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FOREWORD

This technical report is submitted to the Georgia Institute of

l

i ‘ Technology to comply with the report requirements of contract 1-A-2550,
" which is a subcontract under United States Navy contract N-00039-80-C-
;- ‘ 0032. This report is published in four parts, each separate and inde-
| i pendent of the others. The final technical report of this contract is

due to be submitted in September, 1981.
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REPORT SUMMARY

Auburn University, under contracts N66314-73-C-1565, N66314-74-C-1352,
N66314-74-C-1634, N00228-75-C-2080, N00228-76-C-2069, and N00228-78-C-2233
with the United States Navy, and has investigated various aspects of the
Marine Air Traffic Control and Landing System (MATCALS). This report
contains the results of the continuation of these investigakions under
contract 1-A-2550 with the Georgia Institute of Technology. Aﬁhe report
is organized into three main sections, namely Part Two, Part Three, and
Part Four. Part Two contains the results of an investigation into re-
placing the a-h filter in the MATCALS digital controller with an observer,
in order to reduce the effects of radar noise. Part Three presents a cen-
troid algorithm based up return amplitude-versus-angle signature. Part
Four presents an investigation of adaptive filtering algorithms for the
MATCALS system. ..

1

Observer Design

Presently a problem exists in the closed-loop control of the MATCALS
system due to the noise generated in AN/TPN 22 radar. An «-8 filter
in the flight dynamic and control module is employed to reduce the noise
effects while estimating the position and the velocity of the aircraft.
An observer may also be used to estimate the status of the aircraft. Part
Two of this report presents the results of an investigation of the
replacement of the a-g filter with an observer.

1
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Figure 1-1 shows the F4J aircraft lateral control system containing
the a-g filter. Figure 1-2 shows the same system with the a-g filter
replaced by an observer. The techniques for designing an observer are
simple; however, these techniques do not completely specify the observer.
Certain parameters in the observer must be obtained by trial and error.
The criteria used to determine these parameters are explained in Chapter
3 of Part Two.

Figure 1-3 gives a typical reponse of the lateral control system of
the F4J aircraft for the final sixty seconds of flight before touchdown.
The inputs to this simulation were radar noise and wind turbulence, both
of which are disturbances; It is seen that the observer control system
reponds less to the disturbances than does the a-g8 filter control system.

Table 1-1 presents the results of a Monte Carlo simulation based on
twenty simulations. The column labeled r.m.s. is the root-mean-square
value of the lateral displacement of the aircraft from the extended
centeriine of the runway for the final sixty seconds of flight. It is
seen that the observer improves the system response to the radar noise,
but degrades the system response to the wind turbulence.

These studies will continue. The parameters of the observer which

were obtained by trial and error are probably not optimal. Hence future

investigations will be directed toward a better choice of these parameters.

Radar Centroid Investigation

A method of estimating the centroid location of a target utilizing

scan return amplitude-versus-angle information is introduced in Part

Three. The method is compared to three thresholding estimators and a first

moment estimator in a computer-simulated automatic landing system.
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7

It was found that the method introduced was the most robust and ac-
curate of the estimators in noise, due to its unique scan rejection
capability. In periods of high signal-to-noise ratio the method had less
error than the thresholding methods, and was similar in ability to the
first moment estimator. Further, the pulse transmissions required to ob-

tain a desired level of performance was much reduced from the thresholding

methods employed in the simulation.

Adaptive Filtering Algorithms

Two approaches to adaptive filtering applicable to the MATCALS system
are presented in Part Four. The first approach is based upon adaptively
selecting the output from either a fixed parameter a-g8 or a fixed parameter
a-g-y filter. This selection is determined by an algorithm which incor-
porates an estimate of the tracking error correlation coefficient. The
second approach is based upon an algorithm which automatically adjusts the

parameters of an -8 filter to adapt to the dynamics under track.
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THE DESIGN OF OBSERVERS
FOR THE MATCALS SYSTEM

ABSTRACT

An observer is designed for a reduced order system that represents
the lateral system of the F4J aircraft in an automatic landing configura-
tion. This observer is to be used in the aircraft's lateral control sys-
tem to estimate its lateral position and lateral velocity. The system
currently uses an a-g8 filter to estimate position and velocity. The ob-
server is designed to replace the «-8 filter without significantly chang-
ing the characteristics of the system. Results that are obtained from
simulations of the F4J aircraft lateral control system indicate that the

observer improves the system's response.
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I. INTRODUCTION

The design of control systems for the automatic landing of aircraft
has received considerable attention in recent years. Much of this atten-
tion has been directed towards military purposes. One such automatic
landing system has been developed for the U.S. Navy and is called the Ma-
rine Air Traffic Control and Landing System (MATCALS). During the opera-
tion of the MATCALS control system, a considerable amount of noise is
produced. This noise is present in such a significant amount that the
quality of the control system's performance is greatly degraded. The pur-
pose of this report is to present a method that can be used to improve
the MATCALS control system's performance. This method consists of incor-
porating an observer into the contraol system.

The method of incorpokating an observer into the MATCALS control
system is illustrated in this report by employing a simultation of a con-
trol system of an individual aircraft. The control system simulation to
be used is that of the lateral control system of the F4J aircraft. Once
an observer has been incorporated into this control system simulation, re-
sults will be presented to show the effect that the observer has on the
performance of the control system.

A discussion of observers is given in Chapter II. This discussion
includes a definition of observers and how they are designed. A general
description of the MATCALS control system and a detailed description of

the F4J aircraft lateral control system is presented in Chapter III. This
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detailed description is directed towards the simulation of the F4J air-
craft lateral control system. The process of designing an observer fcr
the lateral control system is given in Chapter IV. Chapter V presents a
discussion of the effectiveness of the observer when used in the F4J air-

craft lateral control system.
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II. OBSERVERS

In optimal control theory, the design of the controlling device is
often developed on the assumption that all the states of the system being
controlled are in some way available for direct measurement. By knowing
the system's states, along with a description of its dynamics, the fu-
ture behavior of the system can be determined. One way of determining
this future behavior is through the use of the system's state equation
model (2-1). With all this information available, a scheme can then be
developed where an input can be calculated to control the system in the
least costly manner. The system model of linear, time-invariant dis-

crete-time system can be expressed as

x(k+1) = Ax(k) + Bu(k) (2-1)
where

x(k) is an nx]1 state vector

u(k) is an mx1 input vector

A is an nxn system matrix

B is an nxm input distribution matrix
Associated with this system equation is an output matrix equation

y(k) = Cx(k) (2-2)
where

y(k) is an px] output vector
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C is an pxn output matrix

An unfortunate aspect of modern control theory is that in most
realistic systems the total state vector is not available for direct
measurement. So either this way of controlling a system is impractical,
or a method of evaluating an exceptable estimation of the state vector
must be found. This need for a means to estimate the state vector has
led to the development of observers. The observer, sometime known as an
estimator, was first purposed and developed by Luenberger [1] - [3]. An
observer-estimator will be defined as a system that reconstructs the
state vector of another system.

Actually, almost any system may be used as an observer-estimator
[4]. A1l that is needed is to use the input and the output of the sys-
tem that is to be observed as the inputs to the system being used as the
observer. Now the state vector of the observer will be some linear trans-
form of the state vector of the original system. However, using this
type of observer scheme does not guarantee the quality of the estimated
state vector. But, realizing that almost any system can be used as an

observer shows the freedom in the design of observers.

Observability

Prior to the designing and the implementation of an observer, it is
necessary to determine if the system that is to be observed is in fact
observable. If the system in question is described by (2-1) and (2-2)
the observability of the system can be confirmed if the following is

true [6]:
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II.

The system of (2-1) and (2-2) is observable if every
dynamic mode in the system matrix A is connected to
the output vector y(k) through the output matrix C.
The system of (2-1) and (2-2) is observable, if for

any initial value x(0), there is a finite N such that

x(0) can be computed from the observations of y(0),

y(1)s ...y y(N-T).

An analytical test for observability will be developed according to def-

inition II.

Let the inputs, u(k), to the system be zero and set the initial

values x(0) = Xg. The system is now described by

y(k)

x(0)

x(k#1) = Ax(k)

Cx(k)

Xy

The outputs y(k), for k = 0, 1, 2, ..., N are

y(N-1) = caN-]

¥(0) = cx(0) = Cxg
¥(1) = €x(1) = CAx(0) = CAx,
y(2) = cx(2) = cAx(1) = cAZx(0) = cAZx

=0

Xq

Putting these into matrix form gives

(2-3)
(2-4)

(2-5)

) ma—— - ———
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y(1) CA
= X, (2-6)
N-1
L x(N-1)_ | CA J

To solve for the vector Xy it is necessary for the coefficient matrix
to be invertable, and to be invertable a matrix must be nonsingular. It
is readily apparent that the number of columns of the coefficient matrix
is the same as the order of the system, n, and that the number of rows
of the matrix is N. Therefore, if N is less than n (2-6) is unsolvable
for Xg» and if N is greater than n, rows CA", CA"+1, on up to caV-1 win
be added. But, by the Cayley-Hamilton Theorem [7], it can be shown that
these new rows will be linear combinations of the lower order rows;
therefore, these new rows will not increase the rank of the matrix.
Thus, if the system of (2-1) and (2-2) is to be observable, the coeffi-

cient matrix of (2-6) must be of rank n. Therefore the test for observ-

ability is that the (square) matrix, o,

- -

c

CA

CA2

(2-7)

cAn-]

=N -

must be nonsingular.
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For convenience, the system described by (2-1) and (2-2) will be

assumed observable throughout the remainder of this chapter.

Design

A review of the Titerature indicated that there are two different
design procedures of observers for discrete systems. The first of these
was develcped by Tse and Athans, [4] - [5], and the second procedure was
found in a book by Franklin and Powell [6]. The design procedure of
both are based on the idea that all available information is to be used;
i.e., both the inputs and the outputs of the system to be observed will
be used. These input and output signals should be as noiseless as pos-
sible for best results. If noise is a significant problem, then the use

of a Kalman filter to estimate the state vector should be investigated

[6].

Tse-Athans Observer

This observer design was developed for a linear time-varying dis-
crete system. However, since the time-invariant system is just a more
restricted case of the time-varying system, the design is applicable to
this case.

Before starting the description of this design, the following def-
initions and conditions must be given.

Let Mab denote the set of axb real valued matrices. The expression
H e Mab will read: the matrix H is an element of the set of matrixes Ma
If a < b then the null space of a matrix H ¢ Mab will be denoted by N[H]

where

N[H] = fa; Ha = 0.} (2-8)
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where o is an bx1l vector and 9, is the zero axl vector.

Now let the matrix C ¢ Mpn be of rank p; then the set

e[C;p,s,n] = (T ¢ Msn:N[T] nNe) = Q"} (2-9)

This set is called the set of complimentary matrices of order s for the

1 matrix C if s>n-p. For a more complete description of these definitions

see [4] and the references therein.

7

i‘ Suppose the state equation model of (2-1) and (2-2) is the system

{" to be observed.

2 x(k+1) = Ax(k) + Bu(k) (2-1)
y(k) = Cx(k) (2-2)

’\ An observer can be designed which has a state equation model of

| 2(k41) = F2(k) + Gu(k) + Dy(K) (2-10)

where

2z(k) is an sx1 state vector of the ~gserver

u(k) is an mx1 input vector of the system

y(k) is an px1 output vector of the system

F is an sxs system matrix of the observer
G is an sxm input distribution matrix of the observer
)

is an sxp output distribution matrix of the observer

This system is called an s-order observer where s can take on any integer
value greater than or equal to n-p.

With the appropriate choice of the initial value of z(0) and the

sxn matrix T, the following will be true.

z(k) = Tx(k) (2-11)

{
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where z(0) will be a guess and the matrix T will conform to

T e [C; p, s, n] (2-12)
The matrix T fits this condition if and only if there exist an nxs P
matrix and an nxp V matrix such that

PT+VC =1 (2-13)

where the matrix I is an nxn identity matrix.

With the chosen T matrix and (2-13) satisfied, the matrices F, D,

and G can be evaluated by

F = TAP (2-14a)
D = TAV (2-14b)
G = TB (2-14c)

where the matrices P and V satisfy (2-13) and A and B come from (2-1) of

the original system. Substituting (2-14) into (2-10) we get
z(k+1) = TAPz(k) + TBu(k) + TAVy(k) (2-15)

Equation (2-15) can be shown to be an observer of the system de-

scribed in (2-1) and (2-2) by evaluating

z(k+1) - Tx(k+1) =

TAPz(k) + TBu(k) + TAVy(k) - TAx(k) - TBu(k)
TAPz(k) + TAVy(k) - TAx(k)

TAPz(k) + TAVCx(k) - TAx(k)

Solving for VC from (2-13),
v =1 - PT

Then

Rt E sk W, a _iada . Aomn -
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2(k+1) - Tx(k#1)

TAPz(k) + TA[I-PT]x(k) - TAx(k)
TAPz(k) + TAx(k) ~ TAPTx(k) - TAx(k)
TAP{z(k) - Tx(k)] (2-16)

Therefore if the initial value z(0) is chosen to be Tx(0), z(k+1) is
equal to Tx(k+1) and the observer described by (2-15) will be an observer

of the system described by (2-1) and (2-2).

Now that an observer design has been developed, a way to reconstruct

the state vector, x(k) will be shown. Let the nxl vector gﬂk) be given
by
x(k) = Pz(k) + Vy(K) (2-17)

The vector i(k) can be shown to be an estimate of the state vector x(k)
by substituting for z(k) and y(k) with (2-11) and (2-2) respectively.
Thus

x(k) = PTx(k) + VCx(k)
= [PT + vCIx(k)
Therefore
x(k) = x(k)

using (2-13). It is necessary here, as it was for the observer equation
in (2-15), that for good results a good choice of z(0) is required. That

is,
z(0) = Tx(0) (2-18)

In other words, knowledge of the initial values of the originals system
states is necessary. If the values chosen for the initial z(0) are in

10
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error, then this error will be propagated on through the sequential
values of z(k). A pictorial representation of {2-15) and (2-17) is

shown in Figure 2-1.

Franklin-Powell QObserver

The approach taken by Franklin and Powell to observe the state vec-

tor of the system
x(k+1) = Ax(k) = Bu(k) (2-1)
y(k) = Cx(k) (2-2)

was, at first, to build a model of the original system and then just mea-
sure the readily available state vector of this model. The state equa-

tion of this observer is
x(k+1) = Ax(k) + Bu(k) (2-19)

where the vector i(k) will be the estimate of the state vector x(k).
This scheme of observing the state vector of the original system should
work if the initial values of g(o) can be set equal to the initial values
of x(0) and if an accurate system model is available. This “open-loop"
observing scheme is shown in Figure 2-2.

However, if the initial value of i(O) is incorrect then the estima-
tion of the future values of the state vector will also be incorrect.

The error of these estimates will be defined as i(k), where
x(k) = x(k) = x(k) (2-20)
Then the error's difference equation is

x(k+1) - x(k+1) = Ax(k) + Bu(k) - Ax(k) - Bu(k)
x(k+1) = Ax(k) (2-21)

11
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As can be seen, the error's dynamics are the same as the original system's

dynamics. Thus if the system is always in motion then the error will al-

so be in motion with the same dynamics; therefore the error will not
disappear.

A way to compensate for this error is to feed back the difference

between the measured output of the original system and the corresponding

output of the observer, as is shown in Figure 2-3. The feeding back of

this difference signal will constantly correct the observer, thereby min-
imizing the error ijk). The state equation of this scheme is
x(k+1) = Ax(k) + Bu(k) + L[y(k) - Cx(k)] (2-22)

where the gain matrix L will be nxp. Gathering terms will give the fol-

lowing state equation

x(k+1) = [A-LCIx(k) + Bu(k) + Ly(k)

(2-23)
Again a difference equation is found for the error
x(k#1) - x(k+1) = Ax(k) + Bu(k) - Ax(k) - Bu(k)
- Ly(k) + LCx(k)
Substituting for y(k) with (2-2) yields
x(k#1) = Ax(k) - Ax(k) - LCx(k) + LCx(k)
x(k+1) = [A-LCIx(K) (2-24)

Now the error dynamics are seen to be determined by the matrix [A-LC],
and with a proper choice of the matrix L, the error's dynamics and thus
the observer's dynamics, can be made "faster”, thereby causing i(k) to
converge to zero in a more satisfactory manner than in the "open-loop"

observer. To say this another way, the vector i(k) will converge to the

14
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state vector x(k) faster regardless of the value of i(o), if a good
choice of the gain matrix L is made.

Another advantage of this "closed-loop" observer over the "open-
loop" observer is that if the matrices A and B of the observer are not
exactly the same as the matrices A and B of the system, the error caused
by these inaccuracies are made acceptably small.

The determination of the gain matrix L can be done in two different
ways. The first way is by matching coefficients and the second is to use
Ackermann's estimation formula. Both ways assume that the desired pole

locations of the observer are known.

Matching Coefficients. The matching coefficient technique of cal-

culating the gain matrix L is the "brute force" method. First it is
necessary to expand the determinant

o (2) = |zl - [A-LC]| (2-25)

which will give the characteristic polynomial of the observer in terms
of the elements of the matrix L. Next, the desired observer characteris-

tic polynomial is expanded.
afz) = (z-P])(z-Pz) cee (z-Pn) (2-26)

where the Pi's are the desired pole location of the observer. A1l that
is needed now is to set aL(z) of (2-25) equal to a(z) of (2-26) and

solve for the elements of the gain matrix L.

Ackermann’s Formula. For a sinale-output system, a more systematic

method of computing the gain matrix L is through the use of Ackermann's

Formula
15
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cAZ :
L = o(A) . (2-27)
: 0
il 1
b - L -

The polynomial a(A) is the observer's desired characteristic polynomial
described in (2-26), with the complex variable z replaced by the system
matrix A. The coefficient matric that has the rows of C, CA, CAZ, .o
CA"'], is recognized to be the observability matrix, s, described in
(2-7). This matrix is square, since the C is a row matrix. Finally the
vector of zeroes and one 1 is an nx1 unit vector. The development of
Ackermann's Formula is given in Appendix A, and a BASIC program to com-

pute the gain matrix L, based on Ackermann's Formula, is given in Appendix

Reduced Order QObserver

The reconstruction of the entire state vector of a system is not
necessary, when some of the system states are directly measurable.
Therefore, it is not necessary for the observer to have the same order
as the system. The minimum order that an observer can have is no less
than n-p, where n is the order of the system being observed and p is the
rank of the output matrix. In other words there is no need to recon-
struct states that are already available from the output of the original
system. But, if there is significant noise on the measurements of the

system, better results are obtained with the use of a full order observer.

16
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Again, take the system described by (2-1) and (2-2)

x(k+1) = Ax(k) + Bu(k)

y(k) = Cx(k)

The state vector, x(k), can be divided into two parts.

(2-1)

(2-2)

The first con-

tains the states that are measured, 5a(k)’ and the second contains the

states that are not measured, 5b(k). This division gives the following

partitioned system state equations

Uk 1 Raa fRap (15001 By
§b(E+T) Abai Abb 5b(E7 By | =

"
—
-y
o
—
>
———
»
~—

y(k)

Solving for the measured and ummeasured states gives

Xy (KH1) = A, % (K) + A% (K) + B u(k)

X (k#1) = A x (k) + A x, (k) + Bpu(k)

(2-28)

(2-29)

(2-30)

Equation (2-30) can be treated as a system's state equation with the

(n-p)x1 vector 5b(k) as the state vector and the (n-p)x{(n-p) matrix Aoh

as the system matrix. The other two term, A

5a(k) and Bbg(k) are known,

so therefore they can be treated as the input. With equation (2-30)

treated as just described, equation (2-29) can be used as the output

matrix equation, where the matrix A ab will be the px(n-p) output matrix

and the output is seen to be equal to X, (k+1) -

Summarizing the above substitutions

A « Abb

17
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Bu(K) « Apx, (k) + Buu(k)
$(K) < 2 (k#1) = AL, (k) - BLu(k)

C « Aab

and using these in the observer equation (2-22) will give the following

reduced-order observer equation
xp(k#1) = A x (k) + A x. (k) + B u(k)

+ LIx, (k+1) - AyaZa (k) - B u(k) - Aab&b(k)] (2-31)
Gathering terms and rewriting gives
x, (k#1) = [A, L Aab]gb(k> + [A-L A, Jx, (K)

+ [Bb-L Ba]gjk) + L §a(k+1) (2-32)

The error state equation can be derived by subtracting (2-31) from
(2-30)

5b(k+1) - gb(k+1)

* ApaXa (k) + Appxp(k) + Bpu(k)

'Abbﬁb(k) - Abaga(k) - Bbg(k)
- LIx, (k+1) - Aaa5a(k) - B,u(k) - Aab5b(k)
= AppXp(k) = Apxp (k) - Llx, (k1) - A x (k) - B,u(k)
- Aablb(k)]

Substituting (2-29) in for 5a(k+]) gives

Ep (k1) = Apx (k) = Ay x(k) - LIA %, (k) = A, x(K)]

-

= A x (k) - LA

bbb ab%p(K)

18
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= [Ayp - LA Ix, (K) (2-33)

As can be seen, the matrix L can be used again to make the error vectcr
i(k), converge to zero relatively "fast". The gain matrix L, can be cal-

culated as described above if L Aa is substituted for LC in (2-25) or by

b

substituting Aab for C and A, for A in (2-27).

bb

Unknown Inputs

In the observer design procedures presented in this chapter, it has
been assumed that all the inputs to the system to be observed are known.
But in the real world there are a large percentage of systems that have
unknown inputs, such as noise. Therefore, a method to observe the state
vector of a system must be found where the need to know all inputs is
eliminated. Otherwise the observer can be designed just for the known
inputs and the unknown inputs are ignored. If the latter scheme is used,
it is hoped that the resuliting error will be small.

A way to modify the observer design in such a way that the unknown
inputs are not required was purposed by Wang, Davison, and Dorato [8].
This design modification can be used with the Franklin-Powell reduced
order observer design. This is true, since in the observer state equa-
tion, (2-32) the input distribution matrix is calculated using the vari-
able gain matrix L. This calculation is seen to be [Bb -L Ba]‘ Now,
for example, assume that the system to be observed has two inputs, such
that u](k) is known and uz(k) is unknown. The idea now is to find a
matrix L that will make the second column of the matrix [Bb -L Ba] van-
ish. In this way no matter what the unknown input uz(k) does, the

observer will operate properly. It should be noted that if this

19
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modification is used, the freedom of picking the pole locations of the
observer is forfeited. Therefore, the L matrix found by this method
should be examined, because the poles that correspond to this calculated
L matrix might not be satisfactory. In fact this L matrix could make

' the observer an unstable system.

o Comment on Pole Locations

. The process of picking the observer's pole locations is restricted
by only one rule; that is, the chosen pole locations should not cause the
observer to be unstable. In practice, the observer's roots are picked

so that the observer will be somewhat faster than the system being ob-
served. The upper limit to the observer's speed is restricted by how
much noise there is on the measurements and by how well the system has
been modeled, e.g., have any inputs been ignored. This limit can be
determined by simulation, or perhaps some optimizing technique could be
developed. Very little information has been found in the literature tn

aid in the choice of the pole locations.
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ITI. SYSTEM DESCRIPTION AND SIMULATION

The system that is to be studied in this paper is, in general, the
MATCALS control system. This control system is used in the automatic
landing of aircraft. The system consists of three basic parts: the air-
craft itself, the radar unit, and the controlling unit. During the opera-
tion of this control system, the radar unit measures the approximate
vertical and lateral positions of the aircraft, which are then transmitted
to the land-based controlling unit. From these approximations the con-
trolling unit calculates appropriate bank and pitch commands. These com-
mands are then transmitted to the aircraft autopilots, which in turn cause
the aircraft to respond accordingly. A diagram showing this operation of
the MATCALS comtrol system is given in Figure 3-1. A detailed discussion
of the MATCAL§fcontro] system is given in Reference [10].

To fa@fﬁitate the study of the MATCALS control system, FORTRAN IV
programs have been developed at Auburn University to simulate the system.
Two simulation prog#ams are available: one for the F4J aircraft control
system, and one for the AE7 aircraft control system [9]. In both of these
simulations, the control system is divided into two uncoupled subsystems,
i.e., a lateral control system and a vertical control system. The study
that is to be carried out in this paper will be accomplished through the
use of one of these control system simulation programs. Of the four pro-

grams available, the program for the lateral control system of the F4J

21
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aircraft was selected. A description of this Tateral control system and
its simulation program will now be given. A listing of the simulation

program is given in the appendix.

The F4J Aircraft's Lateral Control System

A general description of the lateral control system of the F4J air-
craft and the simulation of this system is obtained from the block diagram
given in Figure 3-2. From this diagram, it is seen that the control sys-
tem is modeled as a sampled-data system containing a digital filter. In
this model, the continuous part of the system is the aircraft lateral
system, and the digital filter is the controlling unit. The sampling ef-
fect of this system is modeled in the radar unit. Even though this con-
trol system and its simulation program are constructed to be able to
operate at various sampling rates, the work presented in this paper will
be accomplished with the sampling period T set to 0.1 seconds. A more
involved description of this lateral control system, and how it is simu-
lated, will now be provided through a discussion of the three parts of

the block diagram given in Figure 3-2,

F4J Aircraft's Lateral System

The dynamics of the F4J aircraft's lateral airframe are described by
a sixth order linear differential equation. This differential equation is
presented in Reference [9]. As is shown in this reference, the six states
of this differential equation represent six physical variables of the air-
craft's lateral airframe. These variables are 1isted below along with

their respective symbols.
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Figure 3-2. Block Diagram of F4J Aircraft Lateral Control System.
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aé(t) - roll angle perturbation
Ap(t) - yaw angle perturbation
a8{t) - perturbation in the angle of side slip

ap’t) - perturbation in the angle of the x-axis

e —_—— e -

§ - ar(t) - perturbation in the angle of the z-axis

q(t) - lateral distance from the extended centerline
of the runway

- iy =

To complete the description of the F4J aircraft lateral dynamics,
the autopilot dynamics must be combined with the dynamics of the aircraft's
lateral airframe. The autopilot dynamics are described by a third order
nonlinear differential equation [9]. The three nonlinearities of the
autopilot are of the limiter type. Therefore, the complete description
of the F4J aircraft's lateral dynamics is given by a ninth order nonlinear
differential equation. This description is expressed in a continuous

state matrix equation of the form

x(t) = Ax(t) + Bu(t) + EF(t) (3-1)
p where

; x(t) is the 9x1 state vector

u(t) is the 2x1 input vector

f(t) is the 3x1 nonlinearity vector

{ A is the 9x9 system matrix

w0

is the 9x2 input distribution matrix

i £ is the 9x3 nonlinearity distribution matrix

These vectors and matrices will now be de..ribed as they are found in the

simulation.

25
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The state vector. As is mentioned above, six of the nine states of

the state vector x(t) represent physical variables of the aircraft's
lateral airframe. The remaining three states are contributed by the
autopilot and represent no physical variables. The following vector gives

the assigmment of the states in the simulation program.

————

x](t)q as(t) |7
xo(t) ay(t)
‘ x3(t) s8(t) >—Airframe States
~ xg(t) | | sp(t)
x(t) = xs(t) = | ar(t) (3-2)
xg(t) q(t) |/
x7(t) x7(t)
x8(t) x8(t) Autopilot States
| xglt) | | xg(t)

The input vector. There are two inputs to the F4J aircraft lateral

system. These inputs are the bank command input ¢(t) and the wind input
w(t). The positions of these two inputs in the input vector u(t) are
1 o(t)

u(t) = (3-3)
w(t)

The bank command input is produced by the controlling unit; therefore it

is known. The wind input, on the other hand, is not known. This input is
modeled in the control system simulation program by a random number gener-

ator.

The nonlinearity vector. The vector f(t) describes the nonlinearities

that are contained in the aircraft lateral autopilot. This vector is
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f(t)
£(t) =] f,(t) (3-4)
f3(t)
The three nonlinear functions f](t), fz(t), and f3(t) are given in Table

3-1.

The matrices. The matrices A, B, and E of the state equation, (3-1),
that describes the F4J aircraft lateral dynamics are presented in Table
3-2.

To model the continuous F4J aircraft lateral system in the simula-
tion program, an integration algorithm is required. This algorithm is the
fourth-order Runge-Kutter integration procedure. This procedure is de-
scribed in Reference [11], and is given in the simulation listing in

Appendix D.

Radar Unit

The radar unit used in the lateral control system of the f4J air-
craft is the AN/TPN-22 phased array radar [12]. The purpose of this radar
unit is to periodically determine the aircraft's lateral position. Unfor-
tunately, in the process of determining the lateral position, a signifi-
cant amount of noise is produced. The combination of this noise and the
afrcraft's sampled lateral position forms the radar output signal.

The description of the simulation of this radar unit will now be
presented. This description will be given in three steps. First it will
be shown how the lateral position of the aircraft is obtained from the

simulation of the aircraft lateral dynamics. Next the effects of sampling
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fz(t) =

fa(t) =

14.0

¢(t)
-14.0

let

Table 3-1.

Nonlinear Functions.

if  e(t) > 14.0
if  |e(t)|< 14.0
if  ¢(t) <-14.0

n(t) = 171.9*x,(t) + 68.76*x,(t) - 3.0%f, (t)

7.5
n(t)
-7.5

let

if n(t) > 7.5
if  |n(t)|< 7.5
if n(t) <-7.5

m(t) = 80.4631*x1(t) - 18.0533*x3(t) + 53.7988*x4(t)

5.0
m(t)
-5.0

+ 150.2088*x5(t) - 0.0173*x7(t) - 1.25*x8(t)
+ 1.268*x9(t) - 18.0533*w(t) + 0.67*f2(t)

if m(t) > 5.0
if Im(t)|< 5.0
if m(t) <-5.0
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will be added. Finally, an illustration will be given showing how the
radar noise is produced and combined with the sampled lateral position
signal.

The lateral position is obtained from the state equation descrip-
tion of the F4J aircraft lateral dynamics through the use of the output

matrix equation
y(t) = Cx(t) (3-5)

This matrix equation will give the desired output if all the elements of
the 1x9 output matrix C are zero except the (1, 6) element, which must
be unity. This is seen by examining the state vector x(t), in (3-2).

The effect of sampling the aircraft lateral position is simulated
by testing the signal y(t) of (3-5) every sampling period. As is seen
in the block diagram of Figure 3-2 this sampled lateral position signal
is the digital signal y(k). It is this signal that is corrupted by the
radar noise.

The simulation of the AN/TPN-22 radar noise is illustrated in Fig-
ure 3-3 [12]. As is shown in this illustration, the noise is added to the
afrcraft's lateral angle. This lateral angle is the angle between the
centerline of the runway and the projected line between the aircraft

and the touchdown point. The lateral angle ta(k) is calculated by

ta(k) = tan’1

k) + 178.1
r(k) + 762.8 (3-6)
The variable r(k) is the range of the aircraft from the touchdown point;
this is assumed to be known. The values 178.1 and 762.8 are the lateral

position and range of the radar unit in respect to the touchdown point.
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The noise is then added to this angle ta(k) and the measured angle ma{k)
js obtained. The measured angle is transformed into the radar unit's

output signal yR(k) by

yR(k) = [r(k) + 762.9] tan [ma(k)] - 178.1 (3-7)

Controlling Unit

The controlling unit of the aircraft lateral control system is the
SPN-42 digital controller. This controller is basically a digital PID
(proportional plus integral plus derivative) type controller. The devel-
opment of the SPN-42 digital controller is described in detail in Refer-
ence [12]. The basic form of the controlling unit is given in the block
diagram of Figure 3-4. The four o filters are first-order low-pass
digital filters used to reduce the effects of high frequency noise. The
tracking a-g filter is a second-order digital filter used to determine
estimates of the aircraft's lateral position and lateral velocity from
the noisy lateral position radar signal. These estimates, }(k) and ;(k),
are then passed on to the remainder of the controlling unit where the
bank command #(k) is calculated.

The simulation of the controlling unit is obtained from the signal
flow graph of the SPN-42 digital controller given in Figure 3-5 [12].
This flow graph includes five nonlinearities that are present in the fil-
ter, but were omitted in the block diagram of Figure 3-4, Four of these
nonlinearities are of the limiter type and the fifth is a floating limiter.
A floating Timiter is a discrete nonlinearity that limits the amount of

change that can occur in one sampling period.
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Since the controlling unit of the lateral control system is a digi-
tal device, it processes information only at given instants of time.
These instants are synchronized with the sampler modeled in the radar
unit and have a time duration that is very short with respect to the
length of the sampling period. For this reason, the process of sampling
the aircraft lateral position to the outputting of the bank command is
modeled with no time delay in the simulation.

As is shown in Figure 3-2, the output of the controlling unit is
fed into a zero-order hold. The purpose of the zero-order hold is to
take the digital bank command signal #(k) and convert it to the analog
bank command signal ¢(t). A discussion of the operation of a zero-order
hold is given in Reference [13]. The conversion of s(k) to ¢(t) is simu-
lated by holding the controlling unit output constant for the duration

of each sampling period.

Comment on the Random Number Generators

Three random number generators are used in the control system's
simulation program. Two are used in the generation of the radar noise
and the other in the generation of the wind input. These random number
generators possess the ability of repetition, i.e., these random number
generators can produce the exact same sequence of random numbers as many
times as is needed. With this ability of repetition, the effects of
changing portions of the aircraft lateral control system can be studied.

This ability will be used in the work presented in Chapter V.
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IV. DESIGNING AN OBSERVER

In this chapter an observer will be designed for use in the lateral
control system of the F4J aircraft. The observer will be used as a sub-
stitute for the tracking a-g filter that is presently being employed.
Recall that the tracking a-g8 filter is used to determine estimates of the
lateral position and the lateral velocity of the aircraft from the noisy
lateral position radar signal. Therefore the observer will not be de-
signed, as discussed in Chapter II, to reconstruct the aircraft's lateral
system state vector, but will be designed to estimate only the aircraft's
lateral position and lateral velocity. Block diagrams showing how the

a-B filter will be replaced by an observer are given in Figure 4-1 and

Fiqure 4-2.

Equivalent Discrete Reduced Order System

As mentioned above, the function of the observer is to estimate the
F4J aircraft's lateral position and lateral velocity. It can be argued
that to fulfill this function it is not necessary to construct an ob-
server for the full nine orders of the aircraft lateral system described
in Chapter III. Based on this argument a reduced order sysiem will be
developed that can be used in the observer design process as a replacement
for the F4J aircraft lateral system. The use of this reduced order sys-
tem will lessen the difficulties associated with the design of an observer

for a high order system. Care will be taken when developing this reduced
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order system such that the aircraft‘'s lateral position and lateral veloc-
ity are represented in this developed system's state vector.

Once a more manageable system model is developed, it will then be
necessary to develop an equivalent discrete model for this reduced order
system. This discrete mode] will be obtained through the use of a pro-
cedure that preserves the natural states of the system. Therefore if
the aircraft's lateral position and lateral velocity are represented by
states in the reduced order system, then they will have the same state
representation in the equivalent discrete system. After this discrete
system model has been developed, it is then possible to design an ob-

server,

Reduced QOrder System

The problem of creating a reduced order system to represent a high-
order system can be approached in a number of ways. In this paper the
desired reduced order system was found by matching frequency responses.
The frequency response of a low order system will be matched to the fre-
quency response of the F4J aircraft lateral system.

The aircraft's lateral system frequency response, from bank command
input ¢(t) to lateral position output y(t), is computed from a linearized
version of the ninth-order state equations given in Chapter III. The
most significant portion of this frequency response, that of omega from
0.2 to 2.0, is given in the Bode plot of Figure 4-3, After examining
this Bode plot, it was decided that this frequency response could be

matched by a third-order system. Through the process of trial and error,
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a third order system was found that could be used for the desired pur-
pose. A set of continuous state matrix equations of this created system

is given in (4-1) and (4-2).

i](t) 0.0 1.0 0.0 x](t) 0.0 (4-1)
iz(t) =| 0.0 0.0 1.0 xz(t) + 0.0 |o(t)
i3(t) 0.0 0.0 -1.42222|| x4(t) 0.709966

y(t) =[1.0 0.0 0.0][x(t)
xz(t) (4-2)
x3(t)

The frequency response of this third-order system is given in the
Bode plot of Figure 4-4. Comparing this frequency response with that of
the lateral system given in Figure 4-3, it is concluded that the third
order system of (4-1) and (4-2) can be used in the observer design pro-
cess with small error.

To ensure that the aircraft's lateral position and lateral velocity
are represented in the state vector of the reduced order system, a study
of this system's state equations will be made. Expanding the equations
of (4-1) and (4-2) by matrix multiplication procedures will give the fol-

lowing four differential equations

() = G5 % (8) = xpt) (8-3)

kp(t) = G xp(t) = x4(t) (4-4)

x3(t) = §7 x5(t) = -1.42222%x4(t) + 0.709966%5(t) (4-5)

y(t) = x(t) (4-6)
42
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Since it is known that the output y(t) represents the aircraft's lateral
position in the reduced order system, then by (4-6) it is seen that the
state x](t) must represent the aircraft lateral position. Given this
fact, and the fact that the derivative of position with respect to time
is velocity, equation (4-3) shows that the state xz(t) must represent
the lateral velocity of the aircraft. Therefore, the aircraft's lateral
position and lateral velocity are represented in the state vector of the
reduced order system.

To reduce confusion, the continuous state matrix equations, given
in (4-1) and (4-2), will be referred to and used as the description of
the F4J aircraft lateral system. This will be done until the observer
is designed. But it should be noted that the full ninth-order system,
with the three nonlinearities and the wind input described in Chapter
III, will be used in all simulation runs discussed in the following

chapter.

Equivalent Discrete System

In this section, an equivalent discrete model will be developed
for the F4J aircraft lateral system. This discrete model will describe
the aircraft lateral system combined with the sampler, which is modeled
in the radar unit, and the zero-order hold. Therefore the input and the
output of this discrete system model will be the digital bank command
signal ¢(k) and the sampled lateral position signal y(k), respectively.

The method that is to be used to develop the aircraft lateral sys-
tem's equivalent discrete model is found in Reference [13]. A BASIC
program based on this method is listed in Appendix C. Using this program
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an equivalent discrete model for the F4J aircraft's continuous lateral
system of (4-1) and (4-2) is developed. This discrete model is given in

the following state equations.

x](k+1) 1.0 0.1 0.00477116 x](k) 0.000114237

xz(k+l) =1 0.0 1.0 0.0932144 xz(k) +10.00338736 o(k)
x3(k+1) 0.0 0.0 0.867429 x3(k) 0.0661790

(4-7)
v ={1.0 0.0 0.0]fx 0

x5(k)

As was mentioned earlier, this equivalent discrete system was de-
veloped through the use of a method that preserves the natural states of
the system. Therefore, since the states x](t) and x2(t) of the contin-
uous system, (4-1) and (4-2), represent the lateral position and the
lateral velocity, respectively, of the aircraft, then the states x](k)
and x2(k) of discrete system (4-7) and (4-8) will also represent these
same physical variables.

In the next section, an observer will be designed for the discrete
third order system given in (4-7) and (4-8). During the design process
it will become imperative that the location of this system's poles be
known. These pole Tocations will be determined here.

The poles of a system can be found by evaluating the roots of the
characteristic polynomial a(z) of that system. The characteristic poly-

nomial of a system can be found by expanding the following determinate,

a(z) = |[21 - Al (8-9)

where the matrix A i the system matrix.
45
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Following this procedure, the pole locations of the F4J aircraft's
equivalent discrete lateral system will be found. By substituting the A

matrix from (4-7) into (4-9) the characteristic polynomial is obtained.

2-1.0 -0.1 -0.00477116
alz) = || 0.0 z-1.0 -0.0037144
0.0 0.0 2z-0.867429 (4-10)

= [(z-1.0)(z-1.0)(2~0.867429)]

From this polynomial, the roots, and therefore the pole locations, are

apparent. These pole locations are 1.0, 1.0, 0.867429 in the z-plane.

Observer Design

The function of the observer is to extract from the noisy lateral
position radar signal tolerable estimations of the F4J aircraft's lateral
position and lateral velocity, for use as inputs to the controller. To
obtain an observer to fulfill this function, the observer will be de-
signed for the third order system given in (4-7) and (4-8). This third
order syséem is being used to simplify the observer design process; and
more importantly, it is being used because the states x1(k) and xz(k) of
this system are accurate approximations of the lateral position and the
lateral velocity if the aircraft. Therefore, the state estimations,
Q](k) and ﬁz(k), of the observer designed for this system can be used as

the inputs to the controller.

System QObservability

Prior to the design of an observer for the aircraft lateral system,
it would be prudent to show that this system is observable. This system
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will be shown to be observable by establishing that its observability
matrix is nonsingular. Note that a matrix is nonsingular if the value of
its determinant is nonzero. Recalling the form a.ver in (2-7), the ob-
servability matrix e for the aircraft's lateral system, given in (4-7)

and (4-8), is found to be

1.0 0.0 0.0
e =11.0 0.1 0.00477116 (4-11)
1.0 0.2 0.0182312

The value of this matrix's determinant is computed and is found to be

nonzero. Therefore the system of (4-7) and (4-8) is observable.

Design Process

Of the various observer designs discussed in Chapter II, the one

that should best function as an estimator of the aircraft lateral position

and lateral velocity is the full order observer developed by Franklin and
Powell. This observer design was chosen for use over both the reduced-
order observer design and the Tse-Athens observer design. The reduced
order observer, also developed by Franklin and Powell, cannot be used in
the F4J aircraft lateral control system because it was discovered that
this lower order observer could not effectively handle the noise that is
contained in the radar lateral position signal. The Tse-Athens observer
was also eliminated for possible use in the control system because there
seemed no feasible method of obtaining the required initial values of the
aircraft state vector. Therefore, the observer that is to be designed
here, and used in the comparison simulation runs of the next chapter,

will be a Franklin-Powell full order observer.
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The process of designing a Franklin-Powell full order observer will
be started by analyzing the state matrix equation of this observer, given ;

in (2-23),
x(k#1) = [A-LCIx(K) + Bu(k) + Ly(k) (2-23)

As was discussed in Chapter II, the matrices A, B, and C of this state
equation are obtained from the state equations of the system that is to
be observed. For this particular process, these matrices will be found
in (4-7) and (4-8).
The two vectors, u(k) and y(k), of equation (2-23) are the inputs |
to the observer. For the observer being designed here, these two input
vectors can be determined by examining the block diagram of Figure 4-2.
From this diagram, it is seen that the input vector y(k) will be the
radar's lateral position signal yR(k), and the input vector u(k) will be
the bank command signal ¢(k). After the simulation runs presented in
Chapter V were completed, it was discovered that inadvertently ¢(k-1) was
used. Fortunately this error was found not to cause any noticeable dif-
ference in the results obtained.
The only unknown of the observer state equation, (2-23), is the
gain matrix L. Recall from Chapter II that this matrix can be calculated .
if the locations of the observer poles are known. Therefore, the next
step to be taken in this design process is the selection of the pole 5

locations for the observer.

To assist in the selection of proper pole locations for the full
order observer, two arguments will now be presented that will provide a

description of the desired dynamics of the observer. By knowing the
48
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observer's dynamics, a vague region in the complex z-plane will be out-
lined. It is within this region that this observer poles should be placed.

The first argument is that the observer dynamics should be "faster"
than the dynamics of the F4J aircraft lateral system. The reasoning be-
hind this argument can be found in the discussion of the full order ob-
server error given in Chapter II. As was shown in that discussion, the
error vector g(k) should converge to zero. This can be accomplished by
making the error dynamics, determined from the matrix [A-LC], "faster"
than the dynamics of the system that is being observed. It should be
noted that the observer dynamics and the error dynamics are equal. There-
fore, the observer dynamics should be “faster" than the aircraft's lateral
system dynamics so that the error will tend to vanish.

The second argument is based on the noise that is contained in the
radar lateral position signal. There is such a significant amount of
noise in this signal that caution should be taken in the determination of
how "fast" the observer dynamics should be made. Large errors will be
created in the state estimations if the observer dynamics are so "fast"
that the observer reacts more to the noise than to the lateral movements
of the aircraft. Therefore, according to this argument, the observer's
dynamics should be “"slow", so that there is no overreaction to the radar
noise.

Combining these two arguments, a description of the observer's de-
sired dynamics can be derived. The dynamics of the observer should be
only slightly "faster" than the F4J aircraft's lateral system dynamics.
From this description and by noting the relationship between a system's

dynamics and the location of its poles in the complex z-plane, the
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observer pole locations can be selected. This relationship states that
the closer to the z-plane origin that a system's poles are located, the
"faster" the system's dynamics will become. Therefore, the full order
observer poles must be placed closer to the z-plane origin than those
poles of the aircraft lateral system, but not so close that the noise
will dominate.

As was found in the previous section, the three poles of the F4J
ajrcraft lateral system, (4-7) and (4-8), are located at 1.0, 1.0,
0.867429 in the z-plane. Hence the pole locations of the full order ob-
server are selected to be at 0.8, 0.8, 0.8 in the z-plane. As can be
seen, all three poles are chosen to be closer to the z-plane origin than
any pole of the aircraft lateral system.

Now that the location of the observer's poles have been selected,
the unknown gain matrix L can be computed. Using the BASIC computer pro-
gram of Ackermann's Formula, given in Appendix B, the L matrix for this

full order observer is obtained.

[ 0.467428
0.57863 (4-12)
I_ 0.0353145

L =

Substituting this gain matrix L, and the matrices A, B, and C for (4-7)
and (4-8), into their respective positions of the state equation (2-23)

results in state matrix equation for the full order observer.
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Xy (k#1) 0.532572 0.1 0.00477116 ] | x, (k)
xp(k#1) | =|-0.57863 1.0 0.0432144 || x, (k)
x4(k+1) -0.0353145 0.0 0.867424 || =x3(k)
0.00014237 0.467428
+ | 0.00338736 | ¢(k) *+|0.57863 |yp(k)  (4-13)
0.0661740 0.0353145

This observer will now be used as a substitute for the tracking a-8

filter in the F4J aircraft's lateral control system. To study the effects

of this substitution, a supplement to the control system's simulation pro-

gram, listed in Appendix D, was written for the observer's state equation
! of (4-13). |
!
|
' |
L ! [
1 \
i
i |
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V. RESULTS

The possibility of using the observer of (4-13) as a substitute for
the tracking a-g filter in the F4J aircraft lateral control system is in-
vestigated in this chapter. This investigation will be accomplished in
two steps. First the acceptability of the observer as a substitute for
the a-g filter will be shown. Second the performance of the observer
when used in the lateral control system will be judged. These steps will
be executed by comparing responses of the control system with the a-8
filter used to estimate the aircraft lateral position and lateral velo-
city, to similar responses of the control system with the observer used
to produce the estimations. Block diagrams of these control systems were
given in Figure 4-1 and Figure 4-2. For the remainder of this discussion
these two lateral control systems will be referred to as the a-8 filter
control system and the observer control system. The responses of these
systems, that are to be presented here, were obtained through the use of
the system simutation as described in Chapter III. Also in this chapter,
a technique for selecting other pole locations for an observer used in

the lateral control system is developed.

Observer Acceptability

The acceptability of the observer given in (4-13) as a substitute
for the tracking a-8 filter will be shown through a comparison of two

sets of responses of the a-3 filter control system and the observer
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control system. These responses will be the open-loop freguency response,
and the time response of the system with a given initial condition. From
these responses, basic system characteristics can be determined that will
be used in the comparison. These characteristics for both control sys-
tems are given in Table S-f. The responses and the characteristics of
the a-g filter control system are assumed to be satisfactory for the
lateral control system in the context of this paper. Therefore, if the
responses and the characteristics of the observer control system compare
favorably to those of the a-g8 filter control system, then the observer

of (4-13) will be considered to be an acceptable substitute for the track-
ing a-8 filter. A brief discussion of the responses and how the system

characteristics were determined from the responses is given below.

Open-Loop Frequency Response

The open-loop frequency responses of the a-g filter control system
and the observer control system are given in the Bode plots of Figure 5-1
and Figure 5-2. These frequency responses were computed from linearized
models of the lateral control system. A comparison of these plots shows
that the open-loop frequency responses of the two systems are fairly
similar.

The stability margins of the two systems are determined from the
open-loop frequency responses shown in Figure 5-1 and Figure 5-2. The
gain margin, i.e., the amount that the gain must be increased to cause
the system to become unstable, is determined by noting the magnitude of
the system's gain when the phase angle is -180°. The phase margin, i.e.,
the amount of phase lag that must be added to the system to cause in-

stability, is equal to the phase angle of the system at unity gain, plus
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Table 5-1,

System Characteristics.

a=-g Filter Observer
Control Control
System System
Gain Margin, GM
Phase Margin, PM
(degrees) 49 46
Time to Rise, Tr 8 8
(seconds)
Time to Peak, Tp
(seconds) 17 V7
Time to Settle, Ts
(seconds) 52 53
Percent Overshoot, P.O. 40 a4

(%)

54




‘WASAS |04U0) UYL L4 §-0 Y] O asuodsay Aduanbaug dooj-uady “[-G d4NLLY
29S/PDJ VYOINO
s v £ ¢ 169829 § ¥ € z L
1. ' - i U 1 — L el re Oﬂ\
|ON|
N
AN
«0L2-1 N\ W LOL- m
h s _.
omNNIL /
~
©3Q .08i- nﬂl
.mmFlJ -~ —
006"
-02
ASVHd— —
3ANLINOVYN
ot
. g *
- e ~ —- - - - L




‘WaIsAS [043U0) 43ALIS]Q 3y} Jo asuodsay Aouanbauy doot-uady -2-§ aunbi 4

535/p04 VOIWO
2 168 L9 § v

Sk i i A i k.

-
-CN
-

ot-

(e]
al
il

o042

«G2C-

030 .08!-
oGEI-

06

-0C

ISVHd — —

JANLINOVIN

ot

56




i“ Evenr | eem . . m — et I

|

180°. As can be seen from Table 5-1. these characteristics of the two

lateral control systems compare favorably.

Time Response with a Given Initial Condition

The initial-condition time responses of the a-g filter control sys-
tem and the observer control system are given in Figure 5-3 and Figure
5-4. These time responses are from simulation runs of the last sixty
seconds of the aircraft's flight before touchdown. Prior to these final
sixty seconds, the aircraft is assumed to be twenty feet laterally off
the extended centerline of the runway, with no lateral movements. The
forward velocity of the aircraft is considered to be a constant of 220.39
feet per second. The wind and the radar noise disturbances have been
eliminated in these simulation runs. As can be seen by comparing Figure
5-3 and Figure 5-4, the time responses of the two lateral control systems,
with a given initial condition, are almost identical.

The system characteristics determined from the initial-condition
time responses are the final four characteristics given in Table 5-1.

The time to rise and the time to peak characteristics give a measure of
the speed of the system response. These characteristics are defined as
the time the aircraft requires to reach the runway's extended centerline,
and the time needed to reach its first peak, respectively. The time to
settle and the percent overshoot characteristics give a measurement as to
how well the lateral control systems guide the aircraft. The time to
settle is determined by determining the amount of time necessary for the
system to settle the aircraft within 2% of its initial condition of 20

feet. The percent overshoot is calculated by
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P.0. = -‘I’—e"‘ﬁ x 100% (5-1)

where Peak is the magnitude of the first peak of the time response, and
I.C. is the magnitude of the initial condition. Note that the four sets
of system characteristics given are quite similar.

Therefore, by the comparison of the two sets of responses, along
with the associated system characteristics, it is assumed here that the
observer given in (4-13) is an acceptable substitute for the tracking

a-B filter in the F4J aircraft lateral control system.

Observer Performance

The performance of the observer of (4-13) when used in the lateral
control system of the F4J aircraft will now be judged. This judgement
will be based on the results of a number of Monte Carlo runs of the ob-
server control system as compared to results of similar runs of the a-8
filter control system. After these comparisons have been made, an inves-
tigation will be presented to show why the observer control system per-

formed differently from the a-g filter control system.

Monte Carlo Runs

Monte Carlo runs are used in this paper to give statistical measure-
ments to the performance of the two lateral control systems. Each of the
Monte Carlo runs that are to be presented were determined from twenty
simulation runs. Each of these simulation runs are of the last sixty
seconds of the aircraft's flight before touchdown. Prior to the start of
each simulation run the aircraft is assumed to be in lateral steady-state

flight, with a forward velocity of 220.39 feet per second, along the
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centeriine of the runway. A1l lateral movements of the aircraft during
the simulation runs are caused by the wind and/or the radar noise. For
each of the twenty simulafion runs, the three random number generators
of the wind input and the radar noise input were forced to generate com-
pletely different sequences of random numbers. But, it should be noted
that each Monte Carlo run used identical sets of random number sequences.
The results of the Monte Carlo runs of the two control systems,
with various combinations of wind and radar noise, are listed in Table
5-2. The results presented in this table are the average values and the
r.m.s. values of the aircraft's lateral position error off the extended
centerline of the runway, over the twenty simulation runs. More impor-
tance is given to the r.m.s. values than the average values, since in
calculating the average values a large position error to one side of the
centerline could be compensated for by a large position error to the
other side of the centerline. A list of the percent improvement of the
observer control system over the «-8 filter control system is also given.

This percent improvement was calculated by

1 R %) 2
% Improvement = I(RF T RO)/2] x 100% (5-2)

where RF and R0 are the r.m.s. values of the a-g filter control system
and the observer control system respectively.

The results in Table 5-2 indicates that the observer control system
reduces the effects of the radar noise disturbance on the controlling of
the lateral movements of the aircraft better than does the a-g filter
control system. The reverse is true, on a smaller scale, with respect
to the wind distrubances. With both of the disturbances included, it is
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seen that the observer control system gives better results than the a-8
“ilter control system. Therefore, from these results the observer of
(4-13) is judged to give a better performance when used in the lateral
control system of the F4J aircraft than the tracking a-g8 filter that is
presently being employed. An investigation of why and how the observer

control system gives better results will now be discussed.

Closed-Loop Frequency Response

A possible reason for the observer control system to perform better
than the a-8 filter control system, with respect to the radar noise, can
be determined from an examination of the closed-loop frequency responses
of the two lateral control systems. The closed-loop frequency responses
of the a-g filter control system and the observer control system, from
the radar noise input to the lateral position output, are given in the
Bode plots of Figure 5-5 and Figure 5-6. These frequency responses were
computed from linearized versions of the lateral control systems.

The -3dB bandwidths of the lateral control systems are determined
from the closed-loop frequency responses. The a-8 filter control system
bandwidth is found to be 0.77 radians/second while the bandwidth of the
observer control system is determined to be 0.68 radians/second. Since
the observer control system has a narrower bandwidth, the time response
of this control system will be slower than the time response of the a-8
filter control system. In other words, the observer control system is
less sensitive to the radar noise disturbance than is the a-g filter con-

trol system.
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Simulation Runs

It has been shown that the observer control system achieved a bet-
ter performance than the a-g filter control system when both the effects
of the wind and the radar noise are included. The ensuing discussion
will attempt to explain the observer control system's better performance
through detailed examinations of comparable simulation runs of the two
lateral control systems. These simulation runs are taken from the twenty
simulation runs used in the Monte Carlo analysis. It should be noted
that identical wind and radar noise disturbances were used in both simu-
lation runs.

The results of the examination of the two lateral control system
simulation runs are illustrated in the time responses given in Figure 5-7
through Figure 5-11. The responses of the two simulation runs are given
in Figure 5-7. The improvement in the control of the aircraft when the
observer is used to estimate the aircraft's lateral position and lateral
velocity is shown in a comparison of the two responses.

Shown in Figure 5-8 is a comparison of the actual lateral position
of the aircraft to the estimates of this position, that were produced by
the observer and the a-g filter. These responses were obtained from the
simulation run of the observer control system. Figure 5-9 shows a simi-
lar comparison, except that these responses were obtained from the simu-
lation run of the a-8 control system. From these two figures, it can be
seen that the observer and the a-8 filter estimate the aircraft's lateral

position to an approximately equal quality. Hence the improvement in
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the performance that the observer control system has over the a-8 filter
control system is not obtained from the estimation of the aircraft's
lateral position.

A similar examination of the aircraft's lateral velocity, and it's
estimates, is given in Figure 5-10 and Figure 5-11. As is shown in these
figures, the observer estimates the lateral velocity more accurately than
the a-g filter. Therefore, the improvement in the performance that the
observer control system has over the a-g filter control system is con-
cluded to be obtained from the estimation of the aircraft's lateral

velocity.

Selecting Other Observer Pole Locations

A technique to select other pole locations for an observer used in
the lateral control system of the F4J aircraft is presented in this sec-
tion. This technique will select the location of the observer's poles by
determining a gain matrix that will reduce the effects of the radar noise
on the estimates of the aircraft's lateral position and lateral velocity.
But before this technique can be presented, the observer developed in
Chapter IV must be corrected.

Recall that the error in the simulation of the observer, given in
(4-13), is that the bank command input is delayed by one sampling period
with respect to the remainder oﬁ_the observer. To correct this error,

a delayed version of the observef.equation must be used. The form of

this delayed observer state matrix equation will be

x(k) = [A-LCIx(k-1) + Ba(k-1) + Lyp(k-1) (5-3)

70

RV S LS Y R R G




ayy pue 43A43sqQ 3y} Aq p3
1043U0) 43A43SG0 Y3 Aq P3LL

oMV (W —
a2W4g-» (N — o
J3AIISQO NS — o

43344 §-°
INPO44 SIJLw}Sy Yy 0} pasedwo) wAISAS
043U07 3404044y Y3 SO AILJ0(3A [eu3le]

- b [

*01-G a4nby4

0

(29s/199))
ALIDOT3A

<y -
GE-

ﬁONc

s FNu

14
- L2
t 8C
t GE

K44

'

——— ——

71

g -~ _—

e L e e ——— . o - r—




493t 9-v
3yl pue 4dA49sSqQ 3y} AQ padnpoad sajewilsi 3yl 03 paseduwo) walysAg
[043U0) 483 {4 §-0 3y} AQ P3| [043u0) JjRad4ly 3y} 3O AJLO0|3A |eddje]

oNPY (VA — o
adg-» (N)f— o
J3AIFSAO (W)L — o

oomet by bemg

N 2 . . 2

"11-G a4rbyy ]
o PA 4 ,

L GE -

8c-

72

Rl
IS
ﬁmm
ﬁnm
% 44

(5% 4 +eh)
ALIDO13A

Gmwt e beed ek Gl

- . e e Mt e e e ——




L

-

- o -

1

The matrices A, B, C, and L are as they were described in Chapter IV and
the inputs ¢(k-1) and yR(k—l) are the delayed bank command and the lateral
position radar signals. This corrected observer is illustrated in the
block diagram of Figure 5-12. With the observer corrected, the develop-
ment of the technique of selecting other pole locations can be continued.
To determine a gain matrix that will reduce the effects of the
radar noise, the transfer functions of the system shown in Figure 5-12
will be developed and examined. These transfer functions will be from
the Bank command and radar noise inputs to the estimated lateral position
and lateral velocity outputs. These four transfer functions will be de-
veloped from the corrected observer state matrix equation, which has the
form shown in (5-3), and the aircraft's reduced order-discrete model
state matrix equations given in (4-7) and (4-8). The form of these dis-

crete state equations are
x(k+1) = Ax(k) + Be(k) (5-4)
y(k) = Cx(k) (5-5)

In addition, two output equations are needed for the observer. These
will be

y(k) = Hix(k) (5-6)

J(k) = Hyx(K) (5-7)
The matrices H1 and H, are 3x1 output matrices, where all the elements
are zero except the (1, 1) element of Hy and the (2, 1) element of Hy»
which are unity.

To obtain the desired transfer functions, the five difference ma-

trix equations, (5-3) through (5-7), must be transformed into matrix
73

e —— ——— . . = - —_—




*A3ALBSGQ BYF 4O UOLSUIA PAIDBUU0)

43AY3SHO

o4

] (1=K (- )@+ (1-NX[ D1 V= ()X

A

AvV13d

*21-G aunby14

e

ONRH=014 - Ne

ODRH=(A

(I9PON 819.4351(J)

1 4VHOMIV

e LAALEAS] parn /*
OhA
3SION
Jopuy
. o e — e sy [

A

ONXD=(N)A

O)eB+ONRY=(L+AN)X

Ol

74




————

e ol

equations in the z-domain. The z-transform method is discussed in great
detail in most text books that deal with discrete systems, for example
References [13] and [ 6]. It is important to note that after the equa-
tions have been transformed it will be possible to manipulate them using
matrix algebra. The z-transform of the five difference equations are
given below. These equations are arranged in the same order that the

respective difference equations are presented in this section.

%(2) = [A-LC127'%(2) + Bz Mo(2) + Lz Yp(2) (5-8)
zx(z) = AX(z) + Be(z) (5-9)
Y(z) = CX(2) (5-10)
Y(z) = HX(2) (5-11)
W(z) = H,(2) (5-12)

The matrices in these z-domain equations are identical to their counter-
part in the difference equations.
From equation (5-8), a solution for the vector X(z) can be deter-
mined. Manipulating (5-8) gives
R(2) = [21-A+10] 7 (Bo(2)+L ¥ (2)) (5-13)
In a similar manner, a solution for the vector X(z) can be obtained

X(z) = [21-A1"'Be(2) (5-12)

The matrix I in these two eqUation§ is the identity matrix, and the
notation [-]'1 symbolizes the inverse matrix operation.
The process of determining the transfer functions would be simpli-

fied if an equation for YR(z) is developed. YR(z) is the z-transform of
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the radar output signal yR(k). This signal is seen, in Figure 5-12, to
be the sum of the aircraft's lateral position signal y(k) and the radar

noise v(k). Hence an equation for YR(z) is
YR(z) = Y(z) + V(z2) (5-15)

A useful solution can now be developed for the vector gjz). Manip-
ulating equations (5-13), (5-10), (5-14), and (5-15) in the proper manner

will result in
X(z) = [21-A+LC] ' (Bo(z) + LC[2I-A) 'Bo(z) + LV(z)}  (5-16)

Manipulating (5-16) further yields

X(z) = [2I-A+LC] ™ ((1+LC[ZI-A1" " )Bo(2) + LV(2))
X(2) = [21-A+LC] ™ (([2I-AT+LC)[21-A] TBa(z) + LV(z))
X(z) = [21-A1"1Be(z) + [2I-A+LC]™'LV(2)

With this solution of i(z) and equations (5-11) and (5-12), the four

desired transfer functions can be stated in matrix form.

V(2)/0(2) = Hy(21-A]7"8 (5-18)
T(2)/v(z) = W [zl-A+Le] L (5-19)
T(2)/o(2) = H,fz1-A1"8 (5-20)
P(2)/v(2) = Hy[21-A+LC] 7L (5-21)

Now that the desired transfer functions have been developed, a gain
matrix L can be determined that will reduce the effects of the racar noise

on the estimates of the aircraft's lateral position and lateral ve¢ -ity.
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It should be noted from these transfer functions, that the responses of
the estimates to the bank command should not change with the changing of

the gain matrix.

Results Using Pole Selection Technique

A single attempt was made to use the technique described above, to
design an observer for use in the F4J aircraft lateral control system.
In this attempt, a gain matrix was chosen that should completely elimi-
nate the effects of the radar noise from the estimate of the aircraft's

lateral velocity. This gain matrix is

0.2
L= 0.0 (5-22)
0.0

The last two elements of this matrix are chosen to be zero to force the
transfer function, from radar noise input to estimated lateral po:ition
output, to zero. Once these elements are selected, the first element

can be selected. This element was chosen to be 0.2 in an attempt to make
the observer's dynamics "faster" than the reduced order system's dynamics.
An observer was built with this gain matrix and placed in the lataral
control system.

To determine the performance of this new observer, a Monte Carlo
run was made. In this Monte Carlo run both the wind and raaar nc-se
turbances were included. Unfortunately, the resuit- ¢ *ws e
run showed that this new observer perfarmer wr o on

filter. These resul*s are .°

tion ervor, 3rd &




AU=ALDT D84 AUBURN UNIV AL DEPT OF ELECTRICAL ENSINEERING F/6 1777
MARINE AR THAFFIC CONTROL AND LANDING SYSTEM (MATCALS) INVESTI-=ETC(U)
APR 81 E R GHAF, C L PHMILLIPS: $ A STARKS NUOOU3Y=BO=C=0032

NL

UNCLASSIFIED




lis £
= & k= 22
= ik
I

lieL
Hizs flis pis

MICROCOPY RESOLUTION TEST CHART
NATIUNAL HUREAU OF “1ANDARDS 1963 Ay




A possible explanation for the poor performance of the new observer
can be obtained from an examination of the pole locations of this obser-
ver. The location of this observer's poles are determined to be 0.8, 1.0,
0.867429 in the z-plane. Comparing these pole locations to the reduced

order system's pole locations, given in Chapber IV, shows that the two

sets of pole locations are very similar. Therefore, the dynamics of the

observer, with the gain matrix given in (5-22), might not be “"fast"

enough to reduce the error.

,'“" - e e gy g e N SR o IR Y N

e e ————————

Loy Vi e 1IN GBS St e S e




. .

VI. CONCLUSION

An observer was designed and implemented in the simulation of the : 1
F4J aircraft lateral control system. The results obtained from this im-
plementation, given in Chapter V, demonstrate that it is possible to i
improve this control system's performance through the use of an observer. )
N The vertical control system of the F4J aircraft is structurally identical 1}
to the lateral control system, and the F4J aircraft control system is 1
typical of the aircraft control systems of the MATCALS control system.
} Hence, it can be concluded that the performance of the MATCALS control ?
system may possibly be improved through the use of observers.

Further improvements in the performance of the F4J aircraft lateral éi !
control system may be achieved by using a more refined observer design. ‘}
The observer design can be refined in two ways. First a higher order ;
system can be used in the observer design process which represents the %
aircraft's lateral dynamics better than the third order system used in

Chapter IV. The other refinement is that better pole locations can be g

selected for the observer. This selection can be made by trial and error ;

or by the technique described in Chapter V.
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APPENDIX A
DEVELOPMENT
OF
ACKERMANN'S FORMULA
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rx](k+1)
xz(k+1)
x3(k+1)
Xp-1 (k1)
bxn(k+1) |
'j y(k) = [1 0 0
l- and the transfer function is

x(k+1)

y(k)

Cx(k)

is shown in Figure A-1.

matrix equations are

Ax(k) + Bu(k)

can be determined by inspection.

The development of Ackermann's Formula for an n

given here. To simplify this development, the nt

h

th

order system is

in (A-1) and (A-2) will be transformed to observer canonical form

order system described

(A-1)

(A-2)

A system is in observer canonical form when all the feed back loops come
from the observed (output) signal; the structure of a system in this form
The reason for using the canonical form is that

both the systems state matrix equations and the systems transfer function

This ease of determining these equations

84

(xl(k)

xz(k)
x3(k)

o1 (K)

(k)

i

is seen in the case of the observer canonical form, where the systems state

u(k)

(A-3)

(A-4)
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It should be noted that the transfer function can be determined directly
from the state equations, with no calculations required.
Consider now the effects of an arbitrary transformation of the state

vector x(k) to w(k)
x(k) = Tw(k) (A-6)

where the nonsingular matrix T is nxn, and the new state vector w(k) and
the old state vector x(k) are both nx1. From (A-6), a new set of system

state equations can be formed.

x(k+1) = Ax(k) + Bu(k) (A-1)

Tw(k+1) = ATw(k) + Bu(k)

w(k¥1) = TVATw(k) + T"VBu(k) (A-7)
and

y(k) = Cx(k) (A-2)

y(k) = CTw(k) (A-8)

The system described by (A-7) and (A-8) can be made to fit the observer
canonical form of (A-3) and (A-4) if the correct choice of the matrix T is
made. For notational purposes, if (A-7) and (A-8) do in fact describe a

system that is in observer canonical form, they will be rewritten as
w(k+1) = A w(k) + BLu(k) (A-9)
y(k) = c (k) (A-10)

where
86
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| A. = TTIAT (A-1a)
; |
| C. = CT (A-11c) |
The subscript c will signify that the matrix is in the canonical form.
: Before continuing, it is necessary to show the relationship between
3 the observability matrix of the system described by (A-1) and (A-2) and
'
[ the observability matrix of the system described by (A-9) and (A-10). The
matrices are
c
CA
o = | ca? (A-12)
CAn-'l
and
- -
Ce
ccAc
- 2
ec ccAc (A-13)
. n-1 3
Cehc .
e -
respectively. Substituting (A-11) into (A-13) gives :
cT (o1 ] i
cT(tYAT) CAT :
cT(t-1aT)? cA%T
ec = . . (A-]4) ;
-i n-1 ;l-]
_CT(T AT) ] LCA T_ :
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Comparing (A-14) and (A-12) gives the desired relationship

8 = eT (A-15)

solving for T yields
T=08 s, (A-16)

Later on this will be a useful expression for the matrix T.

An observer can be designed for the system described by (A-1) and

(A-2), with the observer state equations given by

x(k+#1) = Ax(k) + Bu(k) + Ly(k) - LCx(k) (A-17)
Again consider a transformation of the state vector

x(k) = Tu(k) (A-18)
Substituting (A-18) into (A-17) gives

Tw(k+1) = ATw(k) + Bu(k) + Ly(k) - LCTw(k)

wk#1) = T ATw(k) + T-'Bu(k) + T-'Ly(k) - TTILCTw(k)  (A-19)
Using the notation given in (A-11), (A-19) becomes

w(k#1) = A w(k) + Bu(k) + Ly(k) - L .Cu(k) (A-20)
where

- =1
Lc =T 'L (A-21)
Now the problem is to develop an expression for the gain matrix Lc'

From this, an expression for the desired gain matrix L ca. be found through
(A-22).

—~
n

LI (A-22)
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An expression for the matrix Lc can be found by matching the coeffi-
cients of the observer's characteristic polynomial to the coefficients of
the desired characteristic polynomial. The characteristic polynomial of

the observer, in terms of the matrix Lc’ is found by

o (z) = lzI-[Ac-LcCc]l (A-23)

But, the matrix [Ac-LcCc] will be in the observer canonical form, so there-

fore, the characteristic polynomial can immediately be written

a(2) = 2"(ay1y)2" < (apap)?"E s o k(o))

- (an-zcn) (A-24)

If the desired characteristic polynomial of the observer is

n n-1 -2
a(z) = 2M-0q2" - ap2" T -ic o q2-0 (A-25)

then the matching of the coefficients of (A-24) and (A-25) gives

8y T 3=Rey 0 G T AR s @y g = A0 17Re(nl1)? % T %7Ren

In general terms,

a=a-~1l (A-26)

le=a-3 (A-27)

where a is an nx1 column vector of the coefficients for the system's
characteristic polynomial, and « is an nx1 column vector of coefficients
for the observer's desired characteristic polynomial.

A relationship between these polynomial coefficients and the system
matrix Ac’ is now necessary. This is done through the use of the Cayley-
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Hamilton Theorem [7]. This theorem states that a matrix satisfies its
own characteristic equation. For the system matrix Ac’ this theorem

gives

n n-1 n-2 =
AC - a]Ac - aZAC - ee. = an_]Ac - anI =0 (A-28)

Next the polynomial a(AC) is formed, which is the observer's desired
characteristic polynomial with the matrix Ac substituted for the variable
z.

n-2

_ AN n-1
a(Ac) = AC - a]Ac - GZAC - .. - an_]Ac - GnI (A-29)

Solving (A-28) for A2 and substituting it into (A-29) will give the rela-

tionship required.
_ n-1 n-2
G(AC) - (a]-a]) Ac + (az‘az)Ac + ...t (an_]-an-] )AC
+ (an-an)I (A-30)
At this point it is essential that the unit vector, gg, be defined.
Let g? be an nx1 column vector which is equal to the ith column of
the nxn identity matrix.

Since the matrix AC is in observer canonical form, an interesting

thing happens when the unit vector g: is premultiplied by the matrix Ac’

r-o -
0
n_ - N
JOR N MO (a-31)
i
| 0

and premultiplying (A-31) by the matrix Ac again gives
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. 2" : = n -
Ac(Acg:) = Ak, = 1 h-2 (A-32)

0

|0

continuing in this manner will generate successive unit vectors, until

1]
0
=10 =& (A-33)

n-1.n
Ac &

0
Therefore, if (A-30) is postmultiplied by g:, the following poly-

nomial is obtained

n _ n n n-1
alA e, = (ag-apley + (ay-apley + ... + (2 q-ap y)ey

n
+ (a,-ap)ey (A-34)
Examination of (A-34), with the help of the relationship shown in (A-27),
the following becomes apparent.
n _
a(Ac)_eﬂ = Lc (A-35)
which is the needed expression of the gain matrix Lc.

With (A-35) and the relationship given in (A-22), an expression for

the gain matrix L can now be found

L=TL (A-22)

[od
n
Ta(AC)gﬂ
Ta(T“AT)g:

Tr“a(A)Tg:
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L= a(A)Tg: (A-36)

The expression shown in (A-36) can be used to calculate the gain
matrix L if the transformation matrix T has been found. But calculating
the T matrix is not necessary if the expression developed for the T ma-

trix in (A-16) is substituted into (A-36). Doing this gives

_ -1 n
L = afA)e 0.8 (A-37)

It should be now noted that the product of any nxn matrix, R, and
the unit vector, gg, will give the ith column of the matrix R. Therefore,
the last two terms of (A-37) will give the nth column of the observability
matrix B But if the matrix 8. is completed, it will be found that its
nth column is again the unit vector g:, so therefore

n n

8.8, < &, (A-38)

Substituting (A-38) into (A-37) gives
L= a(A)e™ e (A-39)

which is recognized to be Ackermann's Formula as stated in (2-27).
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BASIC PROGRAM
BASED ON
ACKERMANN'S FORMULA
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10

20

30

40

106
161
110
120
130
140
150
l60
179
180
190
200
210
220
360
316
320
321
322
323
324
325
330
349
356
360
370
380
390
400
410
429
430
4490
450
460
470
480
490
500
51¢
520
530
549
550

!This program computes the gain matrix L, based on Ackermann's
!Formula.

DIM A[1@,10],B[10,4],C[1,10]

DIM F[16,10),L{14@,1)

DIM W(19,10],R(10,10),T[10,10),0(10,10]
DIM U[1,10],H[10,1),P[10],S([1,11]
READ N,N1

IN is the order of the system and N1 is the number of inputs.
MAT A=ZER(N,N]

MAT B=ZER[N,N1]

MAT C=ZER[1,N]

MAT F=Z2ER[N,N]

MAT L=ZER[N,1]

MAT W=ZER[N,N]

MAT R=IDN([N,N]

MAT T=ZER([N,N]

MAT Q=2ER[N,N]

MAT U=ZER[1,N]

MAT H=ZER[N,1]

MAT P=ZER[N]

N2=N+1

MAT S=ZER[1,N2]

MAT READ A,B,C,S

!The matrix A is the system matrix
!The matrix B is the input matrix
IThe matrix C is the output matrix
!The matrix S contains the coefficients of the desired
!characteristc polynomial.

FOR I=1 TON

J=I+1

P[I]=(-1)*s[1,J]

NEXT I

PRINT "MATRICES OF THE SYSTEM"
PRINT "MATRIX A"

MAT PRINT A

PRINT "MATRIX B"

MAT PRINT B

PRINT "MATRIX C"

MAT PRINT C

PRINT "COEFFICIANTS OF DESIRED CHARACTERISTIC POLYNOMIAL"
MAT PRINT S;

FOR I=1 TO N

M=N-(I-1)

MAT U=C*R

X=P [M]

MAT W=(X)*R

MAT T=T+W

FOR K=1 TO N

Ql1,K]=U(1,K]

NEXT K

MAT W=R*A

e e e
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568 MAT RW :
570 NEXT I i
586 MAT W=R -
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599 MAT T=W-T

600 MAT W=INV(Q)

610 H(N,1)=1

620 MAT Q=T*W

630 MAT L=Q*H

640 MAT W=L*C

650 MAT F=A-W

660 PRINT "MATRICES OF THE OBSERVER"
678 PRINT "MATRIX F"
688 MAT PRINT F

690 PRINT "MATRIX B"
700 MAT PRINT B
718 PRINT "MATRIX L"
720 MAT PRINT L
9999 END
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290
300
310
320
330
340
350
368
370
380
396
400
419
420
430
440
450
460
479
480
499
500
510
520
538
540
550
560
57@
580

IThis program calculates the discrete system model from the
!continuous system matrix equation.

IA is the continuous system's system matrix.

!B is the continuwous system's input matrix.

IR is the discrete system's system matrix.

!S is the discrete system's input matrix.
IG,H,K, and L are working matrices.

DIM A[10,14),B[14,10] ,R[10,10],S[14,10]

DIM K[10,10],L[10,10),G(16,10] ,H[18,10]

PRINT "INPUT T, SYSTEM ORDER, AND NUMBER OF INPUTS"
INPUT T,N,P

PRINT "INPUT NUMBER OF TERMS TO BE USED IN SERIES"
INPUT F

PRINT "INPUT CONTINUOUS A MATRIX, BY ROWS"

MAT INPUT A([N,N]

PRINT "INPUT CONTINUOUS B MATRIX, BY ROWS"

MAT INPUT B(N,P]

PRINT

PRINT USING 196;T,N,P

IMAGE "T=",2D.3D3X,"SYSTEM CRDER=",3D3X,"# OF INPUTS=",3D/
PRINT "CONTINUCUS SYSTEM A MATRIX IS"

MAT PRINT A

PRINT "CONTINUOUS B MATRIX IS"

MAT PRINT B

REM TO INITIALIZE AND SET DIMENSIONS ON MATRICES
MAT R=IDN[N,N]

MAT S=IDN{N,N]

MAT L=IIN(N,N]

MAT G=2ER[N,N]

MAT H=ZER([N,N]

MAT K=ZER[N,N]

FORJ=1 TOF

MAT G=L

MAT L=(T/(J+1))*G

MAT G=L

MAT L=G*A

MAT S=S+L

MAT K=(J+1)*L

MAT R=R+K

NEXT J

MAT H=S

MAT S=(T)*H

MAT G=ZER(N,P]

MAT G=S*B

PRINT "DISCRETE A MATRIX IS"

MAT PRINT R

PRINT "DISCRETE B MATRIX IS"

MAT PRINT G

9999 END
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LIRSS IS LSRR SRR LI LR LTRSS 2L TL L2 L AL LTI LAY 222222 3288 d 2
This program simulates the Control System of the F4J Aircraft.

(oo NeNeXe]

Rk RREAhkhhRhhAhkkkhkkAkAhkkhhkhhkhhhhkhhhhhhhdhhhrhdhhhhhkhkhkdhhhthidd

This portion of the program sets up the system.

RERRRIKRIARARRIRRRAAARARAARRARRARARR AR AR AR kAR R hhk Ak khhhhhhhhh

COMMON/MAT/A(23,23) ,B(23,10) ,C(8,23) ,D(8,10)

[ou—_

- — e

COMMON/VECT/X (23) ,U(10) ,FN(23)
OOMMON/CONINT/XI (23) ,N,NU,NY,NF
COMMON/CONREL/'T, H, SFREQ, TZERO, SR
COMMON/RAMD/1X, 1Y, 12
4 FORMAT('0',9%,'THE STARTING RANGE IS',F20.5)
7 FORMAT('-~',9X,'N="',12,10X, " 'NU=',I2,10X, 'NY="',12,10X, 'NF="',12,//)
8 FORMAT(8F1d.3)
9 FORMAT(F20.5)
10 FORMAT(SF10.5)
100 FORMAT(SX,IS,5X,I5,5%,I5)
1060 FORMAT('-',9X,'TZERO= ',F14.6,3X,'TF= ',F14.6,3X,'d="',F10.6,3X,
&'FREQ=',F10.6,3X, 'SFREQ=",F10.6,//)

1001 FORMAT('@',10X,'THE A MATRIX'/)

1002 FORMAT('0',10E13.4)

1003 FORMAT('0',10X,' INITIAL CONDITIONS FOR STATE VECTOR,X'/)
1004 FORMAT('@',10X,'THE B MATRIX'/)

1007 FORMAT('@',10X,'THE C MATRIX'/)

1018 FORMAT (1H1, 4X,23HGRAPHICAL TIME RESPONSE)

1411 FORMAT(//,133(1H*))

1111 FORMAT('@',10X,'THE D MATRIX',/)

OO0

naon e NeXe! naann

READ(5,100) IX,IY,IZ
RARRRERAREARERARRARRRARERA AR AR RAAARA R ARk ARk hhhhhhhhhid
The values IX,IY,and IZ initialize the random number generators
of the wind and radar noise disturbances.
RRRRERRRRRARRRRRRRRRRERR AR AR AR RRRARA AR AR AR AR AR AR AR RR
CALL MATRIX

READ(5,10) TZERO,TF,H,FREQ,SFREQ
ARRRRARRKRRRNRARARRAR AR AR AR AR AAR A AR ARk khk kbt Ak hhhhkihhdk
TZERO is the starting time, TF is the final time, H is the
integration period, FREQ is the output frequence, and SFREQ is the
sampling freguence.

RARRAARRARRARARRRRAARARA SRR R AR RAR AR kdhh Rk bkl hhdlhd

READ(S'S) (XI(I),Iser)

RERARRRAAARARRARRRRRARAARARARAREAA AR R AR AR AR A AR h Rk d

The vector XI is the initial condition vector of the aircraft.
RARRRNERRRARARRARRERARR AR AR RARRR ARk hiidn

READ(5,9) SR

RERERRRRARAARRRRARRERRERARRERRAAERERAAR AR RRA A AR R bRl ht Rk

SR is the starting range.
RENREREERARRARRARRAA SRR ARRRRRRRRARARARNRARRARRARRR AR R AR Ak kA hk
WRITE(6,1019)

WRITE(6,1011,

WRITE(6,1000) TZERO,TF,H,FREQ,SFREQ

WRITE(6,7) N,NU,NY,NF
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WRITE(6,1001)
po 2 1=1,N
2 WRITE(6,1002) (A(I,J),J=1,N)
WRITE (6,1004)
DO 62 I=1,N
62 WRITE(6,1602) (B(I,J),J=1,NU)
WRITE(6,1007)
DO 64 I=1,NY
64 WRITE(6,1002) (C(I,J),J=1,N)
WRITE(6,1111)
{ 88 WRITE(G:I@@Z) (D(I 'J) +J=1,NU)
' WRITE(6,4) SR
WRITE (6,1003)
| WRITE(6,1002) (XI(I),I=1,N)
WRITE(6,1011)
IFQ=FREQ
; T=TZ ERD
! CALL TRESP(TF, IFQ)
STOP
END
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BLOCK DATA

PX2I IS ST ILILLR LT IIILLI LIRSS 2222222 22228222 22 2 el d el il sy

This subroutine clears all the matrices and vectors.

P2 ITI TP IETRRLLLRL R RLITER LTSI LI LRI SIS S22 22222222228 ¢ 12 4]
OOMMON/MAT/A (23, 23) ,B(23,148),C(8,23),D(8,18)

COMMON/VECT/X (23) ,U(18) ,FN(23)

DATA A/529%0.0/,B/230*08.0/,C/184*3.0/,D/80*0.6/

DATA X/23*3.8/,U/18*0.0/,FN/23*0.8/

END
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SUBROUTINE MATRIX

RAAAXEEA AR REAARREART LR TAAARARAAARAAR AT AR AR AR AR AR AR AR ARk A kARt

This subroutine generates the non-zero elements of the A,B and C
matrices.
***********************i************t*****************************
COMMON/MAT/A(23,23) ,B(23,18) ,C(8,23),D(8,18)

COMMON/VECT/X (23) ,U(10) ,FN(23)

COMMON/CONINT/XII(23) ,N,NU,NY,NF

DATA AM,AXE,BB,CB,G,GE,RE/1057.,.2234,38.666,16.04,32.2,-.0611,
&.002378/

DATA S,TE,VE,W,XI,X2I1,21/530.,.1623,220.8,34000.,25600.,21566.,
&145200./

DATA CIB,CLP,CLR,CLDA,CLDR,CNB,CNP, CNR/-.1565,~-.275,.2087,-.8573,
&.00286,.1982,-.013,-.31/

DATA CNDA,CNDR,CYB,CYP,CYR,CYDA,CYDR/-.0043,-.0722,-.647,1.26,
&.717,-.6356,.1345/

N=9

NU=3

NF=3

NY=2

Bl=RE*S*VE**2 /(2 .* (XI*Z2I~XZI**2))*BB

A(l,4)=1.

A(1,5)=TAN(TE)

A(2,5)=1./COS(TE)

A(3,1)=G*COS(TE)/VE

A(3,3)=RE*S*VE*CYB/ (2.*AM)

A(3,4)=RE*S*BB*CYP/ (4.*AM) +SIN(AXE)
A(3,5)=RE*S*BB*CYR/ (4 .*AM) ~COS (AXE)
A(3,7)=RE*S*VE*CYIR/ (2.*AM) /57.3
A(3,9)=19.36*RE*S*VE*CYIR/ (2.*AM) /57.3
A(4,3)=Bl*(ZI*CLB+XZI*CNB)
A(4,4)=B1*BB/(2.*VE) * (ZI*CLP+XZI*CNP)
A(4,5)=B1*BB/(2.*VE) * (ZI*CLR+XZI*CNR)
A(4,7)=Bl*(ZI*CLDA+XZI*CNIA)/57.3

A(4,9)=19.36*B1* (ZI*CLDR+XZI*CNDR)/57.3
A(S,3)=Bl*(XZI*CLB+XI*CNB)
A(5,4)=B1*BB/ (2.*VE) * (XZI*CLP+XI*CNP)
A(5,5)=B1*BB/ (2.*VE) * (XZI*CLR+XI*CNR)

A(5,7)=B1* (XZI*CLDA+XI*CNIA) /57.3

A(5,9)=19.36*B1* (XZI*CLDR+XI*CNDR) /57.3

A{6,1)=-VE*SIN(AXE)

A(6,2)=VE*COS (GE)

A(6,3)=VE

A(7,7)=-18.

A(8,4)=.0262*57.3

A(8,5)=.9996*57.3

A(8,8)=-.5

A(9,9)=-24.

B(3,2)=RE*S*VE*CYR/ (2.*AM)

B(4,2)=B1*(ZI*CLB+XZI*CNB)
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B(5,2)=Bl* (XZI*CLB+XI *CNB)
C(1,6)=1.0
RETURN

END
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SUBROUTINE TRESP (TF, IFREQ)
L L L L s e 2 T Ty Y e T e 2 L T L

This subroutine gives the time response of the control system.
e dede Je e o e v e dr v e e d d e de e g I ok de e e e e e e o de g e ek e o de g e ok d ok ko o v e e ok e o v ok ok o Aok ok e e ok ok e o
COMMON/MAT/A(23,23) ,B(23,10) ,C(8,23),D(8,10)
COMMON/VECT/X (23) ,U(18) ,FN(23)
CCMMON/PUCC/P (18,108)
COMMON/COMP/R(18,100)
CCOMMON/CONINT/XI (23) ,N,NU,NY,NF
COMMON /CONREL/T, H, SFREQ, TZERO, SR
COMN/DTT/DTSAMP
COMMON/ESTA/EST1,EST2,EST3
COMMQN/ABFIL/ABY, ABYDOT
COMMON /COUNT/NCON
COMMQON/MSESDS/SDEPS , SDAPS , SDEVS, SDAVS, SPOSS
COMMQN/NOISE/X6DUM
COMMON/RAMD/1X,1Y,IZ
COMMON/MONTE/ICC, X6A (1008) ,X6S (1008) ,T™(1800)
DIMENSION IR(10,108)
REAL MSEP,MSEEP,MSEAP,MSEEV, MSEAV
l¢ FORMAT(FS6.3,',',El0.3,',',E18.3,',"',E18.3,',"',E10.3,",",
&E10.3,',',E10.3)
11 FORMAT(' °',4X,'T=',F8.3,4X,'AVG=',F11.7,4X, 'RMS="',F11.7)
12 FORMAT(///,10X,'TOTAL',5X,'AVG',F11.7,4X, 'RMS*,F11.7)
13 FORMAT(/,2X,13,2X,E14.5,2X,E14.5,2X,E14,5,2X,118,1X,118,1X,110)
15 FORMAT(//,2X,'RUN',4X,'RMSE OF POS.',6X,'FINAL POS.',6X,'MAX OFFSE
&T',8%,'IX',9%,'IY',9X,'12")
2] FORMAT('+',23X,E14.5)
22 FORMAT(//,5X,'RMSE OF TRUE POSITI(H='}
23 FORMAT(//,5X,'POSITION')
24 FORMAT(//,5X,'VELOCITY')
26 FORMAT(/,5X,'RMSE OF ESTIMATOR=',20X,'RMSE OF ABFILTER=')
27 FORMAT('+',19X,E14.5,23X,E14.5)
28 FORMAT('1',5X,'T',8X,'TTD',10X,'X(6)',9X,'X6(DX) ' ,9X, 'ESTY',
&11X,'ABY',10X,'FN(6)',9X,'ESTYD',9X, 'ABYD')
29 FORMAT(' ',F8.3,2X,F8.3,2X,8(1PE14.5))

1000 FORMAT(/,5X,33HMAXIMUM NUMBER OF POINTS EXCEEDED /)

o NeNeXe!

NR=20
NR=1
L2 238222222 22222222322 22232222222 32T EL LTI L LR L L
NR is the number of simulation runs to be used in a Monte Carlo
run.
b2 2222222 222222222222 2222223y Y YT P TS L R L
NT=TF*SFREQ +1.0
DO 3 I=1,NT
X6A(1)=0.9
3 X65(1)=0.0
DO 1 INR=1,NR
IR(1,INR)=IX
IR(2,INR)=IY
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222
400

IR(3,INR)=IZ
Do 2 1I=1,N
u(n)=0.0
X(I)=XI(I)

POT=H*IFREQ

CALL DIGFIL(DIGT)
CONTINUE
TTD=(SR-228.39*T) /220.39
NP=NP+1

P(1,NP)=T

P(2,NP)=X(6)
P(3,NP)=EST1
P(4,NP)=ABY

P(5,NI; =FN(6)
P(6,NP)=EST2
P(7,NP)=ABYDOT
P(8,NP)=X6DM
P(9,NP)=TTD
P(16,NP)=0.0
OUTT=OUTT+PDT

J=J+1

IF(J.GT.101)GO TO 222
IF(T.GE.TF) GO TO 409
CONTINUE

DO 14 11I=1,4

CALL AXDOT

CALL RUNGE(II)

AX6=ABS (X (6))
AMX6=aMAX] (AMX6,AX6)

IF (ICC.GE.NT) GOTO 400
IF((T*1.001) .GE.DIGT) CALL DIGFIL(DIGT)
IF((T*1.901).GE.QUTT) GO TO 450
IF(T.GE.TF) GO TO 4400
GO TO 508

WRITE(6,1200)

CONTINUE

MSEP=SQRT (SPOSS/NCON)
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MSEEP=SQRT (SDEPS/NCON)
MSEEV=SQRT (SDEVS/NCON)
MSEAV=SQRT (SDAVS/NCON)
R(1, INR)=MSEP

R(2, INR)=MSEEP
R(3,INR)=MSEAP

R(4, INR)=MSEEV

R(5, INR)=MSEAV
R(6,INR)=P(2,NP)

R(7, INR)=AMX6

IX=IX+3

IY=IY+3

I1Z=12Z+3

1 CONTINUE
DO 4 I=1,NT
X6A (I)=X6A(I)/NR

4 X6S(I)=SQRT(X6S(I)/NR)
X6AA=0.0
X6SA=0.0
DO 6 I=1,NT
X6AA=X6AA+X6A(T)

6 X6SA=X6SA+X6S (I)
X6AA=X6AA/NT
X6SA=X6SA/NT
PRINT 12,X6AA,X6SA
WRITE(6,15)

DO 7 I=1,NR

7 WRITE(6,13) I1I,R(1,I),R(6,I),R(7,1),IR(},I),IR(2,I),IR(3,I)
NI=0
WRITE(6,28)

DO 181 I=]1,NP
101 WRITE(6,29) P(1,I),P(9,I),P(2,I),P(8,1),P(3,I),P(4,1),P(5,1),
&P(6,I),P(7,1)
WRITE(6,22)
WRITE(6,2]1) MSEP
WRITE (6,23)
WRITE (6, 26)
WRITE (6, 27) MSEEP , MSEAP
WRITE (6, 24)
WRITE(6,26)
WRITE(6,27) MSEEV, MSEAV
DO 160 I=1,NP
108 PUNCH 10,P(1,I),P(2,I),P(3,0),P(4,1),P(5,I),P(6,1),P(7,I)
IF(NI.EQ.8) GOTO 401
DO 5 I=1,NT
S PRINT 11,™(I),%6A(T),X%6S(I)
401 CONTINUE
RETURN
END
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SUBROUTINE DIGFIL(DIGT)

hkhhhkhkkhhhhhrkkhrhkhkhkkrhhhkkhhhrhkrkhrhkrhrihhhhkhhdhkhhktrhhhhhhhhhd

This subroutine simulates the digital controlling unit.

e % s oo o 7 o 7 v s ok ok ok 3 o A e 7 ok o 3 o 3 T ok ok ok ok o e s ke o e ok e o o Sk o o 9k e e e ok ok ok o ok ok e e ek ok ek o
IMPLICIT REAL(K)

COMMON/MAT/A(23,23) ,B(23,10) ,C(8,23),D(8,10)

| COMMON/VECT/X (23) ,U(18) ,FN(23)

! COMMON/CONINT/XI (23) ,N,NU,NY,NF

t

o0

COMMQON/CONREL/T, H, SFREQ, TZERO, SR
COMMON,/GAUSSC/SIGMA, XMEAN
i-‘ COMMQON/DTT/DTSAMP
' COMMON /RANG,/RANGE
- COMMQN/ABFIL/ABY, ABYDOT
COMMON/COUNT/NCON
COMMON/MSED/DEP, DAP, DEV, DAV, POS
COMMQN,/MSEDS/DEPS , CAPS , DEVS , DAVS, POSS
\ COMMON/MSESDS/SDEPS, SDAPS, SDEVS , SDAVS, SPFOSS
COMMON/ESTA/EST1 ,EST2, EST3
COMMON /NOI SE/X6DUM
COMMON/MONTE/ICC, X6A (1208) ,X6S (1069) ,T™(1000)
DIMENSION DT(5),KRL(5),AlL(5),A2L(5),A3L(5),
; &TRL(5) ,KCL(5) ,TAL(5) ,TIL(5) ,ALP4AB(5) ,KBC1(5) ,KBC3(5) ,KBC2(5),
&KBC4 (5) ,KBCS (5) ,A4L(5)
DATA K7/8./
DATA S1,52,53,54,S5,56,57,58,59,510,811/11*3.6/
DATA DT/.2,.1,.05,.033333,.025/
DATA KRL/.534,.3174,.1738,.1195,.091/
DATA AlL/.586,.766,.875,.915,.935/
DATA A2L/.414,.234,.125,.085,.065/
DATA A3L/.414,.234,.125,.085,.065/
DATA A4L/.024,.012,.0061,.0041,.080366/
DATA TRL/5*7.5/
DATA TAL/5*7.5/
DATA KCL/5*.1/
DATA TIL/5*30./
DATA ALPHAB/.2275,.1211,.0625,.6421,.83175/
DATA KBC1l/.96667,.98113,.99020,.99341,.99504/
DATA KBC2/1.4,1.81132,1.94118,1.96932,1.98145/
DATA KBC3/.96667,.98113,.99020,.99341,.99504/
DATA KBC4/1.4,1.81132,1.94118,1.96932,1.98145/
DATA KBCS/.9333,.96226,.98039,.98681,.99087/
DATA K3/.57735/,XD0T/220.39/
IF(T .NE. TZERO) GOTO 111
S1=3.
S2=0.
S3=0.
S4=0.
S5=@.
S6=0.
S7=8.

[SECSRLS RIS I~
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111

S8=0.0

S9=0.0

S16=0.0

Sll=0.d

CONTINUE

DTSAMP=1./SFREQ

IF (DTSAMP.GT.9.15) I=1

IF (DTSAMP.LE.0.15.AND.DTSAMP.GT.0.075) I=2

IF (DTSAMP.LE.@.07500.AND.DTSAMP.GT.8.64167) I=3

IF (DTSAMP.LE.#.84167.AND.DTSAMP.GT.0.02911) I=4

IF (DTSAMP.LE.0.02911) I=5

RANGE = SR-T*220.39

IF(RANGE.GE.5000.) K1L=5000./RANGE

IF(RANGE.GE.500¢0.) Kll=.1

IF(RANGE.LT.5000.) K1iL=1,

K21=1.0

K3L=1.0

K4L=K1L

X6DUM=X (6)

X6DUM=X6 (DX)

k2222322222222 23 2222222 LFTLTRLELLLLLILILLILESLILILE LS L2222 223222 L 2T
Depending on which X6DUM statement is used determines if the radar
noise is included in the simulation run.
KRRERRRERRRARRRAEARRRRRREANRRAARARR AR AR RA AR R AR R Ak AR Ak hhkkrkk
CALL ESTMAT(X6DM,I)

CALL ABFLTR(X6DUM,I)

YIN=X (6)

YDOTIN=FN(6)

YIN=ABY

YDOTIN=ABYDOT

YIN=EST1

YDOTIN=EST2
RRRRRRRRRARRNRERR R R RRRRRRRKRERRRR AR KRR R AR AR AR AR AR RRA AR AR ARk hkk
Depending on which set of YIN and YDOTIN statements are used
determines which values are used for the estimates of the lateral
position and lateral velocity. These are, the true values, the
A-B Filter estimates, or the Cbserver estimates.

ARRRRREEER AR R AR R RRERRRRRRRRARRRARARRRRARRRARARR AR AR A kN
Y=-YIN

YDOT=~-YDOTIN

IF(RANGE.GE.16000.) K4L=0,.

IF(ABS(Y).GE.100.) K4L=0.

YDOTF=S3+KRL(I) * (YDOT=S3)

Y2DOTP=S4*A1L (1) +A2L(I) /DT(I) * (YDOTF-S3)

YZDOT=SS+A3L(I) * (Y2DOTP-S5)
PHIINT=S6+KAL*KCL(I)/TIL(I)*(Y+51)/2.*DT(1)

IF(PHIINT.GT.16.) PHIINT=1Q.

IF(PHIINT.LT.-10.) PHIINT=-14.

CTIC=ABS (K3*K2L*XDOT*TRL(I))

IF(ABS(Y) .GE.CTIC) Y=SIGN(CTLC,Y)
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PHIC4P=K1L*KCL (I) * (Y+K2L*TRL(I) *YDOTF+K 3L*TAL(I) *Y2DOT)
IF (RANGE.GT. 500¢.) GO TO 1001
RVL=5.+. 0032*RANGE

IF(RANGE.LT.d.) KVL=5.
PHIC3P=PHIC4P

IF(ABS (PHIC4P) .GT.KVL) PHIC3P=SIGN (KVL,PHIC4P)
GO TO 1292

PHIC3P=PHIC4P

IF(ABS(PHIC4P) .GT.21.) PHIC3P=SIGN(2l.,PHIC4P)
CONTINUE

PHIC2P=PHIC3P+PHI INT
PHIC1P=S7+ALPHAB(I) * (PHIC2P-57)
PHICX=KBC1 (I) *PHIC1P-KBC2 (I) *S7+KBC3 (1) *S8+KBC4 (I) *S9-KBCS (I) *S10
PHICX=PHIC1P

PHICL=A4L(I) *PHICX+(1.-A4L(I))*S11
Sl=y

S2=YDOT

S3=YDOTF

S4=Y2DOTP

S5=Y2D0T

S6=PHIINT

$8=57

S7=PHICI1P

S10=59

S9=PHICX

S11=PHICL

IF( (PHICX-PHICL) .GT.K7) GO TO 10
IF( (PHICX-PHICL) .LT.-K7) GO TO 1l
U(1)=PHICX

GO TO 12

U(1)=PHICL+K7

GO TO 12

U(1)=PHICL-K7

CONTINUE

IF(U(l1).LT.-30.) U(1)=-30.
IF(U(1).GT.38.) U(1)=30.
DIGT=DIGT+DTSAMP

CONTINUE

ICC=ICC+1

X6A (ICC)=X6A (ICC) +X (6)

X6S (ICC)=X6S (ICC) +X (6) **2
M™(ICC)=T

NCON=NCON+1

POS=X (6)

DEP=X (6)-EST1

DAP=X (6)-ABY

DEV=FN(6)-EST2

DAV=FN (6) ~ABYDOT

POSS=POS**2

DEPS=DEP**2
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DAPS=DAP**2
DEVS=DEV**2
DAVS=DAV**2
SPOSS=SPOSS+POSS
SDEPS=SDEPS+DEPS
SDAPS=SDAPS+DAPS
SDEVS=SDEVS+DEVS
SDAVS=SDAVS+DAVS
RETURN

END

110

4 - s -

—— -~

R




- s e

(e NoNeNe!

12

600

13

700

840

15
909

SUBROUTINE RUNGE (II)

bRk hhhkhhhhhkhrhkkhkhkhhkhkhhkhkhbhhkrhrhhhhdhkhhhhkhhhhdhihthhikkhhk

This subroutine performs the integration on the continuous
aircraft system.
hkhdhhhkhdkhkhhkhhhkhlkhhhlhhhkRkkrkkhkhkhkhhkhrhkhhkhkhhrhhhRkdhhhkhkhhdkhhhd
COMMON/MAT/A (23, 23) ,B(23,10),C(8,23),D(8,18)
COMMON/VECT/X (23) ,U(18) ,FN(23)
COMMON/CONREL/T, H, SFREQ, TZERO, SR
COMMON/CONINT/XI (23) ,N,NU,NY,NF
DIMENSION SAVEX(11l),PHI(11)

GO T0 (12,13,4,15),1I

Hl=.5*H

DO 600 J=1'N

SAVEX (J)=X(J)

PHI(J)=FN(J)

X(J)=SAVEX(J) +H1*FN(J)

T=T+H1

RETURN

Hl=.5*H

DO 700 J=10N

PHI (J)=PHI(J)+2.*FN(J)
X(J)=SAVEX(J)+H1*FN(J)

RETURN

DO 844 J=1,N

PHI (J)=PHI (J)+2.*FN(J)
X(J)=SAVEX(J)+H*FN(J)

T=T+.5%*H

RETURN

H2=H/6.

DO 908 J=1,N
X(J)=SAVEX (J)+H2* (PHI (J)+FN (J))
RETURN

END
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SUBROUTINE AXDOT

b2 s 2222222222 22 222 22 2 3 222222222222 232 LL L LTS L)
This subroutine updates the continuous system for the integration
procedure.

i3 2222 2222222222 22222 22X LSRR LA ALLRLS LRSS LS ]
COMMON/MAT/A(23,23) ,B(23,10) ,C(8,23),D(8,10)

COMMON/VECT/X (23) ,U(10@) ,XDOT(23)

CAL(Z1,22)=SIGN(AMINI (ABS(21),22),21)

U(2)=0.0

U(2)=WIND(DY)

e de de de Je e de e e de de Je de de e e I e v sk ke vk kg sk o o e o ok e I e ok ok e e b & e ok gk o e W sk e gk de de d ok e ok ok bk ok ok ok ke
Depending on which U(2) statement is used determines if the wind
distubance is included in the simulation.
RERERRKAERRAINRAKRRRRARRRRARARRARRARRRRRRA A AR AR AR AR AR ARk hhkhhhdkk
F1=CAL(U(1),14.)

XDOT(1)=A(1,4)*X(4)+A(1,5)*X(5)

XDOT(2)=A{2,5) *X (5)
XDOT(3)=A(3,1)*X(1)+A(3,3) *X(3)+A(3,4) *X(4)+A(3,5) *X(5)+A(3,7)*
&X(7)+A(3,9)*X(9)+B(3,2) *U(2)

XDOT(4)=A(4,3) *X (3)+A(4,4) *X(4)+A(4,5) *X(5)+A(4,7)*X(7)+A(4,9)*
&X(9)+B(4,2)*0(2)

XDOT(5)=A(5,3) *X (3)+A(5,4) *X (4)+A(5,5) *X(5)+A(5,7) *X (7)+A(5,9) *
&X(9)+4B(5,2)*U(2)

XDOT'(6)=A(6,1) *X(1)+A(6,2) *X(2)+A(6,3) *X(3)
F2=171.9*X(1)+68.76*X(4)-3.*F1

F2=CAL(F2,7.5)

XDOT (7)=A(7,7) *X(7)+10.*F2

XDOT(8)=A(8,4)*X(4)+A(8,5) *X(5)+A(8,8) *X(8)
F3=.67*F2+143.2*X(5)+3.753*X (4)

&1.25*X(8)+211.97*% (5)

&+211.97*XDOT(3)

F3=CAL(F3,5.)

XDOT (9)=A(9,9) *X(9)+F3

RETURN

END
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SUBROUTINE ABFLTR(X6DWM,I)
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This subroutine simulates the A-B Filter.
RhAKRARAAKARARAERRRRARARARERRE AR AR R TR A Rhk A ARk Rk hh kA kA hdik
COMMON/MAT/A (23, 23) ,B(23,18) ,C(8,23),D(8,10)
COMMON/VECT/X (23) ,U(18) ,FN(23)
COMMQN/CONREL/T, H, SFREQ, TZERO, SR
COMMQN/ABFIL/Y , YDOT

DIMENSION DT(5) ,ALPHAY(5) ,BETAY(S)

DATA S1,52,53/3*3.6/

DATA DI/.2,.1,.05,.033333,.925/

DATA ALPHAY/.7599,.51,.3,.2116,.1633/
DATA BETAY/.4656,.1746,.6529,.825,.0145/
IF(T .NE. TZERO) GOTO 111

S1=0.0

52=9.0

§3=0.0

CONTINUE

YERF=X6DIM

YP=S1+DT(I) *S2

Y=YP+ALPHAY (I) * (YERF-YP)

YDOT=S2+BETAY (I)/DT(I) * (YERF-YP)

S1=Y

S2=

RETURN

END
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SUBROUTINE ESTMAT (X6DUM,IDTS)
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This subroutine simulates the Cbserver.
hhkhkhkhkhkhhkhhkhhkhkhhhkkhrhhhkkrrhkhkkkrhkhkrkkkhhkkkhhhkhkikhhhkhkhkhhkhhkkdhkhhkhihr
CoMMON/MAT/A( 23, 23) ,B(23,18) ,C(8,23),D(8,108)
COMMON/VECT/X (23) ,U(18) , N (23)
COMMON/ESTA/Y1,Y2,Y3
COMMON/ESTS/F(10,10) ,0(16,10) ,E(14,10),G(10,4) ,L(10) ,H(4)
COMMON/EST1/EX(16),S(19) ,SU(4) ,SY(4),Q
COMMCN/CONREL/T, HH, SFREQ, TZERO, SR
DIMENSION Y(19)

REAL L,H,0

FORMAT (3I2)

FORMAT (4El6.7)

FORMAT (/,6E20.7)

FORMAT (//)

DATA NC/1/

IF(NC.NE. 1) GOTO 941

NC=0

READ 10,NE,NU,NY

DO 105 I=1,NE

READ 20, (0(1,J),J=1,NE)

DO 162 I=1,NE

READ 20, (G(I,J),J=1,NU)

READ 26, (H(J) ,J=1,NE)

DO 143 I=1,NE

READ 2¢,L(I)

PRINT 40

PRINT 10,NE,NU,NY

PRINT 490

DO 205 I=1,NE

PRINT 30, (0(I1,J),J=1,NE)

PRINT 40

DO 202 I=1,NE

PRINT 39, (G(I,J),J=1,NU)

PRINT 40

PRINT 34, (H(J) ,J=1,NE)

PRINT 40

DO 263 1=1,NE

PRINT 30,L(I)

PRINT 40

CONTINUE

NC=§

IF(T .NE. TZERO) GOTO 111

DO 561 IserE

S(1)=0.9

DO 582 I=1,NU

su(I)=0.¢

DO 583 1=1,NY

SY(1)=0.0
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CONTINUE

DO 402 I=]1,NU
SU(I)=0(1)

DO 403 I=1,NY
SY (I)=X6DUM

DO 603 I=1,NE
DO 603 J=1,NE
E(I,J)=L(I)*H(J)
pO 604 I=1,NE
DO 604 J=1,NE
F(IIJ)" ( IJ)-E(IIJ)

m301J

DO 302 J=
Y(I)=Y(I)+G(I,
DO 363 1=1,NE
DO 383 J=1,NY
Y (I)=Y(I)+L(I) *SY(J)
Y1=5(1)

Y2=5(2)

¥3=5(3)

DO 401 I=1,NE
S(1)=¥(I)

RETURN

END

J) *sU(J)
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The remainder of this program is -devoted to generation of the wind
and the radar noise disturbances.
KRhhAREAAKAI AT AARAA Ak AR A ARk khkhkhkhkhhhhhhhkhkhhkrhkkhhhkhkkkkhhkdkhd

FUNCTION WIND(DY)

SDYWSY=0.0

WDSCLY=0.5

DY=1.9

WIND=SDYWSY+WDSCLY* (RANNU2 (DX} -0.5) *2
RETURN

END

tese  Guted s S By
e XeXeXe)

FUNCTION RANNUM(DX)
COMMON/RAMD/1X,IY,IZ
IX=IX*65539
IF(IX) 2,2,3

2 IX=1X+2147483647 + 1

3 RANNUM=(FLOAT(IX) *@.4656613D-9)
RETURN
END

FUNCTION RANNUI (DX)
COMMON/RAMD/1X, IY, 12
IY=1Y*65539

i IF(1Y) 2,2,3

! 2 IY=1Y+2147483647 + 1

3 RANNUL=(FLOAT(IY) *0.4656613D~9)

RETURN

' END

FUNCTION RANNU2 (DX)
COMMON/RAMD/1X, 1Y, 12
12=12*65539
IF(12) 2,2,3

2 12=12+2147483647+1

3 RANNU2=(FLOAT(IZ) *0.4656613D-9)
RETURN
END
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FUNCTION GAUS1 (DX) J
DATA SIGM1/l./,XMEA1/@./

Al=0.0

DO 58 I=1,12
Al=A1+RANNU1 (DX)
GAUS1=(Al~6.0) *SIGM1+XMEA]
RETURN

END

[

FUNCTION GAUSS (DX)

DATR SIGMA/1./,XMEAN/9./
Al=(.0

DO 50 I=1,12
Al=A1+RANNUM (DX)

GAUSS= (A1-6.0) *STGMA+XMEAN
RETURN

END

FUNCTION X6 (DX)

COMMON/VECT/X (23) ,U(10) ,FN(23)

COMMON/CONREL/T, H, SFREQ, TZERO, SR

COMMCIN /RANG/RANGE

DATA S1,S2,S3,S4/4*3./

IF(T .NE. TZERC) GOTO 111

Sl=0.0

S2=0.0

S3=0.0

S4=0.0

CONTINUE

PHI=ATAN( (X (6)+178.1)/ (RANGE+762.9))

DPHIN=. 382*S1+.15*S2+, 122*S3-. 0045*S4+, 0005657 *GAUSS (DX) !
PHIM=PHI+DFHIN+.000148*GAUS1 (DX) '
S4=53

S3=52 )
§2=S1 i
S1=DPHIN

X6=(RANGE+762.9) *TAlI(PHIM)~178.1 i
RETURN ‘
END
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Radar Centroid Investigation

A method of estimating the centroid location of a target utilizing
scan return amplitude-versus-angle information was introduced. The
method was compared to three thresholding estimators and a first moment
estimator in a computer-simulated automatic landing system.

It was found that the method introduced was the most robust and ac-
curate of the estimators in noise, due to its unique scan rejection capa-
bility. In periods of high signal-to-noise ratio the method had less
error than the thresholding methods, and was similar in ability to the
first moment estimator. Further, the pulse transmissions required to ob-
tain a desired level of performance was much reduced from the thresholding

methods employed in the simulation,
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I. INTRODUCTION

Essential to the performance of any tracking radar is an effective
target centroid estimator. The purpose of this investigation was to ex-
amine the accuracy of several target centroid estimators in a comparative
fashion, and to develope a non-thresholding algorithm as part of this
project. This analysis was conducted using a simulation of a landing
radar tracking a passive target.

Only the fundamental features of the new algorithm and its develop-
ment are presented here. A complete description and thorough analysis

are being compiled for a subsequent report.
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I1. OVERVIEW OF THE SIMULATION

The computer simulation describes a large jet fighter aircraft in a
normal ground controlled approach (GCA) with the radar antenna located
500 meters from the runway touchdown point, as shown in Figure 2-1. The
simulation initiates the flight with the target 3.72 mmi downrange from
the runway touchdown point, or 4.0 nmi downrange from the radar antenna.
The target model is allowed to approach the runway at a constant 148.6
mph on a 3.5 degree glideslope. The radar is a phased-array 3-D pencil
beam radar utilizing a null-to-null cross-type scan, which scans the tar-
get as it moves. The simulation varies the location of the target in the
scanning window by use of a uniform random number generator before the
start of each scan. The scanning window is always wide enough to fully
scan the target.

The simulation executes a single scan on the moving target and then
increments time to allow the radar to perform its other search ana track
duties, and to move the target down the glidepath. The simulation aborts
when the target is within 90 meters of the runway touchdown point.

The target model used is an ensemble of three anisotropic scattering
complexes representing the left wing, right wing, and fuselage. The lo-
cation of the scattering complexes in the target coordinate system is
shown in Figure 2-2(a), and the arrangement of the scattering points in
a scattering complex is shown in Figure 2-2(b). The equations describing

the scattering complexes are given in Table 2-1. In this work, the angles
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Table 2-1. Radar cross secticn equations for the
target model scattering complexes

RCS equation for all points:

o(0,4) = Ale:¢)|A, (o) + A (8) + A(&)]  (m)

where:

kdx
Ax(“) = cos (_f_ cos a)

a, 6, B are assumed

borcrmamd | S ey [ ] e .

& vernrd

¢

kd
A (8) = cos ("ix cos §) the same for each scatterer
Y and are defined in Figure 2-2.

kdz
Az(e) = cos (—ﬁ— cos B)

Fuselage (FUS) RH Wing (RW) LH Wing (LW)
dx = 10m dx = 6m dx‘= 6m
dy = 2m dy = 4m dy = 4m
dz' 2m dz=2m dz=an

— el o

Amplitude Envelopes

(10(e-n/2)% + 1)(—L2y 2 +8) Tcocl

(n/2

Arys(es¢) =
(10(e-v/2)% + 1)(—&)2 ()2 +8) F<o<3Z

(/2

Ay (0:6) = (100(0-7/2)% +1)(1 - SIN(s)

A(8:8) = (100(e=1/2)% +1)(1 + sin(s)
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¢ and o are not the spherical phi and theta, but rather relative angles
measured from the nose axis of the target coordinate system. Phi de-
scribes that angle in azimuth, and theta describes the angle in eleva-

tion. Figures 2-3, 2-4, and 2-5 are plots of the radar cross section

(RCS) in azimuth o7 the fuselage, right wing, and Yeft wing, respectively.

The composite cross sections of the target model in azimuth, Figure 2-6,
and in elevation, Figure 2-7, are not used by the simulation, and are
presented here for completeness. The radar cross sections in polar form
of the fuselage, right wing, and left wing, are shown in Figures 2-8,
2-9, and 2-10, respectively. The built-in shadowing effect of the fuse-
lage on the wings is especially evident in Figures 2-9 and 2-10. The
composite cross sections in azimuth, Figure 2-11, and elevation, Figure
2-12, are again shown for completeness. All figures are for a wavelength
of 3.3 cm.

The individual returns from each of the scattering complexes are
weighted by the antenna pattern before being summed on a power basis.
This process is repeated for every siﬁu1ated transri’ssion of a pulse from
the radar. Although only one pulse is transmit.ed at each beam pointing
location, time is incremented as though three pulses are transmitted.
When the simulation noise option is enabled, random gaussian noise is
added to the resultant return on a power basis. The noise power is 15 dB
down from a relative maximum scan (without noise) at far range.

To simulate turbulence, the target coordinate system is allowed roll,
pitch, and yaw, with the origin of the target coordinate system locked on
the 3.5 degree glideslope. To simulate calm air, the target model main-

tains a "wings level" attitude for the duration of the flight.
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with the azimuth angla measured from the nose axis of the
coordinate svsten. Amplitudes are in dB cown frem maximum,
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Figure 2-8. Radar cross section of fuselage scattering complex in azimuth,
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Figure 2-9.
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Figure 2-

11. Composite cross section in azimuth, with the aximuth
angle measured from the nose axis of the coordinate sys-
tem. Amplitudes are in dB down from maximum.
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tem. Amplitudes are in dB down from maximum.
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The target returns are calculated with the simplified form of the
radar equation, and are output to the centroid estimators. The basic

system parameters are listed in Table 2-2.

17

J——

t’ ey ]

pev am




e ST

-

R s T 27 VWL

s ey o e

Table 2-2. Parameters for landing system simulation.

Frequency

Pulse repetition frequency

Target initial elevation

Target model initial range
from touchdown

Target model speed

Turbulence rates

Signal-to-noise ratio at far range
Antenna beamwidth (null-to-null)
Azimuth
Elevation
Simulation duration

18

9.1 GHz
6 KHz
56.6 mrad

6890 meters

148.6 mph

10 deg/s roll

5 deg/s yawand pitch
15 dB

1.83°
1.77°
103 scans
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I1I. SIGNAL PROCESSING

The computer simulation just described creates a sequence of scan
returns from the target. In order to neglect the effects of multipath,
this work will address itself solely to that data generated by the scan
in azimuth. The target centroid is calculated from the returns as fol-
lows. A threshold determined from the scan returns is applied to the

scan. Moving in from the edges of the scan, the first occurrance of two

consecutive return voltages exceeding the threshold is located. The outer-

most of those return voltages are tagged as the edge-points of the target.
Since the angle to the returns are known, the centroid of the target is
judged to be midway between the edge-points.

Three methods of setting the threshold are used in this work. Two
are the mean, the median, post-determined thresholds. That is, the tar-
get is scanned and the returns are recorded. The mean of the scan returns
is calculated, and a threshold is set at that level. Likewise, the median
scan return is found and a threshold is set at that level.

A third method is a pre-determined thresholding method. The antenna
beam is placed in the center of the scanning window to measure the anti-
cipated maximum return from that scan. The threshold is set 12 dB down
from that return level. When two consecutive returns are above the 12
dB threshold, the edge is marked and the scanning translates to the other
side to determine the other edge-point. The requirement that the target
be fully scanned no longer exists for this method, so that fewer pulses

are needed to locate the target.

19




A fourth method used is a non-thresholding technique, the radar
centroid (Radar CG). This estimator weights each antenna pointing angle
in the scanning window by the return from that angle, and divides the sum
of the weighted angles by the sum of the weights (returns). The result
is the angle to the radar center of gravity of the body of the return.
Since it requires that the window be fully scanned, all available pulses
are used.

These four methods of centroid location have been compared to the
new method, centroid location based upon return amplitude-versus-angle

signature.
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IV. THE NEW TARGET CENTROID ESTIMATING ALGORITHM

Introduction

Since all target centroid estimators are based on scan returns, it
is instructive to examine the flight scan-return history of a target.
Figure 4-1 is the scan return history of the model in still air without
noise added, which shall now be referred to as a baseline flight. This
plot was made with the target in the center of the scanning window. The
first and last beam pointing locations have negligible return amplitudes
since a null-to-null cross track is employed; the first null in the an-
tenna pattern is placed on the target at those beam locations. As is to
be expected, the maximum return occurs in the center of the scan. It is
readily seen that the scan returns over the flight are modulated, specif-
ically by the scintillation of the target model radar cross section. In
particular, note scan number 90. At this scan, the antenna is clearly in
a null of the target RCS. We can also pick out scans 78, and with greater
difficulty, scan 58, as being in nulls of the target model cross section.
It is in these scans, with poor target returns, that we would expect the
target location error of the estimators to increase.

A flight with noise is shown in Figure 4-2. The two large bodies of
return between scans 58 and 90 are still clearly seen, but the effect of
noise is pronounced on the rest of the flight. Beam pointing locations 1
and 49 are no longer at zero amplitude, but are raised (or lowered) in

level by noise. It is clearly seen from observation of scans 90, 78, and

21
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58 that an accurate determination of the presence of a target at those
scans would be very difficult and prone to error, whereas the detection
of the target with a good signal return, even in the presence of noise,
is less prone to error.

Figure 4-3 is of a baseline flight with turbulence. The many nulls
in this plot are the result of the modulation of the target model radar
cross section on the target returns as model rotates on its axis in sim-
ulation of turbulent wind conditions. Again, beam locations 1 and 49 ex-
hibit negligible returns as the null in the antenna pattern is on the
target.

Addition of noise to the flight with turbulences is shown in Figure
4-4. The many returns that were of low signal level are now filled in
with noise. Only those scans whose signal level rises above the noise
are suitable for target detection.

It is in this 1ight that the work towards a new centroid algorithm
was conducted. The algorithm must be able to determine which scans are

suitable for target detection and location - and to discard all others.

The Algorithm

It is observed in Figure 4-1, which graphically depicts the scan
history of a baseline flight, that all scan envelopes have a high degree
of symmetry. That is, as the antenna beam illuminates the target first
with the pattern null, then increasing the illumination as the main lobe
moves onto the target, reaching the maximum when the beam is centered on
the target, then dimenishing as the target is placed in the pattern null,
the overall scan envelope takes on a tell shape due to the modulation of

the antenna beam. Since the return envelopes are of this shape, each side
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of the bell shape has a unique point, the point of maximum slope. Return-
ing to Figure 4-2 it is observed that the maximum slope of a scan with a
low SNR (such as scans 58, 78, and 90) is relatively small, and those
scans with large SNRs have a relatively large maximum slope. This, then,
is the chosen criterion: Find the point of maximum slope; compare the
slope at that point to a minimum acceptable value and set the edges of
the target or centroid.

The method used to find the point of maximum slope is based on the
scan shape. Referring to Figure 4-5, let us assume that we are using a
cross track with a granularity of 5 beam pointing locations. The rela-
tive amplitudes of the extended returns are marked by the lettered X's on
the drawing. Moving from left to right, the first three returns have a
positive second derivative, since the slope BC is greater than slope AB.
Points B, C, and D have a negative second derivative, since slope CD is
less than slope BC. Since the point of maximum slope is where the second
derivative is zero, that is, where the second derivative changes sign,
the maximum slope must have occurred between points B and C. Having found
the maximum slope, we check to ensure that its' magnitude is greater than
the minimum acceptable slope. If it is, the target edge is marked as
being midway between points B and C, and scanning translates to the other
side of the scan. The process is then repeated for returns G, F, E, and
D. When the two target edges are found, the centroid is placed midway
between the edge points. Since the target is located by calculating
second derivatives, this method is referred to in this work as the second
derivative method or SDRV.

A thorough comparitive analysis of this method will be presented in

a forthcoming report.
27
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Figure 4-5. Illustration of the methcd employed ¢o cetermine the tar-
get centroid location based on the shape of the scan
envelc ‘e. The signal returns are marked by X.
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V. Conclusion
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The fundamental features of the new centroid algorithm were presented
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against the background of the cross-scan tracking technique. Analysis

oo presently being concluded seems to indicate that the new method is gener-
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ally both more accurate and robust than the techniques used for comparison.
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I. INTRODUCTION

When using an AN/TPN-22 track-while-scan radar to track an approach-
ing aircraft, raw digitized measurements of position are obtained. This
positional information is filtered and processed by a control system to
determine command signals which are used by the controller to correct or
compensate for deviations of the aircraft's position from the prescribed
glideslope path.

In such a system, the positional information produced by the radar
must be processed to yield a smoothed present-position estimate, a
smoothed present-position estimate, a smoothed present velocity estimate,
and a one step ahead predicted position for track correlation or bin
selection. Filters which accomplish these goals are referred to as track-
ing filters.

In track-while-scan systems, the tracking filters are realized in
the form of digital filters with fixed or time-varying coefficienis. Due
to the presence of noise in such a system, it becomes necessary to design
the filters based upon the criteria of good noise smoothing and good
maneuver following. Typically systems with good noise smoothing charac-
teristics have sluggish system response which prohibits them from follow-
ing targets with rapidly changing dynamics. In contrast, systems possess-
ing good maneuver-following characteristics have large bandwidths and
thus poor noise smoothing ability. Thus, in designing a tracking filter
a compromise must be made between these two conflicting goals. One may

1
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do so by designing an adaptive filter whose noise-smoothing and maneuver-
following characteristics adapt to the current dynamics of the aircraft.
Two approaches are presented. The first approach is based upon adaptively
selecting the output from either a fixed parameter a-8 on a fixed para-
meter a-g-y filter. This selection is determined by an algorithm which
incorporates an estimate of the tracking error correlation coefficient.
The second approach is based upon an algorithm which automatically adjusts

the parameters of an a-g8 filter to adapt to the dynamics under track.

- ——

=

1T Y 3
L ] L

Comew

)~ '-’ w w :!‘!\'J'

- — -




s e paet D

I1. BI-STATE ADAPTIVE FILTER

When tracking a moving target such as an aircraft, the positional
data obtained from the radar return is corrupted by noise. These noisy
positional measurements can be digitally filtered to provide smoothed
estimates of position and velocity. One type of filter which may be used
to smooth the noisy data is a fixed parameter a-g filter. The fixed
parameter a-g8 tracking filter employs an approach that, if handled prop-
erly, will provide good results with a minimum amount of computation. The
a-g filter is a narrow bandwidth filter which provides good noise smooth-
ing capabilities based on the assumption that the aircraft flies a constant
velocity, straight-line trajectory. The prediction equation is a simple
linear extrapolation and the expressions for smoothed position and velo-
city use simple gain terms a and B to weigh the effects of differences
between the measured and predicted positions. The a-g filter equqtions
will merely be stated in this paper and the interested reader is directed

to the referenced literature [1].

xg(k+1) = xp(k+1) + alx, (k+1) - xp(k+l)] (4-1)
is(kﬂ) = ip(kﬂ) + (8/T)[x (k+1) - xp(k+1)] (4-2)
xp(kﬂ) =x (k) +T is(k) (4-3)
Xp (k#1) = x (k) (4-4)
where
3
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xs(k+1) = smoothed position at time k+l
is(k+1) = smoothed velocity at time k+l
xp(k+1) = predicted position at time k+l | j
ip(k+1) = predicted velocity at time k+1 E
xm(k) = measured position at time k }
T = sampling interval between times k and time k+] i
It is shown in [2] that for a fixed parameter a-g filter, o and B J ]
are found via (4-5) - (4-7). W
k=iq (4-5) :
where L & effective Tength of filter window. ;
B=1- K (4-6) :
a = (:l-K)2 (4-7) 5‘
Unfortunately, if the aircraft deviates from its straight-line con- ?J

stant velocity trajectory the fixed parameter a«-8 filter will be in error.

T

[

Another approach to tracking a moving aircraft is to use a filter
based on a more generalized model of the aircraft's trajectory. A more 7] (

generalized model of a maneuvering aircraft's trajectory may be obtained

by incorporating third order prediction equations in the tracking filter. k)

One such third order tracking filter is the fixed parameter a-g-y filter.

While a and g in the a-g-y tracking filter perform the same function as

]

they did in the fixed parameter a-g8 filter, the y term brings into play

the much needed acceleration estimate essential to tracking the maneuver-

fre~ .:

ing aircraft. This more generalized tracker not only maintains track
4
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throughout a maneuver or turbulent condition, but in addition, provides
good estimates of position and velocity with very little increase in com-
putational difficulty. The equations for the a-g-y filter are merely
stated in this paper. The interested reader is referred to [2] for a

more detailed study.

xp(k) = x (k-1) + T x (k-1) (4-8)-
ip(k) = % (k-1) + T x (k1) (4-9)
E(k) = x, (k) - x,(K) (4-10)
xg(k) = x/ (k) + oE(K) (a-1)
x (k) = x, (k) + (8/T) E(K) (4-12)
X1(k) = %3 (k=1) + (v/T) E(K) (4-13)

where,
xp(k) = predicted position estimate
ip(k) = predicted velocity estimate
E(k) = error between predicted and measured position
xs(k) = smoothed position estimate

is(k) = smoothed velocity estimate

i;(k) smoothed acceleration estimate

The short time constant and high bandwidth of the a-g-y filter in-

sures trackability through a maneuver. However, if the aircraft is not

maneuvering, these same characteristics contribute a significant




degradation in performance compared to the simpler a-g tracker that anti-
cipates the constant velocity straight-line motion.

It must not be apparent that to accurately track a target in motion
will require the use of the a-g filter (for straight-line constant velocity
trajectories) and the a-g-y filter (for maneuvers or turbulence). There-
fore, it is clear that some method of adaptively selecting the appropriate
filter output for the maneuvering/non-maneuvering cases must be found.

One method of intelligently selecting the appropriate outputs of the
a-B Or a-B-y trackers is the evaluation of the tracking error correlation
coefficient. A system diagram depicting this approach is shown in Figure
4-1. The a-8 and a~g-y filters operate in parallel with one another.
Prediction error estimates are generated from both filters by differencing
the present predicted position and the present measured position. As *he
prediction error estimates are generated they are stored in an L-Tength
shift register (L being the effective window length of the filters.) From
these prediction error estimates the tracking error correlation coefficient
for each filter is calculated. If the tracking error is due solely to the
radar quantization noise, which is white zero-mean Gaussian noise, then
this error should be uncorrelated. If on the other hand the tracking er-
ror is due to positional error (maneuver) then the tracking error will be
highly correlated. The error correlation coefficients are compared to a
predetermined threshold and the appropriate filter output is selected
based on the following premises:

1) If the correlation of error is low (p = 0) then the error

is attributed to radar quantization noise and the output

of the a-8 filter should be selected.
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Figure 4-1. A Bi-State Adaptive Filter
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2) If the correlation of error is high {p > VT) then the

error is due to positional error (maneuver) rather than
radar quantization noise and the output of the a-g-y

filter should be selected.

The equations for the prediction errors and the correlation coefficient

are given below.

where

E'(n) = x(n) - x(n) (4-14)
a-8 a-8
E'(n) = x(n) - x(n) (4-15)
a-B-y a-fB-y
L-2
L-1 £ E'(n-i) E'(n-i-1)
b = —iy (a-16)
% I E'(n-i)2
i=0
;(n) = output of the a-B tracker
a-B
X (n) = output of the a-g-y tracker
a=8-y
x(n) = input measurement
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ITI. A RECURSIVELY ADAPTIVE a-g FILTER

A simple a-g filter with fixed parameters as described in the pre-
ceding section is severly limited when tracking a target that is under-
going a change in velocity. Such a velocity change may be the result of
an intentional maneuver or merely positional changes due to turbulence
or wind gusts. The inability to track during a velocity change is seen
in the predictor equations which require an extremely small velocity
change between sampling intervals to be accurate. From a frequency re-
sponse point of view, good noise smoothing qualities for a non-maneuver-
jng target would require the filter to have a low pass effect, (i.e.,
the smoothed output would depend almost entirely on the predicted values
where o and g approach zero). When a change in velocity is encountered,
the filter is required to increase its bandwidth and depend more on the
measured values where a and B approach one, due to the errors in the pre-
dictor equations during a velocity change. A method is presented.by
Schooler [4] to calculate optimal values of o and g8 recursively. This
method can be modified in order to constantly update a and 8 in steady
state and therefore adjust the frequency response of the filter at each
sampling interval to match the target's motion. Since the predictor is
in error when the target accelerates, the criterion for calculating « and
g is the minimization of the expected mean square error in predicted
position ez[xp(k)] where c[-] denotes the error associated with the term

in brackets and the bar denotes expected value. Realizing the predictor

VB ¢ A e o A ——— ——  ——— .\ . et o




equations (4-8) and (4-9) are in error during a velocity change, the

error in the predicted values can be written as:

elx ()] = elxg(K)] + T elx ()] + 3, (k) (4-17)

P

e[ip(kﬂ)] e[f(s(k)]**- A v(k) (4-18)

where Ap and Av represent the error associated with a velocity change and

2

. 2 . .
are assumed to have variances °p and 9, with a covariance u__.

pv
Since the predicted values are linear combinations of the smoothed
values, minimizing the mean square error in predicted position is equiva-
lent to minimizing the mean square error in smoothed position and velocity.
By manipulating equations (4-17) and (4-18), squaring and taking the expec-

ted value, the errors is the smoothing equations can be written as [4]:

e2Ix g (k#1)] = % 2(ke1) + (- (e2Ix (k)] + 2T elxg (KD (K)]

+ .

18 15 (k)] + 0 2(K)) (4-15,

2k (1)) = (6%/T2) 1o 2ke1) + Z0x (K)])

- (28[1-81/T} Lelx (K)xg(K)}
+ (1-832 (20K (K)T) - (28/T) (u_.(K)}
s pv
+ ovz(k) + (8471%) {cpz(k)} (4-20)

where -"ka*1) is the variance in measurement error at time k+1 and

AT te aritten as:
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elxg (k+1)k (k+1)] = {ag/T} (a 2(k#1)) {
- (-a} {8/T) (eI (K) T} n
+ {1-a} {1-28} {elx (k)X (K)) " 'j
+ T{1-a} {1-8} {27E322135}

2
{1-a} {8/T} {op" (k)Y + (1-a} uy, (K)}

Taking the partial derivatives of (4~19) and (4-20) with respect to a and
8, setting equal to zero and then solving for a and .g, the best values for

a and g at time k+1 are [4]: ‘

alkt1) = (20x ()] + 27 elx (kg (0] + T2 FIx ()] + o 20/
o, 2U41) + e2[x (K)] + 2T elx (K)k (k)] + T2 e2[k (k)] 5
+ o B(k)) (4-21)
8(k+1) = (T elx (K)k (k)] + T? ;EE;;ZZ;5-+ T upv(k)}/{omz(k+1)

+ PIxg(K)] + 27 e[k (K)x (k)]

+ T2 cz[is(k)] N opz(k)} (4-22)

These equations provide recursive evaluation of a and 8 at each sampling

to keep the filter adjusted to the target's type of motion. There are many
ways to initilize the filter according to the amount of information known
concerning the target's state at the time tracking begins. Two good meth-

ods for initilization when the targets initial velocity, position, and

N




i

acceleration are known and unknown are presented by Schooler [4]. A
block diagram of how this filter can be implemented is shown in Figure

4-2.
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Figure 4-2.

A Recursively Adaptive Filter
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IV. CONCLUSIONS

Both methods of achieving better radar tracking of maneuvering tar-

gets which have been presented are being evaluated via computer simulation.

Preliminary results using selected test inputs show that an improvement

in performance can be achieved when compared to a fixed parameter «-8
filter. Current tests involve implementing these filters in a computer
simulation modeling the entire control process of the MATCALS system, how-
ever results have not yet been completely analyzed to warrant inclusion

in this report.
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