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1. INTRODUCTION

Proper deployment and accurate targeting of precision guided munitions depend
partly on knowledge of wind velocity, ceiling, and electro-optical extinction
in the target area. Knowledge of wind in the target area is crucial for the
correct placement of smoke munitions, since wind velocity near the location
where the artillery is deployed may differ considerably from that near the
target. The ability to accurately estimate atmospheric characteristics in the
target area also should permit the more efficient use of both guided and
unguided munitions and thereby reduce the number of rounds needed to
accomplish a specific task.

Wind velocity, ceiling, and volume extinction coefficient may be computed by
methods (developed in this report) that use only data currently acquired by a
remotely piloted vehicle (RPV). No new instrumentation is required; the input
consists of flight data and data from an on-board imaging system. Since some
of the principal uses of RPV now and in the near future! are surveillance of
enemy-held territory and target detection and designation, techniques
developed herein may be used to describe the above atmospheric variables in
the data silent region near the target while tne aircraft performs other
missions such as surveillance. (See Robinson? for a general description of a
number of RPV and their instrumentation and Elson® for information on the RPY
system being developed for the Army.)

The data for the first algorithm for wind velocity, which uses along-wind
information, consists of heading, airspeed, and ground speed (or distance
flown and time to fly that distance) for two perpendicular courses. The
second wind velocity algorithm, which uses crosswind information, requires
heading, airspeed, and drift or correction angle for two perpendicular
courses. Input for the algorithm for computation of volume extinction
coefficient consists of horizontal flight or ground distance, altitude, angles
between the vertical and the line of sight (LOS) to the radiating surface, and
radiances or equivalent voltages from the radiating surface to the RPV over
two separate paths. The ceiling algorithm includes horizontal flight or
ground distance, altitude, angle between the flight path and the LOS to the
cloudbase, and the angle batween the flight path and the LOS to a landmark
vertically below the viewed cloudbase. These methods are embodied in computer
programs that can be run on a desktop computer. An alternate shorter program
is presented for calculation of wind velocity when both headings are known.
The computer codes, in BASIC, are shown in the appendix.

IM. H. Crowell, 1980, A Survey of Simulation and Test Results for Assessing

RPV Performance in a WBIC Environment, Final Report SPC 615, prepared by
Systems PTanning Corporation for PMD, Tactical Airborne Remotely Piloted
Vehicle/Drone Systems, US Army Aviation R& Command, Contract DAAKS0-80-
C-0011, Saint Louis, MO, 50 pp

2A, Robinson, 1980, "Battlefield Reconnaissance: Penetrating the Fog of War,"
Military Tech and Econ, 4(15):33-42

'B. M. Elson, 1980, "Mini-RPV Being Developed for Army," Aviation Week and

Space Technology, 7 January 1980, pp 2-7
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2. ALGORITHMS

The algorithms described in this report are mathematically simple and easy to
understand. The manual versions of these procedures require only a simple
calculator or trigonometric tables, graph paper, a fine-scaled ruler, and a
pencil and paper. A desktop computer able to use BASIC is sufficient to
perform the automated versions. The operator need only type in the requested
quantities.

2.1 MWind Velocity

2.1.1 First Technique: Distance and Time Input

The input data are (1) airspeed in meters per second along the initial course
and the second perpendicular path (X and Y), (2) distance in meters along each
path and the associated time in seconds (Dx, T, and D, Ty), and (3) heading

(direction to) of each course (9r, and Dr:)}. To obtain ground speed (Xg and

Yg), simply divide the distances hy the appropriate times (Xg = 0,/Ty, Yg =

Dy/Ty). Subtracting X from Xg gives the difference C; similarly Yg -Y=0D.

The windspeed (V) is computed from the formula for the hypotenuse of a right
2 2 1/2

triangle. V = (C + D) / .

The computation of wind direction (Dir) in the desktop computer version
requires values of C, D, Or,, and Or,. If either Dr, or Jr. is missing (input
a 999 for the missing value) two values of Dir are computed, one of which is
correct. The correct value may be determined with the aid of other
information (for example, a synoptic chart can indicate which of the two
values is most likely). When both Dr: and Dr. are not available, a message is
printed saying that no directions were given or computed. A further condition
for the computation of direction is whether the orientation of the flight
paths is "right" or "left." 1In the context of this report, the orientation is
determined by whether the Y vector is to the right or left of the X vector
when facing the direction of flight along the X vector (that is, toward
Dri). Numerically, "right" occurs when Dr. > Dr, (360° added to Dr, if Dr, <
90° and 270° < Dr, < 360°) and "left" occurs when Dr, > Dr. (360° added to Dr,
if Dri < 90° and 270° < Dr, < 360°).

A "flowchart" (partly in plain English) can provide a better understanding of
the intricacies of the first method than a written explanation which could be
tedious and somewhat confusing for the reader. Such a chart is presented in
figure 1. Figure 2 illustrates the computation of wind velocity for a left
orientation when C > 0 and D < 0, in the case of both Dr, and Dr:. known.
These two figures should be used together to gain a basic understanding of the
first technique.

The present form of this algorithm uses distance flown and time to fly that
distance to compute ground speed, Simple modifications to the program will
permit ground speed to be input directly. The input routine would need a
slight modification, and the simple computation of ground speed would be
eliminated.
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Neither missing

Input for two perpendicular courses:

(1)
(2)

(3)

Airspeeds in meters/second (X,Y)
Distances in meters (D,, Dy)
and times in seconds (T,, Ty)
Headings (Dry, Drp}

1

Compute ground speed

Compute parallel components

of the wind
C = Xg - X
D= vg - v

Compute the windspeed
v = (cz + 02)1/2

1

Compute angles (P, Q) relating
wind and flight directions

P = arctan |C/D|

Q = arctan |D/C|

Set flag for C and D with the
same sign (L = 1) or opposite
signs (L = 0)

—
Ora missing -

LSetDr2=Dr1+90J

Is this step in the LT First
first or second pass?

second

[ org=0rp -9 |

Yes
| Orp=orp+ 3600 |

L IsOpcor [l
X

| 1sorp>360°7 o
Yes
l Dr; = Orp - 360° I

B —

Both missing

Is Dry, and/or Drp unknown?
’ |

Dry missing

Print "no direction given
or computed"”
Print value for windspeed

I Set Dry = Drp + 90°4J

first or second pass?

second

[; Dry = Drp - 90° l

[ Isorp <07 2 No
Yes 1
l Dry = Dry + 360° ]
1
[ Is Dry > 360° t: No

Yes

!
| Ory=or -360° |}

Is this step in the B First @

Figure 1.  Flowchart of the first technique for computation of wind velocity.
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3
[ Set Dir = Dry - Q| f set Dir = Drp + P}
;
veteritine whethier orientation Determine orientation
is "right” or "left" as for sequence (:)
)y If Ury < 90° and 2727 < Drz < 3oy0
R then Jry = Ury + 3ou”
LF Oy <07 and 2797 < Oey < 360°
then Jr, = Jrs + 300°
{2) Migatt af Jry < ars
“Left” af v > Jrp
Is orieatation "right” and Is arientation "right" and )
L=l 0 and D have saue sign)? I
or or
Is orientation "'left' and s drientation ‘lefu and
= J (7 and U have dpposite stns)? L=
1es Ho ies o
¢
Ltlzhcrc 1 tailwind {2 > 252 N L}s there @ tailwind (& > 0)3J l
oy ‘ Yas N !
[ 0ir = bir = 130 far ;
1 |
[ ts oie > 36077 =
Tey dn
| Sir = 0 - Son ;
T N
b o < ’ ,
%
Yes §
L oar - Sir - 3ou | i
i
15 the inpat value of ry or dr
and does this sten end the first Kk
1es
rRetarn to (*) above
] Print values of wintspeed and direction
Covataes of each af Dy oor ors anknown )
| @
Vigure 1 {cont)




0° or 360°

270°

a0°

180°

-

Figure 2. [llustration of the computation of wind velocity by the first
algorithm where the orientation is "left,” C > 0 and D < 0, and
both Dry and Dro are known. X and Y are airSpneds and X; and Y
are ground speeds. C - Xand D =Y, - Y. V is the wind vector
and P and 9 are conputeélhy the arctandgents of the absolute values
of C/D and D/C, respectively. Ory and Drp are the directions
toward which the RPV flies along the X and Y flight paths,

respectively. in this examle, the wind is blowing from a
direction stightly less than 90°.
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2.1.2 Second Technique: Drift or Correction Angle Input

The input data are (1) airspeed in meters per second along the two
perpendicular courses (X and Y), (2) a flag to indicate whether drift (I = 1)
or correction (I = -1) angles are utilized, (3) the drift or correction angles
(A and B) in degrees, and (4) the heading of each course (Dr, and Dr:). An
angle is considered positive if it describes an arc running to the right of
the flight path when facing in the direction of flight. The tangent of the
angle times the relevant airspeed gives the crosswind component for each
course. C = X tan A, D = Y tan B. The windspeed (V) is computed from the

2 H
same formula as in the first algorithm; that isV = (C + D )l/2 .

The computation of wind direction (Dir) requires C, D, Or,, and Dr. as
input. If either Ory or Dr, is missing (input a 999 for the missing value)
two values of Dir are computed, one of which is correct. When both Dr: and
Dr, are missing, a message is printed saying that no directions were given or
computed. The orientation, left or right, is determined as in the first
method,

A "flowchart” similar to that of figure 1 is presented in figure 3, but for
the second method. Figure 4 illustrates the computation of wind velocity for
a right orientation where C > 0 and D < 0, when both Dr, and Dr. are known.
These two figures should be used together to gain a basic understanding of the
second technique.

2.1.3 A Shorter Version

A shorter version of the computer program was developed that has about two-
thirds the number of statements and storage requirement as the program
described in sections 2.1.1 and 2.1.2 of this report. To reduce the number of
statements, it was assumed that Or, and Dr. would always be known. If either
direction is unknown, this program can be run twice with the unknown direction
= the known direction +90°. (One of the two velocities will be correct.)
Consequently, all statements associated with the extra computation required to
handle the cases of either Dr; or Dr, unknown were removed, along with those
activated when both directions were missing. A listing of the shorter version
is in the appendix along with the listing of the complete version. Figures 2
and 4 illustrate the output from the shorter program.

2.2 Volume Extinction Coefficient

The computer programs for the calculation of volume extinction coefficient
require the input of either (1) horizontal flight or ground distance, (2)
altitude, (3) or both distance and altitude. If either distance or altitude
is unknown, then (4) the angle between the vertical and the slant path
(technique A) or (5) the angles between the vertical and the two slant paths
(technique B) are input. Finally (6) radiances or (7) equivalent voltages are
entered for the respective views of the radiating surface(s).

The equations are derjved by first assuming that the vertical distribution and
amount of scatterers and absorbers in any vertical column of the same height
are constant over the area of interest. This assumption is reasonable to a
fair accuracy over small areas of the order of a few tens of square kilometers
or less, not in the immediate vicinity of atmospheric "discontinuities" such

12




( smar )

v
Input for two perpendicular courses:

(1) Airspeed in ms~! (X, Y}
(2) Whether using drift (I = 1) or correction (I = -1) angle
(3} Angles in degrees (A, B)
+ if to right of direction of flight
- if to left of direction of flight
(4) Headings (Ory, Dry)

@ 3
o x
[-- 0

[ )
] =

*

Compute perpendicular components of the wind

C=Xtan A
D=YtanB

Compute windspeed
v = (cz + 02)1/2

Compute angles relating wind and
flight directions

P = arctan IC/DI

Q = arctan {0/Cl

Set flag for C and D with the same sign (L = 1)
or opposite signs (L = 0)

Neither missing

475 Dry and/or Dry unknown?
| T l

Both missing

Or, missing Ory missing Print "No direction given
or computed”
Print value for windspeed
ﬁet Orp = Dr + 90’] lSet Dry = Drp + Q(LI
Is this step in the First Is this step in the | First
first or second pass? | ] first or second pass? @
Second

Second j

Drl = Drz - 90°

Dry = Dry - 90°

Is Drp <0 Is Dry < 0 g
Yes No Yes No
Or, = Drj + 360° Bry = Dr, * 360°
s Drp > 360° Ts Dr; > 360°
Yes No Yes No

Dl‘z = Drz - 360°

Dry = Ory - 360°

Figure 3. Flowchart of the second technique for the computation of wind velocity.
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{ set Dir = Dry - P
!

Determine whether headwind
or tailwind
(1) If Dry < 90° and 270° ¢ Or, < 360
then Dry = Dry + 360°
If Dry < 90° and 270° ¢ Ory < 360°
then Dry = Dry + 360°
(2) Tailwind if:
(a) D >0 and Dry > Dry
() D <0 and Dry < Drp

t

Determine orientation
"Right" if Dry < Drp
"Left" if Dry > Drp

{

Is orientation “right" and
L =1 (C and D have same sign)?
or

| Set Dir = Drp + Q]

Determine whether headwind
or tailwind
(1) Same as for(Z)
(2) Tailwind if:
() € <0 and Ory > Dry
(b) € >0 and Wy < Orp

1

Determine orientation

as for (:)
1

Is orientation “right" and
L=1?

No or No

Is orientation "left" and

L =0 (C and D have opposite signs)?

Yes

Is orientation “left" and
L =0

Yes

Yes

IDir = Dir + 180°|

[1s Dir > 300%2

Yes I o
foir = Dir - 360°]
No

Yes

[pir = Dir + 360°]

Is the input value of Dry or Drp unknown

and does this step end the first pass? No

Yas

[Return to (*) above]

Print. values of windspeed and direction

{2 values - f each if Jry or Oro unknown)

bigure 3 (cont)




270°

0° or 360°

Figure 4.

90°

180° !

Ilustration of the computation of wind velocity by the second
algorithm where the orientation is "right," C > 0 and D < 0, and
both Dr; and Dry are known. The variables shown are the same as in
figure 2 except that A and B3 are the drift angles (= -correction
angles) for the X and Y flight paths, respectively. The crosswind
components are C = X tan A and B = Y tan B. In this example, the
wind is from slightly less than 360°.




as a sharp front. Therefore, hetween a given flight level and the ground, a
change in total mass of absorber or scatterer roughly is denendent only on the
difference in path length.

Taking the ratio of two radiances from the same source but over different path
lengths and using Beer's law, we have:

-k'mz, -k'mZ,
R,/R, = Ree /R e

where R = radiance, k' = mass extinction coefficient, m = mass of absorber and
scatterer per unit volume, 7, and Z, are path lengths, and the subscripts 0,
1, 2 refer to values at the source and at the sensor for the two paths,
respectively. If we let the volume extinction coefficient (k) = k'm, and we
factor out R,, we have

-kZz -kZ 1
R,/R, = e /e

-kZz + kzl

k(z, - 2,)

Taking the logarithm, we have:
]n (Rz/ql) = k (Zl - Zz)

and for k:

k = In (R,/R))/(Z, - 2,) (1)

If the RPV can fly directly over the radiating surface, we can use technique A
(see figures 5a and 5b). If overflight is not possible, then use technique B
(figure 5¢c). These techniques are described below; the reader should refer to
the aporopriate figure (5a, b, or c¢) in the following descriptions.

2.2.1 Technique A: D0Nverflight of Target

Here we assume overflight is possible. The RPV observes two surfaces of
closely similar properties such as different regions of a lake with a very
nearly uniform surface temperature, or it looks at the same surface, once
vertically and again along a slant path.

16
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TARGET

7777/ r’)“'r”7/7/77////// X /7l s ST

Figure 5a. The geometry for finding the volume extinction coefficient
(k = k'm) by viewing the same target. (k' = mass extinction
coefficient, m = mass of absorber and scatter per unit distance.)
x = ground or horizontal distance, 8 = angle between vertical and
Tine of sight to target, and Z and Z, are the vertical and slant
paths.

TARGET |

77777277077 7777 ,X 77770077 777777

Figure 5b. Finding k by viewing two closely similar targets. Variables are
as in 5a.
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I BZ Bl

7

TARGET

|
|
|
4

7777777777777 7/ 777

7277 727 r 7777777

= x]

j-

Figure 5c.

X2

Finding k by viewing the same target along different slant paths
(different anales, both > 0°). Here Z = altitude, Z; and Z, =
slant paths, Ry and R, = respective radiances, 81 and By = angles
between the line of sight to the target and the vertical, and Xl
X, are horizontal distances along the ground or flight path.

18
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Referring to figures 5a and b, we see that X = distance along the ground, 7 =
7, = altitude (vertical path), Z. = slant path, and g = angle between the
vertical and the slant path.

a. If X and Z are known but not 8, then

g = arctangent (X/Z)

and 2,

2/cos 8.

b. If Z and 8 are known but not X, then as in a
Z, = Z/cos 8.

c. If X and 8 are known but not Z, then

Z: = X/sin 8

and 7 X/tan 8

Using equation (1) and the above geometrical relationships, we have for the
first two cases (a, b):

k = In (R, /R,)/Z(1 - 1/cos 8) (2)

and for the third case (c)

k = In (R,/R.;)/X(1/tan 8 - 1/sin g} (3)

2.2.2 Technique B: Standoff from Target

Here we assume overflight is not possible. The RPV views the same surface
from two different angles (neither path vertical as in figure 5c) or views two
closely similar surfaces (no figure shown).

Referring to figure 5c, we see that X; and X, = horizontal distances along the
flight path or the ground, Z = altitude, 7, and 7, are slant paths, and 8. and
82 are the respective angles between 7, and 7. and the vertical. Therefore:
d. 1f Xy, X, and Z are known but not 8,, 82, then
g1 = arctangent (X,/2), 8. = arctangent (X,/Z)
and Z, = Z/cos 81, 212 = 2/cos B2

e. If Z and 8,, 8. are known but not X,, X,, then as in d
2y = 2/cos By, 1 = Z/cos B2
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f. 1If X,, Xy and 8,, 82 are known* but not Z, then
Z| = X‘/an 81, Zz = Xz/an B2
and Z = X,;/tan 8; = X;/tan 8,

Using equation (1) and the above geometrical relationships, we have for cases
d and e:

k = In (R,/R,}/Z(1/cos B,- 1/cos 8,) (2)
and for case f:
Y = in (R,/R)/(X,/sin 8, - X,/sin B,) (5)
However, for &:. + 0 {see figure S5c} equation (5) fails. To avoid this ?

problem, replace X,/sin 8, with Z (= X./tan g.) for small values of 8: (=
several degrees .= “ess). Therefore, in place of equation (5) use:

k = In (R,/R,}/X,(1/tan 8, - 1/sin 8,) (6)

Note that equations (6) and (3) are the same, where X: = X and 8. = 8 {compare
figures 5a and 5¢).

2.2.3 Computation of Radiance from Voltage

Modifications of the two techniques were developed where radiance is not input
directly, but is computed from voltages. Commonly, sensors use devices that
transform received enerqy 1into voltages, which in turn are converted into
radiances by the means of some algorithm. Although the form of the conversion
algorithm may differ from one sensor to another (for example, linear or
quadratic), a simple linear form was used here only to indicate how such
equations would fit into the techniques described in this report. The
equations have the form R = a + bV where R = radiance, V = voltage, and a and
b are constants determined empirically during calibration. It is assumed that
one voltage is produced for each of the two views of the radiating surface or
target, yielding the two required radiances.

*These computations may be performed if either 8, or g, is known. For
example, 1f X, and 8, are known, we can compute Z, and Z. Having 7 and X., we
can then calculate 8.,
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2.2.4 Computer Programs

Four "flowcharts" were constructed to enable the reader to understand the
computer programs more easily and to avoid the possible confusion an entirely
written explanation would cause. The reader should refer to figure 5 when
viewing these flowcharts. Figure 6 shows the chart for technique A, where the
RPV can overfly the target (= radiating surface) and radiances are input.
Figure 7 presents the chart for technique A when voltages are input. Figure 7
differs from figure 6 in the substitution of the voltage input and conversion
algorithm in place of the radiance input statement. Figure 8 has the
flowchart for technique B, where the RPV cannot overfly the target and
radiances are input. Figure 9 illustrates the difference in the flowchart for
technique B when voltage input replaces radiance input; the entire flowchart
is not shown. The programs for both techniques are presented in the appendix.

2.3 Ceiling

Ceiling (c) may be computed by using simple geometry and data from an RPY
carrying a movable sensor active in any imaging wavelength region. The
required input includes (1) upward elevation angle which is the angle between
the flight path and the LOS to cloudbase, and either (2) horizontal flight or
ground distance, (3) altitude, or (4) both altitude and distance. If only
altitude or distance is known, then input (5) the depression angle which is
the angle between the flight path and the LOS to a landmark vertically below
the view of the cloudbase.

Referring to figure 10, we have for the ceiling
c=h+1
where Z = altitude and h = vertical distance from flight level to cloudbase.
Furthermore, h = Xtan 8, where X = horizontal flight or ground distance and g
= ypward elevation angle. Substituting for h, we have for the case of X and Z
known:
c =17+ Xtan 8 . (7)
If X is known but not Z, we have for Z
Z=Xtan a ,

where a = depression angle. Using equation (7) and substituting for 7, we
have for ¢

Xtan a + Xtan 8

(2]
]

X (tan a + tan 8) .
If Z is known but not X, we have for X

X =127 cth a
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‘ STAR] )

|Set horizontal distance (X) and altitude () = O]

Set flag:
1 =2, only al
1=3,

both kn

I =1, only distance known

titude known
own

=3

Input distance (X}
in meters

o

Input attitude (2)
in meters

Input distance (X) and
altitude (Z) in meters

]

|

[nput angle (Beta) betwenn
vertical and slant path in
degrees

[ Input vertical and slant path radiances (R, R:)J

[_Chanqe units of X and 7 to ki1ometer;]

Yes
oes 1 = 3? Beta = Arctan (X/7)1
o
[afa = Log (R/RD) |
Yes Zompute value of extinction

o

| coeff
Alpha

jcient (Alpha):
= AYfa/(X*(1/TAN(Beta)-
1/SIN(Beta)))

Compute value of extinction
coefficient (Alpha)
Alpha = Alfa/(Z*(1-1/C0S(Beta)))

[Ahutput value of Alpha]
L

Figure 6. Flowchart of technique A for estimation of volume extinction coefficient.
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START

[Set horizontal distance (X) and altitude (7) = 0]

Set flag:! only distance known
1 only altitude known
1 both known

1=1 1=2 1=3

Input distance (X) Input altitude (2) Input distance (X) and
in meters in meters altitude (Z) in meters

L J

1

Input angle (Beta) between vertical and
slant path in degrees

[Input voltage coefficients (A, ETW

Input voltages for vertical and
slant paths (VI, v2)

Compute radiances (R1, R2):
Rl = A + B*Vi
R2 = A + B*YV2

Change units of
X and Z to
kilometers

Beta = Arctan (X/7)

Compute value ol extinction

coefficient (Alpha):

Alpha = Alfa/(X*{1/TAN(Beta)-
1/SIN(Beta)))

Compute value of extinction
coefficient (Alpha):
Alpha = ATfa/{2*(1-1/C0S{Reta)))

IOutput value of Alpha]
L

Figure 7. Flowchart of technique A for estimation of volume extinctisn coefficient using voltage input.
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START

[ ~t horizontal distances (X1, X2} and altitude (2) = -]

Set flag:

1

1, only distances known
, only altitude known
3, both known

nonog
~

Tnput distance-
tn meters

Tannt Altitede

i=2 1

in meters

Input distances and
2ltitude in meters

{nput angles (21, RZ) hetween the
+ rtical and each slant path in degre ,

—

F

['nnut slant path radiances (?1, R?w]

| nan e units ot AL, i, gl oo

tu wlodeters l

Ver,

S g (R2/R!}

Yos

No

Yeas

D= X2YTAN(R2.
Rl = Arctan (X1/7)

X1*TAN{R2)
Arctan (x1/°°

a1 =

No

D= Arctan (%17
> - Arctan (¥X2/7)

rompute extinction coefficient (Alpha)

Alpha = A1fa/7*(1/C0S(R1)-1/CAS{R2}))

Compute extinction coefficient (Alpha): |
Alpha = Alfa/(X1/SIN{B1} - X2/SIN(R2})

"ympute extinction coefficient {Alpha):
“ioha = A1fa/(X2*{1/TAR(B2) - 1/SIN(B2)))

T

Dutput value of Alnha}

END

Figure B. Flowchart of technique R for estimation of volume extinction coefficiont.
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In place of:
Input slant path radiances (Ry, Ry}
substitute:

[ Innut voltage coefficients (A, B) |

1
Tnput voltages for both slant paths (Vy, V,)

Compute radiances (Ry, Rz):
} ql = A+ B*Vl
l Ry = A + BxV,

1

Figure 9. Change in the flowchart (figure 8) for estimation of extinction
coefficient with two slant paths when voltage input replaces
radiance input.
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Using equation (7) and substituting for X, we have for ¢

(o Z+ 7 ctna tan 8

Z (1 + tan 8/tan o) .

It has been assumed that the cloudbase can be observed directly above the
landmark from the RPV (see figure 10). The computation of c becomes less
accurate as the cloudbase to landmark path departs from vertical, although a
departure of only a few degrees is not significant. Furthermore, it is
assumed that the distance X is the same for both views, to the cloudbase and
to the landmark. The value of c will depart from the real value as the
difference in X for the two views. This problem could be solved if a side
looking sensor was used or the RPV flew at a low speed and X was large. For
exampie, relatively little degradation will occur if the speed of the RPV = 20
ms™t, X = 4000 m, and the sensor viewed both scenes within 2 s.

The program for calculation of ceiling is presented as a "flowchart" in figure
11. The reader also should refer to figure 10 as an aid to understanding the
flowchart. The computer code for this program is presented in the appendix.

3. SAMPLE COMPUTER RUNS
3.1 Wind Velocity

Four examples, two for each algorithm, are presented in this section to better
demonstrate the computation of wind velocity hy the two methods. For each
example, a table shows the calculations required and an accompanying graph
shows the graphical solution. Each set of one table and one graph is
presented in the form of one figure for ease of understanding (figqures 12
through 15). Although more than four situations exist (for example, "right”
orientation for both C and D > O and both Dr, and Dr, known), to include them
all for both methods would make this report unnecessarily iarge and tedious.
Table 1 gives the computer output for these four examples.

Figures 12 and 13 present solutions for the first algoritem, In 7vigure 12,
C >0 and D < 0, and the orientation is not known since only Dr. is given.
Two solutions are computed, one of which is correct. Figure 13 has a "left"
orientation where C < 0 and D > 0. Figure 2 and section 2.1.1 describe the
relevant variables.

Figures 14 and 15 show solutions for the second algorithm. Figure 14 has an
orientation that is "left" and C and D are negative. In figure 15, the
orientation 1is unknown since only Dr. is known, and C and D are both
positive. Figure 4 and section 2.1.2 describe the relevant variables.

3.2 Extinction Coefficient and Ceiling

A series of runs of the ceiling and the extinction coefficient (radiance
input) programs were made to illustrate the algorithms. Sample output from
the extinction programs that input voltage are not shown here because they
essentially repeat the results of the radiance versions and a lengthy series
of examples would be unnecessarily tedious. Tables 2 and 3 show computations
for both techniques in which both manual and computer-generated values are
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shown. Input values are listed with the appropriate equations. The radiance
values have no specific units since they could have any standard {or
nonstandard) units without affecting the results. In any case, the ratio of
the radiances is dimensionless. Also, the values of k in these tables were
computed for comparison and technique demonstration purposes, assumina perfect
input. In the real world, the last two or three digits to the right of the
decimal point probably would be meaningless.

Ceiling computations are shown in table 4 in a format similar to that of
tables 2 and 3. Input values are listed along with the appropriate equations
and both manual and computer-generated values are shown. Finally, table 5
presents samples of output from the computer proarams used to generate the
values in tables 2 through 4, and output from the "voltage" versions of the
extinction programs.

LANDMARK

-

DI777 7 2272277077777 7777 7/7 7777770777777/ / 7T
o~ p 4 —

altitude, h = height of cloudbase above flight level, x =

. s X = groun
distance, and a and 8 are angles relating z and h to x ’ d
respectively. ’

Figure 10. Geometry for estimation of ceiling ( ¢ = h + z) where z =
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( START >
1
[Set horizontal distance (X) and altitude (2) = 0O}
%et flag: 1 = 1, only distance known
1 = 2, only altitude known
1 = 3, both known
[}npnt upward elavition angle (Beta{]
)
=1 I =2 1=3
Input distance (X) Input altitude (Z) Input distance (X)
in meters in meters and altitude (Z)
and depression angle and depression angle in meters
(A1pha) in degrees {Alpha) in degrees
Compute Ceiling (C): Compute Ceiling (C): Compute Ceiling:
C = X*(TAN(Alpha) + C =17+ (1 + TAN(Beta)/|] IC = I + X*TAN (Beta)
TAN (Beta)) TAN {Alpha))

| Gutput value of C}

END

Figure 11. Flowchart for the estimation of ceiling.
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X
X = 75 sl b, = 3000 m T, = 30 s Dry = 999° (unknown)
Y= 90 ast D, = 3000 m T, =50 s Ory = 285°
- . -1 - - -1
Xg = Dx/Ty = 100 ms1 Yg Dy /Ty 60 ms :
C=Xg-)(=25ms‘ D:Yg-Y=—30mS
Vo= (c2 « 02)1/2 = 39,1 -l
P = arctan |C/D| = 39.8° J = arctan |D/C} = 50.2°
Dry = Orp £ 90° = 195° or 375° - 360° = 15°
(1) Dir =D0rp - P = 245.,2°
(2) Dir =Drp + P = 324.8

90°

Figure 12. Use of method 1 to compute wind velocity. Variables are explained

in figure 2 and first technique. Only Dry is known, and C > 0 and
D < 0. Two values of Drp, X, Xq, V, P, Q, C, and D are shown
because Dry may be 15° or 195°.° Two wind velocities (V) are
computed.
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X = 70 ms-! D, = 4000 m Ty = 68 s Dry = 345°
Y = 80 ins”! Dy = 5000 m T, = 60 s Drp = 255
Xg = Dy/T, = 58.8 ms~1 Yg = Dy/Ty = 83.3 ms-!
C = Xg = X = -11.2 ms ™1 D=VY,-Y=33ms!
9
Vo= (2 + 08)1/2 2 11,7 ;s-l
P = arctan (C/D| = 73.6° Q = arctan (D/C{ = 16.4°

Dir = Dryp + Q = 345 + 16.4 = 361.4 = 361.4 - 360 = 1.4°

0 or 360°

270°

90°

180°

Figure 13. Use of method 1 to compute wind velocity when both Prl and Dr? are
known. Variables are explained in figure 2 and f1rs§ ggchn1q9e.
Here C < 0 and D > 0. The orientation of this figure is "left.
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A=1x4a=-3°
B=1x8=-10°

C =X tan A = -3.6 ms™!
D:Y tanB = -13.8° ms~!

v=(c?+ 0?12 2 14,3 ms!

P = arctan [T/D] = 14.6°
Q = arctan {D/C| = 75.4°
Dir = Dry + P = 104.6°
0 or 360°
fro
n
)
Ly
X C
oL
270° € pr] 90°
Q
v
180°

Figure 14. Use of method 2 to compute wind velocity when both Dry and Dry are
known. Variables are explained in fiqure 4 and second technique.
Both C and D are negative. The orientation of this figure is
"left."
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X = 50 ms~
Y = 50 wms”
Figure 15.

1
1

A= -15° Dry = 245° I=-1
B = -25° Drp = 999° (unknown)
A=1xA=15°
B=1x8-=25°
C=Xtan A= 13.4 ms~]
D=Y tan B = 23.3 ms~!

V=(c?+02)1/2 = 26.9 ms~!

P = arctan |C/D| = 29.9°
Q = arctan |D/C| = 60.1°
DTZ = Dr1 t 90° = 335° or 155°

(1) Dir = Ory - P = 215.1°
(2) Dnir = Orp + P + 180 = 454.9 - 360 = 94.9°

0 or 360°

Dr2

90°

270°

180°

use of method 2 to compute wind velocity. Variables are explained
in figure 4 and second technique. Only Ory is known, and C and D
are both positive. More than one value of some variables is shown
because Drp may be 155° or 335°.  Two wind velocities (V) are

computed.
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TABLE 1. COMPUTER OUTPUT FOR THE FOUR EXAMPLES OF FIGURES 12 THROUGH 15.
AS NOTED IN THOSE FIGURES, TWO ANSWERS ARE GIVEM WHEN OME HEADDG
IS UNKNOWN. THE MOST PROBABLE OF THE TWO WIND DIRECTIONS
IS DETERMINED WITH THE AID OF OTHER DATA {FOR EXAMPLE, A
SYNOPTIC CHART).

5 WIND VELOCITY

Windspeed = 39.1 ms~1 Wind direction = 245.2°
Windspeed = 39.1 ms ™} Wind direction = 324.8°
ONE ANSWER IS CORRECT
6 WIND VELOCITY
P Windspeed = 11.7 ms~! wind direction = 1.6°
! 7 WIND VELOCITY
Windspeed = 14.2 ms-1 Wind direction = 104.7°
1 8 WIND VELOCITY
Windspeed = 26.9 ms~1 Wind direction = 215.1°
Windspeed = 26.9 ms-1 Wind direction = 94.9

ONE ANSWER IS CORRECT

TABLE 2. SAMPLE COMPUTATIONS OF YOLUME EXTINCTION COEFFICIENT USING TECHNIQUE
A WITH RADIANCE INPUT. k = VOLUME EXTINCTION COEFFICIENT, X =
HORIZONTAL DISTANCE, Z = ALTITUDE, 8 = ANGLE BETWEEN VERTICAL AND
LOS TO TARGET, AND R AND Ry = RADIANCES FROM THE TARGET WITH
VERTICAL AND SLANT VIEWING, RESPECTIVELY. FOR THESE EXAMPLES
R = 100 AND Ry = 25 UNITS; THEREFORE, Ry/R = 0.25 and In (Ry/R) =
-1.3863. NOTE THAT HERE AND IN THE COMPUTER PROGRAMS Ry = Ry OF
EQUATION (3) AND R = Ry OF EQUATION (3).

Xnown Variables Equations and "Manual” Values Computer Values
a) X =1000m = 1.0 km B8 = arctan (X/Z)
Z=200m-=20.2km = 78.69°

k = 1n Ry/R/Z(1 - 1/cos 8)
= -1.3863/0.2(1 - 5.0990)

= 1.6910 km~! 1.6910 km~1
B) 2=300m=0.3km k= -1.3863/2(1 - 1/cos 8)
8 = 65° = -1,3863/0.3(1 - 2.3662)
= 3.3828 km~} 3.3824 km~}
¢) X=600m=0.6km k= -1,3863/X{1/tan 8 - 1/sin 8)
8 = 50° = -1.3863/0.6(0.8391 - 1.3054)
= 4.9550 km~! 4.9549 km-!
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TABLL 3. SAMPLE COMPUTATIONS OF VOLUME EXTINCTION COEFFICIENT USIMG TECHHIQIC ©
WITH RADIANCE INPUT. k = VOLUME EXTINCIION COEFFICIENT, X; AND X, =
HORIZONTAL DISTANCE, 7 = ALTITUDE, &, AND B, = ANGLES RETWEEN VERTICAL
AMD LOS T TARGET, AND R; AND R, = RADIANCE FROM THE TARGET ALONG THE TWO
SLAMT PATHS. FOR THESE FXAMPLES, Ry = 100 AND Ry = 30 UNITS; THEREFORE,
Rp/3y = 0.30 AND 1n (R)/Rp) = -1.2040.

__ Known Variables Eaquations and "Manual" values _ _ Computer Values
a) X; =330 m= 0.3 km 81 = arctangent (X;/7) = 30.96°
Xo = 1500 m = 3.5 km 8p = arctangent (X,/7) = 71.57°

7 =500m =05 km
k = 1n {Ry/%))/Z(1/cos 3y - 1/cos )
-1.2040/0.5(1.561 - 3.1631)

[t

= 1.2058 km~? 1.2063 k=t
B} 7 =53 m= 0.5 km K = -1.2080/0.5(1.0642 - 2.9238)
3y = 20° = 1.2949 km~! 1.2949 xal
32 = 70°
<) Ap = 200 @ = 3.2 km XK = 1.2040/(K1/sin 31 - As/sin Rz\
X, = 2000 m = 2.9 ka = -1.2080/(2.7727 - 2.1347)
3 = 15° = 0.884) «n”} 7.8339 km~!
35 = $9.53°
4) Xy = 40 m = 3.94 kn ko= -1.2080/%,(1/tan 15 - l/sin in)
X, : 1500 m = 1.5 km = -1,2040/1.5(1.5089 - 1.1220)
T 2 1.3001 xn™t 1.309) kn~!
iy = 653.03°

TASLE 4. SAMPLE COMPUTATION OF CEILING. ¢ = CEILING (HEIGHT OF CLOUD3ASE),
7 = ALTITUDE, h = HEIGHT OF CLOUDNRASE ABIVE FLIGHT PATH, X =
HORIZONTAL DISTANCK 3 = UPWARD CLEVATION ANGLE RETWEEN FLIGHT PATH
AND LS TH CLOUDRASE, AND = DEPRESSION ANALE RETWUEN TLIGHT PATH
AND LOS T LANDMARK (VERTICALLY BELOW VIZW OF CLOUNSASE).  COMPYTED
VALUES OF ¢ ARE TO THE NEAREST METER.

. Xnown Variables _  Equations and "Manual” Values _ Comut:r Values
a) X = 700 c =7+ Xtan 3
7 = 1580 m = 15) + 233
3= 22° = 433 n 433 m
b) 7 = 300m ¢ =72 {1 + tan 3/tan i)
3= 14° = 300(1 + 0,24933/3.17533)
vo= 10° =724 m 724 m
¢) X = 1000 m ¢ = X(tan 2 + tan g)
& = 20° = 1000(0.,5/73% + 0.3K397)

1= 30° = 94] m EL
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TABLE 5. SAMPLES OF OUTPUT FROM THE COMPUTER PROGRAMS FOR CEILING AND VOLUME
EXTINCTION COEFFICIENT. ONLY THE ANSWER (FOR EXAMPLE, Ceiling =
100 m) IS PRINTED BY THE COMPUTER. SINCE THE DESKTOP COMPUTER
CANNOT PRINT SUPERSCRIPTS, km! IS PRINTED AS 1/km.

1. Ceiling given altitude (Z) = 150 m, horizontal distance {X) = 700 m, and
elevation angle (r) = 22°,
Ceiling = 433 m
2. Volume extinction coefficient using one stant path given Z = 200 m, X =
450 m, and radiances (R and R{) = 110 and 25 units.
Volume extinction coefficient = 5.0663 1/km
3. Volume extinction coefficient using two slant paths given horizontal
distances (Xl and Xz) = 200 and 1800 m, one of the two angles between the
LOS to the target and the vertical (s;) = 18°, and radiances (3; and Rj,) =
100 and 20 units.
Volume extinction coefficient = 1.2823 1/km
4. Volume extinction coefficient using one slant path, and using voltages as
input given Z = 200 m, X = 450 m, voltage coefficients {A and B) = 2.2 and
11.0, and voltages (Vy and V,) = 8.0 and 2.0 v.
Volume extinction coefficient = 4.4989 1/km
5. Volume extinction coefficient using two slant paths, and using voltages as
input given 7 = 200 m, X; and X, = 200 and 450 m, 8; = 45°, A and B = 2.2
and 11.9, and Vy and V, = 8.0 and 2.0 v.
Volume extinction coefficient = 6.2771 1/km

4. CONCLUSION

Useful tools for silent area analysis have been developed in the form of
simple methods for the computation of wind velocity, ceiling, and volume
extinction coefficient. These algorithms use information already gathered by
an RPV of the type being developed for the Army; no new instrumentation is
required. Windspeed should be accurate to several tenths of a meter per
second and wind direction to less than a degree, assuming that the input is
"perfectly” accurate. Similarly, ceiling should be correct to about 1 or 2
percent and extinction coefficient to about 10 percent. However, under
operational conditions, the accuracy of the input data probably would
determine the accuracy of the output.

Computations may be performed via a desktop computer able to use the BASIC
computer language, or by the use of a hand-held calculator, a fine-scaled
ruler, and graph paper. The former technique only requires the operator to
input numbers that are specifically requested; the latter manual technique
requires some knowledge of the situation.
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APPENDIX
COMPUTER CODES IN BASIC FOR THE RPV PROGRAMS

(A) is the full versfon and (B) is the shortened version of the wind velocity

program;

(C) 1is the ceiling program; (D) and (E) are the extinction coeffi-

cient programs with one and two slant paths, respectively; (F) and (G) are the

extinction coefficient programs using voltage inputs, with one and two slant
paths, respectively.

®

COMPUTE WIND VELOCITY USING RPV PROGRAM

As$="Wind Speaed = *
B$="Wind Direction =
Ds$=" m/s"

E$=" Degrees"”

F$="WIND VELOCITY"

N=0
M=0
INPUT "Input L=1 to coapute VY using Method 1 or L=2 for HMethod 2*,L
IF L=2 THEN GOTO Meth
INPUT *Input airspeeds in m/s ¢X and Y>",X,Y
INPUT "Input distances(m) and t:imes(s) (Dx,Tx. Dy, Ty)>",Dx,Tx,Dy, Ty
INPUT "Input headings in degrees (Dri1 and Dr2>".0r1,Dr2
PRINT USING Heading;Fs
Heading: IMAGE 15X,134,2/
GOTO anda
Meth: INPUT "Input airspeeds in m/s (X and Y)>",X,Y¥
INPUT *Input whether drift (I=1) or correction (I=-t) angle”,!
INPUT "Input angles in degrees (A and B)>*.A,B
INPUT "Input headings i1n degrees <(Dr! and Dr2)",Dri1,0r2
Axl=q
B=I»R
PRINT USING Heading:;Fs
GOTO Otra
Anda: CALL Compl(X,Y,0x,Tx,Dy,Ty,0rt,0r2,V,0ir N>
GOTO Printer
Otra: CALL Comp2{X,Y.Aa,B,Dr1,Dr2,U,v.Dir,1,M)
Printer: PRINT USING Title;ns$,VY,D$,B$,Dir Ef
Title: IMAGE 5%X,13A,0DD.D,4A,S5¥,174,DDD.D.8A,/
IF N=t THEN GOTG Anda
IF M=1 THEN GGTO Otra
IF (N=2)> OR <(M=2)> THEN PRINT " ONE ANSWER IS CORRECT"
PRINT USING Out
Out: IMAGE S¥,6/
END
]
]
' SUBFROGRAMNS
'
)
SUB Compi<(X,Y,Dx,Tx,Dy,Ty.0rt.0r2.V.Dir,N>
1
Dir=0
DEG
L=0
Xg=Dx/Tx
Yo=Dy /Ty
C=Xg-¥%
D=Yg-Y

v=(C~2+D*2)>".S

IF C=0 THEN C=.001
IF D=0 THEN D=,001
1
! Computation of Direction
]
F=OATNCHBSCL D))
@=ATNCABSCD/C )
I (C>0)> AND (D>0> OR <C<0)> AND (DO THEN L=t
Oron=Dr1
Drto=Dr2
IF Dr12=999 THEN GOTO Second ' Is Ort! missing?
IF Dr2=999 THEN Drto=Dr 1490 t 1s Dr2 missing”
TF (Dr2=993) AND «N=21)> THFN DrtomDrt-30

36




B0 IF Drtald THEN Drrosin-totrisa
€70 IF Drtos3én (HFH Drtasrte-snn
BE0 IF (prond=40) AND (Dretcoy=2vu) kHE CDrtoo=3an:
530 IF (Drtod=90) AND (Dron>»=27G AND (Dron<=3any -
R Dir=Dri-a |
Ti0 IF (Drto<Drond AND CL=0) THEN Dir=Dri1+d
T240 IF “Drto>Dromy AND <(L=1) THEN Dar=0r1+Q
T30 IF C>0 THEN Dir=Dir+130
40 GOTO Direct
TS50 Second: IF Drz=399 THEN GOTY Alt !
] Dron=Dr2+30
V] IF N=t THER Dron-Del-340
S20 IF Drond0 THEN Dron=0lrorn+368Q
Y90 IF Dron>360 THEN Lron=Dron-340
o IF (Drond=90) AND <Drte =270 ANl (Drtad="nr
BN IF (Drtod<=30) AND <Drorn:=2V 0 ANl (Droni=3el
220 Dir=Dr2+F '
330 IF «Drto<Drony AND (lL=0 THEN Dar=Dra-F
a4 IF <DrtodDrond AND (L=1) THEN Dar=Dr2-F
3540 IF D>0 THEN Dir=Dir+1:=0
360 GOTD Direct
3?0 Alt: ~RINT “NO DIRECTION GIVEN Ok COMFUTED®
380 Direct: IF D1r>360 THEN CLir=Di1r-36u
a0 IF Dir<Q THEHN Dir=Dir+36n
a0 IF (Dr1=999) OR (Dr2=99%) THEN H=N+1
ERRY SUBEND
320 !
R i
REY] JUE Comp2i?,Y,A,B,Dri1 . Dr2z,U.v.Dar.1.M>
150 !
60 Dir=0
970 K=0
450 U=0
KT DEG
1n0 C=X*TAN(A)D
11D D=¥Y«TANCEB)
1020 W=(C"2+D 2>, T
1036 IF C=0 THEN C=.001
{040 IF D=0 THEN D=.,001
159 i
Y60 ) Computation of Direction
107o ! -
N30 P=ATNCABS(C/D Y
1039 Q=ATNCABS(D/C)H)
1100 IF <C>0)> AND <(D>0Y OF L ARG (D0 THEN K
110 Dron=hrt
1120 Drto=Drz
1136  IF Dr1=999 THEN GOTO Second
1140 IF Dr2=999 THEN Drto=Drt1+30
1150 IF <Dr2=999) AND (M=1) THEN Drto=Dri1-90
1160 IF Drtodd THEN Drto=Drto+36d
1170 IF Drto>360 THEN Drto=Drto-361
1180 IF <(Dron<=90) AND (Drto>=270> RAND <Drto<=350
1130 IF (Drto<=90) AND (Dron:=270) AND <Dron<=260
1200 IF <D>0) AND (Dron)Drto sy THEN L=t
1210 1IF <D<0>» AND <Dron<Drto)» THEN U=1
1220 Dir=Drt-P
12306 IF <(Dron>Drto) AND (K=1) THEN Dir=Dri+P
1240 IF ¢DrondDrto) AND <K=0G> THEN Dir=Dri+P
1250 IF U=1 THEN Dir=Dir+130
1260 GOTQ Direct
270 3econd: IF Dr2=2999 THEN GQTO ATt
1280 Oron=Dr2+90
1290 IF M=t THEN Dron=Dr2-9¢
1300 IF Dron<0 THEN Dron=Dron+350
1210 IF Dron>360 THEN Dron=Droi,-360
37
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THEN Lrorm=Drone 3nd
THEN Drtu=slirtc+lof
Headwind

Fatluaing

& Dr mizsina”
12 missing

=

{rr 1
Lt

Lt

P

PHEN Dr om=lrorn+3d0
THEHN Drto=lrtotZel

He s d

>

TaclwirA

=1

! I= Drt miszing®
' Iz Dr2 missing”®

Y THEN Drom=Drorn+3En
Y THEN Drto=brtc+3€d
t Test for tarlwind
I Test tor tailwind

i Headwind

Teailwind

Are Dri
Only Drit

& Dr2 mizsing?
if missing




N i
VTG
T30
IS

CIAG

DO

ﬁ
‘30
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1310
Y20
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1440
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IF TR OO ST P L R R e

Ir
IF X
fiir=hrz
IF iDronDrtoy AHD <
IF «lronibrto Al «
IF =1 THEH DirsiDir+1:0
GUTOL Direct
mit:  FRINT “HO DIRECTION GIWES OR COEPUTED"
Dircct: IF Dir 2360 THEN Lir—=Lir-360
IF Dargd THEN Dir=Dir+3ed
IF W lir1=993 ) OR cDrgm39%y THEN fataa
SHEEND

RO Do G Beoy her
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10
20 } COMPUTE WIND YELOCITY USING RPV PROLGRAM - MINI WERSION
30 4
40 As$="Wind Speed = "
56 B$="Wind Direction = "
60 D$=" m/s"
70 E$=" Degrees"
8¢ F$="WIND VELOCITY"
90 INPUT "Input L=1 to compute ¥ using Method 1 or L=2 for Method 2", L
100 IF L=2 THEN GOTO Meth
110 INPUT "Input airspeeds in m/s (X and ¥)", X,Y
120 INPUT "Input distancesim) and times(s) (Dx,Tx,Dy,Tud",Dx,Tx,0y, Ty
130 INPUT *Input headings in degrees (Dr1 and Dr2)",.Dr1,Dr2
140 FRINT USING Heading;F$
1S5S0 Heading: IMAGE 15X,13R,2/
160 GOTO Anda
§?70 Meth: INPUT "Input airspeeds in m/s (X and Y)",X,¥
180 INPUT "Input whether drift (I=1) or correction {(I=-1) angle",I
190 INPUT "Input angles in degrees (AR and B)",A,B
2090 INPUT "Input headings in degrees (DOrt1 and Or2)",Drt1.Dr2
210 A=1*A
220 B=1+B
230 PRINT USING Heading:F$
240 GOTO Otra
250 Anda: CALL Compid(%,Y,0x,Tx,Dy,Ty,0or1,0r2,V,Dir)
260 GOTO Printer
270 Otra: CALL Comp2(X,%,A,B,Drt,Dr2,U,V¥,bir,I>
280 Printer: PRINT USING Title:Aas$,%,D¢.B$,Dir ES$
290 Title: IMAGE 5X,13A,0DD.D.44,5K.174,DDD.D, B8R,
300 PRINT USING Out
310 Out: IMAGE SX,é/
320 END
330 '
349 !
350 ! SUBPROGRAMS
380 t
370 |
380 3UB Compi1<¥,Y,Dx,Tx,0y,Ty.Dr1,0r2,¥,Dir)
390 !
400 Dir=0
410 DEG
420 L=0
430 Xg=Dx/Tx
440  Yg=Dy. Ty
450 C=Xg-X
460 b=Yg-Y
470 ¥=¢L"24D"2>".5
430 IF C=0 THEN C=.00t
430 IF D=0 THEN D=,00!
500
S10 Lomputation of Direction
520
5320 A=ATNCABS(D/C)H)
540 IF CC>0> AND (D>0)> OR <(C<0)> AND <D<0) THEN L=1
550 Dron=Dr1t
S€0 Drto=Dre
570 IF (Dron<=30) AND (Drto>=270> AND (Drto<=360> THEN Dron=Dron+360
580 IF (Drto<=90)> ANL (Drond>=270) AND (Dron<{=360> THEN Drto=Drto+360
590 Dir=0r1-@ { Headuwind
600 IF (Drto<Dron) AND <(L=0> THEN Dir=Dri+@
A10 IfF (DrtodDron)d AND (L=1) THEN Dir=0rt+@
620 IF C>0 THEN Dir=Di1r+180 ' Tailwind
630 IF Dir>360 THEN Dir=Dir-360
640 IF D1r<0 THEN Dir=Dir+360
ASQ SUBEND

39
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.00
, 001

Computation of Direction

320 F=ATNCARBSCC/D >
5330 IF «C>03 AND {020 OF (LS50 AND (DCDY THEN K=

244 Oron=Dri

50 Drto=Drz

I IF (Dromn<=30) AND (Drto: AND {Dric<=7a00 THENK Droc=iron+360
e ] IF CDrto=90> AND (Dron. AND < Dron<s=] THEN Drto=lbrtoc+360
R0 IF <DB>0% AND <(Drorm>Drtao) HES| i 2t tallwind
390 IF <D<0> AND (Drom<Drtc) L=t ! for tailwind
w00 Dir—-hri-F I yimd

ERN)] IF <Dron>Drto) AND (K=1) THEN Dir=Dr1+F

920 IF c0ron<Drto) AMD C(K=0y THEN DrirsDe {+F

GIh IF U=t THEN DivsD:r+1306 i Tailwind
“dn IF Dir>3&60 THEN Dir=hDir-3&0

<50 IF Dir<u THEHN Dir=Dir+360

G SUBEND

40
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24 ! ESTIMATLON OF CEIL THY CRTUORED ws "RE LR

s !

B { IWPUT

G |

o0 DEG

U DATA  u,0

24 REND R.E&

A nE="Cerling = M

YAl BEF=" meters” :
et

(Y] INPUT vs [=1 1 diztance knaown, I=2 3¢ altitcde bnown, I=3 1§ both kpown®

120 IHPUT "Input upward efsvation z-9le v Eetad 1n A ",Beta
P20 0N I GOTH Int,In2, In3
143 Int: INFUT "Input distance X)) 16 meters & depressicon angle (dlphay 1n dagre !

i

Jree

=z K, Alpha
15 GOTOD Comp!
tad Img: INFUT "Input altitode I 10 metees & dspression zngle CAlphar 1n degre

2z%, 2. Alpha

GOTG Compd

I3y IMPUT "Impout distarce - X0 & 3ltityds (20 10 meters" 8,2

GOTO Comp?
Coampt: CaX«(TANLMlpha d+Twpl Beta

SO Gt
Comp2: C=l41+ThaH Beta s Trhinlpia s

GUTO Out !
CompZ: L=+ eTHib But g :
Qut: PEINT USING Title: n¥,i, B H

Title: IMAGE B, Sk, 106G S0.7a, 70 ;
ENC ;

4
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)13 i

20 ! ESTIMRTION OF EXTINMCTION CQEFF L IENT S TURED WD CRPy WD
34 1

41 ' INFUT

b3\ i

&0 0hnTR @
RERD X.

;U !
Ea
INPUT "Set I=1 if Jistance known, [=22 if alrvitude bpown, T=3 17 bkaonn frnean”

)
oy S

O T GOTG Ind, InZ. In3
Int: INPLT "Input wvalue of distance <X 1n meters”
GOTO Angle

=
=

bk

* et + - s
- Tt

1

20 Im2: INPUT “Input value of altitude I 1n metsars 2

30 GOTO angle

44 In3: INPUT "Input distance X and altaitods 20 10 maters", 0 C
s

- - e g -

o G070 In
ol Hngle: INPUT “Imput angls “Beta: bstuween werticsl ard slant patrz 1n Jdegre

“.Beta
0 In: INFLT “Input werticsl and stant path radiaczes - R.OPY 0 FOFT - 1 3nw 2ta
rd unats"  RLRI

_ %

f COMPUTHTION

DEL
DIm psi32)

a0 FhLmae umrkz to brlowstec:

e g om0

Z=201000 i
RE="valyme < tirnctian casttr1cyiont =
E$=" Ty m”

IF [=7 THEN Bebra=ATH N2>
HIoha=LOLLRT R

IF 2=0 THENM 4T D=t
KHlphasrlpha  Jec 1 -1 700% Beng oo
SQOTD Tut

b=t Miphazwlpha Cliee T TboBRt 371 'S [NCEar 3 -

) NUTFLT

I
Tt PRINT LZING Title wE nlphs E3
Title: IMACE @, S, 32w, D0 DD0OD &R

END

42




ted

170

ESTINATION OF EXTINCTION ~DEFFICTIENT 2TARED WS "RADREW"

'
1
! USING TWO SLANT PRTHS
t

t INPUT

1

DRATR 0, 0,0
RERD X1t ,X2,Z

INPUT "Set I=1 if distances known, I=2 1f altitude krnown., [=2 1t both known

ON 1 GOTO Int,In2.In3

Int: INPUT "Input wslusx of distances «
G0Ta Aangle

Irz: INPUT "Inrput walus of altitude v2) an meters® 2
SOTH Angle

X1.0HE where N10K20 an meter

In3: INPUT "Input disztances (N1 H2 where W12 and sltitude 70 an met=rs

iy =
A2, 2

SOTO In

Angle: INPUT "Imput angle: +B1. B2 wnare B1iBZ ' batusen wertiIsr and

paths 1n dearees” Bt Be

tan

In: INFUT "fnput slant path radisnces (RYLVRS where FIXRZ . 10 370 Stz

a1tz R1.RE
t3Q

o

—
T D I

-y tel

(91 SRR VHE )

) e b

]

RS s 9
<

't

I3
399
400
419
120
4730
440
451
160
e}
$30
430
son
S0

i COMPUTRTTON

[

DEG

DIM A%L32

N R RTR R i

K2=x2°19000 Voohorge wunats o balomsetars
Z=2s1p00 !

A$="Yalume extinction Coeffrorent =
B$=" tekm”

IF I« >3 THEM GOTO w1t

B1=mTH B 7D

B2=nTNu Xz2/2
alf: Rlpha=L0G R2/F 1)

IF 2= THEN GOTO [zt
Hlpha=Alpha (24 1OCOSORY 21 00S B v
GOTO Dt
Dist: IF B1< >0 THEN GODTD E=t
Z=X2;TANCEZ o

B1=RTH X112
Bet : IF B2<>0 THEK GAT0 Go
Z=41 /" THN(BT )
2=0TH. X272
0N IF B1<S THENW G0OTo small
Alpha=rlpha X1ASTHORT O -M2SINCES v
GOTO Qut

O m

G

Small: RAlpha=Alpha, (XZ¥ 1S TANCE, —1SSINCRB2 500
|
! QUTPUT
[}

Jut PRINT LUSING Title:A$ Flpha. Bf
Title: IMAGE 2,59 324000000 .~ o
END

43
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)
20 ! ESTIMATION DF EXTINCTION COEFFICIENT VITLREDR RS OCRPWOLTY
in ! USING YOLTAGES AS INFUT
313 t
SQ !
aq !
T DRTR 0,0
29 RERD X.2

INFUT

=2 INPUT "Set I=1 if distance known, I=2 if altitude bnown. I=3 1§ both known®
1

100 ON I GOTO Ind,In2,IR3

110 Int: INFUT "Input wvalue of distance (¥ 1n meters" X

120 50TO Angle

130 In2: INPUT "Input value of altitude ) 1n meters",2

140 GOTQ Angle

159 In3: INFUT "lInput distance (X)) and 3ltitude 2 10 meters", ., 2

160 LOTO Inm

170 Angle: INFUT "Input angle <Bets® between werticsl and zlant paths 1a dsgre
es" Beta

130 Inm: CRLL Yolt{R1,R2, VI V2, N",B)

130 !

a0t COMPUTATION

ER RV} !

Za0  DEG

230 DIM AS{32]

240 X=Xs1000 ' Change wrats ta kilometers
250 SEoon !

260 A$="VYolume extinction coefficient = 7

270 Bs=" tskm”

280 IF 1=73 THEN Beta=ATN(X, I

290 Alpha=LOG R2-R1)

Jag IF Z2=0 THEN GOTO Dist

13 Alpha=Alphars 2+ 1-1 /0% Beta v

3z0 0 GOTO Dut

120 Daist: RlphazRlpha (X% 1 " TANCBet 3 -1 “SINCERst 3

40 !

350 ! OUTPUT

360t

7O Qut: PRINT USING Title:;n$ . Alpba. Bs

380 Title: IMRGE @,5%,324.00.0000.2R. 7

390 END

409 !

410 SUBPROGRAM TO CONVERT WOLTHGE 7O KelinroE

420 !

430 SUB VeoltiRt R2,V1,¥2.A,B

440 INPUT "Input voltage coefficiants i, B .R. D

450 INPUT "Input wvoltages for wvertical amd slant paths W1 W2 where wiwIo" Wy,

42

460 RI=A+B*y1
470 R2=A+B+V2
480 SUBEND
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