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FUNDAMENTALS OF ION MOTION IN

ELECTRIC RADIOFREQUENCY MULTIPOLE FIELDS

I. INTRODUCTION

The strong-focusing effect, which utilizes alternating electromagnetic fields, is the basis
for high-energy accelerator physics' and quadrupole mass spectrometry. 2 Ion motion

through such electromagnetic fields, induced by arbitrary-shaped pole pieces,3 cannot be
described in closed mathematical form. However, the differential equations describing
ion motion through the electromagnetic field induced by voltages on an electrode struc-
ture employing hyperbolic-shaped electrodes can be written in an analytic form which is
known as the Mathieu equation, the theory and properties of which are well known." 7

Therefore, it is not surprising that many mass filters are based on electrodes with a hyper-
bolic geometry.

The methods for obtaining the potential functions and the differential equations of ion
motion in time-varying electromagnetic fields are probably familiar to accelerator
physicists and electrical engineers. Surprisingly, a search of the literature has failed to
reveal a fundamental and practical discussion of this subject suitable to those
researchers, such as mass spectrometrists and ion physicists, who might benefit most by
such a discussion.

Research on mass filters has been confined primarily to the quadrupole. the monopole,
the three-dimensional quadrupole, and approximations to these three." ' It may be possi-
ble that electric radiofrequency mass filters with desirable properties could be im-
plemented if electrode geometries other than the above were considered.

E. D. Courant, M. S. Livingston, and H. S. Snyder, Phys. Rev., 88, 1190 (1952); J. D. Blewett. Phys. Rev., 88,

1197 (1952).
2 W. Paul and H. Steinwedel, Z. Naturforsch. Teil A., 8, 448 (1953); W. Paul, H. P. Reinhard, and U. von Zahn.

Z. Phys. 152, 143 (1958).
3 The terms conductor, electrodes, and pole pieces will be used interchangeably.
4 F. M. Arscott, Periodic Differential Equations, The Macmillan Co., New York (1964).
5 N. W. McLachlan, Theory and Application of Mathieu Functions, Oxford University Press, New York (1947).
6 Computation Laboratory, Tables Relating to Mathieu Functions, U.S. Bureau of Standards, Columbia University

Press, New York (1951).
7 P. H. Dawson (Editor), Quadrupole Mass Spectrometry and Its Applications, Elsevier, Amsterdam (1976).
8 J. F. J. Todd and G. Lawson, MTP International Review of Science, Physical Chemistry. Mass Spectrometry.

Series Two, Vol. 5. edited by A. Maccoli, Butterworths, London (1975).
9 J. E. Campana, Int. J. Mass Spectrom. Ion Phys., 33, 101 (1980) and references cited within.



Previous work with the quadrupole mass filter electrode geometry has been directed
towards making circular cross section electrode approximations to "ideal" hyperbolic
cross section electrodes. Denison'0 has pointed out a propagation of errors in the literature

that deal with the correct positioning of cylindrical electrodes to approximate a hyper-
bolic electrostatic field. Denison presented the equations of ion motion in such fields and
he reported variations in the stability diagrams resulting from the relative positioning of
the cylindrical electrodes approximating ideal hyperbolic cross section electrodes.
Denison discusses the power series expansion expression for the quadrupole potential
distribution which is obtained by considering a point charge located in a quadrupole
field formed by electrodes of line charge." Successive terms in the series expression repre-
sent quadrupole, dodecapole, icosopole geometries, etc. A commercial instrument,' 2

employing correcting electrodes to account for the dodecapole field distortions was
available for a number of years but ultimately was replaced in favor of electrodes with
hyperbolic cross sections.

Although the quadrupole geometry has been used for the mass filter in practice, there is
the possibility that other geometries might give equivalent or superior resolution for a
given transmission and might provide other advantages as well. New geometries could be

investigated empirically, but for practical reasons this task requires a means of

evaluating electrode geometry designs theoretically. In this report, several alternatives to

the quadrupole geometry are considered and equations of ion motion in closed analytical
form are derived for each of them. By detailed consideration of these particular

geometries it may be possible that insight into the characteristics of a useful mass filter

geometry will be gained.

The first objective of this report is to present the fundamental laws of physics and the
approximations which govern ion motion through electromagnetic fields in the electric
RF mass filter. A second objective is to present a method for finding the potential func-
tion of an arbitrary "ideal multipole field" and, subsequently, the differential equations
of motion for an ion traversing such a field. A summary and discussion of forces and ef-
fects which are typically neglected in the physics of ion motion, but which may be impor-
tant under certain circumstances. are included for completeness. Finally, the potential
functions and differential equations which describe ion motion in the electric RF dipole.
quadrupole. hexapole. octapole. and decapole fields are derived using mathematical
methods. This is a first step toward investigating the properties of alternative muhipole
geometries for mass filters.

10 D. R. Denison, J. Vac. Sci. Technol., 8, 266 (1971).

See H. Matsuda and T. Matsuo, Int. J. Mass Spectron. Ion Physics, 24, 107 (1977), for a partial derivation

of the power series expansion.
12 Iewlett-Packard Corporation. Palo Alto, CA.



II. FUNDAMENTAL PHYSICS OF IONS IN ELECTROMAGNETIC FIELDS

The electric RF strong-focusing effect has been employed in quadrupole mass spec-
trometry for over twenty years.2 " The theory of operation for this versatile device has been
discussed by many authors7"9 and in all discussions it appears that the fundamental
physics underlying ion motion in electromagnetic fields has been assumed.

In this section, a method for finding the differential equation governing the motion of
an ion through electromagnetic fields with any number of arbitrary-shaped pole pieces is
derived. This derivation, while general, is directed specifically to ion motion through an
electric RF field which finds popular use as a mass filtering device.

The differential equation which describes the motion of an ion through a field is ob-
tained from Newton's law of motion

dt
2

where F is the force on the ion, in is the mass of the ion and r is the radius vector from the
origin. The force on an ion with charge e moving through an electric field E and a
magnetic field B with a velocity v is given by the Lorentz force law

F = e (E + vxB). (2)

It is necessary to compute the E and B fields from the time-varying potential imposed on
the pole pieces to find the motion of the ions from Equations 1 and 2. These are com-
puted from the general Maxwell equations:

VD=p VxE=- a

at (M1)

a D
V-B=0 VxH=J+..D

at

where p is the real charge density in the medium and J is the current per unit area in the
medium.

2 W. Paul and H. Steinwedel, Z. Naturforsch. Tell A., 8. 448 (1953); W. Paul, H. P. Reinhard, and U. von Zahn,

Z. Phys 152. 143 (1958).
7 P. H. Daw.on (Editor), Quadrupole Mass Specrromerr. and Its Applications. Elsevier. Amsterdam (1976).
8 )m I.. J. Todd and (. Lawson, MTP International Review of Science, Physical Chemistry. Mass Spectrometry.

Series Two. Vol. 5, edited by A. Maccoll, Butterworths, London (1975).
9 J. F. Campana. Int. J. Mass Spectrom. Ion Phys., 33. 101 (1980) and references cited within.
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The del operator V which appears in Equations MI can be defined by

Vo.dr = do, (3)

4 where 0 is a scalar function of position, do is the total differential of 0, and dr is the
total differential of the radius vector r. This definition can be used to find an explicit
representation of the operator V in rectangular coordinates. From elementary calculus:

de ?-O dx + -LO dy + 20 dz.
ax ay az

In rectangular coordinates the displacement dr is

=r -- jdy + tdz.

Since dx, dy, and dz are independent, in rectangular coordinates VO is identified as

ax ay az

and the operator V is identified as

+J- - ,(4)
ax ay az (

where i, J. and t are unit vectors along the x, y, and z axis. Expressions for the Voperator
in co-ordinate systems other than the rectangular one are given elsewhere.'" "

Equations 1 and 2 and Maxwell's equations M1 are fundamental equations which
describe the motion of an ion through any electromagnetic field. What do these equations
mean? Suppose that the charge density p(x,y,z,t) and the current density J(xyz,t) are
known throughout space and for all time. With Vdefined in Equation 4, the divergence,
curl, and the time derivative of all the quantities in Equations MI can be readily com-
puted providing E(x,y,zt), D(x,y,zt), B(x,y,z,t), and H(x,y,z,t) are specified. Maxwell's
equations assert that the E, D, Band H fields cannot be chosen arbitrarily and must be
chosen in such a way that they satisfy Equations MI. Furthermore, the E and D fields are
related and the B and H fields are related by the properties of matter.

1 E. M. Pugh and E. W. Pugh, Principles of Electricity and Magnetism, Addison-Wesley Publishing Co., Reading,
MA (1960).

14 S. Ramo, J. 1.Whinnery, and T. Van Duze, Fields and Waves in Communication Electronics, John Wiley and

Sons, In,, ;w York (1%5).
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The vector D (called the electric displacement vector) is related to the vector E by' 3 
"

D = eE+P, (5)

where E, is a constant called the permittivity of free space and P is a polarization vector

characteristic of a particular material. In linear, homogeneous, isotropic materials,"3 "

P = EE (Xe is a dimensionless quantity called the polarizability or electric susceptibili-

ty) so that Equation 5 becomes

D=(+ X)E = EE. (6)

The constant e in the last equation, the permittivity, depends only on the medium in

which the field exists. Similarly, H (called the magnetic field intensity or magnetic field

strength vector) is related to B by' 3

B=,H+ m, (7)

where /z,, is a constant (called the permeability of free space) and m is called a magnetic

polarization vector.'3 In linear, homogeneous, isotropic materials m = PAXm H (the

dimensionless quantity X. is called the magnetic susceptibility of the material under con-
sideration) so that Equation 7 becomes

B = H. (8)

The constant 1 in Equation 8, called the permeability, depends only on the medium in

which the field exists. Thus for linear, homogeneous, isotropic media. MVxwell's Equa-

tions Ml must be satisfied subject to the constraints of Equations 6 and 8.

With these assumptions (Equations 6 and 8) about the properties of the material from

which pole pieces are constructed and for the medium in which the ion moves. Maxwell's

equations MI become:' 6

13 E. M. Pugh and E. W. Pugh, Principles of Electricity and Magnetism, Addison-Wesley Publishing Co., Reading,

MA (1960).
14 S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, John Wiley and

Sons, Inc., New York (1 %5).
is Some authors write Equation 7 in the form B = p(H+M) and call M the magnetization. This allows the units

of H and M to be the same. The form of Equation 7 is used here to emphasize the similarity with Equation 5.
16 Here Maxwell's equations are expressed in terms of E and B rather than D and H since E and B are the vectors

in Equation 2.
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V. (eE) p VxE=- aB
at (M2)

V-B=O VxB = +(eE)
at

Since the ion of interest is moving in free space (vacuum), e and JA have the constant
values iE and it in Equations 6 and 8. If the charges of ions and the associated current
densities can be neglected for the purpose of computing the E and B fields acting on
them, Maxwell's Equations M2 become:

V-E=O VxE=- aB

v oB 
-a(oE) (M3)

at

Now suppose that the E and B fields are not changing with time. For this situation, Max-
well's Equations M3 become:

V.Ee j) V6 F -O

V.B = 0 Vx B = O. (M4)

The validity of the different forms of Maxwell's Equations (MI, M2, M3, M4) merits
discussion. Maxwell's Equations in the form of Equations M1 are universally valid in
any medium. Maxwell's Equations M2 are valid without approximation for elec-
tromagnetic fields within a vacuum where the E and D fields are parallel and the B and
H fields are parallel. This condition is fulfilled when the fields exist in linear,
homogeneous, isotropic materials and for such material Equations M2 are a valid ap-
proximation. Thus in all regions of a mass filter that are linear, isotropic, and
homogeneous (i.e., within the pole pieces and in the vacuum enclosed by them) Maxwell's
Equations M2 are valid. In a mass filter, the vacuum conditions approximate free space
so that the permittivity E and permeability Ai should be well approximated by E, and A(,.
Furthermore, with a low enough density of ions, p and J will approach zero. and
therefore Maxwell's Equations M3 are a good approximation in the vacuum region
enclosed by the pole pieces of a mass filter. However, in a mass filter, the voltages on the
electrodes change at radiofrequencies resulting in B and E fields which will also change
at the same frequencies. so it is not obvious that Maxwell's Equations M4 are valid in the
vacuum region enclosed by the olme pieces. The use of Equations M4 in this region can be
understood through the following discussion. Equations M3 predict" that B =aE Ic

13 E. M. Pugh and E. W. Pugh, Principles of bectricity tand Magnetism. AddisowWesley Publishing Co., Reading,

MA (1960).

6
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where BO and E° are the maximum amplitudes of the B and E fields and c is the speed of
light where c = (Ej) " . Thus the B field in the Lorentz force law (Eq. 2) exerts a negligi-
ble force on the ion compared to the E field unless the ion is moving at a speed com-
parable to the speed of light. The fastest ions in a quadrupole mass filter are moving

slowly (v/c < 10')' compared to the speed of light, even under extreme operating condi-
tions. Therefore, it is not necessary to consider the B fields any further for the purpose of
computing the force on an ion. The Lorentz force law (Equation 2) reduces to

F = eE, (9)

while Maxwell's Equations M4 become:

V.E=0 Vx E =O. (M5)

The second of these Equations M5 is valid only for an alternating potential which has a
frequency P low enough such that

=cv > >f. (10)

That is, the wavelength X associated with the electromagnetic wave must be much greater
than the length f of the electrode structure. The necessity of Equation 10 can be
understood in the following way. If the wavelength does not satisfy Equation 10 there is a
possibility of standing waves (just as in the case of sound waves in an organ pipe) and
these are not predicted by Equations M5. Typically, the length of the mass filter is less
than 1 m and the frequencies used are well below 10 MHz.' Therefore, Equations 9 and
M5 are valid for the vacuum region traversed by the ions in the mass filter.

An E field which satisfies Maxwell's Equations M5 can he found with the aid of two
mathematical theorems. Stokes theorem, valid for any continuous, differentiable vector
field A, asserts that

,VxA ds A - dr. 1)

S

where dr is a vector on the circumference of the enclosed area S and whose direction i6 in
the direction of the integration. The vector ds has a magnitude equal to the area (is. and
its direction is normal to ds. The ambiguity in the two directions nornal to d! is resolved
by the right-hand nile, that is (is points in the direction of the thumb with the other
fingers of the right hand pointing in the direction dr. In Equation 11. the integral on the

9 J. E. Carnpana, Int. J. Mass Spectrom. Ion Phys., 33. 101 (1980) and references cited within.
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right is over the entire circumference and the integral on the left is over the area S en-
closed by the circumference. Stokes theorem enables a two-dimensional integral over a
surface which has the form given on the left side of Equation 11 to be evaluated by the
simpler one-dimensional integral on the right-hand side of Equation 11. Application of
Stokes theorem to the second of Equations M5 implies

JE - dr= 0 (12)

over any closed path which defines a surface over which VxE=0.

The second mathematical theorem asserts that anv vector field E. which has the proper-
ty that fE -dr = 0 around every closed path, can be represented as the divergence of a
scalar field O(xy.z). that is

E=-O(x.v.z. (13)

The minus sign in Equation 13 is not essential and is included to conform with conven-
tion. This is analogous to the situation in classical mechanics where the potential energy
U(r) is defined so that F=-V (r. The scalar field O(x~y.z) is called the potential func-
tion. Equation 13 states that a vector field, which normally needs three scalar fields to
represent it lone for each componen'i. can be represented by a single scalar field if Equa-
tion 12 is satisfied for every closed path.

The validity of Equation 13 in a region of space for which Equation 12 is satisfied for
every closed path is wen by the following argument. Equation 12 applied to Figure 1 im-
plies

JE'dr +JE-dr = 0. (14)

ABC CDA

where the letters on the bottom of the integral symbol indicate the path of the integration.
If the direction of a line integral is reversed, then the sign changes such that

fEf ir = -fE-dr

CDA ADC

and Equation 14 becomes

fE - dr fE - dr. (15)

ABC ADC

8



2

'1 i 06

30 h

c a



Equation 15 states that if Equation 12 is valid then the line integral from A to C is in-
dependent of the path. Thus if Equation 12 is valid, then the integral from point A to
point C can only depend on the coordinates of points A and C.

f E.dr A-*(r- 4(r)J. (16)

ABC

The function 0 called the potential, corresponds to the voltage on the poles of the elec-

trode structure. Now suppose points A and C are taken close together, then Equation 16
becomes

E • dr = -do = -V" -dr, (17)

where the last equality follows from the definition of V4 (Eq. 3). Since Equation 17 is
true for any element of length dr, there exists a function 46 which depends only on the

postion such that Equation 13 is true. This completes the proof of Equa-
tion 13.

Substituting E from Equation 13 into the first equation of Equations M5 gives

V-V(x,yz) = 0. 118)

The symbol V.V is called the Laplacian and is denoted by V 2; consequently. Equation
18 becomes

V 2 (x.y,z) .191

Equation 19 is called Laplace's equation and in rectangular coordinates

V V2 = - V.

ai~ A~ a A a N A a=+J_ +k - " +j -_ + 1
\ ay aa ay

a2  a2  a2

aX2  ay2  az2

10



Expressions for V 2 in the cylindrical and spherical coordinate systems are given
elsewhere.' 3 

" Since Equation 19 is a consequence of Maxwell's Equations M5, it is ap-
parent that if a function O(x,y,z) can he found which satisfies Equation 19, then the E
field defined by Equation 13 will satisfy Maxwell's Equations M5.

The prescription for finding the differential equation of ion motion for any configura-
tion of pole pieces can now be given. Suppose that an ion is moving in the field of a set of
n conductors each at a constant voltage , 1,....n). Let z = f,(x.y) denote the equation
for the surface of the ith conductor. The differential equation of motion can lie found by
obtaining a potential function 4(x,y,z) which satisfies Laplace's equation (Equatill n9
and which also satisfies the boundary conditions

O(x'Y'fi(x,y))-- Oi (i = 1,2,...n). (20)

This latter requirement says that the potential function must he equal to the voltage ap-
plied to any of the electrodes at the electrode surfaces.

Generallv, it is difficult to find such a function which satisfies Equations 19 anti 20.
The function Ofxyz) can sometimes be found analytically using the method of
images, 13 

'4 "7 complex variable theory,' 3 
'4 ,7 " infinite series expansions' 3  ' 19 or it

can be evaluated numerically using digital computers.2 0 
21

13 E. M. Pugh and E. W. Pugh, Principles of Electricity and Magnetism, Addison-Wesley Publishing Co.. Reading,

MA (1960).
14 S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics. John Wiley and

Sons, Inc., New York (1965).
17 J. D. Jackson, Classical Electrodynamics, John Wiley and Sons, Inc., New York (1962).

18 R. V. Churchill. Complex Variables and Application. McGraw-Hill Book Co., Inc., New York (1960).

r 19 R. V. Churchill, Fourier Series and Boundary Value Problems. McGraw-Hill Book Co., Inc., New York (1941).

20 K. J. Binns and P. J. Lawrenson, Analyss and Computation of Electric and Magnetic Field Problems. The

Macmillan Co., New York (1963).
21 M. L. Baron and M. G. Salvadori, Nrnmerical Methods in Engineering, Prentice-Hall, Inc., Englewood Cliffs,

NJ (1964).
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Onee the potential Ox.y.z) is known, the differential equation of motion can be found

using Newton's law of motion

d2 r
F = m .. C -VO(x, y, z). (21)

dt2

As discussed earlier. this method is approximately valid for time-varying potentials"

0M.- cos t. (22)

providing the potential does not change too rapidly with time (i.e.. subject to the limita-

tions of Equations M5 and 10). Physically. Equation 22 corresponds to subjecting the

electrodes to a voltage which has both d.c. and a.c. components.

The remainder of this report will consider only infinitely long conductors whose shape

does not vary with z. Although real electrode structures must necessarily be of finite

length. this approximation is made because it captures the essential features for the

operation of electric RF devices while avoiding some of the mathematical complexities.

With this approximation, the potential for such a conductor configuration does not de-
pend on z: i.e.. (*x.y.z) = O(x.v) and hence the force in the z-direction is zero; i.e..

d2 z
"in._._= 0. The equation of motion in the z-direction (.an be integrated directly

dt 2

z=v t + z.. (231

H1ere , and z,, are the z-component of velocity and the z-c(ordinate respectively at t = 0.

Ill. METHOI) FOR (OBTAINING POTENTIAL FUNCTIONS AND
EQUATIONS OF ION MOTION IN MULTIPOLE FIELDS

The approach of the previous section was to find the potential function Ox.v.z) for a

!.pecified set of conductors at potentials 0.. An alternative approach to the problem is to

find a function [',,(x.v) which satisfies Laplace's equation (Equation 19) and from this

function determine the equipotential surfaces of the pole pieces. If conductors with given

applied potenlials are fashioned which coincide with the equipotential surfaces, a poten-

lial function

22 The ninus wn in Equation 22 is not essential and is chosen by convenilon.

12



Ox.yi = K,, Ux.y) (24)

can he found which satisfies Laplace's equation an(d the boundary conditions I Equation

20) by simply choosing the constant K,, properly. Physically. K is related to the dimen-
sin of the electrode structure and the applied electrode potentials; it is chosen such that

O$x,y) matches the known potentials at the equipotential surfaces.

Functions which satisfy Laplace's equation may be found by application of the theory
of complex variables. If the complex variable z x + iy is raised to an integral power n.

then the result can be expressed as the sum of two functions, a real U (x.y) and an
imaginary V0(x,y) part

(x + iy)n = t,,(x.y) + iV (x,y). (25)

The integer n defines the order of the muhipole field. From complex variable theory z" is
known to be analytic anti so the Cauchy-Rieniann equations are applicable:'

a U(xy) aVn(x,y)
= (26a I

ax ay

aun(xy) 'Vn(x,Y)

=y - 126b0

The sum of the partial derivative of the first of these equations with respect to x and the
partial derivative of the second of these equations with respect to y gives

S2U Un (xy)  a2 Un~ x ,y )+ = 0. 127)

ax 2  ay 2

Thus the function tJ x.v satisfies Laplace's equation.

The method described here for obtaining the potential function and the differential

equation of motion can be summarized as follows.

18 R. V, Churchill. complex Variables and Applications. McGraw-Hill Hook Co., Inc., No. York (1960).

13



A. Evaluate the function U.(x,y) for the variable z" where n is any positive non-zero in-
teger. The function U,.(xy) will satisfy Laplace's equation (Equation 27).

B. The equipotential conductor surfaces are constructed so that they fall on the locus
of points in the (x,y) plane defined by U (xy)= .- constant. The separation between op-
posite electrodes is chosen to be 2r(, to insure that, for the case of the quadrupole, the stan-
(lard quadru)ole geometry2 is reproduced. Geometrically adjacent conductors are ar-
hitrarily chosen to have applied potentials of 0, = OJ2 and Oi =-0,/2, where 0, is
allowed to vary with time (Equation 22), subject to those constraints put forth previously
(the constraints of Equation 10 and the constraints associated with Equations M5). With
the 0, so defined, 0,, is simply the voltage between any two adjacent electrodes.

C. An appropriate constant K, is determined such that K.U (x,y) = O(x,y) satisfies
the boundary conditions; i.e., K is chosen so that O(x,y) matches the known potentials at
the equipotential surfaces.

1). The differential equation of an ion is determined from the potential found
in C using Newton's law of motion (Equation 21).

In brief, find a potential function O(xy) which satisfies Laplace's equation (Equation 19)
and the boundary conditions (Equation 20), then ion motion is found from Newton's law
of motion (Equation 21).

This method will e applied in Section V to obtain potential functions and differential
equations of motion for various multipole electrode geometries.

IV. APPROXIMATIONS IN THE EQUATIONS FOR ION MOTION

Several approximations implicit in the prescription for finding the differential equa-
tions of ion motion given in the preceding section are a result of neglecting the various
forces that ions may experience. These "idealized" equations of motion are normally used
in describing ion motion.' 0 These approximations will now be explicitly discussed.

2 W. Paul and H. Steinwedel, Z. Naturforsch. Tel A., 8, 448 (1953); W. Paul, H. P. Reinhard and U. von Zahn,

Z. Phys. 152. 43(1958).
7 P. II. Dawson (Editor), Quadrupole Mass Spectrometry and Its Applications, Elsevier, Amsterdam (1976).
8 J. F. J. Todd and G. Lawson. MTP International Review of Science, Physical Chemistry, Mass Spectrometrr.

Series Two, Vol. 5, edited by A. Maccoll, Butterworths, London (1975).
9 J. E. Campana, Int. J. Mass Spectrom. Ion Phys., 33, 101 (1980) and refetrences cited within.

10 I). R. Teniso, J. Vac. Sci. Technol., B. 266 (197(1).
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A. Finite Length of the Electrode Structure. The differential equations were
derived under the assumption that the electrode structure is infinitely long. Real electrode
structures are not infinitely long and so the electromagnetic fields are not functions of x
and y alone but also depend on z; i.e., they do not begin and end abruptly at the ex-
tremities of the electrode structure but extend at either end of the electrode structure giv-
ing rise to what is termed fringing fields. Fringing fields have been neglected in these
derivations but for an actual mass filter these fields may be important.' The assumption
of infinite length was implicitly made when the potential was assumed to be independent
of the z-coordinate.

B. Image Force on Ions. If an ion with a charge e is placed near an infinite
conducting sheet it ground potential, the field of the ion will cause the free charges
within the conotu.-tor to move in such a way that the field within the conductor is zero.
These induced , on the conductor will attract the ion to the conductor with a
force, 3

e e2

F
47re o  (2d) 2

where d is the distance from the charge to the conducting sheet. It is as if there were an
image charge of opposite polarity on the other side of the conductor, thus the name
"image force" is used. Similarly, a charge in a conducting hollow sphere (not at the
center) will be attracted to the nearest point of the conductor.1 3 For the geometry of the in-
finite sheet or sphere, the force on the ion is non-zero and this suggests that the force for
an ion moving in the multipole geometries considered here is non-zero. The forces due to
the induced charges on the conductor have been neglected in going from Equations M2 to

M3: the radiofrequency source allows charge to flow to and from the electrode structure
and so Equation M3 is not valid in the region of space which includes the electrode struc-
ture. In typical computer trajectory calculations, the ion is assumed to be lost once it hits
the electrode.2 3 Because of this so called "image force," the ions are more properly lost
when they get to within a certain distance of the electrode structure.

C. E Fields Induced by Ions. Electric forces between ions may occur within
the vacuum region enclosed by the pole pieces when an ion creates an electric field E at
the site of a second ion. The second ion is thus acted upon by an electric force according
to Coulomb's law.

7 P. H. Dawson (Editor), Quadrupole Mass Spectrometry and Its Applications, Elsevier, Amsterdam (1976).
13 E. M. Pugh and E. W. Pugh, Principles of Electricity and Magnetism, Addison-Wesley Publishing Co., Reading,

MA (1960).
23 J. 1. Campana and P. C. Jurs, Int. J. Mass Spectrom. Ion Phys., 33, 119 (1980).
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D. B Fields Induced by Ions. The movement of one ion generates a B field
associated with the movement of that ion and if a second ion moves in the B field
generated by the first ion, it will feel a force due to the B field of the first ion providing v
is not parallel to B. This force is neglected in the derivation given here. The forces in B,

C, and D were neglected when J and P were set equal to zero in Section I in going from
Equation M2 to M3. These latter two forces discussed in C and D can be collectively
termed space charge effects.

E. Presence of B Fields on Computing the E Field. The E field computed from

the potential is only approximately correct because the term with B has been neglected
at

in the second equation of Equation M5. At high enough frequencies, or with a mass filter
with very large dimensions, the E field computed from the potential will be significantly
in error and this would result in significant error in the differential equation describing
the ion motion.

F. Presence of B Field on Computing the Force of the Ion. The fourth equation
of Equations M3 shows that a changing E field generates a B field and from the lorentz
force law this B field exerts a force on the ion. Unless the ion is moving close to the speed
of light, this force is usually negligible compared to the E field. It is reasonable to neglect
this term for practical applications.

G. Radiation by the Accelerated Ion. A consequence of Maxwell's equations is
that an accelerating charge gives off electromagnetic radiation." An accelerating charge
requires an effective force to help balance the energy radiated. This force, which is pro-
portional to the acceleration of the ion,' 7 has been neglected in these derivations.

The approximations discussed in E, F, and G were introduced as a consequence
of dropping the time dependence of the E and B fields in going from Equations M3 to

M4.

H. Ion Neutral Interaction. In the normal operation of a mass filter, ions nja% in-
teract with residual gas in the chamber. It has been suggested2 4 that this force can be
represented as a viscous drag on the motion of the ion. The viscous force, proportional to
the speed of the ion has been neglected in the derivation of the equations given here. At
the normal operating pressures of mass filters (10" mm tlg). the mean free path of a par-
ticle is greater than 4.0 x 10 3 m.

17 J. D. Jackson, Classical Electrodynamics, John Wiley and Sons, Inc., New York (1962).

24 N. R. Whetten, J. Vac. Sci. Technol., II, 5 15 (1974).
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1. Gravitational Interaction. The gravitational interaction has been neglected.
Because of the small amount of time an ion spends traversing a quadrupole mass filter.
this effect is small for such a device and is expected to be more important in ion storage
devices (three-dimensional mass filter).'

J. Relativistic Effects. Non-relativistic laws of mechanics are used in the method
described in Section II. Since the fastest ions in a quadrupole mass filter move slowly9

(v/c < 10"") compared to the speed of light, the errors introduced by using non-relativistic
mechanics are expected to be small.

V. APPLICATION TO SOME MULTIPOLE GEOMETRIES

The method described in Section III will be demonstrated here to obtain the potential
functions and the differential equations of ion motion for the dipole, quadrupole, hex-
apole, octapole, and decapole electrode geometries.

A. The Dipole Field. The variable z is raised to the first power to obtain:

UI(x,y)= x

Vl(x.y =y-.

SinceV 1(x,v)= 0. the function Ul(x.v) forms the basis for a potential function in charge- I
free space. Its equipotential surfaces are illustrated in Figure 2. This leads to a model in
which there are two plane sheets: one at x = r and one at x =-r with applied potentials of

,/2 and -0,,12. respectively. The potential function Obx.v) = U,(x.y) can be deduced to
be

o x
O(xy) - - 0 < x < r.2 ro

if it is to satistv both Laplace's equation and the boundary conditions

10 Ar.y) :k -- ,2 in Equation 20. With 0,, given by Eq. 22. Newton's law Eq. 21

becones:

d2 x em.. + - (013C- AC cos Wt)=0
dt 2  2r o

m d2 y = 0 (28)

dt 2

7 P. It. Dawson (Editor), Quadrupole Mass Spectrometry and Its Application, Elsevier, Amsterdam (1976).

9 J. E. (ampana, Int. J. Mass Spectrom. Ion Phys., 33. lot (1980) and references cited within,
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Figure 2. Dipole geometry.

The positive and negative equipotential surfaces consists of two plane sheets separated
by a distance 2r0 . The surfaces at x-r, and x- - ro are at potentials 0,/2 wi - 0,/2.
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B. The Quadrupole Field. The function z" for us= 2 is evaluated to obtain:

u 2ix,v) = X, V

V2 (X'Y) = 2xv.

SinceV 2 U 2(X'Y)=0, the function 1J2(X'V) is the basis for a piossible potential function in
charge-free space. Its equipotential surfaces are illustrated in Figure 3. Each (of the four

hyperbolic pole pieces have the same geometry andl hence the structure is unchanged
under 90' rotation. The pole pieces lying on the x-axis are arbitrarily chosen to have
positive applied potentials +0(,/2 and the pole pieces lying on the y-axis are arbitraril%
chosen to have negative applied potentials -0,,2. The potential function O(x.vJ can be

A deduced to be

4(y)=12 .2

It is readily verified that this potential function satisfies boith Laplaes equation and the
boundary conditions, Equation 20 leg. 0(r,A)) = ,,2 and (0.r, 0,I/21. With 0"
given by Equation 22, Newton's law becomes:

120

. dy e (4,C -
4,AC COS Wt) y 0

d t2  r0 2

The electric potential anti the differential equation obtained here agree exact I' wills thse
derived elsewhere by various other methods.' Eqiuations 2'9 are (of the %ell tdieti

Mathieu-tvpe eqluationI."

4 . M. Arscot.,Periodic Inifferentiall:quations. The Macmillan Co., New York (1904).

5N. W. McLachlan, Theony and Application of Alathieu F-unctions. Oxford UniverSIty' Press. Ne%% York I 1947).
6 Computation Laboratory, Tables Relating to Mtathieu F-unctions. U.S. Bureau ol Standard%, Columbia Univer-

sity Press, New York (1 95 1).
9J. E. Campana, Int. J. M4ass Specttorn, bin Phi's., 313. 101 (1990) and references kcited %%Ithin.
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C. The Hexapole Field. The. function z" for n = 3 is evaluated to obtain:

U x'y -x 3xy2

V) x.v)= 3x 2v - v.

SinceVLU:,(x,y)=0. the fumnction U3 (x.y) is the basis for a possible potential function in
charge-free space. Its equipotential surfaces are illustrated in Figure 4. Each of the six
pole pieces have the same shape and so the structure is unchanged under a 600 rotation.
Similarly, as in the previous examples. the potential function O(xy) can be deduced to be

O(x,y) 00 (x 3 - 3xy 2).
, 2r 3

It is readily verified that this function satisfies both Laplace's equation and the boundary
conditions. With 0,, given by Equation 22, Newton's law becomes:

md2 x +.3 e
m.... + 3 e (DC -CAC cos (wt) (x 2 - y 2 ) 0

dt2  2 ro3(30)

m d 2 y
- 3e ( AC COS Wt) xy = 0.

dt 2  r 3
0

D. The Octapole Field. The function z" for n =4 is evaluated to obtain:

U(x.V)= X4 - 6x'V2  + V1

V(x) = 4xy(x2 y- ).

Since V 2U(x,y)=O, the function U(xy) is the basis for a possible potential function in
charge-free space. Its equipotential surfaces are illustrated in Figure 5. Each of the eight

pole pieces have the same shape andi so the structure is unchanged under a 450 rotation.
Similarly. as in the previous examples, the potential O(x,y) can be deduced to be

O(xy) =  . (x -6x 2 y 2 + y4 ).

2r 
4
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Figure 4. Hexapole geometry.
The positive and negative equipotentials consist of six surfaces
With an inscribed radius of r0. The equation of the equipotential
surfaces are Olx,y) = Fr0/2r 3 ) (X3 

-3xy
2 ).
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It is readily verified that this function satisfies Laplace's equation and the boundary con-
ditions. With 0, by Equation 22, Newton's law becomes:

d2 X 2e
m __ +2 (ODC -OAC COS W

t ) ( X ' -3Xy 2 ) 0

dt
2  r 4

O

d2 y 2e () 0. (31)
m - O - =A O ,) 3'

dt 2  r 4
0

E. The Decapole Field. The function z" for n = 5 is evaluated to obtain:

U5(x,y)=x1 - IOxy 2 + 5xv'

V,(x,y)yS - 0x 2y3 + 5x'y.

Sinee V 2U!(x,y)= 0, the function U,(x,y) is the basis for a possible potential function in
charge-free space. Its equipotential surfaces are illustrated in Figure 6. Each of the 10

pole pieces have the same shape, and so the structure is unchanged under a 360 rotation.
Similarly. as in the previous examples, the potential function O(x,y) can be deduced to be

O(X,y)= _±° (XI - l0x3 y 2 + 5xy4 )"

2r. s

It is readily verified that this function satisfies Laplace's equation and the boundary con-
ditions. With 0,, given by Equation 22, Newton's law becomes:

d2x 5e
m.d.2. + 5 (ODC -AC cos ct)(x4 -6x 2y 2 +y 4 )=O

dt 2  2r I
(32)

d 2 yn _I- (DC - AC COS Wy) (x
3

y-xy
3

) 
= 0.

dt 2  ro 5

F. Fields of Geometry Higher Than the Decapole. The method illustrated in these
examples can be used without difficuhy for finding the differential equation of an ion

for it > 5. where n is an integer.

G. Generalization of Differential Equations to an Arbitrary Phase. The alter-
nating component at time t = 0 is O in the differential Equations 28-32. Ions may enter
the electric field at any time where the alternating component can have any value
between + OAC antd- bA. Thus Equations 28-32 may be written more generally by replac-
ing wt with wt +6 where 0 6 <2r.

24
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H. Redundancy of the V Function. The funetiom ',.defined inn Equation 25
also satisfies Laplace',. equation: i.e..V 2 V (.y)= O. Tiis (an I.e .een readik bs taking the
sun1 of the partial derivative of Equation 26a %ith respect to % and the partial deri ati~e
of Equation 261) with resx-ct to x. Since s p satisfies Laplaee's equation. it might
.eeri that th- equipotentials , = OJ,,/2 and ', (x.%) =-),l2 would generate different
surface- than the corresponding equations for the function L ,,x.y .

The surfaces defined by V,,Ix.v) 0 .4.,,/2 are the same as those defined by
tU, x.y) - -/2 respectivelv except rotated by an angle a1,,. This is seen by expressing
Ix + iy)" in polar coordinates

(x + iy)" = (re0)" = r1(cos nO + i Sil nO).

(Comparison of this last equation with Equaiton 25 shows

jn(x'V)= r" cos nO (33a)

Vn(x'y)= rn sin nO. (331ol

Define a primed coordinate system rotated by an amount at = r'2n relative to the un-

prnied O'= 0- !r
2n

In the primied icordinate sv!tenn

V = rnsinnO'+I.n) =rn snO'. p32

Mince the form of Equation "4 is the fae a- Equation "3a. the use af the fuction

2n

VI. MILTIP)WE (E()METRIES XS M A FIITERS

The nethlods presented in the preceding ,etions yield the differential equations of mIe
tion for ions in time-%ary'ing electric fields. A system functions as a mass filter if it passes
ions in a certain mass inter-val. rejects all other ions. and the mass interial is unnder the
control of the experimenter.

26
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A. The Dipole Field. The equation of motion for the x and y directions can be in-
tegrated directly:

eDC t2 eOAC COS Wt
x = A+Bt- - t2 -

4mro 2mro W2

(35)
y = V YOt+y o .

Here A and B are constants which depend on the initial x-coordinate and x-velocity.
respectively, and y. and v.,are the initial v-coordinate and y-velocity. It is apparent from

Equations 35 that the motion is unstable in both the x- and y-coordinate directions for all
initial conditions. Thus, the dipole field with sinusoidal voltage is unsuitable as a mass
filter.

B. The Quadrupole Field. It is well known that once can choose OD and OA( such
that there is stability for both the x- and y-directions for a narrow range of mass values.
The quadrupole geometry is suitable as a mass filter. 7"

C. The Hexapole, Octapole, and Deeapole Fields. The differential equations for
these three geometries are not readily integrated. It has been shown that numerical
methods can be used successfully to integrate equations of motion, when motion in one
coordinate direction is not independent of the motion in the other direction.' 0 The utility
of such systems as mass filters awaits the numerical integration of the equation of motion
anti is the subject of future research.

VII. SUMMARY

A general method for finding the differential equations of ion motion in elec-
tromagnetic fields has been presented and applied to five different multipole geometries.
The fundamental physics and the approximations used in obtaining the differential
equations have been reviewed so that limitations in the analytical theory can be ap-
preciated better.

7 P. H. Dawson (Editor), Quadrupole Mass Spectrometrv and Its Applications, Elsevier, Amsterdam (1976).

8 J. F. J. Todd and G. Lawson. MTP International Review of Science. Physical Chemistry, Mass Spectrometry,

Series Two, Vol. 5, edited by A. Maccoll, Butterworths, London (1975).
9 J. E. Campana, Int. J. Mass Spectrom. Ion Phys.. 3, 101 (1980) and references cited within.

10 1). R. I)enison, J. Vac. Sci. Technol, 8, 266 (1971).
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Today the quadrupole mass analyzer is the most widely used mass analyzer for lowi
resolution applications. Typically, mass filters are used in lab~oratory environments where
simplicity, compactness, economy, absence of magnetic fields, and/or the capability of
fast scan rates (especially for chromatographic combinations) are important. Thus, an im-
provement in resolution/transmission qualities of elec-tric RF mass filters would enable
this widely used mass spectrometer to take a larger role in analytical laboratories and in
basic research.

Other design considerations besides resolution/transmission characteristics are impor-
tant. If mass filters could be made which are smaller, more rugged, and less susceptible to
vibration with reduced power requirements while being maintained more easily. they
might find application outside the laboratory. Possible applications include surveying for
natural resources, pin-pointing sources of industrial and natural pollutants and the detec-

.1 tion of explosive materials.
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ABBREVIATIONS AND SYMBOLS

A Anv vector field

B Magnetic field vector

B, Maximunm amplitude of the B field

C' Speed of light

D) Electric (lisj)Iacment vector

~ jd l)istance front a point charge to a conducting sheet

I, Electric field vector

E Maximutm amplitude of E field

e Electron charge

Force vector

II Magnetic field intensity or magnetic field trutlvector

I Vnit vector along x-axi-

J trrent dens.ity vector

Unit vector along y-axi.s

K A coinant. relatedI to the .limnI4Iii4Pits of the elec-trode structure and the
appldiedl electrode voltage

A
k [nit vector along z-axis

e Length of the electrode strucin'tre

NI Magnetization vector

Ill Magnetic polIarization vector
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In Mass

P Polarization vector

RF Radiofrequency

r Radius vector

r Inscribed radius of the electrode structure

t Time

U A real function satisfying Laplace's equation

U(r) A potential energy function

k V11  An imaginary part of a function that satisfies Laplace's equation

v Velocity vector

ORadian measure

6 Radian measure

The permittivity

The permittivity of free space

0 Radian measure

X Wavelength

Permeability

Permeability of free space

v Frequency

p Charge density

Ojx.y.zj A potential function
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A scalar function of positionl or applied voltage

X, Polarizabilitv or the electric siisceptibilitv

Xni Magnetic susceptibility

w Angular frequency

V (lei operator"

~. I V2 The Laplacian

8 Backeurling delta Ipartial dleri~ative signI1

C:ontour integral
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