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FUNDAMENTALS OF ION MOTION IN

ELECTRIC RADIOFREQUENCY MULTIPOLE FIELDS

I. INTRODUCTION

The strong-focusing effect, which utilizes alternating electromagpnetic fields, is the basis
for high-energy accelerator physics' and quadrupole mass spectrometry.? lon motion
through such electromagnetic fields, induced by arbitrary-shaped pole pieces,® cannot be
described in closed mathematical form. However, the differential equations describing
ion motion through the electromagnetic field induced by voltages on an electrode struc-
ture employing hyperbolic-shaped electrodes can be written in an analytic form which is
known as the Mathieu equation, the theory and properties of which are well known.*”
Therefore, it is not surprising that many mass filters are based on electrodes with a hyper-
bolic geometry.

The methods for obtaining the potential functions and the differential equations of ion
motion in time-varying electromagnetic fields are probably familiar to accelerator
physicists and electrical engineers. Surprisingly, a search of the literature has failed to
reveal a fundamental and practical discussion of this subject suitable to those
researchers, such as mass spectrometrists and ion physicists, who might benefit most by
such a discussion,

Research on mass filters has been confined primarily to the quadrupole. the monopole,
the three-dimensional quadrupole, and approximations to these three.”™ It may be possi-
ble that electric radiofrequency mass filters with desirable properties could be im-
plemented if electrode geometries other than the above were considered.

_E. D. Courant, M. S. Livingston, and H. S. Snyder, Phys. Rev., 88, 1190 (1952); J. D. Blewett, Phys. Rev., 88,
1197 (1952).

W. Paul and H. Steinwedel, Z. Naturforsch. Teil A., 8, 448 (1953); W. Paul, H. P. Reinhard, and U. von Zahn,
Z. Phys. 152, 143 (1958).

The terms conductor, electrodes, and pole pieces will be used interchangeably.
F. M. Arscott, Periodic Differential Equations, The Macmillan Co., New York (1964).
N. W. McLachlan, Theory and Application of Mathieu Functions, Oxford University Press, New York (1947).

Computation Laboratory, Tables Relating to Mathieu Functions, U.S. Bureau of Standards, Columbia University
Press, New York (1951).

P. H. Dawson (Editor), Quadrupole Mass Spectrometry and Its Applications, Elsevier, Amsterdam (1976).
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J. F. J. Todd and G. Lawson, MTP International Review of Science, Physical Chemistry, Mass Spectrometry.
Series Two, Vol. §, edited by A. Maccoll, Butterworths, London (1975).

J. E. Campana, Int. J. Mass Spectrom. fon Phys., 33, 101 (1980) and references cited within.
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Previous work with the quadrupole mass filter electrode geometry has been directed
towards making circular cross section electrode approximations to “ideal” hyperbolic
cross section electrodes. Denison'® has pointed out a propagation of errors in the literature
that deal with the correct positioning of cylindrical electrodes to approximate a hyper-
bolic electrostatic field. Denison presented the equations of ion motion in such fields and
he reported variations in the stability diagrams resulting from the relative positioning of
the cylindrical electrodes approximating ideal hyperbolic cross section electrodes.
Denison discusses the power series expansion expression for the quadrupole potential
distribution which is obtained by considering a point charge located in a quadrupole
field formed by electrodes of line charge.!' Successive terms in the series expression repre-
sent quadrupole, dodecapole, icosapole geometries, etc. A commercial instrument,'?
employing correcting electrodes to account for the dodecapole field distortions was
available for a number of years but ultimately was replaced in favor of electrodes with
hyperbolic cross sections.

Although the quadrupole geometry has been used for the mass filter in practice, there is
the possibility that other geometries might give equivalent or superior resolution for a
given transmission and might provide other advantages as well. New geometries could be
investigated empirically, but for practical reasons this task requires a means of
evaluating electrode geometry designs theoretically. In this report, several alternatives to
the quadrupole geometry are considered and equations of ion motion in closed analytical
form are derived for each of them. By detailed consideration of these particular
geometries it may be possible that insight into the characteristics of a useful mass filter
geometry will be gained.

The first objective of this report is to present the fundamental laws of physics and the
approximations which govern ion motion through electromagnetic fields in the electric
RF mass filter. A second objective is to present a method for finding the potential func-
tion of an arbitrary “ideal multipole field” and, subsequently. the differential equations
of motion for an ion traversing such a field. A summary and discussion of forces and ef-
fects which are typically neglected in the physics of ion motion, but which may be impor-
tant under certain circumstances. are included for completeness. Finally. the potential
functions and differential equations which describe ion motion in the electric RF dipole.
quadrupole. hexapole. octapole. and decapole fields are derived using mathematical
methods. This is a first step toward investigating the properties of alternative multipole
geometries for mass filters.

10 5 R. Denison, J. Vac. Sci. Technol., 8, 266 (1971).

1 Sce H. Matsuda and T. Matsuo, Int. J. Mass Spectrom. Ion Physics, 24, 107 (1977), for a partial derivation
of the power series expansion.

12 Hewlett-Packard Corporation, Palo Alto, CA.
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II. FUNDAMENTAL PHYSICS OF IONS IN ELECTROMAGNETIC FIELDS

The electric RF strong-focusing effect has been employed in quadrupole mass spec-
trometry for over twenty years.? °* The theory of operation for this versatile device has been
discussed by many authors™ and in all discussions it appears that the fundamental
physics underlying ion motion in electromagnetic fields has been assumed.

In this section, a method for finding the differential equation governing the motion of
an ion through electromagnetic fields with any number of arbitrary-shaped pole pieces is
b derived. This derivation, while general, is directed specifically 10 ion motion through an
electric RF field which finds popular use as a mass filtering device.

The differential equation which describes the motion of an ion through a field is ob-
tained from Newton’s law of motion

2
F=m(%';, )
k. t

5 where F is the force on the ion, mn is the mass of the ion and r is the radius vector from the
3 origin. The force on an ion with charge e moving through an electric field E and a
w magnetic field B with a velocity v is given by the Lorentz force law

F =e (E + vxB). (2)
It is necessary to compute the E and B fields from the time-varying potential imposed on

the pole pieces to find the motion of the ions from Equations 1 and 2. These are com-
puted from the general Maxwell equations:

V-D=p VxE =- 0B
s ot M1) ,
V-B=0 UxH=1+9D
ot

where p i« the real charge density in the medium and J is the current per unit area in the
medium,

‘ 2 W. Paul and H. Steinwedel, Z. Naturforsch. Teil A., 8, 448 (1953); W. Paul, H. P. Reinhard, and U. von Zahn,
Z. Phys 152, 143 (1958).

T pu Dawson (Editor), Quadrupole Mass Spectrometry and Its Applications, Elsevier, Amsterdam (1976).

8 ). b, 3. Todd and (. Lawson, MTP International Review of Science, Physical Chemistry, Mass Spectrometry,
Series Two, Vol. 5, edited by A. Maccoll, Butterworths, London (1975). -

9 J. K. Campana, Int. J. Mass Spectrom. lon Phys., 33, 101 (1980) and references cited within.
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The del operator V which appears in Equations M1 can be defined by
Vo-dr = do, 3)

where ¢ is a scalar function of position, d¢ is the total differential of ¢, and dr is the
total differential of the radius vector r. This definition can be used to find an explicit
representation of the operator V in rectangular coordinates. From elementary calculus:

do = .?.1 dx+.3¢l. dy+_ag. dz.
9x ay a9z

In rectangular coordinates the displacement dr is

A
dr = dx + jdy + Rdz.

Since dx, dy, and dz are independent, in rectangular coordinates V& is identified as

Vo =’1\.9f. +?.a_¢ +h 2
ax ay oz

and the operator V is identified as

V= 'i\_a_ +’j\._?_ +Q._a_ ,
ax @

oy 0z

AL . . .
where i, j. and f( are unit vectors along the x, y, and z axis. Expressions for the Voperator
in co-ordinate systems other than the rectangular one are given elsewhere.!s '

! Equations 1 and 2 and Maxwell’s equations M1 are fundamental equations which
| describe the motion of an ion through any electromagnetic field. What do these equations
’ mean? Suppose that the charge density p(x,y.z,t)and the current density J(x.y.z.t)are
a known throughout space and for all time. With V defined in Equation 4, the divergence,
4 curl, and the time derivative of all the quantities in Equations M1 can be readily com-
b, puted providing E(x.y,z,t), D(x,y,2,1), B(x.,y,z,1), and H(x,y.z.t) are specified. Maxwell’s
equations assert that the E, D, B,and H fields cannot be chosen arbitrarily and must be
chosen in such a way that they satisfy Equations M1. Furthermore, the E and D fields are

- related and the B and H fields are related by the properties of matter.
i 3 E. M. Pugh and E. W. Pugh, Principles of Electricity and Magnetism, Addison-Wesley Publishing Co., Reading,
1 ‘ MA (1960).
14 S. Ramo, J. . Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, John Wiley and
- Sons,In .w York (1965).

|7r 4
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The vector D (called the electric displacement vector) is related to the vector E by'® ¢
D =¢E+P, (5)

where €_is a constant called the permittivity of free space and P is a polarization vector
characteristic of a particular material. In linear, homogeneous, isotropic materials,'? 14
P=¢ x E (X, is a dimensionless quantity called the polarizability or electric susceptibili-
ty) so that Equation 5 becomes

D=(e,+€x,)E=¢€E. (6)

The constant € in the last equation, the permittivity, depends only on the medium in
which the field exists. Similarly, H (called the magnetic field intensity or magnetic field
strength vector) is related to B by'?

=pH+ M, (7)

where p_is a constant (called the permeability of free space) and M is called a magnetic
polarization vector.!* In linear, homogeneous, isotropic materials WM = p x _H (the
dimensionless quantity X, is called the magnetic susceptibility of the material under con-
sideration) so that Equation 7 becomes

B = pH. (8)

The constant u in Equation 8, called the permeability, depends only on the medium in
which the field exists. Thus for linear, homogeneous, isotropic media. ¥axwell’s Equa-
tions M1 must be satisfied subject to the constraints of Equations 6 and 3.

With these assumptions {Equations 6 and 8) about the properties of the material from
which pole pieces are constructed and for the medium in which the ion moves. Maxwell’s
equations M1 become:'®

Be M Pugh and E. W. Pugh, Principles of Electricity and Magnetism, Addison-Wesley Publishing Co., Reading,
MA (1960).

14 S. Ramo, J. R. Whinnery, and T. Van Duzet, Fields and Waves in Communication Electronics, John Wiley and
Sons, Inc., New York (1965).

15 Some authors write Equation 7 in the form B = u(H+M) and call M the magnetization. This allows the units
of H and M to be the same. The form of Equation 7 is used here to emphasize the similarity with Equation 5.

16 Here Maxwell’s equations are expressed in terms of E and B rather than D and H since E and B are the vectors
in Equation 2.
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V:(€E)=p VxE=-£

at

(M2)

V-B=0 Ux B = 4 3€E)
m ot

Since the ion of interest is moving in free space (vacuum), ¢ and g have the constant
values € and p in Equations 6 and 8. If the charges of ions and the associated current
densities can be neglected for the purpose of computing the E and B fields acting on
them, Maxwell’s Equations M2 become:

V-E=0 VxE=-9B
ot M3
V-B=0 B = Ae E) ™
K, ot

Now suppose that the E and B fields are not changing with time. For this situation, Max-
well’s Equations M3 become:

V-E=6 VxE=0

V-B=0 VxB=0. (M4)

The validity of the different forms of Maxwell’s Equations (M1, M2, M3, M4) merits
discussion. Maxwell’s Equations in the form of Equations M1 are universally valid in
any medium. Maxwell’s Equations M2 are valid without approximation for elec-
tromagnetic fields within a vacuum where the E and D fields are parallel and the B and
H fields are parallel. This condition is fulfilled when the fields exist in linear,
homogeneous, isotropic materials and for such material Equations M2 are a valid ap-
proximation. Thus in all regions of a mass filter that are linear. isotropic, and
homogeneous (i.e., within the pole pieces and in the vacuum enclosed by them) Maxwell's
Equations M2 are valid. In a mass filter, the vacuum conditions approximate free space
so that the permittivity ¢ and permeability g should be well approximated by € and g,
Furthermore, with a low enough density of ions, p and J will approach zero. and
therefore Maxwell's Equations M3 are a good approximation in the vacuum region
enclosed by the pole pieces of a mass filter. However, in a mass filter. the voltages on the
electrodes change at radiofrequencies resulting in B and E fields which will also change
at the same frequencies, 0 it is not obvious that Maxwell’s Equations M4 are valid in the
vacuum region enclosed by the pole pieces. The use of Equations M4 in this region can be
understood through the following discussion. Equations M3 predict’* that B, =E /¢

13 E. M. Pugh and F. W. Pugh, Principles of Electricity and Magnetism, Addison-Wesley Publishing Co., Reading,
MA (1960).




where B_ and E_ are the maximum amplitudes of the B and E fields and c is the speed of
light where ¢ = (€ )™. Thus the B field in the Lorentz force law (Eq. 2) exerts a negligi-
ble force on the ion compared to the E field unless the ion is moving at a speed com-
parable to the speed of light. The fastest ions in a quadrupole mass filter are moving
slowly (vic < 10™)° compared to the speed of light, even under extreme operating condi-
tions. Therefore, it is not necessary to consider the B fields any further for the purpose of
computing the force on an ion. The Lorentz force law (Equation 2) reduces to

F = ¢E, 9)
while Maxwell’s Equations M4 become:
V:E=0 VxE=0. (M5)

The second of these Equations M5 is valid only for an alternating potential which has a
frequency v low enough such that

A=cv>>1 (10)

That is, the wavelength A associated with the electromagnetic wave must be much greater
than the length { of the electrode structure. The necessity of Equation 10 can be
understood in the following way. If the wavelength does not satisfy Equation 10 there is a
possibility of standing waves (just as in the case of sound waves in an organ pipe) and
these are not predicted by Equations M5. Typically, the length of the mass filter is less
than 1 m and the frequencies used are well below 10 MHz.° Therefore, Equations 9 and
M5 are valid for the vacuum region traversed by the ions in the mass filter.

An E field which satisfies Maxwell’s Equations M5 can be found with the aid of two
mathematical theorems. Stokes theorem, valid for any continuous, differentiable vector

field A, asserts that
ffoA-ds =fA-dr. (1)
S

where dr is a vector on the circumference of the enclosed area S and whose direction is in
the direction of the integration. The vector ds has a magnitude equal to the area ds. and
its direction is normal to ds. The ambiguity in the two directions normal to Jdx is resolved
by the right-hand rule, that is ds points in the direction of the thumb with the other
fingers of the right hand pointing in the direction dr. In Equation 11. the integral on the

9 J. E. Campana, Int. J. Mass Spectrom. lon Phys., 33, 101 (1980) and references cited within.




right is over the entire circumference and the integral on the left is over the area S en-
closed by the circumference. Stokes theorem enables a two-dimensional integral over a
surface which has the form given on the left side of Equation 11 to be evaluated by the
simpler one-dimensional integral on the right-hand side of Equation 11. Application of
Stokes theorem to the second of Equations M5 implies

fE-dr=0 (12)

over any closed path which defines a surface over which VxE=0.

The second mathematical theorem asserts that any vector field E, which has the proper-
ty that §E +dr = 0 around every closed path, can be represented as the divergence of a
scalar field @(x,y.z). that is

E=-Vo(x.y.2). (13)

The minus sign in Equation 13 is not essential and is included to conform with conven-
tion. This is analogous to the situation in classical mechanics where the potential energy
Ur) is defined so that F=-U(r). The scalar field ¢(x.v.z) ix called the potential func-
tion. Equation 13 states that a vector field. which normally needs three scalar fields to
represent it (one for each componen';. can be represented by a single scalar field if Equa-
tion 12 is satisfie] for every closed path.

The validity of Equation 13 in a region of space for which Equation 12 is satisfied for
every closed path is seen by the following argument. Equation 12 applied to Figure 1 im-

plies
fE-dr +/E~dr= 0. (14)
ABC CDA

where the letters on the bottom of the integral symbol indicate the path of the integration.
If the direction of a line integral i reversed. then the sign changes such that

fE'(lr =-—j‘E'dr
CDA ADC

and Equation 14 becomes

fE'dr =fE'dr. (15)
ABC ADC
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Equation 15 states that if Equation 12 is valid then the line integral from A to Cis in-
dependent of the path. Thus if Equation 12 is valid, then the integral from point A to
point C can only depend on the coordinates of points A and C.

[E-dr =-[¢(r )~ &(r,)} (16)

ABC

The function ¢ called the potential, corresponds to the voltage on the poles of the elec-
trode structure. Now suppose points A and C are taken close together, then Equation 16
becomes

E +dr =-d¢p =-V¢ -dr, 17)

where the last equality follows from the definition of V¢ (Eq. 3). Since Equation 17 is
true for any element of length dr, there exists a function ¢ which depends only on the

postion such that Equation 13 is true. This completes the proof of Equa-
tion 13.

Substituting E from Equation 13 into the first equation of Equations M5 gives
V-Vo(x,y.z)=0. (18)

The symbol V-V is called the Laplacian and is denoted by V/2; consequently. Equation
18 becomes

V2¢(x.y.z) =0. (19

Equation 19 is called Laplace’s equation and in rectangular coordinates

vi=v.V
- (’i‘_a_ 52 +ﬁ_a-) , (?i 52 +1’EL)
0x dy oz ox dy oz
2 2
S22 2
ox? oy? 022

10
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Expressions for V2 in the cylindrical and spherical coordinate systems are given
elsewhere,'* '* Since Equation 19 is a consequence of Maxwell’s Equations M35, it is ap-
parent that if a function @(x,y.z) can be found which satisfies Equation 19, then the E
field defined by Equation 13 will satisfy Maxwell’s Equations M5.

The prescription for finding the differential equation of ion motion for any configura-
tion of pole pieces can now be given. Suppose that an ion is moving in the field of a set of
n conductors each at a constant voltage ¢,(i=1.2,....n). Let z={(x.y) denote the equation
for the surface of the ith conductor. The differential equation of motion can be found by
obtaining a potential function @(x,y,z) which satisfies Laplace’s equation (Equation 19)
and which also satisfies the boundary conditions

dixy-fixy)=9, (i=12..n). (20)

This latter requirement says that the potential function must be equal to the voltage ap-
plied to any of the electrodes at the electrode surfaces.

Generally, it is difficult to find such a function which satisfies Equations 19 and 20.
The function @(x,y,z) can sometimes be found analvtically using the method of
images,'* '* ' complex variable theory,'* 14 !7 1 infinite series expansions'® '* '7 '* or it
can be evaluated numerically using digital computers.?® '

13 E. M. Pugh and E. W. Pugh, Principles of Electricity and Magnetism, Addison-Wesley Publishing Co., Reading,
MA (1960).

S. Ramo, J. R. Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, John Wiley and
Sons, Inc., New York (1965).

). D. Jackson, Classical Electrodynamics, John Wiley and Sons, Inc., New York (1962).
R. V. Churchill, Complex Variables and Applications, McGraw-Hill Book Co., Inc., New York (1960).
R. V. Churchill, Fourier Series and Boundary Value Problems, McGraw-Hill Book Co., Inc., New York (1941).

K. J. Binns and P. J. Lawrenson, Analysis and Computation of Electric and Magnetic Field Problems, The
Macmillan Co., New York (1963).

M. L. Baron and M. G. Salvadori, Numerical Methods in Engineering, Prentice-Hall, Inc., Englewood Cliffs,
NJ (1964).

14

17
18
19
20

21

11
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Once the potential @(x.y.z) ix known, the differential equation of motion can be found

using Newton'’s law of motion

_ o dir
F=m__ =-eV¢x.vy.2). 21
dt?

As discussed earlier, this method is approximately valid for time-varying potentials**
6. =0, ~d, coswl (22)

providing the potential does not change too rapidly with time (i.e.. subject to the limita-
tions of Equations M5 and 10). Physically. Equation 22 corresponds to subjecting the
electrodes to a voltage which has both d.c. and a.c. components.

The remainder of this report will consider only infinitely long conductors whose shape
does not vary with z. Although real electrode structures must necessarily be of finite
length, this approximation is made because it captures the essential features for the
operation of electric RF devices while avoiding some of the mathematical complexities.
With this approximation. the potential for such a conductor configuration does not de-

pend on z: i.e.. (x.y.z) = @(x.y) and hence the force in the z-direction is zero; i.e..
d?z . _ — : ,
md—2 = 0. The equation of motion in the z-direction can be integrated directly
. )
z=v,t + 2z, (23

Here v and z_ are the z-component of veloeity and the z-coordinate respectively at t=0.

t

. METHOD FOR OBTAINING POTENTIAL FUNCTIONS AND
EQUATIONS OF 10N MOTION IN MULTIPOLE FIELDS

The approach of the previous section was to find the potential function ¢(x.y.z) for a
specified set of conductors at potentials @, An alternative approach 1o the problem is to
find a function l'"(x._\') which satisfies Laplace’s equation (Equation 19) and from this
function determine the equipotential surfaces of the pole pieces. If conductors with given
applied potentials are fashioned which coincide with the equipotential surfaces, a poten-
tial function

2 The munus sign 1n Equation 22 is not essential and 18 chosen by convention.
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d(x.y)=K U (x.y) 24

can be found which satisfies Laplace’s equation and the boundary conditions (Equation
20) hy simply choosing the constant K properly. Physically. K is related to the dimen-
sion of the electrode structure and the applied electrode potentials; it is chosen such that
®(x.y) matches the known potentials at the equipotential surfaces.

Functions which satisfy Laplace’s equation may be found by application of the theory
of complex variables. If the complex variable z=x + iy is raised to an integral power n.
then the result can be expressed as the sum of two functions, a real U (x.y) and an
imaginary V (x.y) part

(x + iy)" = U (x.y) + iV (x.y). (25)

The integer n defines the order of the multipole field. From complex variable theory z" i~
known to be analytic and so the Cauchy-Riemann equations are applicable:'®

U, (x.y) VvV (xy)

——— = —_— (26a)
ax dy

au,_ (x.y) aV_(x.y)

-_ B 26l
dy ax (26h)

The sum of the partial derivative of the first of these equations with respect to x and the
partial derivative of the second of these equations with respect to v gives

92U _(x.y) 0%U_(x.y)
' o+ T " =0 (27)
ox? ay?

Thus the function U (x.y) satisfies Laplace’s equation.

The method described here for obtaining the potential function and the differential
equation of motion can be summarized ax follows.

18 R. V. Churchill, Complex Variables and Applications, McGraw-Hill Book Co., Inc., New York (1960).
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A. Evaluate the function U (x,y) for the variable z" where n is any positive non-zero in-
teger. The function U (x.y) will satisfy Laplace’s equation (Equation 27).

B. The equipotential conductor surfaces are constructed so that they fall on the locus
of points in the (x,y) plane defined by U (x,y)= £ constant. The separation between op-
posite electrodes is chosen to be 2r_ to insure that, for the case of the quadrupole, the stan-
dard quadrupole geometry? is reproduced. Geometrically adjacent conductors are ar-
bitrarily chosen to have applied potentials of ¢, = ¢ /2 and ¢, =-¢ /2, where ¢ is
allowed to vary with time (Equation 22), subject to those constraints put forth previously
(the constraints of Equation 10 and the constraints associated with Equations M5). With
the @, so defined, @ is simply the voltage hetween any two adjacent electrodes.

C. An appropriate constant K is determined such that K U (x,y) = ¢(x.y) satisfies
the boundary conditions; i.e., K  is chosen so that @(x,y) matches the known potentials at

the equipotential surfaces,

D. The differential equation of an ion is determined from the potential found
in C using Newton’s law of motion (Equation 21).

In brief, find a potential function ¢(x,y) which satisfies Laplace’s equation (Equation 19)
and the boundary conditions (Equation 20); then ion motion is found from Newton’s law
of motion (Equation 21).

This method will be applied in Section V to obtain potential functions and differential
equations of motion for various muhtipole electrode geometries.

IV. APPROXIMATIONS IN THE EQUATIONS FOR 10N MOTION

Several approximations implicit in the prescription for finding the differential equa-
tions of ion motion given in the preceding seetion are a result of neglecting the various
forces that ions may experience. These “idealized™ equations of motion are normally used
in deseribing jion motion,2 7' These approximations will now he explicitly discussed.

2 W. Paul and H. Steinwedel, Z. Naturforsch. Teil A., 8, 448 (1953); W. Paul, H. P. Reinhard and U. von Zahn,
2. Phys. 152, 43 (1958).
7 P. H. Dawson (Editor), Quadrupole Mass Spectrometry and Its Applications, Elsevier, Amsterdam (1976).

8 J. F. ). Todd and G. Lawson, MTP International Review of Science, Physical Chemistry, Mass Spectrometry,
Series Two, Vol. §, edited by A. Maccoll, Butterworths, London (1975).

9 1. E. Campana, Int. J. Mass Spectrom. lon Phys., 33, 101 (1980) and refcrences cited within.
101, R. Denison. J. Vac, Sei. Technol.. 8, 266 (1971).




A. Finite Length of the Electrode Structure. The differential equations were
derived under the assumption that the electrode structure is infinitely long. Real electrode
structures are not infinitely long and so the electromagnetic fields are not functions of x
and y alone but also depend on z; i.e., they do not begin and end abruptly at the ex-
tremities of the electrode structure but extend at either end of the electrode structure giv-
ing rise to what is termed fringing fields. Fringing fields have been neglected in these
derivations but for an actual mass filter these fields may be important.” The assumption
of infinite length was implicitly made when the potential was assumed to be independent
of the z-coordinate.

B. Image Force on lons. If an ion with a charge e is placed near an infinite
conducting sheet sl ground potential, the field of the ion will cause the free charges
within the condurior to meve in such a way that the field within the conductor is zero.

These induced ri+ .zos on the eonductor will attract the ion to the conductor with a
force,'*
2
F = i e .
. 4me, (2d)?
1
, where d is the distance from the charge to the conducting sheet. It is as if there were an

image charge of opposite polarity on the other side of the conductor, thus the name
“image force™ is used. Similarly, a charge in a conducting hollow sphere (not at the
center) will be attracted to the nearest point of the conductor.'® For the geometry of the in-
finite sheet or sphere, the force on the ion is non-zero and this suggests that the force for
an ion moving in the multipole geometries considered here is non-zero. The forces due to
3 the induced charges on the conductor have been neglected in going from Equations M2 to

, M3: the radiofrequency source allows charge to flow to and from the electrode structure
l and so Equation M3 is not valid in the region of space which includes the electrode struc-
! ture. In typical ecomputer trajectory calculations, the ion is assumed to he lost once it hits
the electrode.?? Because of this so called “image force,” the ions are more properly lost
when they get 1o within a certain distance of the electrode structure.

C. E Fields Induced by lons. Electric forces between ions may occur within
| the vacuum region enclosed by the pole pieces when an ion creates an electric field E at
| the site of a second ion. The second ion is thus acted upon by an electric force according
to Coulomb’s law.

13 E. M. Pugh and F. W. Pugh, Principles of Electricity and Magnetism, Addison-Wesley Publishing Co., Reading,
MA (1960).

[~ 23 § . Campana and P. C. Jurs, Int. J. Mass Spectrom. fon Phys., 33, 119 (1980).

}
." 7 P. H. Dawson (Editor), Quadrupole Mass Spectrometry and Its Applications, Elsevicr, Amsterdam (1976).
!
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D. B Fields Induced by Ions. The movement of one ion generates a B field
associated with the movement of that ion and if a second ion moves in the B field
generated by the first ion, it will feel a force due to the B field of the first ion providing v
is not parallel to B. This force is neglected in the derivation given here. The forces in B,
C, and D were neglected when J and P were set equal 1o zero in Section I in going from
Equation M2 to M3. These latter two forces discussed in C and D can be collectively
termed space charge effects.

E. Presence of B Fields on Computing the E Field. The E field computed from

the potential is only approximately correct because the term with _a_B has been neglected
ot

in the second equation of Equation M5. At high enough frequencies, or with a mass filter

with very large dimensions, the E field computed from the potential will be significantly

in error and this would result in significant error in the differential equation describing

the ion motion.

F. Presence of B Field on Computing the Force of the Ion. The fourth equation
of Equations M3 shows that a changing E field generates a B field and from the Lorentz
force law this B field exerts a force on the ion. Unless the ion is moving close to the speed
of light, this force is usually negligible compared to the E field. It is reasonable to neglect
this term for practical applications.

G. Radiation by the Accelerated Ion. A consequence of Maxwell’s equations is
that an accelerating charge gives off electromagnetic radiation.'” An accelerating charge
requires an effective force to help balance the energy radiated. This force, which is pro-
portional to the acceleration of the ion,'” has been neglected in these derivations.

The approximations discussed in E, F, and G were introduced as a consequence
of dropping the time dependence of the E and B fields in going from Equations M3 to
M4.

H. Ion Neutral Interaction. In the normal operation of a mass filter. ions may in-
teract with residual gas in the chamber. It has been suggested?* that this force can be
represented as a viscous drag on the motion of the ion. The viscous force. proportional to
the speed of the ion has been neglected in the derivation of the equations given here. At
the normal operating pressures of mass filters (10" mm Hg). the mean free path of a par
ticle is greater than 4.0 x 10 m.

17 1. D. Jackson, Classical Electrodynamics, John Wiley and Sons, Inc., New York (1962).
24 N R. Whetten, J. Vac. Sci. Technol., 11, 515 (1974).
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1. Gravitational Interaction. The gravitational interaction has been neglected.
Because of the small amount of time an ion spends traversing a quadrupole mass filter.
this effect is small for such a device and is expected to be more important in ion storage

devices (three-dimensional mass filter).?

J. Relativistic Effects. Non-relativistic laws of mechanies are used in the method
described in Section IL. Since the fastest ions in a quadrupole mass filter move slowly®
(vle < 10™) compared to the speed of light, the errors introduced by using non-relativistic

mechanics are expected to be small.

V. APPLICATION TO SOME MULTIPOLE GEOMETRIES

The method described in Section I1I will be demonstrated here to obtain the potential
funetions and the differential equations of ion motion for the dipole, quadrupole, hex-

apole, octapole, and decapole electrode geometries.
A. The Dipole Field. The variable 2 is raised to the first power to obtain:
U, (x.y)=x
Vixy)=y.

Sin('evzlll(x.y)= 0. the function U (x.y) forms the basis for a potential function in charge-
free space. Its equipotential surfaces are illustrated in Figure 2. This leads to a model in
which there are two plane sheets: one at x =r and one at x =-r with applied potentials of
@./2 and -@ /2. respectively. The potential function ¢(x.y) = K, U, (x.¥) can be deduced to

he

X
Plxy) = ° -1 <x<r

2
pA l'o

if it is to satisty both Laplaee’s equation and the boundary conditions
[@(£r .v)= 2@ /2] in Equation 20. With ¢_ given by Eq. 22, Newton's law Eq. 21

becomes:

€

2
mg_x+

(P —Ppe- cOS WE)=0
a2, ¢ TAC

dy (28)

7 P. H. Dawson (kditor), Quadrupole Mass Spectrometry and Its Application, Elsevier, Amsterdam (1976).
9 J. E. Campana, Int. J. Mass Spectrom. lon Phys., 33, 101 (1980) and refercnces cited within. .
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Figure 2. Dipole geometry.
The positive and negative equipotential surfaces consists of two plane sheets separated
by a distance 2r°. The surfaces at x=r, and x= - r,, are at potentials $0o/2 and - o/2.
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B. The Quadrupole Field. The function z* for n=2 ix evaluated to obtain:

Uyxy) = x

’Vz(x-y) = 2Xv.

SinceV2U2(x,y)=0, the function Uy(x.y) is the basis for a possible potential function in
charge-free space. Its equipotential surfaces are illustrated in Figure 3. Each of the four
hyperbolic pole pieces have the same geometry and hence the structure ix unchanged
under 90° rotation. The pole pieces lving on the x-axis are arbitrarily chosen to have
positive applied potentials + ¢ /2 and the pole pieces lving on the y-axis are arbitrarily
chosen to have negative applied potentials-¢ /2. The potential function ¢(x.y) can he
deduced to be

o (x% — .‘.2).

d(xy) =

2ro2

It is readily verified that this potential function satisfies both Laplace’s equation and the
boundary conditions, Equation 20 [eg. ¢(r .0) = ¢ /2 and ¢(0.r, = — ¢ /2]. With ¢
given by Equation 22, Newton’s law becomes:

d?x e
Me— + (@ - Pac cOS WX =0
dt? r?
(o]
(29)
3 d? e
mlY . & (Opc = D¢ cOswt)y =0,
. de? r?
0
l
j The electric potential and the differential equation obtained here agree exactly with those

! derived elsewhere by various other methods.” Equations 29 are of the well studied

= Mathieu-type equation.*™

' 4 . M. Arscott, Periodic Differential Fquations, The Macmillan Co., New York (1964),
| s N. W. McLachlan, Theory and Application of Mathieu Functions. Oxford University Press. New York (1947).

- 6 Computation Laboratory, Tables Relating to Mathicu Functions, U.S. Burcau ot Standards, Columbia Univer-
sity Press, New York (1951).
f_ % )k Campana, Int. J. Mass Spectrom. lon Phys. 33, 101 (1980) and references cited within.
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The positive and negative equipotentials consist of four surfaces with an inscribeq .
radius of r . The equations of the equipotential surfaces are (t)(x,y)=((l>0/2r°2 Mx-y).
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C. The Hexapole Field. The function 2" for n=13 is evaluated to obtain:

L (xy)=x" — 3xy?
V. ix.y)= 3x?y — y°.

Sin(‘eV’ U (x.y)=0. the function Uyx.y) is the hasis for a possible potential function in
charge-free space. Its equipotential surfaces are illustrated in Figure 4. Each of the six
pole pieces have the same shape and so the structure is unchanged under a 60° rotation.
Similarly, as in the previous examples, the potential function ¢(x.y) can be deduced to be

¢
Hxy) = — (x3 - 3xy?).
2r 3

o

It is readily verified that this function satisfies both Laplace’s equation and the boundary
conditions. With @ given by Equation 22, Newton’s law becomes:

d2
Ix 43 = (Dpc = Pac cOS wt) (x* -y?)=0
dt? 21’
(30)
2
md_y - _3i (Bpc ~ dpc cOS wt) xy =0.
dt? r°3

D. The Octapole Field. The function z" for n=4 is evaluated to obtain:
U (x.y)=x* — 6x*y* + y*
V xy)=dxy(x* ~ y?).
SinveVzU‘(x.y)=0. the function U (x.y) is the basis for a possible potential function in
charge-free space. Its equipotential surfaces are illustrated in Figure 5. Each of the eight

pole pieces have the same shape and so the structure is unchanged under a 45° rotation.
Similarlv. as in the previous examples, the potential ¢(x,y) can be deduced to be

¢
d(xy) = 2 (x* -6x2y? +y*).

2r 4
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Figure 4. Hexapole geometry.
The positive and negative equipotentials consist of six surfaces
with an inscribed radius of r,. The equation of the equipotential
surfaces are ¢ix,y) = (9,/2r,°) (x> - 3xy?).
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Figure 5. Octapole geometry.
The positive and negative equipotentials consists of eight surfaces
with an inscribed radius of r,, The equation of the equipotential
surfaces are ¢(x,y) = (¢, /2r,%) (x* - 6x’y? + y*).




It is readily verified that this function satisfies Laplace’s equation and the boundary con-
ditions. With @ by Equation 22, Newton’s law hecomes:

- 2
) mg_x + 2 (@pc = PacCOs wt) (x* -3xy?)=0
de? o ®
i
l 2 31
md_zl - 24e (dpc - Pac COs wt) (3x%y -y?)=0.
! dt o
|
’: E. The Decapole Field. The function z" for n=>5 is evaluated to obtain:
-
1
- | U (x.y)=x* — 10x%* + Sxy*
2]
"% V (x y)= 5 — 10x2y® 4+ 5x¢
’ sXYI=Y Y y-
31
~ SinveVZUs(x,y)=O. the function U/(x,y) is the basis for a possible potential function in
' charge-free space. Its equipotential surfaces are illustrated in Figure 6. Each of the 10
. pole pieces have the same shape, and so the structure is unchanged under a 36° rotation.
) Similarly. as in the previous examples, the potential function ¢(x,y) can be deduced to be
l ¢
B(x.y)= —— (x5 - 10x3y? + Sxy*).
F . 2r,®
_ l It is readily verified that this function satisfies Laplace’s equation and the boundary con-
F 1 ditions. With ¢ given by Equation 22, Newton’s law hecomes:
2
m Ei_x v € (bpe — Dac cos w) (x* -6x?y? +y*)=0
1 dt? 2r,®
(32)
‘ 2
R mdy _ 10e ($pc = Pac €Os wY) (X*y -xy?) =0.
, dre? r S

o

; F. Fields of Geometry Higher Than the Decapole. The method illustrated in these
3 examples can be used without difficulty for finding the differential equation of an ion
for n > 5, where n is an integer.

G. Generalization of Differential Equations to an Arbitrary Phase. The alter
nating component at time t=0is ¢, . in the differential Equations 28-32. lons may enter
the electric field at any time where the alternating component can have any value
between + ¢, . and-¢, . Thus Equations 28-32 may be written more generally by replac-
ing wt with wt+ 6 where 06 <2,
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Figure 6. Decapole geometry.
The positive and negative equipotentials consist of 10 surfaces with an inscribed radius
of r,. The equations of the equipotential surfaces are ¢{x,y)=(¢,/2r ) (x*~10x’ y? +5xy* ).
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H. Redundaney of the V l'un('lmn. The funetion V (x.v) defined in Equation 25
also satisfies Laplace’s equation: i.e. V V_(x.¥)=0. Thix can be sen readily by taking the
sum of the partial derivative of luqudlmn 26a with respect to v and the partial derivative
of Equation 26b with respect 1o x. Since V (x.y) satisfies Laplace's equation. it might
seem that the equipotentials V (x.y) = ¢ /2 and V (x.v) == ¢ /2 would generate different
surfaces than the corresponding equations for the function l'"(x._\ ).

The surfaces defined by V (x.y) = = @ /2 are the same as those defined hy
Ux.v) = £ /2 respectively except rotated by an angle a . This is seen by expressing
(x + iv)" in polar coordinates

(x+iv)" = (re)" = rcos N0 + i sin ng).
Comparison of this last equation with Equaiton 25 shows
U (x.y)=r" cos nd (33a)
V (x.,y)=r" sin né. (33h)

Define a primed coordinate system rotated by an amount a, = w/2n relative to the un-

primed 6°= 8 - I
2n

In the primed coordinate xvstem

V. = 1 sin n(()' +_") =" wsng’. (34

n

Since the form of Equation 34 is the same a~ Equation 33a. the use of the function
. . L
V. (x.y) generates the same apparatus a~ the funetion U (x.v) rotated by an angle a="_

2n

VL. MULTIPOLE GEOMETRIES AS MASS FILTERS

The methods presented in the preceding sections vield the differential equations of mo-
tion for ions in time-varving electrie fields. A system functions as a mass filter if it passes
ions in a certain mass interval, rejects all other ions. and the mass interval is under the
control of the experimenter.




A. The Dipole Field. The equation of motion for the x and y directions can be in-
tegrated directly:
i
-1 ed e, cos wt
| x = A+Bt- ¢ @ - AC
. 4mr 2mr_ w?
{
‘ (35)
= v, tty,.
> y VYO Yo
.4‘ Here A and B are constants which depend on the initial x-coordinate and x-velocity,
4 ; respectively, and y_ and v, are the initial v-coordinate and y-velocity. It is apparent from
'.1 Equations 35 that the motion is unstable in both the x- and y-coordinate directions for all
;f initial conditions. Thus, the dipole field with sinusoidal voltage is unsuitable as a mass
. .’ filter. )
) ‘ B. The Quadrupole Field. It is well known that once can choose dpc and ¢ 1 such

that there is stability for both the x- and y-directions for a narrow range of mass values. j
The quadrupole geometry is suitable as a mass filter.”™

C. The Hexapole, Octapole, and Decapole Fields. The differential equations for
these three geometries are not readily integrated. It has been shown that numerical
methods can be used successfully to integrate equations of motion, when motion in one
coordinate direction is not independent of the motion in the other direction.'® The utility
of such systems as mass filters awaits the numerical integration of the equation of motion
and is the subject of future research.

VII. SUMMARY

A general method for finding the differential equations of ion motion in elec-
tromagnetic fields has been presented and applied to five different multipole geometries.
The fundamental physics and the approximations used in obtaining the differential
equations have been reviewed so that limitations in the analytical theory can be ap-
preciated better.

7 P. H. Dawson (Editor), Quadrupole Mass Spectrometry and Its Applications, Elsevier, Amsterdam (1976).

8 J. ¥. J. Todd and G. Lawson, MTP International Review of Science, Physical Chemistry, Mass Spectrometry,
Series Two, Vol. §, edited by A. Maccoll, Butterworths, London (1975).

%) EC ampana, Int. J. Mass Spectrom. fon Phys.. 33, 101 (1980) and references cited within.
10 1, R. Denison, /. Vac. Sci. Technol, 8, 266 (1971).
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Today the quadrupole mass analyzer is the most widely used mass analyzer for low
resolution applications. Typically, mass filters are used in laboratory environments where
simplicity, compactness, economy, absence of magnetic fields, and/or the capability of
fast scan rates (especially for chromatographic combinations) are important. Thus, an im-
provement in resolution/transmission qualities of electric RF mass filters would enable

this widely used mass spectrometer to take a larger role in analytical laboratories and in
basic research.

Other design considerations besides resolution/transmission characteristics are impor-
tant. If mass filters could be made which are smaller, more rugged. and less susceptible to
vibration with reduced power requirements while heing maintained more easily. they
might find application outside the laboratory. Possible applications inelude surveying for

natural resources, pin-pointing sources of industrial and natural pollutants and the detec-
tion of explosive materials.
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ABBREVIATIONS AND SYMBOLS

Any vector field

Magnetic field vector

Maximum amplitude of the B field

Speed of light

Electric displacement vector

Distance from a point charge to a conducting sheet
Electrice field vector

Maximum amplitude of E field

Electron charge

Force vector

Magnetic field intensity or magnetic field strength veetor
Unit vector along x-axis

Current density vector

Unit vector along v-axis

A constant, related to the dimensions of the electrode structure and the

applied electrode voltage
Unit vector along z-axis
Length of the electrode structure

Magnetization vector

Magnetie polarization vector




} m Mass

4 P Polarization vector
| RF Radiofrequency
rf r Radius vector
i , Inscribed radius of the electrode structure
-
: j t Time
f
'j U, A real function satisfying Laplace’s equation
'
:% Ulr) A potential energy function
l-‘ v, An imaginary part of a function that satisfies Laplace’s equation
v Velocity vector
a Radian measure
¢ o Radian measure
€ The permittivity
€, The permittivity of free space
| 6 Radian measure
A Wavelength
! u Permeability
®, Permeability of free space
v Frequency
p Charge density
- dix.v.z) A potential function
{ 5

30 ;,
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A scalar function of position or applied voltage

Polarizability or the electric susceptibility
Magnetic susceptibility

Angular frequency

*del operator”

The Laplacian

Backcurling delta (partial derivative sign)

Contour integral

31
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