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PART ONFE

THEORY ANL EXAMPLES

I. INTRODUCTION

Formulas for the computation of plane wave transmission through
a rectangular aperture in a perfectly conducting plane are derived in
Part One. The computer programs which use these formulas are given in
Part Two. The general theory of solution is derived in a previous re~
port [1]. Basicallv, the procedure fs an application of the method of
moments to an integral equation formulation of the problem. The unknown
to be determined is the equivalent magnetic current over the aperture
region, which is proportional to the tangential electric field in the
aperture. The solution is expressed in terms of an aperture admittance
matrix, which is dual to the impedance matrix for the complementary con-
ducting plate. Once the equivalent magnetic current is obtained, the
electromagnatic field can be computed via potential integrals. The nota-
tion used in “his report is the same as that used in [1]. We abstract
equations from this previous work as we need them, referring to them by

equatinn number. We do not attempt to summarize the theory here.

i +.fous studies of aperture problems include those for small aper-

tures [2,,;, and thage for circular apertures [4,5)]. Some results for

{1] R. F. Harrington and J. R. Mautz, "A Generalized Network Formulationm
for Aperture Problems," Scientific Report No. B8 on Contract F19628-73-C-
0047 with A.F, Cambridge Research Laboratories, Report AFCRL-TR-75-0589,
November 1975,

{21 H. A. Bethe, '"Theory cof Diffraction by Smal! Holes," Phys. Rev.,
vol. 66, pp. 163-182, October 1944,

[3] ¢. J. Bouwkamp, "Diffraction Theory," Repts. Progr. in Phys.,
vol, 17, pp. 35-100, 1954.

[4) 6. Bekefi, "Diffraction of Electromagnetic Waves by an Aperture in
a Large Screen,” Journ. Appl. Phys., vol. 24, No. 9, pp. 1123-113(,
September 1953.

[5] €. J. Bouwkamp, "Theoretical and Numerical Treatment of Diffraction
Through a Circular Aperture," IFEFE Trans. on Antennas_and Propsgation,
vol. AP-18, No. 2, pp. 152-176, March 1970.
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Fig. 1. Rectangular aperture in a conducting plane.
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apertures of arbitrary shape have been obtained using Babinet's
principle plus a wire grid approximation to the complementary con-
ducting plate {6,7]. The reader may consult these papers for other

references.

IT. STATEMENT OF THE PROBLEM

Figure 1 shows the prohlem to be considered and defines the coordi-
nates and parameters to be used. The infinitely conducting plate covers
the entire z=0 plane except for the aperture, which is rectangular in
shape with side lengths LxAx and LyAy in the x and y directions, respec-
tively. The excitation of the aperture is a uniform plane wave incident
from the region z < 0. The field to be computed is the far zone magnetic

field in the region z > 0, at the angles 6,4¢.

The solution is expressed in terms of the equivalent magnetic current
M =z x E, where z is the unit z-directed vector and E is the electric
field in the aperture. To compute M, we use a linear expansion in terms

of basis functions ﬁ and evaluate the coefficients by the method of

moments. This involies determining a generalized admittance matrix,
evaluated in Section III, and an excitation vector. To determine the
field produced by M, we need a measurement vector. The excitation and
measurement vectors for the present problem are of the same form, and are

evaluated in Section IV,

ITT, ADMITTANCE MATRIX

According to [1, FEq. (28)] and (1, Eq. (10)], the admittance matrix
{Y] 1s given by

_ a b . - 4< .
\(141 = (Y° +Y )1j bW, H(Mj)- 1

(6] A. T. Adams, C. B. Varnado, D. E. Warren, "Aperture Coupling by
Matrix Methods,”" 1973 IEEE FMC Symposium Record, New York City,
June 1973, pp. 226-~240.

{7] J-L Lin, W. L. Curtis, M. C. Vincent, '"On the Field Distribution
of an Aperture," IEEE Trans. on Antennas and Propagation, vol. AP-22,
No. 3, pp. 467-471, May 1974.
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where ﬂﬁgj) is the magnetic field produced by mﬂ radiating in free
space. The magnetic field ﬂﬁuj) can be expressed in terms of an elec-

tric vector potential F and magnetic scalar potential ¢ as {8]

= o F -
B! July - Ie, (2)
where
-3k{r-r']
= £ e
~j  4m ff Eﬂ le-r'] ds (3
apert, - -
~3k|e-r'|
_ 1 e
*y = T J[ °3 le-r'] ds )
apert. -~
L-n
oy - - (5)
_jm

where 1 and r' are respectively the vectors to the field and source
points in the aperture, w is the angular frequency, ¢ is the capaci-

tivity of free space, u is the permeability of free space, and

k = wke is the propagation constant in free space. Substituting
[1, Fq. (7)) and (2) into (1), we obtain
= v . +
Yij 4 JJ &i (ngj 2¢j)ds . (6)
apert.
Because of the identity
0 = H V- (¢1H4)ds = ” E1°X¢jds + ” ¢jy~ . Hids (7)
apert. apert, apert.
(6) hecomes
Vg = 4w ” (B, + Uy + 60,)ds (8)
apert.

[8] C. H. Papas, Theory of Electromagnetic Wave Propagation, McGraw-
Hi11 Rook Co,, New York, 1965, p. 23.
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where

Oi=

<

——

)

We choose the set of testing functions Hi equal to the set of

expansion functions md' The rectangular aperture 0 < x g_LxAx,
0<y :_LyAy where Lx and Ly are integers is divided into rectangular

subareas of length Ax in x and Ay in y. The set ﬂi of expansion func-

tions is split into a set ﬂ:

i

M* =% T"(x) Py ,
- P q

~pt+(g-1) (Lx-l)

MY

- &7y X
~P+(q—1)Lx =y Tq(Y) Pp(x) ’

of x directed magnetic currents and a set

E? of y directed magnetic currents defined by

1,2,...L -1

q= 1,2,...Ly
p = 1,2,...Lx
q= 1,2,...Ly—1

vhere Tg(x) and Tz(y) are triangle functions defined by

x - (p-1)4x
Ax

™ (x) = (p+t1)ax - x
p

Ax

y - (g-D)Ay
Ay

_/ (grDay -
Ty () =4 =2

0

(p-1) Ax < x < phx

pAx < x < (p+1)Ax

x - pAx| > Ax

(q-1)ay < y < qby

qay <y < (q+l)ay

ly - qay] > ay

and P;(x) and PZ(y) are pulse functions defined by

(10)

(11)

(12)

(13)

e U—
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el

1 (p-1)2x < x < plx

PX(x)
P 0 all other x

1 (q-D)Ay <y < qAy

]

P (y)
q 0 all other y

(14)

(15)

The magnetic charge sheets, sav ox and oy associated with Mx and My

are ohtained from (5) as

X X vy
x i (PP(X) - Egil(X))ngy)
pt(q-1) (Lx—l) ~fwhx

y _pY X
. ) (Pq(y) qul(y))PP(x)
p+(q-1)Lx -jwby

Introduction of the two types of expansion functions g: and MY and
X

(16)

7

the two types of testing functions M, and gi into (8) gives rise to

four Y submatrices defined by

uv v u v u
= e MY+
Yig T4 ff Gy L ¥ typy)de
apert.
where u is either x or y and v is either x or y. In (18), E; and ¢
are the electric vector and magnetic scalar potentials due to MY

My

The integrations over the 'field" magnetic current and charge

(18)

v

]

ﬁ: and o: explicit in (18) are approximated by sampling the integrands

at two points. Hence,

xv 1 v 1 v
Y., = 4juaxay [5 (F, « ) + = (F, .« %)
ij 2 e - Xp,yq 2 ~" an xp+1,'vq
1 v 1 v
- (¢,) 4 — (¢)) ]
wh , wh
Jubx T4 x50 Yq Jwhx ‘T4 Xo41Yq

(19)
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YWV = 4jwbxby [%-(F; “ 9 v > .y
- “ ’ s VS
p’’q : p’q+l

1

+ LY

1j - y)

1 v 1 v
- (4.) + (¢.) ]
Jwhdy i xp,yq Jwhy 3j xp,yq+1

where v is either x or y and

To determine p and q in terms of i in (19) or (20), refer to (10)

or (11).

Substitution of (10), (11), (16), (17), (3) and (4) into
(20) vields

(19) and

YXX

i3

+ EE:B—%—élgl-Ic(s—p+l, t-q) + %-Ix(s-p—l, t-q) -~ SE:B%QZg)TC(s-p—I,t-q)

+

vy
1]

1j

k sz

X (p - .5)8x

p

y (g - .5)Ay

q

- daxpy 1 o teq) - & - -
— [2 IC(S P, t-q) - 3 Ix(s p+l, t-q)

1
2

='_175 (- I_(s-p, t-q) + T_(s-ptl, t-q)

wnk

+ Tc(s—p, t-q-1) - Ic(s—p+l, t-q-1)1

= —l5 [~ 1 _(s-p, t-q) + I (s-p, t-a+l)
c e
mnk

+ Ic(s-p—l, t-q) - Ic(s—p-l, t-q+1)]

(Ic(s-p+1, t-q) - 21 (s-p, t-q) + T _(s-p-1, t-q))1]

(20)

(21)

Q22

(23)

(24)

(25)

e



yy _ jéxay (1 . t-q) - L -, t-
Yij - n [2 IC(S P t q) 2 Iy(s P, t q+1)

-q+3/2 1 -q-3/2

* (t;Lz‘/—)‘ I (s-p, t-qt)) + 3 1 (s=p, t—q-1) - e 23/ ) I_(s-p,t-q-1)
1

Yl (T_(s-p, t-g+l) - 2T (s-p, t-q) + I (s-p, t=q-1))] 26)

where n =V/g = 376.730 ohms is the intrinsic impedance for empty space

and where

(t+1/2) 8y (8+1/2) 8% -k /x2+y2

[ .(s,t) =k dy dx ———— @n
y=(t=1/2)av  x=(s-1/2)Ax R
2
. (t+1/2) 8y (s+1/2)8x -k /x2+y2
Tx(s,t) v dy xdx —————— (28)
y=(t=1/2)8y x=(s=1/2)ax  Vx* + y°
. (t+1/2)Ay (s+1/2)Ax ik ’x2+y2
I(s,0) = 7= ydy dx S (29)
y=(t-1/2)ty x=(s~1/2)ax x2 + y2

Ic(s,t) is even in both s and t, Ix(s,t) is odd in s and even in t,

and Iy(a,t) is even in 8 and odd in t. In (23) to (26), Y;; is the

interaction of the expansion function MX with the testing function

u x
mi' For the testing function ﬁi’

p=1,2,...0 -1
t=p+ -1 -1), (30)
X
q= 1,2...Ly

whereas for the testing function ﬂz,

p = 1,2,...Lx

1=p+ (g-DL, i (31)

q = 1,2,...Ly—1

~4
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For the expansion function ﬁ:,
s = 1,2,...Lx—l
=38+ (t—l)(Lx—l), (32)
t = 1,2,...Ly

whereas for the expansion function ﬁg,
s = 1,2,...Lx
j =8+ (t—l)Lx, (33)

t = 1,2,...Ly-1

The four dimensional array YI? of (23) in which s, p, t, and q

vary separately can be constructed from the two dimensional array

obtained by varying the two integers (s-p) and (t-q) in (23). In (23),
2 - Lx < (s-p) < Lx—z

1 -1 < (t-q) <L~-1
y~— v = y

but because (23) 1is even in both (s-p) and (t-q),

(s-p) = 0,1,2,...Lx—2

(34)
(t-q) = 0,1,2,...Ly—l
is sufficient. In (24),
1 -1 < (s-p) < Lx-2
2 - L < (t- < L -1
y — O -y
but because (24) is odd about (s-p) = -1/2 and odd about (t-q) = 1/2,
(s-p) = 0,1,2,...1 -2
(35)

(t—q) = 1,2,3,...Ly—1

is sufficient., Tn (25),

2 |

| .Y h
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1

2 -1
X

1 -1
y

< (s-p) < Lx-l

< (t-q) < L -2
hS q) < y

but because (25) is odd about (s-p) = 1/2 and odd about (t—q) = -1/2,

(s-p)

(t-q)

is sufficient. Finally,

but because (26) is even

(s-p)

(t-q)

is sufficient. From inspection of (23) to (26) and (34) to (37),

w
]

1,2,3,...L_~1
x

"

0,1,2,...Ly-2

in (26),

{A

(s-p) L1

1A

(t-q) < L =2
vz y

in both (s-p) and (t-q),

0,1,2,...L -1
X

= 0,1,2,...L -2
y

1’0’1""Lx_1

(36)

an

(38)

t

is adequate in (27) to

- 1,0,1,...L -1

(29).

The integrals (27) to (29) are evaluated by using the following

four term approximation

_Jkr 2 3
eIy O - gk(rr) - & wer? + B )1 9
where
10

Il S
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r0=1/(sAx)2 + (tAy)2 .

Substitution of (39) into (27) yields

Kr o kr
I (s,t) = [k(1 + gkr_ - —5= - o ” dxdy

2.2
2 Ik T, 3,1
+ k(-] + kr  + —5—) || dxdy + k (- 7"

2

4 -jkr
+ 1%— fj rzdxdy]e °

jkr

(40)

(41)

o) If rdxdy

(42)

where the limits on all the integrals in (42) are the same as those

in (27). The approximations to (28) or (29) are given by (42) with

an additional factor of either f& or g%-in the integrands.

the required integrals are

JJ dxdy = AxAy

([ wona
|| o

sszAy

tAxAy2

Three of

(43)

(44)

(45)

The indefinite integrals associated with the rest of the required

integrals are
dxdy
T = X log(y + r) +y log (x + r)

3 3
ff rdxdy = 5§£ + %r log(y + r) + %r log (x + r)

(46)

(47)

_“
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—— o oy~ =

rzdxdy = XX (48)

2
Xxdy 3L 4 % log (y + 1) (49)

2 2 x4
xrdxdy = yr(I§-+ 7;0 + =

2
ydxdy _ XX LY 10 (x + 1) (52)

2

2 4
yrdxdy = xr(z—-+ %;)+%r log (x + 1) (53)

12

2 2 2 x
yrodxdy = y'x (%r + 7;0 (54)

The reader can verify (46) to (54) by showing that, in each case, the

mixed second partial derivative of the right hand side is equal

3
IxAy
to the integrand on the left hand side. The definite integral is ob-
tained from the indefinite integral by adding the indefinite integral
evaluated at both upper limits to that at both lower limits and sub-
tracting both evaluations of the indefinite integral at the mixed (one

upper, one lower) limits.

1V. PLANE WAVE EXCITATION AND MEASUREMENT VECTORS

The plane wave excitation vector ?i of [1, Eq. (32)] and the
plane wave measurement vector " of [1, Eq. (37)] are of the same form
except for a minus sign. We therefore need to evaluate only one of
them, say the measurement vector ?m. We specialize it to four princi-

pal plane patterns as

12

g log (y + 1) (50)

I
j
I
[[ ety = v+ (51
/
/
/I
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(1>';‘“)ey = -2 ” M-8 Jkx €08 8 4 iy (55)
apert.

(P‘;'“)yy =-2 ” Moy Jkx co8 8 iy (56)
apert.

(P g = - 2 ” My - § e €08 ¢ axqy (57)
apert.

(PTU)xx = -2 ” 1‘1‘ - % JKY c°s¢dxdy (58)
apert.

The superscript u is necessary because gi has been split up into y:

and M) of (10) and (11). In (55) to (58), 8, §, 4, and X are unit
vectors in the 6, y, 4, and x directions respectively where, as shown

in Fig. 1, 6 is measured from the positive x axis in the y = 0 plane

and ¢ is measured from the positive y axis in the x = 0 plane. For
measurement vectors, 0° < 8 < 180°, 0° < ¢ < 180°, (P:_m)ey is for a

§ polarized measurement in the y = 0 plane, (PTu)yy is for a g polarized
measurement in the y = 0 plane, (Pim)¢x is for a i polarized measurement
in the x = 0 plane, and (PT“)xx is for a g polarized measurement in the
x = 0 plane. Because our set of testing functions Em i8 the samiias the
set of expansion functions gn’ the plane wave excitation vector P~ of
[1, Eq. (32)] is obtained by putting 180° < 6 < 360°, 180° < ¢ < 360° in
the negative of one of the equations (55) to (58).

Substituting (10) and (11) into (55) to (58) we obtain, with the
help of {9]

{9] H. B. Dwight, Tables of Integrals and Other Mathematical Data,
fourth edition, Macmillan Co., New York, 1961, Eq. 567.1.
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kAX cos 6
n ~&X COS b

si p=1,2,...L -1
mx - 2 jkpAx cos ' x
(Pot(q-1) (1_-1)) 0y = 20%8Y sin b (—m—oos—) e :
x — q=1,2,...L
y
(59)
(P';’y)ey =0, 4= 1,2, L (D) (60)
(p‘;‘x)yy =0, 1=1,2,... (L -DL (61)
. kAx cos § _
my . sin == jk(p-1/2)ax cos 8fP = 1sZsee-ly
(Pp+(q-1)L )yy = -2bxby ( kAx cos 8 ) e ’
X == q=1,2,...L -1
y
(62)
(1>‘i“x)¢x =0, 1=1,2,... (Lx-l)Ly (63)
kAy cos ¢ -
@™ ). = 2AxAy sin ¢ (————————-———sin 2 )2 oJkady cos¢{p 12,000 Ly
- ?
pt+(q DL éx kAy ;os ¢ q = 1’2""Ly'1
(64)
kAy cos
(™ ) = -28xby (———————'Sin 2 y eJk(a-1/2)4y coso Pededs byl
p+(q—1)(Lx—l) XX kdy cos ¢ ’
2 q=1,2,...L
y
(65)
(PTY)xx =0, 1= 1,2, L (L D) (66)
V. REPRESENTATIVE COMPUTATIONS
A versatile computer program has been developed using the pre- .

ceding formulas. This program is described and listed in Part Two
of this report. Some representative computations obtained with this

program are given in this section.

-
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The first computations were made for a narrow slot, of width
1/20 and of variable length L. The far-zone quantity plotted was the

transmission cross section, defined as [1, Eq. (39)]

T = Zwrle |2 (67)
m

where Hm is the component of magnetic field being considered. We

use the notation:

i}
1]

T Zﬂrleelz in the y = 0 plane,

oy (68)

0 plane.

-
|

xx - Zﬂrlexlz in the x
For the case being considered, the orthogonal components of H in
these two planes were zero, Figure 2 shows plots of Toy and T for
x—-directed slots of width A/20 and length (a) L = A/4, (b) L = 1/2,
(¢) L= 3)/4, and (d) L = X. 1In all cases the excitation was due to
a plane wave normally incident on the conducting plane with the mag-
netic field in the x direction. Note the large transmission cross
sertion for L = A/2, case (b), due to the slot being near resonance.
The plots of 1 are of the same form as scattering cross section from

the complementary conducting strips, as known from Babinet's principle.

Figure 3 shows plots of the equivalent magnetic current in the
aperture region for the same slots. Since M =2 x E, they are also
plots of the tangential component of E in the slots. Again note the
large value of M for the case L = 2/2, which is near resonance. Note
also that, for short slots (L < 31/4), the M is almost equiphasal and

closely approximated by a half sine wave.

Next, computations were made to test the rate of convergence of
the solution as the number of subsections was increased. A slot of
width 1/10 and length 2\ was chosen for the study. Again the excitation
is a plane-wave normally incident on the conducting plane with the mag-
netic field in the x direction. Figure 4 shows plots of rey and Tex
for the cases (a) 39, (b) 19, (c) 9, and (d) 4 triangular expansion

15
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L.

2
Tyx /A Toe/ N2

Fig. 2.

L

Transmission cross section for slots of length L in the x
direction and width 1/20 in the y direction. (a) L = A/4,
() L=2x/2, () L=232/4, (d) L = X. Excitatfon is
by a plane wave normally incident on the conducting plane
with magnetic field in the x directionm.
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Magnitude and phase of lM/Fi’, where M is the x-directed
magnetic current and ¥l {s the incident electric field,
for the same slots as for Fig. 2. (a) L = ‘a4, () L =
(¢) L =3/4, (d) 1. =2, Circles denote magnitude, tri-
angles denote phase.
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Fig. 4. Transmission cross section when the number of expansion furc-
tions 1s (a) 39, (b) 19, (c) 9, and (d) 4. Computations are
for a slot of length ZA in the X direction and width 2/10 in
the y direction. Excitation is by a plane wave normally .
incident on the conducting plane with magnetic field in the
x direction.
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d £* 1s the incident electric field,
when the number of expansion functions is (a) 39, (b) 19,
(c) 9, and (d) 4. Circles denote magnitude, triangles
denote phase. Computations are for the same slot as
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(a) T (b)

Tux /N2

Fig.

(c) T (d)

Transmission cross sections for a square aperture of side
length L, excited by a plane wave with H in the xz plane
and incident at an angle 9 from the normal direction in

the H plane. (a) L =21/4, 86 =0. (b) L =21r/4, 8 =45°,

(¢) L=1r/2,86=0. (d) L= 1xr/2, 8 =45°,
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functions respectively. Note that the patterns (a) and (b) are essen-
tially the same, and pattern {(c) is onlv slightly different. Thev 4if-

fer appreciably from (d), which results from only 4 expansion functions.
The difference in the solutions as the number of expansion functions is
decreased 1is better illustrated bv plots of M, as shown in Fig. 5. These
are for the same cases as the corresponding cases of Fig. 4. It can be
seen clearly how the computed equivalent current in the slot region changes
as the number of subsections is reduced. As a rule of thumb, for near-
field quantities (such as u) one should use subareas of length 3/10 or less

and for far-field quantities (such as 1) length »/5 or less.

Finally, Fig. 6 shows some computations for wider apertures and
excitations by waves not normally incident on the conducting plane. All
cases shown are for square apertures, of side length 1., Figures 6(a) and
(b) are for 1. = )/4, with the plane wave normally incident for (a) and
incident 45° from the normal direction in the H plane for (b). Figures
6(c) and (d) are for L. = }»/2, with the plane wave normally incident for
(c) and 45° from the normal direction in the f plane for (d). Note that,
for the relatively small slots chosen, there is little difference in the
shapes of the patterns as the incident wave direction is changed from the
normal direction., There is, however, an appreciable difference in the

amplitudes of the patterns,

VI. DISCUSSTON

The computer program, Part Two, is written explicitly for
rectangular apertures, but the formulas are valid for any aperture
composed of rectangular subsections. Other apertures, such as L-shaped,
T-shaped, square O-shaped, etc., could be treated by appropriately
changing the computer program. Apertures of arbitrary shape could be
treated by approximating them by rectangular subsections. As with all
moment solutions, the size of the apertures which can be treated depends
upon the size of the matrix which can be computed and inverted. The ex-
amples indicate that the rectangular suhsections should have side lengths

not greater than 0.2 wavelengths for reasonable accuracy.
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The aperture admittance matrix has application to any problem
in which one region is bounded by a plane conductor, as shown in
reference [1]. Hence, it can be used for waveguide~fed apertures in a
ground plane, and for cavity-backed apertures in a ground plane. It is

planned to treat these latter two problems in future reports.
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PART TWO

COMPUTER PROGRAMS

I. DESCRIPTION OF THE MAIN PROGRAM

The main program compu‘'.es the complex coefficients Vn which
determine the magnetic current m.according to [1, Eq. (5)], the trans-
mission coefficient T of [1, Eq. (44)], and four patterns of the trans-
mission cross section [1, Fq. (40)] per square wavelength r/)z. The
four patterns of T/Az are written on the first record of direct access
data set 6. The main program calls the subroutines LINEO, YMAT, and

PLANF. which are listed later on in this report.

One data card is read early in the main program according to

READ (1,11) LX, LY, LI, NTH, DX, DY, TH
11 FORMAT (413, 3E14.7)

The LX and Lv appearing in (10) are read in through LX and LY respec-
tively. Here, LX > 2 and LY > 1 which means that the long dimension of

a rectangular aperture only one subsection wide must lie along the x
axis. DX is Ax/} and DY is Ay/X where Ax and Ay appear in (12) and (13)
and ) is the wavelength. The plane wave excitation vector {1, Eq. (32)]
is the negative of expression (54 + LI) where LI is either 1,2,3 or 4 and
where the angle (either 6 or ¢) in degrees appearing in equation (54 + LI)
is TH. The four patterns of the transmission cross section [1, Eq. (40)]
per square wavelength T/>2 are generated by evaluating the plane wave
measurement vectors (55) to (58) at angles (8 or ¢) equal to (J-1)*180./
(NTH~1) degrees, J = 1,2,...NTH,

Minimum allocations are given by

COMPLEX Y(N*N), P(4*N), V(N)
DIMENSION TA(4*NTH)

where
N = (LX-1)*LY + LX*(LY-1) (69)




N

Statement 27 uses LX, LY, DX, and DY to store jgzky [v? + Yb] '

where [Ya + Yb] is the admittance matrix appearing in {1, Eq. (14)]

by columns in Y. Here, n = /g = 376.730 ohms is the intrinsic impedance
for empty space. At the time statement 27 is executed, LX and LY are "
still the original input data, namely the numbers of subdivisions in x

and y but DX and DY are kAx and kAy instead of the original input data
tx/Y and Ay/X.

Statement 28 inverts the N by N matrix stored in Y.
. -1 i !
Statement 29 uses TH, LX, LY, DX, and DY to store :——— P~ in

i 20%x40y m
P(m + (F-1)*N), K = 1,2,3,4, m = 1,2,...N, where Pm is the plane wave

excitation [1, Fq. (32)] and, in particular, the negative of expression
(54 + ¥). At the time statement 29 is executed, TH is the angle 6 or ¢
(see (55) to (58) and Fig. 1) in radians which specifies the direction
frem which the exciting plane wave comes, LX and LY are the numbers of

subdivisions in x and y, DX is kAx and DY is kay.

Nested NN loops 16 and 17 multiply the matrix stored in Y by the
column vector stored in P(1 + (LI-1)*N) through P(LI*N) and use the con-
stant UV = j27n in order to store V of [1, Eq. (14)] in V. Substituting
[1, Eq. (28)] into [1, Eq. (13)] we obtain

("1 - 2 11 (70)

which simplifies {1, Eq. (44)] to
L ik

T = S S Re (V fi ) an

2nS cos 6
inc.
v i* :
DO loop 16 accumulates EX;K;_ in U2. Statement 31 stores the trans-

mission coefficient T of (69) in T.

(1, Fq. (40)] simplifies to

Y2 (72)

N .:"h'. '




B el

walimb ol

DO loop 19 stores the transmission cross section per square wavelength

T/)\2 of (72) in TAU(K). Statement 30 uses TH = (J-1)*n/(NTH-1) radians,

1 m 1 M
’ ) P -1)*N) .
LX, LY, DX, and DY to store 20xiy 'n in P(n + (K-1)#*N) For t?e* axby P
stored in P(1+(K~1)*N) through P(K*N), DO loop 21 accumulates i in Ul.

20xAy
Next, r/.\2 of (72) is stored in both TAU(K) and TA(J+(K-1)*NTH),

Statement 32 writes TA on the first record of data set 6 for possible

input to the plot program listed later on in this report.
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C LISTING OF THE MAIN PRNOGRAM AND SAMPLE DATA
~

// EXEC WATFIV
/GO TO6FO01 DD DSNAME =FE0034.REVLDISP=0LD,UNIT=3330,

/7 NCB=(RFCFM=VS ,RLKSIZF=2596,L RFCL=2592)
//GNSYSIN DD =*

$JOR MAUTZ,TIME=1,PAGES=40

c

r MAIN PROGRAM

c THIS PROGRAM CALLS THE SURROUTINES LINEQ,YMAT, PLANE

COMPLEX U, UV,Y(2500),P(200),U1,U2,V(50),CONJG
DIMENSION TAU(4),TA(L1168)
PI=3.141593
ETA=376,730
U= (00' l.)
UVz2.,*PIxETA*Y
READILs11) LXyLYoLIsNTH,0X,DYsTH
11 FORMAT (413,3E14.7)
WRITE(3,12) LX,LY, LI ,NTH,DX,NY,TH
12 FORMAT(* L X LY LI NTHY 55X, 'DX® 412X *'DY*" 12X, *TH'/1X,4]13,3E14.7)
BK=2,#%P]
DX=DX*BK
DY=DY %8k
P8=180./PI
TH=TH/ P8
27T CALL YMAT(LXyLY, DX yDYyY)
WRITE(3,13)(Y([),1=1,3)
13 FORMAT(* Y*/(1X,6E1l.43%)
N={LX=-1)*LYe¢LX*{LY~-1)
28 CALL LINEQ(N,Y)
WRITE(3,13)(Y(1),1=1,3)
29 CALL PLANE{TH.LX,LY»DX,DY:P)
WRITE(3,14)(P(1)sI=1,3)
14 FORMAT(* Pt /]1X,6E11e4)
TA=14(LI-1)%N
IB=TA+N-1
Uz2=0.
DG 16 J=1,N
Ul=0.
J1=J
DO 17 I=IA,IP
Ul=Ul+Y(Jl)*P(1])
J1=J1+N
17 CONTINUE
VIiJ)=Ul=uyv
Jl=TA+y-1
U2=U2+VIJ)*CCNJIGIPIJL1))
16 CONTINUE
WRITE(3,24)(V(1)yI=1,4N}
24 FORMAT(* COEFFICIENTS vV OF MAGNETIC CURRENT EXPANSION FUNCTIONS?®
1/7¢1X,6ELL1.4))
31 T=REAL(U2)/(LX*LY*ETA*SIN(TH))
WRITE(3,18) 7
L8 FORMAT (' TRANSMISSION COEFFICIENT T=?',E14.,7)
CT=DX*DY/{PI*ETA)
CT=CT*CT/(8.%P1I)
DTH=PI/(NTH-1)
WRITE(3,23)
23 FORMAT (0 ANGLE® s 4 Xy *TAUL® 47X ' TAUZ2*, TX,*TAU3',7X,*TAUS')
D0 19 J=1,NTH

26
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TH=(J=~1)*DTH
30 CALL PLANE(TH LXeLYsDX,yDY,P)
TH=TH*P8
J1=0
J2=J
DO 20 K=1y4
U1=O'
DD 21 1=1,N
Jl=J1+1
Ul=uleP(Jl)*v(l)
21 CONTINUE
H=U1®CCNJG(UL)
TAU(K)=CT*H
TA(J2)=TAU(K)
J2=J24NTH

20 CONTINUE
WRITE(3,22})
22 FORMAT(LIXyFT7.2+4E1104)
19 CONTINUE
KA=J2~NTH
REWIND 6
32 WRITE(O)(TA(Y) yJ=1,KA)
SToP
END

$DATA
5 1

$STOP

/*

/7

PRINTED

THo(TAU(TL) sy I=144)

1 19 J3.5000J300F-31 J.5000030€-31 0.2700030E+03

ouTPUT

LX LY L1 NTH

5 1
Y

-0.1531E+02-0.6525F-01

Y

CX

DY

TH

1 19 0.5000000f-01 0.50000006-01 0.2700000E+03

D.6646F+01-0.6463E-01 0.1312E+01-0.6275E~-01

-0.9999F-01 J.4015F-02-0.6822F-01 J.55376-032-0.5i31€-01 0.5523E-0¢

o]

-0, 1N00F+01-0.3034F-06-0,1000E+01-0,6067F-06-0.1000F£+01-0.9101E-06
COFFFICIENTYS V OF MAGNETIC CURRENT EXPANSION FUNCTIONS
0.4511F+02 0.5916F+03 0,6238E+02 0.8153F+03 0.6238E+02 J).8153E+03
De¢4511F432 0.5916FE+03

TRANSMISSICN COEFFICIENT T=

ANGLE
0.00
10.00
20.00
30.00
40.00
50.00
60.20
70,00
80.00
90.00
100.00
110.00
120.00
130.00
140.00

TAUl
0. 0000E+00
0.5885£-04
0.2308F-03
0.5016€-03
0.8462E-03
0.1228F-02
0.1602E-02
0.1918E-02
0.2129E-02?
0.2204E-02
0.2129€-02
0.1918E-02
0.1602E-02
0.1228E-02
0.8462E-013

TAU?2
0.0000F+00
0.NONOE +00
C.0000£+00
0.0000E+00
J+J000QE+00
0.0000E+00
0.0000€+00
0.0000F¢00
0.0000E+00
C.0000F+00
0.0000E+00
0.0000F+00
0.0000F¢00
0.0000F+00
0.J000E+00

O0.1141254E+00

Tay3
0.0000F+00
Q. 0000F+00
0.0000¢F +00
0.0000F+00
0.2000F +00
0. 00005 +00
0.0000E+00
0.0000F +00
0.0000F+00
J.,0000F +00
0.0000F+00
0.0000E+00
0.0000F +00
0.0000E+00
0.0000E +00

27

TAU4
0.2186E-02
0.2186F-02
0.2188E-02
0.2190F-02
0.,2193E-02
0.2196F-02
0.,2199€E-02
0.2202€-02
0.2203F-02
0.2204FE-02
0.2203€E-02
0.2202E-02
0.2199F-02
0.2196F-02
0.2193F-02

Ny v |
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150,00 0.5016E~-03 0.00006+00 0.0000F+00 0.2190E-02
160,00 0.2308E-03 0.0000€E+00 0.0000E+00 0.2188E-02
170.00 0.5885E~-04 0.0000E+00 0.0000E+00 0.2186E-02
180,00 0.7663€E-15 0.0000E+00 0.0000F+00 0.2186F-02

LISTING OF THE SUBROUTINE LINEQ

SUBROUTINE LINEQ(LL,C)
COMPLEX C(2500),STOR,ySTOyST,S
DIMENSION LR(50)
D0 20 I=1,L1L
LR{T)=1
CONT INUE
M1=0
DO 18 M=1,LL
K=M
K2=M]+K
S1=ARSI(PEAL (CIK2)))+ABS{ATMAG(C(K2)))
DO 2 T=M,LL
Kl=M14]
S?2=ABS(REAL (CUKL) )I+ABS(AIMAGI(C(K1}))
1F{S2-51) 2,246
K=1
S1=52
CONT INUE
LS=LR(M)
LR{M)=1R(K)
LRI(K)=LS
K2=Ml+K
STOR=C{K2)
J1=0
DO T J=1,LL
Kl=Jl+K
K2=J1+¢M
STND=C(K1)
ClKl)=C(K2)
C{K2)=STQ/STCR
Jl=J1+L0
CINT INUE
Kl=M1+M
C{K1)=1./STOR
00 11 I=1,LL
IFL{1-M) 12,11,12
Kl=M1+1]
ST=C(K1)
cixk1)=0.
Ji=0
NPT 10 J=1,LL
Kl=gl+tl
K2=J1+M
ClK1)=C(K1)=-C(K2) *ST
Jl=JlelL
28
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11

14

21
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CONTINUE
CONTINUE
MI=Ml+LL
CONTINUE

J1=0

DO 9 J=1,LL
[F{J-LR(J)) 14,8,14
LRJI=LR(J)
J2=(LRJ-1)%LL
00 13 I=1,LL
K2=J2+1
Kl=Jl+1]
S=C(K2)
CiK2I=C(KL)}
C{K1l) =S
CONTINUF
LREJI=LRILRY)
LR{LRPJI=LRY
IFCJ-LRIJI) 14,8514
Jl=J1+LL
CONTINUE
RETURN

END

29
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IT. DESCRIPTION OF THE SUBROUTINE YMAT

e e e o —— ey 1

S

The subroutine YMAT(LX, LY, DX, DY, Y) uses the input variables

1X, LY, DX, and DY to calculate and to store :2LZ$ by columns in Y where

[Y] is the udmittance matrix (1) dealt with in Part Ome. With regard

to the input variables, IX and LY are the numbers Lx and Lv (see (10)) of
subdivisions in x and y, DX is k&x and DY is kAy where Ax and Ay (see 12}
and (13)) are the lengths of the subdivisions in x and y. We require that

IX > 2, and LY > 1.

Minimum allocations are given by

COMPLEX TC(I1), TX(J1), TY (J1), YXX(J2), Y(N*N)

Il o= (LE + 1) * (LY + 1)
J2 = MAX ((1X-1) * LY, LX * (LY-1))

Noo= (IX «1) * LY + LX * (LY-1)

Here. MAX denotes the maximum value.

Nested DO loops 15 and 16 put Ic(s,t) of (42) in TC(JST), Ix(s,t)
i{n TX(IST), and Iy(s,t) in TY{JST) where

s =JS -1
t =JT -1
JST = s + 2 + (t+1)(LX + 1)

As mentioned in Part Mne, the expressions for Ix(s,t) and Iy(s,t) are
aimilar to (42). The variables x and y of integration in (43) to (54)

are changed to kx and ky with the result that x and y 1is replaced by kx
and ky everywhere on the right hand sides of (43) to (54) and the dangling

factors of k, kz, k3, and ka in (42) disappear. The logic inside DO loop 16

is best understood by building up a table of variables in YMAT versus exXpres-

sions in terms of variables appearing in Part Ome, Section 1IT.
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Variables in YMAT

YL
Yu
XL
Xu
R1

Ul

U2

U3

EX

S1

S5

TC (JST)

S5

S6

TX (JST)

S5

S6

TY (JST)

e ——— .

Expressions in Part One, Section ITI

(t - .5)kay
(t + .5)kay
(s - .5)kax
(s + .5)kAx
kr

o k2r§ k3r2
L+ Jkro )

kzri

-F + + 0§ -

j kro i 3

kr
2737

—jkr0
()

kx log (y + r) + ky log(x+r) evaluated at x,y limits

k3x3 log(y+r) + k3y3 log(xtr) evaluated at x,y limits

kim + ,k3x3
3 6

33
log (v+r) + Egz—~log(x+r) evaluated at
X,y limits

I (s,t)
c

3 2 4

k4(¥§—-+ §§Z£.+ %r log (y+r)) evaluated at x,y limits

2 2
ksxzy (%r-+ %r) evaluated at x,y limits

Tx(s,t)
4 r3 2 4
k (%§*~+ XEEE + %; log (x+r)) evaluated at x,y limits

2 2
ksyzx (%7-+ %ré evaluated at x,y limits

Iy(s,t)
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In the preceding table, the first, second, and third S5 and the first
and second S6 correspond respectively to the first, second, and third ,

uses of S5 and the first and second uses of S6 in DO loop 16. g

If IV = 1, the logic between the statements 44 and 18 uses the
fact that (27) is even in s to store T.(-1,0) in TC(L +2). Similarly,
Ix(-],O) is stored in TX(LX+2) and Iy(—l,O) in TY(LX+2). If Ly # 1, the

logic between statements 44 and 18 stores Ic(s,—l) in TC(s+2),

s = - l,O,l,...Lx—l and TC(—l,t) in TC(1 + (t+l)(LX + 1)), t = 0,1,...Ly—1
and similarly for I  and 1
X y
LA XX XX
Nes ) - .
Nested DO loops 19 and 20 store Taxby Yij where Yij is given by (23)
with
(s - p) =JS -2
(t —q) =JT -2

in YXX(s~p+1-+(t-q)(Lx—1)). See (34) for bounds on (s-p) and (t-g).

™ XX .
Jixdy Yij where { and j

Nested DO loops 24, 23, 22, and 21 store
are given by (30) and (32) where

p = JP
q = JQ
s = JS
t = JT

in Y(1 + (§j~1)*N) where N is given by (69). If
s -p>0
t~-q2>0

the subscript for YXX inside nested NO loops 24, 23, 22, and 21 is

s-p+ 1+ (=) -1
The more general subscript '

ls - pl + 1+ |t:-q|(Lx -1

XX

11 of (23) is even in both (s-p) and

is a consequence of the fact that Y

(t-q).

32

¢
r




—— ey e e e

T ¢¥% where ny

Taxby 14 11 is given by

Nested DO loops 25 and 26 store

(24) with
s —p=JS -2

]

t-q JT - 2

in YXX(s-p + 1 + (t-q-l)(Lx ©1)). See (35) for bounds on (s~p) and (t-q).

™ yx
Nested DO loops 30, 29, 28, and 27 store Jaxby Yij where 1 and j are

given by (31) and (32) where

p = JP
q = JQ
s = J§
t =JT

in Y((Lx - 1) Ly + i+ (3-1)*N). If
s-p2>0

t~q>1

the subscript for YXX inside nested DO loops 30, 29, 28, and 27 is

s-p+ 1+ (t-g-D(L -1
The more general subscript
1 1 1 1
IS'P+2!+E+(lt‘Q'2| -2)(LX—1)

for YXX is a consequence of the fact that Y{x of (24) is odd about
1 1 3
sp = -3 and odd about t-q = 7

XY xy
Nested DO loops 31 and 32 store Joxby YiJ where Yij is given by

(25) with

s -p=JS -2
t -q=JT -2

in YXX (s~p + (t--q)(Lx ~ 1)). See (36) for bounds on {(s-p) and (t-q).

mn xy
Nested DO loops 36, 35, 34, and 33 store Jaxhy Yij where 1 and j§
are given by (30) and (33) where

33
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p = JP
g = 10
s = IS
t = J7T

in YON*(L, - 1) * L+ i+ (§-1)*N), If
x y

the subscript for YXX in nested DO loops 36, 35, 34,

s - p+ (t-q) (Lx - 1.

The more general subscript

!s-p-1!+%+(lt—q+%l -%)(Lx

2

and 33 is

_1)

for YXX is a consequence of the fact that Y of (25) is odd about

1 1 1]
s-p = E-and odd about t-q = ~ 7
iy yy
Nested DO loops 37 and 38 store Jaxby Yij
(26) with
s ~p=Js -2
t-q=JT -2

where Yi? is given by

in YXY (s-p + 1 + (t-q) Lx)' See (37) for bounds on (s-p) and (t-q).

mn

Nested DO loops 42, 41, 40, and 39 store 5X§X;

are given by (31) and (33) where

JP

hel
i}

q = JQ
s = JS

t = JT

+
[ s

in Y((N+1) * (L - 1) * Lv + (§-1) * N). If

34

Y{? where 1 and j

-
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s -p>0
t-q>0

the subscript for YXX in nested DO loups 42, 41, 40, and 39 is
s—p+1+(t-q)Lx

The more general subscript
ls - pl + 1+ [t -aqlL

for YXX is a consequence of the fact that Yi? of (26) 1is even in
both (s-p) and (t-q). )

35
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LISTING QF THE SUBROUTINE YMAY

SUBROUTINE YMATILX,LY,DX,DY,Y)
COMPLEX UgULyU2sU3 U EXy TCLLO00),TX(100),TY(100),YXX(100),Y{2500)
DX2=1./7/7(0X%DX})
DY2=1./7(0Y*DY)}

DXDY=DX*DY

NX=({LX-1)%LY

NY={LY-1)* X

N=NX+NY

LXP=LX+]

LYP=LY+1

LXM=(X-1

LYM=LY~-]

U={0eyl.)

Us=,166666T*Y

JST=LX+1

DN 15 JT=1,LY

JST=JST+1

YL=(JT-1.5) %Y

YU=YL+DY

YL2=YL*YL

YU2=YU*Yy

Yl=¢JT-1)*DNY

Y2=Y1l=xY]l

DD 16 JS=1,LX

XU=(JS-1.5)*0X

XU=XL+DX

XL2Z2=XL*XL

XUz2=XU*XUu

X1={(JS-1)%DX

X2=X1%X1

R2=X2+Y2

RI=SQRT(R2)

RUl=1.-,5%R2
Ul=RUL+R1%({1,-,166666T%R2)*U
Uz=R1-RULI*U

U3=-,5-,5%R 1%V
EX=COS{R1)-UxSIN{R])
JST=JST+1

RS=XL 2+YL2

R6=XU2+YL2

RT7=XL2+YU2

R8=XU2+YU2

R1=SQRT(RS)

R2=SQRT(R6)

R3=SQRT(RT}

R4=SQRT(RB)
AYL=YL*ALIDG((XU+RZ)/(XL+R 1)}
AYU=YU*ALOG((XU+R4) /(XL ¢R3})
AXL=XL*¥ALOG{(YU+R 3)/{YL+R1))
AXU=XU*ALOGU(YU+P L)/ (YL +R2))
SI=AXU-AXL+AYU-AYL
AYL=YL*AYL

AYU=YU*AYU

AXL=XL%AXL

AXU=XU*AXU

SI=XUXAXU-XL*AXL+ YURAYU-YL*®AYL
XY1=XL*YL

XY2=XU*YL
36
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XY3=XL%*YU
XY4=XU*YU
$5=243333333% (XY4*R4L4-XYIXRI-XY2*kR2+XY]| *R 1)+ ,1666667%53
TOLISTI=(SL*ULeDXDY*U2455%13+,3333333%(XY4*¥RB-XYI*¥RT-XY2*RE+XY RS
1y*U4 ) *EX
YR1=VY| *R]
YR2=YL*P2
YR3=YU%R3
YR4=YU%XR4
S6=.8333333E-1%{YR4G*REB-YRIRRT-YR2*RH+YRI*PS) ¢, ,125%( XLi2¥(YR4-YR2) X
LL2* {YR3I-YR]1 ) +XU2*AXU-XL 2%AXL)
S6=.25%DY* [ XU2*XU2-XL2*%XL2)+.3333333%xX1*DX*{ YU2*YU-YL2*YL)
TX(JST)=.S* (YRE4-YRI-YR2+YRI+AXU-AXLI* UL+ X1*DXDY*U2¢S5%U3+56%J4
TX(JSTI=TX(JSTI*E X /DX
XR1=XL*R1
XR2=XU%*R?2
XR3=X_ %R 3
XRG4z XU*R4
$5=,8333333E-1*%(XR4*RB-XRIXRT-XR2*RO6+XR1I*R5)+,125*%{ YU2*(XR4G—-XR 3)-Y¥
1L2*( XK2-XR]1)¢YU2*AYU-YL2*AYL)
SE=.25%DX®( YU2*YU2-YL2*YL 2)+,.3333333%Y]1*DY*( XU2xXU-XL2%*XL)
TY(JSTI=.5%(XR4—XRI-XR2+XR1+AYU-AYL )*xUL+Y1%DXDYRU2+SS*U3+S56%J%
TY(JSTI=TY(JSTI*EX/DY
16 CONTINUE
15 CNANYINUE
TF{LYM) 44,44,45
4 Jl=LXP+]
J2=J1+2
TC(JU1)=TC(J2)
TX(J1)==TX(J2)
TY(J1)=TY(J2)
GO T 46
45 J1=2%L XP+]
DN 1T JS=2,4LXP
Ji=Jdl+1
TC(JS)Y=TCLJ1)
TX(JS)=TX(J1)
TY(JS)==TY(J1)
17 CONYINUE
Ji=1
DO 18 JT=l,LY?P
J2=01¢2
TC(J1=TC(J2)
IX(JL)==TX(J2}
TY(JL)=TY(J2)
Jl=Jl+LXP
18 CONT INUF
Lb Ju=| X¢2
JY=0
DN 19 JT=2,LYP
0N 20 JS=2,1LX
Ji=J4
Jaz=J6s+ ]
J5=J4+1
JY=JvYs+ i
YXX(JIY )=z 5% (TC(Je)#(IS—.5)*TCLUSI-(IS-3.5)%TC(I3)-TX(JI5)+TX(J3))+D
1X2*(TC(J5)=-2.%TC(JG)+TC(43))
20 CONTINUE
JezJas?

9 CONTINU
19 CONTINUE 37
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21

23
24

217
28

29
30

32

31

Jy=0
DN 24 JT=1,LY
DM 23 JS=1,LXM
DD 22 JQ=1l,LY
JTQ=LXME[ABS(JT-JQ)+1
DO 21 JP=1,LXM
J1=JTQ+1ABS(JIS—JP)
JY=JY+]
Y{JY)=YXX(J1)
CONTINUF
CCNTINUE
JY=JY+NY
CONTYINUF
CONTINUE
IF(LYM.,EQ.0) RETURN
Je=2%L XP+])
Jy=0
P 25 Jr=3,LYP
N0 26 JS=24LX
JYy=JY+1
Jaz=J4+ ]
Ji=J4a~-LXP
YXX(JY)=(‘TC(J“)*TC(JB)#TC(J4+l)—TC(J3*1))/DXDY
CANT INUF
f = Jle?
CAONTIMUF
WY oA X
nno3n gr=1,LyY
e 29 J4S=l.LXM
D3 28 JA=l.LYM
JTQ=2%(J7-03)-1
J2=U XM= [ARS(JTQ)-1)/2
N 27 JP=1,LX
JSP=2%(JS~JP) e+l
J1=J2¢(1ABS(JSPI+1)/2
IY=JY+1
Y(JY) =¥XX(JL)
[F(JTO*JSP.LT.0) Y{JIY)==-Y(JY])
CONT INUE
CONTINUE
JY=JY+NX
COCNTINUE
CONT INUE
Jy=0
Ja=L XP+2
DD 31 JT=2,LY
DO 32 JS=3,LXP
J3=J4
Jaz=Ja+1
J5=J4+LXP
JY=Jy+1
YXX(JY)=(—TC(J#)+TC(J3'0TC(J5)~TC(J5—1))/DXDY
CONTINUF
Ja=J4+2
CONT INUF
JY=N®xNX
DO 36 JT=1,LYM
DO 35 JS=1,LX
00 34 JA=1,LY
JTQ=2*x(J4T-JQ)+1
38
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J2=LXMx( [ABS(JTQ)-1)/2

DO 33 JP=1,LXM

JY=JY+]

JSP=2%(JS-JP)-1

J1=J2+(1ABS(JSPI+1)/2

Y(JY)=Y¥XX(J])

IF(JTQ*ISP.LTL.O) Y (JY) =-Y‘lJY)
33 CONTINUE
34 CONTINUE

JY=JY+NY
35 CONTINUE
36 CONTINUE

Jy=0

Jaz= X+ 2

DO 37 JT=2,LY

DO 38 JS=2,LXP

JY=JY+1

Ja=J4+1]

J5=J4+LXP

J3=J4-LXP

YXX{JY)=.5%(TC(JIa ) +{IT=o5)XTC(IS)—(JT=3.5)*%TC(JI3)-TY(J5)+TY(J3))+D

LYZ®{TC(J5)—2.*TC(J4)+TC(I3))
38 CONTINUE

Je=J4+1l
37 CONTINUE

JY=(N+1).NX

DO 42 JT=1,LYM

D0 41 JS=1l,LX

DO 40 JQ=1,LYM

JTIQ=LX*IABS (JT-JQ) +1

DO 39 JP=1,LX

J1=JT7Q+I1ABRS (JS-UP)

JY=Jy+1

Y(JY ) =YXX(J1)
39 CONTINUE
40 CONTINUE

JY=JY+NAX
41 CONTINUE
42 CONTINUE

RETURN

END

39
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ITI. DESCRIPTION OF THE SUBROUTINE PLANE

The subroutine PLANE(TH, LX, LY, DX, DY, P) uses input variables
. 1
TH, LX, LY, DX, and DY to store EZ;Z;
(59) to (66) in P(i), P(Nx + i), P(N + 1), P(N + Nx + i), P(2N + 1),
P(2N + N+ i), P(3N + 1), and P(3N + Nx + i) respectively where

times the plane wave measurements

i

p+ (q—l)(Lx -1 in (59) and (65)

i

p+ (q-1) L in (62) and (64)

Nx = (Lx -1 Ly

= + -
N Nx Lx(Ly 1)

Both angles # and ¢ appearing in (59) to (66) are equal to TH radians.
The arguments LX and LY of PLANE are the numbers Lx and Ly of subdivisions
in the x and y directions and DX and DY are the electrical lengths kAx and
kdy of the x and y subdivisions. We require that LX > 2, and LY > 1.

1
Nested DO loops 81 and 87 store 3Bxby times (59) with
p =JP
q = JQ
1
in P(p + (q—l)(Lx - 1)). Nested DO loops 82 and 88 store Zhxby times (62)
with
p=JP
q=J0
] 1
in P(N + Nx + p + (q-l)Lx). Nested DO loops 83 and 84 store ThxDy times (64)
with
p = JP
q = JQ \
1
in P(2N + Nx +p + (q-l)Lx). Nested DO loops 85 and 86 store 28xby times (65)
with '
p=2Jp
q = JQ

in P(3N + p + (q-l)(Lx -1).

40
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89

87
81

88
82
90

a4
83
91

86
85

LISTING NF THE SURROUTINF PLANF

SURRGUTINE PLANE{TH,LX, LT,DXsDY¢P)
COMPLEX U,Ul,P(200)
U=(0-'l.)

LXM=L X~-1

LYM=LY-1

NX=L XM*LY

N=NX+LYM2LX

N4 =N*®4

DO 89 J=1.Né

P(J)=0.

CONTINUE

SN=SIN(TH)

CS=CNS(TH)

X2=DX*CS

X3=,85%X%X2
S1=-SIN(X3) /X3
$2=S1%S1%SN

DO 81 JP=1,LXM
SHS=4P%X2
Ul=52%(COS(S5I+UxSINISS))
J1=JP

DO 87 JQ=1,LY
PLJ1)=UlL

Jl=J1+LXM

CONTINUE

CONTINUF

IF(LYM.EQ.D) GO TG 90
DN 82 JP=1,LX
$5=(JP-.5) %X2
U1=S1*{COS{S5) +U*SINIS5))
J1=N+NX+ 3P

DO 88 JO=1,LYM
P(J1)=U1

Jl=J1+LX

CONTINUE

CONTINUE

¥Y2=DY*(CS

¥3=,.6%Y2
S1=-SINLY3) /Y3
§2=51%51*SN

J1=2%N+NX
IF(LYM.EQ.O0Y GO TN 91
DO 83 JQ~L,LYM
$5=4Q*2
Gi=52%(COS(S5)+UFSINISS))
00 84 JP=1,LX

Jl=Jlel

P(J1)=Ul

CONT I NUE

CONTINUE

DO 85 JQ=1,LY
$5=(J0-.5)*Y2
UL=S1%(COS(S5) +U* SINtSS))
D 86 JP=1,LXM

Jl1=J1+1

P{J1)=U1

CONTINUE RFTURN
CONTINUE END
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IV. DESCRIPTION OF THE PROGRAM TO PLOT PATTERNS

This program plots patterns of the transmission cross section per

Py
square wavelength t/A“ read from direct access data set 6,
Punched card data is read according to

READ(1,22) NTH, NP
22 FORMAT(2013)

READ(1,22) (IP(K), K = 1, NP)

READ(1,10) (SCL(K), K = 1, NP)
10 FORMAT(6E11.4)

2
The patterns of t/)\" are read frem direct access data set 6 according to

o —— g

RFEWIND 6
J1 = NTH*NP
READ(6) (TA(I), I = 1, J1)

TA(J + (K-1)*NTH) is the value of T/X2 at angle (J-1)*n/(NTH-1) radians
on the Kth pattern, Here, J = 1,2,...NTH and K = 1,2,.,NP. If LP(K) = O,

the Kth pattern is not plotted. If LP(K) # 0, the Kth pattern is multi~

plied by SCL(K) and then plotted in inches.

Minimum allocations are given by

DIMENSION LP(NP), SCL(NP), SN(NTH), CS(NTH),
TA(NP*NTH), X(NTH), Y(NTH)

DO loop 15 plots the Kth pattern 1if LP(X) # 0. DO loop 16 puts

tick marks on the vertical axis drawn by statement 25. DO loop 18 puts

tick marks on the horizontal axis drawn by statement 26, Statement 27
plots the pattern whose horizontal and vertical coordinates have been

stored in X and Y by NO loop 20.

42
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LISTING NF THE PRNGRAM TO PLOT PATTERNS

// EXEC FQORTGCLG
F/FNRT SYSIN DD *

22

11

23
10

24

19

12

14

25

17

16
26

18

20
27

DIMENSION LP(25)4SCLI2S5) W XX(4)y YY(4),SNUT3),CS(T73),TA(1168)

DIMENSION X(73),Y(73)

READ(1,22) NTYH,NP

FORMAT ({2013}

WRITE(3,11) NTH,NP

FNORMAT (* NTH NP*'/1X,213)

QFAD(leZ'(Lp(K)'K=l'Np,

WRITE(3,23)(LP(K)K=14NP)

FOIRMAT({®* LP'/(1X,2013))

READ(1,10)3{SCL(K) K=14NP)

FORMAT(6EL11.4)

WRITF({3,24) (SCL(K),K=1,NP}

FORMAT (¢ SCL*/(1X,6FEL1l.4))

XX{1)=1.

Yy{il)=1.

XX(2)=1.

YY(2)=9,

XX(3})=1.

YY{(3)=5,

XX(4})=5.

YY({4)=5,

PI=3,141593

DTH=PI/{(NTH~-1)

DO 19 J=1,4,NTH

ANG=(J-1)*0TH

SN(J)=SINUANG)

CS1J)=COS(ANG)

CONT INUE

CALL PLOTID

REWIND 6

J1=NTH2NP

READ(S)ILTA(I) 4I=1,41)

WRITE(3,14) TA(l)

FORMAY(' TA=? yEll .4)

J1=0

DD 15 K=1,NP

IF(LP{K).EQ.O0) GO T0O 21

CALL LINEIXX{1),YY{(1),2,1.0.0)

S3=9,

DO 16 J=1,9

CALL SYMBOL{1.453,.14,13,90.y-1)

$3=53-1,

CONT INUE

CALL LINEIXX(3),YY(3),2,1,0,0)

S1=5%,

DO 18 J=1,4

CALL SYMBOL {S145.49.14413,0.,4-1}

S1=S1-1.

CONTINUE

DN 20 J=1,NTH

J2=J1+J

S1=TA(J2)*SCL(K)

X({J)=1.¢S1%SN(JI)

Y(J)=5.+S51*CS(J)

CONT INUF

CALL LINEIX(1)eYU1)4NTH,1,0,0)
43
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CALL PLOT(644044-3)
21 J1=J1+NTH
15 CONVINUE

CALL pLOY(S.'O-"‘}’

STnp
END

/%
1/G0.FTO6F001 DD DSNAME =EE0034.REV]L,DISP=0LD,UNIT=3330,
/7 DCB={RECFM=VS ,BLKSI7E=2596,4LRECL=2592) L
//GN.SYSIN DD *

19 1

1 '

0.1000F +04
/7 *
/7

1)
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