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Foreward "

The Gulf Strata Meanders Experiment (GSME) was a multi-phase"

research program with the objective of obtaining detailed kinematical

and dynamical descriptions of the mesoscale Gulf Stream meanders which

occur along the continental margin of the southeastern United States.

The research program was composed of a theoretical component, which

began in early 1977, and an observational component, which provided

intensive and extensive views of the currents in, and the hydrographic

structure of the Gulf Stream between Charleston, South Carolina, and

Cape Hatteras, North Carolina, during 1979.

The present Technical Report describes a theoretical study of sub-

inertial Gulf Stream fluctuations. This was one contribution to the

theoretical component of the GSME. This study was undertaken to provide

a basic description of the structure and dispersion properties of stable,

Rossb,.-like waves propagating in a baroclinic, laterally-sheared western

boundary cutrent. With a continuously stratified mean flow and variable

bott n. topography, this model represents a significant step towards

realism in the theory of oceanic long wave motions along a continental

margin. Ili results of this study indicate the importance of the inter-

play among the density field, bottom topography and mean current in deter-

mining the normal modes that may propagate in the Gulf Stream. Taken

together with field observations made in the GSME, the theoretical results

suggest that the strongly sheared, cyclonic Gulf Stream frontal zone is at

the heart of mesoscale Gulf Stream variability. Theoretical studies of

spatially growing unstable wave motions in a baroclinic Gulf Stream are

presently underway at The University of North Carolina to broaden our

understanding of the complex dynanicai nature of Gulf Stream meanders.



Abstract

The effects of a realistic western boundary current on the alongshore

propagation of sub-inertial waves trapped by a sloping bottom topography

are studied using a numerical model incorporating realistic bottom topo-

graphy and a current field which is in thermal wind balance with the den-

sity field. This models the Gulf Stream as it flows along the continental

slope off North Carolina. The mean state velocity and density fields do

not vary alongshore and are continuous in the horizontal as well as the

vertical. The linearized, inviscid equations of motion for small amplitude

disturbances yield a single governing equation for the perturbation pres-

sure. This equation is solved using a marching method for elliptic problems.

The dispersion relations are obtained by searching for the resonance response

of the system to an arbitraty uniform forcing term. Four discrete stable

modes of Rossby-like waves are identified, all propagating in the upstream

direction. A mode-coupling resonance is found between the first two modes.

For small wavenumber, the first mode is trapped within the frontal zone on

the cyclonic side of the mean current with a smaller barotropic component

over the shelf. This "frontal trapping" is due to the quasi-geostrophic

potential vorticity gradient in the mean current. For large wavenumber,

the first mode becomes primarily a barotropic shelf wave. The second mode

is a purely barotropic shelf wave for small wavenumbers, but becomes a

frontal-trapped wave at large wavenumbers. For the higher wave modes, most

of the energy is trapped near the surface in the frontal zone.
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1. Introduction

Much research in physical oceanography during the past few years

has been devoted to the subject of coastal-trapped waves. This gen-

eral classification of sub-inertial frequency, topographically trapped

waves can be broken down into several subclassifications under certain

limiting conditions (Wang and Mooers, 1976).

In the simple case of an ocean of constant depth with a vertical

wall at the coast, these waves are coastal Kelvin waves. In a homog-

enous ocean over a constantly sloping bottom topography, the general

coastal-trapped wave reduces to the quasi-geostrophic edge wave (Reid,

1958). If the slope of the bottom topography changes away from the

coast, such as a finite width continental shelf adjoining a constant

depth deep sea region, the familiar barotropic continental shelf wave

results (Robinson, 1964; Mysak, 1967; Buchwald and Adams, 1968).

The structure of the coastal-trapped wave becomes more complicated

in the presence of a laterally sheared barotropic mean current (Niiler

and Mysak, 1971; Grimshaw, 1976; Brooks and Mooers, 1977a,b) or in the

presence of a level stratification over a sloping bottom topography

(Allen, 1975; Wang, 1975; Wang and Mooers, 1976; Clarke, 1977; Huthnance

1978). Mysak (1980) presents a comprehensive review of the theory of

coastal-trapped waves.

This study extends the present theory to include the effects of

a continuously stratified, laterally and vertically sheared western

boundary current flowing along the continental slope.

Reid (1958) first described quasi-geostrophic edge waves trapped

over a constantly sloping continental shelf of infinite extent. These

low frequency waves are supported by the potential vorticity gradient
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associated with the sloping bottom. They are right bounded, that is,

they propagate their phase with the shallow water to their right, in

the northern hemisphere. Reid called these waves "quasi-geostrophic"

because the balance in the momentum equations was essentially geostrophic.

Continental shelf waves were first observed by Hamon (1962) as

non-barometric sea level disturbances that propagated northward along

the Australian coast from Sidney to Coff's Harbor. Robinson (1964)

developed a simple linear theory to explain Hamon's observations.

Robinson's model incorporated a constantly sloping continental shelf

of finite width adjoining a constant depth deep sea region. He called

these low-frequency, vorticity wave motions continental shelf waves

because they were trapped over the shelf by the sloping bottom and

deca %ed exponentially away from the shelf.

Mysak (1967, 1968) showed that Reid's quasi-geostrophic edge waves

and Robinson's continental shelf waves were closely related. Both waves

are special cases of a topographic Rossby wave. At short wavelengths,

the shelf waves become quasi-geostrophic waves, since they are trapped

more closely to the coast and cannot "see" the edge of the shelf.

Mysak (1967) considered the effects of atmospheric pressure variations

on the generation of shelf waves. He also included a simple stratifica-

tion and current in the deep sea region of Robinson's (1964) model

geometry.

Buchwald and Adams (1968) extended these linear theories to include

a more realistic bottom topography. Using an exponential shelf and

slope depth profile, they showed that the offshore trapping scale for

the shelf wave modes was the shelf width. Adams and Buchwald (1969)

in the same model geometry, showed that wind stress, rather than



atmospheric pressure, was responsible for the generation of shelf waves.

Gill and Schumann (1974) gave a more detailed analysis of this genera-

ting mechanism. They showed that the alongshore component of the wind

drove an Ekman transport in the surface mixed layer. Since shelf waves

are non-divergent, conservation of mass requires that there is a return

flow through the interior. It is this return flow over the strongly

sloping bottom that changes the vorticity by vortex stretching, and hence

generates shelf waves.

Recent theoretical studies have shown that lateral boundary current

shear strongly affects the propagation of barotropic shelf waves. In

areas such as the Gulf Stream off the east coast of the United States,

the horizontal shear of the mean current can be comparable to the Cor-

iolis parameter f. Shelf waves can be significantly advected by the

mean current and have their pronagation characteristics strongly mod-

ified. They can extract energy from the mean current through the pro-

cess of barotropic instability. The strong shear of the current can

support a new class of shear waves. Niiler and Mysak (1971) examined

the trapped wave solutions for the case of a constantly sloping shelf

of" finite width with a V-shaped alongshore mean current. This topog-

raphy and current structure was chosen to model the Gulf Stream as it

flows along the southeastern coast of the United States. They found

that the direction of shelf wave propagation was reversed by the mean

flow at a high wave number ut-off. There also exists a class of

shear waves that always travel in the downstream direction. The dis-

persion curves for the shelf wave and the shear wave cross in a partic-

ular range of wavenumber, where the waves become unstable. At wave-

numbers above this range, the two dispersion curves change families, the
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shelf wave curve becoming a shear wave, and the shear wave curve becom-

ing a shelf wave.

Brooks and Mooers (1977b) studied stable barotropic shelf waves

over an exponential depth profile with an exponential alongshore mean

current, Hhey also found that the direction of shelf wave propagation

was reversed by the mean flow at a high wavenumber cut-off. Brooks

(197S), Grimshaw (1976) and McKee (1977) discussed the problem of crit-

ical layers in the meati flow; that is, a level in themean flow where the

wave phase speed equals the mean current velocity. In addition to the

discrete spectrum of shelf wave nodes, there is a continuum of allow-

able critical layer solutions in the dispersion plane, with phase speeds

lying in the range of the current speed.

All of the shelf wave models discussed above have dealt with a

homogenous ocean. [he presence of stratification can alter the proper-

ties of shelf waves and also can allow other types of waves to exist.

A number of models have incorporated a level stratification in the

study- of coastal-trapped waves.

Mysak (19,7) jnd (;ill and Clarke (1974) examined long waves in a tx'o-

layctr ocean with only the top layer extending over the shelf. It was

shown by Allen (1975) and Wang (1975) that the barotropic and baroclinic

modec; were coupled when the two-layer stratification extended over a

sloping continental shelf. Allen (1975) showed that the strength of

thi,; coupling depended on the ratio of the internal radius of deforma-

tion to the length scale of the topographic variation. Both Allen (1975)

and Wang (1975) found that where the dispersion curves of the shelf

wavec; and the single Kelvin wave appeared to cross, there was actually

a change of modal structure cf the waves. Wang (1975) called this



coupling between the shelf waves and the internal Kelvin wave a

"resonance coupling". This terminology was introduced by Eckart (1962)

in a studY of internal waves.

Wang and Mooers (197) also found this resonance phenomenon in

a continuously stratified model. They found that in the limit of a

vanishing coastal wall, topographic Rossby waves were the only class of

sub-inertial frequency, coastal-trapped wave motion. The topographic

Rossby wave reduces to a barotropic continental shelf wave in the special

case of small stratification, and to a bottom-trapped wave (Rhinos,

1970) in the special case of large stratification. Huthnance (1978)

showed analytically that for a monotonically increasing depth profile

with a level density stratification there was only one infinite discrete

set of trapped sub-inertial modes with frequency decreasing as mode

number increased. Clarke (1977) showed that in the long wave limit,

these waves were a hybrid between shelf waves and internal Kelvin waves.

These mc-lels, however, have not considered the presence of sloping

isopycnals with an associated vertically sheared mean current in thermal

wind balance with the mean density field.

The Gulf Stream region off the southeastern coast of the United

States is characterized by the presence of strongly sloping density sur-

face, combined with strong lateral and vertical current shear. Orlanski

(1969), using a two-layer model, and Orlanski and Cox (1973), using a

continuous stratification, studied baroclinically unstable waves in a

western boundary current, but neglected stable waves.

Bane and Ilsueh (1980) investigated the role of a density front in

determining the dispersion characteristics of stable topographic Rossby

waves. They found a "complementary mode" in which a barotropic wave

I'
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over the shelf matched with a baroclinic wave at the density front.

Bane (1980) developed a two-layer model which incorporates a general

continental shelf and slope topography with a thermal-wind mean current

in the upper layer. fie identified four types of stable, sub-inertial

frequency, Rosshy-like waves. They are the barotropic shelf wave, the

quasi-geostrophic edge wave, the complementary mode edge wave, and a

new frontal-trapped wave, so-called because its amplitude is trapped

within the frontal zone on the cyclonic side of the mean current. The

dispersion curves for this model exhibit the mode-coupling resonance

phenomenon, allowing the characteristics of the component waves to be

interchanged along a composite dispersion curve. An obvious limiting

feature of these two-layer models is that they lack sufficient vertical

resolution.

There is a great deal of evidence to support the existence of

shelf waves in general (llamon, 1962, 1966; Mooers and Smith, 1968;

Cartwright, 1969, Cutchin and Smith, 1973) and particularly off the

coast of North Carolina (Mysak and Hamon, 1969; Brooks, 1978). It has

been suggested that meanderings of the Gulf Stream in this area may be

related to coastal-trapped waves (Brooks, 1978; Brooks and Bane, 1978;

Bane and Brooks, 1979a). Stable, propagating, wave-like meander patterns

in the inshore edge of the Gulf Stream have been observed to be a dom-

inant mode of oscillation of the Stream (Legeckis, 1979). The existing

theoretical models, however, have not dealt adequately with the complex

dynamics found in this region. On the inshore, or cyclonic, side of

the Gulf Stream, both the strongly sloping density surfaces and the

large horizontal shear of the mean flow contribute in the same sense as

the sloping bottom to the ambient potential vorticity gradient, giving
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rise to dual trapping mechanisms. This second trapping mechanism is

the gradient of the quasi-geostrophic potential vorticity (cf, Pedlosky,

1979). It is the two-layer analogue of the quasi-geostrophic potential

vorticity gradient that supports the frontal trapped waves described

by Bane (1980). The maximum velocity of the Stream is on the same

order as the phase speed of topographic Rossby waves, but in the oppo-

site direction, so that one would expect significant advection of the

waves. It has been shown that when both stratification and topography

are present, the barotropic and baroclinic modes are coupled (Allen,

1975). Thus, the presence of a western boundary current in a coastal-

trapped wave model can alter the properties of the coastal-trapped wave

modes, and can allow the existence of a new class of frontal-trapped

waves. Moreover, one expects the coastal-trapped waves to be coupled

with the frontal-trapped waves due to the stratification. To aid in

the stud), of these effects, the present model includes a realistic

western boundary current flowing along a continental slope.

Mysak (1980) points out that the presence of a wide flat shelf,

as is found off the coast of the Carolinas, enhances the mode-coupling

resonance found by Wang and Mooers (1976). Bane (1980) suggests that

this is due to changes in the dispersion properties of the different

component waves with changing shelf width. This model simulates the

Gulf Stream as it flows along the continental slope off Onslow Bay,

North Carolina, where the shelf is very wide. In this continuous strat-

ification model, the different wave types found in Bane's (1980) two-

layer model are more subtly coupled and are more difficult to distinguish;

however, the frontal-trapped wave is clearly present. A hybrid between

a topographic Rossby-like wave and a frontal-trapped wave is found also.
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The next section describes the formulation of the governing equa-

tion and the boundary conditions. Section 3 describes the mean state

for the model, and section 4 outlines the numerical solution scheme.

The results of the computations are presented in section 5, and are

discussed in section 6. The conclusions are summarized in section 7.

6



2. Formulation

Consider a model eastern continental shelf and slope region with

a steady alongshore flow in geostrophic and hydrostatic balance with

the density field. A straight coastline is assumed along the y-axis,

with the x-axis pointing offshore and the z-axis pointing vertically

upward. The depth, h(x), is a monotonically increasing function of x

only. A schematic of this idealized geometry is shown in Fig. 2.1.

The fluid is assumed to be inviscid, incompressible, non-diffusive, and

continuously density-stratified. Variations in the Coriolis parameter,

f, are neglected. The equations of motion for small amplitude disturb-

ances are

F [u - f -P

p + fu= _py

l)w
O = -rz -pg

u + v + W 0
x y

Dp 0
Dt

where subscripts denote differentiation, and

+ = -- " + U + V +W" Tt ;t -x

Following the notation of Mooers (1975a,b), the dependent vari-

ables are separated into mean and fluctuating components (denoted by

overbars and primes, respectively):
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0I
V =V + v

w  
U =U, w W,

P = 0 + P + P,

P = PO + P + P'

where Po = -Pogz

and ( P, I)<< PO

The buoyancy and the nonhydrostatic pressure are defined as

) - gp= b + b + b
pO 

P- PO -
I~ - 7 ITT

PO

The equations of motion are time averaged and the wave motion is sep-

arated from the mean flow (see Appendix Al). Reynolds stresses and

non-linear or wave-wave interaction terms are neglected and a Boussinesq

approximation is adopted.

The mean flow is govcrncd by

fv =7 (2.1)

0 -z + (2.2)

Together, (2.1) and (2.2) yield the thermal wind relation

- = 2

b2

where M= x is the horizontal analogue to the Brunt-Vaisala frequency,

2 -- g
N = - z

Po z
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A hydrostatic balance is assumed, since only sub-inertial frequency

motions are being considered. The wave motion, without the primes,

is governed by

+ vu y- fv x (2.3)

vt + VVy + (f+v )U w = -y (2.4)t x z y

0 = -1 + b (2.5)

u + V + 7 = 0 (2.6)

N2U
1) + vI + Nu + Nw = 0 (2.7)t y

Because of the strong horizontal density gradients, M 2 must be included

in (2.7); therefore, from the thermal wind relation, v must be retained

in (2.4). The strong lateral shear of the Gulf Stream, which augments

the background potential vorticity of the region, requires the inclu-

sion of v in (2.4).
x

Only alongshore propagating disturbances are considered; therefore,

all perturbation variables (u,v,w,i,b) are assumed to take the form

C + tx) for their (y,t) dependence, where co is the wave fre-

quency, t is the alongshore wavenumber, and i = (-A)/2. Differentia-

tion with respect to t and y thus becomes equivalent to multiplcation

by i, and it, respectively. The intrinsic frequency is the frequency

seen by a fluid particle at a particular x and z, and is defined as

,(X,2) = + v(x,z)i. The mean current, v, is always positive (a

northward flowing current), so that for a wave propagating in the
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positive y (downstream) direction (either co or £ negative, but not

both), there exists the possibility of a critical surface where o(x,z) =

0, i.e., the wave phase is propagating at the same speed as the local

medium. For this study, only stable waves propagating in the negative

y (upstream) direction will be considered, so that o and t are always

positive, and critical levels are avoided. Equations (2.3) through

(2.7) now become

iou - fv =-7 (2.8)

x
iov + (f+V x)LI + V zW = -TIn (2.9)

0 = -71 + 1) (2.10)

u + iUv + w = 0 (2.11)
9

ib + M u + N2w 0 (2.12)

Eliminating the buoyancy, b, between (2.10) and (2.12), then

solving (2.8) through (2.10) for u, v and w in terms of r, gives

u= o -N'(!7 + OM2Ti -efN2) (2.13)A IT

v = ~ N2o 4 - o2 2  oftN2 (2.14)
f fx z

w = L 7T Y (- 2 - a- +fM2] (2.15)

heeA N" f 4,

where A N 2 C 2 ) - M4, and o = f(f + vx) is the square of the

effective local inertial frequency (Mooers, 1975a). Substituting (2.13)

through (2.15) into the continuity equation (2.11) and applying the

thermal wind relation yields the governing equation for the perturbation

pressure, 71:
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-) -0  12 I
7 ~ ~~ ~ 

b 2
o- 2)1M 3 3

xx 2 xz + 2 zz + 1T 2 z - x TxN NL[Nj

2 
-2)2'N2 N N2  az f N 2

L+ (- K N- -cz- e} = 0. 216

The boundary conditions chosen for sub-intertial motion are as

follows. At the surface (z = 0), a rigid lid is imposed, i.e., w = 0.

The rigid lid approximation suppresses any wave-associated sea level

elevations and free surface divergences while retaining the pressure

gradients along the surface. This has the effect of filtering out any

external gravity waves. fluthnance (1978) showed that the free surface

divergence effects were generally very small for sub-intertial waves,

and that the eigenfrequencies of these waves were increased only slightly

by invoking the rigid lid approximation. Using (2.15), the boundary

condition at z = 0 becomes

(02 - 2) v +- = 0 at z=O. (2.17)M"1x f z ao2.7

At z = -hfx), there is no flow normal to the bottom, which implies

that w = -uh , or from (2.13) and (2.15),

(M2 - N2h )(Or + -f I) + (M2h - (a 2 a)) = 0 at z-'-h(x). (2.18)
x x a x f z
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At the coastline, there is no flow normal to shore; that is, at x = 0,

u = 0, or from (2.13)

M f
- -2 + -I T = 0 at x=O. (2.19)X N 2  'z '

Trapped wave solutions are sought, requiring that all solutions decay

far offshore; that is,

1 ) 0 as x (2.20)

Equations (2.16) through (2.20) form an eigenvalue i)roblem in

0, and f. In the limiting case of a level stratification and no mean

current (v = 0 and M- = 0), (2.16) through (2.20) reduce to the equa-

tions used by Wang and Mooers (1976) and by Huthnance (1978). Equation

(2.16) is elliptic for the values of N 2 , M2 and v encountered in ax

typical western hounAary current profile provided a0 < f. It is con-

venient to solve (2.1(,) - (2.20) in a rectangular domain; therefore,

the independent variables (x,z) are transformed to (x,c), where C =

ztl/h(x) , II being the maximum depth and h(x) the depth at offshore

distance x. The governing eqluation (2.16) then becomes

2 02

7 C, + '4ij 2 h~2 + 2 hxHC + 2f H7T-+2x- h + H 12 X 2 2Nx hN N2

2 3A 1 2 h2  h X3A M2
N" 3z hlx +  h +-- -

+ I I x _1 1M N2  a i,
2- h ot H 2  3Ax f3A

+ 2 -A N 2h - z (2 .27)

N N

Iff (M DA 3
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The boundary conditions become

h Z
7:- X T- + -- =0 at x = O; (2.22)
x U

2 ( 2 2 1 2/f

M -x f - 0 F Tr r 7- 0 at € = 0; (2.23)

2 \[ M2

". N - [-2 M h 2 ONf h

(2 x h x N2iL + - 0

at (2.24)

The variables are made dimensionless by the relations

x * x/I1, z= z/ll, c = Z/H, h h/l1, a = a/f, £* = L, = of/f,

~* ~ 2* 2 2
N- N"/N , and M /M

max max

In dimensionless form, equation (2.21) becomes, with the asterisks dropped,

I + 
2  2  1 x

xx h Q h + + 2 IThxx" N xr, h 2 X 2 x S 2 N2  1

N NI1 N12  3A DA ), 1 h 2 h+ x (3AX M at

22+ - 2 h/+

1 M x ) x (

+/ N- D x S 2 N2  az N 2 h-

M2A a ,



)

with the boundary conditions

-1 
n h TT + t n = 0 at x O; (2.26)

2 f21 1 2 2 ) M 2F

x .f -T +-- = 0 at r = 0; (2.27)x M II h f
max

N12 2 ( 2 _ 2)) T
1) 9fx + (2, h h

N2 x x 2 N2

+ 1  - h x - 0 at C-1 (2.28)
0 (- N

and i U as x * (2.29)

M I.
where a is the "aspect ratio" for the density field

N- If
MIax

N Ii
max

and S fL is a stratification parameter (also called a Burger

number), which is the ratio of the internal Rossby radius of deforma-

N IH
tion r. - to the horizontal length scale L.

1 f



3. Description of the Model Geometry

The background mean current in this study reasonably approximates

the Gulf Stream as it flows along the coast of North Carolina

(Richardso;'. Schmitzand Niiler, 1969). It is essentially the same

as that used by Orlanski and Cox (1973) as their initial conditions.

2 2-
'his form is chosen because the values of N I m , v and their deriva-

tives are easily evaluated at any point in the solution domain.

The mean velocity, v, is assumed to be in geostrophic balance with

the density field which is determined entirely by the temperature. The

mean velocity is in the positive y (northward) direction, and does not

vary with y or t. The analytic expression for the temperature field

used by Orlanski and Cox (1973) is

T(xZ) = To - AT(3-2(6x + l)e (z-l)e 2rz (3.1)

where the parameters 'o , AT, 6 and E are adjusted to give the desired

temperature profile. The density is given by

P(x,:) - i-cTix,z)) (3.2)

where ot is the thermal expansivity of sea water, and is taken to be

a constant. By using (3.1), (3.2) and the thermal wind relation, the

expression for the mean velocity is found to be

-gaLA' 2 -6x 2CIzf 6 xe- (3/2 - ze . (3.3)

- h. at>
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The hori: ontal shear of the mean velocity is

(ny) " -6x 2cz
v 62(1-,Sx)e (3/2-cz)e (3.4)

From the definitions of Brunt-Vaisala frequency, N, and its horizontal

analogue, M-, it is found that

-e6x)

- (-(x,z) g-A'F(3-2(5x+l)e )(2Ez-l)e 2 c z  (3.5)

2 -6 2F-z

N (x,z) -2gAT(62xe )(E-z-i)e (3.6)

The bottom topography used in the model has a hyperbolic tangent

fo rm

It -Il
0o1 wall

h(x) = H wall + w [I + tanh(s(x-a))]

where Itwall is the depth at the coastline, 1-° is the offshore maximum

depth, a is the offshore distance of the maximum slope and s is propor-

tional to the maximum slope.

The parameters T , AT, 6, and E for the current and density fields,o

and a, s, and 11wall for the bottom topography, are chosen to model the

(ulf Stream as; it flows along the continental slope off Onslow Bay, Nor:h

Carolina, at about 33.50N latitude (Fig. 3.1). A current section from

the area, after Richardson et al. (1969), is shown in Figure 3.2. For

the model, the deep water temperature T0 is chosen to be 40 C. The ver-

tical temperature difference AT, is 7°C. To give a current of about

kI
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200 km wide, (5, the inverse of the horizontal scale length, is set equal
-I

to 3 X 10- m The vertical scale of the current is determined by

-3 -1Iwhich for i ISOOm deep current is equal to 1.3 x 10 m . The in-

shore edge of the current, or the front, is placed 100 km from shore,

which is Just over the shelf break. The position of maximum bottom

slope, a. is 1.15 km from shore and the maximum slope is equal to 0.05

which corrcsponds to s = 2.5 x 10 - . The resulting velocity and temp-

erature fields are si,,wn in Figures 3.3 and 3.4 respectively. The depth

of the coastal wall is 100 m, or 2.SO of the maximum depth H = 4000m.0

The offshore coordinate is made dimensionless by the width of the cur-

rent, 1. - 200 kin, and the vert ical coordinate by the maximum depth H0

The offshore boundary is imposed at a distance x = 2L. It will be seen

later that this is sufficiently far offshore, as all solutions die out

far inshore of this boundary. The presence of the coastal wall is

somewhat unrealistic and is purely for mathematical convenience. If

the depth at the coast is allowed to go to zero, some of the coefficients

in (2.25) become infinite. The implications of a finite coastal wall will

be discussed in a later section.



41. Method of Solution

The governing equation (2.2S) is a two dimensional, second order,

partial differential equation in a rectangular domain. Solutions to

this equation subject to the boundary conditions (2.26) - (2.29) are

obtained for a particular a and Z using the marching method for elliptic

partial differential equations of Roache (1978). For a fixed f, the

eigenvalues of o, are found by searching for the resonance response of

the system to a progressive wave forcing term of unit amplitude.

The marching method is "direct"; that is, it produces an alge-

braically exact answer in a finite number of steps, as opposed to an

iterative method in which each iteration gives a better approximation

to the exact solution. To solve the boundary value problem for a fixed

, and t, the solution is guessed at one boundary and the finite dif-

ference form of the equation is "marched" through to the opposite

boundary. The results of the march are then compared to the boundary

condition and the initial guess is corrected accordingly. A second

march then gives the correct solution. A complete description of the

algorithm used can be found in Roache (1978).

"'he stability of the marching method is highly dependent on the

number of grid points in the direction of march, J. The method becomes

unstable for large .1, primarily due to machine round-off error (see

Roache, 1978). This behavior places an upper bound on the resolution

of the method. For this problem, suitable results are obtained using

16 grid points in the 4direction, the direction of march, and 31 points

in the x direction (Figure 4.1). The use of a larger value for J results

in unacceptable error propagation through the march, even when using

double precision on the CRAYl computer. The grid spacing used gives
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dimensionless horizontal and vertical resolutions of 0.0667. In dimen-

sional coordinates, this gives a horizontal resolution of 13 1/3 km,

since the offshore boundary is placed at x = 2L = 400 km. The vertical

resolution is a function of x, and in dimensional coordinates, Az =

0.0667 h(x).

The dispersion relations are found by repeatedly solving the boun-

dary value problem for different values of a and f. Dimensionless
0

wavenumber f is set at 40 increments between 0 and 5.0. For each value

of C, the boundary value problem is solved for o0 values of o between

0 and 0.0. The total kinetic energy over the entire solution grid is

calculated for each value of a and stored. The array of kinetic energy0

values for that particular Z is then searched to locate the local maxima.

These maxima are considered an indication of a resonance response of

the system and therefore the points (ao 0 ) corresponding to these max-

ima lie on or very near a dispersion curve. Fig. 4.2 shows a plot of

integrated kinetic energy versus a for Z = 2.0. The dispersion rela-

tion is obtained by contouring the resonance points. To get sufficient

resolution in frequency-wavenumber space requires the solution of the

boundary value problem 2400 times. Each solution requires about one

second on the CRAY], so that to produce an entire dispersion relation

requires forty minutes of CRAYl CPU time. For wavenumbers greater than

5.0 the horizontal scales of the motions approach the horizontal resolu-

tion of the numerical method; therefore the dispersion relation could

not be extended to higher wavenumbers.
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This method is tested using the model of Wang and Mooers (1976)

for a flat stratification. Using their depth profile

r 0.005 + 0.36 x , 0.42 > x - 0

h(x) = --0.33 + 1.33 x , 1.02 > x > 0.4

1.0 , x> 1.0

and static stability

N 2 (z) = -(z - 0.05)/(z - 0.3)2

and a stratification parameter S of order unity, this method reproduces

their results (Figure 4.3). Assuming that the results of Wang and

Mooers (1976) are correct, it seems safe to assume that this method

produIces sou~nd results.



5. Results

The dispersion curves obtained for the model are shown in Figure

5.1. Five curves arc distinctly identifiable from the cigenvalue

search. A mode numbering convention is used to identify the curves in

the dispersion diagram. The uppermost curve is called "mode 0", the

next highest curve is called "mode 1" and so on. The mode numbers do

not imply any particular wave structure. The uppermost curve, mode 0,

is an internal Kelvin wave trapped near the bottom against the vertical

coastal wall. All of the energy is contained in the alongshore and

vertical velocities. This mode is non-dispersive and for wavenumber £

greater than 1.0, it is no longer in the range of sub-inertial motion.

The other modes are vorticity controlled, Rossby-like waves and

are supported by two wave guides - the sloping bottom topography and

the sloping isopycnals and associated shear of the mean current. The

pressure (n) structure for mode 1 for wavenumber f = 1.25 is shown in

Figure 5.2(a). Figures S.2(b) and (c) show the horizontal velocities

associated with this mode. In the wavenumber range 0 < f < 1.5, this

wave, consisting of a r)arotropic portion trapped over the shelf which

co-oscillates with a baroclinic portion trapped within the frontal

zone, i.e., within the region of strongly sloping isopycnals on the

cyclonic side of the mean current, is a hybrid between a shelf wave

and an internal Rossby-like wave. The hybrid nature of the wave de-

creases with increasing wavenumber, that is, the barotropic component

over the shelf diminishes. For intermediate wavenumbers (l.5<t<3.S),

this mode becomes a "frontal-trapped" wave with most of the energy

trapped within the frontal zone (Figure 5.3). As the wavenumber in-

creases still further, the hybrid structure over the shelf returns and
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the frontal-trapped wave begins to die out. For wavenumbe: e;3.75,

the frontal-trapped structure is completely gone, and this mode becomes

a topographic Rossby wave (Figure 5.4).

Mode 2 for low wavenumbers is a topographic Rossby wave over the

;hclf that dies out in the frontal zone. The pressure and velocity struc-

tures for this mode are shown in Figure 5.5. For higher wavenumbers

(t>3.75) this mode begins to exhibit baroclinic structure in the frontal

zone and becomes a hybrid wave (Figure 5.6). It therefore appears that modes

I and 2 exchange characteristics around R = 3.75. This is similar to the

resonance coupling found by Bane (1980) in a two-layer Gulf Stream model.

Mode 3 is a hybrid wave for all wavenumbers considered (Figure 5.7),

while mode 4 exhibits the frontal-trapped structure (Figure 5.8).

Aside from the single internal Kelvin wave mode, there appear to

be three distinctly different wave structures. The first is a topo-

graphic Rossby wave, which is confined to the shelf region (i.e., a

continental shelf wave) and dies out in the frontal zone of the mean

current. The second is the frontal-trapped wave, which is essentially

an internal Rossby wave supported by the vorticity gradient resulting

from the sloping density surfaces and shear associated with the mean

current. Over the shelf, where the stratification is level, there is

very little motion associated with this wave. The third type of wave

is a hybrid between the first two and has components over the shelf

and in the current region that are of comparable magnitude. These

three structures can be understood by considerine the notential vorticity

control mechanisms which support the wave motion. For barotropic motions
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over a sloping bottom, conservation of potential vorticity dictates

that

D (--- = 
(5.1)Dt -

where I = v - u is the vertical component of the relative vorticityx y

of the wave motion. This is the case over the shelf; therefore, the

wave vorticity can be balanced only by the topographic background vor-

ticity f/h and only topographic Rossby waves are allowed. The effect

of a level stratification is to concentrate this background vorticity

gradient in the lower layers, leading to bottom trapping of the wave

motion, as in Figure 5.5.

The presence of a mean current with both lateral and vertical

shear gives an additional vorticity constraint, the conservation of

quasi-geostrophic potential vorticity (cf, Pedlosky, 1979)

Nt = D- +6) - = 0 (5.2)

^ A

where w = V×(ui+(v+v)j+wk) is the total vorticity vector. The wave

vurticity can now be balanced by the background quasi-geostrophic

potential vorticity

Q = (fk - vi) PO

2- 2
= M v z (.3)

. g
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(where f = (f+v )), or from the thermal wind relation

Ir g (M 4 _ N 2 (5.4)

This quantity is plotted in Figure 5.9. The quasi-geostrophic poten-

tial vorticity balance is then

(OI Q,) ,Dt

P zP x
where Q1 - + (w -v )- is the wave quasi-geostrophic vorticity.

w0  y zPo

The current alone can support internal Rossby waves due to the gradient

in Q. 'his gradient is strongest near the surface in the frontal zone;

hence, the wave motion may be concentrated there. The strong density

stratitication in the current effectively isolates these waves from

the bottom topography for "ll but the very longest wavelengths. This

,:an be seen by comparing Figures 5.2(a) and Figure 5.3. Mode 1 shows

a strong bottom-trapped component at Z 1.25 (Figure 5.2(a)) which

disappears at f - 2.0 (Figure 5.3).

For a level, two layer stratification over bottom topography,

Allen (1975) has shown that t.ie strength of the coupling between baro-

tropic and baroclinic modes depends on a parameter A = ri/6B

Nil

where r =Ni is the internal Rossby radius of deformation and 6 = H/H
i = F- B x

is a length scale for the bottom topography. Over the shelf in the

present model, N - 4 x 10 - 3 sec - 1 , i 10 2m, f - lO-4sec- 1 and

B 100 ki, so that r 4km and X - 0.004. In the current, however,

-3 -IN - S x I0~ sec , I1 - 1000 m and r. - 50 kin, giving A 0.5. This
1
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parameter was derived for a level stratification and is not totally

applicable here. As shown above, the presence of sloping isopycnals

permits the frontal-trapped wave motion that does not exist in a level

stratification. Coupling between this type of motion and waves supported

by the sloping topography is another matter. If the phase speeds of

the frontal-trapped wave and the topographic Rossby wave are similar

for a given wavelength, the two waves can co-oscillate, resulting in

a hybrid wave. Otherwise, only one type of wave may exist.

The phase speeds for modes 1, 2 and 3 at low wavenumbers are very

close to the first three barotropic shelf wave speeds for the same depth

profile. This is to be expected, since for very long waves, y,

and w' in (2.3) through (2.7) become small. Each mode (excluding the

internal Kelvin wave mode) has a high frequency cutoff, resulting in

a zero group speed point for each mode. Table 5.1 gives the values

of the cutoff frequency cc, the corresponding wavenumber, and the phase

speed associated with the zero group speed of each mode for the first

three Rossby-like wave modes. The higher-order wave modes are not

adequately resolved by the solution method.

Table 5.1. Values for high frequency cutoff, ac for the first three

Rossby-like wave modes.

Dimensional Dimensional Dimensional
Mode o Frequency Wavelength Phase Speedc

-5 -I
1 0.324 2.62 x 10 sec 2.25 558.5 km 200 km/day

2 0.223 1.804 x I0 sec 1 3.7 339.6 km 84 km/day

-5 -l
3 0.15 1.21 x 10 5sec 4.13 304.3 km 50 km/day

--A



0. Discussion

One usually thinks of a wave mode in terms of a specific modal

structure; for instance, the number of nodes in the horizontal or

vertical pressure structure. This concept of modal structure does

not seem to apply to the modes found in the present model. Each mode

is a composite of several different wave structures, with a particular

mode exhibiting different structures in different regions of the dis-

persion plane. Modes I and 2 show a coupling resonance phenomenon,

wherein the two modes exchange characteristics. The term "resonance",

which was first used in this context by Eckart (1962), is somewhat

misleading since there is no infinite growth in the wave amplitude

(cf Allen, 1975).

Similar phenomena have been observed in other coastal-trapped wave

models. Niiler and Mysak (1971) found that the dispersion curves

for their shelf wave modes and shear wave modes change families where

the curves appear to cross. Allen (1975), Wang (1975) and Wang and

Mooers (1976) found similar coupling between topographic Rossby wave

modes and internal Kelvin wave modes in models that includcd a level

stratification over a sloping topography. Bane (1980), in a two-layer

Gulf Stream model, found that the dispersion curves for a particular

topography/density/current setting may be interpreted as a composite

of the families of dispersion curves of the four different wave types

present in the model. These four wave types are the barotropic shelf

waves, the barotropic quasigeostrophic edge waves, the complementary

mode edge waves and the frontal-trapped waves. In the present contin-

uously stratified model, these four types of waves are not as easily

distinguished as they are in Bane's (1980) model. This is due to the
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fundamental difference between a two-layer stratification and a con-

tinuous stratification. In the two-layer case, all the density infor-

mation is contained in a single discontinuity; whereas in the continu-

ously stratified case, the density information is distributed over

the entire water column, giving much greater vertical resolution. Thus,

the interactions between stratification and topography are much more

subtle. It is important to note that one cannot speak of the mean

velocity and mean density fields independently, as they are intimately

coupled through the thermal wind relation. In this particular model,

the mean density field was specified and the mean velocity field was

computed trom it; however, one could have just as easily specified the

mean velocity field and then computed the associated density field.

Therefore, when we speak of the mean current or the mean stratifica-

tion, we are referring to both the mean velocity and density fields.

The barotropic shelf wave dispersion curves were computed for the

model bottom topography and are shown in Figure o.1. Comparing these

curves with those of Figure 5.1, it is clear that the presence of the

mean current significantly alters the propagation of the shelf waves.

For very long wavelengths (e . 0.5) both sets of curves are roughly

coincident. This is to be expected, since for very long wavelengths

1y , 1, and w in (2.3) - (2.7) become very small in relation to the

other terms. For smaller wavelengths (larger wavenumber) the dispersion

curves for the stratified model are quite different from the barotropic

curves. It i not clear at present how the barotropic curves make the

transition to the stratified curves. This question will be addressed

in futurk wor.
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The two-layer model of Bane (1980) has shown that the location

of the density front in relation to the topography is very important

in determining the dispersion properties of the various waves.

It is expected that the same is true of the continuously stratified

case; however, this has not yet been investigated.

The horizontal resolution of the numerical method employed in this

model was not quite as good as desired. Much of the complex structure

in Figures; 5.2 through 5.7 resulted from contouring only a few mesh

points, and should therefore be viewed as merely suggestive of the

true wave structure. A new numerical method has been recently developed

at NCAR that should improve the resolution of this model by an order

of magnitude in future computations.

This study has only considered small amplitude, stable perturba-

tions to the basic state. The problems of baroclinic instability and

critical levels in the mean flow have been excluded in order to simplify

the analysis. Inspection of the quasigeostrophic potential vorticity

field (Figure 5.8) reveals that the potential vorticity gradient changes

sign seaward of the frontal zone. This is a necessary, but not a suf-

ficient, condition for baroclinic instability (cf Pedlosky, 1979, p. 440);

therefore, unstable waves are possible, but a more detailed analysis is

required to determine the exact form of the perturbations for which the

flow is unstable.

Recent measurements in the Gulf Stream south of Cape Hatteras in-

dicate that a dominant mode of oscillation of the Stream corresponds

to a downstream propagating disturbance with a period of eight days

(Bane and rooks, 1979h; Brooks and Bane, 1980). The present model,
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however, only considers upstream propagating disturbances, and thus

avoids the possibility of critical levels in the flow. A logical

extension of this model would be to consider downstream propagating

waves and unstable waves by allowing the wave frequency a to assume

nei'ative and complex values.

The verical wall imposed at the coast is not a very realistic

boundarv Londition. The Kelvin wave mode (mode 0) is iurelv a conse-

,ience of this boundary condition. The vertica! wall requires a node

in the cross-shelf velocity at the coast. A more realistic sloping

beach boundary condition would only require that the solution remain

bounded at the coast; however, this would be much more difficult to

treat numerical ly. Bane (1980) compared the sloping beach and vertical

wall boundar' conditions in the two-layer case and found that the ver-

tical wall did not affect the solutions appreciabl)y so long as the wall

was of small height compared to the total depth and was far removed

from the frontal zone.



7. Conclusions

It has been shown that the presence of a continuously stratified

boundary current such as the Gulf Stream in a coastal-trapped wave

model permits the existence of a new class of frontal-trapped waves in

addition to the topographic Rossby wave (continental shelf wave) modes.

The frontal-trapped wave is a Rossby-like wave in that it is supported

by the ambient quasi-geostrophic potential vorticity gradient in the

cyclonic side of the mean current. This potential vorticity gradient

is due to both the shear of the mean current and the associated sloping

density surfaces. Bane (1980) also has found frontal-trapped waves in

a two-layer Gulf Stream model. In the present model, the mean current

flows along the continental slope, with its inshore surface front loca-

ted approximately over the shelf break. The wide continental shelf sim-

ulates the topography off Onslow Bay, North Carolina. The stratifica-

tion over the shelf is level, so that only topographic Rossby waves

may Cxist there. Frontal-trapped waves may exist in the frontal zone

of the Tnean current. These two regions are coupled, and the resulting

wave motion may be either a shelf wave, a frontal-trapped wave, or a

hybrid between the two. Following a particular dispersion curve, the

modal structure changes from one wave form to another, indicating a mode-

couplini, resonance similar to that found by Bane (1980). The coupling

between the two wave guides (the topographic potential vorticity gradient

and the quasi-geostrophic potential vorticity gradient) is much more

subtl iii the coutiniotusly stratified case than in the two layer case.

It is inappropriate to speak of a particular modal structure in the

continuous case, since a wave mode exhibits different structures in
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different regions of the dispersion plane.

The importance of these stable Rossby-like waves to the mesoscale

variability of the real Gulf Stream is not known. The free modes found

in this model reveal a possible mechanism for sub-inertial frequency

disturbances propagating along the inshore side of the Stream. The

complexity of the solutions in this highly simplified model of the

(;tIlt" Stream indicate that the response of the real Stream depends upon

a number of interacting factors.
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Appendi x

Al. Separation of time dependent flow from mean flow

The full equations of motion are

Du -- P + vv2 U  (A1.1)

Dv + fu = - p + vV v (Al.2)
P y

+ eu = IP- g + V 2w (AI .3)

Pp + V • - (Al.4)p

where

1= U--- V-- + W-3t x y Dz

q U + k . wk

f is the vertical component of the earth's rotation, which will

be assumed constant,

e is the horizontal component of the earth's rotation, which

will be assumed negligible,

and v is the molecular viscocity. Henceforth, the fluid will be

assumed inviscid, i.e. v = 0. Equation (Al.4) can be separated into

two equivalent equations because the fluid is incompressible:

Do ) 0 (AI.5)

u + v + w z 0 (Al.()
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The dependent variables consist of a mean or time-independent component

and a fluctuating or time-dependent part. The mean velocity is in the

y-direction only, so that the mean velocity components in the x and z

directions are zero:

u U1, V = V + vs w = W,

) P ) =0 +  
0 + p ' P = P 0 + P + P'

where po = POgz is the hydrostatic pressure.

The equations of motion are averaged over a period of time much

greater than a typical time scale for the time-dependent motions, i.e.

r r dt , r any dependent variable.

T

A Boussinesq approximation is adopted, that is, (p,p')<<p so that

P is replaced by p everywhere except in the buoyancy equation (Al.5).

The mean flow equations are then

f = 0 X - -- + V'Iu'I + ;rI (Al.7)

0 = D- p y+ 1u'v' + vv' + ;wI I 'j (Al.8)

0 y z

0

0 = 0 -) + g + IU-- + y"- + '-- (A!l.9)

The terms in brackets are the x, y and z components of the Reynolds

(x) ( nd R(z)stress and will be denoted as R R and R respectively. The

L . d .. . I lI V - I I I" I I
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buoyancy is clef ined as

0

and the non-hydrostatic pressure per unit density as

-- IT + 7

P0

FIquat iOTIS (Al .7) through (Al .9) now become

TT + R(Al .10)

0 7T- b + R(2 (A.1.12)

Equations (AI.10) through fAI.12) are added to (Al.l) through (A1.3)

to give the equations of motion for the time dependent flow:

u' + V'U' +- U'U' + V'U' + W'u' - fv' -Tr I + R~x) (A1.13)
t y x y z x

vI + VV I + LV' + V'V, + W'V + fu' + Vu'1 + VW'I
t y x y z x z

- -ii + R()(Al .14)
y

W1+ vW' + uWWI + v'w' + WIWI = -it' + b' + R(Z) (Al.15)
t y x y z z

II+ V' + w, = 0 (Al. 16)
x y z

2 2
t y x y z
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Equations (Al.13) through (Al.17) are the full non-linear equations

for the wave motion. In this analysis, the non-linear terms and the

Reynolds stresses arc assumed to be small compared to the other terms

in the equations. This can he verified through a sinple scale analysis

(cf, Brooks, 1975, pp. 212-218). A hydrostatic approximation is adopted,

since the vertical velocity w is small, and its derivatives for long

waves are smaller still when compared to the pressure and buoyancy terms.

The linearized, hydrostatic equations for the wave motion, with the

primes dropped, are

+ - fv -- T (Al 18)
t y x

V t + Vy + (fV x ) u + VZW -n -y (A1.19)

0 = - + b (A1.20)

u + v + w = 0 (Al.21)
x y z

bt+vb, + M'u + N2w 0 (Al1.22)



A2. Formulation of the governing equation.

The equations of motion for the mean flow can be combined by dif-

ferentiatirig (AI.10) with respect to z and (A1.12) with respect to x,

and subtracting to give the thermal w:.ld relation

fv z N= (A2 1)

which will be applied numerous times in this section.

Alongshore propagating disturbances are sought; therefore the
iy (ot +,ey)

perturbation variables are taken to have the form e as their

(y~t) dependence. The equations of motion (AI.18) through (Al.22)

now become

iolu - fv -7(A2.2)

ioy + (f+v x )I + V w -z (A2.3)

0 = -1 + h (A2.4)

LI + U~V + W () (A2.5)

iob + NI-t + N w = C (A2.6)

where o = 0 0 +vZ is the intrinsic frequency.

Eliminating the buoyancy b between (A2.4) and (A2.b) gives

M u + N w W -ion z (A2.7)
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Using this result to eliminate w from (A2.3) gives

oN v-i[N2(f+v x) - Mv z]u = -ZN 2 + OvzITz  (A2.8)

Using (A2.2) to eliminate v in (A2.8) and applying the thermal wind

relation (A2.1) gives

N2 M2
u - N2 ( 7 - M 2 z + -Zf 7 )  (A2.9)

iA x N 2  z a

where A =N2 2 2 M4 2and a f(f+Vx). Solving for v by elimina-

whr =N(f f )-xn

ting u between (A2.2) and (A2.8) gives

v I 1 [(N 2 2  M 4) - 22 + afzN 2  (A2.1)

The vertical velocity w is found by using equation (A2.7) and (A2.9):

W = -- M 2 x - (a - 2 -)+ M2 f T] (A2.11)

Substituting (A2.9), (A2.10) and (A2.11) into the continuity equation

(A2.5) gives the governing equation

-oN 2  
M2 

7 itf )

-A _ - N 2 z T

+L z[N a a + a f N-N ]

A A M2 x (of 2)+z l z 0 (A2.12)
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After carrying through the differentiations, rearranging, and using

the identities

N2 = 2 2z = M
x \fl x

t 2 2 2oat.
2

o = M ,
2 o

z 0 z f

£2 2o= _ o f2) = v Z
x f .ff x

all of which follow from the thermal wind relation (A2.1), the governing

equation becomes

22 22 M (f- i N M2  
ITxx xz 2 zz+ az x x

N N (N

l N2  ~A! (°2- ) aA 2o£ M

S N-- N- N-

The discriminant of (A2.13) is

2 2M (O- 3 )
+ = ( M 2 (A2.14

N N

which is negative for the density profile considered in this study as

long as o 0< f; therefore the governing equation is elliptic.



A3. Finite difference form of the forced equation

The governing equation (2.25) has the general form

All + B + r +C1U DR + El + Ff = 0 (A3.1)xx xr, x

where A, B, C, D, E, and F are functions of (x,,- ; a, 1). If we

consider Hl to consist of a perturbation pressure r, plus a constant

forcing term T, then the forced equation is

Anxx + Brx, + CiT r, + DTrx + E7T + Fr = -Ft (A3.2)

This forcing term is equivalent to forcing the system by

i(oot+ty)

and is used only to search for the resonance response of the system.

The usual second-order accurate, centered difference analogues

of the derivative terms are used for the finite difference form of (A3.2):

ij (Ai+l,j 1 ,j i-i,j

Ax2

+ B.i i + ,j+l T i ,j+l -T i+l j-1 + T i-i j

4AxA

C..
+ -  

(J - 27., + it

A 2 r ij+1 1J 1,j-I

D.. E..+ J-U i , + _ 11 _ T.
2Ax +1,j i-l,j 2A i,j+1 -

+ F.. i . G.. (A3.3)
tj 1j 13
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where A.. I A(x , r.j;o ,.) etc.; Gij = ij ;

Xmax A -max anx max - , - -1I and J are the number of

grid points in the x and directions, respectively.

Some iearrangement leads to

- jC. B..

4AxA," i-l,j+l A2L) i,+1 4AxA4 i+l,j+l

( A. JIL. ( A.. C.

-Ax2 2Axij LXj + A 2]x' j

CA +D.
Ax + 2Ax2 i+l,j

B.. (C.. F..
+ AA' i-1j- +fG..

4 Ax A i -lI , - 26 j ,-1 +  4x i+l,j-1 Ij

(A3.4)

This is a nine-point stencil over the interior 6-id points, that is,

for i = 2 to 1-1 and j = 2 to J-1 (See Figure A3.1).

This equation is solved using the FORTRAN subroutine EVP9G, gener-

ously provided by Pat Roache. The subroutine utilizes the Error Vector

Propagation (EVP) algorithm described in Roache (1978). Given the co-

efficients for the finite difference equation (A3.4) and the coefficients

for the boundary conditions, EVP9G returns the solution for 7T.
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The boundary conditions (2.26) through (2.28) are of the form

Anb Nx + Bnbr r, + C nb 0 (A3.S)

For the bottom and top boundary conditions (subscript nb= 1,2 respec-

tively), IVP9G uses the second-order accurate finite difference approx-

imation for the x derivative but allows only a first-order approximation

to the normal gradient. A second-order form is possible but would re-

quire a bi-tridiagonal matrix solution to start the march.

At the inshore boundary (nb = 3) both the depth and the stratifi-

cation are very small; therefore, to greatly simplify the computations,

71 r is taken to be zero. The boundary condition then becomes

x

Again, the finite difference approximation to the normal gradient is

only accurate to first order.

The offshore boundary condition (nb = 4) is a simple Dirichlet con-

dition and its values are stored in "I,j when EVP9G is called.



A4. Subroutine FVP9G (INIT, F, Cl, C2, C3, C4, CS, C6, C7, C8, C9, (O,

IL, JL, ILD, NCRS, NBJl, NBJL, CTA, CTB, CTC, CBA,

CBB, CBC, NBI1, CLEF)

This subroutine solves the equation

CI(l,,J)*|:'(I-I,,J+I)+C2(I,J)*F(I,J+I)+C3(I,J)*F(1+I,,J+I)

+C:,I(I,,!)*F(I- 1,,I)+C5 (I,J)*F(I,J) +C6(1,J)*V(I+l ,J)

+C7(,J)*F(I-1,J-1)+C8(I,J)*F(I,J-1) + C9(I,J)*F(I+I,J-1) : ClO(l,J)

by marching, using the EVP algorithm (see Roache, 1978)

Call ing sequence:

CALL FAPgG(INIT, F, Cl, C2, C3, C4, C5, C6, C7, C8, C9, C10, IL, JL

ILl), NCRS, NBJl, NBJL, CTA, CTB, CTC, CBA, CBB, CBC,

NBI 1, CILEF)

Pa,1 ramet ers:

INIT: Flag to determine whether the call is a repeat solution (INIT=O)

or an initialization call (INIT=I).

F: Mlatrix of dimension (ILD, .1L). On output, F contains the solution

to the finite difference eCqation. If Dirichlet conditions are

11eed It any boundary, the boundary values are set by whatever values

are stored in the appropriate position in F when the subroutine is

called, e.g. for the offshore boundary, the values stored in

I(I,..l... - 1, .H1. are used as the boundary values.

Cl, C2, .. . C10: Matrices of dimension (ILD, JL). On input they

contain the coefficients of the finite difference equation as

given above. The values are not changed.



46

IL.: Number of grid points in the x-direction. Must be less than or

JI,: Number of gr-id points in the y-direction. Must be less than or

equl to I LI)

ILD: First dimension of F in calling program. In this version of

FVP9G, ILD must be less than or equal to 31, but this can be

changed by changing the appropriate dimension statements.

NCRS: Number of cross derivatives. If Cl =C3 =C7 = C9 =0, setting

NCRS = 0 saves time in the computation. Otherwise, NCRS = 1,

and the subroutine GTRI, a tridiagonal solver, must be made

available to FVP9G. GTRI solves for the (J+l)th row in the march.

N8,1l: Flag to determine the form of the boundary condition at the bottom

(.1 =1) bouindary. NBJI =I gives the general oblique derivative

form of the boundary condition CBA(I)*(F(1+1,1)-F(l-1,1))+CBB(I)*

(I: I 2)4l ,))+ CBC(l)*F(l,l) =0.

NBJI=2 gives simple IDirichlet conditions. In this case, the

boundar)' values are stored in F(I ,1), I = 1, IL on input and CBA,

CBIB and CBC are ignored.

.NBJIL: Flag to determine the form of the boundary condition at the top

Analogous to NB.3l

CIA, C'IB, CTC: If NBJL = 1, arrays of length ILD containing the coef-

ficients for the oblique derivative boundary condition at the

top (J-.)

CIA( I) *(F( 1.-I1,JL) -F(T-I .J[,)+CTB(I) *(F(I ,JL)-[:(] ,JL-1))

+(Cr(;( I) *F(1 ,JL) = 0
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CBA,CBB,CBC: If NBJI=I, arrays of length ILD containing the coeffi-

cients for the oblique derivative boundary condition at the

bottom (.J=1). See NBJI above.

NBII: Flag to determinc form of boundary condition at the left boundary

(1=1). For a Dirichlet condition, NBII=l, and the boundary

values are stored in F(I,J), J=l, JL. For a mixed condition

(soinetimes called a Robin's condition), i.e.

F /F=C

x

NBII=3. This version of EVP9G does not allow oblique deriva-

tive conditions at the left boundary.

CLEF: If NBII=3, it is the constant in the finite difference form of

the mixed boundary condition at the left boundary:

(F(2,J)-F(I,J))/F(1,J)=CLEF. Otherwise it is ignored.

Precision: All arrays in the calling sequence are double precision.

Required supporting subroutines: EVP9G requires the double precision

version of LINPACK matrix algebra program along with the BLAS

(basic linear algebra system) which UNPACK uses. If NCRS=I,

the tridiagonal solver GTRI is also required. GTRI is provided

with this version of EVP9G.

Output: The solution matrix is returned in F. If the system is un-

stable, an error message is printed. On repeat calls (INIT=O)

the maximum error and the final errors are printed.

Programming notes:

1) If the obliqtue derivative form of the boundary condition is used

and either CTB or CBB are zero, that is, the normal vradient is not

involved, a zero-divide results.
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2) If CLEI-l.O, a zero divide will result.

'r ho only boundary condition allowed at the right boundary is a

simple Dirichiet condition.

4) Wheni there is no cross-derivative term, it is not necessary to

set NCRS=O), but it saves some time.
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Legend of Figures

Fig. 2.1: Schematic of idealized model geometry.

Fig. 3.1: Map of the southeastern United States coast, showing depth

contours and average position of the Gulf Stream.

Fig. 3.2: Average Gulf Stream velocity section taken off Cape Fear

in summer, 1968. Contours are isotachs of downstream

velocity in cm/sec. Taken from Richardson, Scmitz and

Niiler (1969).

Fig. 3.3: Model mean velocity field and bottom topography. Contours

are isotachs of downstream velocity in cm/sec. Vertical

and offshore coordinates are dimensionless.

Fig. 3.4: Model mean temperature field. Contours are in degrees Cel-

sius.

Fig. 4.1: Solution grid. Crosses mark the grid points used in the

finite difference approximation.

Fig. 4.2: Integrated kinetic energy versus dimensionless frequency

for f = 2.0. The eigenvalues of a are found by locating

the local maxima of the kinetic energy.

Fig. 4.3: Eigenvalue curves for the test case. The curves labeled

I and II correspond quite well with the Mode I and Mode II

topographic Rossby wave dispersion curves of Wang and Mooers

(1976), which are shown in the inset as solid lines. The

present model was able to resolve several other modes, in

addition to those identified by Wang and Mooers (1976).
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Fig. 5.1: Dispersion curves obtained from the model geometry shown

in Fig. 3.3 and 3.4.

Fig. 5.2: Structut- of the mode I wave for small wavenumber (Z = 1.25).

(a) Perturbation pressure 7. Note the barotropic portion

over the shelf transitioning to a strongly baroclinic struc-

ture in the inshore side of the mean current. Contours are

in dimensionless units. (b) Alongshore velocity v, and

(c) cross-shelf veiocity u. Note again the strong baroclin-

icity in the cyclonic side of the current transitioning to a

barotropic structure over the shelf. The velocity contours

roughly follow constant temperature (density) surfaces (see

Fig. 3.4).

Fig. 5.3: Structure of the mode I wave for intermediate wavenumber

(2 = 2.0). Shown here is the perturbation pressure r in

dimensionless units. The barotropic component over the

shelf is absent at this wavenumber. The mode I wave is a

pure frontal-trapped wave at this wavenumber, with its struc-

ture confined to the surface layers on the cyclonic side of

the mean current.

Fig. 5.4: Perturbation pressure - structure for the mode 1 wave for

large wavenumber (e = 4.0). The frontal-trapped structure

has disappeared, and this mode has become a barotropic continental

shelf wave, or topographic Rossby wave.

Fig. 5.5: Structure of the mode 2 wave for intermediate wavenumber

(t = 2.0). (a) Perturbation pressure n. Note the slight

bottom trapping due to the density stratification. (b) Along-

shore velocity v. (c) Cross-shelf velocity u.
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Fig. 5.6: Perturbation pressure a for the mode 2 wave at high

wavenumber (.e= 4.0).

Fig. 5.7: Perturbation pressure 7 structure for the mode 3 wave.

Fig. 5.8: Perturbation pressure 7 structure for the mode 4 wave.

Fig. 5.9: Quasigeostrophic potential vorticity for the undisturbed

mean current.

Fig. 6.1: Barotropic shelf wave dispersion curves for the model bottom

topography with no mean current or stratification.

Fig. A3.1: (a) Nine point finite difference stencil used in solving

the governing equation. (b) Schematic of solution mesh.



55

MODEL GEOME TRY

y7

Fig. 2. 1



56

go- 75*

35* 
m

0.80,. Bev

C..
Fee,

Long a.,

CNANt ESTGN cops

30*"

:1 ATLANTIC

OCEAN

25*

.75

Fo i I



57

ig. 3.2



58

00

>0

0

o
0 0

H/Z



w I

CCa CI

0/

Fig 0.



00

. . . . . . . . . . . . . .___

Cf) .. .... ..

0/

0~g .



61~

cD

0 If)

0 0

Kig 4..0



62

i. 0
0

Fig.. 4.



63

E

E

0 to

o

S

I,',

- N

N 0-

Fig. 5.1



o64

w

Fig 5.20) ~'



........ WIN.

H/0

Fig. 5.20



66

U

0on
-J/

Fo i g.52(.



67

cr.0

0

a-

- 1 \, -

C I~'

I' ad
-- s-'- - ; It ,

Fig. 5.3j



68

0

CI)

00 C!

0 H/Z

F ig. 5.4



69

w

Cf)
w

a-1

cc- - - -,-o 1, I sI.\:: .

0,1

o-I I 7

H/Z

-. (a



70

01

0

00

H/

5.5 b



71

.

0

c~-J

IL/



72

w

Cf)

.- % %

H/Z

i.ig. 5.6



73

w

C')

100

H/Z

Fig. 5.7



74

0) 0 lk

CL

0./



75

00

C'0

00

0 In

Fig 5.95 ,'



76

16~

E
0-

0

C4J

0 0 0 0 0 0



77

j+ICli C,2ij ~

- C4..C& C6-. CIO*

i-C C71  ij C~~C91

b) nb 2 __(,'

nb w3 Aynb 4

(1,1) Boundary nbuI LI

Fig. M. I


