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Z. Ir*roduction

Yltrough it is generally recognized that texiure imagecn

contain statistical, spectral nnd siructural domain information, i

the use oI gpectral information alone can te cuite effeciive in

the texture-~image analysis studies such as texiure discriminatic:, ?
and segmentation. Bajcsy and Liberman [1] expresced the power B
spectrum in polar coordinates, then integrate over r and ® to
obtain the two one-dimensional functions,

The location cf peaks !

in these functions indicates prominznt texture coarsenecs and

directionality. ‘Weszka et. al. [Z]integrated the power spectrun
within 16 spatial frecuency zones which were combinations of four

N QO . . b
l-octave frequency ranges and four 45° orientation secters. They

also computed eight "contrast" measures baced on the cooccurrence
matrix, and obtained better discrimination than with the power
spectrum measures. Laws [3] computed a number of energy measurc: ;

by filtering the texture with sets of small linear operztors,

then squaring and summing the output of each filter. He report«:
better discrimination with the energy than with the cooccurrence

measures.

A furdamental problem with the power spectrum analysis is “h¢
computaticnal accuracy and computational complexiZty. For textur:
study, accurate power spectrum must be computed from the small
image segments. In this case, the two-dimensional Fourier analy.:i:

canno* provide sufficient accuracy as the Fourier analysis is mcre

The two-dimensicnal

accurate with a large number of pixels.
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maximum entropy spectral analysis, however, is very suitable for

a small number of pixels. The computaticr.al ccmplexity has been

a drawback in using the two-dimensional maximum entropy =

estimation procedures. Recently, Lim and WValik [4, 5, 6] rave
e

proposed an efficient iterative algorithm for the two-dimensional

maximum entropy rower spectrum estimation sulitable for the minic.om-

puter implementation. Their methcd 1s adapted and generalized f &
use in our PDF 11/45 minicomputer for the texture-image aralysirc.
A three-dimensional graphics coftware is develcped for the spec-
tral display at the different viewing positions. Zxtenzive com-
ruter results on the spectral analysis of texture images are alsw.
reported.
II. Two-Dimensional Power Spectrum Estimation

To obtain the power spectrum of a two-dimensional signal,

the direct method is to calculate the two-dimensional Fourier

transform of the autocorrelation function, i.e.:
[ 0o -
~ ~imw +n, w
PX<W1’ WZ) = Z Z Rz(nl’nz)e 1 2 %) (1
n,:-bon’:-go
The feollowing notations will be used in the report:

~—

x(nl, nz): A Z-D random signal whose power spectrum we wilch
tc estimate.

Rx(nl, nz): Autocorrelation function of x(nl, n2)
A -
Rx(nl, nz): An estimate of Rx(nl, n2)
Px(wl’ W2>‘ Power spectrum of x(nl, n2)
A (n,, n,): Autocorrelation function whose power spectrum i:
1 2
/2. (w,y w,)
= 1 2
A : A set of points (nl, n2) for which Rx(nl' n2) in
Kknown.
F : Discrete time Fouriler Transform
F—1 : Inverse discrete time Fourier Transform
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From (1), it is important to nocte that the determination o:

the power spectral density entalls complete knowledge of thne

generally infinite extent autocorrelation function., TFcr the
finite signal, this method is proved *o have pcor resolution duc
to the truncated and Sampled autocorrelation function set.

There are various techniques to estimate the power srectrun 8
for the one-dimensional signal [7]. One technique that ha:s beer |

recognized as the best due to its nigh resolution is the Maximur

g ——

Entropy Method (MEM). The basic idea of this approach is to ex ra-

polate the autocorrelation function of a random process by maxirli.in:

the entropy H of the corresponding probability density function:
m

Y = v(~ lcg Px(w) dw (2)

w=-T
where Px(w) is the power spectrum density. The characteristics !

the maximum entropy method are eguivalent to the autoregressive @4

signal modeling [8] which requires solving a set of linear equa-io.:

for the filter coefficients. This can be expressed as:

2 (w) / (3)
P (w) = A PR J
J
I+ 22 qa,e
K=|
and the filter coefficients a, are obtained by solving the norm:l
A M A
equations, R (i) = -3 & R(i-k) (4)

K=}
There are different algorithms proposed to find the solutions o

the normal equations. The most efficient ones are the Levinscn
recursive algorithm and the Burg recursive algorithm [7]. But
for the two-dimensional case, the problem is different since the
normal equations become a highly nonlinear problenm [u]. For the

general form of the two-dimensional case,




b3 < 1 3 =k < c
Jo 2ag; R lr-i, s-§) = R (r, =) (5)
(i,))€B for (r, ) € B

Here tne set B consists of all points where tne filter mask has

non-zero values, and the power specirum cobtzined fron aij is given
aar E: ( ) I (/)
by Aw,y wy) = : - &
x 1 2 ]'(Z'( 565 akf QXF(-JA),K -) W, Q)lz
Tn this case, we can see Irom (5) that the size of independent

values of Rx(nl’ n.) requirea to cclve the above vet ol equatione is

greater than the size of tne filter mask. For exumple, Fig., 1(a)

-

snows the autoregressive filter macs clze ws 3Xx<, ana Fig. 1(o)

shows a larger size of independent values oif h“(nl, r..j required to
FaS <

s lve for as in Fig. 1(a) by eqguation (5,.

Y (a) (£)

Fig. 1
(Ciearly, the number of correlation points needed 1s greater than

the number of filter coefficients. Since the estimated power
spectrum given by (6) is completely determined by the coefficients
alone, 1t does not posses enough degrees of freedom to solve for
tne spectrum. Therefore, the normal eguations are not linear as

in the one-dimensional case. Many methods have been proposed to




~xtend the Levinson's and ine Burg's algorithms in two dimensio:n.
riowever, those algorithms are not computationally attractive, and
‘here is no guarantee that a solution or an approximave solution can
re octained. For ingvance, Burg [13] has proposed an iterative
solution which reguires the inversion of a matrix in each iteraticn

Y

yvhere wne dimension ot the matrix 1s of the order of the number o

Fay

tne viven autocorrelation polints. No experimental results using
‘niv ltechnique have yet bdeen reported. Wernecke and D'Addario [lb]
nave proposed a scheme in which an attempt 1s made to numerically
raximize the entropy. The maximization is done by continuously

ad justing the power spectrum estimate and evaluating the expressicns
ior the entropy and 1ts gradient. The procedure is computationally
axpensive and is not guaranteed to have a solution. Woods [11]
exrresses the Maximum Entropy Method as a vpower series in the
frequency dcmain and attempts to approximate the ME PS estimate by
sruncating the power series expansion. Even though such an approach

has come computational advantages relative to others, the method is

restricted to whe class of signals for which the power series expansin

is pessible.

Based on the reason that the closed form solution of the two-
dimensional ME method is hard to obtain, Lim and KMalik developed a
niew 1terative algorithm, using adaptive filtering concept. This
a':sorithm can correctly estimate the true spectrum and is computa-
*ier1ly simple due to the utilization of Fast Fourier Transtorn
{i#1'.  The basic idea of this algorithm is on the nction that thnoe

£i /v correlation points in region A is congsistent anu the correo-

e gaseirre. T




ponding coeificient shoula be zero cutside region A, and proceed

this 1teration reveatedly until the optimal solution is obtained.
A

e . - .

"Thai is, gilven Rx(nl, NZ) for (nl, n2) € A,determine Px(wl’ w2)

5

A
such that Px(wl’ wZ) has the form 1
A
P, (w,y, wo)} = — : — (7)
1* Y2 SiWn g Wan
% ZZ Aln,.n,He Mie T
(n,.nYEA

and
/ -1
R (ng, n2) = F [Px(wl, w2)] for (nl, n2)€ A

A sinple flowchart is shown in Fig. 2. We begin with some initial
astimate of ?\(nl, nz), cbtain the corresponding correlation function,
corrent the resulting correlation function for (nl, n2) € 2 with tle
Ko Rx(nl, n2), obtain the corresponding 7\(1’11, nz) from the
correct correlation function, and then replace the resulting ?\(nl,n")
dith o for (nl, nz) ¢ A. This completesone iteration and the correct c

74 {nl, nz) is a new estimate of A (nl, n2).

initial estimate of A (nl, n2)
l [

, _ =-1
f— Ry\nl. n,) =F {F[A(n‘.”ﬂ] }

}

correct Ry(nl, n2) with Rx(nl’ n2) for (nl, nz) € A

i ! .

- n—1
N (ng, ny) = F {F(R,(n,.m)]j

L - B} : .
- A (ng, ny) = o tor (n;, n,) & A

Px(wl' w2) = F[Ry (nl, nz)]

Fig. 2
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Howevar, to prevent the zero crossing probler when taking <

of [J\(n » n){ and ¥ | R_(n,, n.) due to tne correction of
1 Z yol 2
¢, (ny, ny) and A (n,, n,), and also to keep the correlation functior
AR R 1 "2 p Liorn
Lo e positive definite, they modily the procadure ty linearly inter-
polating some parameters to prevent divergence of the error and to
increase the rate of convergence [4} . Tnus they have added some
constraints to make the practical algorithm as shown in Figz. 3.
111. Examples
The folluwing are some examuvles of using Lim and Malik's

dilgorithm which is implemented in our PDP 11/45 minicomputer. The
inpur signals are two-dimensional autocorrelation function criginated

“rom sinusocids buried in white noise, so that the correlation Iunc-

tien given has the form of
M

2 z . .
R._{n n = 5 n n + Z: a.” cos(w., 0.+ W.. ni. c
x< 1! 2) O o 1’ ‘2) = i D(“ll ‘1 iz 'z’ (<)
I
. 2. . . .. . . L .
where O is the white noise power, i 1g the rumber of sinuscils,
ai‘/Z is the power of the ith sinusoid, and w., and w;, rerresent tne

frequency of the ith sinusoid. Fig. 4 - Fig. 6 are the cases for
1, 2, 3 sinusoids respectively, which correspond to the input data
snnwii in Tablesl, 2z, 3. From these results, we can see this iterativ
rrecedure can easily predict the true spectrum although the matrix
of antocorrelation function 1s not very large.

However, in Lim and Malik's examples and the examples shown in
Firs. L-6, the expression used in the autocorrelation-function
coteulation is EqQ. (8) which is an analytical form. This exgression

i btnsed on the consideration of continuous and infinite sinuscicg.

Zo il's values are completely symumeiric. For the practical two-

the invercse

T

.

S A




GIVEN Ry{n,.n3).w{n,.ng), DFT LENCTH 'N', k = 0.5
a,=0,8,=0.¢,= 107"
INITIAL ESTIMATE:
Ry(ny.ng) = Ry(0.0).6(ny.ne)

Anyng) =

oy 4o

|

pr——————————= R'(n).ny) = lDPT{

|

TE{RAnng) - R(n,.ng))t
oy

1
D”‘l*"(m-nz)]]

Cray = - U (m.ngd e A
EE[R-(N."E)]:
ny ny
l YES No
INCREASE DFT LENGTH STOP
< 0,7 ——- — ” —_—
Emer € Eo DIRECT DFT COMPUTATION DFT{A™(n,.nz)] > 0 USE LONGER DFT LENGTH

o ‘VES o
v e<e, P — g CONTINUE ITERATIONS
.

TH NGER DFT LENGTH
Cme1 CEm? AND g,=0" v Lone
‘ YES
l w0
STCP
GOOD SOLUTION

a _(1+ay) . P ) = F[R( " 1

= - = wywg) = . S e ———
- 2 2 ey e np.ng F{A™(n;.ng)]

YES
(ml-r:,(DF‘Ti[R.(m.nz) = R(ny.nz}} winyng)l) > 07 ————t

NO

(min)DF‘TI R'(n,.nz)}
- T N o -
favr % merden (k! ! (:nr:-r:)(D””R-("hnz) - Ri{nyneg}]w(nyn2))i M eme = on

'

R Hnpng) = R(ng.ng) 4 (1= apmu)[Ry(nyng) = Ri(ny,ng)] winyng) egm—— __J

' ) I T
A(ning) = ‘Dmlnmn;ﬂ"(n..nzﬂl

'

N0
DFT{A'(ny.ng). w(ny.na)] > 07
lv:s I fmin DFT(A'(n;.ng).w(n|.ng)) !
Pam=s—— e Y
Foay = 0 ‘:?Lrbbﬂ‘[k (np.ng}] + | (EILV;)DFT[A'(n,,n,).v(n.‘nz)] 1

Frosr = [1+ (1-k) 1 = 1))
ﬁl\lﬂ

(14 amay)
g

Omey =

T AR M) = B A (nring) 4 (1 =B A (npn2). w(ny.ng) ‘*—l

Fig. 3 A detailed flowchart of the Lim-
Malik iterative algorithm for 2-D
ME PSE implemented in the report.
(IEFE ASSP Trans. June 1981)
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Yig, Sc - Fig. 1éc and Fi cd - Fig. 1éd.

Fig. &b shows that tne picture hag one maln freguency component
vear (0,01, 0,22), one small do¢ comrponent and one freguency at
(7,0, 0.5) and other very emall ripples. Eecause of the three-
c#imensional display, Fig. tc and rig. ©d cannot accurately indicate
rhe (0,01, 0.22) point, btut we can see the entire power spectrum
e s lon distribution in Fig. 8c and Fig. td. Flg. 9b shows that

26)

- ther small ripples. Comparing Figs. & ana 9, we can sec clearly

a

ttie wain frequency component i1s approximately equal to (0.02,0.

J
™

s
*

the oifference In power zpectrum for different textures.

Fig. 10 shows that the texture contains a main ireguency

coprponent around (0.0, 0.0) and other small ampiltude comvonents.

Secihdanis

e e ———




i TeQlct tre other cmall amplltude iregsucroy o

1 N Ll
i >ounove: In bl 13 owriion lE o4 reconslruC ol luTar -
: mworis, l3a, wWoocAann Uol Tho Lo il
CHAY o Figz. 114 and Flg. lia.  Tne Irenaong
<imoaedr (velz, oulzh) 1o oarTestesu LY the conIritutliorn of Rla. 1z,
N ern we Taxc a autocorreilaticn Iuncilon matolx and lorger
length, Trnlz Term can te recovired., flg, 17 clenrly CemonZiraTes
3! Jnencrencn. Lo prove Ttne accurdacy ©I Tne Twe-dLmenzicnzl [E FIh
slenritnm, Tnree gete oI nearly verlcdic" texture catz wore tested.

e Wilgs, lh-lo, tne recults obtalined are satislactory and @luealr

=
l._l
Q
jay)
ot
[}
ct
+
<
}_I
<l
ct
&)
[¢h}
'3
o
oW
}_I
(@]
=
[¢7]
H
“
[t
(o
[
O
cl
3
<

Y. I'iscussion
Jor a real two-dimensional signal, tnis algoritrm can accurzztely
rrediczt the main Trequency components witn & moderate size autccorre-

inaticn function (ACF) matrix and short DFT lengtin. However, Ior the

ner requency terms with smaller amplitude, 1t must take a larger
Al watrix and longer DFT length to discriminate, since the larger
A0 matriz will add more infcermation about the signal. But this

will take too much computational time. Also the spectral peaks trhat

H
A very clore ¢annoi ce resolved Ty thils algorithm with Thne moderase !
“ice ACF matrix and DFT length. 9o understarnd and to improve the ;
rpeciral resolution cuvnatllity of the algorithm, we will analyze the J
true spectrum.  We are now continuing the research by generating an
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Fig. 7 The original test texture data
(taken from USC data base ). Each data
formmat is 64x64. The right one in

second row is reconstructed from the left
and center pictures of the second row.
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Fig. 11(c) Three-dimensional display at Fig. 11(d) Three-dimensional display at
] (0.0,0.0) point of view. (0.5,0.5) point of view.
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¥is. 12(a) The original test data. Fig. 12(b) The contour man with .1dB=.. _
with main freguency around (0.03,0.07). 3

Fig. 12(c) Three-dimensional display at Fig. 12(d) Three-di_mgnsional display «at
(0.0,0.0) point of view. (0.5,0.5) point of view.
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i, 13(a) The test data, as constructed Fig. 13(b) The contour map with Adp=1.
from Fig, lla and Fig. 12a). with main frequency around (0.0,0.0).
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Fig. 13(d) Three—dimensional display at

Fig. 13(c) Three-dimensional display at (0.5,0.5) point of yiew. .

(0.0,0.0) point of view.
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Ficg. 1l4(a) The original test data. Fig. 14(b) The contour map with idB=3.
with main frecuency around (0.08,0.09).

1

AN\
! AN
LA XN
35:‘3’::’:‘!:‘3;::,

P,
zelve: ,o.o.o.g:.. 3

LR e 3

Fig. 14(c) 'I‘t}ree-dimef:nsional display at Fig. 14(d) Three-dimensional display ut
(0.0,0.0) point of view. (0.5,0.5) point of view.
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Fic, 15(a) The original test data. Fic. 15(b) The contour map with /dB=3. ]
with main frequency around (0.065,0.20). !
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Fig. 15(c) ’I‘}_mree—di.m(?.nsional display at Fig. 15(d} Three-dimensional display at
(0.0,0.0) point of view. (0.5,0.5) point of view.




“EMOFLE CONTOUR MR TraNe

S8 CIFFERAIE

- s LN 129

S

(1 B

"ic. 16(a) The original test data. Flg 16.(b) The contour map with 4dB=..
with main frequency around (0.3125,
0.3125).
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Fig. 16(c) Three-dimensional display at Fig. 16(d) Three-dimensional display at
(0.0,0.0) point of view. (0.5,0.5) point of view.
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