CONCEPTUAL DEVELOPMENT OF A PROTOTYPE LEO CARRIER LANDING TRAINING AID

Clyde A. Briston
Steven T. Breidenbach

Dunlap and Associates, Inc.
Western Division
La Jolla, California 92037

September 1981

FINAL REPORT
March 1978 to April 1980

DoD Distribution Statement:
Approved for public release; distribution unlimited.
GOVERNMENT RIGHTS IN DATA STATEMENT

Reproduction of this publication in whole or in part is permitted for any purpose of the United States Government.
CONCEPTUAL DEVELOPMENT OF A PRELIMINARY LSO CARRIER LANDING TRAINING AID

Author(s)
Clyde A. Brichton
Steven T. Breidenbach

Performing Organization Name and Address
Dunlap and Associates, Inc. - Western Division
920 Kline Street, Suite 203
La Jolla, California 92037

Controlling Office Name and Address
University of Central Florida
P.O. Box 25000
Orlando, Florida 32816

Report Date
September 1981

Number of Pages
36

Distribution Statement (of this Report)
Approved for public release; distribution unlimited.

Key Words
- Training Aid
- Remedial Instruction
- Carrier Landing Training
- Night Carrier Landing Trainer (NCLT)
- Field Carrier Landing Practice (FCLP)
- Landing Signal Officer (LSO)
- Performance Measurement
- Knowledge of Results (KOR)

Abstract
A conceptual plan designed to aid the Landing Signal Officer (LSO) in training pilot carrier landing skills is described. The plan, named the Automated Performance Assessment and Remedial Training System (APARTS), employs basic principles of learning in integrating the Night Carrier Landing Trainer (NCLT) with Field Carrier Landing Practice (FCLP). Application of the APARTS conceptual plan resulted in the development of two computer programs, PADDLES and GRADER, which are described and documented.
The two computer programs process, store and summarize LSO grades and comments of a pilot's landing performance during FCLP. Individualized training is accomplished through diagnostic training feedback provided by program printouts. NCLT remedial instruction is specified to correct a pilot's landing technique problems identified during FCLP. Future development and integration of APARTS for improved carrier landing training effectiveness is outlined.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I BACKGROUND</td>
<td>3</td>
</tr>
<tr>
<td>II APARTS CONCEPTUAL DEVELOPMENT</td>
<td>5</td>
</tr>
<tr>
<td>III APARTS SOFTWARE PROGRAM DESCRIPTION</td>
<td>8</td>
</tr>
<tr>
<td>PADDLES</td>
<td>8</td>
</tr>
<tr>
<td>GRADER</td>
<td>13</td>
</tr>
<tr>
<td>IV FUTURE APARTS DEVELOPMENT</td>
<td>16</td>
</tr>
<tr>
<td>APARTS Individualized Training Effectiveness</td>
<td>17</td>
</tr>
<tr>
<td>APARTS Related to CQ Training</td>
<td>17</td>
</tr>
<tr>
<td>APARTS Related to Fleet Operations</td>
<td>18</td>
</tr>
<tr>
<td>APARTS Integration with ATSS</td>
<td>18</td>
</tr>
<tr>
<td>APARTS-NCLT Instructional Modules</td>
<td>19</td>
</tr>
</tbody>
</table>

Appendix

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>21</td>
</tr>
<tr>
<td>B</td>
<td>27</td>
</tr>
<tr>
<td>C</td>
<td>34</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Conceptualization of APARTS as related to FCLP and NCLT stages of carrier landing training</td>
</tr>
<tr>
<td>2</td>
<td>Example of PADDLES input: FCLP Grade Form</td>
</tr>
<tr>
<td>3</td>
<td>Example of PADDLES output: FCLP Trend Analysis Form</td>
</tr>
<tr>
<td>4</td>
<td>Example of PADDLES output: FCLP Landing Problem Diagnostics</td>
</tr>
<tr>
<td>5</td>
<td>Example of GRADER output: FCLP Performance Graph</td>
</tr>
<tr>
<td>A-1</td>
<td>GRADER computer program</td>
</tr>
<tr>
<td>B-1</td>
<td>Example of GRADER operator instructions and output</td>
</tr>
</tbody>
</table>
SECTION I

BACKGROUND

In 1978, a report on A7 training effectiveness concluded that certain improvements could be made in training Category I replacement pilots (RP) how to acquire night carrier landing skills. An important aspect of the study was a training method which emphasized individualized remedial instruction in the Night Carrier Landing Trainer (NCLT). Individualized pilot instruction in the NCLT resulted in a reduction of costly recycle training and an improvement in overall pilot performance during Carrier Qualification (CQ) trials. The study was part of a continuing program of research designed to improve training methods and make more effective use of simulators such as the NCLT. Previous research has reported on the positive transfer of training from the NCLT to actual A7E carrier qualification.

The remedial instruction technique described in the 1978 study utilized a manual system to identify what remedial NCLT instruction each RP required to enhance night landing skills. Specifically, the manual system consisted of the following steps:

1. Analyze each pilot’s field carrier landing practice (FCLP) performance to identify pilot landing technique problems.
2. Provide diagnostic training feedback to each pilot on his FCLP results.
3. Translate diagnostic training information into remedial training objectives that can be accomplished in the NCLT.
4. Provide remedial NCLT instruction before the next night FCLP period.

5. Repeat steps 1-4 for at least the first five successive night FCLP periods.

Since 10 to 12 pilots usually were involved in each FCLP period, up to 120 landings per period (10 per pilot) had to be monitored, logged, and debriefed by the LSO's in charge. The magnitude of paperwork generated by this process suggested that an automated system would be preferable to the present manual system to ease LSO workload. Further, an automated system would provide pilots with immediate knowledge of results and would make training more compatible with the Aviation Training Support System (ATSS). The ATSS is currently under development to automate other parts of the pilot readiness training program and eventually will incorporate carrier landing training.

On the basis of the promising results attained, the Naval Training Equipment Center (NAVTRAEEQUIPCEN) decided to support the development of an automated LSO training aid which would analyze FCLP performance and tailor NCLT remedial instruction to each novice pilot. Preliminary results are documented in this report. The system, as it evolved, became known as APARTS (Automated Performance Assessment and Remedial Training System).
SECTION II
APARTS CONCEPTUAL DEVELOPMENT

APARTS is an automated training system designed to assist LSO's in the instruction of pilot carrier landing skills. The APARTS emphasizes individualized instruction and utilizes the following psychological principles of learning.

- Meaningful organization of information,
- Problem analysis,
- Immediate knowledge of results (KOR), and
- Remedial instruction.

The conceptualization of APARTS begins with established learning principles which are mediated through automated programs and result in program outputs which provide pilot training feedback. Figure 1 presents the conceptualization of APARTS as related to the NCLT/FCLP stage of carrier landing training. Three key features of APARTS which distinguish the system from current carrier landing training are: a) APARTS is based upon a few well-established principles of learning; b) the system is an automated training aid to assist (not replace) the LSO in improving pilot performance and reducing LSO workload; and c) the system integrates NCLT training with FCLP by providing individualized remedial instruction.

APARTS integrates NCLT with FCLP training in the following manner:

1. FCLP performance data are organized by pilot into a meaningful format which is called a FCLP Trend Analysis Form. This form is used and accepted in the fleet and categorizes LSO landing comments into type of comment (glideslope, speed, etc.) and location of comment (all the way, in close, at the ramp, etc.). The form represents a meaningful format to summarize LSO landing comments for each night FCLP period.

2. FCLP performance data are analyzed to identify landing technique problems unique to each pilot.
Figure 1. Conceptualization of APARTS as related to FCLP and NCLT stages of carrier landing training.
3. The organized comments and problem areas are given to the student pilots for immediate KOR.

4. LSO's decide what remedial instruction shall be given in the NCLT prior to the next night FCLP period. Thus, each pilot receives individual instruction on specific landing problems as identified by the LSO from the FCLP Trend Analysis Form.

5. The system repeats the cycle after each night FCLP period.

In brief, APARTS is designed to utilize LSO information about a pilot's FCLP performance in a manner which will identify problems, provide diagnostic feedback, and result in NCLT remedial training to improve landing performance.
SECTION III
APARTS SOFTWARE PROGRAM DESCRIPTION

Two computer software programs were developed to process, store, compile, summarize, and combine FCLP performance data. The current capabilities of the two programs called PADDLES and GRADER are described and reviewed in this section to show how each program processes information and provides outputs to facilitate individualized remedial instruction.

PADDLES

PADDLES is a computer program which analyzes and assesses replacement pilot FCLP performance data during carrier landing training. Input to the Fortran IV-written PADDLES program consists of LSO grades and comments for a maximum of 12 student pilot landings per pilot within a single FCLP period. This information, as well as pilot identification data, is transcribed from data recorded by an LSO on the FCLP Grade Form (see Figure 2) and entered manually on a computer terminal. PADDLES outputs are:

1) FCLP Trend Analysis Form
2) FCLP Landing Problem Diagnostics (under development)
3) FCLP Cumulative Problem Diagnostics (under development)

Once LSO comment data have been entered into the computer, PADDLES decipher the comments to determine the general types and location of pilot landing problems. Following this assessment, PADDLES produces output on the terminal which consists, in part, of an FCLP Trend Analysis Form. An example of the FCLP Trend Analysis Form is presented in Figure 3. All LSO

FCLP Grade Form

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FCLP</td>
<td>Lowman</td>
<td>500</td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td>A/C</td>
</tr>
<tr>
<td>Date</td>
<td></td>
<td>HOP #3</td>
</tr>
<tr>
<td>1.</td>
<td>(OK)</td>
<td>HAW CDTL</td>
</tr>
<tr>
<td>2.</td>
<td>(OK)</td>
<td>NEPSIC (LOAR)</td>
</tr>
<tr>
<td>3.</td>
<td>B+</td>
<td>NERDIM OX(TMRD)XAR</td>
</tr>
<tr>
<td>4.</td>
<td>—</td>
<td>HAW EGTL</td>
</tr>
<tr>
<td>5.</td>
<td>B+</td>
<td>OSCROFIM NEPIC XAR</td>
</tr>
<tr>
<td>6.</td>
<td>(OK)</td>
<td>NEPIC CDAR</td>
</tr>
<tr>
<td>7.</td>
<td>(OK)</td>
<td>COXHFIM NEPCDIC</td>
</tr>
<tr>
<td>8.</td>
<td>(OK)</td>
<td>NEPSIM</td>
</tr>
<tr>
<td>9.</td>
<td>—</td>
<td>HXTMRDIM OXIC</td>
</tr>
<tr>
<td>10.</td>
<td>(OK)</td>
<td>DECIM TMRDIC</td>
</tr>
<tr>
<td>11.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments: Avg.

LSO: Instructor

Figure 2. Example of PADDLES input: FCLP Grade Form.

A glossary of LSO comments is included in Appendix C.
<table>
<thead>
<tr>
<th>FCLP Trend Analysis Form</th>
<th>PILOT: LSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE: INSTRUCTOR</td>
<td>DAY/NIGHT</td>
</tr>
<tr>
<td>LOGI GRID</td>
<td>AR</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>1. (OK)</td>
<td></td>
</tr>
<tr>
<td>2. (OK)</td>
<td></td>
</tr>
<tr>
<td>3. (OK)</td>
<td></td>
</tr>
<tr>
<td>4. (OK)</td>
<td></td>
</tr>
<tr>
<td>5. (OK)</td>
<td></td>
</tr>
<tr>
<td>6. (OK)</td>
<td></td>
</tr>
<tr>
<td>7. (OK)</td>
<td></td>
</tr>
<tr>
<td>8. (OK)</td>
<td></td>
</tr>
<tr>
<td>9. (OK)</td>
<td></td>
</tr>
<tr>
<td>10. (OK)</td>
<td></td>
</tr>
</tbody>
</table>

AVERAGE GRADE: 2.70 FOR 10 LANDINGS.

Figure 3. Example of PADDLES output:
FCLP Trend Analysis Form.

RECOMMENDED NEXT ACTION:
- Power Management Training
 in ACTL to improve Glideslope Control.
- Instruct in how to anticipate power corrections with narrowing Fresnel Glideslope Envelope.

SIGNED: LSO
grades and comments for a pilot's FCLP performance during a single period are shown. When presented this way, these data indicate to the LSO and the pilot, general landing technique trends. Data presented on the FCLP Trend Analysis Form is but one method of providing immediate and meaningful performance feedback. Additionally, an average LSO grade for the entire FCLP period is also displayed on the FCLP Trend Analysis Form. Not only is the calculation of average grades much faster by computer than hand calculations, but it is also much more accurate.

Another output of the PADDLES program is the FCLP Landing Problem Diagnostics. This output provides more specific error analysis and performance feedback to the user than the FCLP Trend Analysis Form. In particular, the summary describes in detail the type, frequency and location of pilot landing errors. An example of a preliminary version of the FCLP Landing Problem Diagnostics is presented in Figure 4. The diagnostics are weighted summaries of LSO comments which can be used to assist LSOs in determining specific NCLT remedial action. In this preliminary version of the diagnostics, the first two areas, general landing technique problems and landing segments, provide specific information on problem areas. These two areas are summarized in the third section—specific landing technique problems and location. In this example, LSO comments are weighted and combined to show the percentage of total landing difficulties at any particular landing segment. The diagnostics are in a preliminary stage of development and undergoing more research refinement to make the final version more usable for the LSO community. They are presented here for illustration only.

After FCLP data are analyzed by PADDLES, an LSO assesses pilot performance and recommends specific remedial instruction on the NCLT. This process is now manually performed by LSO's. In the example (Figure 3), the LSO recommended action is for NCLT remedial training in power management.

PADDLES structures the training so that each RP receives individualized instruction on problems diagnosed from FCLP performance data. Further, since the instruction is individualized and remedial, different rates of learning
** DIAGNOSTICS ARE WEIGHTED SUMMARIES OF LSO' COMMENTS **

** GENERAL LANDING TECHNIQUE PROBLEM AREAS: **

- [23.3%](13) - GLIDESLOPE CONTROL
- (12) - TOO HIGH; (1) - TOO LOW
- [38.2%](21) - RATE OF DESCENT
- (17) - TOO MUCH; (4) - NOT ENOUGH
- [10.9%](6) - SPEED CONTROL
- (4) - TOO FAST; (2) - TOO SLOW
- [27.3%](15) - POWER MANAGEMENT
- (2) - TOO MUCH; (13) - NOT ENOUGH

** LANDING SEGMENTS SHOWING GENERAL DIFFICULTY: **

- [32.7%](18) - IN MIDDLE THIRD OF GLIDESLOPE
- [32.7%](18) - IN CLOSE (LAST THIRD OF GLIDESLOPE)
- [12.7%](7) - AT THE RAMP

** SPECIFIC LANDING TECHNIQUE PROBLEMS AND LOCATIONS IN LANDING SEQUENCE: **

- ** GLIDESLOPE CONTROL **
 - [9.1%](5) - AT THE RAMP
 - (4) - TOO HIGH; (1) - TOO LOW

- ** RATE OF DESCENT **
 - [14.5%](8) - IN MIDDLE THIRD OF GLIDESLOPE
 - (4) - TOO MUCH; (4) - NOT ENOUGH
 - [16.4%](9) - IN CLOSE (LAST THIRD OF GLIDESLOPE)
 - (9) - TOO MUCH; (9) - NOT ENOUGH

- ** SPEED CONTROL **
 - [10.9%](6) - IN MIDDLE THIRD OF GLIDESLOPE
 - (4) - TOO FAST; (2) - TOO SLOW

- ** POWER MANAGEMENT **
 - [16.4%](9) - IN CLOSE (LAST THIRD OF GLIDESLOPE)
 - (9) - TOO MUCH; (9) - NOT ENOUGH

Figure 4. Example of PADDLES output: FCLP Landing Problem Diagnostics.
among RP's can be taken into account. For example, if a pilot has a problem with high starts or power control difficulties, correction of these particular problems would be emphasized during remedial NCLT trials. A key to this method of training is that landing problems identified during night FCLP can be corrected by remedial training in the NCLT--prior to the next FCLP period. Hence, the pilot would receive supplemental instruction in how to correct landing problems diagnosed from the previous FCLP. Since individual pilot problem areas are emphasized during remedial instruction, it may be possible in the future to identify a set of generic landing problems encountered by A7 replacement pilots and what types of corrective procedures (in the form of instructional modules) should be provided on the NCLT.

PADDLES is a program of APARTS which assesses and documents a pilot's performance for up to 12 aircraft approaches during a single FCLP period. An extension of this logic is to summarize, in a cumulative manner, a pilot's performance over several successive FCLP periods. Future software development will stress and provide this capability so that pilot landing problems can be analyzed and detected over time to provide a longitudinal performance summary of each pilot's training progress and also an indication of remedial training results.

GRADER

The PADDLES program of APARTS primarily focuses on the analysis of LSO comments. GRADER is a program designed to provide information of a pilot's rate of learning in the form of an FCLP learning curve. Average grades for each FCLP period are entered manually on a terminal as inputs to the Fortran IV-written computer program called GRADER. The output of this program is an FCLP Performance Graph. An example of the FCLP Performance Graph is presented in Figure 5. The FCLP Performance Graph is a summary of pilot performance across day and night FCLP periods. An LSO may be able to use the performance graph as a learning acquisition curve or to detect potential recycle pilots (those pilots who fail CQ and must be
Figure 5. Example of GRADER Output: FCLP Performance Graph.
retrained). This may be especially useful during early FCLP periods so that erratic or low performance can be identified. Documentation for the computer program GRADER is presented in Appendix A with operator instruction presented in Appendix B.
SECTION IV
FUTURE APARTS DEVELOPMENT

Continued development and eventual implementation of APARTS as a carrier landing training aid for LSO's could provide improvements to the pilot carrier landing training sequence in the following areas:

- Individualized Training Effectiveness in Fleet Readiness Squadron (FRS) and Fleet through:
 - Meaningful organization of material
 - Problem analysis
 - Immediate knowledge of results identifying specific landing problems
 - NCLT remedial instruction
- CQ Landing Performance Measurement to develop:
 - FRS CQ performance training data bank
 - FRS CQ performance standards
 - FRS CQ training progress assessment and validation
- Fleet Carrier Landing Performance Measurement for:
 - Fleet landing performance data bank
 - Fleet landing norms
 - Fleet landing proficiency index
- Administrative Efficiency in:
 - Reduced LSO workload
 - Reduced time and cost through automated data storage and retrieval
 - ATSS integration
 - NCLT instructional modules

Planned developments within specific topics are outlined below.
APARTS individualized Training Effectiveness

APARTS as conceptualized and currently developed promises to apply general principles of learning to accomplish individualized training effectiveness in the A7 FRS community as well as fleet operations. As described in this report, APARTS would identify landing technique problems unique to each novice pilot and provide remedial training to correct the problem and enhance performance through increased NCLT training. While this training sequence is appropriate for the FRS by its access to the NCLT, fleet operations could also be tabulated and evaluated by APARTS to identify landing trends for fleet qualified pilots. Remediation in these cases could be accomplished through a review of APARTS data for each individual over time (line period, cruise, yearly) or through their use of an NCLT. Current research at NAVTRAEOIPCEN is investigating a portable and general purpose NCLT for use on carriers. Should this design prove feasible, shipboard NCLT training could be used to enhance pilot landing proficiency.

At present, APARTS conceptual framework has focused on the NCLT/VCLP stage of Phase III carrier landing training. However, since LSO comments are recorded during actual carrier landings, APARTS could easily be adapted for carrier qualification training and fleet recovery operations.

APARTS Related to CQ Training

APARTS as utilized for carrier qualification training would require only minor modification to the present outputs. LSO grades and comments on pilot performance would be documented to provide pilots with diagnostic feedback of day and night recovery trends. A CQ performance graph would replace the FCLP graph. Computerization of the CQ data would allow automation of such administrative forms as the CQ completion letter. In addition, the compilation of CQ LSO comments on a CQ landing trend form might increase fleet LSO acceptance and use of FRS CQ data for training.
Since the ultimate purpose of A7 CQ training is carrier landing, the collection of CQ data would be the first step in developing a performance data bank for use in validating, assessing and improving FRS training effectiveness.

APARTS Related to Fleet Operations

APARTS could also be used for fleet operations by processing LSO grades and comments of pilot carrier landing approaches. Through automated data storage and retrieval of diagnostic information, fleet pilots could be better appraised of their carrier landing performance over time. The performance data could be automatically stored and used to determine the extent to which carrier landing skills deteriorate or are retained by pilots under different operational conditions. Finally, night carrier landing performance norms could be established to compare carrier recovery proficiency across different ships, aircrafts, squadrons and individual pilots. Normative data could also be used to determine relative levels of pilot landing proficiency.

APARTS Integration with ATSS

Future APARTS applications should also involve the integration of APARTS with the automated ATSS. If APARTS is to be implemented at A7 FRS squadrons, it is recommended that the PADDLES and GRADER programs be converted to BASIC computer language to make APARTS compatible with ATSS. Program modifications could be made to automate PADDLES outputs so that data could be obtained not only via printouts, but additionally, be stored on computer media such as tape or disk. This step would greatly enhance APARTS utility and storage capability and eliminate the need for manual data input to the GRADER program.
APARTS-NCLT Instructional Modules

Future research should be performed to develop instructional modules for the NCLT so that when a certain problem occurs during FCLP, a special module would be provided to correct the problem. Research currently under investigation includes the development of a generic set of landing problems unique to the novice A7 pilot. Over 2,000 night FCLP trials, along with RP questionnaire data and LSO subject matter expert information, are being reviewed and analyzed to identify typical landing problems encountered during FCLP training. Once identified, it should be possible to revise the curriculum to emphasize correction of these frequently occurring problems. In addition, formal and structured NCLT modes of instruction could be developed and incorporated into NCLT training to standardize the remedial instruction provided for each set of landing technique problems. The feasibility of identifying landing problems as a function of novice pilots and aircraft type has already been verified through one field study of FCLP performance and promises to improve overall A7 training effectiveness.
NAVTRAEEQUIPCEN 77-C-0166-2

APPENDIX A

DOCUMENTATION OF GRADER COMPUTER PROGRAM
Figure A-1. GRADER Computer Program (Sheet 1 of 5).
Figure A-1. GRADER Computer Program (Sheet 2 of 5).
NAVTRAQFCEN 77-C-0166-2

1014 FORMAT ('ENTER THE NUMBER OF NIGHT FCLP PERIODS,')
 ACCEPT 1015, NNP
1015 FORMAT (1) TYPE 1020
20 FORMAT ('ENTER THE AVERAGE GRADE FOR EACH FCLP')
 * PERIOD EXACTLY AS IT APPEARS ON THE')
 * FCLP TREND ANALYSIS FORM')
 * N.I.E. DATA SHOULD BE IN X.XX FORMAT')
 NN=NNP
 INN=1
 CONTINUE
 TYPE 1020, INN
1021 FORMAT ('ENTER THE AVERAGE GRADE FOR NIGHT FCLP PERIOD $ ')
 ACCEPT 1022, PERIOD(INN)
1022 FORMAT (F1.2)
 TYPE 1023, INN
1023 FORMAT ('ENTER THE # OF APPROACHES FOR NIGHT FCLP PERIOD $ ')
 ACCEPT 1024, NNAPP(INN)
1024 FORMAT (12)
 NNAPP=NNAPP+NNAPP(INN)
 SUMN=SUMN+PERIOD(INN)
 IF (NNAPF(INN)=0) GO TO 40
 INN=INN+1
 GO TO 30
40 CONTINUE
XMEAN=SUMN/NN
70 CONTINUE
X=1, NN
NNR=(PERIOD(K)+1)*10.0
INNR=INNR-NNR
XINIT=INNR+.5, SCOREN
20 CONTINUE
1 SUMD=0.0
NN=0
"LEAND=0.0"
=6

Figure A-1. GRADER Computer Program (Sheet 3 of 5).
Figure A-1. GRADER Computer Program (Sheet 4 of 5).
Figure A-1. GRADER Computer Program (Sheet 5 of 5).
GRADER was designed to summarize and plot student pilot performance over successive day, night or both day and night FCLP periods. All information required as input to this computer program is recorded on printouts from the PADDLES program.

Prior to input of any data, the GRADER program must first be called up on the computer. This procedure will vary depending upon the type of equipment used; nevertheless, the program should run on any computer with a Fortran compiler.

Once GRADER is running, the program will prompt the operator for specific information and wait for appropriate input. Identification information is accepted as free-format data so the program will not make any attempt to verify or correct what has been entered. If information is entered wrong, at the wrong point, or not at all, it will be recorded as such on the printed output. Moderate care should be taken to ensure that the correct information is entered at the correct point.

After all identifiers have been entered, the program will display the information to the operator and ask for confirmation. If the operator is satisfied with the information, "Y" (yes) should be typed and the program will continue. If corrections are required, typing "N" (no) will re-start the data entry sequence, and all identification information must be re-entered.

Following the verification of identification data the program requests whether the operator wishes to enter average grades for night FCLP periods. The operator must respond with a "Y" for yes or "N" for no. If answered yes, the program requests the number of night periods. After entering the number of night periods the program requests the average grade and number of approaches for each period. The average grade for each period must be entered exactly as it appears on the FCLP Trend Analysis Form (which is output of the PADDLES program). Also, the number of approaches upon which the average grade was based must be entered.
If the operator does not wish to enter night FCLP average grades, an "N" may be entered and the program will then ask if day FCLP grades are to be entered. The operator responses for day FCLP requests are the same as the above requests for night grades.

Special care should be taken to ensure that grades for FCLP periods are entered exactly as printed and in consecutive order. That is, the average grade for FCLP period number one should be entered first, the grade for period number two should be second, etc. up to the number of FCLP periods that occurred. Furthermore, night FCLP must be entered in consecutive order and not intermixed with day FCLP grades and vice versa.

Following is an example of the data entry sequence and resultant output for the GRADER program; all program requests lines are indicated with a question mark (?) and data entered by the operator with a pound symbol (#). (These symbols are included in the figure for demonstration purposes, but do not occur in the actual program.)
Figure B-1. Example of GRADER Operator Instructions and Output.
(Sheet 1 of 5)
Figure B-1. Example of GRADER Operator Instructions and Output.
(Sheet 2 of 5)
Figure B-1. Example of GRADER Operator Instructions and Output.
(Sheet 3 of 5)
? ENTER THE AVERAGE GRADE FOR DAY PERIOD #4
3.14

? ENTER THE # OF APPROACHES FOR DAY FCLP PERIOD: #4
10

? ENTER THE AVERAGE GRADE FOR DAY PERIOD #5
3.16

? ENTER THE # OF APPROACHES FOR DAY FCLP PERIOD #5
10

? HOW MANY COPIES OF THE OUTPUT DO YOU WANT?
?

Figure B-1. Example of GRADER Operator Instructions and Output.
(Sheet 4 of 5)
Figure B-1. Example of GRADER Operator Instructions and Output.
(Sheet 5 of 5)
GENERAL SYMBOLS*

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO</td>
<td>Waveoff</td>
<td>Square</td>
<td>A square drawn around any symbol indicates that a signal was not answered</td>
</tr>
<tr>
<td>OWO</td>
<td>Own waveoff</td>
<td>Circle</td>
<td>A circle drawn around any symbol indicates that a signal was answered too slowly</td>
</tr>
<tr>
<td>TWO</td>
<td>Test waveoff</td>
<td>Circle</td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>Perfect pass</td>
<td>OC</td>
<td>When used as a prefix to any symbol, OC indicates "over-controlled"</td>
</tr>
<tr>
<td>OK</td>
<td>Reasonable deviations with good corrections</td>
<td>(OK)</td>
<td></td>
</tr>
<tr>
<td>(OK)</td>
<td>Reasonable deviations</td>
<td>Below average but safe pass</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Unsafe, gross deviations inside waveoff point</td>
<td>A</td>
<td>APC/AUTO</td>
</tr>
<tr>
<td>B</td>
<td>Bolter</td>
<td>M</td>
<td>Manual (APC equipped aircraft)</td>
</tr>
<tr>
<td>(</td>
<td>Parentheses around any symbol signifies "slightly"; i.e., (F) means "slightly fast"</td>
<td>PD</td>
<td>Pitching deck</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>Mode 1 ACLS (record in grade column)</td>
</tr>
</tbody>
</table>

DESCRIPTIVE SYMBOLS*

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Angling approach</td>
<td>CD</td>
<td>Coming down</td>
</tr>
<tr>
<td>ACC</td>
<td>Accelerate</td>
<td>CLO</td>
<td>Close</td>
</tr>
<tr>
<td>AFU</td>
<td>All Fouled Up</td>
<td>CO</td>
<td>Come-on</td>
</tr>
<tr>
<td>B</td>
<td>Flat glideslope</td>
<td>COCO</td>
<td>Climbed on come-on</td>
</tr>
<tr>
<td>C</td>
<td>Climbing</td>
<td>CPD</td>
<td>Chased Pitching Deck</td>
</tr>
<tr>
<td>CB</td>
<td>Coming back to the left</td>
<td>CU</td>
<td>Cocked up</td>
</tr>
</tbody>
</table>

Log symbols for this report were extracted from the Landing Signal Officer NATOPS manual.
Descriptive Symbols (Cont'd)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEC</td>
<td>Decelerate</td>
<td>NERD</td>
<td>Not enough rate of decent</td>
</tr>
<tr>
<td>DFD</td>
<td>Dived for deck</td>
<td>NERR</td>
<td>Not enough right rudder</td>
</tr>
<tr>
<td>DLW</td>
<td>Dropped left wing</td>
<td>NESA</td>
<td>Not enough straight away</td>
</tr>
<tr>
<td>DN</td>
<td>Dropped nose</td>
<td>NH</td>
<td>No hook</td>
</tr>
<tr>
<td>DRW</td>
<td>Dropped right wing</td>
<td>NLU</td>
<td>Not lined up</td>
</tr>
<tr>
<td>EG</td>
<td>Eased gun</td>
<td>OS</td>
<td>Overshoot</td>
</tr>
<tr>
<td>F</td>
<td>Fast</td>
<td>OSCB</td>
<td>Overshot coming back</td>
</tr>
<tr>
<td>FD</td>
<td>Fouled deck</td>
<td>P</td>
<td>Power</td>
</tr>
<tr>
<td>GLI</td>
<td>Gliding approach</td>
<td>PNU</td>
<td>Pulled nose up</td>
</tr>
<tr>
<td>H</td>
<td>High</td>
<td>ROT</td>
<td>Rotate</td>
</tr>
<tr>
<td>LIG</td>
<td>Long in the groove</td>
<td>RUF</td>
<td>Rough</td>
</tr>
<tr>
<td>LLU</td>
<td>Late line up</td>
<td>R-L</td>
<td>Right to left</td>
</tr>
<tr>
<td>LL</td>
<td>Landed left</td>
<td>S</td>
<td>Settle</td>
</tr>
<tr>
<td>LO</td>
<td>Low</td>
<td>SKID</td>
<td>Skid</td>
</tr>
<tr>
<td>L-R</td>
<td>Left to right</td>
<td>SLIP</td>
<td>Slip</td>
</tr>
<tr>
<td>LR</td>
<td>Landed right</td>
<td>SLO</td>
<td>Slow</td>
</tr>
<tr>
<td>LUL</td>
<td>Lined up left</td>
<td>SRD</td>
<td>Stopped rate of descent</td>
</tr>
<tr>
<td>LUR</td>
<td>Lined up right</td>
<td>ST</td>
<td>Steep turn</td>
</tr>
<tr>
<td>ND</td>
<td>Nose down</td>
<td>TAR</td>
<td>Turned at ramp</td>
</tr>
<tr>
<td>NEA</td>
<td>Not enough attitude</td>
<td>TCA</td>
<td>Too close abeam</td>
</tr>
<tr>
<td>NELR</td>
<td>Not enough left rudder</td>
<td>TMA</td>
<td>Too much attitude</td>
</tr>
<tr>
<td>NEP</td>
<td>Not enough power</td>
<td>TMRD</td>
<td>Too much rate of descent</td>
</tr>
<tr>
<td>Symbol</td>
<td>Meaning</td>
<td>Symbol</td>
<td>Meaning</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------</td>
<td>--------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>TTL</td>
<td>Turned too late</td>
<td>.</td>
<td>Landed 3 points</td>
</tr>
<tr>
<td>TTM</td>
<td>Turned too much</td>
<td>-></td>
<td>Over the top</td>
</tr>
<tr>
<td>TTS</td>
<td>Turned too soon</td>
<td>X</td>
<td>Fly through the glideslope</td>
</tr>
<tr>
<td>TWA</td>
<td>Too wide abeam</td>
<td><-</td>
<td>Fly through the glideslope</td>
</tr>
<tr>
<td></td>
<td>For emphasis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SYMBOL SUFFIXES

<table>
<thead>
<tr>
<th>IT</th>
<th>In the turn</th>
<th>TL</th>
<th>To land</th>
</tr>
</thead>
<tbody>
<tr>
<td>OT</td>
<td>Out of turn (as aircraft starts to roll wings level)</td>
<td>IW</td>
<td>In the wires</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OW</td>
<td>Over the wires</td>
</tr>
<tr>
<td>X</td>
<td>At the start (first 1/3 of glideslope)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IM</td>
<td>In the middle (middle 1/3 of glideslope)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC</td>
<td>In close (last 1/3 of glideslope)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR</td>
<td>At the ramp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

Commanding Officer
Naval Training Equipment Center
Orlando, FL 32813

Defence Technical Information Center
Cameron Station
Alexandria, VA 22314

All other addressees receive one copy

Commanding Officer
U.S. Army Security Agency
Training Center Library
Ft. Devens, MA 01433

Headquarters ESD/DRI
Hanscom AFB, MA 01731

Commanding Officer
Navy Submarine Base New London
Attn: Psychology Section, Box 600
Groton, CT 06340

National Aviation Facilities
Experimental Center Library
Atlantic City, NJ 08405

Dr. Donald W. Connolly
Research Psychologist
Federal Aviation Administration
FAA NAFC ANA-230 Bldg 3
Atlantic City, NJ 08405

Superintendent
U.S. Military Academy Library
West Point, NY 10996

Commanding Officer
Rome Air Development Center Library (TSLD)
Griffiss AFB, NY 13440

Commander
Naval Air Development Center
Attn: Code 6022
Warminster, PA 18974

LCDR Steve Harris
Naval Air Development Center
Code 6021
Warminster, PA 18974

Chief
U.S. Army Strategy and Tactics Group
61 8120 Woodmont Ave.
Bethesda, MD 20014

Commanding Officer
Air Force Office of Scientific Research
Technical Library
Washington, D.C. 20025

Technical Library
DDR&E
Room 3C122, The Pentagon
Washington, D.C. 20301

Director
Defense Research and Engineering
Washington, D.C. 20301

OUSD(R&E) (R&AT) (E&LS)
CDR Paul R. Chateiler
Washington, D.C. 20301

Chief, Research Office
Office Deputy Chief of Staff for Personnel
Department of Army
Washington, D.C. 20310

U.S. Army Element
Inter American Defense College Library
Pt. Leslie J. McNair
Washington, D.C. 20315

HQAFSC/DLS
Andrews AFB
Washington, D.C. 20334

Chief of Naval Operations
OP-115
Research, Development and Studies
Room G836
Washington, D.C. 20350

Chief of Naval Operations
OP-112C1
Washington, D.C. 20350

Assistant Secretary of the Navy
Research, Engineering and Systems
Washington, D.C. 20350
Chief, ARI Field Unit
P.O. Box 2086
Attn: Librarian
Ft. Benning, GA 31905

LSO Training Model Manager
Officer in Charge
LSO School
Box 171
NAS Cecil Field, FL 32215

Vision Research Division
Code 32
Naval Aeromedical Research Lab
Naval Air Station
Pensacola, FL 32508

Chief of Naval Education and Training
Code 017
NAS Pensacola, FL 32508

Chief of Naval Education and Training
Code N-2/CAPT Bauchspies
Pensacola, FL 32508

Commanding Officer
Naval Education Training Program
and Development Center
Attn: Technical Library
Pensacola, FL 32509

Chief of Naval Education and Training
Code 010
Pensacola, FL 32509

Selection and Training Division
Department of Psychology
Code 26
Naval Aerospace Medical Research Lab
Pensacola, FL 32512

TAWC/TN
Eglin AFB, FL 32542

Director
Air University Library
Maxwell AFB, AL 36100

Commanding Officer, U.S. Army Aviation
Air Traffic Control School
ATZQ-T-AT-ATC
P.O. Box 385
Ft. Rucker, AL 36362

USAHEL/USAAVNC
Attn: DRXHE-FR (Dr. Hofmann)
P.O. Box 476
Ft. Rucker, AL 36362

Chief, ARI Field Unit
P.O. Box 476
Ft. Rucker, AL 36362

Commanding Officer
Naval Air Technical Training Center
Code 104, Building S-54
NAS Memphis (85)
Millington, TN 38054

Chief of Naval Technical Training
Code 0161
NAS Memphis (85)
Millington, TN 38054

CWO2 Ray Priest (Code 7411)
Naval Air Technical Training Center
NAS Memphis (85)
Millington, TN 38054

Mr. Harold A. Kottmann
ASD/YWE
Wright Patterson AFB, OH 45433

Air Force Institute Technology Library
Wright-Patterson AFB, OH 45433

ASD/ENESS
Attn: R. B. Kuhnen
Wright-Patterson AFB, OH 45433

Air Force Human Resources Laboratory
AFHRL/LR
Logistics Research Division
Wright-Patterson AFB, OH 45433

6570 AMRL/HE
Wright-Patterson AFB, OH 45433

ASD/ENETC
Mr. R. G. Cameron
Wright-Patterson AFB, OH 45433

Commanding Officer
Naval Hospital Corps School
Great Lakes, IL 60088
U.S. Air Force Human Resources Lab
AFHRL-OT
Operational Training Division
Williams AFB, AZ 85224

AFHRL/OTO
Luke AFB, AZ 85309

Commanding Officer
Naval Education and Training Support
Center, Pacific
Code N5B (Mr. Rothenberg)
San Diego, CA 92132

Commander, Naval Air Force
U.S. Pacific Fleet (Code 311 L)
NAS North Island
San Diego, CA 92135

Commander, Naval Air Force
U.S. Pacific Fleet (Code 342)
NAS North Island
San Diego, CA 92135

Commander, Naval Air Force
U.S. Pacific Fleet (Code 316)
NAS North Island
San Diego, CA 92135

Commanding Officer
Fleet Training Center
Attn: Training Department
Naval Station
San Diego, CA 92136

Commander, Training Command
Attn: Educational Advisor
U.S. Pacific Fleet
San Diego, CA 92147

Commanding Officer
Fleet Combat Training Center, Pacific
Code 09A
San Diego, CA 92147

Commanding Officer
Fleet Anti-Submarine Warfare Training Center, Pacific
Attn: Code 001
San Diego, CA 92147

Commanding Officer
Naval Health Research Center
San Diego, CA 92152