
A RAND NOTE

AUTOPILOT: A DISTRIBUTED PLANNER FOR
AIR FLEET CONTROL

Perry Thorndyke, David McArthur,
Stephanie Cammarata

July 1981

N-1731-ARPA

Prepared For The Defense Advanced Research Projects Agency

" DTIC
1 -1 -. 0ECTE

"wVtoI a1"I

Rand D~T~U~1ONSATMM~ AE lWWI Wi e

The research described in this report was sponsored by the
Defense Advanced Research Projects Agency under ARPA Order
No. 3460/3473, Contract No. NDA903-78-C-0029, Information
Processing Techniques

SrI

Io

I ~~The Rand Publications Ser~ies: The Report is the prncipal p cakon doc-
I ~umenting and transmitting Rand's major research findings mid fina research
I results. The Rand Note reports other outputs of sponsored research f5or

general distribution. Publications of The Rand Corporation 4a not aeces-
sarily reflect the opinions or policies of the sponsor of As-ad research,

b RThe Randublicaioshe Seres The Repd ort steporaionipl.o-

- A- r---'2~

UNCLASSIFI.ED.
SECURITY C ASSIFICATION OF THIS PAGE (whien Doee Entered)

REPORTDOCUMENTTIONREAD INSTRUCTIONS
A .BEFORE COMPLETING FORM

IREP AT NUMBE-R 2. GOVT ACCESSION NO.) RECIPIENT'S CATALOG NUMBER

54. bffte,-TAYPE OF REPORT PE P 0 COVERED

ýAUTOPILOT: A Distributed Planner for Air EnrO"

Fleet Control. Interim

6. PERFORMING ORG. REPORT NUMBER

7 AUTHOR(.) S. CONTRACT OR GRANT NUMBER(s)

. -Perr -y W ,.j Thorndyke,'David McArthur, . .. /,..

St ephanie Canaratai MDA9g3-78-C-A•,29

9. PERFORMIN•-•qGANIZAT1'qN NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
The Ranai Corporation AREA A WORK UNIT NUMBERS

1700 Main Street
Santa Monica, CA. 90406

II. CONTROLLING OFFICE NAME AND ADDRESS
Defense Advanced Research Projects Agency Julip81 /
Department of Defense 13. NUMBER OF PAGES
Arlington, VA 22209 25

14 MONITORING AGENCY NAME & ADDRESS(It different from Controlling Oflfle) IS. SECURITY CLASS. (of this report)

(/'j'~3'-j-UNCLASSIFIED

16.. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16, DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release: Distribution Unlimited

217 DISTRIBUTION STATEMENT (of the asbtract entered In Black 20, It different from Report)

No Restrictions

18 SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side If necessary and identify by block number)

Distribution Systems Air Traffic Ccntrol
Positioning Flight Paths
Routing Heuristic Methods

20 ABSTRACT (Continue on reverse side it necessary and identify by block number)

See Reverse Side

DD JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

IUNTCLASSIFICFTIA D
SECUJRITY CLASSIFICATION OF THIS PAGE ("aen Dats Entered)

UNCLASSIFIED
SECURITY CLASSIFICA71ON Or THIS ,PAGE(•We Date Bn"tr'd)

Distributed planning requires both architectures for structuring

multiple planners and techniques for planning, communication, and

cooperation. We describe a family of systems for distributed control of

multiple aircraft, in which each aircraft plans its own flight path and

avoids collisions with other aircraft. AUTOPILOT, the kernel planner

used by each aircraft, comprises several processing 1¶experts" that share

a common world model. These experts sense the world, plan and evaluate

flight paths, communicate with other aircraft, and control plan execu-

tion. We discuss four architectures for the distribution of airspace

management and planning responsibility among the several aircraft occu-

pying the airspace at any point in time. The architectures differ in

the extent of cooperation and communication among aircraft.

SAccession For -•

)NTIS �pA&I

, DTIC TAB

•! I s flcution___ .

JP__istribution/ ------
Availability Codes

Avail and/or

List Special

UNCLASSIFIED
SECURITY CLAssiriCATION OF THIS PAGE(W.an Date En,.rd)

A RAND NOTE

AUTOPILOT: A DISTRIBUTED PLANNER FOR
ClAIR FLEET CONTROL'I

Perry Thorndyke, David McArthur,
Stephanie Camnarata

July 1981

N-1731-ARPA

Prepared For The Defense Advanced Research Projects Agency

Rand D
SANTA MONICA, CA. "A406

I; APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

-iii-

PREFACE

This Note summarizes the results of an initial attempt to design

and implement distributed computer systems for planning and control.

i The research has focused on the design of architectures for the distri-

bution of functions, the specification of kernel capabilities for each

node in the distributed system, and the empirical evaluation of alterna-

tive distribution schemes. The results should interest researchers and

system designers interested in techniques for multi-processor coopera-

tion.

The research was sponsored by the Defense Advanced Research Pro-

jects Agency under Contract No. MDA903-78-C-0029. A shortened version

of this Note appears in the Proceedings of the International Joint

Conference on Artificial Intelligence, held in Vancouver, August 1981.

,iL

SU•VARY

Distributed planning requires both architectures for structuring

multiple planners and techniques for planning, commimication, and

cooperation. Wc describe a family of systems for distributed control of

multiple aircraft, in which each aircraft plans its own flight path and

avoids collisions with other aircraft. AUTOPILOT, the kernel planner

used by each aircraft, comprises several processing "experts" that share

a common world model. These experts sense the world, plan and evaluate

flight paths, communicate with other a.-craft, and control plan execu-

tion. We discuss four architectures for the distribution of airspace

management and planning responsibility among the several aircraft occu-

pying the airspace at any point in time.ý The architectures differ in

I% the extent of cooperation and communication among aircraft.

V!

-vii-

ACKNOWLEDGMENTS

This work has benefited from the substantial contributions of James

Gillogiy. Frederick Hayes-Rotn, Randall Steeb, and Roberc Wesson.

J

A

.I

-ix-

CONTENTS

PREFACE .. iii

SUMMARY v

ACKNOWLEDGMENTS .. -_ ,......., vii

Sect ion
I. INTRODUCTION 1

II. THE ATC TASK DOMAIN 3

III. THE DISTRIBUTION OF PLANNING EFFORT 5

IV. THE AUTOPILOT DESIGN 6

V. INCREMENTAL PLANNING 9
Plan Generation 9
Plan Evaluation and Conflict Detection e *....- 10
Plan RefinementA......... 11
Flow of Control During Planning A 13

VI. DISTRIBUTED PLANNING ARCHITECTRES 15
Object-Centered Autonomous--No Communication 15
Object-Centered Autonomous--Limited Communication 16
Object-Centered Hierarchically Cooperative 19
Object-Centered Asynchronously Cooperative 21

VII. SYSTEM PERFORMANCE 22

VIII. CONCLUDING REMARKS .. 23

REFERENCES 25

'I

a• 4•

I. INTRODUCTION

Distr. .ed planning refers to the process by which multiple pro-

cessors cooperate to achieve a set of common objectives. Development of

distributed planning systems requires two major activities: the speci-

fication of architectures for structuring the set of cooperating proces-

sors, and the discovery and implementation of planning techniques to be

used by each processor. We have undertaken both sets of activities in

an effort to develop methods for distributed control of simulated air-

craft moving through an air traffic control (ATC) sector. Adopting this

task domain has permitted us to investigate four important questions

concerning cooperation:

o What formalisms are required to represent individual processors and

the interactions among them?

o What are the computational costs and benefits of different archi-

tectures for distributing planning functions?

o How should distributed planners cope with incomplete and erroneous

information? Distributed planners typically possess different

knowledge bases, and no individual has a complete and accurate

world model. Such differences increase the complexity of coordi-

nating planning efforts.

o What are the pragmatics of cooperation? Distributed planning

should be superior to centralized planning only if methods can be

devised for coordinating the activities of the multiple processors.

-2-

These methods must consider the tradeoffs between local planning

and requests for cooperation, inferring intentions and requesting

information from others, and synchrony and asynchrony among multi-

ple processors working on different aspects of a common problem.

To investigate these questions, we have implemented a planner

called AUTOPILOT. AUTOPILOT simulates the sensing, route planning, and

communications activities of a single aircraft flying through a high-

traffic air sector. It controls the aircraft by cooperating with vir-

tual clones of itself, each of which is assigned to and controls a dif-

ferent aircraft. In this Note, we describe the planning techniques

embodied in four specific versions of AUTOPILOT that differ in the

amount of communication and cooperation among the multiple planners, By

implementing alternative versions, we hope to (1) derive a set of

cooperative planning methods that are robust across architectures and

planning environments and (2) support machine experiments that evaluate

the performance of different cooperation regimes.

The Note is organized as follows. We first describe briefly the

ATC simulation that provides our task domain. We then discuss the ker-

¶i nel design of AUTOPILOT that is invariant across the different versions

4(we have investigated. Next, we present the four object-centered plan-

lning architectures we have investigated to date and the changes in AUTO-

PILOT that these versions entaKi. Finally, we draw some tentative con-

clusions concerning the questions we have posed above,

I6

'.

II. THE ATC TASK DOMAIN

The task environment for AUTOPILOT is provided by a real-time ATC

simulation. Figure 1 illustrates the airspace used by the simulation.,

,2 The airspace includes airways (indicated by commas) that liak entry/exit

fixes (0-9) at the airspace boundaries, two airports (% and f), and two

navigation aids (* and !) through which aircraft can be vectored. Dur-

ing each run of the simulation, 26 aircraft arrive in the airspace at

random times. Every aircraft enters the airspace at a particular entry

fix or originates its flight at one of the airports, Aircraft must be

issued commands to depart, land, change course, and/or change altitude

in order to successfully navigate them to theii destinations. The simu-

lation provides two types of information: the airspace display and the

flight plans for active and approaching aircraft. The airspace display

(shown on the left side of Fig. 1) portrays the locations of all air-

craft in the airspace, their identifiers, and their altitudes inIi thousands of feet (e.g., A5, X6)., Every 15 seconds the display is

updated and the aircraft move 1 mile (to an adjacent "." or ",") in the

direction of their current heading., The flight plan for each aircraft

(shown on the right side of Figure 1) displays, reading left to right,

its status (active or approaching), its identifier, its aircraft type

(p=propeller, j=jet), its current location (or origin, for pending air-

craft), its destination, its altitude (in thousands of feet), and itsi heading. For example, R, a propeller aircraft, will enter the airspace

in one time-step of the simulation at infix location 8, heading

northwest at an altitude of 6000 feet. Its destination is exit fix 0.

-4-

A potential route for R would takA R northwest to navigation aid "'" ana

then north to 0.

Successful control of aircraft requires landing planes at their

desired airports in prescribed descent patterns or sending them out of

the airspace at the desired fix, with the correct heading (i.e., along

the airway), and at an altitude of 5000 feet. All aircraft must always

maintain at least 3 miles of horizontal separation or 1000 feet of

vertical separation.ý A violation of any of these constraints produces

an error, as does allowing an aircraft to exhaust its fuel supply.

AIRSPACE DISPLAY FLIGHT PLANS

S. 0.... 6 Xj ,->9 6 SW
7 X6 Aj ,->2 5 SE
A5................ .. . I Rp 8->0 6 NW

.................... o..

.... 4

. •
3

,

... .. o...

Fig.9 8 f e

Fig. 1 -- Output from the ATC simulation

-- • • - -•: -. '• • , •. __ _.~ •

-5.

III. THE DISTRIBUTION OF PLANNING EFFORT

In conventional, real-world ATC, a single controller plans and con-

trols ll aircraft in the airspace, In our simulation, ?lnniiig respon-

sib4lity is distributed among the c-rcraft themselves. Each aircraft is

controlled by an automated planner called AUTOPILOT, We refer to this

allocation of function as an object-centered architecture for distrib-

uted planning. Thus, whenever a new aircraft appears in the airspace,

a new AUTOPILOT clone is created and performs all planning and coopera-

tion for that aircraft as it navigates from its origin to its destination.

All AUTOPILOT clones are behaviorally identical and can be viewed

as virtual copies of a generic ATC planner. The structure of AUTOPILOT

most closely resembles that of an independent actor (Hewitt, 1977) or

object, as in S,4ALLTALK (Kay, 1972), DIRECTOR (Kahn, 1978), or ROSS

(McArthur & Sowizral, 1981). Specifically, AUTOPILOT has a repertoire

of sensing, planning, evaluation, and execution behaviors that can be

triggered by receipt of messages from other aircraft.,

In the current implementation, we simulate multiple planners by a

single planning system that assumes different e~:spectives for each air-

craft. The planner spawns offspring for different aircraft that contain

the data base ana world model specific to each. The computational

expertise resides in the generic planner and can be applied to any of

the various data bases. Thus, as in object-oriented programming

languages, behavior rules reside with the generic planner and can be

inherited by individual objects. Object-specific world views and1 knowledge reside in data structures unique to each individual aircraft.

4 -6-

IV. THE AUTOPILOT DESIGN

AUTOPILOT contains a design kernel common to all the architectural

variants we have investigated. Figure 2 illustrates this kernel.

Several processing modules function as experts that share data and

results via a common data base, the world model. As in a Hearsay-like

model (Erman et al., 1980; Hayes-Roth et al., 1979), performance of

tlse experts is triggered by particular conditions in the world model,

and each expert posts its results in the world model as new knowledge or

changes to existing knowledge. The world model contains such informa-

tion as aircraft locations, their flight plans or assumed flight plans,

and its own destination and tentative plans.

The sensor receives simulated radar returns in the form of airspace

displays every 15 seconds. By comparing new displays with knowledge in

the world model, the sensor compiles a list of)ocation updates to b,ý

posted.

When AUTOPILOT is assigned to a new aircraft, the plan generator

produces a set of tentative flight plans to navigate the aircraft from

its entry fix to its exit fix. The evaluator tests these tentative

pla-s against the real or inferred flight plans of other aircraft and

posts predicted ccnflicts in the world model., The plan generator uses

this information either to attach a minor patch to an existing plan or

to replan completely,

The communicator exchanges information and requests with other air-

craft, When planning is thwarted by environmental uncertainty, the com-

municator may request locations or intentions from others. If the plan

.!I
K' I i I mi N I N N l l ! IrI

i-i

-7- u
9-I)

o .0<

00

C.)

00

V) 00

.00

-U Z. C

~~00

I'I

C..

0 c0

C LIwL
>,

-8-

generator has failed to produce a conflict-free route, the communicator

may request other aircraft to patch or replan their routes.

Finally, the controller implements the aircraft's flight plan. It

monitors the location of the aircraft and issues commands to alter

course or altitude at the appropriate locations in the airspace.

#4!

-9-

V. INCREMENTAL PLANNING

AUTOPILOT represents a plan in the world model as a schema with

several slots to be filled during the planning process. For example,

the completed plan for aircraft R in Fig. 1 is

(PLAN008
AIRCRAFT R
COMMANDS (a4 :0 aS)
CONSTRAINTS ((10 23) (10 23) (4 1))
ROUTE ((10 23 7 285) (9 22 6 300) ... (4 0 5 630))
CONFLICTS 2
CONFLICTSUM ((X (4 17)) (X (4 16)))
LENGTH 24
VALUE 106
PARENT NIL
OFFSPRING NIL).

The slots in the plan schema contain information about the commands

required to execute the plan, the x-y coordinates at which the commands

must be executed, estimates of the overall utility of the plan, annota-

tions of the plan's zurrent bugs (i.e., predicted conflicts), and a

four-dimensional map)f the executed plan (i.e., a specification of the

location of the aircraft at each point in time). Slots in the plan

schema are filled at different times during planning, Some contribu-

tions are made during plan generation, some during evaluation, and other

during plan patching. We discuss these processes in more detail below.

1: 1 PLAN GENERATION

AUTOPILOT produces route plans incrementally by planning approxi-

mately. The plan generator first produces with minimal effort a few

standard routes from the entry fix to the desired destination. These

plans are then evaluated to determine the nature and location of

-10-

expected conflicts. Finally, the best plans are refined, using a

variety of techniques to produce local patches that avoid the conflict

situations. This incremental approach to planning has four advantages:

First, it emphasizes general adherence to designated airways and conven-

tional routing strategies. Second, plan failures are simple to diagnose

and describe; therefore, it is possible to patch accurately. Third, the

incremental planning strategy reflects the approach used by real air

traffic controllers and by expert humans performing in the ATC simula-

tion. Fourth, this strategy is well suited to the distributed planning

environment, since predicted conflicts identify sets of aircraft that

'4 must cooperate to solve their common problem.

The plan generator produces several initial plans by indexing a

library of plan templates. Each template is list of commands, indexed

by infix/outfix, that is guaranteed to take an aircraft to its destina-

tion from its entry fix. Each infix/outfix pair has several library

entries, denoting standard routes across the airspace. One entry

corresponds to the shortest route along the designated airways, Other

entries are produced by the application of heuristics that enforce

3-mile horizontal separation from the standard route across as much of

the airspace as possible,

PLAN EVALUATION AND CONFLICT DETECTION

The evaluator detects conflicts in candidate plans, using a fast-

time lookahead. Once candidate initial plans are generated, the evalua-

tor computes a four-dimensional route map of the locations to be occu-

pied by the aircraft under each plan. Converting plan commands into

route maps is costly; however, this cost is offset by caching the

results in the ROUTE slot of the plan schema. Hence, each plan under-

goes expansion only once. The route map is then compared to similar

maps of the projected or known plans of other aircraft in the airspace.

Maps are compared using an in*-r-ection search that requires maintenance

of a 36-square-mile window around ea-h aircraft. Detected conflicts

trigger annotations of a plan's problems and utility that are stored in

the CONFLICTS, CONFLICTSUM, and VALUE slots of the plan schema.

PLAN REFINEMENT

The plan generator refines initial plans whenever the evaluator

detects conflicts in an initial plan. The patches we have implemented

to date fall into three classes:

o Timin patches. These patches alter the time at which a plan's

commands are executed without changing the commands themselves.

For example, conflicts are often avoided by deferring or promoting

(i.e., moving up in time) an altitude change command.

o Delaying patches. Inserting new commands in a plan to delay an

aircraft's arrival at a particular point often prevents conflicts.

For example, the insertion of a single turn command in an

aircraft's plan can result in an 8-mile loop that will delay the

aircraft's progress by several minutes.

o Course alteration patches. Conflicts can be avoided by charting a

course alteration to avoid the conflict location. This usually

requires deleting several course correction commands from the

flight plan and replacing them with new ones.

-12-

These patch types are representative of more general replanning

capabilities. For example, interpolating a loop is a kind of pre-

requisite insertion (Sussman, 1975), and course corrections amount to

Ai substitution of subgoals (Fahlman, 1974).

Each patch is represented as a schema with slots encoding the com-

ji putations required to evaluate patch effectiveness and to modify a plan.

These computations include tests for satisfaction of patch prerequisites,

determination of where to insert new commands and/or where to excise

old commands, and computations that actually perform the alteration to

the existing plan, An abstraction of a patch that inserts a left-loop

into a plan is shown below:

(PLAN-PATCH LOOP-LEFT
TYPE delaying
DIRECTION left
PREREQUISITE <the conflict point must not be too close to

"an airspace boundary else the loop will take
aircraft out of airspace>

INITIATEPOINT <use the earliest point on the route that
satisfies prerequisites and is prior to
given conflict>

DELETECOMMAND nil
ADDCOMMAND <turn left until you are back at your current

heading>
COST low
EFFECTIVENESS high)

To instantiate a patch schema for use with a particular imperfect

plan, the plan generator first attempts to satisfy the PREREQUISITES of

the patch in the context of the plan. If this process is successful,

the generator applies the heuristics in the INITIATEPOINT slot of the

patch to select a point at which to insert a remedial command The

specific commands are then copied from the ADDCOMMAND slot into tnA plan

itself. In some cases (e.g., when deferring an altitude change),

-13-

commands initially in the route must also be excised. The specifica-

tions for such deletions reside in the DELETECOMMAND slot. Finally, the

ROUTE slot is updated to reflect the new flight path determined by the

patched plan.

FLOW OF CONTROL DURING PLANNING

The plan generator posts the initial set of plans (usually three)

in the world model. This triggers the evaluator to test the plans and

post the results in the world model by filling the appropriate slots in

the plans' schemata. If one of the initial plans is conflict-free,

planning terminates and the controller begins executing the plan. If

conflicts remain in all initial plans, patching must be attempted for

one or more of them,

The patching process is best viewed as a search involving the plan

generator and evaluator as co-routines. The generator iteratively

expands a plan tree for the aircraft in the world model, using possibly

flawed initial plans as the parent nodes. Offspring are generated

through the application of one or more patches tc the initial plans.

Patches are applied to copies of the parent plan rather than to the ori-

ginal plan itself. Hence, the modified offspring are distinct data

structures. Whenever a new plan is posted in the woila model, the

evaluator criticizes the plan and posts the results of its critique.

The generator selects plans for expansion (i.e,, patch application)

according to which current plan has the highest value in its VALUE slot.
)I

This value reflects the number of conflicts remaining to be resolved and

the length of the flight path. Once a plan has been selected for patch-

ing, the plan generator applies only patches that generate better

1I
)I

-14-

offspring (i.e., 1Ave higher VALUEs) than their parents. This heuristic

results in depth-first/best-first searches, since offspring plans are

always better than their parents. Planning terminates whenever one

offspring plan has no conflicts or when the plan space is exhausted--

that is, when no plan for the aircraft has a set of patches that remove

all conflicts. In this case, the evaluator selects the plan with the

highest VALUE for execution.

In the current impleMeittation, searches typically converge quickly

on a solution. Rate of convergence is governed by the density of solu-

tions in the problem space (an inverse function of the number of active

aircraft), the branching factor of the plan tree, and the depth of the

plan tree., Both the breadth and the depth of the tree are limited., The

branching factor is limited by the number of patch types known and by

the fact that particular patches do not satisfy all prerequisites for

application in a given situation. The depth of the tree is strictly

limited by the number of conflicts found in initial routes,

12t F

-15-

VI. DISTRIBUTED PLANNING ARCHITECTURES

We are currently exploring techniques for distributed planning in

several versions of the object-centered architecture. Two goals

motivate the consideration of architectural variants: First, we want to

develop a kernel design for a distributed planner that is robust across

variations in the architectures in which it is embedded. Second, we

want to understand the value of cooperation, the types of cooperation

possible in a distributed environment, and the difficulties of achieving

them.

We present here the structure of four distinct object-centered

variants, and in Section VII we discuss their relative performance. The

first two variants exemplify cooperation without bargaining or negotia-

tion. In the first, the use of common planning rules and automated

inference obviates the need for commumication of plan intentions. In

the second, aircraft communicate their plans but not their replanning

requests. The third and fourth variants invoive cooperative planning

using different control regimes.

OBJECT-CENTERED AUTONOMOUS--NO COMMUNICATION

In the most restricted form of cooperation, aircraft plan auton-

omously without communication. Cooperation here is "culturally regu-

lated," rather than "interpersonally interactive." Thus, in this archi-

tecture we excise the communicator from the AUTOPILOT kernel. In lieu

of obtaining flight plans from other aircraft, AUTOPILOT, via the sen-

sor, infers their plans from altitudes, bearings, and nearest exit fixes

or airports along their current flight paths.

-16-

Due to the uncertainty associated with such extrapolation, the sen-

sor must continually monitor the radar returns and the world model to

detect changes in aircraft locations and violated assumptions about

their flight plans.. Updating the hypothesized flight plans triggers nerv

conflict-detection checks by the evaluator. If new conflicts are

predicted, the planner attempts to patch the current plan to avoid them.

If the attempt is unsuccessful, the planner dynamically replans a new

route. Effective cooperation is achieved through the use of global

"ITrules of the road" and precedence rules, like those currently used by

operators of small, visually controlled aircraft and boats.

OBJECT-CENTERED AUTONOMOUS--LIMITED COMMUNICATION

This variant differs from the preceding one in that the aircraft

can request plans from other aircraft. Their intentions can therefore

be posted with certainty, and their route maps can be accurately modeled

rather than merely estimated. This version of AUTOPILOT therefore

requires the communicator, communications channels, and protocols. By

proscribing negotiation among aircraft, we place the burden of maintain-

ing aircraft separation solely with the aircraft attempting to formuiate

a plan. Thus, as each new plane enters the airspace, it must develop a

conflict-free plan with respect to the fixed flight plans of other air-

craft already in the airspace. (Wken two or more aircraft enter simul-

taneously, planning order is determined by the alphabetical order of the

aircraft identifiers.) Such an architecture should support effective

planning only when the problem space is dense in solutions--that is,

when a conflict-free plan can be produced regardless of the number and

routes of other aircraft in the airspace.,

-17-

Figure 3 illustrates the control structure of this versionsý When

AUTOPILOT is assigned to a new aircraft, the sensor posts other aircraft

I locations, and the communicator collects and posts the flight plans for

these aircraft. Iritial plan gene-ation by the planner may be inter-

leavad with the functions of the sensor and communicator. The evaluator

simulates the outcome of plan execution with respect to other aircraft

locations and plans. If necessary, the planner attempts to patch the

plan to eliminate specific conflicts detected by the evaluator, If the

plan cannot be patched, the planner will attempt to generate a new plan.

When either a conflict-free plan or the best available plan is posted as

final, the controller monitors execution of the plan. (For simplicity,

we have omitted the control and replanning feedback loops in Fig. 3).

In general, the utility of these autonomous versions of the

object-centered architecture depends on several attributes of the prob-

lem space and task domain. First, autonomous planning, with or without

plan communication, should succeed only when the problem space is dense

in solutions. To develop a conflict-free plan independently, an air-

craft must have more freedom, in terms of available airspace, than con-

straints on the locations it can occupy without conflict. Second, auton-

omous planning is preferred over cooperative planning when the cost (in

time or resources) of local inferencing and planning is less than the

cost of communications, negotiation, and coordination.

Introducing negotiation into AUTOPILOT's planning behaviors entails

2. both costs and benefits. Inter-aircraft cooperation is desirable

because the conflicting aircraft may have different options for resolv-

ing the conflict. One aircraft may discover a simple patch for its

-18-

A

AUTOPILOT

assigned
to new a/c

SENSOR

posts current a/c
locations

COMMUNICATOR
posts a/c plans

/GENERATOR, None

,E N•E•E RA*ATOr detectfe j EVAEVUATAOO

selects best plan

F CONTROLLER
executes plan

I Fig. 3 - Control structure for the object-centered autonomous architecture

E N R T d. .te..c_..d ,UT O

-19-

plan, while it may be impossible for another aircraft to remove the con-

flict in its plan.I However, complications arise from the need to synchronize local

replanning activities. For example, assume that A has a route that con-

flicts at pl with B and at p2 with C. Suppose that A can patch its plan

A1 to remove its conflict with C but must rely on B to replan to remove

their mutual conflict. B cannct assume that A's plan will remain fixed,

since A is patching its plan to accommodate C. In general, different

conflicts (subproblems) may not be independent, and local planning can-

not guarantee a globally satisfactory plan. Thus, cooperation through

negotiation and communication requires effective coordination regimes.ý

The following two architectural variants embody two very different tech-

niques for such coordination. In each case, requests for cooperation

are initiated by an aircraft that fails to find a conflict-free plan for

itself.

OBJECT-CENTERED HIERARCHICALLY COOPERATIVE

In the hierarchically cooperative variant, the aircraft currently

in planning mode (say A) becomes an explicit coordinator of the attempts

to eliminate conflicts from its plan by local planning. Figure 4 illus-

trates the coordination regime. A's evaluator first selects its best

plan. The communicator then passes a message to another aircraft (say,

B) that conflicts with A's plan, The message contains A's plan ana;

requests that B patch its plan under the assumption that A will execute

its plan. If B's return message contains a successful patch, A makes

the same request of the next aircraft (say, C) with a predicted con-

flict, A passes both its plan and B's tentative patch. If C responds

-20-

AUTOPILOT
assigned

to new a/c

.........

SENSOR
posts current
a/c locationsJ

COMMUNICATOR

posts a/c plans

GENERATOR NoeEVALUATOR

EVALUATO
sele~cts best pa

neweue planI

Fi. -Cotolstucue orth ojctcetee copraiv rcitctr

-21-

that it cannot patch under the given constraints, then A's evaluator

will abandon this plan, select its next best plan, and the communicator

will begin the negotiation process again.

OBJECT-CENTERED ASYNCHRONOUSLY COOPERATIVE

The same type of cooperation may be achieved through asynchronous,

parallel replanning efforts. In this case, the planner requiring assis-

tance does not dictate a particular, favored plan. Rather, the planning

aircraft (A) broadcasts its set of potential plans to all aircraft in

the conflict set (B, C, etc.) but sends no constraints to these aircraft

concerning what assumptions they must adopt regarding A's or the others'

patches, Each of these aircraft then attempts to patch its own plans to

remove the conflicts predicted between it and A. Solutions are communi-

cated to A as tentative plan revisions.

When B returns a plan to A that removes a common conflict, B also

sends the assumptions under which it generated the solution--that is,

the plan for A that B assumed in its revision. A must maintain a record

of all proposed partial solutions and halt the asynchronous replanning

process when (1) it has received a complete set of conflict elimination

patches for one of its potential routes and (2) the proposed patched

plans of the other aircraft do not conflict with each cther.

Such cooperation accelerates the planning process by exploiting the

parallel processing capabilities of multiple aircraft. When numerous

pairwise conflicts must be resolved, the sequential solution method

entailed by hierarchical control may require too much time to converge

on a srlution.. However, in the asynchronous cooperation regime, speed

is achieved at the cost of additional bookkeeping and evaluation by A.

LI

-22-

VII. SYSTEM PERFORMANCE

We have implemented the limited-communication autonomous variant

and the hierarchically cooperative variant of AUTOPILOT in INTERLISP on

a DEC-2060 at Rand. They communicate over the ARPANET with the ATC

I simulation, a C program residing on a PDP-ll/780. These variants differ

I only in the architecture in which AUTOPILOT is embedded, not in the

Il planning or sensing capabilities of each aircraft. Table 1 presents

JI performance data for these two architectures in simulation runs that

varied airspace density. Each simulation run presentea exactly 26 air-

craft, distributed randomly in time, to be controlled. A.rspace density

was manipulated by varying the duraton of simulation runs--the shorter

the duration, the greater the average density.

Both architectures perform with low error rates on simulation rans

in low- to medium-density airspac.es (i.e., 50- to 60-minute runs). In

high-density airspaces (i.e., 30- to 40-minute runs), the hierarchically

cooperative variant outperforms the autonomous system. This reflects

the additional planning options that can be considered in cooperative

architectures and that are required when air traffic is heavy.

Table 1

MEAN NUMBER OF UNRESOLVED CONFLICTS
PER SIMULATION RUN

Simulation Duration (Min)

Version 30 40 50 60

Autonomous 15.2 10.5 5.0 4.2

Cooperative 12.5 8.0 4.7 4.0

A(

-23-

VIII. CONCLUDING REMARKS

We have illustrated several methods for distributing planning

responsibility among multiple processors working toward a common set of

objectives. Clearly, the object-centered architectures we have dis-

cussed are illustrative rather than exhaustive. In future work we will

implement and evaluate the performance of other architectures and other

variants on the object-centered architecture. In so doing, we will

emphasize the development of more sophisticated bargaining methods and

communications protocols. We also hope to determine how dense in sulu-

ticns a problem space must be to utilize each of our developed architec-

tures successfully.

In order to demonstrate and compare our Gandidate architectures, we

"have introduced several simplifications to our distributed planning

environment. These include (1) simulation of multiple planners by a

single planning program, (2) error-free communications, (3) limited

route planning and revising heuristics, and (4) complete cooperation

with no competition among different aircraft. Our future work will

remove these simplifications from the task environment. In particular,

we plan to achieve true distribution Ly demonstrating multi-processor

control of real autonomous vehicles.

Our current work also addresses goals extending beyond a repertoire

of domain-specific planning and patching tecL,.iques. The object-

oriented programming techniques we have developed suggest a general

framework for functionally distributed, communicating planners. At the

same time, we currently know more about how to model cooperation than we

LI

-24-

do about what cooperation should be modeled. We still lack a theory of

cooperation that would provide answers to questions such as, When should

I request a plan from another? How much effort should I expend in plan-

ning before requesting another to replan? Under what conditions should

objects plan for others in addition to themselves? Such questions are

at the heart of effective cooperation in many distributed-planning

domains.

-25-

REFERENCES

Erman, L. D., Hayes-Roth, F., Lesser, V. R,, and Reddy, D. R. The
Hearsay-II speech understanding system: Integrating knowledge to
reduce uncertainty.: Computing Surveys, June 1980.

Fahlman, S., E. A planning system for robot construction tasks. Artifi-
cial Intelligence, 5, 1974, 1-50.

Hayes-Roth, B., Hayes-Roth, F., Rosenschein, S., & Cammarata, S. Model-
ing planning as an incremental, opportunistic process. Proceedings of

IJCAI-79. August 1979, pp. 375-383.

Hewitt, C. Viewing control structure as patterns of message passing.
Artificial Intelligence, 8, 1977, 323-364.

Kahn, K. Director Guide, MIT AI Lab., Memo 482, June 1978.

Kay, A. A personal computer for children of all ages. Proceedings of
the ACM National Conference, August 1972.

McArthur, D., and Sowizral, H. An object-oriented language for con-
structing simulations. Proceedings of IJCAI-81, August 1981L

Rucker, R. Automated enroute ATC (AERA): Operational concepts, package
1 description, and issues, MTR-79W00167, The Mitre Corporation,
McLean, Virginia, 1979.

Sussman, G. A computational model of skill acquisition.. New York:
American Elsevier, 1975.

I I

A.,

