EFFECT OF HAIL, SNOW, AND MELTING HYDROMETEORS ON MILLIMETER WAVE
EFFECT OF HAIL, SNOW, AND MELTING HYDROMETEORS ON MILLIMETER RADIO WAVES

JULY 1981

By
Herbert K. Kobayashi

DTIC ELECTED
NOV 1 6 1981

Approved for public release; distribution unlimited.

US Army Electronics Research and Development Command
Atmospheric Sciences Laboratory
White Sands Missile Range, NM 88002

81 11 03 017
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.
Figure 4, the numbers on the RAINDROP AND MELTED SNOWFLAKE DIAMETER D(mm) should be corrected to read: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0

Figure 6, the numbers on the RAINDROP DIAMETER(mm) should be corrected to read: 1.0, 2.0, 3.0, 4.0
This report is a short survey intended to present the effect of solid and melting hydrometeors on millimeter radio waves. Hail and sleet were found to be more amenable to theoretical calculation and laboratory experimentation than snow because of their simpler approximations of particle shape and dielectric constant. However, field measurements on hail and sleet are scarce in comparison to snow. The most pressing need was found to be the gathering of reliable field data on the morphology and size distribution of hydrometeors.
20. ABSTRACT (cont)

particles, particularly those in a melting state where the effect on millimeter waves may exceed that of rain. These data are needed to more closely relate experimental measurement to theoretical calculation.
PREFACE

The author gratefully acknowledges the aid of Dr. Donald E. Snider of the US Army Atmospheric Sciences Laboratory, White Sands Missile Range, New Mexico; Mr. William B. Grant of the Institute for Telecommunication Sciences, Department of Commerce, Boulder, Colorado; and Ms. Vicky Schneller and the staff of the ITS/NOAA/NBS Library, Boulder, Colorado.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>6</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>6</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>EXPERIMENTAL OR MEASURED ATTENUATION</td>
<td>8</td>
</tr>
<tr>
<td>THEORETICAL CALCULATION AND MEASURED BACKSCATTER</td>
<td>13</td>
</tr>
<tr>
<td>Hail</td>
<td>13</td>
</tr>
<tr>
<td>Snow</td>
<td>16</td>
</tr>
<tr>
<td>LABORATORY MEASUREMENTS OF SINGLE PARTICLES</td>
<td>21</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>24</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td>24</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>26</td>
</tr>
</tbody>
</table>
LIST OF TABLES

1. SNOWFALL ATTENUATION EXPERIMENTS AT MILLIMETER WAVELENGTHS... 9

LIST OF FIGURES

1. Measured attenuation through falling snow................................. 9
2. Mean hail distribution from Federer and Waldvogel. Hailstones defined as particles with \(D \geq 5 \) mm.. 15
3. Calculated attenuation at 54 GHz from Lammers............................ 16
4. Terminal speeds of raindrops and snowflakes as a function of diameter... 18
5. Three average size distributions for snow from Imai et al and Gunn and Marshall....................................... 19
6. Marshall-Palmer average rain distributions for four intensities.. 19
7. Size distribution for snowflakes and graupel particles from Yagi et al.. 20
8. Calculated attenuation by various kinds of snow particles from Asari... 20
INTRODUCTION

Recent reviews on the atmospheric effect on millimeter waves, including one review by the author, have reported that the literature on nonliquid hydrometeors was very scarce. However, a more thorough search during the past year has uncovered several dozen articles yielding useful quantitative data. Unlike rain, attenuation and scatter by solid and melting hydrometeors have not been reviewed to any extent although Ryde in his classic World War II report on attenuation of millimeter waves allotted hail as much discussion as rain, fog, and clouds. As early as 1955, Robinson wrote: "... moist snow produced attenuation two and a half times greater than rain of similar precipitation rate." Some reasons for this apparent neglect may be:

a. Rain is a more frequently encountered hydrometeor and has overshadowed discussion on other forms of precipitation.

b. As in rain propagation, the computer modeling needed to compare experimental data with theoretical predictions is based on meager information, particularly for melting hydrometeors.

c. Unlike clear-air and rain experiments, field measurements must be done opportunistically on short-lived phenomena during seasonal conditions usually uncomfortable for experimenters.

A computerized author/title/subject search of major data bases across the nation by the Boulder Laboratories library staff yielded about 50 papers linking millimeter waves with non-liquid hydrometeors. Many of these papers featured rain as the topic of importance. For the most part, the papers fell into three categories:

a. Experimental or measured attenuation, usually with reference to theoretical calculations.

2S. M. Kulpa and E. A. Brown, 1979, Near-Millimeter Wave Technology Base Study: Volume I - Propagation and Target/Background Characteristics, Special Report, HDL-SR-79-8, Harry Diamond Laboratories, Adelphi, MD

b. Theoretical or calculated attenuation and backscattering, often with reference to field measured backscattering.

c. Laboratory measurements of attenuation and backscattering with reference to theoretical calculations.

This report is presented in the sequence above. Since the decision as to whether a paper is experimental or theoretical is an arbitrary one, there is some overlap in the first two categories. There is a tendency for attenuation to be associated with one-way, point-to-point communication needs and for scatter, especially backscatter, to interest radar specialists.

EXPERIMENTAL OR MEASURED ATTENUATION

Research papers on attenuation fall into two categories:

a. Sufficient data taken to insure a graph of plotted points versus precipitation rate normally expressed as millimeters per hour equivalent rain rate.\(^{11}\)

b. Only single values given for the occurrence of unusual weather situations.

The first category is listed in table 1 with attendant field data shown as average curves in figure 1. Snow ranging from dry to melting condition predominates, possibly because, like rain, snow is a long-lived phenomenon and an easy hydrometeor to identify. In a recent review, Kulpa and Brown found no experimental data on hail.\(^1\)

\(^1\)S. M. Kulpa and E. A. Brown, 1979, Near-Millimeter Wave Technology Base Study: Volume I - Propagation and Target/Background Characteristics, Special Report, HDL-SR-79-8, Harry Diamond Laboratories, Adelphi, MD
Table 1. Snowfall Attenuation Experiments at Millimeter Wavelengths

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Year</th>
<th>Author(s)</th>
<th>Frequency (GHz)</th>
<th>Path Length (km)</th>
<th>Location</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1955</td>
<td>Robinson, W.</td>
<td>35</td>
<td>15.3</td>
<td>Not stated (So. England?)</td>
<td>Dry and wet snow effect estimated</td>
</tr>
<tr>
<td>6</td>
<td>1970</td>
<td>Bebbin, Y., et al</td>
<td>312.5</td>
<td>0.680</td>
<td>"Middle zone" of European USSR</td>
<td>Snowfall rate characterized</td>
</tr>
<tr>
<td>7</td>
<td>1971</td>
<td>Nishitsui, A.</td>
<td>15, 35, 50</td>
<td>12.4</td>
<td>Sapporo, Japan</td>
<td>Wet, moist, and watery snow</td>
</tr>
<tr>
<td>8</td>
<td>1971</td>
<td>Omori, T., et al</td>
<td>11, 15, 24, 40*</td>
<td>8.9</td>
<td>Sapporo, Japan</td>
<td>Snowfall rate</td>
</tr>
<tr>
<td>9</td>
<td>1976</td>
<td>Molinkin, V., et al</td>
<td>35</td>
<td>5.6</td>
<td>Moscow, USSR</td>
<td>Dry snow</td>
</tr>
<tr>
<td>10</td>
<td>1977</td>
<td>Richard, W., et al</td>
<td>140</td>
<td>0.725</td>
<td>Not stated (Maryland, USA)</td>
<td>Large, moist snowflakes</td>
</tr>
</tbody>
</table>

Simultaneous radio propagation on all frequencies along the same path

![Graph](image)

Figure 1. Measured attenuation through falling snow (further details in table 1).
Oomori and Aoyagi's comprehensive experiment merits initial discussion because it entailed simultaneous frequency measurements along the same 8.9 km path, thus enabling 11, 15, 24, and 48 GHz attenuation to be assessed for the same meteorological conditions. Their data are statistically reliable for indicating trends between 10 and 50 GHz because probability distributions for attenuation and precipitation rates, averaged over short intervals, were gathered during an entire winter season. First, there is a tendency for attenuation to increase with frequency and snowfall rate.

Asari verified this tendency for the same frequencies in his theoretical paper on wet snowfall. Next attenuation at the precipitation rate of 1 mm/h is consistently greater than for rain (shown as dots in figure 1) at any given frequency. Richard reported this tendency for six frequencies, and Kulpa attributed the high attenuation to "... the large, more irregular shape of the snow precipitation and the fact that higher concentrations exist for the snow due to the low fall velocities." Unfortunately, Oomori gave no details on the physical characteristics of snow. These characteristics determine the "statistical variations and qualities of the snow and precipitation." Nishitsuji was more conventional than Oomori in his comparison of measured and calculated attenuation at 15, 35, and 50 GHz. Six of the eight pages of his paper were devoted to transforming field snowflake measurements into data on the attenuation cross section and size distribution of snowflakes, which in turn are needed for calculated attenuation. Snow was placed into dry, moist, wet, and watery categories, each with five parameters, including temperature and density. As seen in figure 1, moist, wet, and watery conditions prevailed during the field measurements. Calculated and measured values agreed well according to Nishitsuji, and the trend toward greater attenuation seen in Oomori's work was also present. A comparison of the 15 and 35 GHz curves reveals that water content also contributes to greater attenuation.

2. E. Asari, 1974, "Attenuation of Microwaves in Moist or Wet Snowfall," Electronics and Communications in Japan, 57-B:58
The remaining curves in figure 1 represent the data of four groups, each working at single frequencies. Apparently in all cases, the only snow characteristic quantitatively measured was snowfall intensity in equivalent rain rate (millimeters per hour).

Robinson and Malinkin et al. worked at 35 GHz. The former reported 2.5 times greater attenuation in wet snow than attenuation caused by rain at the same precipitation rate. On the other hand, Malinkin experienced 2.5 times less attenuation for dry snow. Rain data from Richard et al., also reproduced in Kulpa and Brown, are plotted as dots in figure 1 for selected frequencies. These data averaged from several sources by Richard correspond within one order of magnitude at a snowfall intensity of 1 mm/h. Robinson and Malinkin also agree with Nishitsuji and Lammers at 35 GHz for wet and dry snow, respectively.

Richard et al. and Babkin experienced the highest attenuations according to figure 1. These attenuation rates would be expected from the foregoing discussion. Richard's measurements of 140 GHz attenuation made through large, moist snowflakes reached a maximum of 5.5 dB/km at the snowfall rate of 1.2 mm/h. Generally, attenuation was three times greater than for rain at the same equivalent rain rate, and three to five times greater than for five other cited investigations in millimeter-wave propagation. Babkin did not qualitatively describe snow during his 312 GHz experiment. However, dry conditions are implied since dry, not wet, snow is theoretically discussed; and maximum

9V. G. Malinkin, A. V. Sokolov, and Ye. V. Sukhonin, 1976, "Attenuation of Signal at the Wavelength \(\lambda = 8.6 \text{ mm} \) in Hydrometeors," Radio Engineering and Electronic Physics, 21:1

9S. M. Kulpa and E. A. Brown, 1979, Near-Millimeter Wave Technology Base Study: Volume I - Propagation and Target/Background Characteristics, Special Report, HDL-SR-79-8, Harry Diamond Laboratories, Adelphi, MD

Attenuations were only 30 to 40 percent greater than for previously reported rain measurements. Dry snow would explain the fact that his attenuation curve is only slightly higher than Richard's curve for wet snow at 140 GHz.

Single values for snow and sleet (partly frozen rain) are sometimes encountered in the literature, often in conjunction with rain experiments. Some examples of these values at millimeter wavelengths are:

a. Weibel1\textendash4 dB additional fade at 90 GHz during heavy, wet snowfall.

b. Tattersall1\textendash34 dB fade at 37 GHz for 11, 22, and 37 GHz during severe, wet storm.

c. Misme1\textendash15 to 25 dB loss for several minutes on vertically and horizontally polarized channels at 11 GHz during severe sleet.

d. Watson1\textendash2 dB/km co-polar and cross-polar fades at 11 GHz during rain, sleet, and snow conditions.

Watson also wrote a review on the lower millimeter wavelengths17 in which he reported briefly on snow and sleet, citing several papers in this area of research.

A summary of measured attenuation shows that snow, notably in its melting state, is the only nonliquid hydrometeor with any substantial amount of reported data. Open literature tends to show that snow attenuation increases with frequency, snowfall rate, and snowflake liquid water content.

1R. L. O. Tattersall, 1975, "Snow Fading on 1 March 1974 on Microwave Links in the Mendlesham Propagation Experiment," Electronics Letters, 11:603

1P. Misme, 1979, "Un Affaiblissement Exceptionnel dû à la Neige Mouillée," (An Exceptional Attenuation due to Sleet), Annales des Télécommunications, 34:291

THEORETICAL CALCULATION AND MEASURED BACKSCATTER

Theoretical calculations incorporating hydrometeor field data are necessary for interpreting experimental field measurements. From Ryde and Ryde in 1945 to Evans and Holt in 1980, solid and melting precipitation have been considered along with rain. But the irregular shape and variable index of refraction of these particles make comparisons between measured and calculated values difficult. There are no generally accepted field data for these particles such as the Laws-Parson and Marshall-Palmer raindrop size distributions. For convenience, this section of the report is separated into discussions of hail and snow. Hail and sleet are often modeled as spheroids with an ice or ice and water dielectric constant. Snow modeling is a more difficult task, with dry snow conditions producing the best agreement between theory and experiment.

Hail

In view of the lack of experimental data on radio propagation through hail, the validity of representing hailstones as concentric spheres or prolate

"J. O. Laws and D. A. Parsons, 1943, "The Relation of Raindrop-Size to Intensity," Transactions, American Geophysical Union, 24:452"

"S. M. Kulpa and E. A. Brown, 1979, Near-Millimeter Wave Technology Base Study: Volume I - Propagation and Target/Background Characteristics, Special Report, HDL-SR-79-8, Harry Diamond Laboratories, Adelphi, MD"
spheroids needs to be compared to direct field observations. Barge and Isaac analyzed nearly 2000 Alberta specimens and found that about 70 percent were oblate and prolate ellipsoids and cones. Wide variability in their data was apparent when 74 percent were cones in one storm and 72 percent were oblate spheroids in another storm only 8 days later. Matson and Huggins photographed hailstones in several Colorado storms and classified the majority as oblate spheroids and 16 percent as cones. Variability in maximum dimension and size distribution from event to event was also reported.

Literature contains several examples where questions have been raised regarding single-model backscatter calculations proposed as a way of separating rain from hail. The following recent example illustrates the need for field data on hailstone shape to clarify this long-standing problem. According to Seliga and Bringi, large, dry hail modeled as an oblate spheroid would yield a differential backscatter (that is, the ratio of vertical to horizontal polarization) which is negative, as opposed to a positive value for rain. Aydin and Hizal's calculations with cones as well as oblate spheroids reveal that

11E. Asari, 1969, "Analysis and Algorithm for Computing the Forward Scattering Cross Section of a Dielectric Sphere," *Electronics and Communications in Japan*, 52-B:43

under certain circumstances hail identification may become difficult and other polarization ratios may be needed for clarification.**

Hail size distributions obtained by Khorguani and Tlisov and Federer and Waldvogel in mountainous regions of Europe were different from those of earlier workers. Khorguani concluded that a "logarithmically normal" distribution was a better fit than the gamma function and bimodal ones of his Russian colleagues. Federer's data appeared to have an exponential fit as shown in figure 2.

--- MEASURED SPECTRA
--- EXPOENTIAL DISTRIBUTION

Figure 2. Mean hail distribution from Federer and Waldvogel, 1975, *Journal of Applied Meteorology*, 14:91. Hailstones defined as particles with $D > 5$ mm.

Snow

Although open literature does not contain experimental data on hail, it does contain experimental data on radio propagation through falling snow (discussed in preceding paragraphs of this report). But the complex shape of snowflakes and their ice-air-water composition make theoretical calculations more difficult than for hail and sleet. Richard et al. in a brief review of snow attenuation pointed out that calculations based on equivalent rain rate, particularly for melting snow, are usually lower than measured results. This statement implies that a poor comparison will occur even when a dry snowflake is modeled as a water sphere. This situation appears to be the case in Babkin's comparison with Mie theory calculations based on an "equivalent" water sphere.

Lammers assigned complex dielectric values to snow as an ice-air mixture (a very dry condition) and showed that the total cross section (which includes attenuation and scatter) for Mie calculations at 54 GHz is one order of magnitude smaller than for rain. He also calculated attenuation for dry snow and claimed agreement within one order of magnitude of field measurements. His calculations (Figure 3) also appear to agree with other curves of Figure 1 within the same order of magnitude.

![Figure 3](image-url)

Figure 3. Calculated attenuation at 54 GHz from Lammers, 1967, NTZ Communications Journal, 6:230.

Size distribution of snowflakes and graupels (granular snow pellets) has been studied mainly by weather radar experimenters because of the importance of identifying and assessing the quantity of hydrometeor particles. The desired parameters are generally the radar reflectivity Z plotted against precipitation intensity or rate R. Since comparison between rain and the snowfall equivalent rain rate is frequently made, the mass of the snowflake rather than its physical size is measured. The technique often employed is to measure the diameter of the drop resulting from melting a snowflake on filter paper coated with a water-soluble dye such as gentian violet. A more elaborate method is to measure photographs of crystals reduced to spheres in heated silicone oil. The terminal velocity of snowflakes, needed to compute the mass-size distribution on a volume basis (millimeter$^{-3}$ m$^{-1}$), is usually taken from Langleben. Magono stated that Langleben's fall velocities are applicable to small snowflakes only and that the velocities are related more to size and density than to mass.

Previous attempts to relate backscatter measurements to calculations based on snow size distributions have had mixed success. Imai et al. found that snowflake coalescence affected size distribution to such an extent that the Z-R coefficient changed by about a factor of 4 in a 2-h period. Gunn and Marshall reported that their distribution using Langleben's velocities

(figure 4) agreed with Imai's data and the Marshall-Palmer rain distribution at low intensities of R (figures 5 and 6). A recent study by Yagi et al compared well with the Gunn and Marshall distribution (figure 7). However, the authors clearly showed that the same reflectivity Z can be returned by two storms differing greatly in size and distribution of snowflake and graupel. On the basis of their findings, Yagi recommended restricting the usage of the Z-R relationship for snow to weather at a specific locale.

In a few papers, the morphology or physical state of snowflakes has been explicitly related to attenuation or scatter. A typical example was by Asari who divided snow into six categories, from slightly moist to very wet, each with a particular dielectric constant at 11, 24, and 35 GHz. He then found the total cross section and compared attenuation with measured data at 11 and 35 GHz. Although no experimental confirmation was apparent, Asari's calculations for attenuation by particles of "equal nature and size" (figure 8) indicate that at 11 and 35 GHz a unique maximum is attained in each of the six snow categories.

Figure 4. Terminal speeds of raindrops (from Gunn and Kinzer, 1949, Journal of Meteorology, 6:243) and snowflakes (from Langleben, 1954, Quarterly Journal of the Royal Meteorological Society, 80:174) as a function of diameter.

3*T. Yagi, H. Uyeda, and H. Seino, 1979, "Size Distribution of Snowflakes and Graupel Particles Observed in Nagaoka, Niigate Perfecture," Journal of the Faculty of Science, Hokkaido University, Ser VII, 6:79

4*E. Asari, 1974, "Attenuation of Microwaves in Moist or Wet Snowfall," Electronics and Communications in Japan, 57-B:58
Figure 5. Three average size distributions for snow from Imai et al, Meteorology and Geophysics (Japan), 5:130 (dotted lines) and Gunn and Marshall, 1958, Journal of Meteorology, 15:452 (straight lines).

Figure 6. Marshall-Palmer (1948) average rain distributions for four intensities from Journal of Meteorology, 5:165.
Figure 7. Size distribution for snowflakes and graupel particles from Yagi et al., 1979, Journal of the Faculty of Science, Hokkaido University, Ser VII, 6:79.

Figure 8. Calculated attenuation by various kinds of snow particles from Asari, Electronics and Communications in Japan, 57-B:58.
A summary of theoretical calculations, especially with respect to backscatter, shows that the effect of hail on millimeter waves is hampered by the lack of field measurements taken in concert with data on the morphology and distribution of hailstones. For snow, good agreement between experiment and theory is found for small, dry flakes represented as an ice and air spheroid. For larger, wetter flakes having the tendency to aggregate with size, no satisfactory model has been found in the literature, and calculated values based on spheroids show poorer correlation with experimental values.

LABORATORY MEASUREMENTS OF SINGLE PARTICLES

Attempts to predict attenuation and scatter from hydrometeors at millimeter wavelengths began with Ryde and Ryde during World War II with solid and liquid particles (rain, hail, and fog). Later, Gunn and Marshall and Marshall and Gunn extended Ryde's work to snow "...conveniently expressed in terms of the diameter of the water drop to which the snowflake would melt, assuming no break-up." It was soon realized that no one meteorological factor would suffice to link size distribution and synoptic condition. However, as late as 1970, Babkin et al assumed a spherical shape for snow and applied Gunn and Marshall's size distribution to Mie theory computations. Their results show poor comparison between measured and computed curves. Since Babkin's work at 312 GHz appears to be the only one available for snow at the high millimeter frequencies, his involved argument for introducing an "effective radii of spherical snow particles" should be examined with care. Thus it appears that problems are encountered in assuming simple shapes for hydrometeors, and therefore it would be very useful to obtain direct measurements of attenuation and scatter from particles of known configuration.

The need to collect data on the effect of hydrometeor particles under controlled laboratory conditions has resulted in a small body of papers from about

1952 to 1980. All of these papers are measurements of single particles, the multiple-scattering interactions being intractable in experimentation as well as theory. They fall into two kinds of determinations:

a. Backscatter matrix based on various techniques, and

b. Extinction cross section (attenuation plus scatter) based on a technique by Cullen and Kumar.

Backscatter measurements were made by Labrum in 1952 at 3 GHz on liquid spheres and melting rods and discs of approximately 0.1 wavelength. He confirmed the "bright band" backscatter phenomenon and polarization rotation from nonspherical scatterers long observed by radar operators. Nicholis examined the 18 to 25 GHz range with rectangular frozen specimens of resonant wavelength and agreed with Labrum in detecting a backscatter maximum during melting at the lower wavelengths. In his comprehensive theoretical paper on scattering and absorption by hail modeled as melting ice spheres at 34.8 GHz, Oguchi also found a maximum during the melting process.

Recently, Allan and McCormick, with measurements at 2.86 GHz, related scattering coefficients in the horizontal and vertical planes to the aspect angle (that is, the angle between the symmetry axis and the propagation direction) for dielectric spheroids 0.242 to 1.22 wavelengths maximum dimension simulating ice (dielectric constant $\varepsilon = 3.18$). Some agreement with theory and measurement by others is claimed by the authors, although conspicuous differences were seen in the backscatter cross section for spheroids in the Rayleigh region.

Extinction cross section by Cullen and Kumar's method involves a simple, straightforward measurement of the change in Q-factor due to an obstacle placed in an open resonator. The obstacle must have reflective symmetry perpendicular to the incident wave, and thus far only spheroids have been studied with this method. Experiments by Gerhardt et al at 9.4 GHz with water drops and wet and dry ice spheres 0.5-11.0-wavelength diameter were in general agreement with Mie theory except for the melting values. Bryant and Auchterlonie also encountered difficulty in preparing specimens and interpreting results with ice spheres. Their problem was in qualitatively assessing the degree of melt when replicating their readings at the wavelength of only 8.6 mm (35 GHz).

A summary of laboratory measurements of single particles shows that mixed results have been reported for ice, melting ice, and synthetic dielectric particles of spherical to rectangular shapes of resonant size between 2.86 and 35 GHz. A serious technical problem is assessing the degree of melt for ice-water specimens in replicating data. This problem will become acute at higher millimeter frequencies with their smaller resonant particles.

CONCLUSIONS

Snow, notably in its melting state, is the only nonliquid hydrometeor with any substantial amount of reported data at millimeter wavelengths. The open literature tends to show that snow attenuation increases with frequency, equivalent rain rate, and snowflake liquid water content.

Hail and sleet are more amenable to theoretical calculation and laboratory experimentation than snow because of their simpler approximations of particle shape and dielectric constant. On the other hand, field measurements on hail and sleet are comparatively scarce due to their transient nature.

Apparently the lack of reliable field data on hydrometeors other than rain has made comparison between experimental measurement and theoretical calculation difficult.

RECOMMENDATIONS

The most pressing need is for field data on characteristics of hydrometeor particles taken with the usual equivalent rain rate. Several references in this review have pointed out what characteristics are important for theoretical calculations. As with rain, data for other hydrometeors are

still valuable even if not taken in conjunction with radio propagation measurements.

Melting snow has been shown to affect millimeter waves to the same extent as rain and should be given priority over less effective hydrometeors of lower liquid water content. Comparative treatment of melting snow and rain during the same storm is especially valuable because the effect of rain is relatively well understood up to 140 GHz.

References:

3V. G. Khorguani and M. I. Tlisov, 1974, "Size Distribution Function of Hailstones," Atmospheric and Oceanic Physics, 10:269
REFERENCES

ELECTRO-OPTICS DISTRIBUTION LIST

Commander
US Army Aviation School
Fort Rucker, AL 36362

Commander
US Army Aviation Center
ATTN: ATZQ-D-MA (Mr. Oliver N. Heath)
Fort Rucker, AL 36362

Commander
US Army Aviation Center
ATTN: ATZQ-D-MS (Mr. Donald Wagner)
Fort Rucker, AL 36362

National Space Flight Center
ATTN: ES-83 (Otha H. Vaughan, Jr.)
Huntsville, AL 35812

National Space Flight Center
Atmospheric Sciences Division
ATTN: Code ES-81 (Dr. William W. Vaughan)
Huntsville, AL 35812

Nichols Research Corporation
ATTN: Dr. Larry W. Pinkley
4100 South Memorial Parkway
Huntsville, AL 35802

Conn M. Hobbie
C/o Kentron International
2003 Byrd Spring Road
Huntsville, AL 35802

Mr. Ray Baker
Lockheed-Missile & Space Company
4800 Bradford Blvd
Huntsville, AL 35807

Commander
US Army Missile Command
ATTN: DRSMI-OG (Mr. Donald R. Peterson)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-OGA (Dr. Bruce W. Fowler)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-REL (Dr. George Emmons)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-REO (Huey F. Anderson)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-REO (Mr. Maxwell W. Harper)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-REO (Mr. Gene Widenhofer)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-REO (Mr. Charles Christensen)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-RRA (Dr. Oskar Essenwanger)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-RRD (Dr. Julius Q. Lilly)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
Redstone Scientific Information Center
ATTN: DRSMI-RPRD (Documents Section)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-RRA (Dr. Oskar Essenwanger)
Redstone Arsenal, AL 35809

Commander
US Army Missile Command
ATTN: DRSMI-RRD (Dr. Julius Q. Lilly)
Redstone Arsenal, AL 35809
Commander
US Army Armor Center and Fort Knox
ATTN: ATZK-CD-MS
Fort Knox, KY 40121

Commander
US Army Armor Center and Fort Knox
ATTN: ATZK-CD-SD
Fort Knox, KY 40121

Aerodyne Research Inc.
ATTN: Dr. John F. Ebersole
Crosby Drive
Bedford, MA 01730

Commander
Air Force Geophysics Laboratory
ATTN: DPA (Dr. Robert W. Fenn)
Hanscom AFB, MA 01731

Commander
Air Force Geophysics Laboratory
ATTN: OPI (Dr. Robert A. McClatchey)
Hanscom AFB, MA 01731

Massachusetts Institute of Technology
Lincoln Laboratory
ATTN: Dr. T. J. Goblick, B-370
P.O. Box 73
Lexington, MA 02173

Massachusetts Institute of Technology
Lincoln Laboratory
ATTN: Dr. Michael Gruber
P.O. Box 73
Lexington, MA 02173

Raytheon Company
Equipment Division
ATTN: Dr. Charles M. Sonnenschein
430 Boston Post Road
Wayland, MA 01778

Commander
US Army Ballistic Research Laboratory/
ARRADCOM
ATTN: DRDAR-BLB (Mr. Richard McGee)
Aberdeen Proving Ground, MD 21005

Commander/Director
Chemical Systems Laboratory
US Army Armament Research & Development Command
ATTN: DRDAR-CLB-PS (Dr. Edward Stuebing)
Aberdeen Proving Ground, MD 21010

Commander/Director
Chemical Systems Laboratory
US Army Armament Research & Development Command
ATTN: DRDAR-CLB-PS (Mr. Joseph Vervier)
Aberdeen Proving Ground, MD 21010

Commander/Director
Chemical Systems Laboratory
US Army Armament Research & Development Command
ATTN: DRDAR-CLB-PS (Mr. Ronald Pennsley)
Aberdeen Proving Ground, MD 21010

Commander/Director
US Army Ballistic Research Laboratory/
ARRADCOM
ATTN: DRDAR-TSB-S (STINFO)
Aberdeen Proving Ground, MD 21005

Commander
US Army Electronics Research & Development Command
ATTN: DRDEL-CCM (W. H. Pepper)
Adelphi, MD 20783

Commander
US Army Electronics Research & Development Command
ATTN: DRDEL-GCG/DRDEL-DC/DRDEL-CS
2800 Powder Mill Road
Adelphi, MD 20783

Commander
US Army Electronics Research & Development Command
ATTN: DRDEL-CT
2800 Powder Mill Road
Adelphi, MD 20783

Commander
US Army Electronics Research & Development Command
ATTN: DRDEL-PAO (M. Singleton)
2800 Powder Mill Road
Adelphi, MD 20783

Commander
US Army Ballistic Research Laboratory/
ARRADCOM
ATTN: DRDAR-CLB-PS (Dr. Edward Stuebing)
Aberdeen Proving Ground, MD 21010

Commander/Director
Chemical Systems Laboratory
US Army Armament Research & Development Command
ATTN: DRDAR-CLB-PS (Mr. Joseph Vervier)
Aberdeen Proving Ground, MD 21010

Commander/Director
Chemical Systems Laboratory
US Army Armament Research & Development Command
ATTN: DRDAR-CLB-PS (Mr. Joseph Vervier)
Aberdeen Proving Ground, MD 21010

Commander/Director
Chemical Systems Laboratory
US Army Armament Research & Development Command
ATTN: DRDAR-CLB-PS (Mr. Ronald Pennsley)
Aberdeen Proving Ground, MD 21010

Commander/Director
US Army Ballistic Research Laboratory/
ARRADCOM
ATTN: DRDAR-TSB-S (STINFO)
Aberdeen Proving Ground, MD 21005

Commander
US Army Electronics Research & Development Command
ATTN: DRDEL-CCM (W. H. Pepper)
Adelphi, MD 20783

Commander
US Army Electronics Research & Development Command
ATTN: DRDEL-GCG/DRDEL-DC/DRDEL-CS
2800 Powder Mill Road
Adelphi, MD 20783

Commander
US Army Electronics Research & Development Command
ATTN: DRDEL-CT
2800 Powder Mill Road
Adelphi, MD 20783

Commander
US Army Electronics Research & Development Command
ATTN: DRDEL-PAO (M. Singleton)
2800 Powder Mill Road
Adelphi, MD 20783
Commander
US Army Concepts Analysis Agency
ATTN: CSCA-SMC (Mr. Hal E. Hock)
8120 Woodmont Avenue
Bethesda, MD 20014

Dr. A. D. Belmont
Research Division
Control Data Corporation
P.O. Box 1249
Minneapolis, MN 55440

Director
National Security Agency
ATTN: CSCA-SMC (Mr. Hal E. Hock)
8120 Woodmont Avenue
Bethesda, MD 20014

Director
US Army Engr Waterways Experiment Station
ATTN: WESEN (Mr. James Mason)
P.O. Box 631
Vicksburg, MS 39180

Chief
Intelligence Materiel Development
& Support Office
US Army Electronic Warfare Laboratory
ATTN: DELEW-I (LTC Kenneth E. Thomas)
Fort George G. Meade, MD 20755

Dr. Jerry Davis
Department of Marine, Earth
and Atmospheric Sciences
North Carolina State University
Raleigh, NC 27650

The Johns Hopkins University
Applied Physics Laboratory
ATTN: Dr. Michael J. Lun
John Hopkins Road
Laurel, MD 20810

Commander
US Army Research Office
ATTN: DRXRO-GS (Dr. Leo Alpert)
P.O. Box 12211
Research Triangle Park, NC 27709

Science Applications Inc.
ATTN: Mr. G. D. Currie
15 Research Drive
Ann Arbor, MI 48103

Science Applications Inc.
ATTN: Dr. Robert E. Turner
15 Research Drive
Ann Arbor, MI 48103

Commander
US Army Tank-Automotive Research
& Development Command
ATTN: DRDTA-ZSC (Mr. Harry Young)
Warren, MI 48090

Commander
US Army Armament Research
& Development Command
ATTN: DRDAR-AC (Mr. James Greenfield)
Dover, NJ 07801
Commander
US Army Armament Research
& Development Command
ATTN: DRDAR-TSS (Bldg #59)
Dover, NJ 07801

Commander
US Army Armament Research
& Development Command
ATTN: DRCM-CAWS-EI (Mr. Peteris Jansons)
Dover, NJ 07801

Commander
US Army Armament Research
& Development Command
ATTN: DRCPM-CAWS-EI (Mr. G. H. Waldron)
Dover, NJ 07801

Director
Joint Project Manager
for Navy/USMC SAL GP
ATTN: DRCPM-CAWS-NV (CPT Joseph Miceli)
Dover, NJ 07801

Commander/Director
US Army Combat Surveillance & Target
Acquisition Laboratory
ATTN: DELCS-I (Mr. David Longinotti)
Fort Monmouth, NJ 07703

Commander/Director
US Army Combat Surveillance & Target
Acquisition Laboratory
ATTN: DELCS-PE (Mr. Ben A. Di Campli)
Fort Monmouth, NJ 07703

Commander/Director
US Army Combat Surveillance & Target
Acquisition Laboratory
ATTN: DELCS-R-S (Mr. Donald L. Foiani)
Fort Monmouth, NJ 07703

Director
US Army Electronics Technology &
Devices Laboratory
ATTN: DELET-DD (S. Danko)
Fort Monmouth, NJ 07703

Project Manager
FIREFINDER/REMBASS
ATTN: DRCPM-FFR-TM (Mr. John M. Bialo)
Fort Monmouth, NJ 07703

Commander
US Army Electronics Research
& Development Command
ATTN: DRDEL-SA (Dr. Walter S. McAfee)
Fort Monmouth, NJ 07703

OLA, 2WS (MAC)
Holloman AFB, NM 88330

Commander
Air Force Weapons Laboratory
ATTN: AFML/WE (MAJ John R. Elrick)
Kirtland, AFB, NM 87117

Director
USA TRADOC Systems Analysis Activity
ATTN: ATAA-SL
White Sands Missile Range, NM 88002

Director
USA TRADOC Systems Analysis Activity
ATTN: ATAA-SL (Dolores Anguiano)
White Sands Missile Range, NM 88002

Director
USA TRADOC Systems Analysis Activity
ATTN: ATAA-TDB (Mr. Loufe Dominguez)
White Sands Missile Range, NM 88002

Director
USA TRADOC Systems Analysis Activity
ATTN: ATAA-TDB (Mr. William J. Leach)
White Sands Missile Range, NM 88002

Director
USA TRADOC Systems Analysis Activity
ATTN: ATAA-TGP (Mr. Roger F. Willis)
White Sands Missile Range, NM 88002

Director
Office of Missile Electronic Warfare
ATTN: DELEW-M-STO (Dr. Steven Kovel)
White Sands Missile Range, NM 88002

Office of the Test Director
Joint Services EO GW CM Test Program
ATTN: DRXDE-TD (Mr. Weldon Findley)
White Sands Missile Range, NM 88002

Commander
US Army White Sands Missile Range
ATTN: STEWS-PT-AL (Laurel B. Saunders)
White Sands Missile Range, NM 88002
Commander
US Army R&D Coordinator
US Embassy - Bonn
Box 165
APO New York 09080

Grumman Aerospace Corporation
Research Department - MS AO8-35
ATTN: John E. A. Selby
Bethpage, NY 11714

Rome Air Development Center
ATTN: Documents Library
TSLD (Bette Smith)
Griffiss AFB, NY 13441

Dr. Roberto Vaglio-Laurin
Faculty of Arts and Science
Dept. of Applied Science
26-36 Stuyvesant Street
New York, NY 10003

Air Force Wright Aeronautical Laboratories/
Avionics Laboratory
ATTN: AFWAL/AARI-3 (Mr. Harold Geltmacher)
Wright-Patterson AFB, OH 45433

Air Force Wright Aeronautical Laboratories/
Avionics Laboratory
ATTN: AFWAL/AARI-3 (CPT William C. Smith)
Wright-Patterson AFB, OH 45433

Commandant
US Army Field Artillery School
ATTN: ATSF-CF-R (CPT James M. Watson)
Fort Sill, OK 73503

Commandant
US Army Field Artillery School
ATTN: ATSF-CD-MS
Fort Sill, OK 73503

Commandant
US Army Field Artillery School
ATTN: ATSF-CF-R
Fort Sill, OK 73503

Commandant
US Army Field Artillery School
ATTN: NOAA Liaison Officer
(CDR Jeffrey G. Carlen)
Fort Sill, OK 73503

Commandant
US Army Field Artillery School
Morris Swett Library
ATTN: Reference Librarian
Fort Sill, OK 73503

Commander
Naval Air Development Center
ATTN: Code 301 (Mr. George F. Eck)
Warminster, PA 18974

The University of Texas at El Paso
Electrical Engineering Department
ATTN: Dr. Joseph H. Pierluissi
El Paso, TX 79968

Commandant
US Army Air Defense School
ATTN: ATSA-CD-SC-A (CPT Charles T. Thorn)
Fort Bliss, TX 79916

Commander
HQ, TRADOC Combined Arms Test Activity
ATTN: ATCAT-OP-Q (CPT Henry C. Cobb, Jr.)
Fort Hood, TX 76544

Commander
HQ, TRADOC Combined Arms Test Activity
ATTN: ATCAT-SCI (Dr. Darrell W. Collier)
Fort Hood, TX 76544

Commander
US Army Dugway Proving Ground
ATTN: STEDP-MT-DA-L
Dugway, UT 84022

Commander
US Army Dugway Proving Ground
ATTN: STEDP-MT-DA-M (Mr. Paul E. Carlson)
Dugway, UT 84022

Commander
US Army Dugway Proving Ground
ATTN: STEDP-MT-DA-T (Mr. John Trethewey)
Dugway, UT 84022

Commander
US Army Dugway Proving Ground
ATTN: STEDP-MT-DA-T (Mr. William Peterson)
Dugway, UT 84022
Director
US Army Night Vision & Electro-Optics Laboratory
ATTN: DELNV-VI (Mr. Thomas W. Cassidy)
Fort Belvoir, VA 22060

Director
US Army Night Vision & Electro-Optics Laboratory
ATTN: DELNV-VI (Mr. Richard J. Bergemann)
Fort Belvoir, VA 22060

Commander
US Army Training & Doctrine Command
ATTN: ATCD-AN
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: ATCD-AN-M
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: ATCD-F-A (Mr. Chris O'Connor, Jr.)
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: ATCD-IE-R (Mr. David M. Ingram)
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: ATCD-M-I/ATCD-M-A
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: ATDC-TA (Dr. Marvin P. Pastel)
Fort Monroe, VA 23651

Department of the Air Force
OL-I, AWS
Fort Monroe, VA 23651

Department of the Air Force
HQS 5 Weather Wing (MAC)
ATTN: 5 WW/DN
Langley Air Force Base, VA 23655

Commander
US Army INSCOM/Quest Research Corporation
ATTN: Mr. Donald Wilmot
6845 Elm Street, Suite 407
McLean, VA 22101

General Research Corporation
ATTN: Dr. Ralph Zirkind
7655 Old Springhouse Road
McLean, VA 22102

Science Applications, Inc.
ATTN: Dr. John E. Cockayne
8400 Westpark Drive
McLean, VA 22102

US Army Nuclear & Chemical Agency
ATTN: MONA-WE (Dr. John A. Berberet)
7500 Backlick Road, Bldg 2073
Springfield, VA 22150

Director
US Army Signals Warfare Laboratory
ATTN: DELSW-EA (Mr. Douglas Harkleroad)
Vint Hill Farms Station
Warrenton, VA 22186

Director
US Army Signals Warfare Laboratory
ATTN: DELSW-OS (Dr. Royal H. Burkhardt)
Vint Hill Farms Station
Warrenton, VA 22186

Commander
US Army Cold Regions Test Center
ATTN: STECR-TD (Mr. Jerold Barger)
APO Seattle, WA 98733

HQDA (SAUS-OR/Hunter M. Woodall, Jr./Dr. Herbert K. Fallin)
Rm 2E 6:4, Pentagon
Washington, DC 20301

COL Elbert W. Friday, Jr.
OUSDRE
Rm 30 129, Pentagon
Washington, DC 20301

42. Gillespie, James B., and James D. Lindberg, "A Method to Obtain Diffuse Reflectance Measurements from 1.0 and 3.0μm Using a Cary 17I Spectrophotometer," ECOM-5806, November 1976.

53. Rubio, Roberto, and Mike Izquierdo, "Measurements of Net Atmospheric Irradiance in the 0.7- to 2.8-Micrometer Infrared Region," ECOM-5817, May 1977.

