N S EUE T (20b)

The sines of the corresponding angles in medium 1, y < h(x,z), are given by

1
Snell's law:

in . oin _ _in fn . fn _ _fn
Sl 51n6l = S0 /nt , Sl sme1 = So /nr . (21)
Thus 1 .
in - . ain - 11 in 2. fn . fn 1o fn, 2 .
Cl cos8] f1 (S1 Yoi o, o Lose1 {1 (S1 )7 . (22)

The cosine and sine of the angle between the planes of incidence and scatter

in the local coordinate system, (1) are given by:

COS(d)fn"q)ln) - ;n .:{x .

Hf Hi ’ (23a)
and
fa1 . in L=0 -0 - )
sin(p =¢7) = Lage a; nj . (23b)

The shadow function U(;‘) in  (3) 1is

1 , illuminated and visible region
U(r )=
S

o

o , nonilluminated or nonvisible region

. (24)

Teom - eendf
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The nonilluminated (shadow) region of the rough surface extends from the

\ . = -1 = od .
iocus of poinrs r,=r, to the locus of points r, < r;Z that satisfy
-1 -, o Ser S N .
n n(rsl) 0 and (r52 le) n(rsl) o - (25)

Similarly, the nonvisible region of the rough surface extends from the locus

. . = -f . = -f .
of points r_ =r to the locus of points r_ =r that satisfy
s sl s s2

~f - of —f  of = =f
n n(rsl) = 0 and (rsz— rsl) n\rsl) =0 . (26)

The full wave solution, (3) satisfies reciprocity, duality and reaiizability

relations in electromagnetic theory (Bahar 1980). Of special interest in

this work is the normalized scattering cross section per unit area for rough

surfaces (Ishimaru 1978):

oFQ = 4ﬂ(rf)2 Pf] /AylEQi]2 , (27)
in which Ay is the projection of the area of the rough surface A on the
reference plane normal to a . Thus for P,Q = V,H
K2 Lo
pe) P '
’JkQ= 9 lC Qk2= 9 ‘DPQ(I )DPQ (l’ )exlek (n _n ) (r “l' )_,U(r )U(r )dxdz dx' d!
TA TA
y v ) (n-2 )(n ‘a )
8
in which the symbol * denotes the complex conjugate,and DPQ (28)
are the elements of the matrix D:
tc (Fvvci FVHsl) sf(FHVc; FHHsl) ¢ (PVVSI+FVHC1) s, (et SW+FHHC‘)1
p=c" rirrts LO
VV i VH_ i £ HV. 1 HH i VH i HH i
st(r -F S)HC . (F'C sty st (F chyact (P stepc
L ( P HC(FCyoF o Sy w WS, )|
(29)

Sinte D Q(rs) is a function of the angles of incidence and scatter in the

local coordinate system, (11), it depends explicitly only on the gradient

of the rough surface V{ (9). The exponent

prLfko(a —nl)'(;s-;s')J z exp{ivx(x—x')+ ivz(z—z')+ ivy(h(x,z)-h(x',z')j , (30)

—— oy
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depends explicitly only on the height of the rough surface h(x,y). The
vector v defined in (6.30) is given by

- - - - -f =i
= vxay + vyay + v,a, = ko(nt— n) . (31)
The shadow function U(;S) (24) 1in general, depends on the gradient of the
rough surface, through the unit vector n (9), as well as on the height of
the rough surface h(x,y), (25), (27). However U(;S) # 1 only if Ei-ﬁ > 0
or Ef~5 < 0 on portions of the rough surface independent of h(x,z). Thus,
the shadow function U(;S) is more sensitive to the gradient of the rough
surface than to its height (Sancer 1969, Brown 1978).
The remainder of this paper deals with random rough surfaces for which
only the statistics of the height h(x,z) and its gradient are assumed to be
known. Section 3 deals with slightly rough surfaces and the full wave
solutions are compared with the perturbational solution (Rice 1951, Barrick and Peake
1968,Barrick 1970,Rosich and Wait 1977). In section 4, h(x,z) is assumed to be normall-
distributed and no restrictions are made on the variance of the rough surface.
These solutions are compared with both the perturbational and physical optics

solutions (Beckmann and Spizzichino 1963).

3. Incoherent Scat.ering Cross Section Per Unit

Area For Sl.ghtly Rough Surfaces.

For the inccherent, diffuse field, the scattering cross section for unit

cross sectional area {s given by (Ishimaru 1978):

< Py cuneh)? < EFfo< kP 12 /Ay]EQllz , (32)
in which the sjmio. < > denotes the statistical average, For slightly rough surfaces
tan 7y << 1 and n is set equal to ;y in (3). Thus

a1, e LUG) 1 L Rea el (33)

in which I is the 2 x 2 identity matrix. Thus, the elements of the matrix D (29)

are no lonper functions of position and may be extracted from the integral, (32).
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The incohercent scattering cross section, (32) reduces to

.

2
2, PQ
< PQ > = -————-———ko;Do i j ’
% TS (34) P
in which . ’
PQ _ ,.in PQ,_
Do = (Co F )n=a ’ (35
y
and
g = ) expliv, (xmx)+ iv_(z=2") ][x, (v ,=v_)=jx(v.) | “ldxdy dx'dy’ (36) i
. Ay X z SEAM Ty Ty | y'- '
3 :
2 y

The characteristic function x(vy) and the joint characteristic function

i

|

i

|

X(vy,—vy) are defined in terms of the probability density function W(h) and \

Ny
1 joint probability demsity function W(h,h'):
| w
i
X(vy) = [ exp (iv h)H(h)dh , (37) |
4 . i
. and - ‘
' [+ !
X(vy,-vy) = J exp[ivy(h—h')]W(h,h')dh dh' . (38)
4 -% ;
Thus for slightly rough surfaces \
. 2 .2
exp(iv_h) =1 + iv h - v© h%/2 39
plivy y y ’ (39) |
‘ and |
1 2 2 1 .2 2 i
o - — < > = - — ,
% x(vy) 1 3 vy h 1 3 vy g, (40)
|
! in which g, is the variance of h and <h> = 0. Siwmilarly,
| |
i 2 .2 2 ' 2 2 {
! . . =1 - <h“ >4+ v <hh' >=1-vl 0o (1-C) 41
1 XZ(Vy V)') Vy y y o s (41) |
- |
in which C is the normalized correlation coefficient. Assuming that the rough C
\ surface is statistically homogeneous and isotropic, the surface height :

correlation function < hh' > depends only on

= - ' = L '
Xy = ¥-X and z3 z~2 . 62)

i Thus if the correlation distance is much smaller than the width of the illuminated

\ surface, (36) reduces to




-

I-11
@
= ( exp iv_ x, + iv_ z,] < hh'> v2 dx, dz, = ﬂzvz W(v ,v )
g - Ve X4 2 %da y “¥a 9% y "y,

-_C0

, (43)
in which w(vx,vz) is the spectral density of the rough surface height

function (Barrick 1970, Ishimaru 1978). Thus the incoherent scattering

cross section for slightly rough surfaces is given by

P 4 i i, |2
< OoQ > = nkow(vx,vz) C:DFPQ(cosez + cosez) o

. (44)
n*a
y

The expression (44) is precisely equal to the perturbation solution for the
scattering cross section for slightly rough surfaces (Barrick and Peake

1968, Barrick 1970). In the notation used for the perturbation solution

elngPQ o L dva £ i PQ
LC0 F (cosO0 cos@o)_]n_,a t 2 cosGO cose0 o . (45)

in which the upper and lower signs are used for Q = H and V, respectively.
For the perfectly conducting case the scattering cross section is given in
matrix form by
[sinei sinez - cos(¢f—¢l)J LcosU; sin(¢f-¢1)]
4
<o, > = 41 ko W(vx,vz)

£ £ i 2 C i f £ i, 2
[cosOo sin(¢ -¢7) LLOb@OCObOOCOS(® -b7) ] (46)

For backscatter 92 = 6;, ¢f - ¢1 = 7 (46) reduces to

. . (sin® e: +?2 o
< g > =41 k W2k sinf_, 0)
o B o [o] o

0 cos 0 . 47)

4. Incoherent scattering Cross Section For Rough

Surfaces With Normal Distributions

When the slope of the rough surface is not small, the incoherent

scattering cross section for high frequencies, (32) can be written as follows

(see Appendix A):

-
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FQ ki { PQ 2 ‘
< D om S - ~y i
g T P > LXZ(Vy’ vy) ‘x(vy)' lexpLiv x + v Xy Ldxy dz (48a)
A
y
in wirich 2
- * - - - PG~ -
’ DG P EDUGE UG TG UG
<SQ>=< 5 2 L 5 ,ac — s (48b)
nea )(n'+a (n+a )
(n y) y) y
To derive

is true for Gaussian

function U(ag depends only upon the gradient of the rough surface (see Secticn 2

As in Section 3, the rough surface is assumned to be statistically homogeneous

and isotroplei thus < sPQ and X, depend only on X,y and 24 (42).

For normally distributed surfaces the probability density function and the

joint probability density functions W(h) and W(h,h') are given hy:

L --h2
Wo(h) = uxp(-—E) (49)

(21)* 25

(8] ¢}

and
1 n? = 2chh'+ n'?
W(n,h') = T exp [~ " (50}
2m 3 (1-C )2

2 2
200(1—C )

in which g, is the variance and C is the correlation coefficient. The corresponding

characteristic functions are

2 2
X(Vy) = exp(—vy uo/Z) ,

(51)
and
Xu(V_ 4=V ) = expL—v2 Uz(l‘C)J , (52)
27y Ty z o )
Thus 1t foillows that
2 22 2 2 . R
1 (0yvy) = Ix )" = exp(ovl o) lexplvy ol ©) - 1), (53)
and the sut face height correlation function is
hix,y),b' (x',y") » = ui C (54)

——— . — - ——

(48) ir is assumed that the surface height and gradient are uncorrelated (whict

surfaces) and that the probability density function for the shadow
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Thus for slightly rough surfaces [(vy go)l << 1, n = ;y]’ (54) reduces to
=) = v E s vE s, (55a)
27y Ty y y
2
< sF¥5 - s - IDPQI , (55b)
n+a o
y
and < 0°¢ > ig given by the perturbation solution, (44
1f it is not assumed apriori thit the surface is slightly rough UIQ -
b an be expressed approximately as follows for high frequencies
b 2
{ < Q5 .-._9_SPQ4 , (56a)
1 T
| in which -
! 7= 2r | J (v p)exp(~-v2 02)[ex (v2 02 C) - 1licd (56b)
} ‘ Lo xz y "o Py 9% R
\ where Jo is the Bessel Function of the first kind, and
[ 2 2. 2 2.k
‘ Vo, T (vx + vz) and p = (xd + zd) (57)
3
: The correlation coefficient C is only a function of p
Assuming a correlation coefficient of the form
2,.2
C(p) = exp(=p /L") ; (58)
where £ is the correlation distance, it can be shown that (Beckmann and
Spizzichino 1963):
( 2 2 2 2 2
1 - 0 =
1n(v 9, 4) ucp( vy o™ Vuz l4)y = m vy W(VX,VZ).(V), 0,) << 1,
2m
J o (Vg 9) 2,2
mL exp( v o ) ———'——-——— exp(-v_, 15/4), vy o, =L (59)
Op=1 ™
i SZ. e o2y 2 .
) expl- (v . t,/2vy oo) S (vy 00) .
l
In (56) SPQ is v _p..ced by its value qu at the stationary phagse points of the
tntegrand in (3).  ‘thus (Bahar 1980):
PQ _ Al i f £ . 1i,,2,,P , 5.2
S0 = Leos0, Fy(80,0 067=0D) J7[R) (0 ) {%650 - (60)
§ e e e W . . a . ;_”-'W-—'—"’”
e = e T T

A 4 -

e ——
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In view of the¢ Kronecker delta, GPQ’ SiQ varishes for P#Q.

In (60) Gz is the local angle of Iincidence and scatter at the specular

points. Thus, s £ -1
cos 00 = (1-n"*n")/2

=1+ cos@i cosOf - sin{)i sinOf cos(©f~¢l)j/2 . (61)
o o o o

The Fresnel reflection coefficients Rio(os)(P=V,H) are evaluated at the

. o i
stationary phase points where Q; -+ GZ r 02 and not at the angle of incidence 60 as done
in Beckmann and Spizzichino,1963, (Ishimaru,197¢). The coefficient F3 is precisely

the expression derived for the Physical Optics solution (Beckmann and Spizzichino

196 iLf L f i 2 cos’ 5
F. (82,8°,0°-¢") = ——— — . (62)
cosf (cosb” + cosH’)
o o o
Thus the high frequency approximation for < OPQ > is given by
2 2,8
k 2 cos 6 2
AR § ARSI
cos@_ + cosb Q
o 0
. ; P PP A
For the perfectly conducting case leoJ =1 and < g~ > is independent of

polarization. Thus the full wave solution for the incoherent scattering cross
section reduces to previously derived Physical Optics results when the following
conditions are satisfied.

(a) For high frequencies, the principal contributions to the incoherent
scattered field come from the stationary phase points of the integrand in (3),
(Bahar 1980). 1In this case n can be replaced by its value ES at the specularly

oriented portions of the rough surface:

a, = Gf-ahy/[al-at : (64)
(b) The vectors n n' and Ey are coplanar. Thus
i ns=inta ag=(ata afl-o0 (65)
oy st T Ty s y ’
and at the stationary phase points
wf =yt =0 . (66)
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In this case the local and reference planes of incidence and scatter are

identical:
(h7)

where I is the identity matrix

{¢) The phase of the integrand in (3) varies rapidly for values of

r in the shadow region, thus the value of the integral does not change

significantly on replacing U(;S) by unity everywhere on the surface.

For slightly rough surfaces (63) reduces to
PP 4, P ,. 8,2 4.s
= 53y 1
<a > énko!Rlo(Jo)l cos 8 W(v_,v, ) (68)

The above expression which satisfies reciprocity, is in agreement with the
Physical Optics solution given by Ishimaru (1978) with the exception that here
the reflection coefficient is evaluated at the specular angle( as required by the

stationary phase condition) and not at the angle of incidence. For backscatter

- -1 -
(nf= -n" = n_, coseg = 1) (68) reduces to

2 .
< OzP 3= 4nkZ]R§o (0)] W(2 ko sinOé, 0) ] (69)

Note that for slightly rough surfaces the perturbation solution (44) is not

in agreement with the Physical Optics solution, (68) except at
This is because even at high frequencies condition (a) is not satisfied for
slightly rough surfaces except near normal incidence. For large angles of
incidence,there are no stationary phase (specular) points on the slightly rough
suiface, thus even for high frequencies, the Physical Optics solution cannot, in
general, be used for slightly rough su:faces when %-Oi is swmaller than the mean

value of the slope ¢ the rough surface Bo,where

canBO = 200/2 . (70)

For very rough surfaces,[(vy 00)2>> 1), the scattering cross section is given by:

normal incidence.
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2 Lobﬁ \4 . .

i | ‘ o s, . 2 , . 2

<, > = S IRy (60D Texp=v A/2v o )
o, kgosu + LO\OOJ v xx v

&
[

4 P 8,2
= s )
mosec Y p(hxsp,hzsp)lklo(co)] , (71a)
in which p(hxsp’hzsp) is the joint probability demsity function for the slopes,
(9), at the stationary phase points :
- - 5 -
1 hi§2 + h:§P§ 1 [tan Y
p(h. _ ,h ) = exp- i = —~exp~ , (71b)
Xsp- zsp 21 02 202 | 2n 0Z 202
s s J s L s
and
2 20 s m N2 o s, o f iv2 2 2,2
sec”y 1 + tan Y 1/(ay ns) choseo/(cosoo + coseo)j , 0y = 200/2 . (71lc)
Thus for backscatter (ej =0, ¢1 = 0, ¢f =), (71) reduces to
PP Rll)o(o) i tanzeg} 2 i
Ty T T P T i RO a0, 72
cos 00 tan Bo tan BOJ co o ©

in which RTO(O) is the Fresnel reflection coefficient for normal incidence.
Thus the tull wave solution, (48) is in agreement with the earlier high frequency
results (Barrick and Peake 1968). However, for very rough surfaces the Physical
Optics solution, (72) cannot be used near grazing angles, even for very high
frequencies, since,in these cases assumptions (a) and (c) are not satisfied,and
shadowing effects become important.

For the Physical Optics,or the perturbation approximations,derived in
sections 3 and 4, it is not necessary to know the complete statistics of the gradient
Vf of the rough surface. However, when these appruximations are not valid, it is
necessary to determine the probability density function of the gradient in

)
order to evaluate the scattering cross sections <01Q> 48).

|
D
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5. Relationships Between Physical Optics, Geometrical Optics,
Perturbation Theory and the Full Wave Approach
For very high frequencies (3)  can be written as
f = = .~ = -dxd .
G Go J[?(rs)u(rs)}_ exp[iv rSJ_ = s (73)
n n _*a
A s S

where n is replaced by Es,its value at the stationary phase points (60),

v is given by (31) and G is defined by (4). Equation (73) is the physical

optics approximation of 3. To obtain the corresponding geometrical optics approxima-

tion, start by expanding -';s about its value at a stationary phase point (where

r =1 ). Thus
s S0
ver o= vox + v,z + vtho+ hxo(x-xo) + hzo(z—zo)J
Yy 2 2]
+ 2[}xxo(x_xo) + thzo(x—xo)(z—zo) + hzz(z—zo) |
- - iz{ 2 2
= v-rSO + 2thxo(x_xo) + ZhXZO(x-xO)(z—zo) + hzz(z—zo) J , (74)
in which
. 2,2 A )
ho = (ah/ax); » heo = h/ox )z by = €] h/Jxaz); ,
S0 SO SO
(75)
"
h = (3h/9z)-=  and h__ = (3°h/9z%)- ,
ZOo r 220 r
50 S0 )
and
v + vyhxo =0 |, v, + vyhzo =0 . (786)

Using a principal axis coordinate transformation about the stationary phase point,

?qo,the geometricaloptics contribution from the neighborhood of this point can be

expressed as (Barrie™ '970)

K; = o 5:
bgo GOD(rso)U(rso) exp| iv rsol

v 2 2
J exp —zﬂ{h X } dx dz
xxp'p  zzp pl| p
x 1 o
$
f ‘
o] }
. —
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. = = et =251, -
GOD(rSO)L(rSO)pr[lv rSO]( Vyp)/xlprzp
v s "
s L Rlo(Oo) 0 | }
= (—-E—)Go exp lv'rso] /tlpr2p U(rso) , an
° 0 R %)
I lo 70"}
The integrals in an are identified with the Fresnel Integrals
(Abramuwitz and Stegun 1964) and rlp = h-l , r2P = are the principal radii of

XXp zzp
. . . . s
curvature (convex side facing observer)at the stationary phase po:Lnt,(vyp = 2kocoseo)

and Rfo(ej) is the Fresnel reflection coefficient for the specular angle Oz, (65).
Provided that this stationary phase point is visible and illuminated [U(;so) = 1]

its contribution to the scattering cross section (28) is given by:

12

Tr r
PP lp 2p P 5
90 T T a iRlo(oz) (78)
y

g0

To determine the average scattering cross section per unit area assume that
the principal radii of curvature(rlp,rzp)at the stationary phase (specular) points
and the location of these points are independent random variables. Furthermore
for very rough surfaces the phase ;.;so can be assumed to be uniformly distributed

from -7 to mw, (Beckmann and Spizzichino 1963). Thus it follows from (77) that

2
PP P [ -f —-i,-
<g :ho n<rlpr2pN> |R10(60)« P2(n ,n ]ns) , (79)

in which <r1pr2pN> is the average of the product of the principal radii of curvature
and N the number of specular points per unit area. The probability that a specular
point (with slope n = HS) will be both illuminated and visible is given by pz(ﬁf,ﬁifﬁs),
The expression for P2 has been given by Sancer (1969) for rough surfaces with

normal distributions. The physical optics result derived by Kodis (1966) for

perfectly conducting surfaces is

IJPP' =7 \rlpr2p> <N> . (80)
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Barrick (1968) determined the relationships between the surface statistics
and (rlpIZpN> and has shown that (80) reduces to
<0PP> = ﬂsecaysp(hxsp,hZSp) ’ (81)
which is in agreement with (71). In the derivation of (81), however, it is
net necessary to assume that the rough surface is normally distributed.
Furthermore,it is incorrect to assume as implied by (80) that rlpTZp and N

are statistically independent.

-

VAR

It has been shown that in order to obtain the physical ouptics solution (that has
appeared previously) from the full wave solution, the coefficient of exp[iv:r | in the
s
integrand of (3)is replaced by its value at the stationary phase points (n=n )(Sectiun
s

Furthermore, to obtain the geometrial optics solutions, the full wave integral of (3)

is evaluated using the stationary phase (or steepest descent) method. It has also
been shown (Section 3) that for slightly rough surfaces, the full wave solution
reduces to the perturbation solutdon upon replacing the unit vector nurmal to the
rough surface, 5, by the unit vector normal to the reference surface, Sv’ in
the coefficlent of cxp[i;';s}, 3.
6. Concluding Remarks

The full wave approach has been upplied to problems of scattering and
dipolarizatica of radio waves by random rough surfaces. The general, full wave,
expression for the scattering cross sections per unit areva is given in
Appendix A for the incoherent and .cheruent fields. In Section 3,which deals with
~lightly rough surfa-es, the full wuve solutions are shown to reduce to the
perturbation solutiou. For high frequencies it is shown that when the stationary
phase approximation is valld, the full wave solutivns reduce to the physical
optics--Kirchoff solution. Thus the two general approaches applied to scattering

by random ruugh surfaces, perturbation and physical optics, are derived here as
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special cases of the full wave solution, The full wave approach precisely
determines the limitations of the earlier approaches as well as reconciles the

differences between them. Thus, physical optics, geometric optics and

perturbation theory arcallspecial cases »f the full wave approach (Sec. 5),

The full wave solution which jig invariant under coordinate transformations also
satisfies reciprocity, duality and realizability in electromagnetic theory

(Bahar 1980).
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Appendix A

Substituting the full wave solution (3) into (32) and assuming that

the rough surface height and gradient are uncorrelated and that the probability
density function for the shadow function U(;S) depends only upon the gradient of

the rough surface, the expression for the incoherent scattering cross section reduces to
2 =

k PQ
.~PQ, _ o PQ . _ D U
g - <§ %> Xz(vy' vy) <

=

2 . co o
> x(vy) exp[-vxxd+ 1vzszdxd dzd (A.1)

;
-00

n‘a

For simplicity the rough surface is also assumed to be statistically howmogeneous
and isotropic, thus the surface height correlation function <h(x,z)h{(x',z')>

depends only upon the distances

T = S R —o'\a = b p
ry (x-x )ax + (z-z )az xdax+ zdaz (A.2)

In (A.1) x and X, are the characteristic function (37) and the joint characteristic

function (38). Furthermore,

sFQ . DPQG)DPQ*(?')U(}')u(F')/(E-Zy)(E'-Zy) (a.3)

P .
in which D Q is given by (29) and U is the shadow function (24), The
symbol < > in (48) denotes the statistical average, thus in order tu evaluate
PQ : (e i . PQ L Y
<S> for the general case, it is necessary to wultiply §$ by the joint probability
density function p(E,U) and integrate with respect to hx’hz (7) and U. To
facilitate the evaluation of (A.l), it is rewritten as follows,

o0

k { bR} 9l PQ .
<o . _?yJ FSP% "xZ'lx}"+,’xIZ‘« es' op 2 iz\J‘
™)L \ j \ =3 )

*exp ny xq + iv, zi dx, dz, (A.4)

For high frequencies it can be shown (Sancer 1969, Brown 1978), that

» (A.5)




v

-l -

A-2

Thus (A.4) reduces to

2
k PQ, 2
PQ = —9. g D U - 2 . . -
<o " j « a3 > {XZ )Xl exPLIVXXd+ lvzszdxd dzd
ki © of P12 pPYy 2 |
+ = J Ixi {< — l >-l<_ - >| }exp[ivxxd+ ivzszdxd dzd (A.6)
- n-a ! n+a

PQ PQ
{? I _D_ = DEQ (A.7)
n-a jn*a_|= -
A | n+a
y y y
where D:Q is given by (35).

Furthermore, when the stationary phase approximations
are valid (see Section 4)

DPQ DPQ

— — (A.8)
_n ay n ay r_x-’r-ls

where

PQ=.= | .. .
D */n ay]n is given by (64).

optics or perturbation approximations are valid, the second integral in (A.6) can be

neglected and <0PQ> reduces to (48).

. , P
The scattering cross section for the coherent fields <g Q>C corresponds to the last

term in (48). Thus

2 ©
k PQ 2

. PQc _ o . D , ,
g > = o J x(vy)<_._ > exp[lvxx +1vzz]dxdz

y n'a

® y
kS A oPQ |2
= ——;—x-]x(vy)<_ —> 81nc(vxLx)sinc(szz) (A.9)
n'ay

in which sinc(u) = sin(u)/u and the projection of the rough surface on the xz

plane is given by

Ay = ZLX'ZLZ (A.10)

Thus if jx)2<< 1 or when either the physical
S

=5



Thus for the specular case Ve =V, < 0
2
k~A PQ 2
PQ._c D
<o Q>; = 0”2 X(v )< >‘ (A.11)
! y! ==
n+-a
y
The total scattering cross section corresponds to the first term in (A.1). Thus
"
CPQT _ o [ _.PQ - "ye '
= — >y - | - - | 1 [}
<g” > “Ay J <S XZ(vy’ vy)expklvx(x x")+ 1vz(z z') |[dxdz dx'dz (A.12)
-~

However, except for very rough surfaces, where <0PQ>C, (A.11) can be neglected,

. PQ.T ,
the total scattering cross section <g Q> is evaluated by summing the incoherent

and coherent terms (A.6) and (A.ll) respectively rather than by directly evaluating

(A.12) (Beckmann and Spizzichino 1963). Thus,

<0PQ>T = (OPQ>C + <oPQ>

(A.13)
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PART IT

SCATTERING CROSS SECTIONS FOR COMPOSITE RANDOM SURFACES--

FULL WAVE ANALYSIS

Abstract

The full wave approach to rough surface scattering is applied to composite models

C e ey —

——

rough surfaces. In this work the principal distinguishing features of the
individual rough surface is its correlation cdistance. Thus this model can be

applied to scattering by rough seas as well as hilly terrain.

e e etk -

It is shown that the full wave approach accounts for both specular scatter and
Bragg scattering. The scattering cross section for the composite surface, with
two or more roughne;s scales, is shown to be a weighted sum of the scattering
cross sections for the individual rough surface heights. Shadowing effects are
accounted for explicitly in the analysis. The full wave solutions satisfy

reciprocity, duality and realizability relationships in electromagnetic theory.
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1. Introduction

Solutions have been derived for the scattering cross sections per unit area
of the rough surface using the full wave approach (Bahar 198la,b). For slightly
rough surfaces the full wave solutions are shown to reduce to the perturbation
solution (Barrick and Peake 1968, Barrick 1970). When the major contributions
to the scattered fields come from the neighborhood of stationary phase (specular)
points of the rough surface, the full wave solutions are shown to reduce to physical
optics--solutions (Beckmann and Spizzichino, 1963). Since the results of the two
general approaches to random rough scattering, perturbation and physical optics,
are shown to be special cases of the full wave solutions, the limitations of these
approaches can be precisely determined and the differences between them reconciled,
(Bahar 1981a,b).

The principal motivations for this work are to extend the full wave wnalysis to
composite rough surfaces with multiple roughness scales and to explicitly account

for shadowing effects in the results. The main distinguishing feature of the

individual rough surface h_  is its correlation distance 2.. However, no res-
i i

" trictions are made on the variance of the rough surface heights “oit This work can

therefore be applied to scattering by rough seas or by hilly terrain. In the tredatment
of composite rough surfaces by Brown (1978) the feature that distinguishes the two
surfaces considered,hl and h,,1s the surface wave number k, where the "spectral

splitting"” occurs,

The principal expressions derived for the scattering cross section, using
the full wave approach, are summarized in Section 2. The high frequency approxima-

tions are extended in Section 3, to cases in which the reference planes of
incidence and scatter are not coplanar. Tn Section 4 a composite model of the
rough surface with different roughness scales is analyzed. A two scale model is
first considered and the result is given by equation (44), Using this model,
the full wave analysis is shown to account for both gpecular scatiter and Bragg
scattering (54). Jot composite surfaces with N uncorrelated surface heights

h,, the solution is given by (55). In general,it is shown that the scattering

i,

cross section for the composite rough surface is a weighted sum of the cross sections

for the individual rough surfaces h;. 1In Section 5 shadowing effects are explicitly

accounted for in the analysis.

R
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2,1 Formulation of the Problem
The expression for the scattering cross section per unit area, based on the

full wave solutions for the incoherent fields, is given by (Bahar 198l b)

k2

. Q
< g o=
i

9

( PQ c
[N . - - | i + i | ;
S ‘XZ(V , vy) .X(Vy). JexpLvaxd xvzzd,dxd dzd (1)

The suﬁerscripté f;Q = V:ﬁ—aénétédvertically and horizontally polarized waves respec-

tively. The first superscript denotes the polarization of the scattered wave and the
second the polarization of the incident wave. The symbol < > denotes statistical average

Furthermore,

PQ,—. PQ* = = - PQ,, 2
< SPQ o= <D Q(r)D ¢ (HUr)u(r’) 5 . P2V (2}
nea )(n'-a ‘n‘a
( v y) y
) . PQ - . . . -y . .
in which D “(r) the scattering coeff1c1ents,U(r; is the shadow function

and n is the unit vector normal to the rough surface (Bahar 1981b). The vector

v is

-f ~i - -
= - = + +
v ko(n n ) v ay vy ay v, a, (3)

The free space wave number is k0 and the unit vectors in the direction of the
incident and scattered waves are ;i and Ef respectively. The rough surface characteristic
function and the joiut characteristic function are x(vy) and xz(vy,-vy) respectively.
It is assumed that rough surfaces ave statistically homogeaecous and isotropic, thus
the surface height correlation function < h(x,z)h(x',z') > depends only on the
distances (see Fig. 1)

;;d1= (x—x')sx + (z-z')zz =Xy ;x + 24 ;z. %)
and the correlation distance is smaller than the width of the illuminated surface.
Furthermore in (1) it is assumed that the rough surface height and slope are
uncorrelated. It is also assumed that distribution of the shadow function U(;s)
depends primarily opon the probability density function for the slope of the

rough surface (Sancer 1969). The elements DPQ(P,Q=V,H) of the 2 x 2 matrix D are

given by (Bahar 1981a,b)
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£ VH v i
(C (F clop Sl) g (FH Cl_FHHSI) Cf(Fvvsl+ FVH(,l) q (IHV i FHHQI)’
in f_. i in v v v v v v ¥ Yol
D = Co T FT = Co
Vv i _VH_ i HH i Vv i VH .1 HV i HH i I
s (F C -F S +C F C —P S F"' S+ F C +C F +FC
" ) w( v ) ( " lp) (s, W)g
(5)
in which, for the incident and scattered waves (denoted by superscripts i and {
respectively)
. A i : . .
( ct s} o _sf] ¢l = cospl, st o= uingt
1 ‘ l*‘ ‘*"! E w “1 w ‘li
T = ! J and T = ,
i i f £ f f £ . f
-5 ; C C = cos S = sin 6
v cw SW " " v, W v (6)

The transformation matrices T  and Tf relate the vertically and horizontally
polarized components with respect to the reference plane (normal to Ey) to th.
vertically and horizontally polarized components with respect to the local plane
normal to the unit vector

1
A= n( ,h) = VE/|UE] = (-h 3+ E-n @)/(hD + 1+ i (7a)
x''z x X y z X z"
in which
h, = oh/9x and h_ = 3h/3z (7b)
The function
—— — f(x,y,2) =y - h(xz) =0 (8)
defines the rough surface between medium 0, y > h(x,z), and medium 1, y < h{(x,z). The
angle between the reference and local planes of incidence and scattering arve wi and <"

respectively. The elements of the

matrix F

vV

If
‘_ pHv

VH

F

are functions of the ungles of incidence and scatter in the local coordinate system

and the relative permittivity £,

the interface f(x,y,z) = O.

vectors (see Bahar 198la,b)

and permeability B

of the two media surrounding

Thus FPQ(P=V,H) are explicitly functions of the unit
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n' Z sind’ coz;(p1 a_ - cosb: a_ + sing’ sin¢>1 a (10a)
o X oy o 2
al z sinOf cos¢t a_ + cosef a + sinOf sin¢»f a (10b)
o x oy o z
n Zsinycosd a_ + cosy a_ + siny sind a (i1)
X y z
and the electromagnetic parameters €, and Wy respectively (Bahar 198lb).
1t has been shown (Bahar 1981b), that on assuming
k2 < h2 > = k2 cr‘Z <1, n*a =land U(r ) =1 (12)
o o o y s

the full wave solutions for the scattering cross sections per unit area reduce t©

the first order perturbation solutions (Barrick and Peake 1968, Barrick 1970)

. 2
< ofs = W v )icosef cos®’ “PQI e
o ¢] X 2 o °
in which

2 cos@f cosl’ aPQ = :[ClnFPQ(cosef + cosel)J
o o ) o o’ "=

(1l4a)
n->a
y
The upper and lower sigus in (L4a) are used for Q=H and V respectively. The
spectral density of the rough surface height function is given by the Fourier
transform of the height correlation function (Barrick 1970, Ishimaru 1978).
l T . b 1 1
<1 i ; 14b
w(vx,vz) NZI expiiv, x; + iv, zd] < h(x,z)h(x',2") > dxd dzd (14b)

-

Subject to the perturbation approximation, the local angles of incidence and scatter

are approximated by the angles of incidence and scatter with respect to the

reference plane normal to a_. Thus for instance

¢IM a coso™ s flen 2 cile: - oset = (15)
(o) o [+] (o]

Under special conditions (Bahar 1980b), the high frequency approximation of the

full wave solution (1) 1is obtained by setting

n=n,ina al=(afa nJ -(rta nf;=0andUG) =1 (16
s y s y s y s

Thus, if the planes of incidence and scatter with respect to the reference plane

(y=0) and the local plane at the specular points (where n = Eg) are coplanar, and
if the specular points exist on the rough surface, )
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k 2 cos” O 2
P o] o
“ OmQ > = _gr (___.f____‘l__)zjg}l 6% 76, (174) y
cosf” + cos0t o0 Q i
o o ’
in which .# is given by s,
( : IZ’I { |
T = j sz(vy.-vy)—[x(vy)l 1cxp[].vx X4 + iv, zd‘dxd dzd (17b)

—00

p <
and Rlo(OZ) is the Fresnel reflection coefficient for vertically and horizontally

polarized waves (P=V,H) evaluated at stationary phase points where
n=n, = Glahy/at -l (18)
Thus )

-1 -2 _ ~f =2 _ 2.8 &2 i f i f £ i
(n"*n)" = (n *n)" = cos 90 _(Co) —§L1+LOSOOCOSOO 51n¢051n¢0cos(¢ -7 (19)
With the exception of the reflection coefficient Rio(Oz), which is evaluated

at the stationary phase (specular) point rather than at the angle of incidence

9;, the solution (17 ) is the same as the Physical Optics solution(Barrick 1970,Bbeck. ..

an’ Spizzichino 1963, Ishimaru 1978). Thus for very good conducting boundaries

P P ?

(IRlO(Oi)[ +1), < owP > is independent of polarization in the Physical Optics

limit. Furthermore in view of the Kronecker delta 6? in @7) there is no

Q :
P |
depolarization (< me > =0 for P#Q). This is due to the assumption \
|
whioef1-0 e,
y
Using the Zull wave solution (1) as a starting point for the present analysis,
the scattering cross sections are derived for cases in which neither the
assumptions made for the perturbation analysis (12) nor the assumptions made
for the Physical Optics analysis ( 16) are valid. For instance, even for very

high frequencies, the assumption that the major contributions to the (incoherent)

scattering cross sect’on come from the stationary phase (specular) points of

the rough surface cannot in general be satisfied (Bahar 1981b).

In view of experimental evidence that neither the perturbation nor the
Physical Optics approach aptly determine the scattering cross section for all Hi and
n ,and the realization that simple, single scale models of rough surfacces are not ﬁ

suitable for a large variety of relevant problems, expressions for the scattering cross

S S —
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sections have been derived for composite rough surfaces (Barrick and Peake 1968,

Wright 1968, Valenzuela 1978, Brown 1978, Burrows 1973). The full wave approach

will therefore also be applied to composite rough surfaces and compared with earlier

approaches to rhis problem.

3. High Frequency Approximation When the Reference
Planes of Incidence and Scatter Are Not Coplanar.

The Physical Optics solution (17) was derived on assuming tha* the principal
contributions to the incoherent scattered field come from the neighborhood of
stationary phase (specular) points of the rough surface where n = Bs. Furthermore
it is assumed that the phase in the integrand of the full wave solutions varies
very rapidly fcr the shadow region and therefore U(;s) can be set equal to unity

(Bahar 19815%). These assumptions are satisfied if the angleg-—eg is larger than

the mean value of the slope of the rough surface Bo (Bahar 198lb). Thus to satisfy

these assumptions it is necessary that

m 1i,f i,f
p — > =
tan(2 90 ¥=cot60 tan So 20/2 (20)
where ¢ and £ are the variance and the correlation distance for the rough
surface. However, the additional assumption that the reference planes of

incidence and scatter are coplanar

[at a, af1-0 21)

is not satisfied in general even when (20) is satisfied. While the assumption
(21) simplifies the Physical Optics solution (17) considerably, it results
in no depolarization. In this section the restriction (21) is lifted and the
appropriate high frequency results are derived.
The value of the matrix D at the stationary phase points is obtained by

setting n = Es (18) in equation (5). Thus




Ffs v
CfSR SL}S+SfSR“HSIS c

fs Vs is

L ra i R C fs Hsgis fq Vs s, fs Hs is
an»nS LIJ oY TloTy w v

lo
i fs is i
= COCw C, F (n ,n ) i

is

!’ o ~
lR;otanw —R“Stanw Rvstan¢f5tanv +R
C

lo lo

in which

lo™y lo y Y TloTy Y

beVqS _sstHscxs]
» 1o

!

\

R +C k C

s _Hs fs is Vs is _Hs {s
+ L 2 tan : - .
[klo Rlotanu taniy R, "tany Rlotanw

]0

i -f -i 5 2.8 f i Ps _ P s
COF3(n ,n) 2 cos 00/(Co + CO), R R 0(60)

. cl+cf—cl(1+coszes)
1s (o} o] [e] (o]

is is is
C.7 = cos = - S, = sin =
v v Y v

S1 sinzes
o o

and

i i f s
fs fs C0+CO—CO(1+c05260) fs ,
C, = cosy = 3 S , SW = siny
v SosinZG0

The angle Bz is given by (19) and

cl = c056i , st = sing® , Cf = cosef ,
o o o o o o

Thus the stationary phase, high frequency approximation,

cross sections for P = V,H and Q = 4.V (P#Q) are

2 fs 1‘ 2
PP k ZC! Cy Ps Qs
<o > = —-'( 2) }R + R
o 1
C
o o
and
k2 fs is
< on > = —: P-JL—JL———-——) mps Qstanw
' C + ¢t
o o
For highly condurting boundaries
< OZV > = < qih > and < gZH > o= < O:V >
For backscatter however, since
3% 2 5T9% 2 0 and cose® = 1
v '] o
S e U
—— ey ——* —

o tanwfstanwislkf

i, f i
fs ) 8051n(¢ ~¢7)

sin26°
o

Sf = sin8f
o o

2

|

for the scattering

I1-7

(22)

(23)

(24a)

(24b)

(2ta)

(26b)

(27)
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both (17) and {(26) reduce to

k 2
PP 1, 0.2|.Ps \
. . 2 L I 29
‘w 7B T (Ci) )Rlo o/ (29)
o
and
< oiQ >B =0 , P#Q (29t)

For slightly rough surfaces (Bahar 1981b)

a7 = 1l cfaeH? wew v ) (30)
' o o o x’ z
~—~—;ﬂ;§: except forrn;rmél incidence the perturbation and stationary phase approximations

for <gp'> for slightly rough surfaces are not in agreement. However it should be noted
that for backscatter both the small slope perturbation solution © = a_ and stationary
phase appeoximations for <gPQ>B (P#Q) vanish. The full wave solution for <0PQ>B (P=(})
does not vanish cince sPQ (1) vanishes for backscatter only at the specular points or
where fi . 3y.

4. Composite Surface with Multiple Roughness Scales

In this section it is assumed that the composite surface under consideration
has twe or wore distinct classes of roughness that are uncorrelated. Consider
first the case in which the two statistically independent surface height variances

7

and o, , are small and

ol 2
(v 7 )2 << 1 and (v ¢ )2 << 1, < h,> =0, kL, >=0 (31a)
y ol y o2 ’ 1 i 2
n=a (31b)
y
P . :
Thus <g L - LSPQQ; can be factored out of the integral (1) and since
y
- 2 2
=5 + N -~ 7
exlevy(hl hz)J l+ivy(hl+h2) Vy(hl+h2) (32)

it follows that

2

2 2 2 2, 2
( Y o= - B N - T = -
X{v) 1 vy( hi™ + 7hy)/2 =1 vy(ool+0°2)/2 (33)
and
IR B 2 : \
Xz(vy, Vy) 1 VL( hJ + h2 h]hl h2h2 )

2, 2 2 . .
= - ‘ - - -C ' 4
1= vilel e - ol a-c)) (34)
e M
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in which the surface height correlation functions < hlhl > and < h2h2 soare
expressed in terms of the correlation coefficients Cl and C2 that depuend only
upon distance ;d (4). Thus the integral Sr (17b) reduces to

o0
— ; 1l [ 1 . .
;77 = j exp[ iv d + 1vzzdjvy(< hlhf' + < hzh2 > )dxddzd
-0
=£7 +oy = nzvzrw (v ,v.) + W (v ,v))] 55,
1 :7; yo 1l xz 2V x’ 2 (35
in which for 1 = 1,2
= [ exp[iv x, + iv z . | i]zjdx dz :
T:= x*d 2ha Xy T X d“%d (35b)

The characteristic functions and the spectral density functions for the rough

surface height hi are Al.x; and Wi respectively. Thus,in thi~ case since in

(1) 4,0~ Ey,the scattering cross sections for the incoherent fields is the sum

of the scattering cross sections for the individual slightly rough surfaces h

1
and h2.

For the more general case the surface height variances %51 and 0,, are not
assumed to be small. However, the correlation distance 11 is assumed to be much
smaller than 12. Thus by definition

¢, (p=t, ) = l/ and C,(p=8,) = Cz/e (36)
in which p = (x if e is the Neperian number and it is assumed that,
37
By << Lyg << 22 (37
where 112 is a constant. In this case <0PQ> (1) is given by
PQ }321 (.. 2
> = <y -1y + 38

<9 T fXZX2 |x yal ]exp[iv X4 iv 2 ]dx z, (38)

The significance of the assumption (37) is that for distances 0 < p < 212
1 1 1,2 2
Xz(o) =1 > X; > Ix"}1 and xg = XZ(O) =] 39

—~r -

|
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and for distance p > 2.,

2

2 2,2
X, * |x"|] and x2(0) =1 > Xy > Ix“]

Assuming for example normal distributions for hi

i N 2 2 .
X (vy) = exp( vy e , i=1,2
and
b 2 2 .
— = [ = - =
Xp(Vyrvy) = expl vy o ,(1=C,(P)]  i=1,2
Thus

2 2 2

2
1.2 ;1.2 - _ 2 2 2 - 2
X2)2 X l exp( vy 001){exp[vy oolcl-.vy Ooz(l—CZ)J—exp(-vy o

2 2 ., 2 2 - 2 2 \ 2 2
;e - e ’ C - - - -0 -
exp( vy Ool)lexp(\y Uol"}) 1 + exp[_vy ooz(l CZ)J xp ( vy 002)}

S 2,022
2

‘l~l! | . ]
= ApTiXo X LAaTiX

i
|
\

and the scattering cross section can be written as

P P 1 P
I Q) = <01Q ] + [ I <0 Q»
wn which for i = 1, 2,
2
kT 2
JPQ o f P iy iy o
a ; - J<S >[x2 T ]oxp[lvxxd + iv, zd]dxd dzd
PQ .. PQ (2) .

and <S5 7>, the statistical average of § °, is given by

[ PQ =
j S P(n,U)dhx dhz du

2

02"

)}

(40)

(41)

(42)

(43)

(44a)

(44b)

(44¢)

where p(E,U) is the joint probability density function (Sancer 1969). If the variance

of the surface height h1 is small’lxl] = 1,and (43) reduces to
P PO P 2 2
<0 Q- <o >+ <a sz, vy gy << 1

Before the transform in (44b) can be evaluated it is necessary to determine <S

(45)

(44c) for the composite rough surface. When the stationary phase approximations

are valid for high frequencies and shadowing effects are not very significant n

can be replaced by Eg in (45) anpd as in (26)

2
PQ
<SPQ> = SPQ = P——--
n.a - -
yin->n,

(46)

When the mean value of the slope of the composite surface, Bo (20) 1is very small

tﬂnBo = 29/8 << 1 ,n=a

L i st 2 saaemete N e ———. = v

Fvany

(47)

PQ,

. N
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the perturbation approximation for (44¢) can be used as in (13)
P . PO |pPa)? ,
’ o — (48)
! ina
y
For near grazing angles where
i,f 5
cotq << tan B = 20/% (49)
o o

stadowing effects become significant and even at high frequencies (46) cannot be

used. In this case,since U(;S) = 1 only for those portions of the rough surface

that are almost horizontal (n*a_ = 1), the perturbation approximation

n - gy could be used for near grazing angles (49) even at high frequencies.

Lo P .
For the general case however, it is necessary to evaluate <§ Q, (44c¢), using the

statistics of the slopes of the composite surface (see Sec. 5). Provided that (37)
satisfied and either the perturbation or stationary phase approximations are
valid such &atSPQ is independent of position, (46),

(48) , the scattering

cross sections (1) can be expressed as follows:
2
k 2
PQ, _ .PQ 2 P _ o PQ 1 PQ. .
0 > = <ot Lo = D <57 Il st (50)

For rough surfaces with normal distributions (Beckmann and Spizzichino 1963)

2 2

, 2 2 2 22 2
ﬂ(vyJoili) exp(—vyooi—vxzkila) =1 vy w(vx,vz).(vycoi) << 1
2 2.2.% (vzooi)zm 2,2
g& = Y2 exp(—vycoi:gl p exp(—vlei/é), vyooi ~ 1
lﬂ£2 2 2
. . /2 1, 51
! 202 eXPp. (vx29/4 vyooi) : (quoi) > 1 (1)
Lvy oi
where
v o= (v2 + v2)!5 (52)
Xz x z

The expression (50) simplifies considerably if the variance of the surface height

h1 {s small (44) while the variance of the surface height h, is large (viozl << 1
&

- -

-

vt o

1}
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22 . . P A
and v.g ., »> 1). In this special case the contribution fr m the term <« Q»7 is
v ol 2

dominant when £
cott"‘o’ > tan e,o = 20/¢ (5%)

On the other hand only horizontal portions of the rough surface (n = ;y) are both

illuminated and visible for grazing angles, (49) , and the contribution from the

in which §

Q .

term fﬁp‘>l is dominant near grazing angles. Thus if in addition to condition (37)
v 32 << 1 and v 02 ~> 1, at high frequencies (50) can be approximated by

, y 02 v o2

[

| K2

T LPQL L o JPQ PQ R 4] PQ.

! ot = 2 s 11 + S ?’.'/2‘ 2o Ty <o, (54)

| ro

P
and SOQ are given by (46) and (48) respectively. The scattering

cross sections for such composite surfaces are approximately equal to the sum of

the individual cross sections <0PQ>1 and <0PQ>2 for the rough surface heights h

1

and h2 respectively (Barrick and Peake 1968, Barrick 1970).
The result (43) can be generalized for a composite surface represented by

the superposition of N uncorrelated surface heights hn(n = 1,2...N) for which

the correlation distances Rn satisfy

21 s 112 << 22 << £23 << 23 ""QN—I << QN‘l,N << QN (55)
In this case
N n N
P © -1,2  PpQ. P
<g Q, . ) ﬂ IXm | <o Q)n = E w <0 Q>n (56a)
n=1 =l n=1
where
k"’ o
PQ. o P n n, 2 . ]
<g Q>n = —?-} <S Q>[x2 -1x"] Jexpliv, x, + iv, z,Jdx, dz, (56b)

The characteristic functions for the surface height hn are x;(vy,—vy) and

xn(vy), and xo 2 1. 1In (53) the contribution <0PQ>

P(
[2>, due to the rough surface h_is weighted by the product
n

n to the total scattering

cross section, <¢

n_ - 2
wo= T (57)
m=1

Since Ixil <1 (40) , the weighting factor w, is in general less than unity.
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Tt decreases monotonically a¢ n increases even when the variance Ooi of the
e 2 2 . .
individual rough surfaces are small (vio L << 1, i =1,2...N).
0
The effects of shadowing have not been accounted for explicitly in the
solution (54). To do so it is necessary to determine the statistical averages

P -
<8 Q> (45) using the joint probabilty density function p(n,U) for the rough

surtace slopes Vf (7) and the shadowing function U(;S). Both terms of the

product
P . n 2.
T X = IXT7) = Kixgazy) (58)
are fun'tions of distance r (4). The two dimensional Fourier transform of the

d
product K(x4,z4), (56) can be evaluated by determining the two dimensional
convolutions of the two dimensional Fourier transforms for <SPQ> and fxg-?xnfz; (Brown
1978, 1980). However for high frequencies the integral expression for the
scattered fields (Bahar 1981b) may also be evaluated at the stationary phase
points before squaring and averaging (Kodis 1966). Barrick (1968 shows
that the results are the same regardless of the order of evaluating the integral

and the statistical average. This latter approach which simplifies the

analysis will be used in Section 5 to explicitly account for shadowing in the

evaluation of <0PQ>n (56).

5. Scattering Cross Sections for Composite Rough Surfaces
When Shadowing Effects are Accounted for Explicitly
To evaluate <S*% (44c) - for high frequencies it is convenient to represent
the joint probability density function p(E,U) in terms of the conditional

density P(U]ﬁ) (Sancer 1969, Brown 1978, 1980)

p(,0) = p(pln) (59)
in which p(n) 1s the density function of the gradient of the rough surface
Vf = n|vE] (7) and,

10y 18 0) (60)

p(UIR) = p{ﬁf,aixa)a(u-x) + (1-p,G5 5
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The Dirac delta function is &(U) and Pz(af,;ilﬁ) is the probability that a point
will be both illuminated by a source at —roﬁl and visible at the observation point
- - P

rnf, given the value of the gradient n(hx’hz)' Thus for high frequencies <S8 Q,

can be replaced by its stationarv phase approximation (Sancer 1969)

,

; PQ 2
P D - - ~
<sPQ - lE3l. p(n)p(UIns)Uz(rs)dhx dh_ du

: S
. pq|?
[ D £ .
; = P,(n Ellﬁ )
] T B, (61)

y'ng

The expression for the prooability Pz(ﬂf.;i|as)has been given by Sancer (1969)

for rough surfaces with normal distributions. The above approximation for

<SPQ> is appropriate for scattering from the rough surface h2 with the large
correlation distance 12. Thus
2 2
k PQ
P o) D =f =iy= | .
<g Q>2 = == P,(n",n ]“3'5/2 (62)
n+*a a
Ying
2

in which lDPQ/E';
yiu

is given by (22) and sz (35b) is given by (51) for
s .

surfaces with normal distributions. Thus for surfaces with (vy0°2)2>> L 2 is
proportional to the joint probability density function p(as) for the gradient at

the stationary phase points (51).

For angles e;’f smaller than the mean value of the slope Bo (53) ,

PQ

<¢" ">, is the dominant term in the solution (44). However for angles larger
than Bo (near grazing angles e;’f) (49), scattering due to the small scale rough-
ness dominates. This is either because the joint probability density function at the

stationary phase points, p(;s) is very small or because the probability is very

small that these stationary phase points are illuminated and visible,
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{p§;x,al!a ) 1) S _-ering due to the small  scale _aghness is most
< S
signaficant for near grazing angles where the contributions from the specular
points are very small. Thus the contribution to the tutal scattering cruss section
PQ . . . .
due to the term <0 \l (44) 1is primarily from the near horizontal portions of
the rough surface that are both illuminated and visible. Hence for the term

2,
(01051, e, can be approximated by

PQ [ pFe : - -2 .-
R e p(®) pU |V Ddh dh_ dU
RS
y
[ o} - )
' el -
= ‘E -~ P (nf,nl,u=1) (63)
AR
| Y|a-a
y
where X
-f -1 [ of - <
, ) o4
Il(n ,n ,Ll=1) Pz(n .n jn)p(n)dhx dhy (64)

is the probability that the rough surface is both illuminated and visible.
Thus for the surface with the small roughness scale

2
PQ af sl e 65
DTN _ P (@Rt u=)W (v, V) (65)

jA=a

FQ, o n kgvi

In which wl(vx,vy) is the spectral density function for the rough surface h
(35).
The scattering cross section for the cumposite rough surface is therefore
obtained by summing (g5) and (62) while accounting for the weighting function
W, o= |yl! in (56). This weighting function (wl < 1) has the effect of
damping the rontribution from the specular poir. “ecause of the superposition of
the surface h1 (with the small roughness scale) oun the surface h2 (with the
large roughness scale).
on dcriviaz‘the expression (1) for the scattering cross section an integral

containing the term .

has Leen neglected (Bahar 1981L).  This term can be ignored either {f |x]2 ol

or when the perturbation or stationary phase approximations are valid.

P

——p

———




6. Concluding Remarks

Using the full wave approach, a general expression has been derived for the

scattering cross sections for composite rough surfaces comprised of a superposition

of

N uncorrelated rough surface heights hi' The distinguishing feature of the differ-

ent rough surface heights is the correlation distance li (55) and not the surface

height variance. It is shown that the scattering cross sections for the composite

surface are a weighted sum of the scattering cross sections for the individual rough

surfaces. Thus for a composite surface with two roughness scales, the first slightly

rough and the second very rough and with the longer correlation distance, the scattering

cross section accounts for both Bragg scattering and specular scatter. However, the

contribution due to spccular scatter, by the very rough surface, is slightly damped

as

a result of the superimposed slightly rough surface. Shadowing effects have been

accounted for explicitly in the analysis. If the correlation distance Ri is not the

distinguishing feature of the different rough surface heights hi’ the starting point

4

of the analysis for the composite surface is (38). Since (43) assumes that the
correlation distance is the distinguishing feature of the different rough surface
heights hi (37), it cannot be used in general,and the cross section for the composite
surface is not given by a superposition of the cross sections for the surface

heights hi (44), (45) or (56).
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Fig.

1.

Figure Caption

Plane of incidence, scattering plane and reference x,z plane.
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