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1. SUMMARY

The objective of this program is the development of a 403 MHz surface

acoustic wave oscillator suitable for use in an expendable radiosonde. Due

to the extreme temperature range (-70*C to +70°C) the radiosonde must operate in,

and the simultaneous deployment of many radiosondes operating within a limited

bandwidth, temperature stability is the oscillator's most critical performance

parameter. Stability of 200 ppm or better is required. The circuit is also

required to tune from 400 MHz to 406 MHz, transmit 200 mW (+23 dBm), and be

capable of both amplitude and frequency modulation. Specified performance is

outlined in Table 1-1.

Table 1-1. Oscillator Performance Specifications

Parameter Specification Comment

Frequency 400-406 MHz Settable to 50 ppm

Stability 200 ppm -700C to +70"C

Modulation

PAM 0 to 2000 pps

FM 100 KHz Modulation 300 KHz/V Modulation
Frequency Sensitivity

Output Power 200 mW 50 ohm load

Frequency Pulling < +20 ppm ZL = 25 to 75 ohms

Power Supply 24V +10% Other supply voltages
<2.5--watts can be considered

During the first six months of the program the oscillator design was

completed, and all the individual RF subcircuits were designed, fabricated,

and tested. These circuits include the SAW delay line, loop amplifier, phase

shifter, and an injection locked oscillator (ILO). During the second 6 months

of the program, the individual oscillator circuits were integrated to form the

radiosonde oscillator, and the oscillator was temperature compensated and tested.
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This report discusses the overall oscillator design, gives a brief

description of the design and performance of the various subcircults

of the oscillator, and a detailed description of the integrated oscilla-

tor's design and performance. The oscillator design is described in

Section 2, design and performance of the individual subcircuits are

described in Section 3, and the integrated oscillator design and

performance is described in Section 4.

2. OSCILLATOR DESIGN

For a general description of the radiosonde oscillator design

considerations, refer to the First Interim Report dated March, 1981

A block diagram of the 403 MHz SAW Stabilized Oscillator is shown in

Figure 2-1. The circuit consists cf a relatively low power, tunable SAW

oscillator driving an injection locked oscillator, plus associated DC circuitry.

The SAW oscillator produces approximately 20 mW (+13 dBm) RF power, tunable

from 400 MHz to 406 MHz. Both mechanical tuning for frequency selection and

electronic tuning for frequency modulation are employed, The injection locked

oscillator which is locked to the SAW oscillator output produces an RF output

in excess of 200 mW (+23 dBm). The ILO therefore provides approximately 10 dB

of gain. Bias switching circuity in the ILO is used for pulse amplitude modu-

lation (PAN). The DC circuitry consists of a voltage regulator to minimize

frequency pushing, tuning and frequency modulation circuitry, and a

temperature compensation network to compensate primarily for varactor

reactance changes.
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OSCILLATOR BLOCK DIAGRAM
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Figure 2-1. Oscillator Block Diagram

Specifications for the individual oscillator subcircults were

generated, and are summarized in Table 2-1. As these specifications

imply, a 12V supply will be used throughout as opposed to the 24V

currently used. All of the transistor circuitry performs optimally

with 12V or less. Only the varactors in the phase shifter would benefit

from using the full 24V available and due to the non-linear varactor

C-V relationship, this benefit is small. The 12V supply was therefore

chosen to conserve power.
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Table 2-1. OSCILLATOR SPECIFICATIONS

Specified
Circuit Parameter Performance Comments

Delay Line Center Frequency 403 +0.150 MHz ST-cut quartz
3 dB Bandwidth 6.3 MHz
Loss (Matched) < 20 dB
Delay -100 ns

Loop Amp Frequency Band >350-450 MHz
Gain > 40 dB
PSAT 16.5 dBm

VSWR (In,Out) < 2.5:1
Vsupply 9V Regulated

Phase Shifter Loss <3 dB Two cascaded phase
Phase Shift >1800 shifters to be used
Tuning Voltage O-9V Regulated

Power Splitter Coupling 3.0 dB
Loss <0.5 dB

ILO Natural Frequency 403 MHz
Power Out L +23 dBm 200 mW
Injection Locking
Bandwidth >+16 MHz

PPIN. +13 dBm

Vsupply 12V Unregulated

A review of Table 2-1 points out key features of the design. The loop

amplifier gain of 40 dB exceeds the 30 dB loop loss by 10 dB. This is adequate

to drive the amplifier well into saturation and provides margin for SAW and

phase shifter variations. The delay In the SAW Implies a mode spacing of

10.0 MHz. If 20 ns of delay in other components in the loop is assumed the

mode spacing would be reduced to 8.3 MHz. This is well in excess of the 7 MHz

3 dB bandwidth of the SAW. Two phase shifters will be used in cascade. A
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single phase shifter will generally produce no more than 250* phase

shift. Therefore, two are required to produce a 3600 phase shift.

The ILO will lock over a range far in excess of the 6 MHz operating

band. This is to account primarily for the drift in ILO natural

frequency with temperature.

3. CIRCUIT DESIGN AND PERFORMANCE

Refer to the First Interim Report, dated March 1981, for a detailed

description of the design and performance of the various oscillator circuits.

a. 403 MHz SAW Delay Line

It is required that the 403 MHz SAW oscillator be operated with one stable

single mode output and be tunable over the 400 MHz to 406 MHz frequency range.

To achieve this, the specifications for the SAW delay line were set as follows:

Center Frequency 403.0 +0.15 MHz

3 dB Bandwidth 6.3 +0.1 MHz

Time Delay 0.10 +0.01 isec

Insertion Loss (matched) <20 dB

Substrate ST Quartz

Temperature Stability

Turnover Temperature (To) -10*C < T < 10C

2nd Order Temperature
Coefficient -3.2 x u-

To meet these specifications, the delay line was designed to consist

of one long and one short transducer, closely spaced one next to the other.

The 3 dB bandwidth is largely defined by the long transducer. The transducers

are both designed to operate at the fundamental frequency and contain split

fingers to minimize reflection among fingers. The center-to-center separation

between transducers is 40.3 xo' where xo is the acoustic wavelength.

Other design parameters are shown in the following table:
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Input Transducer Output Transducer

Number of Finger Paris 30 50

Acoustic Aperture 45 Xo  45 xo

Finger Width 1.3 um 1.3 im

The unmatched insertion loss of such a device should be approximately

40 dB. Upon matching, it can be reduced to 18 dB or less.

The schematic of the SAW delay line is shown In Figure 3-1. A ground

bar has been placed between the transducers to cut down the direct electrical

feedthrough.

INPUT TRANSDUCER EOUTPUT TRANSDUCER

i 

Figure 3-1. SCHEMATIC OF 403 MHz SAW DELAY LINE
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Performance of the unmatched delay line is shown in Figures 3-2

through 3-4. Matching networks for the SAW have been designed, built,

and tested. A schematic of the matched circuit is shown in Figure 3-5.

Performance of the matched delay line is shown in Figures 3-6 and 3-7.

b. Loop Amplifier

The loop amplifier is used to provide gain to overcome losses in all

other loop elements. A schematic of the amplifier used for the SAW oscillator

is shown in Figure 3-8, The circuit is a three-stage, lumped element design

using two BFR 91 transistors and one MRF 559. The MRF 559 is used in the

amplifier output stage to provide saturated output power in excess of 40 MW

(+16 dBm). A lumped element design was used to minimize circuit size. Dis-

tributed matching networks would have required more volume than available.

Test results for the amplifier are shown in Figures 3-9 through

3-13. Figure 3-9 shows linear gain in excess of 40 dB for temperatures

ranging from -700C to +70°C. Saturation characteristics for the circuit

are shown in Figures 3-10. Saturated gain for input power of

+18 dBm is shown in Figure 3-11. Transmission phase through the amplifier

for linear and saturated operating conditions is shown in Figures 3-12

and 3-13, respectively.

c. Phase Shifter

The phase shifter block diagram is shown in Figure 3-14. The

circuit consists of a hybrid coupler loaded with tunable, reflective

loads. In this design, power incident at port 1 is split with equal amplitude,

and 900 relative phase between ports 2 and 3. Since the loads at ports 2 and

7
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v20ut

V

OUTPUTLOD
V4out # Vot 2

HYBRID
COUPLER 1-p

Figure 3-14. PHASE SHIFTER BLOCK DIAGRAM

3 are reactive, the power incident on these loads from ports 2 and 3 is

reflected back into the coupler. The reflected signals experience a phase

shift associated with the reflection coefficient of the loads, and since 
the

loads are tunable this phase shift can be varied. The reflected signals

entering the coupler at ports 2 and 3 add in phase at port 4 and add out of

phase (cancel) at port 1. Therefore, this circuit will transfer a signal

incident at port 1 to port 4 with a phase shift which is a function of the

angle of the reflection coefficient of the loads.

The design of the hybrid coupler itself can be either distributed or

lumped. For this application a lumped element design 
was chosen to minimize

size. A schematic of this coupler is shown in Figure 3-15, where

L =19.7 nH

C =7.9 pF

20



1 (IN) 3
C/2~ -- /7 --C/2 C1

2 4 (OUT)

Figure 3-15 COUPLER SCHEMATIC

The design of the circuit which loads the hybrid coupler is shown

in Figure 3-16. This load consists of a shunt inductance, a varactor, and a

DC blocking capacitor. The reflection coefficient of the load is

z - zL 0
z L + Zo

where

ZL = load impedance Z indZcap
LZing + Zcap

Zo = system characteristic impedance (50 ohms typical)

-.............. .. f................

LBLOCK FM, TUNING, TEMPERATURE
L COMPENSATION

CVARACTOR !

*........................

Figure 3-16. COUPLER LOAD
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Test results for two cascaded phase shifters (consisting of 2 couplers

and 4 loads) are shown in Figure 3-17. This figure is a plot of both loss

and phase through the circuit as a function of tuning voltage. The data

shows loss varying from approximately 5 0 at 0.5V down to 2 dB at lOV. The

decreasing loss results from a decrease in diode series resistance with

increasing reverse bias. The data also shows phase varying from 180 at 0.5V

to +1800 at just below 2V, to -36' at 5V and back to +18' at lOV. A full

3600 shift has been realized with this cascade of two phase shifters.

One of the difficulties encountered when using varactor diodes is their

capacitance variation with temperature. This variation translates into a change

in reflection coefficient and therefore a change in phase through the circuit.

The frequency of the oscillator therefore will drift with temperature.

Tests have been run on the dual phase shifter to characterize temperature

performance. The detailed results are summarized with the graph in

Figure 3-18. It is the frequency drift with temperature caused by

varactor changes which requires that a temperature compensation network

be used. The compensating voltage is summed with the tuning and modulation

voltages applied to the varactor.

d. Injection Locked Oscillator

The injection locked oscillator (ILO) is used to amplify the output

of the SAW oscillator to the required 200 mW (+23 dBm). Pulse amplitude

modulation is also accomplished in the ILO. A schematic of the circuit is

shown in Figure 3-19. The oscillator is of the form of a Colpitts with a

resonant tank in the collector circuit and feedback to the emitter. The

injection locking signal is applied to the emitter-base junction.

22
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Figure 3-18. PHASE SHIFTER TUNING CHARACTERISTICS
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Test results for the oscillator are shown in Figures 3-20 through

3-22. Figure 3-20 is a plot of injection locking bandwidth vs Injection

locking power. Figure 3-21 shows injection locking bandwidth vs tempera-

ture. Output power vs frequency is shown in Figure 3-22.
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4.0 INTEGRATED OSCILLATOR

A photograph of the integrated oscillator circuitry is shown in

Figure 4-1. The oscillator package is shown in Figure 4-2. This package

is identical to that currently used and was provided by VIZ Manufacturing

Co., Philadelphia, PA. Test results for the integrated oscillator are

shown in Figures 4-3 through 4-10, and in Table 4-1. Figures 4-3 and

4-4 show the tuning range and output power of the two delivered oscilla-

tors. Output power was greater than +23 dBm for both circuits over the

complete tuning range. Tuning range for both oscillators exceeded the

required 400-406 MHz. Settability is shown in Table 1. Settability,

here, is a measure of how accurately frequency can be set within a few

seconds. As the table indicates, an error of approximately 20 ppm

can be expected in tuning the circuits. Intermittent operating charac-

teristics are shown in Figure- 4-5 and 4-6. For this test, the oscilla-

tor's were stabilized at an initial frequency (403.007 and 403.036 MHz),

turned off for 3 minutes, then turned back on. Frequency after turn-on

was observed for a minimum of 5 minutes. The curves indicate frequency

differences on the order of 5 ppm can be expected with intermittent

operation. Figures 4-7 and 4-8 show frequency pushing characteristics

of the oscillators. The curves show frequency pushing of 0.0035 MHz/V

and 0.0275 MHz/V for +lV around nominal bias. Temperature stability

of the oscillator is plotted in Figures 4-9 and 4-10. Stability for

Oscillator #1 was 200 ppm. Stability for Oscillator #2 was 305 ppm

for the limited temperature range of +500C. For the +700C range,

stability was 814 ppm. This relatively poor temperature performance

results almost totally from the temperature characteristics of the tuning

varactors.
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Figure 4-2. OSCILLATOR PACKAGE
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5.0 CONCLUSION

This program has demonstrated the feasibility of incorporating SAW

devices in radiosonde oscillator applications. It has also revealed a

fundamental problem in the design approach used here and/or in the

oscillator specifications. The requirements for temperature stability,

wide tuning range, continuous tuning, frequency modulation, and low cost

conflict with each other. The requirement for low cost dictates the use

of uncorplex circuitry, which requires little or no tuning, and uses the

minimum number of components. For the design described in this report,

the cost requirement led to the use of a single delay line. The wide

tuning range required that a SAW of relatively short delay be used,

thereby effectively minimizing the stabilizing effect of the delay line.

The frequency modulation requirement dictated the use of an electronically

controlled phase shifter. For this design the varactor tuned phase

shifter was used for both tuning and modulation - again to help minimize

cost.

The resulting oscillator lacked the temperature stability inherent

in ST-cut quartz. The temperature instabilities of the varactors dominated

the oscillator stability and required the use of temperature compensation.

This performance suggests a modified design be investigated during the

advanced development of this circuit. The development of a different phase

shifter is indicated. It is recommended that a mechanical phase shifter

be used for tuning while a lightly coupled electronic phase shifter be used

for modulation. By lightly coupling the electronic phase shifter and
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requiring it to produce only a few degrees instead of 360*, stability

can be improved by a factor of -,l00. The mechanical phase shifter

should provide the full 3600 phase shift. Development of a mechanical

phase shifter will not be trivial. The requirements for stability,

continuous tuning, small volume, and low cost complicate the design;

but this approach will allow the SAW to dominate the temperature drift

of other oscillator circuits.
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APPENDIX A

SAW PERFORMANCE vs TEMPERATURE MEASUREMENTS
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APPENDIX B

AMPLIFIER PERFORMANCE

vs

SUPPLY VOLTAGE AND TEMPERATURE
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APPENDIX C

PHASE SHIFTER CHARACTERISTICS
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