AD=A107 571

UNCLASSIFIED

NORTH CAROLINA UNIV AT CHAPEL MILL F/6 8/3
COASTAL=TRAPPED AND FRONTAL=-TRAPPED WAVES IN A CONTINUOUSLY STR==ETC (U}
AUG 80 M E LUTHER: J M BANE NODO014=77=C=0354
CMS-81-1 NL




aseafrﬁ iahnmnn -

" Naval R

— T Ry i, ST VR

Kbl

/

81 11 13 101




b‘LASSlFIED .
‘ECU\" CLASSIFICATION OF THIS PAGE (When Data Entered)

[ REPORT DOCUMENTATION PAGE BEFORE CAPLETING ! FORM

R 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATACCWNU" MBER

oms-sg-1 [ >A10757 /"/
4 nreeladlubute) . - o e e 5. QYPE OF REPORT & PERIOD COVERED

- ’ Coastal-Trapped and Fronfal TraDped Waves in a o * j
Continuously Stratified Western Boundary . | Technical | =4 L
Current - A Contribution to the Gulf Stream . [® "“;°23“T°'°”“’°“T“““°‘“

E b il cM ~
f‘ﬂsms s I el , - 8. CONTRACT OR GRANT NUMBER(s)
. . i|'~ - - ;
D}Mark E. /Lufher ame John M.]Bane, Jr/ B ngﬁl4-77-c-¢354, ,
-l R ;,.___ R f D ¢ / f-
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. :RO :}KEIJEIN;I’NPURMOBJECT TASK
University of North Carolina ' '}5 93
’RR 31-g3-81
’ 1
'Chapel Hill. NC 27514
11. CONTROLLING OFFICE NAME AND ADDRESS R 2. REPORT. DAIK. . - ’
Environmental Sciences Directorate /| Augueneddy
Office of Naval Research 13. NUMBER OF PAGES
Arlington, VA 22217 17

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Otfice) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

WHON STATEMENT (of this Réport)

S o

17. DISTRIBUTION STAWLMmou 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WOROS (Continue on reverse aide /f necessary and identify by block number)

Coastal-Trapped
Frontal-Trapped

Waves

Gulf Stream Fluctuations

20. ABSTRACT (Continue on reveres aide if necessary and identity by block number)
he effects of a realistic western boundary current on the alongshore propagatio

f sub-inertial waves trapped by a sloping bottom topography are studied using
numerical model incorporating realistic bottom topocraphy and a current field
hich is in thermal wind balance with the density field. This models the Gulf
tream as it flows along the continental slope off North Carolina. The mean
tate velocity and density fields do not vary alongshore and are continuous in

he horizontal as well as the vertical. The linearized, inviscid equations ofy,
otion for small amplitude disturbances yield a single governing equation for 1
DD ,"S™. 1473 EOITION OF 1 NOV 68 13 OBSOLETE

AN EoITION OF | WOV UNCLASSIFIED of o 5975

SECURITY CLASSIFICATION OF THIS PAGE (When Date lmond‘




i!CURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Vine nerturbation pressure. This equation is solved using a marchina method for
elliptical problems. The dispersion relations are obtained by searching for
the resonance response of the gsvstem fo an arbitrary nniform forcing term.
Four Jdiscrete stable modes of Rossby—)lke waves are identified, all propagating
in the upstream direction. A mode-coupling rescnance is found between the
first two modes. For small wavenumber, the first mode is trapped within the
frontal zone on the cyclonic side of the mean current with a smaller barotropic
component over the shelf. This "frontal frapping" is dues to the quasi-geos-
trophic potential vorticity gradient in the mean current. .Fbr large wavenumber
the first mode becomes primarily o barotropic shelf wave, The second mode is
a purely barotropic shelf wave for small wavenumbers, but becomes a frontal-
trapped weve at large wavenumbers. For the higher wave modes, most of the
energy is trapped near the surface in the frontal zone.
s

|

7

SECURITY CLASSIFICATION OF TH pAGE(When Date Bn ered)




COASTAL-TRAPPED AND FRONTAL-TRAPPED WAVES
IN A CONTINUOUSLY STRATIFIED
WESTERN BOUNDARY CURRENT

by
Mark E. Luther

and

John M. Bane, Jr.

Curriculum in Marine Sciences
University of North Carolina
Chapel Hill, North Carolina 27514

/2D FOR ruRric frMs
STRIBUTION UNLIMIZED

Technical Report
Number CMS-80-1

August 1980

ONR Contract N00014-77-C~0354
NSF Grant OCE-7923413




Copyright by
Mark Edward Luther
All rights reserved
1980




v r
' fl.\' B // rﬁ 0o
[ PR
:‘.‘:‘ ,c‘ o ) ".' !
< ,fv.'.\'w . ’ * ’
Foreward ~E N
~. Looe )
- o B
The Gulf Stream Meanders Experiment (GSME) was a multi-phase™ %
research program with the objective of obtaining detailed kinematical -

and dynamical descriptions of the mesoscale Gulf Stream meanders which
occur along the continental margin of the southeastern United States.
The research program was composed of a theoretical component, which
began in early 1977, and an observational component, which provided
intensive and extensive views of the currents in, and the hydrographic
structure of the Gulf Stream between Charleston, South Carolina, and
Cape Hatteras, North Carolina, during 1979.

The present Technical Report describes a theoretical study of sub-
inertial Gulf Stream fluctuations. This was one contribution to the
theoretical component of the GSME., This studv was undertaken to provide

’ a basic daoscription of the structure and dispersion properties of stable,
Rossbv-1.ke waves propagating in a baroclinic, laterally-sheared western
boundary current, With a continuously stratified mean flow and variable
bottom topography, this model represents & significant step towards
realism in the theory of oceanic long wave motions along a continental
margin. The results of this study indicate the importance of the inter-
play among the density field, bottom topography and mean current in deter-
mining the normal modes that may propagate in the Gulf Stream. Taken

together with field observations made in the GSME, the theoretical results

suggest that the strongly sheared, cyclonic Gulf Stream frontal zone is at
the heart of mesoscale Gulf Stream variability. Theoretical studies of
spatially growing unstable wave motions in a baroclinic Gulf Stream are

presently underway at The University of North Carolina to broaden our

understanding of the complex dynasinicai nature of Gulf Stream meanders.




Abstract

The effects of a realistic western boundary current on the alongshore
propagation of sub-inertial waves trapped by a sloping bottom topography
are studied using a numerical model incorporating realistic bottom topo-
graphy and a current field which is in thermal wind balance with the den-
sity field. This models the Gulf Stream as it flows along the continental
slope off North Carolina. The mean state velocity and density fields do
not vary alongshore and are continuous in the horizontal as well as the
vertical. The linearized, inviscid equations of motion for small amplitude
disturbances yield a single governing equation for the perturbation pres-
sure, This equation is solved using a marching method for elliptic problems.
The dispersion relations are obtained by searching for the resonance response
of the system to an arbitraty uniform forcing term. Four discrete stable
modes of Rossby-like waves are identified, all propagating in the upstream
direction. A mode-coupling resonance is found between the first two modes.
For small wavenumber, the first mode is trapped within the frontal zone on
the cyclonic side of the mean current with a smaller barotropic component
over the shelf. This "frontal trapping" is due to the quasi-geostrophic
potential vorticity gradient in the mean current. For large wavenumber,
the first mode becomes primarily a barotropic shelf wave. The second mode
is a purely barotropic shelf wave for small wavenumbers, but becomes a
frontal-trapped wave at large wavenumbers. For the higher wave modes, most

of the ecnergy is trapped near the surface in the frontal zone.
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1. Introduction

Much research in physical oceanography during the past few years
has been decvoted to the subject of coastal-trapped waves. This gen-
eral classification of sub-inertial frequency, topographically trapped
waves can be broken down into several subclassifications under certain
limiting conditions (Wang and Mooers, 1976).

In the simple case of an ocean of constant depth with a vertical
wall at the coast, these waves are coastal Kelvin waves. In a homog-
enous ocean over a constantly sloping bottom topography, the general
coastal-trapped wave reduces to the quasi-geostrophic edge wave (Reid,
1958) . [f the slope of the bottom topography changes away from the
coast, such as a finite width continental shelf adjoining a constant
depth deep sea region, the familiar barotropic continental shelf wave
results (Robinson, 1964; Mysak, 1967; Buchwald and Adams, 1968).

The structurc of the coastal-trapped wave becomes more complicated
in the presence of a laterally sheared barotropic mean current (Niiler
and Mysak, 1971; Grimshaw, 1976; Brooks and Mooers, 1977a,b) or in the
presence of a level stratification over a sloping bottom topography
{Allen, 1975; Wang, 1975; Wang and Mooers, 1976; Clarke, 1977; Huthnance
1978). Mysak (1980) presents a comprehensive review of the theory of
coastal-trapped waves.

This study extends the precsent theory to include the effects of
a continuously stratified, laterally and vertically sheared western
boundary currcnt flowing along the continental slope.

Reid (1958) first described quasi-geostrophic edge waves trapped
over a constantly sloping continental shelf of infinite extent. These

low frequency waves are supported by the potential vorticity gradient




associated with the sloping bottom. They are right bounded, that is,
they propagatc their phase with the shallow water to their right, in

the northern hemisphere. Reid called these waves ''quasi-geostrophic"

because the balance in the momentum equations was essentially geostrophic.

Continental shelf waves were first observed by Hamon (1962) as
non-barometric seca level disturbances that propagated northward along
the Australian coast from Sidney to Coff's Harbor. Robinson (1964)
developed a simple linear theory to explain Hamon's observations.
Robinson's modcl incorporated a constantly sloping continental shelf
of finite width adjoining a constant depth deep sea region. ile called
these low-frequency, vorticity wave motions continental shelf waves
because they werce trapped over the shelf by the sloping bottom and
decaved exponentially away from the shelf.

Mysak (1967, 1968) showed that Reid's quasi-geostrophic edge waves
and Robinson's continental shelf waves were closely related. Both waves
are special cases of a topographic Rossby wave. At short wavelengths,
the shelf waves become quasi-geostrophic waves, since they are trapped
more closely to the coast and cannot ''see' the edge of the shelf.

Mysak (1967) considered the effects of atmospheric pressure variations
on the generation of shelf waves. He also included a simple stratifica-
tion and current in the deep sca region of Robinson's (1964) model
geometry.

Buchwald and Adams (1968) cxtended these linear theories to include
a more realistic bottom topography. Using an exponential shelf and
stope depth profile, they showed that the offshore trapping scale for
the shelf wave modes was the shelf width. Adams and Buchwald (1969)

in the same model geometry, showed that wind stress, rather than




atmospheric pressurc, was responsible for the generation of shelf waves.
Gill and Schumann (1974) gave a more detailed analysis of this genera-
ting mechanism. They showed that the alongshore component of the wind
drove an [Aman transport in the surface mixed layer. Since shelf waves
are non-divergent, conservation of mass requires that there is a return
flow through the interior. It is this return flow over the strongly
sloping bhottom that changes the vorticity by vortex stretching, and hence
generates shelt waves.

Recent theoretical studies have shown that lateral boundary current
shear strongly affects the propagation of barotropic shelf waves. In
arcas such as the Gulf Stream off the east coast of the United States,
the horizontal shear of the mean current can be comparable to the Cor-
jolis parameter f. Shelf waves can be significantly advected by the
mean current and have their pronagation characteristics strongly mod-
itied. They can extract energy from the mean current through the pro-
cess of barotropic instability. The strong shear of the current can
support a new class of shear waves., Niiler and Mysak (1971) examined
the trapped wave solutions for the case of a constantly sloping shelf
of finite width with a V-shaped alongshorce mean current. This topog-
raphy and current structurc was chosen to model the Gulf Stream as it
flows aleng the southeastern coast of the United States. They found
that the direction of shelf wave propagation was reversed by the mean
flow at a high wave number cut-off., There also exists a class of
shear waves that always travel in the downstream direction. The dis-
persion curves for the shelf wave and the shcar wave cross in a partic-
ular range of wavenumber, where the waves become unstable. At wave-

numbers above this range, the two dispersion curves change families, the




shelf wave curve becoming a shear wave, and the shear wave curve becom-
ing a shelf wave.

Brooks and Moocers (1977b) studied stable barotropic shelf waves
over an exponential depth profile with an exponential alongshore mean
current.  They also found that the direction ot shelf wave propagation
was reversed hy the mean flow at a high wavenumber cut-off. Brooks
(1975), Grimshaw {1976) and McKee (1977) discussed the problem of crit-
ical layers in the mean flow; that is, a level in the mean flow where the
wave phase speed cquals the mean current velocity. In addition to the
discrete spectrum of shelf wave modes, there is a continuum of allow-
able critical layer solutions in the dispersion planc, with phase speeds
Iying in the range of the current speed.

All of the shelt wave models discussed above have dealt with a
homogenous ocean.  The presence of stratification can alter the proper-
tices of shelf waves and also can allow other types of waves to cxist.

A number of models have incorporated a level stratification in the
study of coastal-trapped waves.

Mysak (1967) and Gill and Clarke (1974) examined long waves in a two-
layer occan with only the top layer extending over the shelf. 1t was
shown by Allen {1975) and Wang (1975) that the barotropic and baroclinic
modes were coupled when the two-layer stratification extended over a
sloping continental shelf. Allen (1975) showed that the strength of
this coupling depended on the ratio of the internal radius of deforma-
tion to the length scale of the topographic variation. Both Allen (1975)
and wang (1975} found that where the dispersion curves of the shelf
waves and the single Kelvin wave appeared to cross, there was actually

a change of modal structure cof the waves. Wang (1Y75) called this




coupling between the shelf waves and the internal Kelvin wave a
"resonance coupling”. This terminology was introduced by Eckart (1962)
in a study of internal waves.

Wang and Mooers (1976} also found this resonance phenomenon in
a continuously stratified model. They found that in the limit of a
vanishing coastal wall, topographic Rossby waves were the only class of
sub-inertial frequency, coastal-trapped wave motion. The topographic
Rossby wave reduces to a barotropic continental shelf wave in the special
case of small stratification, and to a bottom-trapped wave (Rhines,
1970) in the special case of large stratification. Huthnance (1978)
showed analytically that for a monotonically increasing depth profile
with a level density stratification there was only one infinite discrete
set of trapped sub-inertial modes with frequency decreasing as mode
number incrcased. Clarke (1977) showed that in the long wave limit,
these waves were a hybrid between shelf waves and internal Kelvin waves.
These medels, however, have not considered the presence of sloping
isopycnals with an associated vertically sheared mean current in thermal
wind balance with the mean density field.

The Gulf Stream region off the southeastern coast of the United
States is characterized by the presence of strongly sloping density sur-
aces combined with strong lateral and vertical current shear. Orlanski
(1969), using & two-layer model, and Orlanski and Cox (1973}, using a
continuous stratification, studied baroclinically unstable waves in a
western boundary current, but neglected stable waves.

Banc and Hsueh (1980) investigated the role of a density front in
determining the dispersion characteristics of stable topographic Rossby

waves. They found a "complementary mode' in which a barotropic wave

b m e e e e - .
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over the shelf matched with a baroclinic wave at the density front.

A Bane (1980) developed a two-layer model which incorporates a general
continental shelf and slope topography with a thermal-wind mean current
in the upper layer. He identified four types of stable, sub-inertial
frequency, Rosshy-like waves. They are the barotropic shelf wave, the
quasi-geostrophic cdge wave, the complementary mode edge wave, and a
new frontal-trapped wave, so-called because its amplitude is trapped

h within tic frontal zone on the cyclonic side of the mean current. The
dispersion curves for this model exhibit the mode-coupling resonance
phenomenon, allowing the characteristics of the component waves to be :
interchanged along a composite dispersion curve. An obvious limiting
fcature of thesc two-layer models is that they lack sufficient vertical
resolution.

There is a great deal of evidence to support the existence of
shelf waves in general (Hamon, 1962, 1966; Mooers and Smith, 1968;
Cartwright, 1969, Cutchin and Smith, 1973) and particularly off the
coast of North Carolina (Mysak and Hamon, 1969; Brooks, 1978). It has

been suggested that meanderings of the Gulf Stream in this area may be

related to coastal-trapped waves (Brooks, 1978; Brooks and Bane, 1978;

Banc¢ and Brooks, 1979a), Stable, propagating, wave-like meander patterns
in the inshore edge of the Gulf Stream have been observed to be a dom-

| inant mode of oscillation of the Stream (Legeckis, 1979). The existing
theoretical models, however, have not dealt adequately with the complex
dynamics found in this region. On the inshore, or cyclonic, side of

the Gulf Stream, both the strongly sloping density surfaces and the
large horizontal shear of the mean flow contribute in the same sense as

the sloping bottom to the ambient potential vorticity gradient, giving
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rise to dual trapping mechanisms. This second trapping mechanism is
the gradient of the quasi-geostrophic potential vorticity (cf, Pedlosky,
1979). It is the two-layer analogue of the quasi-geostrophic potential
vorticity gradient that supports the frontal trapped waves described
by Bane (1980). The maximum velocity of the Stream is on the same
order as the phasce speed of topographic Rossby waves, but in the oppo-
site direction, so that one would expect significant advection of the
waves. 1t has hcen shown that when both stratification and topography
arc present, the barotropic and baroclinic modes are coupled (Allen,
1975). ‘Thus, the presence of a western boundary current in a coastal-
trapped wave model can alter the properties of the coastal-trapped wave
modes, and can allow the existence of a new class of frontal-trapped
waves. Moreover, onc cxpects the coastal-trapped waves to be coupled
with the frontal-trapped waves due to the stratification. To aid in
the study of thesc effects, the present model includes a realistic
western bhoundary current flowing along a continental slope.

Mysak (1980} points out that the presence of a wide flat shelf,
as is found off the coast of the Carolinas, enhances the mode-coupling
resonance found by Wang and Mooers (1976). Bane (1980) suggests that
this is due to changes in the dispersion properties of the different ;
component waves with changing shelf width. This model simulates the
Gulf Stream as it flows along the continental slope off Onslow Bay, 3
North Carolina, where the shelf is very wide. In this continuous strat-
ification model, the different wave types found in Bane's (1980) two-
layer model are more subtly coupled and are more difficult to distinguish; ;
however, the frontal-trapped wave is clearly present. A hybrid between

a topographic Rosshy-like wave and a frontal-trapped wave is found also.




The next scction describes the formulation of the governing equa-
tion and the boundary conditions., Section 3 describes the mean state
for the model, and section 4 outlines the numerical solution scheme.
The results of the computations are presented in section 5, and are

discussed in section 6. The conclusions are summarized in section 7.




2. Formulation

Consider a model eastern continental shelf and slope region with
a steady alongshore flow in gecostrophic and hydrostatic balance with
the density field. A straight coastline is assumed along the y-axis,
with the x-axis pointing offshore and the z-axis pointing vertically
upward. The depth, h(x), is a monotonically increasing function of x
only. A schematic of this idealized geometry is shown in Fig. 2.1.
The fluid is assumed to be inviscid, incompressible, non-diffusive, and
continuously density-stratified. Variations in the Coriolis paramcter,
f, are neglected. The equations of motion for small amplitude disturb-

dances are

) bu fvl= -
: o I Py
’ Dv -
P m + ftul]= -py
ﬂ = ) - A
p Dt =Py, PR
u +v +w_ =10
X y o
Dp
Dt 0

Following the notation of Mooers (1975a,b), the dependent vari-
‘ ables are scparated into mean and fluctuating components (denoted by

overbars and primes, respectively):




where P, = -Po8Z
and (B, p')<<pg -

The buoyancy and the nonhydrostatic pressure are defined as

gp
b=-2 =b +Db+b'
Po o ’
P -7
m = O:'n+‘n"
Po

The cquations of motion are time averaged and the wave motion is sep-
arated from the mean flow (see Appendix Al). Reynolds stresses and
non-lincar or wave-wave interaction terms are neglected and a Boussinesq

approximation is adopted.
The mean flow is governed by

fv = n (2.1)

0= -7 +8 (2.2)

where M2 = Bx is the horizontal analogue to the Brunt-Vaisala frequency,

NI TP
Po z
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A hydrostatic balance is assumed, since only sub-inertial frequency
motions are being considered. The wave motion, without the primes,

1s governed by

- Cev o .
ut + vuy fv Ty (2.3)
v ot \7vy + (f+\7x)u + sz = -m (2.4)
0=-n_+b (2.5)
u o+ yy W = 0 (2.6)
b o+ v 2 "Wz 0 2.7
ot vhy + Mu + N'w = . (2.7)

Because of the strong horizontal density gradients, M2 must be included
in (2.7); therefore, from the thermal wind relation, Gz must be retained
in (2.4). The strong lateral shear of the Gulf Stream, which augments
the background potential vorticity of the region, requires the inclu-

sion of Qx in (2.4).

Only alongshore propagating disturbances are considered; thercfore,
all perturbation variables (u,v,w,n,b) are assumed to take the form
i(o,t + Ly) . .
¢ ¢ for their (y,t) dependence, where o, is the wave fre-

1/2. Differentia-

quency, £ is the alongshore wavenumber, and i = (-1)
tion with respect to t and y thus becomes equivalent to multiplcation
by is and i, respectively. The intrinsic frequency is the frequency
scen by a fluid particle at a particular x and z, and is defined as

a(x,z) = o + v(x,z)f. The mean current, v, is always positive (a

northward flowing current), so that for a wave propagating in the




positive y (downstrcam) direction (either o, or £ negative, but not

both), there exists the possibility of a critical surface where o(x,z) =
0, i.e., the wave phase is propagating at the same speed as the local
medium. For this study, only stable waves propagating in the negative
y (upstream) dircction will be considered, so that S, and £ are always
positive, and critical levels are avoided. Equations (2.3} through

(2.7) now become

iou - fv = - (2.8)

iov + (f+vx)u *VoW o= ~iln (2.9)

0= -n_+0b (2.10)

u * v + w_ =0 (2.11)
2 Rl

iocb + Mu + N°w = 0 (2.12)

Eliminating the buoyancy, b, between (2.10) and (2.12), then

solving (2.8) through (2.10) for u, v and w in terms of =, gives

i 2 2 2
us= s (-ON L oM L - N n) (2.13)
2 2
v o= ;A (N‘o; - M4) no- onznz + ofKNZE] (2.14)
i 2 2 2 2
wos oo [OM L o(of -0 Inz +IfMJ (2.15)

2 2) 9 2
Og -0 - M, and Of
cffective local inertial frequency (Mooers, 1975a). Substituting (2.13)

5 -
where A = N“( = f(f + Vx) is the square of the

through (2.15) into the continuity equation (2.11) and applying the

thermal wind relation yields the governing equation for the perturbation

pressurec, u:
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The boundary conditions chosen for sub-intertial motion are as
follows. At the surface (z = 0), a rigid 1id is imposed, i.e., w = 0.
The rigid lid approximation suppresses any wave-associated sea level
clevations and free surface divergences while retaining the pressure
gradients along the surface. This has the effect of filtering out any
cxternal gravity waves. Huthnance (1978) showed that the free surface

divergence effects were generally very small for sub-intertial waves,

and that the eigenfrequencies of these waves were increased only slightly

by invoking the rigid 1id approximation. Using (2.15), the boundary

condition at z = 0 becomes

M"n - (0.
X

-h(x), there is no flow normal to the bottom, which implies

~J

(2.17)
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At 2z

that w = -uhx, or from (2.13) and (2.15),

N =0 at zz-h(x). (2.18)
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At the coastline, there is no flow normal to shore; that is, at x = 0,

u =0, or from (2.13)

2
a - M 2 o0 at xe0. (2.19)
N

Trapped wave solutions are sought, requiring that all solutions decay

far offshore; that is,
-0 as x> ® (2.20)

Equations (2.16) through (2.20) form an eigenvalue vroblem in

o, and €. In the limiting case of a level stratification and no mean

“

"

current (v = 0 and M 0), (2.16) through (2.20) reduce to the equa-

tions uscd by Wang and Mooers (1976) and by Huthnance (1978). Equation
(2.10) is elliptic for the values of N2, M2 and Vx encountered in a
typical western bountary current profile provided o, < f. Tt is con-
venient to solve (2.1¢) - (2.20) in a rectangular domain; therefore,

the independent variables (x,z) are transformed to (x,z), where ¢ =

zH/h(x), H being the maximum depth and h(x) the depth at offshore

distance x. The governing equation (2.16) then becomes
2
2 2 0o - 0
z( M ) 1§22 M £
n_-+theo+ —Hl +~-,4ht" + 2 -—5hH + ———— Hpn
XX h X NZ XZ e { X NZ X NZ zz
7
SL( e, 122 . M (2 ﬁ%}
A\ 2 02 Toax x hLlth “x xx A \3x 2 3z E
2 h > (02 - 02)
~ M X ol HYM I f aA
*ESMGEY TS A) T 7 2 (1™
N N N
e (M an aa
‘{.U_A(_ZE-T;)-EMo. (2.21)
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The boundary conditions become

h

X ef - - e} o]
TX - T ]-‘*- TIC + U——- m =0 at x = 0; («.. 2:_)
2 2 2\u o mlef

- il LU S = 2
M LY (of g >h "C+ il 0 atg 0; (2.23)
2 2
‘) -
M nl. 2 ("f o ) o (P
——z-h nx+52~§-hx—hx— > n+-—g—2—-hxﬂ=0
. N N N E N

at ¢ = -l (2.24)

The variables arc made dimensionless by the relations

*

* . * *
; x" = x/L, z¥ =2/, ¢ = ¢/H, h* = h/H, 0 = o/f, £ =4LL, o; = o./f,

’ 2 *

2 2,2 hE 2,2
NT = N/NT ., and M° = M/M° .
max max

In dimensionless form, equation (2.21) becomes,with the asterisks dropped,

2 ol
2 2 0% - o°
2 ( M 1 {.22 M ( £
n -—h(,+a—ﬁ>n + — |hit” + 2a —5 h_ ¢ + b
XX h X N° X7, hz[x N X SZNZ Te
2
RV VRV {75‘__}\ LM %_aﬁa_}
A 2 9z 3x X h “ h XX A X )4 &
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2 2
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A N ax 52N2 3z N2 h 4
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with the boundary conditions

no- E-h LA @ n =0 at x = 0, (2.26)
X h "x'¢ fod
5 Z 2p
= o
W oo LhL (o7 - o? Jr 4 =0 atc=o0; (2.27)
* M° Hh &
max

s
oL (u M—,-h )n:o at ¢ = -1; (2.28)
a < X
N
and 7 > 0 as x > (2.29)
Y
Miax
where a = —5°-— is the "aspect ratio" for the density field
NTooH
max
Mmax
and § = fL - is a stratification parameter (also called a Burger

number), which is the ratio of the internal Rossby radius of deforma-

H
tion r, = mzx to the horizontal length scale L.
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3. Description of the Model Geometry

The background mean current in this study rcasonably approximates
the Gulf Stream as it flows along the coast of North Carolina
{Richardsoa, Schmitzand Niiler, 1969). Tt is essentially the same
as that usced by Orlanski and Cox (1973) as their initial conditions.
This form is chosen becausc the values of N7, Mz, v and their deriva-
tives are casily evaluated at any point in the solution domain.

The mean velocity, v, is assumed to be in geostrophic balance with
the density field which is determined entirely by the temperature. The
mean velocity is in the positive y (northward) direction, and does not
vary with v or t. The analytic expression for the temperature ficld

usced by Orlanski and Cox (1973) is

2ez

T(x.2) = T - aT(3-2(5x + e Miez-1)e (3.1)

where the parameters TO, AT, & and € are adjusted to give the desired

temperature protile. The density is given by

o(x,2) = v (i-aT(x,2)) (3.2)

O

where a is the thermal expansivity of sea wa%er, and is taken to be
a constant. By using (3.1), (3.2) and the thermal wind relation, the

expression for the mean velocity is found to be

- 1 -8 2
Von,z) = BT 620005/ L gyl (3.3)

T 2
fe




The horizontal shear of the mean velocity is

- ’uﬁ\m .Z - -
vo(v.z) o= *’—f-f—‘ s2(1-sx)e” %% (3/2-€2) 0% . (3.4)

5
From the definitions of Brunt-Vaisala frequency, N°, and its horizontal

)

analogue, M7, it is found that

- Ve o
NT(x,2) = -QuAT(3-2(8x+1)e 6x)(lsz—l)ee"ﬁ“

h)

o] - Ve
M7 (x,z) = -2paAT(8 xe dx)(sz—l)ebe“

(3.6)

The bottom topography used in the model has a hyperbolic tangent

form

H -l
0

wall
4+ — —
wall 2

h(x) = 1 [1 + tanh(s{x-a))]

where il

wnll is the depth at the coastline, Ho is the offshore maximum

depth, a is the offshore distance of the maximum slope and s is propor-
tional to the maximum slope.
The parameters TO, AT, &, and e for the current and density fields,

and a, s, and Hw for the bottom topography, arc chosen to model the

all
Gulf Strcam as it flows along the continental slope off Onslow Bay, Nor:h
Carolina, at about 33.5°N latitude (Fig. 3.1). A current section from

the area, after Richardson et al. (1969), is shown in Figure 3.2. For

the model, the deep water temperature T0 is chosen to be 4°C. The ver-

tical temperature difference AT, is 7°C. To give a current of about
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200 km wide, &, the inverse of the horizontal scale length, is set equal

-5 -1 . X .
to 3 x 10 " m . The vertical scale of the current is determined by

v, which for a 1500m decp current is equal to 1.3 x 10-3 m-l. The in-
shore c¢dge of the current, or the front, is placed 100 km from shore,
which 18 just over the shelf break. The position of maximum bottom
slope, a, is 145 km from shore and the maximum slope is equal to 0.05
which corresponds to s = 2.5 x 10—5, The resulting velocity and temp-
erature tields are siwwn in Figures 3.3 and 3.4 respectively. The depth
of the couastal wall is 100 m, or 2.5% of the maximum depth Ho = 4000m.
The oftshore coordinate is made dimensionless by the width of the cur-
rent, L = 200 km, and the vertical coordinate by the maximum depth Ho.
The otfshore boundary is imposed at a distance x = 2L. It will be seen
later that this is sufficiently far offshore, as all solutions die out
far inshore of this boundary. The presence of the coastal wall is
somewhat unrcalistic and is purely for mathematical convenience. 1If

the depth at the coast is allowed to go to zero, some of the coectficients

in (2.25) become infinite. The implications of a finite coastal wall will

be discussed in a later section.




4. Method of Solution

The governing equation (2.25) is a two dimensional, second order,
partial differential equation in a rectangular domain. Solutions to
this equation subject to the boundary conditions (2.26) - (2.29) are
obtained for a particular 9, and £ using the marching method for clliptic
partial differential cquations of Roache (1978). For a fixed £, the
cigenvalues of v are found by searching for the resonance response of
the system to a progressive wave forcing term of unit amplitude.

The marching method is "direct'; that is, it produces an alge-
braically exact answer in a finite number of steps, as opposed to an
iterative method in which each iteration gives a better approximation
to the cxact solution. To solve the boundary value problem for a fixed
g, and £, the solution is guessed at one boundary and the finite dif-
ference form of the equation is "marched'' through to the opposite
boundary. The results of the march are then compared to the boundary

condition and the initial guess is corrected accordingly. A second

march then gives the correct solution. A complete description of the

algorithm used can be found in Roache (1978).

The stability of the marching method is highly dependent on the
number of grid points in the direction of march, J. The method becomes
unstable for large .J, primarily due to machine round-off error (see
Roache, 1978). This behavior places an upper bound on the resolution

of the method. For this problem, suitable results are obtained using

16 grid points in the g§direction, the direction of march, and 31 points
in the x direction (Figure 4.1). The use of a larger value for J results
in unacceptable error propagation through the march, even when using

double precision on the CRAY! computer. The grid spacing used gives




dimensionless horizontal and vertical resolutions of 0.0667. In dimen-
sional coordinates, this gives a horizontal resolution of 13 1/3 km,
since the offshorc boundary is placed at x = 2L = 400 km. The vertical
resolution is a function of x, and in dimensional coordinates, Az =
0.0667 h(x).

The dispersion relations are found by repeatedly solving thc boun-
dary value problem for different values of 9, and £. Dimensionless
wavenumber £ is set at 40 increments between 0 and 5.0. For each value
of £, the boundary value problem is solved for 00 values of S between
0 and 0.6. The total kinetic energy over the entire solution grid is
calculated for each value of o, and stored. The array of kinetic cnergy
values for that particular £ is then searched to locate the local maxima.
These maxima arc considered an indication of a resonance response of
the system and therefore the points (oo, £) corresponding to these max-
ima lie¢ on or very ncar a dispersion curve. Fig. 4.2 shows a plot of
integrated kinetic energy versus , for £ = 2.0. The dispersion rela-
tion is obtained by contouring the resonance points. To get sufficient
resolution in frequency-wavenumber space requires the solution of the
boundary value problem 2400 times. Each solution requires about one
sccond on the CRAY!, so that to produce an entire dispersion relation
requires forty minutes of CRAY1 CPU time. For wavenumbers greater than
5.0 the horizontal scales of the motions approach the horizontal resolu-
tion of thc numerical method; therefore the dispersion relation could

not be extended to higher wavenumbers.
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This method is tested using the model of Wang and Mooers (1976)

for a flat stratification. Using their depth profile

0.005 + 0.36 x , 0.422x20

v

h(x) = -0.33 + 1.33 x 1.02 2 x
1.0 , x 2 1.0

0.4

and static stability
2 2
N“(z) = -(z - 0.05)/(z - 0.3)

and a stratification parameter S of order unity, this method reproduces
their results (Figure 4.3). Assuming that the results of Wang and
Mooers (1976) are correct, it seems safe to assume that this method

produces sound results.

.




5. Results

The dispersion curves obtained for the model are shown in Figure
5.1. Five curves are distinctly identifiable from the ecigenvalue
search. A mode numbering convention is used to identify the curves in
the dispersion diagram. The uppermost curve is callod "mode 0", the
next highest curve is called "mode 1" and so on. The mode numbers do
not imply any particular wave structure. The uppermost curve, mode 0,
is an internal Kelvin wave trapped near the bottom against the vertical
coastal wall. All of the encrgy is contained in the alongshore and
vertical velocities. This mode is non-dispersive and for wavenumber £
greater than 1.0, it is no longer in the range of sub-inertial motion.

The other modes are vorticity controlled, Rossby-like waves and
are supported by two wave guides - the sloping bottom topography and
the sloping isopycnals and associated shear of the mean current. The
pressure (n) structure for mode 1 for wavenumber £ = 1,25 is shown in
Figure 5.2(a). Figures 5.2(b) and (c¢) show the horizontal velocities
associated with this mode. In the wavenumber range 0 < £ < 1.5, this
wave, consisting of a barotropic portion trapped over the shelf which
co-oscillates with a baroclinic portion trapped within the frontal
zone, i.c., within the region of strongly sloping isopycnals on the
cyclonic sidc of the mean current, is a hybrid between a shelf wave
and an internal Rossby-like wave. The hybrid nature of the wave de-
creases with increasing wavenumber, that is, the barotropic component
over the shelf diminishes. For intermediate wavenumbers (1.5<£<3.5),
this mode becomes a “frontal-trapped" wave with most of the energy
trapped within the frontal zone (Figure 5.3). As the wavenumber in-

creases still further, the hybrid structure over the shelf returns and
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the frontal-trapped wave begins to die out. For wavenumbe: (:3.75,
the frontal-trapped structure is completely gone, and this mode becomes
a topographic Rossby wave (Figure 5.4).

Mode 2 for low wavenumbers is a topographic Rossby wave over the
shelf that dies out in the frontal zone. The pressure and velocity struc-
tures for this mode are shown in Figure 5.5. For higher wavenumbers
(123.75) this mode begins to exhibit baroclinic structure in the frontal
zone and becomes a hybrid wave (Figure 5.6). It therefore appears that modes
1 and 2 exchange characteristics around 2 = 3,75, This is similar to the
resonance coupling found by Bane (1980) in a two-layer Gulf Stream model.
Mode 3 is a hybrid wave for all wavenumbers considered (Figure 5.7),
while mode 4 exhibits the frontal-trapped structure (Figure 5.8).

Aside from the single internal Kelvin wave mode, there appear to
be three distinctly different wave structures. The first is a topo-
graphic Rossby wave, which is confined to the shelf region (i.e., a
continental shelf wave) and dies out in the frontal zone of the mean
current. The second is the frontal-trapped wave, which is essentially
an internal Rossby wave supported by the vorticity gradient resulting
from the sloping density surfaces and shear associated with the mean
current. Over the shelf, wherce the stratification is level, there is
very little motion associated with this wave. The third type of wave
is a hybrid between the first two and has components over the shelf
and in the current region that are of comparable magnitude. These
three structures can be understood by considerineg the potential vorticity

control mechanisms which support the wave motion. For barotropic motions




25

over a sloping bottom, conservation of potential vorticity dictates

that

D (5+ )_

be\hH /7O -1
where £ = v - uy is the vertical component of the relative vorticity

of the wave motion. This is the case over the shelf; therefore, the
wave vorticity can be balanced only by the topographic background vor-
ticity f/h and only topographic Rossby waves are allowed. The effect
of a level stratification is to concentrate this background vorticity
gradient in the lower layers, leading to bottom trapping of the wave
motion, as in Figure 5.5.
The presence of a mean current with both lateral and vertical

shear gives an additional vorticity constraint, the conservation of

quasi-geostrophic potential vorticity (cf, Pedlosky, 1979)

D - ¥ 7. -
%‘tl D [(@+fk) p—]-o (3.2)

e}

where w = YX(uf+(v+G)j+wk) is the total vorticity vector. The wave
vurticity can now be balanced by the background quasi-geostrophic

potential vorticity

. - -2 5
Q= (fk - v i) . =
z [
2o 2.
. MV, _N¢
g g




(where £ = (f+Jx)), or from the thermal wind relation

Q=g (W%l ) (5.4)

This quantity is plotted in Figure 5.9. The quasi-geostrophic poten-

tial vorticity balance is then

gt<Q+Q') =0

P

ot

z
+ (W -v)—
Po y 270

The current alone can support internal Rossby waves due to the gradient

where Q' = ¢ is the wave quasi-geostrophic vorticity.
in Q. This gradient is strongest near the surface in the frontal zone;
hence, the wave motion may be concentrated there. The strong density
stratitication in the current effectively isolates these waves from
the bottom topography for ull but the very longest wavelengths. This
<can be scen by comparing Figures 5.2(a) and Figure 5.3. Mode 1 shows
a strong bottom-trapped component at £ = 1.25 (Figure 5.2(a)) which
disappears at £ = 2.0 (Figure 5.3).

For a level, two layer stratification over bottom topography,

Allen (1975) has shown that tae strength of the coupling between baro-

tropic and baroclinic modes depends on a parameter A = ri/GB s

where ro= %ﬂ is the internal Rossby radius of deformation and GB = H/Hx I
is a length scale for the bottom topography. Over the shelf in the L
present model, N = 4 x 10-3 sec-l, H - 102m, f - 10_4sec.1 and

68 ~ 100 km, so that T ~ 4km and A T 0.004. 1In the current, however,

N5 x 1070 soc_l, " 1000 m and r. ~ 50 km, giving A = 0.5. This l
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parameter was derived for a level stratification and is not totally
applicable here. As shown above, the presence of sloping isopycnats
permits the frontal-trapped wave motion that does not exist in a level
stratification. Coupling between this type of motion and waves supported
by the sloping topography is another matter. If the phase speeds of

the frontal-trapped wave and the topographic Rossby wave are similar

for a given wavelength, the two waves can co-oscillate, resulting in

a hybrid wave. Otherwise, only one type of wave may exist.

The phasc speeds for modes 1, 2 and 3 at low wavenumbers are very
closc to the first threc barotropic shelf wave speeds for the same depth
profile. This is to be expected, since for very long waves, gy , u'
and w' in (2.3) through (2.7) become small. Each mode (excluding the
internal Kelvin wave mode) has a high frequency cutoff, resulting in
a zero group speed point for each mode. Table 5.1 gives the values

of the cutoff frequency o_., the corresponding wavenumber, and the phase

C’
speed associated with the zero group speed of each mode for the first
three Rossby-like wave modes. The higher-order wave modes are not

adequately resolved by the solution method.

Table 5.1. Values for high frequency cutoff, g, for the first three

Rossby -like wave modes.

Dimensional Dimensional Dimensional
Mode 9. Frequency 4 Wavelength Phase Speed
] 0.324 2.62 x 10 °sec™ ) 2.25  558.5 km 200 km/day
2 0.223 1.804 x 10'5:;cc'1 3.7 339.6 knm 84 km/day
3 0.15 1.21 x 10 sec”! 4.13 304.3 km 50 km/day




6. Discussion

Onc usually thinks of a wave mode in terms of a specific modal
structure; for instance, the number of nodes in the horizontal or
vertical pressure structure. This concept of modal structure does
not seem to apply to the modes found in the present model. Each mode
is a composite of several different wave structures, with a particular
mode exhibiting different structures in different regions of the dis-
persion plane. Modes 1 and 2 show a coupling resonance phenomenon,
wherein the two modes exchange characteristics. The term 'resonance',
which was first used in this context by Eckart (1962), is somewhat
misleading since there is no infinite growth in the wave amplitude
(¢f Allen, 1975).

Similar phenomena have been observed in other coastal-trapped wave
models. Niiler and Mysak (1971) found that the dispersion curves
for their shelf wave modes and shear wave modes change families where
the curves appear to cross. Allen (1975), Wang (1975) and Wang and
Mooers (1976) found similar coupling between topographic Rossby wave
modes and internal Kelvin wave modes in models that included a level
stratification over a sloping topography. Bane (1980), in a two-layer
Gulf Stream model, found that the dispersion curves for a particular
topography/density/current setting may be interpreted as a composite
of the families of dispersion curves of the four different wave types
present in the model. These four wave types are the barotropic shelf
waves, the barotropic quasigeostrophic edge waves, the complementary
mode edge waves and the frontal-trapped waves. In the present contin-
uously stratified model, these four types of waves are not as easily

distinguished as they are in Bane's (1980) model. This is due to the
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fundamental difference between a two-layer stratification and a con-
tinuous stratification. In the two-layer case, all the density infor-
mation is contained in a single discontinuity; whereas in the continu-
ously stratified case, the density information is distributed over
the entire water column, giving much greater vertical resolution. Thus,
the interactions between stratification and topography are much more
subtle. It is important to note that onc cannot speak of the mean
velocity and mean density fields independently, as they are intimately
coupled through the thermal wind relation. In this particular model,
the mean density field was specified and the mean velocity field was
computed trom it; however, one could have just as easily specified the
mean velocity field and then computed the associated density field.
| Therefore, when we speak of the mean current or the mean stratifica-
tion, we arc referring to both the mean velocity and density fields.
The barotropic shelf wave dispersion curves were computed for the
model bottom topography and arc shown in Figure ¢.1. Comparing these

curves with those of Figure 5.1, it is clear that the presence of the

R o

mean current significantly alters the propagation of the shelf waves.

For very long wavelengths (£ < 0.5) both sets of curves are roughly

coincident. This is to be expected, since for very long wavelengths

A . :

Ty u, and w in (2.3) - (2.7) become very small in relation to the
other terms.  lor smaller wavelengths (larger wavenumber) the dispersion

curves for the stratified model are quite different from the barotropic
curves. It is not clear at present how the barotropic curves make the
transition to the stratified curves. This question will be addressed

in future work,
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The two-layer model of Bane (1980) has shown that the location
of the density front in relation to the topography is very important
in determining the dispersion  properties of the various waves.

It is cxpected that the same is true of the continuously stratified
casc; however, this has not yet been investigated.

The horizontal resolution of the numerical method employed in this
model was not quite as good as desired. Much of the complex structure
in Figures 5.2 through 5.7 resulted from contouring only a few mesh
points, and should therefore be viewed as merely suggestive of the
true wave structure. A new numerical method has been recently developed
at NCAR that should improve the resolution of this model by an order
ot magnitude in future computations.

This study has only cansidered small amplitude, stable perturba-
tions to the basic statc. The problems of baroclinic instability and
critical levels in the mean flow have been excluded in order to simplify
the analysis. Inspection of the quasigeostrophic potential vorticity
field (Figure 5.8) reveals that the potential vorticity gradient changes
sign scaward of the frontal zone. This is a necessary, but not a suf-
ficient, condition for baroclinic instability (cf Pedlosky, 1979, p. 440);
theretore, unstable waves are possible, but a more detailed analysis is
required to determine the exact form of the perturbations for which the
flow is unstable.

Recent measurcments in the Gulf Stream south of Cape Hatteras in-
dicate that a dominant mode of oscillation of the Stream corresponds
to a downstrcam propagating disturbance with a period of eight days

(Bance and Brooks, 1979b; Brooks and Bane, 1980). The present model,




however, only considers upstream propagating disturbances, and thus
avoids the possibility of critical levels in the flow. A logical
extension of this model would be to consider downstream propagating
waves and unstable waves by allowing the wave frequency o, to assume
neevative and complex values.

The verical wall imposed at the coast is not a very realistic
boundarv (ondition. The Kelvin wave mode (mode 0} is vurelv a conse-
auence ot this boundarv condition. The vertica! wall requires a uode
in the cross-shelf velocity at the coast. A more realistic sloping
beach boundary condition would only require that the solution remain
bounded at the coast; however, this would be much more difficult to
treat numerically. Bane (1980) compared the sloping beach and vertical

wall boundary conditions in the two-layer case and found that the ver-

tical wall did not affect the solutions appreciably so long as the wiall
was of small height compared to the total depth and was far removed

from the frontal zone.
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7. Conclusions

It has been shown that the presence of a continuously stratified
boundary current such as the Gulf Stream in a coastal-trapped wave
model permits the cxistence of a new class of frontal-trapped waves in
addition to the topographic Rossby wave (continental shelf wave) modes.
The frontal-trapped wave 1s a Rossby-like wave in that it is supported
by the ambient quasi-geostrophic potential vorticity gradient in the
cyclonic side ot the mean current. This potential vorticity gradient
is due to both the shear of the mean current and the associated sloping
density surfaces. Bane (1980) also has found frontal-trapped waves in
a two-laver Gult Stream model. 1In the present model, the mean current
flows along the continental slope, with its inshore surface front loca-
ted approximately over the shelf break. The wide continental shelf sim-
ulates the topography off Onslow Bay, North Carolina. The stratifica-
tion over the shelf is level, so that only topographic Rossby waves
may cxist there. Frontal-trapped waves may exist in the frontal zone
of the mean current. These two regions are coupled, and the resulting
wiave motion may be cither a shelf wave, a frontal-trapped wave, or a
hybrid between the two. Following a particular dispersion curve. the
modal structure changes from one wave form to another, indicating a mode-
coupling resonance similar to that found by Bane (1980). The coupling
between the two wave guides (the topographic potential vorticity gradient
and the quasi-geostrophic potential vorticity gradient) is much more
subtlc in the continuously stratified case than in the two layer case.
[t is inappropriate to speak of a particular modal structure in the

cont inuous casc, since a wave mode exhibits different structures in
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different regions of the dispersion plane.

The importance of these stable Rossby-like waves to the mesoscale
variability of the real Gulf Stream is not known. The free modes tound
in this model reveal a possible mechanism for sub-inertial frequency
disturbances propagating along the inshore side of the Stream. The
complexity of the solutions in this highly simplified model of the

Gult Stream indicate that the responsc of the rcal Stream depends upon

a number of interacting factors.
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Appendix

Al. Separation of time dependent flow from mean flow

The full cquations of motion are

- fv=- L p. + vvzu

p X

1 2
Dv + fu =- —p + Vv

p Yy
m—+cu=—%r’,- g + 7w

1 -
= Dp + vV . =0
o 3 4

where

il
\
+
!
+
<
!
+
£

o= ul o+ Vi o+ Wk

(Al.1)

(Al1.2)

(A1.3)

(Al.4)

f is the vertical component of the earth's rotation, which will

be assumed constant,

¢ is the horizontal component of the earth's rotation, which

will be assumed negligible,

and v is the molecular viscocity. Henceforth, the fluid will be

assumed inviscid, i.c. v = 0. Equation (Al.4) can be separated into

two cquivalent cquations becausce the fluid is incompressible:

l)[) = ()

(A1.5)

(A1.06)
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The dependent variables consist of a mean or time-independent component
and a fluctuating or time-dependent part. The mean velocity is in the

y-direction only, so that the mean velocity components in the x and z

directions are zero:

where P, = P82 is the hydrostatic pressure.

The equations of motion are averaged over a period of time much

greater than a typical time scale for the time-dependent motions, i.e.

T+

to] —3

r dt , T any dependent variable.

o [lend
N3

A Boussinesq approximation is adopted, that is, (5,0')<<po so that
p is replaced by Py everywhere except in the buoyancy equation (Al.5).

; The mean flow equations are then

£y = L p +[.u'u' + Vgt o+ Wiy ] (AL.7)
po X X Yy z i
oo ]
0= - Yyt Yyt Ty
o py + ju'v x + V'V y + W . (A1.8) j
0 = ;:; }.)Z + g+ [u'w'x + v'w'y + w'w'z] (A1.9)

The terms in brackets are the x, y and z components of the Reynolds

ROV, ROV 4ng (D)

stress and will be denoted as , respectively. The
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buoyancy is defined as
h:_—g_pr:b *l_)*'b'
o} &)
[}
and the non-hydrostatic pressure per unit density as
p_po - .
mn o= ——— = no+ 7
pO
Equations (Al.7) through (Al.9) now become
SRR R (A1.10)
0 =7 +rY (Al.11)
Y
_ = (z) 2
0=mn_-b+R (A1.12)

“

Equations (A1.10) through (Al1.12) are added to (Al.1) through (Al.3)

to give the equations of motion for the time dependent flow:

u! + vu! + u'u! +vtu' +w'u! - fv' = -n! o+ R(x) (A1.13)
X y z X

v+ vy

Teu'v! o+ vV o+ W'V o+ fu' o+ v out 4 VoW
t y X y z X z

= ont e ) (A1.14)
y

W' oe VW' o+ u'w' + VW o+ w'w! = -1' + b o+ r(2) (A1.15)
t y X 2z 2z

u' + v o+ w' =0 (A1.16)
x y z

- 2 2

b! + vb' + MTut + N"w' + u'b! + v'b' + w'b! = 0 (A1.17)

t y X y 2
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Equations (A1.13) through (Al1.17) are the full non-linear equations
for the wave motion. In this analysis, the non-linear terms and the
Reynolds stresses are assumed to be small compared to the other terms
in the equations. This can be verified through a sinple scale analysis
f, Brooks, 1975, pp. 212-218). A hydrostaiic approximation is adopted,
since the vertical velocity w is small, and its derivatives for long
waves are smaller still when compared to the pressure and buoyancy terms.
The linearized, hydrostatic equations for the wave motion, with the

primes dropped, are

no* vuy - {v = T {A1.18)
Ve * Vvy + (f+9x] u + sz = - (A1.19)
0= -7 +b (Al.20)
: u v v =0 (A1.21)
- 2 2
3 bt + vby + Mu+Nw=0 (A1.22)
!




A2, Formulation of the governing equation.

The equations of motion for the mean flow can be combined by dif-
ferentiating (A1.10) with respect to z and (Al.12) with respect to x,

and subtracting to give the thermal w'ad relation
fv, = M, (A2 1)

which will be applied numerous times in this section.

Alongshore propagating disturbances are sought; therefore the
i(apt+ly)
perturbation variables are taken to have the form e as their
(y.t}) dependence. The equations of motion (Al.18) through (Al.22)

now become

iou - fv = - (A2. D)

iov + (f*Vk)u + sz = -iln (A2.3)

0= -n_ +b (A2.4)

u o+ v +w_ =0 (A2.5)
2 2

iob + Mu + N"w = 0 (A2.6)

where o = oo+9£ is the intrinsic frequency.

Fliminating the buoyancy b between (A2.4) and (A2.6) gives

) i
Mu + Nw = -jon_ . (A2.7)
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Using this result to eliminate w from (A2.3) gives

oNZV—'[VZ(f+Q ) - MY _Ju = _ON°n + ov (A2.8)
i) « . ., .

Using (A2.2) to climinate v in (A2.8) and applying the thermal wind

relation (A2.1) gives

T+ — 1) (A2.9)

where A = Nz(oi-oz)—M4 and 0% = f(f+§x). Solving for v by elimina-

ting u between (A2.2) and (A2.8) gives

1 22 4 2,,2 2
. v = ?K-[(N o = M)r - oM 4 ofEN"n) (AZ.10)

The vertical velocity w is found by using equation (A2.7) and (A2.9):

. . 2
_ o2 2 2 M LE
w = —Z{M L (of -G )nz+ S

] (A2.11)

Substituting (A2.9), (A2.10) and (A2.11) into the continuity equation

(A2.5) gives the governing equation

A (= T 5

[-oN2 ﬂi Lf ]
X

L 22 4 2.2 2
+ ?K-[(N of - M)m, - o"Mm + ofEN w]

X

ag

2 L
o [2 o - of oD #EE] <o (A2.12)




After carrying through the differentiations, rearranging, and using

the identities

f
2
. =£MZ 02= 204M
2z £ ’ A f
_ 1 2, . -
o, = —F-(of - f7) = vxﬁ

all of which follow from the thermal wind relation (A2.1), the governing

equation becomes

2 -

i} 2M (0g-07) T . 1( M aa 8A)
L 22 28 98
XX N X2 NZ 72 A NZ 3z 9X X

2 2)
> -
+[1{§£3g ] (o5 ?.é}- 208 &2.]
A N2 X N2 32 £ N2 z
Lt hz 3h 3l 2
. (‘T? O 5;.) ZY (A2.13)
N

The discriminant of (A2.13) is

4 (0%-0%)

M £

=45 - ———
N N

(A2.14)

which is ncgative for the density profile considered in this study as

long as a,c f; therefore the governing equation is elliptic.
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A3. Finite diffcrence form of the forced equation

The governing equation (2.25) has the general form

ATl + BII + Cil + D+ EN_+ FOI =0 (A3. 1)
XX X7 zr X d

where A, B, C, D, I, and F are functions of (x,: ; o ). If we

consider I to consist of a perturbation pressure m, plus a constant

forcing term 1, then the forced equation is

W
to
—

An + Bn  + Cn + Dn. +# En_+ Fm = -F1 (AS3.
XX X, L7 X T,

This forcing term is equivalent to forcing the system by
. 0i(oot+ﬁy)

and is used only to search for the resonance response of the system.

The usual second-order accurate, centered difference analogues

of the derivative terms are used for the finite difference form of (A3.2):

)
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where A, = A(x.,r.30 &) etc.; G, = -F..1;
ij i

X
max _ “max

37 ., and I and J are the number of

>
>
1
|
1
p=3
Fa]

grid points in the x and ¢ directions, respectively.

Some rearrangement leads to

-B E B
L . . + NERE 12) n. . + 1) . .
3AXA ¢ i-1,j+1 2 24 i,j+1 AAxATL Ti+1,j+]

B, . C.. E.. -B. .
L 5 L 3 (.JL) =
tOARxAT tiel,j- *( = za;) Ti,5-1 * \amxagl Miet,j-1 ° Cij

(A3.3)

This its a nine-point stencil over the interior ,rid points, that is,
for i = 2 to I-1 and j = 2 to J-1 (See Figure A3.1).

This equation is solved using the FORTRAN subroutine EVP9G, gener-
ously provided by Pat Roache. The subroutine utilizes the Error Vector
Propagation (EVP) algorithm described in Roache (1978). Given the co-
cfficicents for the finite difference equation (A3.4) and the coefficients

for the boundary conditions, EVPIG returns the solution for n.
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The boundary conditions (2.26) through (2.28) are of the form

At +B @« +C nmn=20. (A3.5)

tor the bottom and top boundary conditions (subscript nb = 1,2 respec-
tively), FVPYG uses the second-order accurate finite difference approx-
imation for the x derivative but allows only a first-order approximation
to the normal gradient. A second-order form is possible but would re-
quire a bi-tridiagonal matrix solution to start the march.

At the inshore boundary (nb = 3) both the depth and the stratifi-
cation are very small; therefore, to greatly simplify the computations,

n_is tuken to be zero. The boundary condition then becomes

Again, the finite difference approximation to the normal gradient is
only accurate to first order.
The offshore boundary condition (nb = 4) is a simple Dirichlet con-

dition and its values are stored in " j when EVPI9G 1is called.




Ad. Subroutine EVP9G (INIT, F, C1, C2, C3, C4, C5, C6, C7, C8, C9, Cl0,
IL, JL, ILD, NCRS, NBJ1, NBJL, CTA, CTB, CTC, CBA,

CBB, CBC, NBI1, CLEF)

This subroutine solves the equation

CL(1,J)*F(1-1,J+1)+C2(1,J)*F(1,J+1)+C3(1,J)*F(I+1,J+1)
$CA(T,T)*E(T-1,0)+CS (1,J)*F(1,J)+C6(1,J)*F(I+1,J)

sCT(1,J)¥F(I-1,J-1)+C8(T,J)*F(1,J-1) + C9(I,J)*F(I1+1,J-1) = C10(1,J)

by marching, using the EVP algorithm (see Roache, 1978)
Calling secquence:

CALL EVPOG(INIT, F, Cl, C2, C3, C4, C5, Ce6, C7, C8, C9, C10, TIL, JL
1LD, NCRS, NBJ1, NBJL, CTA, CTB, CTC, CBA, CBB, CBC,

NBLL, CLEF)

Parameters:
INIT: Flag to determine whether the call is a repeat solution (INTT=0)

or an initialization call (INIT=1).

F: Matrix of dimension (ILD, JL). On output, F contains the solution
to the finite difference equation. If Dirichlet conditions are
nsed at any boundary, the boundary values are set by whatever values
are stored in the appropriate position in F when the subroutine is
called, ¢.g. for the offshore boundary, the values stored in
(1,7, 0 = 1, Jl. are used as the boundary values.

¢l, €2, . . . Clo: Matrices of dimension (ILD, JL). On input they
contain the coefficients of the finite difference equation as

given ahove. The values are not changed.




kA.A

1LD:

NCRS:

NBJ1:

NBJL:

CTA,
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Number of grid points in the x-direction. Must be less than or
cqual to TLD.
Number of grid points in the y-direction. Must be less than or
cqual to 1LD.
First dimension of F in calling program. In this version of
EVPOG, 1LD must be less than or equal to 31, but this can be
changed by changing the appropriate dimension statements.
Number of cross derivatives. If Cl = C3 = C7 = €9 = 0, setting
NCRS = 0 saves time in the computation. Otherwise, NCRS = 1,
and the subroutine GTRI, a tridiagonal solver, must be made

available to EVP9G. GTRI solves for the (J+1)th row in the march.

flag to determine the form of the boundary condition at the bottom
(J = 1) boundary. NBJ] = 1 gives the gencral oblique derivative
form of the boundary condition CBA(I)*(F(1+1,1)-F(I-1,1))+CBB(I)*
(F(L,2)-F(1,1)) + CBC(I)Y*F(T1,1) = 0,

NBJ1=2 gives simple Dirichlet conditions. In this case, the
boundiry values are stored in F(I,1), I = 1, IL on input and CBA,
CRB and (BC are ignored.

Flag to determine the form of the boundary condition at the top
(J="L). Analogous to NBJI.
CTB, CTC: 1f NBJL = 1, arrays of length ILD containing the coef-
ficients for the oblique derivative boundary condition at the
top (J=JL}:

CTACD) *(F(T+1 JL)-F(I-1,JL)+CTB(I) *(F(1,JL)-F(1,JL-1))

+CTCOY*F(T,JL) = 0
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CBA,CBB,CBC: If NBJl=1, arrays of length ILD containing the coeffi-
cients for the oblique derivative boundary condition at the
bottom (J=1). See NBJl above.

NBIl: Flag to determine form of boundary condition at the left boundary
(I=1). For a Dirichlet condition, NBIl=1, and the boundary F
values are stored in F(1,J), J=1, JL. For a mixed condition

(sonetimes called a Robin's condition), i.e.
FX/F=C L

NBI1=3. This version of EVP9G does not allow oblique deriva-
tive conditions at the left boundary.

CLEF: 1f NBI1=3, it is the constant in the finite difference form of
the mixed boundary condition at the left boundary:
(F(2,)-F(1,))/F(1,J)=CLEF. Otherwise it is ignored.

Precision: All arrays in the calling sequence are double precision.

Required supporting subroutines: EVPYG requires the double precision
version of LINPACK matrix algebra program along with the BLAS
(basic lincar algebra system) which LINPACK uses. If NCRS=1,
the tridiagonal solver GTRI is also required. GTRI is provided
with this version of EVP9G.

Output: The solution matrix is returned in F. If the system is un-
stable, an crror message is printed. On repeat calls (INIT=0)
the maximum error and the final errors are printed.

Programming notes:

1} If the oblique derivative form of the boundary condition is used

and cither CTB or CBB are zero, that is, the normal gradient is not

involved, a zero-divide results.

. J.~ ._...__.._..._..._J
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If CLEF=1.0, a zero divide will result.

The only boundary condition allowed at the right boundary is a
simple Dirichlet condition.

When there is no cross-derivative term, it is not necessary to

set NCRS=0, but it saves some time.
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Fig. 3.

Fig. 3.
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Fig. 4.

o

to

Fig. 4.3:

Schematic of idealized model geometry.

Map of the southeastern United States coast, showing depth
contours and average position of the Gulf Stream.

Average Gulf Stream velocity section taken off Cape Fear
in summer, 1968. Contours are isotachs of downstream
velocity in cm/sec. Taken from Richardson, Scmitz and
Niiler (1969).

Model mecan velocity field and bottom topography. Contours
are isotachs of downstream velocity in cm/sec. Vertical
and offshore coordinates are dimensionless.

Model mecan temperature field. Contours are in degrees Cel-
sius.

Solution grid. Crosses mark the grid points used in the
finite difference approximation.

Integrated kinetic energy versus dimensionless frequency
for £ = 2.0. The eigenvalues of o, are found by locating
the local maxima of the kinetic energy.

Eigenvaluc curves for the test case. The curves labeled

I and TI correspond quite well with the Mode I and Mode 11
topographic Rossby wave dispersion curves of Wang and Mooers
(1976), which are shown in the inset as solid lines. The
present model was able to resolve several other modes, in

addition to those identified by Wang and Mooers (1976).
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Dispersion curves obtained from the model geometry shown

in Fig. 3.3 and 3.4.

Structur~ of the mode 1 wave for small wavenumber (£ = 1,25).
(a) Perturbation pressure n. Note the barotropic portion
over the shelf transitioning to 2 strongly baroclinic struc-
ture in the inshore side of the mean current. Contours are

in dimensionless units. (b) Alongshore velocity v, and

{c) cross-shelf veiocity u. Note again the strong baroclin-
icity in the cyclonic side of the current transitioning to a

barotropic structure over the shelf. The velocity contours

roughly follow constant temperature (density) surfaces (see
Fig. 3.4).

Structure of the mode ! wave for intermediate wavenumber

(£ = 2.0). Shown here is the perturbation pressure m in
dimensionless units. The barotropic component over the
shelf is absent at this wavenumber. The mode 1 wave is a

pure frontal-trapped wave at this wavenumber, with its struc-

turc confined to the surface layers on the cyclonic side of

the mean current.

Perturbation pressure m structure for the mode 1 wave for

large wavenumber (£ = 4.0). The frontal-trapped structure

has disappeared, and this mode has become a barotropic continental
shelf wave, or topographic Rossby wave.

Structure of the mode 2 wave for intermediate wavenumber

(£ = 2.0). (a) Perturbation pressure n. Note the slight

bottom trapping due to the density stratification. (b) Along-

shore velocity v. (c) Cross-shelf velocity u.

natelnalinuecunnt, : e ‘ e ;_Ji
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Fig, 5.6: Perturbation pressure n for the mode 2 wave at high
wavenumber ( ¢= 4.0).

Fig. 5.7: Perturbation pressure = structure for the mode 3 wave.

Fig. 5.8: Perturbation pressure n structure for the mode 4 wave,

Fig. 5.9: Quasigeostrophic potential vorticity for the undisturbed
mean current.

Fig. 6.1: Barotropic shelf wave dispersion curves for the model bottom
topography with no mean current or stratification.

Fig. A3.1: (a) Nine point finite difference stencil used in solving

the governing equation. (b) Schematic of solution mesh.




MODEL GEOMETRY

Fig. 2.1

55




80*

350}

o

NORTH

o8ition

30°
ATLANTIC

OCEAN

Apgroaimery »

25°

Fig. 3.1

56




- ootl

T 0001
~ oo08
8961 "
A100 T IANNS
uvas 3dvy | 009

, — 00Y
\ o
\
\ - g0t
\
/ —
\
ofﬂ T 942 T .q. T 1 T | R I B d 0
. 001 08 09 oy ot 0
($2,2E°.11,92) (:0%,6€°.0Z oLL)

SIII3WO 1IN

8.9 10N

3.2

Fig.




[N A

b

.
PRAIAEVANES

. \;
\\\\\\HHHHHHV\\\O.
0 . )
00
o2 -
\“WWV 00

AR
¥l 09 OBt

ALIDJ0T3A NVIW




59

X
0¢ o'l

.
T — - - —l
-\t\/\ RSPISARESN HENSARAYADN o

N P N AR A R A IR

AR A N RTINS

~ ) 7~ ~shvarste )
R AR DRI FEN N
N -7 RS (SRR AN

A s v le PEESS
AN SRS AP TANPTAN
/\,\_\.\,\;w).\.7_,:\(,\

AR\ s 3

N\ .;\/,/.., \,l_\\\\:\

RSP ARV TN

3.4

go- N

Tig.

v 00

JYNLVH3IdNIL NV3N




60

E.
T —— ()]~
-y, NS SR IINE AR RO D SN IS .
T I S S R IS S RIS NN N I
N N N A e A L L S I
\2,\i/\,\,\/\,\,\/\,»\1/\1,\2,\1,\.\/\1,\,\,.,.u,:,,):,3
v e, R A e TR P DI
.
.
e o 4
.
.
L
.
.
¢ e s
.
.
. e
.
.
.
« e e —
L L]
.
N -
« e . .
. S0- N .
.
Cee T
. =
. . . - .
.
¢ e 0 .,
.
. - - .
. L]
L
. . . . . .
L] . L] . . .

HS3W NOILNT0S




2.0

-

|0“

100 -




. | 1 I | o
L
/
\ - 20
\ b
o
- 0 .
/ : |
I / S
\ - 90
/
/ I ,
/ L g0




1%‘1!: e ————————————————

A w12 wy ie ungly wiges Lt PRTA] ®
S o'y 0¢ 02 0l 0
[ 3 L . 1
—_— - 10
{ €
[4 - 20
- €0 4
| ..O =
0 - 0
- G0
|
ﬁ 9’0




64

o¢

K

| ___———00

“~d

o'l Q0
IS INAARITSIYN

A\ U\ SN 1Y
II\.I\IVI\il_\\_//\_ AR I\\.H\.I\.H
AU RN ES PN AP TR
B AR A A R N S
tl\\\\. \1

—’\I__\\I
AL PN N A
- LAY A ~

N YRS AT

.. .-|¢Ia\
DRV A A
PSS N s Teig

n
?
H/Z

00

JUNSS3Yd

5.2(a)

Fig.




oe _.
A ALIDOT13A JUYOHSONOW




66

2.0

-
5 |
> i
= !
o !
2 |
-
- J 1
W -
w x
1]
X
w
U
w
(7]
O
1 [+ 4
(&
: Q
(<]
1
Fig. 5.2(c)




PRESSURE

Ny gy
t.

2

!

1~
’

0.7-05 1O

0.1




68

20

PRESSURE
X/L

JONEN
PACIRCAN
VTR

. e o . v . . ,




20

PRESSURE

N -
\ ‘/~\,l"\/
PRIV

-
N\

0°0

s~

Y
’
N

X/L

-\
PRI A
SOy
PR AYERA
A2 T
- -7 1\~
LN RONA
.
’\1\1;\’ 2
AN IR
PSP r A SY
e =Y A
IR LYV
YRS
(RN
N A PRY,

~
(Sl

H/Z

Fig. 5.5(a)

69




70

o2

/X

A ALIDO03A

JHOHSONOV

H/Z

Fig. 5.5(b)




71

02

17X

N ALIDOT3A 473HS

SSO¥)

H/Z

r).s(c)

Fig.




e
NENEN TN

AP NI
S

AR
NN NS
I T

.\/:\u~\/:\'!\lf\z:\u‘\i\;\\:ixu
(ﬁ{\(\/(\(ﬂ,\l,\l;\\r\\,\\»\—
SO PARNAA NS
\i\n\\f\?,\r.\. B g
PN PN N s 304
N) \?\,(\T\/—.\?\u\\l.\1.‘1\“\\1—
N R A S AN A SRS RSN
N XA Al
RN
AN

3H¥NSS3IHd




73

0¢

JUNSS3Nd




PRESSURE

20

X/7L

74




o

1/X

o'l

00

.01 2"

-k &4

019

——

ALIJILHOA TVILN3LOd

vy
LSRRI e I L) ) PP PN
NI < N MUNTNIN IR,
s A A A R A T T SN S 5
IS PAR . I YA T T I M XA KRN W
' VNN NI A m oY UAVAAA L
RS A S VA
- b 1 \ -I—I—I—I.I—I-I‘
N e e S T P S A
~ ~ N ~ ~ N ~ \ Y INTIN L3 ~ g
NN GO AN SIS PGPS
ATV A I P P S SN IRt IS
VAN oL A A ,\,\z\h\\; R3S
\.\,\_‘/\_./\_‘:\_7\.7\_7\.?\_7\1"\_7\_7\D:,:u:
RS S TN PAFY] AT I TITIITY) (\—\\-\\_\\_\
IS G S R T P P o}
\.D\,D\_.u\.\u:n\a,/\_\u\\u‘_bzu\.u\_ﬂ:w:u:ulu
S R S C BRI A AP XA
NN NI SN * \ ~ NN NN
D\.D\_D\_D\_\n\_b\_Dﬂ\u\_D\_\u\\u\_\n\\n\.\u\\ulu
IRt s e pd s -, sra e N, eI
11/1////;//////\/
AT T A YN SN NN
R R R P e o P b

.
i Tn?in?s0s1 .l
S BSOS o

5.9

Fig.




wyige

os

wy big
ov
d

wy 61
ot
1

wy §29
0¢

wy 262
Ol




and

a)
j+l cl; — C2;
" C4i— 5
-1 c?— c8;
-1 i
b) 5 nb*2
nb =3 Ay ‘ ‘Li
AR
n

Boundary nbs|

Fig. Ad.1




