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I. INTRODUCTION

If a plane shock wave in a nonlinear hyperelastic material is obliquely
incident upon a plane material boundary, then, provided that neither the angle
of incidence nor the amplitude is too great, a unique reflection pattern will
be created and will be composed of shocks and simple waves all centered on the
point of reflection. Such a pattern may be called regular reflection. Two
previous papers by the author describe the basic situation

1 ,2 , and a third 3

clarifies a point in the linear theory that simultaneously guarantees unique
solutions in the corresponding nonlinear theory. Other authors have dealt with
aspects of the reflection problem in isotropic solids4 ,5 , .

It happens, however, that as the amplitude of the incident wave increases
or as the angle of incidence increases, the leading reflected or transmitted
wave may move so rapidly that it must overtake the incident wave at the bound-
ary no matter what its direction of propagation, and thus the pattern of
regular reflection will be destroyed. In linear elasticity the limiting angle
of incidence for regular reflection to occur is called the angle of grazing
incidence if, for that angle, the incident wave is the fastest that can occur,
and it is called a critical angle if the incident wave is one of the slower
waves. In nonlinear elasticity the distinction seems artificial so the phrase
"limiting angle" will be used to cover all cases.

The essentials for shock reflection may be simply stated. For a fixed
angle of incidence the incident shock wave may be specified completely by a
single parameter, thus fixing the deformation gradient and particle velocity
immediately behind the wave. The problem now is to fit reflected waves so as
to connect the state just fixed with some state at the boundary that is com-
patible with the boundary conditions. Evidently, the situation is mathemat-
ically similar to the Riemann initial value problem7 or to the problem of waves

1T. W. Wright, Reflection of Oblique Shock Waves in Elastic Solids, Int. J.

Solids Structures, 7 161-181 (1971).

2 T. W. Wright, Uniqueness of Shock Reflection Patterns in Elastic Solids,

Arch. Rat. Mech. Anal., 42 115-12? (1971).

3 T. W. Wright, A Note on Oblique Reflections in Elastic Crystals, Quart. J.
Mech. Appl. Math., 29 1-24 (1976).

4G. Duvaut, Phgnomnnes De Rgflexion, Rfraction, Intersection d Ondes Planes
Uniformes dans des Matriaux Elastiques Non Lingaires, C. R. Acad. Sc. Paris,
Sgrie A, 264 883-886 (1967).

5 G. Duvaut, Ondes dans des Matriaux de Type Harmonique. Rflexion Oblique
d une Onde de Choc Plane Longitudinale sur une Paroi Fixe, C. R. Acad. Sci.
Paris, Sgrie A, 266, 246-249 (1968).

6S. R. Reid, The Influence of Nonlinearity Upon the Reflection of Finite

Amplitude Shock Waves in Elastodynamics, Quart. J. Mech. Appl. Math., 25,
185-206 (1972).

7p. Lax, Hyperbolic Systems of Conservation Laws II, Comm. Pure App1. Math.,
10 537-566 (1957). 7
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initiated by uniform impulsive loads on the boundary of a semi-infinite half

space 8 ,9. Although there are differences in detail, most notably in the
criteria for admissibility of reflected waves and in the condition that
reflected waves all have a common reflection point rather than a fixed direc-
tion of propagation, the methods for constructing a solution to the reflection
problem and for establishing existence and uniqueness for small but finite
amplitudes follow closely those used by Lax7 , and are described in detail
elsewhere2 .

In summary, in Reference 2 it was shown that each reflected wave connects
a fixed state ahead of the wave with a one parameter family of states behind
the wave. Furthermore, parameterization may be so arranged that positive values
correspond to simple waves and negative values correspond to shock waves. In
anisotropic solids there are three possible families of reflected waves so that
a sequence of such waves connects the state behind the incident shock with a
three parameter family of states adjacent to the boundary. In general, there
will be three independent boundary conditions from which to find the parameters
of the reflected waves (yI, Y29 Y3) in terms of the parameter of the incident

wave Y. Symbolically, we have

Bm(YI' Y2P Y3; Yo) = 0; m = 1, 2, 3 (1.1)

The situation for a reflection/transmission problem is exactly analogous, but
now there will be three transmitted waves as well as three reflected waves so
there will be six parameters to be found from six boundary conditions. In
special cases of material symmetry or degeneracy there may actually be less
than three waves in a reflection problem or less than six waves in a reflection/
transmission problem. Some cases of this kind have been discussed in Refer-
ence 1.

A simple application of the implicit function theorem shows that (1.1)

can be inverted to obtain three functions ym = rm(yo); m = 1, 2, 3 provided

that Y is suitably small and provided that the corresponding linear problem

can be solved1 ,2, for the Jacobian determinant of (1.1) is identically the
same as the one that occurs in the equivalent linear problem.

Here the reflection problem diverges sharply from the Riemann or the impul-
sive loading problems. In the latter two cases, if the material is hyperelastic
with nonvanishing wave speeds, the determinant is always nonzero. However, in
reflection problems under the same conditions, it was shown in Reference 3 that
the linear determinant is guaranteed to be nonzero only if the incident angle
is neither critical nor of grazing incidence. In these cases of limiting angle
no information can be given in general. Each case must be examined separately
since examples show that sometimes the determinant vanishes and sometimes not 3.
In any event there is always some loss of differentiability in the mathematical

8L. Davison, Propagation of Plane Waves of Finite Amplitude in Elastic Solids,

J. Mech. Phys. Sol., 14, 249-270 )1966).

9A. S. Abou-Sayed and R. J. Clifton, Analysis of Combined Pressure-Shear Waves
in an Elaetic/Viscoplastic Material, J. Appl. Mech.,, 44- 79-84 (1977).
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structure of the reflected waves as the limiting angle is approached. Nothing
comparable occurs in either the Riemann or impulsive loading problem.

This loss in uniformity of the solution may be clearly seen in the struc-
ture of reflected waves as follows. In the construction of a composite family
of simple waves and shock waves (see Reference 2) the two halves of the family
are joined together at zero amplitude where the following equation holds.

4p V(O) 0'(O) lb(O) yt() - Vh(O) cos 0(0)1 (1.2)

Q 3(o) (0) Q (o)13

The angle of a reflected shock is 0, and the prime represents differentiation
with respect to the parameter of the wave family. The right hand side is a
contraction of third order elasticities and is generally nonzero. The term in
brackets on the left hand side has a geometric interpretation. Terminology
and symbols are explained precisely in the sequel, but for now it is enough to
comment that as the limiting angle is approached, this left hand factor tends
to zero for the leading reflected wave so that 0'(0) becomes infinite.

In this paper the reflection of weak but finite amplitude shocks is
examined, with particular care being taken to obtain solutions that remain
valid all the way to the limiting angle. In the process, the limiting angle
itself as a function of incident amplitude is obtained. The procedure to
obtain these results is one of expansions in small parameters for a reflection
pattern that is close to the pattern appropriate for the corresponding linear-
ized problem. In the next section the structure of weak shocks and simple
waves, taken individually either as incident or as reflected waves, is devel-
oped. In Section III general procedures for solving reflection problems in
materials of any symmetry are laid out in a step by step fashion. In Section
IV the general procedures are used to obtain explicit solutions in isotropic
materials for incident shock waves that are either longitudinal or quasi-
transverse and for several boundary conditions in each case.

II. STATEMENT OF THE PROBLEM AND WAVE ANALYSIS

Suppose a plane shock wave with weak but finite amplitude is incident
upon a plane boundary in a nonlinear, simple, hyperelastic solid, and suppose
that a regular reflection pattern of shocks and simple waves is established.
The situation is shown schematically in Figure 1. The deformation is given by
a function

= (, t) (2.1)

where x is the spatial position of a material particle, X is the position of
the same particle in a fixed reference configuration, and t is time. Both x
and X are referred to the same fixed Cartesian coordinate system. The Piola-
Kircahoff stress tensor, T, is derivable from a stored energy function W,
which in turn is assumed to be a function only of the deformation gradient, F.
If the material does not conduct heat, no conclusions are changed by letting
W depend on specific entropy as well since entropy change is at most third
order in the amplitude of a weak shock.

9
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W - W(E)

awT = ~a=TC) ; orTi = Ti(F.8) (2.2)

or F =
-ax' J= ax8 a i8

When subscript notation is used, Latin indices will refer to spatial coordi-

nates and Greek indices will refer to material coordinates.

The relations to be satisfied across a shock wave are as follows10 .

(TIN + pV[uI = Q

[i] = -a N (2.3)

[u] = V a

The square brackets indicate the jump of a quantity across a shock; for exam-
ple, [T] = T- T where the (+) and (-) signs refer to the front and the rear
of the shock, respectively. The unit normal and normal speed of the shock in
the reference configuration are N and V. The density in the reference config-

uration is p, the particle velocity is u = , and a, defined by (2.3) is
the amplitude. at a2

In a simple wave, all field quantities are func tions of a single parameter,
say y, and all quantities are constant on propagating planes, called wavelets,
which are also parameterized by Y. Throughout a simple wave the following
equations must be satisfied11 .

(9 - pV2A)@ = 9

= - m N (2.4)

Here Q is the acoustic tensor with components Qij = Cij.NN, where

= a2 W/aFiaaF. The prime indicates differentiation with respect to

y, N and V are the unit normal and normal speed of a wavelet in the reference
configuration, and m is a unit vector. As in the shock case p is the reference

density. Naturally, it is required that pV2 be a proper number and m the
corresponding proper vector of Q.

1OC. Truesdell and R. Toupin, The Classical Field Theories, FlMgge's Handbuch
der Physik III/1, Springer, Berlin-Gottingen-Heidelberg (1960).

11E. Varley, Simple Waves in General Elastic Materials, Arch. Rat. Mech. Anal.,
2 309-328 (1965).
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The response to an incident shock of weak but finite amplitude will be
near to the response for the corresponding linearized problem. Accordingly,
all calculations may be based on variables that measure small variations from
the pattern and response from infinitesimal elasticity. In Figure 2 the
reflection pattern for the linear problem is shown by solid lines, the actual
pattern is indicated by the dashed lines, and the angles al, a2P a3 are small.

Since all waves are weak, the general constitutive equation (2.2)1 need only
be approximated to second order as follows.

T 9C2 (F-l) + 93 (Fl) 2  (2.5)

92 and C. are tensors of second and third order elastic constants,
2 2 where both tensors now refer to an unstressed reference~ BF3

state wherein F = 1. In component form, the symbol C2(E-1) is the contraction

Cij (Fjs-d and similarly C3 (F-1)
2 is the contraction

Ciajaky(Fj-6ja )(Fky- 6ky). The more compact notation will usually be used

hereafter.

Three types of wave must now be examined; the incident shock, a reflected
shock, and a reflected simple wave.

(i) Incident Shock.

This wave propagates at a fixed angle of incidence e0 , but its speed

depends on the incident amplitude and will be slightly greater than the corre-
sponding speed in linear elasticity. For the fixed direction of propagation
there exists in the linear theory a tensor Q with unit proper vectors p, q,

2 2 2
r and corresponding proper numbers pV pV, PV q pV. rWe have

V- Vp ) = , etc. (2.6)

where Q is computed as shown following (2.4) but using C2 " It may be assumed
that the linear wave speeds are ordered

V V ? Vp q r

so that they may be referred to as fast, intermediate, or slow. Since Q is
symmetric, p, g, r are orthogonal, and therefore the amplitude of the incident
shock has the representation

a= P + + U (2.7)

where , n, r are small quantities. The shock speed may be written

Vo = V(l+v) (2.8)

12



0 z
za L~

10

C)U

14

0
4

CU

0 .0

U) U) en
fZ C

LL zo

W C)

13



where V is one of the speeds from (2.6) and v is a small correction. Finally
it may be assumed that the deformation gradient ahead of the incident shock,
F , differs little from the identity tensor 1, that is, all components of F -1
are small. The relationships among the various small quantities are found as
follows. With (2.3) 2 and (2.3) 3 substituted in (2.3)1 we have

M-+ (-#Ii N) - T (F ) +N V2a -0 (2.9)

Now put (2.5), (2.7) and (2.8) in (2.9) with N a N and resolve the resulting

equation along p, 9, and r. To first order the result is

S(V 
2)& 0

P(V2 - V )n = 0 (2.10)
q

P(v 2 - V 2)c = 0
r

where use has been made of (2.6). These three equations require that V be
equal to one of the linear elastic wave speeds (as already assumed), say V = V
Then the amplitude is an arbitrary quantity of first order, but n and are
zero to first order provided V # V and V P V . To second order the compo-
nents along p, 9, and r yield P q p

2pV 2 v - Q 2 N) 2(F+-)

+ C3( p  0 N)3 & = 0
2 ~ - +(2.11)(V ) qln - C (p Q N) (q 0 N) (F+- 1)

p q -3- -

+ g3(p 9N) (q N)&2 •0

There is a third equation, similar to (2.11)2 but with the permutations q-*r,

q-r and 1 . Equation (2.11)1 shows that v is a first order term, and (2.11)2

shows that n (and €) is a second order term provided IV-Vq I/V > O(&), i.e.

provided Vp and Vq are not too near to each other. (See Appendix A.)

(ii) Reflected Shock.

A wave of this type propagates at an angle 0 + a, but its speed
along the boundary is determined by the incident wave at the point of reflec-
tion. Refer to Figure 3. The amplitude of the reflected wave is again given
by (2.7), repeated here

a = &p + ng + ;r (2.7)

but now p, 9, r are proper vectors of Q(N0). That is, they are proper vectors

of the acoustic tensor C N N where N0 is the normal to the reflected wave

in the linear problem. Furthermore, the speed is given by

14
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V0 ( 1+v)
V - Vh sin(.e+t) a sin e sin(O+a) (2.12)

0

and the normal to the shock is given by

N -o cos a + t 0 sin a (2.13)

where N° , to are the normal and the tangent to the reflected shock in the
linear problem.

Previously, (2.9) was used to determine the relationships among v and
other small quantities. Here we are interested in the relationships among a
and other small quantities. Note first, however, that the deformation gradient
ahead of the wave is determined by that ahead of the incident shock plus the
sum of the variations across all preceding waves. For example, if we consider
the first reflected wave, the deformation gradient ahead of it is

gF o a No

where the subscript zero refers to the incident shock. It turns out, as in
(2.11), that the deformation gradient is only required to first order so that
only first order terms need be retained in a . It is convenient to write-0

simply F+ in this section, meaning that the sum of first order variations are
to be included, Now with (2.5), (2.7), (2.12) and (2.13) in (2.9) we arrive
at the desired equation, which may be resolved along the proper vectors of
Q(N0). The first order results are as follows.

P (v2 _ V h2 sin 2 ) =0

o (Vq2 - Vh2 sin2O) = 0 (2.14)

P 4 (Vr2 V 2 sin2).

00where Vh  M Vo0/sin 0 0. The interpretation of these equations is similar to

0
that of (2.10). Only one of the linear wave speeds, say V p, can equal Vh sin e.

In that case 9 is an arbitrary quantity of first order, and r and ; are of
higher order provided V p Vq, Vp 0 Vr'

To second order, the components along R, q, and T are as follows.

16



2pV~ { Jb - Vh 0Cos 4 a 93 (p 9 N~)3

-2pVp2 v + C3 (p 9 N) 2(F-) 0 (2.

P -VP _Vq2) n -2 IP @ a t) + (pI t)(9 9 ) a

-c 3 (1 B N)( 9 8 C3(1 N) 2

There is again a third equation, similar to (2.15)2 but with the permutations

q+r, q*r, rn- as before. The term in braces in (2.15)1 may be interpreted

graphically as shown in Figure 4. The vector b is the radius of the wave
surface at the point of tangency of the reflected wave. It may be computed
from the formula

pVpba = C iaJ piPjNO

The projection of b in the X-Y plane is shown in the figure.

Equations (2.15) will fail if either Vp -Vq I/Vp or (b*t - Vh cos )/Vp
p

is small. The first case is treated in Appendix A. The second case occurs as
the incident shock approaches a limiting angle and must be treated separately.
It is reasonable to assume that the two cases do not occur simultaneously since
the fastest acoustic speed is an isolated speed for most solids and limiting
angles involve only the fastest reflected wave. Thus, if nearly equal speeds
occur, they will be less than the fastest speed for that direction and cannot
occur at a limiting angle.

In the case of a limiting angle, (2.15), must be replaced by an equation

with terms up to a2 since the coefficient of a will be a first order term.
Since it is assumed that Vp an.A Vq are not nearly equal, equation (2.15)2 is

sufficiently complete for n and neither (A.2)2 nor (A.2)3 are needed. From

(2.15)2 it can be seen that n is 0(aQ) at least, and when insert 4 into (A.2)1 ,
2will give rise to terms in a . Considerable care must be taken so that all

terms that contribute equally to each power of a will be included. The equa-
tion to replace (2.15)1 has the form

Aa - Ba + C = 0 (2.16)

where A includes only terms of order zero and B and C include first order
terms. We have

17
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A =PVh2 Cos 2 = Q2 (P a t2

0 2 9 -Sa +(Pa0( 2

2 2

O-v

p V q

- C2  p N 2)( 9t + (p 6 t) (I. a NJ)j
V2  2)

B 2pVpCb.t-V os C N) 2C t)

o ) (2.17)

+2 C3 (p A N)(p t) (F+-1)-4pVpVh Cos 0 V

+C [(pA .! + () A()( A~"_2____________,___ , t:c< (g o ]
- 2 g +(p t)( A q (F N)CI12- 3C(P a )Cfg91 )C+--1) 3 Y3P 0N) 2(g Ndl -

P(V p2 2 Vq 2 Vp2 2 Vq2

0 N)A Q tt) + (p 0 )(r ) N)

12 C3 (P B N) (j A N )(F - i1) - 3 p AP 9 N) 2 (r 2B N) E

p r2 Vrp2 (Vp - Vr2)

C = C3(p a )3 + 2pVp2 v - C B3(p  N) ( 1)

Equation (2.15)i is a specialization of (2.16) when a is a first order quantity.

(iii) Reflected Simple Wave.

The analysis for a reflected simple wave is slightly more compli-
cated than that for a reflected shock since the differential equations (2.4)
must be satisfied throughout the wave rather than the difference equations
(2.3) across the wave. Again it is convenient to base the analysis on the
proper vectors from (2.6). Refer to Figure S. Within the simple wave the
acoustic tensor Q depeisds on a variable deformation gradient and a variable
normal since

2= 92 + 93 (F1) (2.18)

= os a + Z sin a

19
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where both F and a depend on the wave parameter y. The unit vector ip, which

is a proper vector of Q, may be written

S- 92 + n9 + (2.19)

where p, 9, r, as before, are the proper vectors of Q(&o). It is assumed that
g is close to one of the other vectors, say L - p, so that

= l-n2- 2 " 1. From (2.4)2 we may write

E(Y) = - n(y) 8 N(y) dy (2.20)

With only the lowest order terms retained, this becomes

-Y
F()= P - B - p a to a dy

Jo (2.21)

- ° N 0  n dy - r 8 Nof dy

Now with (2.18), (2.19), and (2.21) inserted in (2.4)1, and with V = Vh sin (O+a)

a vector equation relating a, n, c and y is obtained. At lowest order we obtain(2.15) again. Since C = 0(1), we have V = sin e, as required by linear
p Vh

theory, and n, 4 are higher order terms. At first order the following equations
are obtained.

2pV (b.t V cos e)a
p h 0

_C3(p Vo)3 y- 2pVp2 v

+C3 (p -) 2 (f+- 0
(2.22)

P(Vp 2 - Vq2) n - C2 [(p N°)(9 a t o ) + (p 1 t°)(g 9 N O) a

- N 0)(9 g N0)(+ -1)

+C3 (p B N°) 2 (9 9 N0 ) = 0

There is a third equation for C, similar to (2.22)2. Provided that the

coefficients of a and n are not small, these equations, upon comparison with
(2.15), show that to second order a simple wave may be replaced by a shock of
equal amplitude and located so as to bisect the wedge of the simple wave. To
see that this is true, note that the wedge is defined by a(y) as y varies in
the range [0, y,for some extreme value ym. With y replaced by Ym, (2.22)1

21
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is identical in form to (2.1) 1. Insertion of (2.22)2 into (2.21) followed by

integration shows that fCy() is the same as F" calculated from (2.3)2 with (2.7)
and (2.15)2.

If (. - Vho cos )i/Vp is small, then equation (2.22)1 must be
0* 2

replaced by one with terms in a , but (2.22)2 remains unchanged. By the same

process used to obtain (2.22), but with care taken to retain all terms quadratic
in small quantities, we again obtain an equation of the form of (2.16) with
coefficients A, B, C as follows.

A V2 2 ec 2

AuP h cos20 C2(1p t)2

G2 UP J)(9 1 ) + (Pat ! )(g

P(V 2 - V 2)

p q

JC2 [(P @ V)(r a t) + (P a t)( 9 * ]

p(V p2 - V r2)

B = 2pVpb.t - cos 0)-2 C(p B N)2( g t)y

+2 C3( Q S N)(p B t)(F+-I)-4pVpVho cos 0 v

+2 C2 [(p N)(9 9 t) + p Cp t)( 8 V)]

p 2  2
P(

(2.23)

2  N)(qcB ?)c: ) Q +- 9 B N)2(9 B

P 2 - Vr2)

B N)(r B N)(fc) - B 2(T 8 N)y}

C3 ( B N)3y + 2pVp2 v - c (P B N)2Cf -,)

Equations (2.23) should be compared with (2.17), and (2.22)2 with (2.15)2. In

obvious shortened notation, the equations for a in the case of a shock or a
simple wave are as follows.
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Shock Wave:

A 2 
- (B1  4" B2 &+ + C +c= (2.24)

Simple Wave:

A B2 -a B1 -B + b) + C 1 y+ c

If 81 is large, then the terms with A, B2 and b may be dropped, but near a

limiting angle B1 will be small so that all terms must then be retained.

Strictly speaking near a limiting angle a simple wave can no longer be replaced

by an equivalent shock for computational purposes. To do so would require the

equivalence of (2.21) (with = f) and (2.3)2, written here to second order.

- +F- = F - p 9 Ng - p 2 t g

(2.25)

q 0 Nn~ - r~ 9 NC

If it could be shown that a good second order approximation could be obtained

by setting

V =f' a(y) dy (2.26)

then comparison of (2.22)2 with (2.15)2 would complete the required equivalence.

Even if (2.26) does not hold to second order, for practical purposes it is

still useful and will introduce only a small error. To justify this last

statement, first solve (2.24)2 for Y.
A2 _ (B1  + b)a + c (2.27)

i . C1 + B2a

The curve for y as a function of a is nearly parabolic for small a. To repre-

sent a simple wave there must be a branch that intersects the axis on which

Yf= 0 and that has positive and increasing values of y for increasing a. If

this condition has been met, there are two extreme cases to consider. First,

if the roots of the numerator of (2.27) are widely separated, then the branches

may be approximated locally near y = 0 by linear functions. This occurs only

when B1 is large and is the case already considered. In the other extreme

condition the roots of the numerator of (2.27) are equal, say a = a, and we

have the following approximate expressions.

ad - & = + -

=d 1~~/5 9 3/2

On the other hand from (2.24)1 in the same circumstances we have approximately
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and

S 1 1 t3/2

Since 2/3 and l/ " differ by less than 6%, the approximation (2.26) should
prove useful even in extreme circumstances.

III. REFLECTION CALCULATIONS: GENERAL CONSIDERATIONS

All the usual boundary conditions require the calculation of stresses or
velocities or both behind the reflection pattern. With reference to Figure 2,
the deformation gradient and velocity behind the pattern may be written:

3

tS = EI + F Ai F
i=O (3.1)

3
u'B = MI + L Ai V

where the subscript B indicates the region behind the wave pattern and adjacent
to the boundary, the subscript I indicates the region ahead of the incidentth
wave, and the symbol A. indicates the variation across the i wave. In the

treatment of individual waves in the last section, it was shown that to second
order all waves may be treated as if they were shock waves. (The only possible
exception is the last case treated, i.e., a simple wave near the limiting
angle.) Accordingly, the amplitudes of the waves may be represented as follows.

0 Z &0 o + no% + co "o

a = l(+)Pl + n2 91 + Cl T1  (3.2)

#2 = E2 P2 + n2 (l+*)9 2 + 2 r2

#3 = 3 P3 + n3 93 + Y(+W)-3

In (3.2) the subscripts refer to the various waves as shown in Figure 2. The
polarizations qn' 9nh ln correspond to the directions of waves in the linear
pattern. Thus
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r nnPn pn -n

2

En r ~nn

where ij = C NnN- The normal to the incident wave is given as well as

the primary amplitude and polarization of the incident wave, i.e., one of

o no or co is given. The primary amplitudes of the reflected waves are

tl, T2 and C 3* All other terms, including *, * and w represent higher order

corrections. Transmitted waves could be represented analogously.

The calculation of the reflection/transmission pattern and of the wave
amplitudes now proceeds in a stepwise manner once the boundary condition, angle
of incidence, and the polarization and amplitude of the incident shock are all
specified.

Step (i) The angles of reflection/transmission for the linear problem are I
computed. This corresponds to the fact that the reflection/transmission pattern
for an incident shock of vanishing amplitude is the same as the pattern in

linear elasticity. The pattern is computed by the standard methods, e.g., see
Musgrave12 .

Step (ii) Corrections to the speed of the incident shock wave and to the
polarization may be computed from (2.11) or (Al) as appropriate.

Step (iii) The amplitudes of all waves, given by (3.2), are inserted in
the expressions for stresses and velocities, and these in turn are inserted in
the boundary conditions. The lowest order terms, considered separately, give
exactly the same expressions as would be obtained from linear elasticity. This
may be written as follows.

B 2  M(o) (3.4)

1 3

Here B is the 3 x 3 matrix of boundary coefficients from linear elasticity,
which operates on the column matrix of primary reflection amplitudes, and M,
which is a linear function of to , is a column matrix that originates from the

lowest order terms of the incident wave. For illustrative purposes, only
reflected waves have been considered in (3.4), and the incident wave has been
assumed to have primary polarization p 0. Equation (3.4) may be solved provided

12M. J. P. M agrave, Cryetal Aoouetioe Holden-Day, San Prancieco (1970).
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that det B 0 0. In Reference 13 it is shown that, generally, det B 0 0 except
possibly at a limiting angle. For the moment let us assume that det B is non-
vanishing for all angles. The case when det B = 0 at the limiting angle
requires special treatment and is discussed separately in Step (vii).

Step (iv) Angle corrections al, a 2 a3 and amplitude corrections n1 , lp'

62' 2' F5, r5 may be computed from (2.15) or (A.2) in all cases that do not

involve a limiting angle. If reflection occurs near a limiting angle, correc-
tions may be found from (2.16) with (2.17) (or with (2.23) if greater accuracy
is desired in the case of a simple wave).

Step (v) The results of (ii), (iii), and (iv) are used to express the
second order terms of the boundary conditions. These may be written as follows

B n2 N ( o 2 v i' ni) (3.S)

Here B is the same boundary matrix for the linear problem as before, , ,
are correction factors for the primary amplitudes, and the column vector N is
quadratic in first order terms and linear in second order terms.

Step (vi) If the angle of incidence is near the linear limiting angle,
then (2.16) must be used to compute the nonlinear limiting angle. For shock
waves a limiting angle occurs when a becomes complex with (2.17) used in (2.16).
For simple waves a limiting angle occurs when a becomes complex with (2.23)
used in (2.16). For this last case it is necessary to set y = 0 in (2.23)
since the limit occurs when the leading edge of the simple wave overtakes the
incident wave. Note that only Step (iii), the linear solution, is required to
compute the limiting angle.

Step (vii) If the angle of incidence is near the limiting angle and
det B = 0 at the linear limiting angle, then it is necessary to combine steps
(ii) - (vi) into one step. The boundary equations have then become essentially
nonlinear, and the simplest approximate solution is obtained from a set of
quadratic equations rather than a sequence of linear equations.

IV. EXAMPLES: REFLECTIONS IN ISOTROPIC MATERIALS

The procedure given at the end of the last section is perfectly general
for anisotropic materials. No doubt numerical results could be produced by
computer for arbitrary symmetries, but only isotropic materials seem suffici-
ently simple that explicit formulas may be derived.

In Reference 13 calculations were made for three different boundary con-
ditions with an incident longitudinal shock wave. The results of those

1 3 T. W. Wright, Oblique Reflections, in Propagation of Shock Waves in Solid.
ed. E. Varley, AMD Vol. 1?, 4WME, New York (1976).
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calculations are summarized below since they are illustrative of the kinds of
behavior possible. In addition, new results for incident shear waves are
derived. All waves will be approximated by shocks as described in Section I.
Notation for elastic moduli is explained in detail in Appendix B.

Longitudinal Waves

If the incident wave in Figure 1 is a longitudinal wave progressing into
an unstressed region, the linear wave speed is cI = /C1 p, also

Po = so = o= 0, and the first order correction from (2.11)1 is

C4-Cl- - t (4.1)

where C = Cll 11 11 and c11 = + 21, X,jp being the usual Lami constants. For

most materials C is negative so that compressive waves (i.e., & 0> 0) correspond
to shock waves, as is well known.

There are only two reflected waves in (3.2), so a3 =O. Also c1 = C2 = O,

and pi = N,, 9, = t. for i = 0, 1, 2. The reflection angles for the linear

problem are given by v - e and 02 = -5 where s ( sin- C and

c is the linear elastic speed for shear waves. Angular corrections a1 and a2

are found from (2.15)1

-2 cll coto°  l C( 1 +

.2
- (C-c) sin 2eo 0 & 0 (4.2)

c cos
2 - c  s o + 44 Coc 1  11 sine 0  2 c 11  0

- [ (C-c) + c12 + c4 4] (o + :1 : 0

Amplitude corrections n and 2 are found from (2.15)2

(c 12 + C44)(n I - a11 + (C-c) sin o 1 = 0

- (c 12 + C + a2r 2) + [ (C-c) + c12 + c44 ] n2 (4.3)

+ (C-c) [0osin 2(e0 + 6)-&lsin 2(0o - 6)] n2 = 0

In (4.2) and (4.3) primary amplitudes 1, n2 are to be found from the linear

boundary value problem, and c = C1 1 2 = C1 1 11 22*
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Note that (4.2)1 clearly fails as 8 approaches 90', the limiting angle
1 0

in this case, since the coefficient of a1 tends to zero. With e°  i/2 -

where a is small, (4.2)1 must be replaced by a quadratic equation, obtained

from (2.16).

01  2 c a a C( o + 0 (4.4)
010

Since aI must be real, the discriminant of (4.4) must be positive. It is this

requirement that determines the limiting angle as a function of amplitude. The
discriminant vanishes when

22ao

&0 0 (4.5)

cll F

and then a1  - a so that I + a 1 = - In (4.5) the ratio A1/ o is a func-

tion of a and comes from the reflection problem for linear elasticity.

Equation (4.5) was obtained with the approximation, made for computational
purposes, that amplitudes may be calculated correctly to second order from
formulas for shock waves. If the first reflected wave is actually a simple
wave, then the regular reflection pattern fails when the leading edge of the
simple wave overrides the incident wave, not when the approximating shock does,
since it is embedded within the real simple wave. These remarks should be
made clear by reference to Fig. 5. The net result is that for simple wave fans
it is necessary to set 1/& = 0 in (4.5) to obtain the correct limiting rela-
tionship.

Formulas (4.1) through (4.4) are perfectly general for any incident longi-
tudinal wave and any boundary condition, but (4.5) gives the correct limiting
condition only if the linear boundary determinant does not vanish at the limit-
ing angle.

The formulas for velocities and surface tractions behind the reflection
pattern, correct to second order in amplitudes, are found by combining (2.5),
(3.1) and (3.2) for isotropic materials.
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PB = (o " 1) sin 2e + al1 cos 2  C44  sin2
(l4v)Vh o 1 0 c1 0

2 C2

-1 sine - 2 - 2 cosi sine°1 0 2 22

L ' = o +  i sine 0  - n2 sin 26 - (nI + all) sin 2e02- 2-

+ a2n2 cose + C2 s i n 2 E

I NB *(TNB) o + El)l 2 cos2e 0 si-n2

44 (c44 0/ 2

cl12
- + a 1 1) sin 200 - C-2 (E2 + a 2 n 2 )

c44

2 2  cos26) + an sin 26)

- (12 4 2T2 si ) (4.6)

+ (2 + t12) (C sin2 O0 + C cos20o) + n2 Cc 1 \44 (4.l

(9c 2 2 4 C44) 44 C4

+. -c(1 +2 cos2O ) sine 2 4. - cos 20 o Eoh C 0 0 c0
c 1 1o'  c44 c44 0

+ C-hS c cose°  to sin(eo + 26) + C1sin (e ° - 2 )

1 rB = o - sin 2e- n2 cos 26 + (n, + al{1 ) cos 2eoc 44 -B*(V)=(o & 1

+ (C2 - a 2n2) sin 26 + E (02 - &2) (C-c) sin 2e%

+ n2 ( ° +1 4.1) C-cos 26
2 0 1 C44C 

4 4

For a clamped boundary, the first two of (4.6) must be identically zero,
and similarly for the last two in the case of a free boundary. The linear
boundary determinants in these two cases are as follows.

Clamped:

det B =cos (00 -. )

C /c as e ,
2 2
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Free:

det B \c(2 + 2 cos2) cos 26 sin 2eo sin 26

2 (4.7)
12

C 2 +as e

C4 4 C1 1  0 2

Since the determinants remain positive all the way to the limiting angles
(except for a Poisson's ratio of zero in the second case), the first five steps
at the end of Section III are all that are needed to determine solutions to
second order. These two cases were discussed further in Reference 13.

The rigid-lubricated boundary by definition requires the first and the

fourth of (4.6) to vanish. The linear terms give the solution E1/1o = 1,

n 2/ ° = 0, but the boundary determinant in that case is given by

det B = sine cose0 0

0 
(4.8)

0 2

Since sine appears in (4.8) only because of the normalization by Vh in (4.6)1 ,
00there is no difficulty at e0 =0O, but as e° approaches 90e the linear solution

no longer gives a good first approximation. It is then necessary to use non-
linear boundary conditions right from the start.

With 00 a , where a is a small angle, and with a small angle

approximation used throughout, it is readily found from (4.2)2 and (4.3)2 that

2 0
(4.9)

2 = 0 (a2nd)

Furthermore, from (4.3) and (4.4) we have to lowest order

l=1 (4.10)

a -ao + [02 +fIl]

Boundary condition (4.6)1 reduces to

2 4 (E °  (4.11)
c112 0 1 0 -l~l
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where (4.10)1 has been used. Finally, boundary condition (4.6)4, with the use

of (4.9), (4.10) and (4.11) becomes

-1.+ 1 .I._C 1 1 o (4.12)
CO ilIO zo/

This equation has only one acceptable real solution.

= 2D - D 

where ! = - C (4.13)D c 2o

and 4 1 D <

The extreme case of D large leads to the linear elastic result, but the limit
D = 4 gives 91

to 2 (4.14)

and the limiting amplitude-angle relation

ao2

= 2C7 1 1  (4.15)

The results in (4.14) and (4.15) were previously given by Reid 6, but not (4.13).
Note that (4.15) is similar to (4.5), but much stronger.

Equation (4.13) is plotted in Fig. 6. The limiting angle/amplitude rela-
tions, given by equation (4.5) for a simple wave and by (4.15) in the present
case, are plotted in Fig. 7 for elastic constants C/c1 1 = -8.S. Fig. 6 shows

the rapid change in reflection amplitude as the limiting angle is approached.
Fig. 7 shows how large the limiting angle a° may be even for relatively small

strains. This point is discussed further in Reference 13.

Shear Waves

If the incident wave in Fig. 1 is a shear wave progressi .nto an
unstressed region, the linear elastic wave speed is c 2 =vc 4 4 /p , with Po= to,

and first order corrections v and Co from (2.11) are given by

v =0
(4.16)

-(c12 + c4 4 ) Co +  C-c + 2 (c 1 2 + c4 4 ) n0
2  0
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Again, there are only two reflected waves with angles 02 U V- 8o and 01 - 1 -

where -sin-,( R sineo). The linear critical angle occurs for or

00 sin 1  Z . Angular corrections o1 and Q2 are found from (2.15)1.u c2

2 c2 C0oL 0
2 c 1 sn 0  1 h C - h(C-c)sin 2(01 - 8o)n o -o

cose°[ (4.17)

2 c44 sin - -c + 2(c1 2 . c44) 1 " (

Amplitude corrections n1 and 2 are found from (2.15)2.

(c12 + c4 4)(n1 - M1C1)

* [CC-c)cos 2(e 0 +i) + 2 (c 1 2 + C44)] no~l =

(c12 + c4 4 )(U2 
+ '2T2 )  (4.18)

- [(C-c)cos 4 eo0 + 2 (c12 + c4 4)] 1on 2

+ h (C-c)sin 2(6 - 0o) 1n2 - [ C-c + 2c 2 + c4  = 0

As before &I and n2 are to be found from the linear boundary value problem.

rhe equation for a1 again fails near the limiting angle since the
-1 C2

coefficie-t of a1 in (4.17)1 tends to zero. With 0 a sin -- a and

01 +.1 al where a and &1 are small angles, eqn. (4.17)1 must be

replaced by a quadratic equation, obtained from (2.16) as before. It is more
convenient to work with & rather than a1" To be consistent the basis vectors

for the first reflected wave now are .= and q, - @y. Eqns. (4.18) remain

correct with = and 1 and n1 interpreted as components along the redefined

and 91.

^2 c12Cl aI + (C-c) -- no

11 c ~11 o1

C2 I 2 2)h Cl 2 '(4.19)

-h C lI (C-c) c I C 1 no 2 c 2 I 0 (4.19)
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The last term in (4.19) does not come from (2.17)3, but rather from (2.14)1

since the use of a instead of a I leaves a second order term left over from
11

(2.14)1 that must be accounted for. Solution of (4.19) gives

/ 2
a C-c 12 n (C-c c12 222l Cll c11/ no

2c 11c o 0 c 0 (4.20)c +
1 l Cl c 12l no no 0 2 - 0a

fr f d [ (c2
where the positive radical has been chosen so that 1 has the correct value
for fixed a with no = 0. To ensure that 61 is real, the terms under the

radical must be positive. As before, it is this condition that determines the
limiting relationship between n and ao . The ratio 1n ° must be obtained

from the linear problem (or nonlinear problem) if Cl denotes a shock wave or

be set equal to zero if 61 denotes a simple wave fan. It should be noted that

in the development given here a is required to be positive since only then

can 1 /no be found from the linear problem. If o < 0, perhaps an estimate

for a lower bound of no could be found in some cases by appealing directly to
0

the nonlinear problem. Of the two values of n0 that make the radical be zero

only the smaller one is physically reasonable.

noi - 2 (4.21)

C -c C
c 2 1  / h

It is worth considering (4.20) and (4.21) further for clamped or free
boundary conditions. In these cases it is readily found that the linear solu-
tion gives

Clamped: 1= sin 20o
no  c1--cos(6 - E)

c2 (4.22)

c 2 (1 c 22) sn 1 c 2

4- 2 - 1 as 0 sin -
c l( 2) 0 c1
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Free: 1 sin 40o'no  Cl12  2- 2 cos2 20o + sin 2eo sin 26

C2  
(4.23)

2
C 2 C242 2

as o -.. sin

C2 0 C

c2

Since shocks are compressive in most materials, for the present discussion it
will be assumed that C < c < 0. For the clamped case if no 0 0 near the limit-

ing angle, then 1 < 0 which indicates a simple wave. Then l/no must be set

equal to zero in (4.21) and n0 has the limits

2
cll c1

0 C-c -c °  (4.24)c2

On the other hand, if no < 0, then 91 > 0, which indicates a shock wave, and
no has the limits

2

C2n 2 c -a (4.25)
c2

If c is actually positive, rather than negative as assumed, then (4.25), or

more properly (4.20), seems to indicate that a° may be negative. For the free

boundary case similar considerations apply. If no O, then El > O, indicating

a shock, and n0 is limited by (4.21). But if no < 0, then &1 < 0, indicating

a simple wave, and (4.21) or (4.20) seem to indicate that ao0 may be negative,

i.e., that the limiting angle is greater than sin 12 Fig. 8 shows an

example of the limiting relations between no and ao for these two boundary
conditions.

The boundary determinants for the clamped and free boundary have the same
limits as (4.7)1 and (4.7)2 so that second order solutions may be found by

following the first five steps at the end of Section III.

The rigid-lubricated boundary again provides the most interesting case
since the linear boundary determinant vanishes as in (4.8), and again it is
necessary to use nonlinear boundary conditions right from the start. The
formulas for shear traction and normal velocity behind the reflection pattern,
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correct to second order in amplitudes are found, as before, by combining (2.5),
(3.1) and (3.2) for isotropic materials.

1m
Z44- !B -

•-(no + n2) cos 2eo - (to - 2) sin 200 + n .1[

SB " 0 (4.26)

Vh I

-C(no + n2 ) sin 2 o + (to " 2 sin eo cos eo

- n* '2 n2 sin 00 cos eo

Since the linear problem has the solution = 0, = -l for every

incident angle, it seems reasonable to assume here that tI = O(no) and

n2 = O(no), i.e., limii /no = 0 and lim n2/n o = constant. With these estimates

of magnitudes, it is easily seen from (4.16)2, (4.17)2, (4.18)1 and (4.18)2,
respectively, that

to = O(no2 )

a2 = o(no)
(4.27)

ni = al l +(No2)

&2 = ON 2 )

Since terms higher than quadratic have already been eliminated, (4.26) may be
written

-(n o + n2 ) cos 200 - (to - Y sin 200 + 21&= 0

(4.28)

-(no + n2) sin2e0 + h(&o- 2) sin 2e° - l~l = 0

To second order we have

n 2 0 -no + O(no
2)

(4.29)

&l4l ( to " sinGo coseo + (no2)
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Equation (4.29)1 shows that the reflected shear wave has nearly the same

amplitude as that calculated in the linear problem. However, (4.29) leads to
rather different results for Cl' 2

C C-cc2 ( 2
c11 c 1 c (c)n 2A. ) 0 1cI-/ \c2

(4.30)

0 2 n12 [cl2C C2 2  cOS 4c 2]E1 C1 2

1 c2
where 0 = sin - . For purposes of graphical interpretation, (4.30) will

be rewritten as

-A i+ BI R

Since the positive square root is always intended, l has the same sign as R,

which depends both on the magnitude of 0 and the sign of C-c. Thus E must be
a root of c

f(l) = A t1
3 - B E1

2 + R2

which is plotted in Fig. 9 for A > 0. In this case if R > 0, the reflected
wave is a shock, so the limiting angle occurs when the minimum in f(cl) just

touches the axis. The minimum lies at 1 = 2B/3A and the function vanishes
2/there if B = 3 ( AR) Returning to the coefficients.of (4.30), the limit-

ing conditions are

2

o c c 2 +4C-c/3

c 1 /3 c I(4.31)

l43 23T 2  cos 4 2]

On the other hand, for A 3 0 but R 4 0, the reflected wave is a simple
wave. With C = 0 for the leading edge of the wave in (4.20), the radical
vanishes at
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2
ao - n C-c c (n2 ) . 32)

= C1  2 o 0

The amplitude, as calculated by the shock wave approximation from (4.30), is
given by

432321/31
=- C-c

~l-24 3( C~i7 l) ( 2) [ C1 cc 4  cos 40 + 2J (4.33)1 2 473- 7Cl c 1)cc12 + 44 c

which is smaller than (4.31)2 by a factor of 4.21/3.

The argument for the case A < 0 follows the same pattern as for A ' 0, but
with -t1 replacing &, at every step, since for A < 0, Fig. 9 becomes its own

mirror image by reflection across the axis El = 0.
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APPENDIX A

NEARLY EQUAL WAVE SPEEDS

If Vp = Vq in (2.11) or even if they are near to each other, i.e.

IVp - Vq I/Vq << 1, then (2.11)2 fails. In that case n must be assumed to be a

first order term. With and F*-l still arbitrary first order terms, it is
necessary to find v and n from simultaneous quadratic equations.

2pVp2 v& -3(Pi)C- - C3  N)(+N)!F-i)T

+ C (p8N) 3 E 4 . it)2 qNE

2 2

+h g3 QC ) CqN) 2n = 0
(A. 1)

p(V 2 V 2)p 2V 2vn C (gON2(F-l)n
p q 3

_ C3(pON (qA) (Ft+_) C3(pN) 2 )2

C12)n, + CqOE 2  2

+ C 3(pON)( in) + h C~ (Sau) 0

The equation for ; remains unaltered. Equations (2.11) are specializations of
(A.1) with n a second order quantity and terms of third or fourth order dis-
carded.

For the case of nearly equal speeds in (2.15) it is necessary to assume
that n is of the same order as E, and n and a must be found from the follow-

ing quairatic equations where , v and F I are taken to be known.
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2pV p(bp t - Vh  cosO)m + 2pVp 2V
0

- C2 Q{ U (sli) + (pt) qQN)Imn

- Y3(N,) I2 Q.+ -)& - C3 (1S)CgIN)( S -. )n

+ C (?pN)3&2 + g'(P")2 N)En

+ C3 c(PSN) (95N) 2n = 0

P(Vp 2 - Vq2)n - 2 p(Vqbq t - cosO)an + 2PV 2 v

- 2 I(pa O(q@!) + (p~t) (qMN)jc*

- c 3 (pN) 2 3 gN)2(F -I)n (A.2)

+ 3h C (PN) 2C ((p( 2 + C ) 2 &n

+ h q3(qlN)3 n 2 O

P(Vp 2 _ Vr2)C - C a&

- .2 (s.2 CrOy) +CqO.) C p )] (nO
- r2 - 2~ + ( IS)~!~)t

- 93(PN W T) (F+-1)t - C3 (9" ) (AN)n

+ C3 (N) 2 (TON) C 2 + C (p0N) (qi) (r@N) Cn

+ C 3 (9 9N) 2 (rAN)n 2 = 0

The vector bp is the same as b in the formula following (2.1S), and b q is

computed from the same formula with the permutations p-q, M <-. Equations
(A.2) reduce to (2.15) if n is a second order term and terms higher than
second are dropped.

In case IVp - Vq I/Vq << 1 in (2.22) then n and & are quantities of com-

parable magnitude, and both (2.21) and (2.22) must be replaced. Since m is a
unit vector, the condition E 1 must be replaced by
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2 ,n2 . !(A. 3)

which is correct to second order. The lowest order terms in (2.20) now are
siven by a f F' - ION ty - n ny, and by the same process used to obtain
(2.24) we have

2pV(b t Vh cose)a - 2pVp 2 v

+ 2  QW3) (90t) (+ (09 c9)+ 1 n

22+c+ CLm. 3 -.)2( + C3CPGN)(Cg@N)f CF-D)n

23 Ca - ) CqiN) 2 2

p(Vq 2 -V,2)n + 2p(Vb t - V V. cose)an- 2pV 2 vnq pq-q Pr p

+ c 2 fc G) (get) + (SMt) a&N4

+ ( N) (qBNI) (F-1)d + 3(oAN)2CLF-Din
3 (9 (A.4)

_ (P)2C9") &2Y - 2 C c C2§ny

3 2C3(l)3nr= 0

P(V 2  Vp2 ) + C2 ) (TOt) + (pAt) (rEN)l t

+ C2 1(3") (Est) + (9@t) (M0.)l n

+ C (py) C0M) Ce+-1) + C3 (gN) (O" ) (F+-)n

3 ( )2C")E2Y - 2 C (gN ) C )ny

- 93(39V)2 2 n 2Y 0
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The interpretation of 0 and bq is the same as in (A.2). Clearly equations

(A.4) reduce to (2.22) when IV p-Vq I/Vp is not small, 9 .' 1, and n is small.

Equations (A.3) and (A.4) are to be solved for a. , C, n as functions of
y. Comparison of (A.4) with CA.2) shows that, for purposes of calculation, a
simple wave may again be replaced by a shock wave. To see that this is true,
first note that C, n, C in (A.2) are components of #, which is not a unit
vector. To make them comparable with the terms of (A.4) we replace C, n, C
in (A.2) by Eam' nym, Cy. where y. - jqj. Next consider a power series solu-

tion of (A.4), 9 - Co + * na + + 0.''"0 **10. The
terms C , no, ao are obtained from a quadratic set of equations, and F''Co , 10

from a linear set. These results, when inserted into (2.20), upon integration
give F(ym) up to terms of second order in small quantities. Similarly, a power

series solution of the revised form of (A.2) may be sought. The leading terms
are the same as those obtained from (2.20j, but each of the second terms is
equal to one-half the value previously obtained. Calculation of E(m) from

(2.3)2, however, gives the same result to second order as that obtained from

the assumption of a simple wave. It may be concluded for this case as before,
that a simple wave may be replaced by a bisecting shock wave for second order
calculations.
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APPENDIX B

ELASTIC MDDULI

In the literature on ultrasonic wave propagation, it is commonly assumed
that the strain energy has the following expansion with respect to an unstressei
reference configuration.

1 4

,/= 2" c GBy ny6 6 Y6"c v ncB n'y6 nuv + "'" (B.1)
Whee ab (x i x) "C Y6a

Where i x , 6 is termed nonlinear strain, and c and
,o 3 ( ,8 0 a0 aOY6

cay6pv are termed, respectively, second and third order tensors of elastic

moduli. Because of symmetries, the values of the individual moduli are usually
reported15 as entries in the totally symmetric arrays cab and cabc, where

a, b, c = 1, 2, .... , 6. Each Latin subscript corresponds to a pair of Greek
subscripts; 1 +-* 11, 2 -+ 22, 3 -+ 33, 4 +-) 23 or 32, 5 *+ 13 or 31, 6 +- 12
or 21. Thus, c11 = c1 111, c2 3 = c2 23 3, c4 5 = c23 13, c155 = c1 1 13 13, etc.

The elasticities for use in this paper may easily be calculated from (B-l).

CiajO = x 0 jo(caocp + C o~pV V)

+ 6ij (c iVv n1V + h c MOUO 0 r ] ,po "'"

C. = x . X kT cO8pyT (B.2)
icij oky , a jop,p asy

+ 6ik Xj,o catyo + 6jk Xi, c Bycao

+ 6ij xk, c 0 ya +.

If the region ahead of the incident shock wave is unstressed, then in (B-2)
x. = 6. and =0. The elasticities reduce to
1,a ic M

1 4K. Brugger, Thezodynaic Definition of Higher Order Elastic Coefficients,
Thy.. Rev., 133. A1611-A1612 (1964).

1 5 ?R. Bechman and R. F. S. Hearwna, The Third Order Elastic Constants, in
LandoZt-Bdrnetein, Numerical Data and Functional Relationships in Science
and Teohnoloi.. New Series, Group III, Vo . 2, ed. K.-H. He I ege, Springer-
Verlag, Berlin, Heidelberg, New York (1969).
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C±aji -6io 6 6 cM0

C iaj Okf "Ia i jokr CQoBpyr
(8-3)

ik aJo cay~o ak 6io cByao

a iJ ako cmyo

The reduced notation may also be used for C2 and C3. Thus, CII I
C 1 1  11 C1 12 ' C11 11 22' etc.

For the isotropic case, there are only two independent second order
moduli and three independent third order moduli1 5 and then (B-3) becomes

Ci tJo =c 8 + cj * 44 8 )ij '00 +  a ja)

Ciaj~ky = c 1 23  im 6 . aky * c144 (o 6 8 jyk6 6+ 6iY 6 .+ a 6 + ja ky)

+ (c12 + c14 4) (6i. 
6jk 68y + 6ik 6J6 my + 6iJ 6ky 680)

(B-4)
.+ (C 1 - 144+ 2 c4) (0i 'jy 6ka + 'iy 'ja 'kS

+ ~6. 6 6 + . 8 a .+6ij 6ka 6y + ij kO ay ik ja 6y iB jk ay

+ 6ik 6jy a0 + 6iy (6 6660) - c44 (iO 'jY ka + 6iY 6 kO).

For isotropic materials we also have the identities

c44 = (cll " c1 2). c14 4  (cl 1 2 - c1 23), CM5 5 u (c111  c112) "

In this paper the third order moduli most commonly used are

C • C llI  3 cl1

(B-5)

C C1 1 2  C1 1 2 + c 1 2
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LIST OF SYMBOLS

A, B, C Polynominal coefficients in eqn. (2.16)

a Shock amplitude vector, defined by (2.3) 3

B3 , B Boundary equations, boundary matrix

b, bp, b Propagation vectors, defined by the formula following (2.15)
-p-q

92, 92' giajo Second order elastic moduli

C3' Ciaj.ky Third order elastic moduli

C, c Isotropic moduli defined in eqn. (B-S)

c as 6 , c Q¥6PV Second and third order moduli in Brugger's notation

cab, cabc Isotropic moduli in Voight's notation

CI c2  Elastic wave speeds in isotropic materials

D Defined in eqn. (4.13)

e yUnit vectors along X, Y axes

F, Fjo Deformation gradient

FB' fI Deformation gradients at the boundary

mUnit proper vector in simple wave

N, N Unit normal vector

O(.), o(.) Order of magnitude symbols

p, q, r Unit proper vectors for linear wave

QAcoustic tensor

TV Tia Stress tensor

t, to 0Unit tangent vector

t Time

Particle velocity

V, V°0 Wave speed

Vp Vq, Vr Linear elastic wave speeds, defined as in (2.6)

V h  Steady speed parallel to the boundary

49



v Perturbation of shock speed

Kw Strain energy function

x Material coordinate

Spatial coordinate

x. Deformation gradient

a, am, ax Small angles

YD m Simple wave parameter

Variation across ith wave

Strain tensor

e, o  Wave angles

G, c  Limiting angle

A, U Lam6 constants

C, , Components of a

p Density

*, ,, w Second order corrections to amplitudes
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