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The model developed 30lves the multiperiod multireservoir water
ragources problem with stochastic inflows. Of unique importance is
the development of 2 gene;élized network model which solves
nonlinear nonseparable quadratic problems. Quadratic functions are
used %0 measure the future value of water to the system. The
nonseparabla form gstems from the realization that interaction
exists between the ©Dbenefits %o be zained from a multireservoir
system. Historically this interactive nature has been ignored due
to the computational difficulty of measuring and solving such
relationships. Also developed is 2 stochastic dynamic programming
approach which utilizes the results of the network optimization as
data for a least aquares regression analysis. A quadratic function
is fit to this data and is used to represent the future value of

water to the system for the next period in the dynamic programming

_—

“Im
v 0 2
9 °
o~
U o~
<
% ~ » £ 9
o . [+ g « ©
[ o3 - e
o O & - o e,
oo Q™ L I 7
Qo Mmoo o B B
wt ' e i [ e} 2 g
v - et
. LB £ -t
e o e
K

L}

=

i.rﬁﬁﬁmﬁ:‘ P s 5 B SO0 etk ke

“Z

Wi




approach. This functional representation of the future value of
water replaces the standari discrete matrix representation of
dynamic programming and greatly reduces the 1imensionality problems
associated with the dynamic programming approach. In the end, this
work represents a rare combination of generalized~nonlinear network
flow programming, stochastic dynamic programming and regression
analysis. - Example problems are included along with an application

N

%o 2 four reservoir model of the Guadalupe River Basin in Texas.
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“HAPTER I

. Introduction

.1 General

During the 1970's significant advances were made on
somputational techniques for determining optimum solutions for
network flow problems. It is now possible to solve problems of
tens of thousands of variables using only seconds of time on large
modern computers. These advances, along with their historical
precursors are described 1in several recent books on the'subject
which include Minieka (1978), Xennington and Helgason (1980) and
Jensen and Barmes (1980).

Along with the computational advances, network models have
been applied to a wide range of problem situations. In particular,
several water resource applications are reported by the Texas
Department of Water Resources (Texas Water Development Board
(1974a, 1975)) and Jensen et al. (1974). This report deals with
the application of a new network model formulation as applied %o a

water resources system.

Optimal operation of a system of interconnected water

regervoirs is an important problem in water resources management.

The limited water resources available coupled with the diverse,

often competitive, projected demands on “hese resources appear to
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place potentially unacceptable 1limits wupon the achievement of
aconomic, social and environmental goals.

The operation of a muliperiod multireservoir gystem
requires that the system controller make decisions regarding the
storage or release of water for each of the reservoirs on a
periodic Dbasis. This period may be daily, weekly, monthly, etc.
iis decisions may be based upon the amount of water available to
nim in each of the reservoirs, the types of demands for water from
the various users and upon his anticipation of the future
availability of water. Bach period lends itself to a network
representation gsimilar to the one-period, three-reservoir gystem
shown in PFigure 1-1.

The amount of water available for distribution is a
function of the amount of water stored from the previous period,
the amount of inflow from runoff or from upstream releases within
the period and any purchases from outside sources. Most work te
date has treated the amount of water from runoff and other flows
into or out of the system deterministically. That is, all data and
parameters of the models are assumed to be known with certainty.
Thus the models represent a decision problem in which the decision
maker i3 faced with a great deal of complexity but no uncertainty.
The complexity makes the 1ecision problem difficult in i%self. If
“here i3 uncertainty in the real situation it is of%en simply
ignored by the model.

The multiperiod jeterministic model assumes that the system
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controller knows what the future availability of water will be with
certainty. He also assumes that the demands placed upon the 3ystem
are known. With this information available to him he can then
ietenn;ne an optimal set of decisions for the sntire time horizon.

The neglect of uncertainty results in unrealistic solutions
where a major aspect of the decision process relates to dealing
#ith uncertainty. The water resources problem obviously is dymamic
in nature in %*hat decisions must be made sequentially over time.
Uncertainty plays a significant role in the decision process due to
*he unpredictabiltiy of nature in its supply of surface waters %o
the system and also to the incomplete predictability of the actions
of man in his use of the available resource. It is clear that the
controller of the system must exhibit caution in setting reservoir
levels and river releases so that unlikely but possible natural
svents 4o no*% cause the system ¢to fail in 1its functions of
providing a reliable water gupply and protection against floods.

A Adeterministic model does not exhibit caution in a
iynamic, multiperiod model. Since all data is assumed certain, the
future in all required detail is known. An optimum solution can be
determined which provides maximum benefit at minimum cost. A
historical sequence of water runoff and demand data might be used
to give the model "realistic" data. The one aspect of the solution
procedure which is not realistic for the multiperiod model is that
the Adeterministic solution algorithm has the ability to look shead

in time and prepare for the events which are to occur. Thus,
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decisions obtained through the models 1o not tend to resemble ¢the
real decision process. The decision maker, after all, does not
have this "look ahead” capability of the algorithm. He must makse
1ecisions in +*the face of uncertainty and revise them as %ime goes
on and as uncertainties become resolved. The incorporation of
uncertainty into a water resources model is a part of this
regearch.

Another problem with most existing models is that
traditional planning methodology has generally been directed toward
the analysis of oprojects individually in an effort %o match
regservoir operation with anticipated requirements. When the
interaction of 1individual reservoirs became more pronounced and
could not be ignored, operating criteria were often 3%till selected
on the Dbasis of these single-project analyses through coordinated
single-reservoir simulation studies. It is noted however, that in a
serially connected system of reservoirs, the value of water stored
in a particular reservoir is affacted by thg amount of water stored
in other reservoirs. This relationship has been neglected in the
past due to the fact that this interaction between reservoirs
suggests a nonseparable benefit function as a function of all the
reservoirs versus a separate benefit function for each. This means
that the total benefit of the system cannot be measuresd simply by
summing the individual reservoir benefits as a function of their
contents. Ine reason for this neglect lies in the difficulty in

determining wi‘h any confidence just what this joint function
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should be. The benefift function tha*t w#will be used herein is a
nonseparable quadratic function which measures or reflects the
current and future wvalue of water stored by %he system. Thus,
besides individual reservoir benefits, the interactive or join+%
reservoir benefits will also be evaluated.. This idea combined
with the multiperiod decision process is used in a dynamic
programming approach to successively generate +hese Dbenefit
functions.

This report describes a method to overcome the deticiencies
of +the deterministic solutions while including the provision for
evaluating interactive reservoirs. Network models are still used
but the model is changed in such a way as %o exhidbit
characteristics of the +true decision process. Full advantage is
taken of the network structure of the problam by utilizing
axtensively the computational techniques that have been so
successful for deterministic models. Embedding this network model
in a dynamic programming solution approach which begins at some
specified and finite future date and works backward in time to the
present provides the necessary data %o allow the derivation of
successive Dbenefit functions which reflect the future value of a
2iven configuration of reservoir contents.

Chapter 3 describes the deterministic network models and
provides a brief survey of the computational techniques used to
solve them. Chapter 3 also provides the notational basis for the

remaining chapters of the rapors.
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1 . In Chapter 4, the dynamic programming algorithm for solving
! the multiperiod multireservoir  stochastic problem will Dbe
!

i presented. Chapter S5 includes the nonlinear network solution
!

methodology. These network solutions embedded in a dymamic

programming methodology provide the basis for deriving a functional

representation of the future value of water in the face of

uncertainty. In Chapter 6 the statistical aspects of the problem

#1ill be addressed.

Chapter 7 includes some example applications which are

supported by data contained in the Appendix.

t.2 Primary Contributions of This Research

One contribution of this research is the development of a

generalized network model which is capable ¢f solving network type

problems where some of the arcs have noulinear quadratic cost

functions. These functions are allowed to be nonseparable and the

model is sclved without reverting to piecewise approximations for

the arc costs. The only restriction is that the overall objective

function which is a combination of several linear terms along with

some quadratic terms be a CONVEX cost function; or a CONCAVE

benefit function in this case. It is noted that there exists

. several other techniques which could be used for this class of
problems. Some of these are listed here:

1. Frank-Wolfe Method

2. Convex Simplex Method
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3. Method of Feasible Directions
Gradient Projection Methods

5. Quadratic Programming Algorithm

o~

5. Reduced Gradient Method
7. Newtons Method
3. Steepest Descent Method
9. Variable Metric Methods
- Davidon Fletcher Powell
- 3FGS (BROYDEN,FLETCHER,GOLDFARB,SHANNO)
Most of these methods could be used either directly or in a
specialized manner for +this <c¢lass of problems. The choice of

introducing ne*work theory as still another way *o solve problems

of this nature Dboth expands and enhances the power of network
theory as well as providing an alternative to the above suggessted
methods.

The second and primary contribution of this research
involves the integration of this network solution technique into a
much larger dynamic programming model. This larger model is used
%o solve multireservoir multiperiod water resources problams in the

presence of uncertain inflows. Its uniqueness lies not only in its

L8 e

use of 2 new network subproblem, but also in the manner in which it

. utilizes future stochastic runoff information and recursively

PRER T SN

generates benefit functions which represent the net current and

future expected benefit to the asystem as a function of the observed

current water levels. This functional representation allows any
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level +to be avaluated for determining the current lecisions. This
form represents a continuous spectrum for current lavels in lieu of
the more common discretized levels in standardi dynamic programming
algorithms. This means that the current lavels are not required %o
be equal to or rounded to the nearest discrete level which would
induce error into the results. Although a discretization scheme is
used to derive the benefit functions, it is done 30 only *to gain a
representation of the true return “functionally”. Once this
function is available, 2any and all reservoir levels can be
evaluated.

Nme main advantage of *“his functional approach is tha®t it
greatly relieves the dimensionality problems associated with
1iscrete representation of large dynamic programming problems.

In the end, the result 1is a2 realistic and usable water
regsources model since it ioes account for the uncertainties of the
future. It can handle larger models due to the functional
approach, and perhaps most importantly, the entire model has been
implemented into a workable computer program where it is readily

available to such users as the Taxas Water Development Board.
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CHAPTER II

2. LITERATURE REVIZW

[AV]
.
—

General

Most of the research involving analytical modeling of
nultireservoir water gsystems has occured during the last 15 years.
There has been 2 great d4eal of variation in “he mathematical
techniques employed. Roefs (1968), Buras {(1972), and Hall and
Dracup (1970) discuss *he ma*hematical techniques used and the
variations of the problem {or which each technique is most suited.
Butcher (1373) indicates that a mathematical tool useful for one
Water resource problem may not be suitable for other seemingly
similar problems. Multireservoir models 2an be roughly classified
into three categoriea depending upon their emphasis and scope.

1. Design Models. These types of models make decisions
concerning the cons%ruction of the reservoir system. They are
sometimes zalled capacity oxpansion models. Decisions are made
concerning the size, 1location, and ¢ime of construction of
reservoirs and canals in addition to determinineg water allocation.
2. Water-use Models. In these models the reservoirs are

consiiered o be multipurpose; that is, several possible uses of

W#ater are available at each reservoir. Decisiong are made
10
e e eeema . e e —————— . e e o ek # s  S
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concerning such *things as the timing and ex%ent of irrigation for
. L)
various crops. These models most often concern a1 single reservoir. no
3. Time Planning Models. The main objective with “hege
¢ models is %o determine the use 2nd storage of water in several )
interconnected reservoirs in such a way as %o prepared for |
t
future shortages or excesses. This research concerns itself with 1
|
this kind of model. |
Typically, literature regarding wa‘ter reservoir operations ' )
is characterized by four primary factors. These being:
|
1. System - single versus multireservoir i
2. OJperation - single versus multiperiod ;
:
3. Inflows - Deterministic versus stochastic ;
4. Return or objective function - Linear or separable
nonlinear versus nonlinear nonseparable. i
The mathematical models employed +o model reservoir ;
i
oroblems have included the following:
t. Linear programming
2. Dynamic programming - both deterministic and stochastic
3. Chance~constrained linear programming
¢ 4. Decomposition avproaches
5. Simulation
. 5. Markov chains
1
7. Networks
3. VYonlinear programming
In most ~ases zombinations 2f the above were used. .
&
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Many authors have used the above %achniques %o develov
models for single reservoir or single period systems applying doth
ieterministiz and stochas%iz inflows. These w@orks are presented
brisfly in sec%ion 2.2. 3ince this rasearzh is concerned w#ith
multireservoir multiperiod systems, a finer breakdown of models as
they apply to the multireservoir multiperiod systems is discussed

in sections 2.3, 2.4, and 2.5.

2.2 Single Reservoir (single and mul%i period) or Multireservoir
Single Period Models:

Network models include +*the ‘techniques used by the Taxas
Water Development 3oari (1974a, 1974b) and *hose mentioned below.
Shaumik {13973) opresen%ts an optimum operating policy of a wa‘er
iistribution system wih losses (gains less %han one). “oncern
nere was with the economic effect of seepage and aevaporation of
water from canals and reservoirs in a2 water iistribution sytem with
refarence to the Tasxas water plan. Weirs and Beard (137!') and
Svenson and Mosely {1975) present more detailed discussions of the
Texas Water Development Board's work in time planning and design
models.

Linear programming has been applied %o all *%ypes of
reservoir problams. ReValle and Gundelach (1975) introduced a new
vergsion of the linear decision ruls in 1375. This new form vermi‘s
the minimization of the sum of the wvariances of releases, 1

performance objective not previously subject to the control 2f *the
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iesigner. ™e minimization of release variances of a single
reservoir allows further diminishment of losses associated with
ieviations from ¢arget roaleases. They concluded that this new
formulation, while axperiencing definite advantages with regards to
the wminimum rolaase level, had a disadvantage in that it required
larger reservoir capacities. In spite of this resul%, this new
linear decision 7rtule makss it possible to attain release levels
ha%t otherwise might be regarded as infeasibls. Gundelach and
eVelle (1975) then use this new dacision rule and develop a
chance-constrained model which geeks the smallest reservoir
3a*isfying certain conditions on storage, relesase and freeboard.
These Llinear programming methods are considerably slower
than *the linear ou%t-of-kilter algorithm, but +they have more
flexibility. Tor instance, monthly evaporation can be included in
“he model as a percentage of reservoir storage. For a multiperiod
model, 1linear programming has the shortcommings of the necessity
for perfect information, the large size of the problem, failure %o
make wuse of the final reservoir storage, wasted computation and of
sourse the restriction of linearity. As stated by Buras (1972),
"linear programming yields only point solutions in the policy
space, no matter how many dimensions the 3space has. Most
situations in which the 3s%tate of %he aystem changes (in *%ime or in
space) and in which decigions have %o be :aken successively are
slearly outside the grasp of linear programming”. A point solution

means ‘the set of optimal values for each of the variables, given
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fixed wvalues for each of the parameters of the system. This
1iffers from a functional type of solution where the solution
rariables are given as a function of another variable.

Dynamic programming is the most theoretically avpealing
approach to multiperiod reservoir models of all types since these
problems involve sequential decision-making processes. Also, the
outcome of each decision (or set of iecisions in a “ime period)
appears as 2 function rather *than as a point solution. That is,
the optimal decision to be made is determined for any state of the
3ystem. This allows s3uboptimal policies *o be examined, a
desirable feature due o *he inherent uncertainty in multireservoir
problems. This feature makes dynamic programming especially useful
for real time system operation. The limitation on *he usefulness
of 1ynamic programming is the 30 called "curse of iimensionality”.
Bach reservoir gives rise +to a new state variable (usually ¢the
final reservoir storage levsel). If there are R reservoirs and sach
reservoir has K possible levels, there ars KR possibles state
combinations per time period. For this reason most of the dynamic
programming models have been for systems with either one or two
ragervoirs.

Buras (1972) fixes four or five as the maximum number of
regservoirs that can be‘ handled computationally by dynamic
orogramming. Dynamic programming also fails *o *ake in%*o account
“he stochastic nature of the multireservoir problems. This can he

rectified by using 3tochastic dynamic programming as was ione by
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Driscoll (1974).

Buras (1972) presents a iynamic programming formulation for
a design type model and for a water-use model. Young (1967)
zombines 1ynamic programmiang with a simulation approach.

Butcher (1973) defines stochastic dynamic programming to be
those formulatiouns of dynamic programming in which *he value of one
of the state wvariables 1is related in a probabilistic way %o the
ralue of that same variable in adjacen*t *ime periods. In terms of
nultireservoir problems, 3tochastic dynamic programming allows the
rainfall and demand (or net demand, ie. 4emand minus inflows) at a
regervoir in one time period %o be dependent probabilistically on
the net demand a*t that reservoir in the previous time period. The
optimal polisy developed is that which minimizes expected costs for
the 3ystem. As with traditional dynamic programming, the optimal
policy is in a form that can readily be used for real time system
operation. However, the dimensionality problem is compounded due
to the additional state variables which are the net demands a%t the
various reservoirs in the previous period.

Due to the dimensionality problem, stochastic dynamic
programming models have been applied mainly to water-use models,
rather than other models which tend to have more than one
regervoir.

Butcher (1971) presents such a model for one mul%ipurpose
regervoir. Loucks (1369) presenta three stochas%ic dynami~

programming models +hat he used to define ovperating volicies for
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sevaral of the PFinger Lakes in New York. These are also one
reservoir models. Instead of 2conomic objectives, Loucks minimizes
the sum of squares of the iepartures of releases from a set of
target releases specified by the 3tata.

Chance constrained linear programming is another tool that
has been applied %o wmultireservoir problems in an attempt to
account for stochastic wvariation. Like Adeterministis linear
programming, +this me*thod is more suitable for design or water-use
models than it is for %ime planning models. The fact that point
solutions are found, 2auses chance constrained linear programming
to be less applicable +*o real-time system operation over 2 long
time span. Loucks (1969) proposes a one-reservoir wa%er-use model.
ReVelle at al. (1975) considered the use of linear decision rules
and the development of a stochastic model in 1969. In 1375, Loucks
and Dorfman (1969) compared several chance constrained linear
iecision models for reservoir planning and operation. Their basie
conclusion was that while all results of the four decision rules
congidered were within the constraints »f the problem, all tend %o
yield overly conservative results. They state that linear decision
rules permit the use of linear programming methods for solving wha+*
would otherwise be a very messy nonlinear gtochastic optimization
problem. This is indeed a mathematical advantage, but at the same

t*ime, these linear decision rules reduce considerably the number of
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possible operating policies that can be considered. Hence, the
rule itself is a constraint imposed for mathematical reasons.

Xlemes (1977) and Doran (1975) discuss %he problem of
selacting discrete reservoir levels and how the "curse of
dimensionality” can be overcome by using a method called the
divided interval technique. This technique differs from the
traditional discretization method primarily in the precision with
which +the two ©boundary states are represented. The traditional
method developed by Moran (1954) tends to over aestimate the
probabilities of emptiness and fullness, thereby underestimating
the intermediate levels. Klemes and Doran show that for equivalent
results, 5-10 discretizations using the divided interval technique
corresponds to approximately 30 1intervals using the traditional
method.

The remaining mathematical methods have been less used and
are not easily classified. Parikh (1966) and (1967) presents a
linear decomposition method designed for use in a northern
California system. Young (1967) combines iynamic programming with
Monte~Carlo simulation of gtochastic inflows. Su and Deininger
(1971) present a Markov-chain approach for serially connected
reservoirs. He solves the Markov system by a3 method of successive

approximations rather than by dynamic programming.

2.3 Jdeterministic Inflows and Linear or Separable Nonlinear

Jbjective Function:
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Within this category of multiperiod multiresersoir systems
many ‘techniques: have been used. Several authors used a linear
programming approach. Drobny (1971) was concerned with water
jquality and quantity problems. Salcedo (1972) dealt wi*h a
water-use model. Mannos (1955) was concerned with the efficiency
of operation of a system of dams and Mejia et al. (1974) svaluated
Bultireservoir operating rulss using linear programming.

Schweig and fCole (1968) used iynamic programming to deal
#ith random inflows thaving first order serial correlation. The
1istribution of these random inflows was approximated by discrete
probability space. This correlation was simplified by classifying
the inflow data according +to whether an item was preceded by an
inflow higher or lower than mean for the antecedent month. Rood et
al. (1973) presents a  dynamic programming model for the
time-planning variety +*hat i3 especially designed for serially
linked reservoirs thereby reducing the state space dimensionality
problem,

Pults and Hancock (1972) use state incremental Aynamic
programming to find +the optimal operating policy for a four
reservoir system. The objective is to maximize power generation
#hile =zwatisfying firm water contracts, 2nhancing environmental
aspects and providing flood control.

Heidari et al. (1971) and Meredith (1975) use a %echnique
called discrete differential dynamic programming {DDDP). This is an

iterative method that 9ases *he stats dimensionality problem by

o
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starting with a +4rial trajectory satisfying a specific set »f
initial and final :onditions and applies Bellman's recursive
equation in *he neighborhood of this trajectory. At the end of
g2ach iteration a3 logically improved trajectory is obtained and used
as the trial ftrajectory in the next step.

Becker and Yen (1974) use a combination of linear and
iynamic orogramming for <he optimization of real time operations of
3 multireservoir 3ystem and Hirsch et al. {1977) combine linear
programming with simulation *techniques.

Prekopa 2t al. (1968) address serially linked reservoir
jesign by attempting %o meet all demands with a given hizgh
prodadility. Their objective 1is %o minimize the sum of the
building <2os%s and penalties incurred for unsatisfied demand.
Their me*thod 5f so0lu*ion uses a1 sequential constrained minimization
“achni e  ‘3UMT) with a logarithmic vpenalty function. A
iisadvantage >5f *his appronach is “hat under certain circumsiances
not all {emands ~an be met with the 1esired probability.

Jensen ot al. (1974) represent a multireservoir multiperiod
3ystem 1using networks. Here, the network for sach period stays the
same with 1inclusion of 2 set »f storage arcs %o join the networks
from one period to the next. Xerr (1972) combines linear
programming and ‘the out-of-kilter algorithm and applies *these to
the Saskatchewan-Nelson river basin in Canada. He compares
mul*ireservoir analysis technigues by considering 53 possible

future storage reservoirs and 22 iiversion possibilities.
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Hirsch, Cohon and ReVelle (1977) developed 2 hypothetical
iesign for the sizing of three reservoirs 1in parallel. They
racognized that there are benefits due to the joint operation of 2
system of reservoirs in excess of the Dbenefits from optimal
individual operation. Basically, they concluded that within
reasonable limits any combination of three reservoirs whose
capacities sum %o thé same total capacity has nearly “he same

maximum system yi=ld. Their objective was to meet all demands,

which were deterministic, while not accounting for spillage or

evaporation. The method of solution involved simulation of five
years of actual 4ata and 3 linear programming optimization model.

Windsor and Chow (1972) present a mixed linear programming
model w#with integer variables that 1is a combination design and
#atar-use mnodel. The linear programming method appears %o be more
sui*table for models of these tyves where the number of time periods
2an be kept to a minimum. They consider their model a practical
one computationally, but admit i’s weakness in not consiiering the
3tochastic nature of the problem. Meier and Beightler (1967) use a
lecomposition method for branching multi-stage water resource
3ystems.

In the area of separabls nonlinear objective functions, Lee
and Waziruddin (1970) use two approachs, the gradiant projection
and z2onjugate gradient methodi. They consider the profit accrued
from irrigation and the Ybenefit received from recreatiosn %5 de

quadratic functions. Roefs and Bodin (1979) 4se separabla
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programming with Dantzig-Wolfe decomposition.

2.4 Deterministic Iaflows, Non-Separabls Objective Function

In this category, Gagnon e%t al. (1974) use a generalized
reduced gradient approach +to a very large hydroelectric system.
Lasdon (1976) and TVA (1974) also use generalized reduced gradient
nethods as applied *to water resource systems. Trott and Yeh (1973)
use a stepwise 3state variable incremental dynamic programming
approach and TVA (1974a) used a dynamic programming successive
a?proximation approach.

Lui and Tedrow (1973) use dynamic programming and a mul%i
variable pattern search. This multi variable polynomial objective
function represents +the current and future economic losses to the
3ystem. This func*ion is determined by regression analysis where
the gstates or reservoir levels are the independent variables and
the functional return is the dependent variable. This method of
representing future 2conomic losses functionally tends to eliminate
the problem of dimensionality. They use a random sampling
technique to0 assure unbiased and efficient selection of initial
state variable level combinations. In Rosenthal (1977), a
multiperiod multireservoir release scheduling for maximum
hydropower benefit was formulated by the Tennessee Valley Authority
a8 an ovptimization model with a nonseparable nonlinear objective
function and linear network -constraints. Rosenthal presents a1 new

solution ¢%echnique based on reduced gradient techniques and on
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primal linear network flows. An unusual feature of the algorithm
is an integer programming subproblem whose exact solution
daetermines the search directions. Tast problems were run on 2 six
regervoir TVA gys+em. Yis network 1is somewhat unique and
constrained in that the system is required to be an arborescence.
An arborescence is a tree with the property that no two ares are
iirected away from *he same node, and a tree is a ~onnected
loopless network. Thus, in %this case, no provisions are mada for
pipeing or channeling water to other locations. All water flows

downstream to the nex* reservoir in series.

2.5 Stochas*ic Inflows and Linear or Separable Nonlinear Objective
Function

Consideration‘ of the stochastic nature of inflows to
reservoir systems for multireservoir multiperiod systems has just
recently begun to attract attention. Sobel (1975) analyzes the
s*ructure of optimal policies for several discrete time control
models of reservoir storage using dynamic programming. Most of the
nodels considerad are a3tochastic and are prompted by operating
problems of regulating the amounts of water discharged from
reservoirs. He develops an analogy between models of multiple
regervoir gsysatems and of multi-item inventory models. Pinter
f1976) uses a stochastic dynamic programming method. Driscoll
(1974) uses a stochastic dynamic programming approach %o a

multireservoir multiperiod problam that uses a revised nonlinear
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out-of-kilter algorithm developed by Jensen and Reeder [1374) at
each 3stage storing the results in a benefit matrix. 3y assuming a
cyclical pattern he repeatedly cycles through the periods un+til
sonvergence of the benefit function 1is attained. This revised
out-of-kilter algorithm allows convex functions and a limited ¢type
of nounseparable cost functions. This method allowed him to
consider systems with five reservoirs without too much difficulty.

Thu (1380) developed a method 4o deal with stochastic
situations wi*th recourse. His work involved a %*wo stage decision
process whereby an initial decision was made based on expected
demands and then as actual demands became kmown, a3 second iscision
(the recourse) was made to satisfy all demands. His objective was
to minimize +*he sum of the costs from the first decision and the
axpected penalty costs as required by the recourse actions.

Roefs (19638) presents 1 3tochastic dynamic programming
formulation for one and two reservoir systems.

Targeon (1980) uses two nmathematiczal manipulation
techniques to solve problems too large for dynamic programming.

1. The one at a time method, which bdreaks up the

multi-variate problem into a series of one state variable

subproblems, and .

2. Aggregation/decomposition method which breaks up the ¥

atate variable oproblam 1into N 3ubproblems of two state

rariables.

Both of these methods are “hen solved using dynamic programming.
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He applies these methods to a six reservoir system where the
inflows are assumed normal with a mean and variance corresponding
to <hose of the Quebec river historical data.

Joeres a2t al. (1971) considered chance constrained linear
programming in conjunction with linear programming techniques in
deriving operating rules for joint operation of raw water sources.
Surry and Helm (1972) present 2 chance constrained model for a
single multipurpose reservoir and then Curry et al. (1972) extend
this %0 a system of linked multipurpose reservoirs. They allow the
unregulated inflows into each reservoir at each time period to be
stochastic with a xnown probability distribution. There is
independence between the reservoirs and for the same reservoirs in
different time periods. They show how their formulation reduces to
a deterministic linear programming model.

Helm, Curry and Hasan (1972) present a design modei for a
system of reservoirs. This formulation employs a mixed continuocus
and integer linear programming form that 1is solved by Benders
iecomposition method.

Sigvaldason (1975) uses simulation and the out-of-kilter
algorithm and applies his mcdel ¢to the Trent River system in
Ontario, Canada. He divides each reservoir into five storage zones
and applies penalty coefficients for any deviations from ideal
sonditions as applied to these zones. 3odin and Roefs (197!) use
separable programming and the Dantzig-Wolfe 1ecomposition method.

Houck and <Cohon (1973) utilized a sequentially explicitly
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stochastic linear programming model (SELSP) to determine a design

and management vpolicy for a two iam system. Their process was to

sequentially solve policy and design linear programming models

#hich are formed by specifying minimal portions of the nonlinear

program. The major weaknesses of the model are high data

requirements and computational burden. They propose a method of

mitigating both deficiencies w#hile explicitly retaining +the

interaction of +the reservoir

sys+tem. The system cooriinated

performance individual operation (SCORPIO) method provides the

necessary information to evaluate the interac*tion among facilities

in a multireservoir system. It is a3 way to utilize the available

1ata efficiently and its use makes the

ugse of SEL3P models

practical. Basically, SCORPIQ solves the individual reservoir

1esign and operating problems, and then system-wide performance

characteristics are obtained

by using expected wvalues and

correlations between streamflows a2t all of the sites.

Takeuchi and Moreau (1974) use a -combination of linear

programming, dymamic programming and regression analysis. The

monthly operating decisions are given by solution of a piecewise

linear oprogram, +the objective function for which consists of two

varts. One, the immediate economic losses within +the month, 2and

two, the expected present value of future losses as a function of

2nd of month s%torage levels. These oxpected losses are jetermned

by imbedding <he 1linear program in a2 3tochastic dynamic program.

Their 1233 ‘unctions were constructed in accordance with the

PReL-

R

Cinrl

[P TEEPET ERETE 1T

a

s ;‘_ v.‘r¥ B 'R




.*r‘

. -
R R i

following:
i } 1. Diminishing marginal utility of water "
2. Deficits involving high proportions of nominal municipal
» water use were considered catastrophic
3. High rates of deficit in low~flow augmentation also
b created serious damage.
They applied their model to a five reservoir system in the Piedmont

1
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|

. |

region of North Carcolina. ‘
1

|

2.5 Summary of Literature

In summary, none of the literature reviewed addressed the
full comoination of multireservoir, multiperiod, stochastic inflows
and nonseparable objective functions. Rosenthal (1980) made this
same obgervation after having researched over 100 articles.

The chapters to follow present a new approach for this
combined 3set of conditions. The methods employed primarily use
networks, dynmamic programming and regression analysis. The manner
in which these are used encompasses the stochastic nature of

inflows using a Monte Carlo approach.
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CHAPTER III

3. The Deterministic Model

3.1 The Network Model

This chapter 1is used to describe the network flow model,
introduce the notation to be used throughout the report, and review
the solution approaches used to solve deterministic problems. The
latter are used extensively in +he algorithms which solve %he
stochastic problem as well. This chapter is taken from Chapter II
of Jensen et al. (1980), zo-authored by the author of this report.

A network flow model is simple in the gsense that it
requires very few kinds of structural elements and parameters %o
describe 1it. A complex model is constructed from imaginative
arrangsments of these gimple elements. Figure 3-1 illustrates the
oasic structure of a network. The network consists of nodes and
arcs. The nodes are represented by circles with the inscribed
number used for identification. For general reference lower case
letters such as i and j are used to refer to nodes, where the
letters gsymbolize numeric identifiers. Arcs are the directed line
segments going from one node to another. Consider the general arc
¥ (k refers to a numeric identifier assigned to the arc)
originating at node i and terminating at node j. PFrequently the

notation w(i,j) is used in cases where it is important to emphasize
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(0] (f.c,c,nh,a)

L]

[-0.375]

(o0,0,15,1, 0.5)

Figure 3-1
The Basic Structure of a Network
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the identity of the ncdes *ouching arc I.

The variable quantities associated with the network are arc
flows. The symbol fk represents the flow in arc k. The
optimization problem is %to determine the values of fk for each arc
which minimize some criterion subject to certain constraints. This
criterion may be cost, time, distance, stc. The criterion and
constraints are defined below.

Associated with each arc k are four parameters: lower bound
on flow, gk; upper bound on flow, ck; marginal cost, hk; and gain
a, .- Parameters and variables associated with arcs are shown in
parentheses near the arc.

The values of 2 and Sy provide simple bounding constraints
for the flow on arc k:

G S L
The value of bk indicates the marginal change in total cost with
regpect to fk' In linear problems hk is a constant independent of
the value of fk and the cost of flow on arc k is:

hkfk
A variation in the form of the arc cost function is presented in
Thapter 5 where we will introduce a quadratic cost function.

The value of 3., the arc gain, allows the flow to increase
or decrease as it passes through the arc. For an arc k(i,j) the
flow leaving node i is fk. The flow entering node j is akfk'

Whether flow increases or decreases as it passes through the arc

iepends on the value of 2, If ak<1. the flow decresases. When
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ak>1. the flow will increase. If ak<0 the flow leaving node i with
value fk causes a flow akfk to leave node j in the direction of
node i (on arc k). This strange possibility has some applications
and is allowed Dby the algorithms. It is only required that ak¥0
for all arcs. A network in which all gains are unity is called a
pure network, while ¢the presence of one or more nonunity gains
results in a generalized network.

T™ere are also parameters associated with the nocdes. YNode
parameters and variables are shown in brackets adjacent %o the
nodes. The most important is node external flow, bi for node i.
This parameter represents flow entering or leaving the network from
external sources at node i. Uge bi>0 to imply flow entering node
i. If bi<0, flow leaves the network with magnitude bi « When
bi=0, no flow enters or leaves the network at node i. In the pure
network, the sum of the flows antering the network will equal the
sum of the flows leaving the network.

Additional ncde parameters are slack sxternal flow, bsi'
and slack external cost, hsi' It bsi>0. then flow may be obtained
from external sources at node i at a cost hsi per unit. The amount
of slack flow, fsi is a variable bounded by zero and bsi' When
bsi<0, then flow may be removed at node i at a cost of hsi per
unit. The amount of slack flow here is bounded by zero and -bsi'
The sign is used only to indicate the dirsection of slack flow.

These 3lack external flows are very useful modeling tools.

One additional constraint type that relates the flows in
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the network is the requirement that flow be conserved at each node.
This means that the sum of the flows leaving a node on the arés of
the network less the sum of the flows sntering the node on network
arcs must equal the external flow at the node.

The 1linear network flow programming problem can be written
in algebraic form with the definition of some additional notation
as shown in Table 3-1. With the objective of minimizing costs, the
problem is written as follows:

Model I

Minimize Z = hf + h f
s's

f - a, f -f . =b for i=1,...n
;%%;:- k a3 x'k "si i

st

0, .
1 1
S L Lo
2< ¢ < , for b >0
- 81 - 31 81
o<L<P |mb <0
Lt
f =0 for b =0
s1

Table 3-1

Definition of Notation

Jotation Definition
! Yumber of arcs in the network
L Set of arcs m=(!,2,3,...,m)
n Number of nodes

N
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| Set of nodes ¥=(1,2,%,...,n)

¥ Set of arcs that originate at node i

(&}

Set of ares that terminate at node i

45

Vector of arc lower bounds

[1¢)

¢ Vector of arc capacities

h Vector of arc marginal costs

kY Vactor of arc gains

b Vector of fixed external flows

£ Vector of arc flows

bs Vector of slack external flow bounds
hs Vector of slack external costs

fs Vector of slack external flows

Por purposes of the algorithms to follow, WO
ransformations which 2allow 2 somewhat simpler network model are
now described. In the algorithms these transformations are
automatically performed by the computer programs. First eliminate
slack external flows. This is done by creating a new node called
the slack node at which conservation of flow is not required. The
value of n is increased by one %0 account for the slack node, and
this new node is assigned the index n. Now 2ach slack sxternal
flow is replaced by an arc which originates or terminates at the
slack node. For sach positive value of bsi at node i, create an

arce from node n to node i with capacity bs and cost hsi' For each

i

negative value of b create an are from i to n wisth capacity

si’
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set to one for these arcs. Now the network has no slack sxternal

and cost hsi' The lower bound is set to zero and the gain is

flow parameters but rather slack external flows are represented by

arc flows to or from the slack node. The arc set is expanded to

include these new arcs.

The second transformation makes all arc lower bounds equal

to zero. This is illustrated in Figure 3-2. Here, for each arc
x¥(i,j) with a nonzero lower bound, S+ adjust arc and node

parameters as follows:

N

bb = bj tac
The primed parameters are the transformed parameters which will be
used by the algorithm. The effect of the transformation is to make
all lower bounds zero. Hence, they no longer need be considered
explicitly. To recover the solution to the original problem, a
reverse transformation is required after the problem is solved.
Let fk be the flow in arc k obtained by the algorithm and fé be the
flow correaponding to the original problem. Then:
BT S
The cost of the solution must also be adjusted accordingly. Using

the same prime notation the cost of arc k for the original problem

ey
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(Sk'ck'hk'ak) )@
k

(Ovck'sk'hkpak) @
x >

Figure 3-2

Transformation to Remove Arc Lower Bounds
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With the “ransformed parameters, the wminimum cost
optimization problem now becomes:
Model II

Minimize hf

;Ez - ;Ez = i=1,...,n=1
fk akfk bi i=t, n

ke €N,
i

0

i

Note +that no conservaticn of flow constraint is written for the
slack node as this constraint would ve redundant.

Model II is a bounded variable linear program. The matrix
of conservation of flow sonstraints has only two nonzero entries
for each arc, one equal %o *! and the other equal to -a, -

" are unity (the pure problem) the optimum

When all
bi are integer and all a
“lows will be 1integer. The flows will not in general be integer

for the generalized problsm.
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3.2 Network Model of the Multireservoir System
3.2.1 The Multireservoir System

One of the principle ingredients which supvorts life,
industry, agriculture and <the environment in general is water.
Critical to the continued preservation of life is the intelligent
and efficient use of all available water supplies. This has
already Ddecome 2 major problem for many nations of the world, and
fresh water supplies are becomming more and more in demand as the
population 1increases and as new or improved industrial techniques
require it. Water 3ources are typically divided into ground water
and surface water, and within the surface water category they can
be broken down into river sources, reservoir or lake sources and
perhaps even ocean sources. The models %to be developed in this
report deal 3strictly with surface water supplies in the form of
rivers and reservoirs.

Many regions of the worli and of the United States in
particular depend upon rivers as ‘their primary source of fresh
water supplies. Areas that depend upon this form of water supply
are highly dependent upon rainfall as their sourne. CZonsequently,
iuring periods of 1low rainfall or drought conditions, river flow
may be dangerously 1low, 2ffecting both the amount and quality of
#ater supplied. Conversely, during periods of heavy rainfall, the
surrounding communities are 1ependent upon the river's ability *o

remove the excess wa*ter and to prevent serious and costly ¢looding

Y T SRy WP Y0 PRI WA T ATEW N MY 4l e

36

,_f‘

-




R el

—— gy -

S g

tonditions. ¥or +these reasons and others, dams have Dbeen
constructed along existing rivers which back up the water above the
iam, creating man-made reservoirs. P®igure %-3 shows a2 hypothetical
river gystem with +two reservoirs. T™e watershed for a given
regervoir 1is *hat geographical area whose runoff ultimately drains

into the reservoir. In *he case shown the watershed for reservoir

.

' includes all of +the area upstream from the dam, whereas the
wasershed for vreservoir 2 includes the area between the *wo dams.
Regervoir 2 also receivaes water from the relesases of reservoir 1.

Many wusers draw *their water directly from the reservoirs
rather than from +*he river. Since these reservoirs act as large
nolding tanks, the a3upnly of water can b; regulated partially
through the operation of the 1ams. The regulation of water supply
tends %o reduce the possibility of low water supply conditions by
storing up water for approaching dry seasons and can act as a flood
sontrol 3ystem Dby lowering the reservoir level prior to pending
rainy seasons.

Recognizing that 1decisions must Dbe made periodically
(daily, weekly, mon%thly, 2tc.) as o the operation of a system of
regervoirs, 1% is logical %o consider +this as a multiperiod
decision problem. Within 2ach period, decisions must be made as %o
how much water %o supply %to =2ach of the users, how much %0 release
4ownstream and thus thow much %0 holi in the reservoir for use in
the next period. The model w#hich will be develond in *his repor+

#ill orovide thia information for the multiperiod problem.
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Reservoir 1
Natershed Reservoir 2
Ccean
Hatershed
Figure 3-3
Hyvpothetical River with Two Reservoirs
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3.2.2 The Single Period Model

In +his section <he network model for 2 single period of
time is constructed. In a later section it is expanded to multiple
periods. The single period model compresses all flows on a
particular facility {ie., inflow, river, demand, or reservoir) into
1 single number which represents the %0%al flow for the period.
Thus 1all de%ail on flow variations within *he period are lost.
This discretizing of time i3 2 necessary approxima*tioan %o make *the
model of +his report computationally prac*tical. The gelection of
the <%ime period 1is an impor*an% step in *he modeling process.
Different applications might l2ad to Aiffarent selections. Thus, a
time vperiod of a2 day or 2ven geveral hours migh*t Ye necessary for
the ~control of a3 flood condition, while a plannineg model for water
supply could use 2 model w#ith monthly or seasonal periods.

Firs%t +the -emands for water are modelad. TPor convenience
the models of this report show all users drawing water directly

from <he reservoirs. All users at a particular reservoir ar

)

combined 1into a 3ingle 2quivalent user. TI% is sasy %o enrich *he
model for more complex arrangements by adding more nodes and arcs
1long the river reaches. Demand is not a fixed withdrawal of
water, but rather ia nmeasured for each reservoir by a2 monetary
denefit function for water used. Realistically one would expec*
that a2 benefit function would ©be a concave function exhibiting

1ecreasing marginal return as illustrated in Figure 3-4. TFor this
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Benefit '
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5 10 15 Demand |
Figure 3-4 i
Total Renefit for water Provided at Reservoir 1 4
Marginal ‘
Benefit 1
30
20 +
10 +
1 L
T T
5 10 15 Demand
Figure 3~5
Marginal Benefit of Water Provided at Reservoir 1
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Teport 1 Dpiecewise linear apoproxima¢ion for benefit i3 used with

the =marginal re*urn decreasing in steps as shown in Tigure 3-5,

Although it is recognized that providing 3 benefi* function of “he
tyoe dJescribed 1is no% an easy task, i% is required %hat sne be
agtimated for each equivalent user.

The network model representing users for each reservoir is

illustrated in Figue 3-6. Each reservoir is represen*ed by 2 node
in *he 3ingle period model. Tor the eoxample, nodes ' and 2
represent reservoirs 1 and 2 respectivaly. Bach user is also

represented by a1 node. A node is also provided for the ocean. The

three arcs connecting =2ach reservoir node with ‘he associated user

node represent *he piecewise linear approximation for %he benefis

nf water %0 *the users. Since *the network model uses only <cost, the

benefits are shown as negative costs. BRach of these arecs has a3

xnown capacity which represents the step in the piecewise functionm.

Pigure 3-5 shows the marginal benefit for water provided at

regervoir 1. Thus, if O %o S5 units are provided to user t, the

benefit is $30 per unit. The marginal benefit for 5 to 10 units is

320 and the marginal benefit for 10 4o 15 units is 310. To

represent the Dbenefit function as a cost, one must take the

negative of the benefit function. The cost function thus formed is

convex. A negative slack external flow must be provided at each

user node %0 allow flows %o leave the network.

Another important aspect of the single period model has %o

40 with river flow. Rivers are represented DYy arcs between




User 1

(Capacity,Cost)

User 2

Figure 3-6
Two Reservoir System with Demands
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regservoir nodes or from a regservoir node %0 +he ocean node.
“ondi*ions may axist whereby an especially low or high flow would
be undesirable. Zongequently, additional arcs ~22an be added %o *his
network <«which would place 2 premium on meeting certain low flow
sonditions and a cost on high flow conditions. Network models allow
a  lower bound on an arc which forces the system %0 supply at least
a2 gpecified minimum amount of flow %o +that are. However,
conditions may exist in which *there is not enough water available
to oroviie even this minimum amount of flow, thus resulting in an
inf2asible solution. Another way to handle this which is more

general in nature and circumvents this 1rawback is shown in Fizure

Here, the arcs Dbetween reservoirs represent a piecewise
linear function where each arc has a given capacity. The capacity
of +the arc with a cost of -10 may represent the 1esired minimum
flow in *he river during the period. The negative cost will tend
to provide that flow if enough water is available in ‘he system and
if other needs (also measured by negative costs) are not more
important. The capacity of the arc with zero cost would represent
the safe flow 1levels of the river, between low flow and flood
conditions. The arc with the high positive cost woull represent
flood conditions and its capacity should be 3et very large (again
80 128 not to ~sreate an  infeasible solﬁtion in *she avent o¢
axtremely large quantities of water available). The cost is *he

penalty of allowing a flooding condition. All of these arcs would
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Arcs Representing River Reaches
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have zero as the lower bound on flow. Naturally, additional arcs
could be used which might be necessary ‘o properly reflect the
regults of rapidly increasing hazardous and costly flood conditions
which would obviously not be linear from the onset of a flood to a
massive flood condition. These river level arcs measure costs %o
the current period. The ¢total cost curve of the three arcs
originating at node ! and terminating at node 2 appears as PFigure
3-8. Again, this cost function is convex.

For the single period case, the water level 1in <*he
reservoirs may also be important to the area for such things as
wildlife, sports and environmental issues. Of primary concern
might de the quality of water if the reservoir is allowed to go too
low and the safety of local areas if the reservoir is allowed *o
rise toco high. These concerns can be reflected in the network by
using parallel arcs to represent each reservoir. That is, provide
arcs to indicate aminimum, acceptable, a2nd maximum reservoir levels
just as was done for the river reaches. This could be done as
shown in Pigure 3%-3. Here, the arcs from node ! to node 'a have
been added to represent (-10) the low coudition, (0) the safe range
and (10) the high lavel case. Capacities on these arcs will
indicate the ranges over which the given costs are applicable.
These arcs perform the very same function as the river reach arcs
and their total cost curve would be the same form as Figure 3-83.

The flows in the reservoir arcs of Figure 3-9 represent the

water stored at the end of the period for use in following periods.
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Total Cost of Flow in the River
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Arcs Representing Water Stored in Reservoirs
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3ain factors could Y%e used oﬁ the reservoir or river arcs to
represent losses due to evaporation or seepage (the gains would be
less +than one). Tor the single period problem, water allocated *o
the reservoir arc3 will leave the network. Thus nodes 12 and 22
would have nega‘tive 3lack external flows. Since the flow in
regservoir arcs is limi4ed by arc capacities, the slack external
flow should be 3%t le2ast as large as the sum o0f the arcs entering
the node and have 3 slack zo0s% of zero. For the multiperiod case
nodeg '3 and 29 will be nodes in the network model of the following
period.

11 that remains for this single periéd model is %o provide
32 source of wa‘er %0 *he network., Inflows may be of several tyves,
including runoff and ground seepage due to rainfall, returns from
urban and industrial users and imported water as well as the
regarvoir waters 3aved from the previous period. All of these
#ill be represented by positive fixed and slack external flows a%
the nodes of the network. Fixed external flows are used for inputs
that are not optional and must be forced on the network such as
ieterministic runoff, return waters and reservoir contents at the
beginning of the period. Slack 2xternal flowsg can be used for
optional inputs such as imported water.

Note that allowing 1inflows at nodes discretizes <*he
locations of *he inflows. Thus 2lthough runoff and irrigation
return  flows are nonpoint inflows, they are approximated as point

inflows. The affacts of this approximation are diminished if more
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river reaches (hence more nodes) are defined.

‘ The inflows to the system caused Dby rainfall are, of
course, not known with certainty. It is this aspect of the system
model +that will receive +the most attention in the chapters to
follow. Various assumptions will be made about the knowledge of
water inputs and the decision options available to the controller
of the systenm. In this chapter, it is assumed that all external
flows are deterministic and thus known with certainty. The values
chosen can be the expected value derived from statistical analysis
of historical runoff records or they could be specific historical
sequences imposed on the 3system to measure the effectiveness of the
system.

The entire two reservoir single period model as a network
is shown in Figure 3-10. All parameters shown previously were for
illustrative purposes and are not intended to represent realistic
values. Future network representations will be of this form,
however, in most cases the multiple arcs between nodes will be

shown as a single arc for clarity.

3.2.3 The Multiperiod Model

For the single period system idiscussed above, it is sassumed
that the decision maker or system controller has access %o the
required 4ata %o provide the appropriate measures of benefit or
zost for the wvarious network components (demand, river levels,

reservoir levels) as well as the rainfall data. It has also been
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agsumed that these benefits zan be represented as piecewise linear
functions. These benefits are strictly in terms »f current period
benefits, that 1is, no benefits have been specified beyond the
current period. For the 3single period problem, the decision maker
observes the initial reservoir contents, calculates an expected
inflow and solves the single period model to determine his optimum
decisions. This process is repeated in exactly the same way for
each successive period. There is a major drawback %o this single
period decision approach. The decisions made in one period have 2
{irect effect on the possible options available in the next and,
in fact, in several of the succeeding periods. The decisions in a
given period should be made +to maximize not only the current
benefits, but also <+he future benefits. This will be done by
introducing a multiperiod wmodel that explicitly takes account »f
the tradeoffs between current and future uses.

The multiperiod model is constructed by providing 3 single
veriod model for each period under consideration. The gingle
period models are linked by the reservoir arcs as shown in the four
period axample of Figure 3~11. The reservoir arcs allow water
stored at the =2nd of one period to be used in the following
periods. The amounts of water stored, respresented by arc flows,
are variables of the optimization. For simplicity, Figure 3-1!
only shows one arc in each of the parallel arc sets of Figurs 3-10.

The node-arc structure of the single period models in the

combination are the same, but the axternal flows, arc costs and arc
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Figure 3-11
Four Period Model
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capacities, which represent the supply and demand of water, will
undoubtably vary over time. Tor instance, the 2xampls of Figure
3-11 might represent 2 one ysar time interval with +the four single
period models representing fthe four seasons. Figure 3-12 provides
2 more general schematic of a larger multiperiod model. Here, the
single period models are represented by boxes with flows in period

% given by the vactor Ft. Inputs and outputs are shown by *h

®

vector quantities I, and 9,. The reservoir arcs interconnec® *h

®

]

periods. St i3 a vector of water quantities stored at %he 2nd o
period 4. Thus, So is the initial reservoir contents 2and ST i3 *he
reservoir contents a3t +the <*ime thorizon. Tor the deterministic
model, all inflows must be given [(perhaps in +the form of a
historical sequence of runoff data). Np*timization of the network
model w#ill orovide a2 9volicy for operation of the system in each
period stated in terms of the ar:s flows.

One possible way of u%ilizing such a solu*ion in a
stochastic situation, where inflows are actually unknown, is %0 use
the 3olution as a guide for polizy in *he first period. Then when
*he actual 1inflows are xnown for the first period along with %he
final reservoir contents, “he model can be solved again %o obtain a
better solution for the second period. The process continues is
time progresses by solving the problam for 2ach new period as the

iata for the pravious period becomes Ynown.
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Figure 3-12
Schematic of the Multiperiod lodel
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3.3 Solution Procedure for the Pure Decerministic Prnoblam

The network nodels which are n1uged %o describe he

e

{eterministic water resource system have the general ma‘thema‘i<cal
form of Model II which is repeated here for convenience.
Model II

(1a)

Objective:

o o 3=:§E‘ -
Minimize 1hk_k

=
{1o)

Jonstraints: Conservation of flow at each node:

> f'(‘> a‘{f'r(=
k& Mo. <€ “?

b for <N, i#n

5

{1

1a)

Arc capacity:

<<, for k€M
Since +his problam is a linear programming problem, the
well known amethods of linear programming should, and 4o provide a
3olution vprocedurs. This section describes in general the primal
simplex procedure as gspecialized to +the network flow problem.
Computer solutions of network optimization problems are described

in a book Network Flow Programming by Jensen and 3arnes (1930).

The procedures described in +the remainder of %his report rest
neavily on %he contents of shis book. This section i3 provided %o

jurvey “the conceptual ideas 5¢ the simplex *echnique appliad to “he
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. generalized network minimum cost flow problem.

3.3.' The Primal Solution
Svery linear program has an optimal solution which is a
basiz solution. For the network problem a basic solution is a
selaction of n-! arcs (variables) which form an independent set. A
selection forms an 1independent 3et if +the columns from +*he
conservation of flow 2quations (1b) associated with the set has a
nonzero IJeterminant. The bagis for ‘he generalized problam will
always be a collection of 2 single *ree rooted at the slack node
and zero or more semi-trees which include a cycle. An example
problam is shown 1in Pigure 3-13. 4 vasis for this sxample is
illustrated in Figure 73-14. A tree is a collection of arcs on
which no cycle can be formed (neglecting arc directions). A
gsemi-tree will have a 3ingle cycle w#with perhaps trees rooted at
nodes on *he cycle. Trees and semi-trees will always be
represented by directing the arcs in such a way that ‘here i3 a
. 1irected path from “he root to every node. This may necessitate
reversing *the direction of certain basic arcs. This is done by
including mirror arcs in the tree. A mirror arc is given the index
-k {corresponding *to the forward arc k). While arc k originates
. ind terminates at nodes i and j respectively, arc -k originates and
t“erminates 1t nodes j and i respectively.
Once 2 basis is chosen the remaining ares are callad

nonbasic arcs. A basic solution is formed by first setting the
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Figure 3-13
Example Generalized Network Problem
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Figure 3-14
Basis for the Example Problem
L
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flow on each nonbasic arc to either zero or to %the capacity of the
are. The flows on +the basic arcs are then set %o values which
assure conservation of flow a%t each node. Given flows for the
nonbasic arcs, the flows for the basic arcs are uniquely determined
by the external flows at the nodes. The basic solution may or may
not be feasible. It is called a feasible solution if the flow on
2ach basic ar-c satisfies the bounds on the arc:
Oifkick for k&€ MB

Here MB is the set of arcs in the basis.

There are many basic solutions. For each selsction of n-t
independent arcs %o form a basis, there are pm-o* possible ways to
assign flows %o the nonbasic arcs. There may be as many as (nT1)
#ays to choose the basic arcs. Thus, an upper bound on the number

of basic solutions is:

m m-n+1
(goy)2

Linear programming theory tells us +that if a feasible solution
axists, at least one of +this large but finite set will be an
optimum solution. It is up to the optimization algorithm to find

and identify which one.

3.3.2 The Dual Solution

Associated with avery linear programming problem is another
linear programming problem called the 4ual problem. The 4dual of she
natwork problem w«#ill not be iescribed here but +the 4ual variablas

w#ill be used %o ~check a1 basic solution for optimality and to direct
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the search for an optimum basic solution. The 4dual variables are
associated with the nodes and are called the node potentials. The
node potential for node i is symbolized as ﬂl.

For a given Dbagic network there is a corresponding 4ual
solution which can be found by requiring for each basic arc k(i,3)
that the following equality hold:

(2)

‘/‘fj=(72'i+hk)/ak for x(1,3)€ ¥y
[f a mirror arc -k(j.i) is in the basis it is required *hat:
(3)

7fi=(7(j+h_k/a_k) for -k €My
Assigning the ©parameters %o the mirror arc in relation %o *he
forward are k(i,j) is done as follows:
(4)
D=/ 8y
a_k=1/ak
Squation (3) combined with equations (4) yields:
Wls(yj-hk/ak)a‘{
or
Wg=671*hk)/ak

#hich is equivalent t3 squation (2).

Note that aquation (2) defines a set of n-! linear
equations in n variables. Arbitrarily assigning zero as the
potential of +the 3slack node, the solution of the equations then

yields *he values of the 4ual node po*tentials.
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Now given a basis, the primal solution (flows) and the dual
solution {potentials) can be calculated.

provides *+he relations between primal and dual solutions that can

be checked to ascertain optimality. These are ag follows:
1. PFor aach basic arc (k€& Mp) we have:
5) Primal feasibility: O<f, <ey

2. FPor each nonbasic arc (k € My) we have:

Zomplementary slackness:

(8) 3. (7fi*h,<)/ak< 7?3 implies fk:ck
¢ . . -
{7) b. (Wi*hk)/ak) 7/J implies f, 20
(3) =

c. (Wi*hk)/ak' 7,,j implies f,20 or o,

If given Dbasic primal and dual 3olutions satisfy both

primal feasibility and ~omplamentary slackness both solutions are

optimal for their respective problems, thus a3 %‘est for optimality.
Figure 3-15a shows a flow solution for *the example problem.

Pigure 3-15b shows the associated basic network with node

potentials that satisfy 2quation (3). It i3 apparent that the flow

solution is Doasic and feasible. It only remains to check the

complementary slackness ~onditions. Checking these for each arc

reveals that the conditions are satisfied indicating that ¢he flow

solution is optimal.

3.3.3 Primal Simplex Algorithm

Yow <%hat there 1is a procedure for checking optimality, a

procedure i3 needed for iirecting and carrying out *the search for

Linear programming theory
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Optimum Solution for the Example Problem
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an optimum solution. This section describes a primal solution
procedure which 1ias designed %o start from a primal feasible basic
solution and mova 1in a finite number of iterations to an “optimum
basic solution.

Firgst the means to start the procedure when no initial
basic feasible solution is known must be provided. 1In general,
thers is no guarantee that a particular problem has a feasibls
solution. As frequently done in general linear programming an
artifical basis is used for the network problem. Here, for sach
node, an additional arc is provided that connects the node to *he
slack node. The added arcs are called artifical arcs. These arcs
are generated according to the following rules:

1. If bi>0, create an arc from i to n with capacity bi

2. Irf bi<o, create an arc from n to i with capacity -b.1
3. For each artifical arc:
a, Assign the arc cost of R where R is a large
positive number
©. Assign a gain of unity
c. Assign a flow equal to capacity
4. Augment the arc set by the artifical arecs.
For the ar+tifical solu%ion, all flows in the original network are
zero and all external flows are carried on artifical arecs *o or
from +the 3slack node. Conservation of flow is satisfisd for all
nodes, and arc flows satisfy flow bounds. Thus, the given solution

ig feagible for the network augmentaed by %the artifical arcs. The
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solution is very axpensive, however, since all flows pass through
*he artifical ares with marginal cost R. The algorithm will
attempt to drive all flows off of the artifical arcs and on %o the
arcs of the original network to reduce the cost. If the optimal
solution has nonzero flows on any of the artifical arcs it is clear
that there must not be a feasible solution to the original network
problem.

With an initial basiz solu*ion defined for primal and dual
problams, an algorithm that can check for ovtimality is required
and in the 2vent of 2 nonoptimum solution, suggest a change that
will ©bring the solution closer to optimality. This algorithm is
the oprimal basic gimplex algorithm which is comprised of the steps
#hizh follow:

1. Check =2ach nonbasic arc for complementary slackness,

if C”;*hk)/ak< ﬂ} then fy=c,

ty

i (7. . £ o=

if ( l+hk)/ak> j then £ 0

If 2ach nonbasic arc do0es not violate either of these conditioas,
3top, the solution is optimal. Otherwise, choose an arc to enter
the basis that violates one of these conditions. Let this be arc
i

Ec

2. For each arc in +the basis, find the amount of flow

2hange in *he arc per unit of flow change in arc k,. Use this

[}

information to find the maximum flow change in arc kg 4hat will

2ause <%he flow in one of the bagic arzs %o go %o a bound or cause

nhenstiih
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the flow in arc kE Yo go to its opposite bound. Thoose the arc to
leava the basis kL 23 the arc which limits the flow -hange.

3. Thange +the flow in arc ky and the basis arcs by the
amount found in step 2. If kL=kg. return %0 step !'. OJtherwise,
change the ©basis tree by deleting arc kL and inserting arc kE'
This may require some redirection of arecs to obtain directed trees
and semi-frees. Change the node potentials to be consistent with
the new basis network. Return to step 1.

The details of the implementation of this algorithm are
fairly complax. Jensen and Barnes {1980) provide complete details.
Because of the special structure of the network problam this
specialized version of the simplex algorithm is much more afficient

than more general linear programming algorithms applied %o the

network problem.

3.4 Apvolication %o the Guadalype River Basin

Specific application of this deterministic model was made
to the Suadalupe River Basin in Texas. The geographizal layout of
the basin is as shown in Figurs 3-16.

A proposed plan for the basin is to expand *the =2xisting
reservoir system to include three new regservoirs; Tloptin Crossing,
Cuero I, and Cuero TII. These new reservoirsg along with %he
existing reservoir, Canyon, are fal% necessary for mee*ing waier
supply 1emands for the future. Muture demands are those projected

for *the year 2020 and are primarily for the 3an Antonio arsa, mos:
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of which w#ill be 4rawn off through Victoria.

Monthly historical rainfall and runoff data were made
available by the Taxas Department of Water Resources for the years
1325-1970. These data were adjusted to reflac* rmnoff amounts in%o
these four reservoirs, given that they had existed during this 46
year period.

This four reservoir sysftem is shown in network schematiz
form in Figure 3-17. In contrast to the =2arlisr networks, only
single arcs are shown between “he various nodes. This is for the
sake of clarity 23 multiple arcs were ' sed for this example. This
network differs a3lightly from the previous sodels in %ha* iemands
are allowed at junction vpoints, 3eguin and Victoria, as well as
from some of +the reservoirs. This was done to provide 3 more
realistizc picture of +the true problam being modelsd. Also, the
ares between Cuero I and Cuero II running in ovvosite directions
imply an exchange capabiltiy due %o piping and pumping where
necessary. This 1in%erchange w#as origzinally planned %o be an
2qualization channel thus implying both reservoirs would always be
at the same level. If modelled this way, these *two reservoirs
could be treated as one.

Twelve copies of the gingle period model of TFigure 3-17
were in%terconnected to Sorm a2 multiperiod model with 2ach period
2quivalent +to a month. The multiperiod model *“hus represents one
year of operation. The operation of 2 reservoir system over a

period of years naturally iapli2s that water available 3% the 2nd

‘ )
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of this 12 month network would be available for the !13th month 2nd
3o on. This is modeled by connecting the ending level reservoir
nodes of period '2 with the beginning reservoir nodes of period !,
resulting in 1 closed or looped 3ystem of networks.

By summing the monthly inflow data and dividing by 46, the
average monthly inflows were derived. These were used as the
deterministic inflows to the system. Also specified were reservoir
capacities, reservoir 1lsasvels and demands. All data was converted
to 1000 acre feet =2quivalents. For this exercise, demands were
iistributed evenly throughout the year. This most likely would not
be the srue state of nature for most demand points and zould =2asily
be changed %o reflact 2 more realistic demand profila.

The deterministiz solution showed that under these
conditions, enough water was available on *the average to megt all
demands for all periods. 3Since there was no penalty assessed for
releasing wa*ter to San An%onio Bay, and no reward for building up
the levels of the reservoirs, the rgservoirs tended %o be held st
their mninimum levels. Given no penalty or reward for loing
otherwise, this 1is what one would axpect with known fixed inflows
and demands. Specific node, arc and inflow parameters for this
twelve vperiod model along with the network flow results are shown
in the Appendix as the Guadalupe River Basin, Deterministic Case.
A 1atrix generator was develoved to *take the single vperiod
information 1and convert it to 2 multiperiod data se*t. A% +his

-

voint, the new 4ata set coull be modified to reflect zhanging are

69
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parameter choices.

In ‘*the next chapter a new model is developed which *akes
into account +the stochastic nature of runoff and the interaction
betWeen reservoirs. Then in Chapter 7 this new model will Dde

applied to a hypothetical three reservoir system and finally to the

Guadalupe River Basis four reservoir systenm.
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CHAPTER IV

4. Dynamic Programming Solution Approach

4.1 The Decision Process

This chapter will be used to develop 2and present the
dynamic programming solution approach %o solve the multireservoir,
multiperiod stochastic problem.

Consideration of a multiperiod model implies that actions
taken in one vperiod effect not only *the current period but
following ones as well. Decisions in the current period must take
account of the impact that these decisions will have on the periods
40 come. To utilize <+his zoncept, a benefit function will be
ierived for each period 1in the time horizon which measures the
value of water %o Dbe stored in the system for future use. Jnce
hese venefit functions are xnown, the network can be optimized for
a given starting position with the objective of maximizing the
current and future benefits.

Realistically, the benefi* function for any period t should
reflect <4he characteristic that 2s more and more water is made
available, there i3 a decreasing marginal return or benefit to
society. This implies that the benefit function must be ~oncave.
The model %o be isveloped requires that this be the case.

Additionally, for a2 multireservoir system, one would expect

71
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some interaction %o occur between reservoirs, particularly those in
~loge proximity to each other. Thus, for systems of reservoirs, it
is implied <*hat the future benefit of water atored in a single
reservoir should be a2 function of the amount of water stored in
neighboring reservoirs.

A dynamic programming approach is used to derive an
axpected benefit “unction for water stored in each period of the
time horizon. These Dbenefits are represented as a function of
regservoir con%ents. They are generally concave, nonlinear and may
include cross-product terms that represent the interaction between
reservoirs.

Because 2 functional approach is used instead of a discrete
table, as. is commonly done, the dimensionality problem usually
agsociated with dynamic programming is partially overcome.

A network flow programming algorithm 1is used to solve
subproblams generated by dynamic programming. Since the network
problems are partially composed of nonlinear objective functions,
it has been necessary to modify the network algorithms to handle
this case. Details of how this 1is done will be presented in
Chapter 5.

The first part of this chapter provides a review of
leterministic and stochastic dynamic programming. This is followed
by a brief description of the multireservoir network model %o be
used in +the dynamic programming aporoach %o the multireservoir

multiperiod problem. Finally, *he overall algorithm for the

detir e L E 2
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dynamic programming derivation of the desired benefit functions is

presented.

4.2 Deterministic Dynamic Programming

e Dynamic programming is 2 method of solving an in*tricate

r problem by decomposing it into a3 series of gtages {of time, space,
ate.) and approaching *he solution stepwise. This method, also
known as Recursive Optimization, is based on Bellman's "principle
of optimality” (Bellman and Dreyfus {1962)) which states that an
optimal set of sequential decisions has the property that whatever
the first decision is, the remaining decisions must be optimal with
regpect to the outcome of the first decision.

In contrast to linear programming, thers does not 2xist a
standard mathematical formulation of "the" dynamic programming
problam. Rather, dynamic §rogramming is a general type of approach
to oproblem solving, and *he particular equations used must be
developed to fit each individual situation. Of importance to any
dynamic programming vproblem is the identification of the stages,
the state variables, the *ransition equations, the decision set and

’ the return function.
To illustrate the determinigtic dfnamic programming
approach consider a multiperiod single reservoir problem. Here,

the stages would represent the several time periods within *he time

T NT IV NN TS

b

horizon. 4 finite time horizon of T periods is assumed. Tach
2 stage would then represent a period of time for which a decision or
P mm e O A < ackadbantiit i I e
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set of decisions must be made.

The decisions %o Dbe made at cach time period may be how
much water to give up in %the form of supplying demands and
ralasages, or how much water %£o store in the reservoir for the next
and future time periods.

To make these decisions, one must know the level of water
3tored in the regervoir at the beginning of the time period. The
level of water in the reservoir is then the state variable. Thae
ending 1level of water in a reservoir will be equal to its initial
level plus inflows minus outflows. Let St equal the value of the
state variable at stage %, i.e. the reservoir level at the eond of
veriod *t. The value of the state variable at stage t is defined as
1 ‘unction of the value at stage t-1:

S ® Sely v iy oy

where:

St-1 ig the level at the beginning of period ¢

S, is the level at the end of period *

)

it is the inflow in period + (assumed Xnown for the
ieterministic problem)

1f is the decision on outflows for period %

"

This 1is called ‘the transition squation and it is defined
for all t from ! through T. Its purpose is %o uniquely Adefine +the
value of *he 3tate variable at the input to *the next stage. Assume
for now that the above defined terms czan only take on “he integer

values 1,2,...,9, and that any combination of them %hat forces S to

ca
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be less than 1 will take on the value of ! or greater than 3, the
value 3. Thege are referred to 2as boundary conditions. Hence, for
each stage, the state variable (water level) can take om any of 9
values.

Having defined the stages and state variables consider now
the possible decisions. Let the decision %o be made at each stage
equal the +%o0%t3l ou%flow. Remember this may represent both water
supplied %o users and water released downstream. The decision zan
range from min(St_1+it-9) to <St-1+it’1) gince only availabls water
can be relesased and *here must be at least one unit left. For each
level of S, there are at most 9 possible transitions that can be
made depending on the value of i and on the decision 4. Thus,
between any two consecutive stages thers are at most 31 possible
paths to take.

Next, *“he return function must be defined. This represents
the immediate cost of making a given decizsion starting from a given
3tate. The immediate cogt of making decision dt while in state
5,_1 1is expressed as C(St—1'dt)' Based on Bellman's principle of
optimality, the ¢total <cost function is the sum of the immediate
cost plus the cost associated with making optimal decisions from
the new g3state to the end of the %time horizon. This is expressed
as:

2(S,_y.d,)+£(3,)
where f(St) is the cost of the optimum policy for periods t+i

through T. Taking the minimum of this over the possible decisions

it
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. yields the desired recursive relationship:

f(St_1)=Min(c(st_1.dt)+f(st)) for t=1,...T
t

The state variable 31 represents the reservoir level at the
end of period 1, 82 at the end of period 2, 33 at the end of period
3, and so on. The state variable ST is the reservoir level at the
end of the time horizon. The quantity SO i3 the initial reservoir

level (at time 0).

If a value of f(ST) for every possaible state S, is assumed,
the recursive equation for t=T zan be solved. Note that solving
this equation for the sxample requires a minimization over as many

a3 nine decisions for each state S . There are nine 4iffsrent
T-1

values of f(Sm_1). one for each possible value of the state

variable Sm-1‘

-~

With £(S,_,) «xnown, +the recursive equation can be solved

for taT-1. The procedure continues until the rscursive equation is

solved for t=1. At this point, the solution is complste except for

. the recovery of the optimum solution.

The process of recovering the optimum is called the
traceback procedure. Let it*(st_1) be *he optimum decision found
for state St_’ by solving the recursive =quation. Given an initial
value of reservoir contents So, the optimum decision for period !
is 41*(30). The ftransitior equation 2zan be used to find %he

optimum value of 31:

5, =S,-d, *(55)*1,
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The value of S, ietermines the optimum iecision 1,*(S,) which in
tura indicates the value of 52. This +traceback procedure
ultimately leads to the complete optimum solu%tion for the

jeterministic problem.

4.3 Stochastic Dynamic Programming

The above example is illustrative of a deterministic
problem in that the state at the next stage is determined by the
inflows during the period which are assumed known. In a realistic
situation, the inflows are, of course, not known with certainty
because they depend on the variability of nature. With stochastic
dynamic programming, it is no%t necessary to assume a deterministic
transition. Rather, a probability distribution on the transition
is defined. Thus, 1ot p(St dt'st—1) be the probability of

transition %o state 3, given that decision dt is made starting in

state S+-1' Because some transition must-be made, it is required

that:

Ep(st

all St

dy,Spq )=

Define c(st-1’dt'st) to be the cost of starting in state S, _,,
making decision dt and ending in atate St' Now the stochastic
iynamic programming recursive equation can be written. Let f(St)
be the sxpected value of starting at state St (at the and of period

<), =<raversing *+o the time horizon, and always making the decison

#hich minimizes the axpected ~ost. Then:
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£(s,_,)=Min :EE p(s,

1,5, ) (C(s,_y.4,,5.)+(s,))
1, all' 5,

for t=1,2,...,T
This recursive equation is again solved backwards by first assuming

a value for f(ST) and then solving for f(S This allows the

T-1)'
solution for f(ST_z) to be obtained. The process continues until
the value of f(SO) is determined. As this equation is solved for
each  discrete value of St-l' an optimum decision is found
1t*(St_1). This is the decision %that minimizes the expescted cos*®
from period *t to the %time horizon given that the system is in state
£t 2t time t-1.

Although the optimum decisions are known for every state
value, the optimum set of decisions for the entire time horizon
cannot be determined. The traceback opeyation previously defined
for deterministic problems is no% applicable for the stochastic
case. The traceback is not applicable since the transition iz =20t
certain at any stage, rather, 1i%t 1is governed by a probability
distribution. Although an optimum decision is determined for each
state, only the first decision is determined since only SO is
mown. Stochastic dAynamic programming models a realistic decision
process in which decisions are only made for the current period on
the basis of the current state value.

It should be stressed that stochastic dynamic programming

uses the criterion of oxpected value of costs. There are other

criteria which might be more appropriate such as stochastic
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iominance (Barnes et al. (1373)). I% is not clear however how
these coulld be incorporated into an optimization algorithm such as
iynamic programming. All the literature surveyed by *he author
involving gatochastic dynamic programming utilized the expectad
value criterion, 30 this criterion will be used in this repors.

This standard approach to dynamic programming has 2 major
irawback: the “"curse of d{imensionality”. As the number of state
variables 1increases, ¢the size of the problam in terms of both
computer gtoarage and computation time becomes prohibitive. In *he
exampl2 above, there was only one state variable with nine possible
1ecisions at each gtage. If another state variable were added
(a.g. the level of a ‘second reservoir), thers would now be 31
unique 3tates for each stage. The number of possible states at
each s*tage 1is equal %o the number of levels raised to the {number
of reservoirs) power. In a five reservoir problem there would bde
59,049 states. Probleams 1in watar resources frequently involve
systems of four or more reservoirs.

In the sections to follow, a technique is developed which
replaces the Adiscrete vector f(Sﬁ) by a single mathematical
function (a benefit function) for each pariod, and adopts a method
of 3ampling from the distribution of inflows. Both of these
approaches greatly contribute %0 2 reduction in the computational
requirements of {ynamic programming and thus allow somewhat larger

3ystems o be 30lved.
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i.A Network Model for Mulsireservoir Multiperiod Problem

Por illustrative purposes and for reference throughout this
report consider a three reservoir network as shown in Figure 4-1.
T™is model i3 very similar %o *he %two reservoir model of Figure
3-10 with one exceotion. Here, three new arcs (1,2,3) and three
new nodes 74,3,12) have been adied. These new arcs will be used to
represen*t <*he future value of water to ‘he system. Their cost
functions will include <*he nonlinear portion of the objective
function and in most cases they will Dbe nonseparable. It is the
sombined cost function of these ‘three nonlinear arcs that
rapresents the future value of water %o the system since the flow
in these arcs represents water stored for future use. The cost
functions for these arecs will also include linear terms.

Because of the 1ynamic programming approach to be used, it
is not necessary %o connect the ending reservoir lavels to the
beginning reservoir levels of the next period as was done in the
deterministic multiperiod case. Thus, 2all nonlinear arcs
rapregenting final storage could be terminated at a sinsle node.
Por modeling and visual -conveniznce, +three nodes will be used
rather than a single node.

The network model of Figure 4-1 is all that is required for
“he multiperiod model. This greatly simplifies the data input
raquirements. Because of the dynamic programming approach *his

seemingly simplsz single period model provides all %he required

A P P SO S B L AR SL k7
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information for multiperiod use. This will become more obvious in
the next few sections.

Yaturally, 2as the model represents different periods, any
or all of the network parameters can change %o reflect changing
water availability and requirements over time. As will be seen,
evan if it is not desired to change *the network parameters in *the
linear vpart of the network, *he cost parameters of the nonlinear
arzss w#ill necessarily change from period <%o period due %o the
changing inflow parameters causing flow changes in these arecs. A
change of flow in any of the nonlinear arcs can cause a2 change in
the cost assigned to other nonlinear arcs if the cross product

terms are nonzero.
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4.5 The Dynamic Programming Algorithm for Deriving the Benefif

Functions for the Multiperiod Multireservoir Problem

Figure 4-2 represents the multipericod model for the

stochastic problem. Each box is a single period model of the type

shown in Figure 4-!. The notation in this figure is as follows:

T = number of periods of the analysis or time horizon

R = number of reservoirs, r=!,...,R

It = (11t’12t""'lrt)' This is a vector of runoff

inflows to the reservoirs during perioed t. Assume that

It is a random vector from a known distribution. The

parameters of the distribution or the distribution

itself may differ from period to period. The inflows

for two different periods are assumed to be independent

random variables. It is assumed that these are the

only external flows into the system except the initial

reservoir contents of period 1.

S, = (sit’SZt""'srt)' This is a vector of reservoir
contents at the eond of period t. Note that it also
describes the initial reservoir contents of period t+!.

Ot = (°1t'°2t""'°rt)' This is a vector of outflows

during period t.

P = (e, ,f

T 2t'°"’fmt)' This is a vector of arc flows in

the single period network for time t. The vectors 3

t
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v
. and O_ are also included as flows on arcs.
%

. The inflows to the network in period t are:

. S

1
g-1"Ty !

! They are represented as positive external flows at the reservoir

NRL T

nodes. The outflows of the system are flows to the demand nodes

and the end of the period reservoir contents nodes. For the single

period model of Figure 4-1 it is assumed that inflows will be known

before the flow 4ecisions are made. In reality, flows are ;

zontinually adjusted throughout a period as the inflows are

revealed by the passage of time. For this discrete model the

length of the time period may be adjusted to allow any desired

iegree of accuracy however the distribution of flows within a time

period are assumed to be instantaneous. !
The multiperiod model 1is solved with stochastic dymamic

programming. The flow chart of Figure 4-3 represents the overall

dynamic programming process used for deriving the benefit func*ions

for all +. The periods referred to in this flow chart represent
the T periods of Figuras 4-2. , :

. Before describing the algorithm in detail some additional :

v notation is necessary.

POTRe P A

a ke B

Let:

YN = Number of discretizations 5f reservoir contents

K, = Zapacity of reservoir r

RL = Vector of reservoir levels for 1iscretization as a
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percent of CKP. There will be NN components of RL.
2Z = Value of the random number
LR = Yumber of level combinations given R reservoirs.
Thus,
Ly = N}

K = Number of random observations per level combination

of the vector I* taken from the distribution of It

BF(St) = Txpected benefit for water stored at the end of

period ¢t for t =1,...,7T
¥(S,_,,I,) = Model response for level combination S,_, when

the random inflow is It

Using the above notation some sample values will be assumed for

purposes of 1illustrating the overall process. For this example,
let: .
]
R = 2 reservoirs *
YN =3 E
CK, = 20, CKy = 40 h
RL = (.5, .7, .9) ;
K= 10 i ﬁ
H
- 2 2 . 1 |
BF(S,) = 20f, * 25f, - £ - £5 -.45f,f, i |
Then: t |
4
Lg * 32 = 3 level ~ombinations %
Thease 3 level combinations will be represented by the vector S.q = i
<s1t'52t)' The possibilities are listed in Table 4-1, E
d 1
;
4
o
prosiivagecme g N ., Y —er v erma e e - -
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Table 4-1

Level Zombinations for the Example

R St
10 20
10 28
10 36
14 20
14 28
14 36
18 20
18 23
18 36

This example will be continued later.

The steps of the algorithm corresponding to the boxes of

the flow chart in Figure 4-3 are as follows:

1.

T e RIS

- oy -

Read the network and reservoir data. This includes reading
all of the network arc parameters and all reservoir data
(NN, CK., W, RL, T, stc.). Also read the runoff parameters
for period T for each reservoir. These define the
1istribution of random inflows It' Set t = T.

Read BF(ST): This is the assumed functional representation
for the future value of water at the end of period T. This
information relates to the cost parameters to be assigned to
the nonlinear arcs for period T. PFor the two reservoir

axample, read two linear coefficients two coefficients for

——
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the aquared terms and one coefficient for the cross product.

Draw a random observation from *he distribution It'
Select 1 level combination. From the Lp combinatiouns,
select one that has not been evaluated. This level
combination is the vector S, , since it represents a given
ini%ial set of reservoir contents for period t. Go to 5.
Solve the network. Since BF(St), S,.q and I, are known, the
gingle period network problem is deterministic.
Let the optimal solution to the network be given as:
1(s,_,,1,) = Min(4F, - BF(S,))
subject to conservation of flow and bounding constraints.
This is not a linesr problem since BF(St) is nonlinear and
St contains variables of the flow problem. The problem is a
nonlinear network flow problem. The solution procedﬁre for
this nonlinear network will be discussed in Chapter 5. To
further simplify the notation, let:
Yi,w = Y(St-1'rt) ws1,,..,K
This is equivalent to stating that there are now i different
level combinations and for each of these level combirations

K random draws will be made. Thus, Y, . represents the

value of the network optimal solution for the ith lavel and
the w'h draw. Go to 5

If all level combinations have not been evaluated, go to 4.

Otherwise, LR values of Yi w will have been generated for

SRR PN

‘“m arter taras e P b
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12.

20

this choice of w, one for esach lavel combination. For each
of these lavel combinations the same random inflows, It'
will have been added. Go to 7.

If all random draws have not been made, g0 %0 3. Otherwise,
for each random draw all level combinations will have been
evaluated. 4 total of Lp times K {90 for this example)
optimal solutions will have been generated. BSach random
inflow I, was applied to all Lp combinations. This aspect
of the algorithm is discussed more fully in section 4.6. fGo
to 8.

Average the values obtained from the observations for sach
level combination. 5o to J.

Least squares regression. Parform a3 least squares
regression using the averages of the observations as the
dependent variable. This w#ill be 4iscussed more fully in
section 4.7. Go to 10.

Move back one %time period: Let %t = t-1. Go to 11.

If t = zero, STOP. Otherwise, go to 11.

Ad just network parameters. This requires adjusting the cost
parameters for the nonlinear arcs. These new parameters
w111l be the coefficents of the derived benefit function. Go
o 12.

Read runoff parameters for period “-1. Go *o 3.

Ince BF(ST_1) is available, then BF(S,_,) is computed in a

———- " —aayc,

-
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like manner. The process continues until BF(S1) is evaluated.
This approach i3 4ifferent than “he classical dynamic programming
approach in the following ways:

1. The benefit function 1is represented as a con%inuous

mathematical function rather than for discrete values of the

state variables.

2. The recursive equation is solved using a Monte Carlo

sampling approach rather than using transition

probabilities.

3. The optimum decisions are found using a network flow
algorithm rather than a discrete search over a finite set of
decisions.

The solution  procedure of the network optimization
algorithm requires that the form of the benefit function be
specified. This is necessary since a different solution technique
would be required for solving the nonlinear form of the benefit
function. While any convex form could be applied, the next section

1iscusses the rational for using a quadratic to represent these

benefit functions.

4.5 Sampling From the Distribution of Inflows

An important aspect of the algorithm is the derivation of
the expected benefit by sampling from the distribution of inflows.
The runoff distributions provided as an input to +the procedure may

take many forms. These may include normal, log-normal, log-normal
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Pearson Type III, =xponential, historizal, etc. The computer
program curren*ly has three options available, normal, log-normal
and historical. Other inflow distributions -=ould easily be
incorporated.

As an example of how these inflow parameters are used,
congsider again the example problem used earlier. If the
1istribution of runoff is assumed to be normal, the mean and
standard deviation for inflows will be read for each reservoir in
box 1 of FPigure 4-3. Let the mean and standard deviation for the

two reservoirs be as follows:

[
N\

Reservoir 1 Mean = 5, Standard Deviation 2

Regservoir 2 Mean = 3, Standard Deviation = 3

Next, in box 3, a random number 2Z will be generated from a normal
distribution with a mean of zero and a standard deviation of 1. Z2Z
is wused in conjunction with %he mean and standard deviation for '
2ach regervoir. Thus, the total inflow for each reservoir will be

aqual to:

I, = Mean + 72 * Std. Dev.

It It is less than or equal to zero, a3 zero inflow is assumed. For

axampls, if 2Z = .5, iy =5+1= 5, and iy = 8 + 1.5 = 9.5, i ‘

This implies  tha*t for the model developed, vperfact ' 1
sorrelation of inflows between the reservoirs in 13 basin is :
assumed. This is not a requirement of the algorithm and other

assumptions could be made.

In addition to applying *he random number 7ZZ %o all




93

regservoirs, this same random inflow «%ill be applisd *to all
regservoirs for all level -:ombinations. For 2ach of the 3 lavel
combinations of the a=xampls, 2add 5 and 3.5 units %o the initial
2ontents for reservoirs ' and 2 respectively. This w#ill result in
total water available for level combination ! of 16 for reservoir 1
and 29.5 for regervoir 2. For the second level combination, these
values would be 15 and 37.5, 2%c. This process is used to assurs
sonvexity of the response surface. This assures that if the first
level combination 1is overestimated, all of the remaining level
zombinations will also be overestimated. To minimize this over {or
under) estimation it is required that a sufficient number of random
iraws be made %o make this error negligible. This w#will be

1iscussed more fully in Chapter 5.

4.7 Least Squares Regression

As indicated by the algorithm a least squares regression is
performed on *the mean responses of the LR lavel combinatons. If
all level combinations have been =2valuated, there will axist a
matrix of optimum solution values referred to here as the response
matrix as illustrated in Figure 4-4. The rows of %the response
matrix represent the LR level c~ombinations and *‘he X ~olumns
represent the network optimal solutions, Yi.w'

iraws. Preceding this response matrix is another matrix which will

be refarred to as the 1esign matrix. This matrix will have LR rOowWS

and 7 ~olumns, where U depends upon the aumber of terms in *he
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benefit function BF(St_1). If it is desired to fit a linear
benefit function to this 4ata in terms of the R reservoirs, 7 = R +
1, (R linear terms plus a constant). To represent the benefit
function as a quadratip. linear, second order and interactive “erms
are required. Thus, for the quadratic, U =2 * » + Cg + 1. Thus,
the U terms in sach row represent the desired form of the benefit
function. For the 2xample, U = 5.

To fit the desired form of the benefit function %o this
4ata, a least squares regression is performed. Here, the design
matrix has as its first column, a vector of sones. This is
necessary to account for the constant fterm. Accordingly, this
design matrix represents the 1independent variables for he
regression analysis. As the dependent variable, the means of the
rows of *%the response matrix will be used. Thus, the dependent
variable for row i is:

K
- 1 2
I, = ¢ Y . foralli

w=1

By fitting this data to the selected design, BF(St_1) is derived.

4.3 The Quadratiz Benefit Function
The usual procedure of discrete dynamic programming is %o
store the return function f(S+) in computer memory for a large

aumber of discrete values of the state variables S, When S_ is 2

Py Y A
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multidimensional vector (one dimension for each reservoir) the
number of possible discrefe states can be very large. Because
rapid access computer memory is finite in size, this limits the
number of s%tate variables +that can be handled at each stage.
Three state variables is frequently described as a practical
limit.

In the method presented here, this storage problem is
overcome by fitting a quadratic function %o BF(St) and storing only
the coefficients of the quadratic.

A quadratic form has been chosen for *the following reasons:

1. I+ can exhibit the concave shape expected for the

benefit function. (convex cost function)

2. It can represent nonseparable inferactions between

regervoirs with cross product terms.

3. It is easy to store in a computer.

4. It is computationally convenient in the network models

#hich arise in the solution procedure..

If S, has n dimensions, the number of terms in 2 quadratic
is:
%(n2*3n)*1

Por the three reservoir case the full three variable quadratic

would have 10 terms as shown here:

2 2, 5 2
By*Byfy+Byfy*Bafa*By Ly “*Bf, *B f s *Baf, £,¢Baf, £5+Baf,fs
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Storing these 10 zoefficients is much sasier than storing the NNR

discrete state vectors.

Also Dbeneficial is- the fact that the function is defined
for continuous St rather than discrete values. This means tha%
once such a function has been derived (albeit from an approximation
to the discrete representation) decisions can be made by a one time
solution of the network using *the observed reservoir levels. These
regservoir levels need not be equated or rounded to *the nearest
iiscrete level.

It 1is clear that the %rue expected benefit function is not
in reality a quadratic function. A better fit to the observad data
might be obtained with a more complax model. This research has
limited consideration %o the quadratic because of the reasons noted
abovae. The iynamic programming methodology however is not limited
%o ‘this case. Tndeed the data could be fit to any model and the
racuraive procedure is independent of the model. The network flow
solu*tion procedure 1is 1limited %o the quadratic case, however it
probably would be possible to derive a more general procedure along
the lines of nonlinear algorithms for pure network flow problems
{Luenberger (1965)). This was outside the scope of this research.

The next chapter will present the methodology for solution
of the nonlinear (quadratic) network. The method for obtaining

4ata for use in the least squares program will be fully explained

in Chapter 5.
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Chapter V

5. Solution of Nonlnear Network Problems

5.1 Introduction

In the performance of the dynamic programming algorithm it
is necessary to solve network problems with convex, quadratic,
nonseparable arc costs. In Figure 4-1 the flow on arcs |\, 2 and 3
represent water stored in reservoirs for future use. The benefit

function for this water stored is represented as a concave,

quadratic function. As an example of a quadratic concave benefit

function, BF(ft,fz,f3) is assumed to be:

. . 2 2_ 2_ _ .
59f1 46f2 39f3-.86f1 —.53f2 .52f .64f1f .4Of1f .68f2f

3 2

3 3

where f1, fz and f3 are the flows on arcs !, 2 and 3 respectively.

This Ybenefit function will be used later as the periocd T assumed

venefit function for many of the example problems of Chapter 7.

Since the algorithm operates on costs the negative of the benefit
function is used to obtain the cost function. Thus:

c(f1,r2,f3) = -BF(f,,fz,fB)
This is a convex cost function. The network flow programming

algorithms which have appesred in the 1literature (Ali et al.

(1978), Cooper and Xennington (1977), Dembo and Xlincewicz (1979),

98
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Florian {(1977), Frank and Wolfe (1956), Helgason and Xennington
(1978) and Klincewicz (1979) have been designed for linear or
i convex problems, but not for generalized problems with nonseparable
objective functions. This chapter provides details on the
b ; * theoretical development of an algorithm to handle quadratic

nonseparable objective functions. The procedure is designed for

generalized networks (i.e. networks with gains) with convex,
quadratic, nonseparable objective functions and has been coded in

Fortran for the CDC computer.

5.2 Problem Statement

Consider a network problem defined as in Chapter III with
the added stipulaticn that a subset of the arcs, MN’ have nonlinear
arc costs. This subset is included in the set of all arcs M. The
linear cost coefficients are described by the vector H for all
arcs. A matrix will be used to define the nonlinear component of
cost.

The cost of nonlinear arcs is assumed to be a quadratic
function of arc flows. Let FN be the vector of flows in the
nonlinear arcs and 2, be the nonlinear cost contribution of the

N

aonlinear arcs. Then:
anl
. ZN FN Q FN
where Q is a symmetric matrix which is positive definite and the T

represents the transpose of a vector.
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For the example problem:

. .86 .32 .20
- Q=].3 .53 .3}
. .20 .34 .52

This is a  positive definite matrix, so Z is a convex function.
This Q matrix is squivalent to the Hessian of C(f1,f2,f3) divided
by 2. This notation is common in the literature and Q is referred
to as the quadratic matrix.
The total cost for the system flow is:
Z=HF+PL Q F
N N
The nonlinear arcs are also represented in the flow vector
F 30 that linear costs can also be associated with the arcs.
Define H' to be the vector of first derivatives of the arc
costs. Of course, for the linear arcs:
Bq. (1):
Bty
For nonlinear arcs:
Bg. (2):
. BTt 2Q Py
i where Qk is the kth row of Q. In this chapter, Q will be
subscripted with k to indicate a specific row in the Q matrix.
When 2 is not subscripted, it will refer to the entire matrix. In
Chapter 5, the matrix Q will be subscripted as Qt when it is

desired to identify it with a specific time period.

————— e g -
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The algorithm has to find a minimum cost solution for the
flow vector F (which includes the nonlinear flows FN)' The
nonlinear network model is:

Model III

. T
Minimize HF + FN Q FN

st.
:zg; f - a,f =b, {i=1,...,n=1
k k'k i ’ '
k€ MOi keMTi
2<f<e¢
- kX7 ok
k=1,...,4

These are the same network constraints as for the linear model. A
primal approach is used in which an initial basic feasible solution
is defined. This solution describes a basis network. A basis
network for the pure network is a set of n-1 arcs which form a tree
rooted at the slack node and having a2 directed path from the slack
node to 1all the nodes of the network. For the generalized
network, the ©basis network may consist of several components, one
of which is a tree rooted at the slack node and the other are trees
rooted at cycles. A component consists of a set of nodes such that
tﬁere is a path between every pair of nodes in the set.

The solution procedure for the nonlinear network parallels
that of the primal linear solution algorithm of Chapter 3.3. This
algorithm is restated here.

1. Check sach nonbasic arc for complementary slackness,

: ' £ 2
if (7Ti * hk)/ak < 23 then f, = 2

|
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if (7/'i + h )/alk >7fJ. then £, = 0

k k

If each nonbasic arc does not violate sither of these conditions,
stop, the solution is optimal. Otherwise, choose an arc to senter
the basis that violates one of these conditions. Let this be arc
kE' Note that hé is used in these conditions for the nonlinear
problem.

2. For each =arc in the basis, find the amount of flow
change in the arc per unit of flow change in arc kE' Use this
information to find +the maximum flow change in arc kE that will
cause the flow in one of the basic arcs to go to a bound or cause
the flow in arc kE to go to its opposite bound. Choose the arc %o
leave the basis, kL' as the arce which limits the flow.

3. Change the flow in arc kE and the basis arcs by the
amount found in step 2. If kL = kE' return to step !'. Otherwise,
change the Dbasis tree by deleting arc kL and inserting arc kE'
Change the node potentials to be consistent with the new basis
network. Return to step 1.

For a 1linear problem the iterative sgstep of the primal

method checks all nonbasic arcs for optimality. This is the test

for complementary slackness (Chapter III) which evaluates:
a, =W +n' -a 7
kg lg th kp J

E refers to the entering arc. If dk is less
“E

than zero and f  is zero, then the network is not optimal and arc

ke

k, #ill attempt to enter the basis. dk is interpreted as the
= E

B

#here the subscript

e . L
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change in the objective function per unit change of flow in arc kE'

Since dk is negative, and the model is trying to minimize costs,
E

it would 1like to put as much flow on this arc as possible. For

esach unit of flow added to arc k,, the objective function will

since dk < 0. The other nonoptimal condition is where dk > 0 and
E E

In this case the algorithm will remove flow from arc

change by & In this case the objective function will be reduced

= ¢

T kg

£
k
kE’ and for each unit removed, the objective function will be

.

conditions, changing flow on arc k, means adjusting the flows on

decreased by the amount 4 Because of the conservation of flow
other basic arcs. The final result is that eventually one of these
arcs, 9ither ik, or a basic arc, will reach its bound on flow and no
further improvement can be made. If there i3 enough slack in the
network to allow are k, to receive as much flow as it can handle

(i.e. fk goes to one of its bounds) then arc Ko is not allowed to
v )

]

enter the ©Dbasis rather it becomes nonbasic at the opposite bound.
However, if +*there is a basic arc whose flow goes to one of its
bounds before the flow on the entering arc reaches a bound this
basic arc will leave the basis and arec kg will enter.

There are two principle differences between the nonlinear
and linear networks which require special consideration in the
algorithm. The first 1s that as flow changes on the nonlinear
arcs, their marginal costs, hé, will also change. These costs are
a linear function of the flows and are not constants. Thus a flow

change on the basic ares and arc k; may simultaneously change the

A = g " 4
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l v
dual variable, 77’ , and the value of hév' This results in the
» o
second difference. A flow smaller than the one required to cause " !
* either kE or a basic arc to reach a bound may cause the entering
i
* i

arc to satisfy complementary slackness. Thus, it may be that a ;
. nonlinear arc will remain nonbasic, even though the flow on the l
nonbasic arc is between its bounds. For the linear problem each
nonbasic arc will have flow at zero or capacity, while for the
nonlinear problem a nonbasic flow may be between zero and capacity.
These differences w#will be illustrated below by first demonstrating
the algorithm with a 1linear network and then showing the
differences with a nonlinear network. o

Assume that in step ! of the primal simplex algorithm, a
nonbasic arc is discovered which violates complementary slackness.

Por this discussion, let ik < Q. In the linear network this would
: B

imply <that fk = Q. The networks of Figure S-1 illustrate the
]

steps of the primal simplex algorithm for a pure linear network

(ak = 1), The basis for Figure 5-1a is made up of ares (2,3,4).

The node potentials are determined by the basic arcs. I‘hus,'773 -

- = = = D - - =

’/?;"h2 o+2=2. 7, 7’3+h.5 2 +3 5and74 72*h3 5

- + 1 = B, Step ! of the algorithm checks each nonbasic arc for

complementary alackness. The nonbasic arcs are arcs 1 and 5. For : ‘

- - T .. - - - - |

. arc 1, 4, = 7, + n, g -3and i = T v 7,=-1. Both i.!

arcs ! and 5 have dk < J. Arc 3, however, is at capacity (f5 = cs)

which means that complementary slackness is satisfied. 4Arc ! has

zero flow and a negative 1k implies 3 nonoptimal condition. Arc !

R PRI St . e N o R T P » e A T
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Primal Simplex Algorithm for Linear Network
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is identified as the entering arec, kE = 1.

Step 2 of the algorithm finds the arc which will limit the
flow change 2s flow is changed on arc kE' As flow is added to arc
1, flow must be decreased on basic arcs 2 and 3 to maintain
conservation of flow. A decrease of ! unit on arc 3 results in a
flow of zero on this arc. This is the limiting arc and kL = 3,
Step 3 of the algorithm changes the flows according to the step 2

results and updates the node potentials. Figure 5-1b shows the

results of this iteration of the algorithm. The basic arcs are now

(1.,2,4). The total cost for the network flows went from 16 %o 13
for this iteration. ik is the change in total cost for a unit
an)
change of flow 1in arc kj. dk was -3 and one unit of flow was
= B

added to arc kp = 1. The total cost changed by 16 - 3 = 13, The
algorithm now returns to step ! to check for optimality.

The basis for TFigure 5-1b includes arcs (1,2,4).
Bvaluating the nonbasic ares (3,5) results in d_5 =2+3-2=3
and d5 = 2 + 3 -3 =2, Arc 3 has zero flow and complementary
slackness is satisfied. Arc 5 has fs = Cg and dS > 0. This fails
the test for complementary slackness and kg = 5. In this case,
flow will be removed from arc 5 and arc 2 and added to arcs ! and
4. As flow 1is removed, the flow on arcs 2 and 5 bYoth reduce to
zero before the flow on arc ! or 4 reach their upper bound. 1In
this case, arc 5 is considered the limiting arc and kg = kL =5,
The resulting flows and v updates are shown in Figure S-1c.

The basis for Figurse 5-!c remains the same as Pigure 5-1b

4
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(1,2,4), #ith a total cost of 3. For k, =3, dy
*

= 2 which implies
that for each unit change of flow on arc 5, the total cost will
lecrease by 2. For a change of 2 units, total cost becomes 13 -
2(2) = 9. Returning to step 1 of the algorithm reveals that the
flows on the network of Figure 5-ic are optimal.

Figures 5-2 and 5-3 are intended to show the differences
between linear and nonlinear networks with respect to the steps of
the algorithm. The network of Figure 5-2 has the same form as
Figure 5-! but different arc parameters. Arc ! is now 3 nonlinear

. 2 . .
arc wWwith an arc cost function of h1 = £ . This arc is presently

1
nonbasic with zero flow as shown in Figure 35-2a. The basis
includes ares (2,3,4). Step ! of the algorithm evaluates the
nonbasic arcs for complementary slackness. is =3 +10 -8 =5 and
complementary slackness is satisfied. Arc ! however, has d1 =0 +
2f1 - 5 = -6 3gince f1 = 0. Thus, kE = 1. Step 2 of the algorithm
finds the arc which limits the flow change. As flow is increased
on arc | flow must be decreased on arcs 2 and 3. If the network of
Figure 5-2 were linear, it would be profitable to add 4 units of
flow to arc t and remove 4 units from arcs 2 and‘3, causing all
three of these arcs to go to a bound, in which case any one of
these arcs could leave the basis. For 11 = -6, this would reduce
the total cost to 3 since h1 = 7. The marginal cost for arc ! will
not remain 2zero as flow ia added for the nonlinear case.

Consequently, it is necessary to find the amount of flow which when

added to arc ! will cause 41 to go to zero. In this case, for f‘1 =

e Sy

i
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3, h{ = 6 and d, =0+ 6 - 6 = 0. Thus, the flow change is limited
to 3 on the nonlinear arc. Comparing this limiting flow with the
limiting flow for the linear arcs of 4 and choosing the smallest
results in arc 1 being the limiting arc.

Figure 5-2b shows the results of this flow change and the
updated node potentials. Several things should ve noted in Figure
5-2b. Pirst, as in the linear network, if kE is the limiting are,
kL = kE. - Thus, the basis of Figure 5-2b is the same as Figure
5-2a. HYowever, flow on arc ! (a nonbasic nonlinear arc) is not at
a2 bound. This is allowed for nonlinear networks but not for
linear networks.

Secondly, when evaluating the dk for the nonbasic arcs of
Figure ©5-2Y, d1 = 9. This is due to the previous iteration which
forced this result. Evaluating arc 5, yields 15 = 5 and the
network of Figure 5-2b is optimal. The total cost is now 23.

A third feature to note is that the total cost 1id not
reduce %0 3 as it would have if this were a linear network. Thus,
for 4the nonlinear network, the evaluation of dk is necessary to
test for complementary slackness, but it cannot be interpreted as
the change in total cost per unit change of flow in arc kg for
nonlinear networks, rather it is the derivative of this change.

In the example above, the node potentials did not change
since *the basis remained unchanged and contained only linear arcs.

If the nonlinear arc had entersd the basis and since thers are no

other nonlinear arcs in ‘the basis, the node potentials would be
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updated in the wusual manner, that being only to update the node
potentials in the subtree rooted at the terminal node of the
entering arc. For a more complicated network there may be other
nonlinear arcs in the basis. These arcs may or may not be in *he
subtree rooted at the terminal node of the antering arc. If they
are, the node potentials will be updated routinely. Basic
nonlinear arcs in another part of the network may not experience a
flow change, however, 1if their costs functions include an
interactive term relating to an arc whose flow did change, %then the
marginal cost associated with the nonlinear arc will change. This
requires that the node potentials be updated for all nodes in all
subtrees rooted at the origin of the nonlinear arcs in the basis.

Consider the simple example of Figure 5-3. There are two
nonlinear arcs in this network, arcg 1 and 2. Let the cost
agsociated with arc ! be h1<fN) = f1 + .5f1f2 and further suppose
that the flow on arc 2 is zero. Consequently, the node potentials
for nodes a,b, and ¢ are {1,11,16) respectively. Let kE = 2 enter
the basis with a flow of 2 and suppose kL = arc 3. The node
potentials for nodes d,e and { would be updated in the usual way
since they are in the subtree rooted at the terminal node of the
entering arec. For the linear problem, these are the only node
potentials <that would require updating. In the nonlinear case,
3ince *he =cost of arc 1 is a function of the flnw on both arcs 1
and 2, the marginal zost for arc ! w#ill change.

h, = & + .5¢f

\ 1 2
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=1 +.5(2) =2
Thus, the marginal cost now associated with arc 1 is 2 instead of
1. Accordingly, the node potentials for nodes a,b and ¢ will
require updating to values of (2,12,17) respectively. This is
unique to the nonlinear network and must be accounted for in the
algorithms. The node potentials for nodes h and i will remain
unchanged if arcs 4 and 5 have linear arc cost functions.

The main changes %o the linear network codes %o allow use
of the primal simplex algorithm for the nonlinear problem involve
three primary areas:

1. Determining the arc costs and node potentials
2. Zalculating the effect of flow change

3. Pinding the value of flow change which causes i %o go

k.

3

to zero for a nonlinear arc k'E:
These three issues will be addressed in the remaining three

sections of this chapter.
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5.3 Arc Cost and Node Potential

The dual variable 7, represents ‘the marginal cost of s

. increasing flow to node i. PFor the pure linear problem:

[}

q. 73):
Setting the node potential for the slack node equal to zero allows
the 1etermination of the node potential for all other nodes in the

ne<work. For the generalized linear problem:

(D)

q- (4):

7/J.= Wi*hy

x(i.j) € g

ak !

For the linear problem the marginal cost of flow %through an
ars i3 2onstant. PFor the nonlinear network, *the marginal cost is
not <constant bdut is a function of flow. The marginal cost hé is

“he partial derivative of the arc cost function with respect to fk‘

If nodes i and j happen %to be on 2 2ycle a more complex aquation is

raquired for calculating the node npotentials. Let ¥ =
('.2.---.kﬁ) represen% %the nodes of a cycle. The 7 value at node

1 is:
3q. (5):
d k., k-l
-
. = hy + :E; h, 2 :
. i 1 <=2 k 3= J H
8.1

#here B is *he cycle gain, defined 3s the product of the arc gains ! |

sn the ~ycle.
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e
B2 o,
i=1
The naumerator of 2quation 5 is referred to as the unit cost of the
cycle. Jnce one of the node potentials for a node on the cycle is
determined, the remaining can be calculated using equation 4.
From equation 2 the marginal cost for linear arcs is just

h, and for the nonlinear arcs in a quadratic model is:

et 20 Py
Thus, for the nonlinear problem:
3q. (7):
T 71
J

2

for (x(i.j) € ¥y C ¥y

k

5.4 The Effect of Flow Changes
When an arc is to enter the basis, flow is changed in the
basic ares. To determine what these flow changes are, a gquantity

% is computed. é represents the flow change through node j, for a

unit flow change in the entering arec.

The equations  which are presented here  without
justification are described in detail in Jensen and Barmes (1980).
I+ is important to present them in this form because in a nonlinear
problem +the flow in basic arcs effects the node potentials and

hence the value of 1, . As stated above, i% is possible %hat a
“z

flow change «#ill driva 4, to zers befare an arc is iriven ocut of

had )

B
the basis and before the flow on arc k, reaches i“s bound.
-
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Assume t*that an arc ka(ia,jw) is chosen to enter the basis
-
such that:

1,

£

’%E#hkg-gk ’ﬂ'J.E< 0,

o
3

&5 ]

The Qquantity G is the amount of flow change through node j for
each unit change of flow in arc kE‘ Depending upon the current
configuration of the basis, and on *the location of node j within
this configuration, various equations apply for calculating G..

To facilitate understanding of these equations, reference

is made to Figure 5~4a and 5-4b. The key to *he various equations

)

lies in +he positioning of node j in the basis network. If th
basis contains a cycle, the basis %ree will be broken into two
parts or semi%rees as shown in Figure 5-4. Assume *hat the trees
and semitrees of Figure 5-4 represent a basis for some 12 node
network. In Figure S5S-4a arcs A and B cannot both be in the basis
at *the gsame time since there cannot be two cycles in the same
component of +*the Dbasis network. - However, for illustrative
purposes, both are shown here. The nodes indicated as iE and jE
represent the origin and terminal nodes for the 2ntering arec

regpectively. The node notation Jn in the figure refers to the

node in the basis which correspvonds %o the equation numbers below:

T




Canmot have
two cycles in
one ftree:

Possible cycle
/arc for illus.
of equation 2.

’

(v)

Figure 5-4
Basis Trees
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Bq. (8): When node j is on the basis path to node ig but not on a

path %o jE nor on a cycle:

I, =
LT
a
k€EP,, ©
Jig
+here Pji is the directed path from node j to node iE defined by
B
the basis. Por a3 basis network this path is 2lways unique. Node

J8 in Figure 5-43 is an example of 2 node for which equation (3) is
appropriate.
Bg. (3): If node j is on the basis path to node ig, not on a2 path

0 j@, but lies on a cycle:
=4

(B-1)
B
5
ll a
kep, ¢
iig
w#here B is the cycle gain. To illustrate equation 9 in Figure

5-4a, remove arc B from the basis and add arc A. Now, J9 is 3 node

squation (9).

corresponding to For equations (10) and (11) refer

to the original basis.
Bq.

node

(10): For nodes such that there exists a directed path from

to node j, (using basic arcs) but not to iy and node j is
i~

not on a cycle:

.

. e

Lo

SR dihaa
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% -
ll 2,
k&P, .
Jig
where P_. i3 the set of arcs on the path from node j to node j.

B
Bq. (11): For nodes such that there is a directed path frow node j

%o node j, (using basic arcs) dbu% not %o ia and node j is on 2
-4

sycle:
. (B~1) akE
Y, = N
j —————————
H 2k
k&P,
iig
3q. (12): If there exists a directed path from node j to both ij

and jE' and j is not on 2 cycle:

1 akv
Yj . } 5
T - T -
keriE kép.,E

This is equal to equation (3) plus equation (10).

- —
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2q. (13): If there 2xists 2 directed path from node j %o both ij
1]
and j,, and j happens %o be on 3 csycle: "
1
akw
Y_j ® {3-1)
B
%k e 1
kEP.. k&P, .
€ JIE JJE
T™is is equal %o equation (3) plus equation (10). |
Nodes that 310 not lie on a3 1irected path %o 2ither iE or
jg nave:
Y.<
3 0
This i3 represented by nodes Y and Y in Pigures 5-4a and 5-4b.
Note +that a positive wvalue of Ys indicates the flow in basic arec |
k(i,j) #ill increase, and 2 negative value indicates that this flow 5
|
4ill decrease.
I# arc x(i,j) is a member of the basis the flow change in é
arc < per unit increase in fk is: i
5 |
2q. (15):
Y
By

for convenience define the quantity:

I ﬁ
g‘( = —_— | 1
1,
« i
|
k{i,j)E M

B
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The maximum f.ow increage for arc k, is %that value that will cause
-
a basic arc (or are kn) to go to 2 bound. This maximum is:

Zq. (16):

Y aMin [ (e, - £ ),
v kg kg

Min [(ck - 6) g k(i.)EMy, g > o] .

Min [:—f’k g, x(i,j)€MUy, g < ﬂ

This equation 1is used if dk < 9 and fk < Cp_ - The maximum flow
B i ]

]

=

i{2crease in arc kK, is:
-4

3q. (17):
v‘ =Min | £ ,
£

Min [t‘k g, (i.3) € g, g, > o] ,

Min ['(°1< -5 g k(i) € Mg, g < O]:]

This equation is used if 4, > O and f
X kE

)

> 0. Bquations (16) and
(17) are used to determine the flow change which will 4rive an arc
flow to a bound. For the nonlinear problem it is also necessary to

1etermine the flow change that will zause dk to go to zero. This
“

-

is the subject of the next section.

R ]
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5.5 Flow Thange Which Drives ik o Zero

(6]

For the nonlinear problem the value of ik ig 1etermined

B
by:
2q. (18)
d = 7. +n' -a 77 -
kg ig kg kgTJg
Assume f, < e and 4, < 9 indicating 2 nonoptimal condition.
L ka n

] 4

The results of +the 1last section indicate the flow change that

.

causes a basic are (or are k,) t5 go *to a bound. Since Zr; , M
-

1
T g
and 77j may all change as flow changes in a nonlinear problem, it
»

&4

is possible that a smaller flow change *than that determined in 5.4
#ill cause dk to go to zero. If this were to happen, arc kE would
no longer violate complementary slackness. This section derives
the value of flow change in arc kg which drives ikw to zero.

An alternative form of dk i3 useful here. The value dk
[ )

E 5
.
e

is the marginal cost change with respect to a flow change in ar

k. 3ince the total cost changes only with the flow changes on

[©]

basic arcs occasioned by the flow change on arc k,, the value of
-

1, can be written:

£
o T z M B T Ny

x(i,j) € LI

=

Bq. (19):

-
%

Note that 2, is the marginal flow ~hange in arc k with respect %o 1

flow change 1in arec k and hé is the marginal =o08%. 3ince

-
4

3
P
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hé=hk+2Qka, separating the linear and nonlinear terms yields:

2q. (20):

‘(

h g, * (29, Fy)ig
Z‘cgkh!(k %\‘ 1"y By

o ‘
B <

This sum is over all the arcs in the basis since the value
2. ig zero except for arcss on paths which are affectad by 2 flow

shange in arc kg. In the linear netwovk, 4, is no® effocted as
nt

o

flow changes 1in arc ¥, since hé is independen®t of .flow. However,
- b

if a nonlinear ars k{i,3) has 2,70, changing flow =ffects h; and

hence dk . What one would like to be ablz to 4o is %o compute the
i

5

value of flow change in the en%ering arc at which dk goes %o zero.
)
5

Define:
(21):

1, =dkﬂ+Ad
B B

where dk w#as the value before *he flow change.
B

Again separating the linear and nonlinear terms:

2q. (22):

i = z‘igk*

(29, 7y
3 kev, 7Kg SEN Nk

N

In this =equation, F& is the vector of flows in %<he nonlinear arecs

modified as flow in are kg is changed.
=]
Let:

Sq. (23):

:E’ + AF\I
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R where FN is the original flow and ALFW i3 the incremental flow in

the nonlinear arcs.
Bq. (24):

i <> n P> (20, 7)g,

B * hy R
. ‘s k€W, ©F  fz 'z Tew

——_——

+ (2Q,AF) g,
;;?;y {AFN 8y

The first three terms in this expression comprise dk and the last

V]

term i3 Ad.

P e+ oy

Solving for the flow change that makes ié =0

B
2q. (29):

Define for the nonlinear ares the vector GN #here:

2q. (26):
- -
. %
%
GN = . for k &€ MN
3ince 9 is symmetric, aquation 25 can be rewritten:
by

Zq. (27):

I
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T
-dy_=20y Q Fy

il

From the previous discussion:

2q. (28):
A FPy=tyty
E
Substituting for FN in (27) yields:
2q. (29):

m
- 220G,
1 20y Q GkaE

Solving for the flow change that causes dé to be zero:

B
Sq. (30):

Nt =-4 /2G£ QG
kE kE h N

where Zka is the change in flow f

T kg
Note that since dk is negative and Q is positive definite,
B
the value of Af,  w#ill be positive. For the case where 1, is
B E

positive, a negdative value for fk resuits. This is appropriate

gince it indicates that the flow on arc k, must be reduced *to drive
-t

dk to zero.
w

The result of the above formulation is a value for ‘low

change in +he nonlinear are Kn which causes dk to be zero. This
) b E

limiting wvalue i3 compared with the flow change determined by

aquation (16) or (17). The minimum of these two values will

determine <he amount of flow change to apply %o are Xm. If the

Lr -
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limiting arc is determined by aquation (16) or {17) arz g #ill
anter the basis and the limiting arc #ill leave. If the limit is
obtained by equa%ion (30), the flow will be zhanged, bu% the basis
#ill remain unchanged. In %his case, the nonbasic nonlinear arc
will have flow between its bounds.

The above represents a general development for solving %he
nonlinear nonseparable quadratic network.

This presentation  justifies the inclusion of these
nonlinear quadratic arcs in the network in their nonseparable form.
To implement +this new *theory into *he linear codes of Jensen and
Sarnes {(1980), s9ix new aubroutines were oreated and sevaral
2xisting subroutines required some modifiza%tion. These new ~<odes
#ere assembled in a2 vpackage <called NONLING and tes*ted in the

presence of positive and negative gains. These subroutines are

flow charted in Part III of the Apvendix.
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THAPTER VI
A. Batimating the Benefit Function
5.1 General

The preceding sections ™have shown that by exploiting the
special structure of networks in a dynamic programming approach an
expression can be derived which represents the future expected
value of stored water. This was 4done by utilizing 2 single pericd
network representation of a water resources system. Through the
selection of discretized ini¢ial levels and the incorporation of
stochastic inflows to these initial 1levels, the *%otal water
available to the period was determined. Subsequently, %through
successive random draws from the 1istribution of the stochastic
inflows, enough data was assumed to be generated %o allow a
reasonably good approximation of a2 benefit function using 2 least
squares fit of the observed network optimal solutions.

The water resources problem 3olution procedure requires two
types of information in order +to produce meaningful and useful
results. The first type relates to the specific network
parameters. These include all of the arc parameters, the river and
reservoir data, demands, runoff distribution, 2¢c. Naturally, this
information is problem gapecific and would mocst generally be
supplied by the user. A second class of information, howevar, is

both model s3pecific and user oriented and relates to the accuracy

126
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and credibility of +the model. This class requires the answer %o
o several questions.
1. How many discretizatipns of reservoir contents should ove
used and from the total number of possible level
sombinations generated, which should be used for an optimal’
design for this experiment?
2. What method of least squares regression should be used
o fit the data obtained?
3. How many replications from the assumed known inflow
distribution should ve used for 2ach level combination?
4. How can convexity be assured?
After addressing these four questions, and having observed some of
the results, additional concerns require attention. These include:
5. Examining the variance covariance matrix to measure %o
validity of the least squares regression
5. Consideratioa of weighted least squares
7. Probloms associated with weighted least squares
Finally, based upon all of the above analysis:
3. Determination of the 4ata requirements for estimating
the benefit function.

These questions and related issues will be addressed in the

next 3 sections.

5.2 Design of the Experiment
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The process of estimating the benefit function requires the
digeretization of the water 1levels in <+he gystem reservoirs.
Zonsider a three reservoir 3ystem where each reservoir has a
zapacity of 25 units of water. Zach unit #ill represent some
specified number of acre feet. The hypothetisal reservoir sys‘tem
of Figure 4-1 will be used throughout this discussion. This
hypothetical example 1is further exercised in detail in Chapter 7.

Note, +*there i3 no requirement for %these reservoirs to be equal in
size and the reservoir sizes are inpu® parameters to the model, set
by the user as 4ictated by his specific system.

Reservoirs are ‘*ypically divided into zones according %o
their functional purpose. Linsley and Pranzini (1964) define these

zones as shown in FPigure 5-1. PFor a very low level of water there
is 2 ainimum volume refarred to 38 the dead storage pool. This is
the level ©below the sluiceway where water cannot be released from
the reservoir for other uses. At the very top of the reservoir, a
flood pool is normally reserved. The purpose of this pool is to
allow the temporary storage of water during heavy inflow
conditions, thus preventing high water flood conditions downstream.
During normal operations, This flood pool #ill usually be empty.
Between ‘*hese two pools is the useful storage volume. It is this
portion of thereservoir that is of primary interest to this study.
This useful storage is the portion of the reservoir that w#ill be
1iscretized for the dynamic programming approach. The percent of

ragervoir volume in *the dead storage pool and in “he flood vool is

e Crbde B AN Y L Y
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iependent upon the specific reservoir. Within this useful storage
range, members of the Texas Water Development Board indicate that a "
reservoir holding only SO% capacity could be considered as having a
gsevere shortage {depending upon the size and use of the reservoir).
. Thus, although the total ugeful storage pool is available, the user
may be concerned about only a portion of it. Thus, the range to be
1iscretized #ill be left to <the wuser and he has complete
flaxibility (within the usable storage pool), in determining this
range since the maximum and minimum water levels are input
parameters %o the model a3 a percent of reservoir capacity.

Ragardless of the range it i3 necessary to determine the number of !

levels or discretizations +o wuse to produce a meaningful set of
iata, and finally, what subgset of the total set of level
combinations can be used to achieve an optimal design?

The significance of the number of discretizations lies in

its effect on %he accuracy of the quadratic fit and on the

computational %time required. Ideally, one should use as few

1iscretizations as possible which yield the best "or near best” set

of data for a quadratic fit. The total number of possible lavel
" combinations is equal to the number of levels (NN) raised to the
- number of reservoirs (R) power. Notationally, the number of lavel

combinations is:

B ALY Kb s AR A
.y

R

ragardilags 4f the range.

For a three reservoir problem with “hree levels selacted

-
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for each, there are 33 = 27 combinaticns of initial reservoir

iavels considered.

combinations. Extending +this to 2 larger problem, say six
regervoirs and five levels there would be 15625 combinations.

As noted in the 4ynamic programming algorithm of Chapter 4,
random inflows are added to the reservoir levels at the beginning

of “<he period to yield %total water availabla. Network soluticns to

these problems yield

3 quadratic. Naturally, one does not need 15625 data points fo fit

2 quadratic having
reservoir problem).

Assume for

of discretization for 2ach reservoir. The prcoblem then is to select

points. Using this

combinatiep Figure
for the three reservoir problem. Note, there are 27 distinct
pointa on and within this cube represented by the intersection of

lines {ignore the highlighted points for now). Bach of these

is *o select some

second order models.

points represents a level combination or a design point. The gzoal é
L
subset from these 27 design points which will i
yield an optimal design. Box and Draper (1971) and Mitchel (1974a, %
I
1974b) have defined an optimal set of design points for first and X
Their work is specifically for lsast squares :
approximations “here %he anderlying arror has 1 normal ?
2
X
P4 A
¥
4

from +the to%tal set of level combinations an optimal set of design
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For five levels there are 53 = 125 total

the desired observations which are used to fit

)

28 coefficients {which is’ the case fsr a 3six

now the three reservoir case and three levels

terminology, a design point relates %o a level

6-2 shows a three level cubic representation !
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Figure 6-2
Three Reservoir, Three Level

Cubic Representation
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distribution.

Two of the ©basic approaches %o choosing an n-point
experimental design are (i) to set down a simpls factorial or
fractional factorial desgign in the factors being studied, or (ii)
to choose a design based on the well known det(X'X) criterion.
Box and Draper (1971) indicate that the first method is much more
simplistic and that the second is their preferred aporoach.

Details of their preferred approach are pregented below and
have been utilized in the computer program.

Before presenting their approach, a few new terms need to
be 1iscussed. A design point has already been defined as being
2quivalent %o a level combination. A design point has dimension
"txR) for an R reservoir problem. The design matrix was defined in
“napter 4 as being the matrix of independent variables to be used
for <he regression. A full quadratic has been selected as the
model *o be fit by the regression. Por the three reservoir, three
iiscretization oproblem, this yields a design matrix of dimension
{27x10) if all 4esign points are used. To use the notation of Box
and Draper and to be consistent with staandard notation for
regression analysis, this design matrix will be refsrred to as the
X matrix.

In their preferred approach, the criterion for designing
experiments is based on maximizing the Adeterminant of (X'X)
indicated here as 4et(7'X), (X' is the transpose of the X matrix).

Jse of this criterion dates back to 3mith (13913). The criterion

B
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has many appealing properties and its use has been justified in a
number of ways. Box and Lucas (1959) indicated that its use leads
to a confidence region for the parameter estimates of smalles+
hypervolume in parameter space. Kiafer (1961) showed that a design
which maximizes 4et(X'X) also minimizes the maximum variance of any
predicted value (obtained by using *he regression function) over
the experimental space. Further properties of this criterion are
that 1t minimizes +the generalized variance of the parameter
astimates, and that the 1esign obtained is iavariant %o changes of
scale of the parameters. This is an important property not shared,
for exampls, by the criterion: minimize :race (Y'X)”', (i.e., min
the average variance of, the parameter estimates).

Box and Draper (1971) considered several discretization
“echniques 1and found that the best design for a quadratiz fit was
o use *three levels consisting of both end points and the midpoint
of the selected range. These design points correspond to the 27
points of Figure 6-2. Thus, ‘here are 27 design points from which
to choose.

The choice of three levels of discretization runs zontrary
to the typical dynamic programming approach. Xlemes and Doran
(1977) specify 5-10 levels in their divided interval technique,
while others say as many as 30 levels may be needed. However,
these levels are not being used in *he typical dynamic orogramming
manner. The requirement is %o 3elect asnough levels to allow a good

approximation of a quadratic benefit func*ion and three points are

F I LR R
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sufficiant to fit a3 quadratic. In practice, once an 2xpression

#hich reflects the future value of water has been derived, the user
can apply the actual water levels %o this function resulting in an
operating policy representative of the current situation.

What must be done next is to select n of these design
points and apply the det(X'X) criterion, (n in this case can vary
from 10 %0 27). The design matrix for the full guadratic would now

nave dimension {(nx10). For any given n, there are sz subsets to

consider, and for esach n, there will exists a "best” design set in

terms of maximizing Adet(X'X). Yor exampls, if n = 20

~27
720

there are
=

388,030 A4ifferent subsets of 20 design points to evaluate.

calculating the det(X'X) for all 388,030 of these subsets will

regult 1in one of them having a determinant that is greater than or

aqual to all others. The subset with the maximum det(X'X)
represents the best set of design points to use, given that 20 are
to be used. Now, plotting the optimal 1et(Y'X) obtained for sach n
yields 2 form similar %o the one shown in Figure 5-3. Through
this

process, Box and Draper were able %o 4erive an optimal desizn

for a quadratic which has a general structure and can be applied to

problems of three or more factors.

The resulting optimal design is referred to as the "cube
plus star" design. Mitchel (1974a, 1974b) refers %o it as "D

optimal” experimental Aesign (the D referring to the determinan® of

the X'X matrix}. This "cube plus star” nomenclature 2ssentially

iescribes the 1esign. Tn Figure 5-2, the "cube" rafers %o the

N A
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Max det(X'X)
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Number of Design Points
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Figure 6-3
Plot of Maximum det(X'X)
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eigh%t vertices of the zube. The "star” is defined as the center
point on each of the 3ix surfaces of the cube and one point axactly
in the <zenter of the cube. This results in a total of 15 design
points af a possible 27 points in *he three factor ~ase. These 15
points are the highlighted points of Figure 6-2.

In general, if there are R reservoirs or dimensions to the

oroblem, there will be:

2R + 2R + 4
design points. This means +¢hat for the six reservoir case
mentioned Ydefore, rather than using five discretizations for a
total of 15625 design points, only three discrete levels and 77
to%al design points are required.

One possible disadvantage of the 1et(X'X) criterion is tha*
it is a "variance ~riterion” and effectively assumes that the model
sonsidered is the +true model. Box and Draper (1971) point sut
however that in situations where the design is physically
restricted to a cuboidal region of interest, the difference between
the gspread of the design points for the best all-bias design and
for +the best all-variance design is minimal. Thus, they conclude,
that the det(X'X) criterion appears to be not unrealis%ic either
#hen +the model is correct or when the design is restricted to *the
ragion of interes#, or both.

The det(X'X) criterion applies to normal least squares
problems where the variance about 2ach design point i3 constan® and

there {3 no «covariance present. Thus, *the variance zovariance
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matrix has *he standari form:
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The variance covariance matrix for the three reservoir

problem will have dimension (15x15) where sach row represents

of the 15 design points. The columns have the same meaning.
2

values on *he main diagonal (Q°) represent the variance about

nean of +the calculated response for sach design point.

one

This

variance 1is determined by taking a number of replications at each

jesign point and

statistical methods.

calculating the variance using standard

T™is variance i3 considered to be the same

for all design pointa. This is the 1efinition for homoscedasticity

of data,
matrices are symmetrical.

alaments aqual %o zero.

Clark and Schkade (19374). All variance covariance
Thig particular one has all off diagonal

This indicated that there is no covariance

present. This 1is necesgsary for the use of normal least squares

regression which will be presented next.
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6.3 Normal Least Squares

In the analysis of variance, for the normal least squares

method:
b= (XX Xy
where:

X is the design matrix (independent varisbles) X'=X

transpose
Y is the vector of dependent variables (mean of the
replications)

b is the vector of =2stimates of the coefficiants

The variance of the coefficients is found by:

v(p) = (x'x) N (xvr) ()
whare V i3 the variance covariance matrix. This reduces to:
v(p) = (x'1)"" g2
when @ 2 i3 known and V is considered to be the Identity matrix. ?
For 1independent observations, this assumes that the variance

covariance matrix of the design matrix 1is of the form:

Here as before, the diagonal slement (i,i) represents the variance

FEIET O Y PV RPRT S

of the replicaticns about the mean of the ith design point. For

the water resources problem, 0’2 i3 not known. Consequently, an
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egtimate of q’z must be derived by performing enough replications
at each design point *to get a reliable estimate of q2. which in
this <case is synonymous with the V matrix. Choosing the number of
replications i3 *he subject of the next section. Given %that V has
been derived of the form shown above, the variances of the

gstimated coefficien%s can be calculated using equation 1.

5.4 Replications
A means for determining the number of 4raws for deriving 2
. 2 . .
good estimate of T~ is to select some acceptable relative srror
(alpha) which raprasents <+he ratio of the standard arror of the
2stimate of the variance to *the %rue variance.

I+ is nown that:

= 232 Exz(k-ﬁ = var(X2, (1) = 2Y
)

2
where k i3 the number of draws, X~ is “he notation for the =hi
square distribution and Y is the 1iegrees of freedom f3r the chi

square distribution.

(k=102 Var(s?) = 2(x-1)
¢t *
i
Var(si) =(2 Gi) / {x=1)

- 2 2 2
°E(si) ',?TT G, £ alpha
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SE is the standard error of the estimate of the variance, si.

™us the relative arror of *he 2s3timate to the true arrcr is:

se(s?) 2

2 k-1
03 J

For fixed values of alpha k can be determined. A few

values are shown in Table 5-1.

Table 6-1

Number of Draws Required to Meet Specified 4ccuracies

alpha _k
.30 22
.25 30
.20 100
.10 200
.07 500

If +the process described by the reservoir system were relatively

stable or unchanging from period +o period, V could be 2stimated %o

the desired accuracy one time using a large number of draws. Then

through the use of ordinary least squares =2quations, the variance

of the cocefficients of the benefit function for each period could

ve ietermined. TFor this problem, many things change from period to

period, specifically, the inflows and arc parameters (including the

Q2 matrix) for the nonlinear arcs. These changes require tha%t the V
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matrix be vreevaluated for each period since =2ach period is in

effect 2 new problem. This would suggest using as few draws as
possible to keep the model computationally feasible. 30 draws will
be used for the 2xample problems and this is considered adequate

for the water resources problem. If the user desires greater

accuracy, naturally he can increase the number of draws at the

expense of time.
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6.5 Maintaining Concavity of Benefit Punctions

A requirement of the optimization procedure is that each
benefit function derived by the quadratic fit and subsequently used
in the 1ynamic programming procedure must be 2 concave function.
Thus for each t, BF(t) must be concave. This requirement comes
from a limitation of the network flow optimization algorithm of
“hapter S. Specifically the algorithm only works to find a flow
solution which minimizes total cost if the total cost function is
sonvex. Since the negative of the benefit function is part of the
208t function, this requires that the bdenefit function be concave.

This 1limitation of nonlinear wminimization algorithms to
sonvex objective functions is not uncommon. The presence of
concave porticns of the objective function may result in local
ninimums. Algorithms to handle the more general problem are
usually much more complex and require more computation time for
obtaining a solution. At any rate the network flow algorithm can
handle only convex cost functions (or concave benefit functions).

The requirement of concave benefit functons does not seem
tc impose serious practical 1limitations for the water resources
problem. It is clear that the marginal value of water stored for
the future should be declining with the =amount of water stored.
This can be proved to be true for the models used for this
rasearch. Howaver it is quite possible to nappen upon a

non-concave quadratic f€it if oproper precautions are not taken.
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Sven if the underlying model has a concave benefit, if independent
random observations are taken at each design point statistical
error may result in a convex fit. This is especially likely if the
model is nearly linear. One thing that could be done is to check
the quadratic matrix for negative definiteness after each benefit
function 1is derived. However, 1in the event that the benefit
function is not concave, an alteration of the fi% would be required
in order ¢to continue. It 1is not clear how %o perform this
alteration in +the general zase. Instead of resorting to this
manipulative alteration, 2 random sampling procedure will be used
which will insure a concave form.

As indicated before, 21 series of random numbers which are
used to derive the stochastic inflows is selected. If a diffasrent
random number is selected for svery design point, there is no
assurance that the final fit will be a2 concave quadratic,
regariless of the number of replications.

To assure concavity the same set of random numbers will be
applisd “o every design point. Thus, if there are to be k
replications for each design point, there will be a total of k
random numbers. These same k random numbers will be used to
generate the k replications for all levels.

To illustrate *this idea, refer back to Figure 4-4. In *his
figure, therae are LR design points. The responée matrix is (Lka)
#here k i3 the number of 4raws. Note that the wth Araw i3 applied

to all i levels of the iesign. Next, the Yiw are averaged over the
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% replications and these mean responses are then used to fit the
quadratic. Thus, it will be shown that by using the mean response
values, obtained through the application of a constant set of
random numbers, concavity will be assured.

Consider a particular design point i defined by the
reservoir contents si(t-%)' A random draw w determines an inflow
vector Iw' Since the inflows are assumed to occur at the
regervoirs, the total water inputs to the system for design point i
and random draw w is:

Si(t-1) * Lu
These inflows appear in the network model as positive external
flows for +the reservoir ;odes. The optimum flows are determined
for the network model and the minimum cost is ‘he response Yi, .
The network problsm has 2a coavex objective function gince the
problem is linear except for the convex function -BF(t).

Let Yi(Iw) be the value of the minimum cost sclution of the
network model as a function of the vector Iw' It is well mown
that the minimum value of a convex objective expressed as a
function of the right hand sides of the constraints is also convex.
Thus, Yi(Iw) is a convex function with respect to I . The
procedure used to obtain BF(t-1), samples from the distribution of
Iw to obtain k 1istinct values. The k response values of Yi,w thus
obtained must fall on “he function Yi(Iw). By following the sabove

procedure for the water resources problem, the possibility of

generating response iata that was nonconvex was removed.
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6.6 Covariance Matrix Derivation and Analysis

Because of the requirement to use a constant random number
set for all design points, a2 high degree of correlation vetween
the design points has been induced into the model. The fact that
this correlation is present requires the consideration of using a
weighted least squares regression analysis.

Whether weighted least squares or ordinary least squares is
used, it is required that a very good estimate of the variance
covariance matrix (V) bve derived. This is necessary since the
variance associated with the problem is not known apriori. Because
of the possibility of correlation being present it is necessary to
derive this V matrix for use with both the ordinary and weighted
least squares analysis.

The set up for weighted least squares analysis when all
design points have common random inputs goes as follows:

Let:
iu = response at the ith design point when the random
input is the wth random sample from a given distribution

X, = (x

L 110 ByoreeeXy ) = u-vector of settings of the

iu

independent variables at the ith design point, 1 < i < n.

where n is the number of design points used in the n-point optimal

design. .

The asaumed model where B is the assumed coefficient is:

Y ’EBJ"U + &

i,w
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L ]
where:
N 2 .
<
£ om0, 8%, 1< <n
* 2
and where Wi depends on 1i.
. Now by supplying the same random input w to 2ll n design points,
the result is:
~ = '3
VOV(Y]‘_,W’YJ'W) COV( &i'w, J.'w)
=v%, #0
1)
With the notation:
VO \Vi,j )v
~ > ~ I
T« B,
Y" = . . B =
Y B
n,w u
L . - .
v -
- X = 6" P .
. xn <£‘n.w
L ) L
*he ovarall model in *his situation becomes:
2q(2):
.- - — . S ——————— vl T i
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j
| Y, =%+ &
. e
i
‘.. E'n VN(O’VO)
| Averaging over X independent replications of the random input,
. s
. yields:
. v Bq(3):
o Y=x3+&
|
! where:
!
) é Y T
4 1w 1
w=1
Y= = .
1 ——
?’i Yo K
d”
L- -— b
- - - -
1 & -
3 = E’1,w é‘I
& = . = .
1 & -
. 4 <rn,w én
L J |
To apply weighted least squares (WLS) analysis to (3), %the variance
sovariance matrix V for & is required. Pick two design points i
and j; compute:
2ov(€ &) = cov(h SE <, )
’ it OV e G T j.a
A= o=
(BN~ # SOV SETT-RIE FRL Y S - il

l
-
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n
. Now w # m=pw and m are independent = '
i ‘
vl » - !
i Cov(ii'w, Ej,m) B( éi.w Ej,m) |
iv -7 ;
:" L 4 d( &irw) E( ejlm) !
The lagt two terms here are equal to zero by the assumption of the ]i
-
model.
This leaves:
@ 104 =
S(€, ) 2(E, ) =0
since # and m are independent.
L On *he other hand, for w = m: |
|
o = 0 & £ :
Cov(( € v &y p) = Cov( &y &) |
=y0 '
'vij {
cov(E. €.) = L EK yo |
SAARE R i i ’
K< w=1 i
1 o 1 .0 |
= - K V.. ==V, [
K2 1j K ij i
< 1
JV = ~ R -
7 (aOV(alyzj)) KVO .
= Lcov( €, £))
X i J
. N
. ;{-(Cov(Yi'w, Yj’w) o
. Thus %o estimate V, compute: o
Tq 4): Fo
§
. Ty L Sov(t,,Y)) = ©o
X
1l )<y L - XT.Y
4 ¢ (x-1) i, “j,w i
i Ped -
[ .
| kY
h
M
¥
o= - ——ay — '_’___’:.',l:,__ R i » SR r—s-w-—, oy ot i Ty e - w— .
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An example of a variance covariance matrix derived in this
manner is shown in Table 6-2. Three things should be noted when
observing this V matrix. (i) The off diagonal elements of this
matrix are definitely not zero. This means that there truely is a
significant zovariance relationship 2as expected. This will be
illustrated under (iii) below. (ii) For this V matrix, the main
1iagonal slsments, which represent the variance of the replications
abou*t the mean response, are not significantly different. These
iiagonal elements represent the variances of the response about the
mean of the variocus design points.

The test used to determine whether or not these variances
are statistically -equivalent 1is the Burr Foster 6 test statistic
{Burr (1974)). 5 is used here to distinguish this test statistic
from *he ? (quadratic) matrix.

In terms of ‘he sample variances s? computed within each
treatment, the Burr Foster test statistic 13 given by:

q-= (;%E si ) / C:é:si )2
i=1 1=
where n is +the number of samples or design poihts in the optimal
jesign. Large values of'E lead to a rejection of the hypothesis of
aqual variances.
The calculated ‘3 statistic for the data of Table 5-2 is

77 From a Burr Foster table of critical values, a2 3 statistic
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of .08 or greater is considered significant at the .001 level with
29 Adegrees of frsedonm. Thus, the design points for the optimal
iesign can be interpreted as having squal variances. (iii) The
third feature %o note when examining the V matrix of Table 5-2 is
“he correlation coefficient, denoted as P. This coefficient is

calculated by:

P = covariance(X,Y)
Xy (V(X) V(Y))‘I/Z

It can be shown *that -1 < ny < 1. The quantity ny is a3 measure

of the association ©between *the random variables X and Y. For
axample, 1if ny = 1, X and Y are perfactly correlated and the
possible values of X and Y all 1lie on 3 straight line with a
positive slope in the (X,Y) plane. If ny = 9 the varisbles are
said %o be unassociated, that is, linearly unassociated with each
other. Calculating the value of ny in this manner for the data of
Table 5-2, results in finding that all of the correlation
soeffizients are ¥ .99. It is quite clear from this data *hat X
and Y are nearly perfactly correlated for this example. It is 2lso
quite clear *that the off diagonal elements are not zero. This

indicates that weighted least squares regresasion analysis shouli bve

zongidered.
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5.7 Weighted Least 3quares Regression Analysis
¢ Derivation of the V matrix was done in section 5.6 using a
. set up for weighted 1least squares analysis. Estimation of ¢he
! P penefit function coefficients and their variance for weighted least

I aquares is as shown below. :
f For the weighted least squares method: |
| b= (xv'oxvly
#here 7V is the same variance covariance matrix as before.

If the osbservations were independent:

2
where some of the c; may be equal.

Recall however that *aking +*the same sequence of random

iraws fsr aach design point results in a highly dependent

structure. ZJonsequenly the full variance covariance matrix (V) of
% the sbservations must be considersd. This V matrix will be (15 x

‘5) where the i,j%h entry will be:

“°V(Yiw'Yjw)

. and “he sovariance is defined as:

8q(5): . 2
) > 7.7, L
ol 1 1( Y. Y. - kY, Lo
“ov‘Yiw’Yjw)‘E BT e s 1

[ ]
e wena s

This is the same expression obtained before as squation 4.
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An equivalent expression for this Covariance which circumvents some

of the numerical roundoff errors associated with these calculations
is:
2q(6):

k

vV = COV(Yiw'Yjw) = (%) E%T (5;§KYiw’Yi)(YJW'YJ))

Given this V matrix calculated as squation (5) or (5), the

variance of the ccefficients for weighted least squares analysis is

expressed as:
2q (7):

v(p) = (x'v'x)”’

5.8 Covariance Matrix Singularity

The fact that there is a highly correlated structure due to

the procedure for selecting and applying common random draws for

all design points cannot be ignored. This fact should suggest the

use of a weighted least gsquares approach. Because of this

significant correlation, 2 near gingular V matrix is derived. For
most problems this occurs for the period T d1ata. In these cases
use of the weighted least squares formulas, requiring inversion of

the V matrix simply 40 not work.

The reason for this singularity is that due to the method

of applying common random numbers, there i3 a strong dependency

between raogponses over the entire lesign space. So strong in fact

that the correlation coefficients for the covariance are nearly all

. &5”2;‘. LAt Wi
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.99. This suggest *hat all of the responses lie in or very near a
hyperplane in 15 space. Por the case of 15 design points, given

th can be predicted with very good

; * the other 14 points, the 15
;\ ’ accuracy. Thig interpretation follows from +the fact that the
noninvertability of the V matrix implies:

iet(V) ¥ O
This is the same as saying there axists a vector "a"” such that:

a'Va = 9

which implies:

[}
o

1
Var (i aiYi)

i=1

This then comes from the definition of a hyperplane in !5 space:

1
a. Y. =
i iti
13

Now, a hyperplane in !5 space can be thought of as shown in

(@]

Pigure 6-4. Some of the problems start out as invertable weighted
least squares problems, however, all of the responses fall within
this hypervolume in 15 space. Ini%tially, this hypervolume may be
- large enocugh or thick s2nough that the V matrix is invertable.
Taking the result of the inversion and estimating *the next set of
2cefficients has the a2ffact 5f squeezing down this hypervolume
until eventually it is too *hin to 2llow an inver<able form of the

V matrix.
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Figure 6-4

Illusion of Hypervolume in 15 Space
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To support this theory a linear regression was performed on
the response 4data using Y1 23 the dependent variabls and the
remaining 14 mean responses as the independent variables. The
model to be fit was thus:

Y1' Bo + ‘;%‘SBJTJ + &
The results were even more convincing than anticipated. The
results of this regression are shown in Table 6-3(a).

Next a similar regression was performed on a set of data
that was originally invertable and observed that in fact this
matrix was nearly singular from the outset. Table 6-3(b) shows the
results of this regression.

These tables conclusively support the theory that the means
of the responses all lie in a hypervolume in 15 space. Further,
this totally explains the noninvertibility of the variance
covariance matrix.

Thus, while weighted least squares analysis is indicated in
nearly all of the data, its use brings about its own demise due to
the noninvertibility of the V matrix. Consequently, the
recommended methodology does not utilize estimation of the
coefficients using weighted least squares.

Table 6-! 1in section 5.3 showed the number of draws
requifad to get some specified accuracy of estimating the V matrix.
If +the problem 4id not changs from period %o period, the V matrix
could be estimated one time using a large number of draws, and then

2 fewer number of draws could be used for subsequent periods.

PR,
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Table 5-3
v Results of Linear Regression
R (Y, with Y, through ¥ o)
(2)
’ Not
Invertible
R-Squared 1.0
Standard Dev. .00835
Residual(Ss) .00599
P-Value 354422760.
Significance .0
A
.
- -

(b)

Invertible

1.0

L1104

. 18291

1400488.

.000
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Since the game number of draws will be required for each pericd
another criteria for determining the number of draws is to select
k' 30 as to control the maximum variance of the predicted srror.
This is Adifferent from the derivation of the number of draws for
the V matrix in the following way. Recall that in deriving the V
matrix equation (4) was used where:
3q (3):

Vij - % bOV(Yi,Yj)
Here K is the number of 4raws which is determined by the selection
of an acceptable relative error as in Table 5-1.

Controlling +the maximum variance of the predicted arror
requires that the variance covariance terms derived in equation (4)
be used but without the division by K. Let:
3q (9):

Vo = KV
This is +he desired V matrix for making this determination. Now
for ordinary least squares it is desired to select k' large encugh
to control %he maximum variance about the mean of the worst design
point, or:

2q (10):

] -1 ' 8 &l -1 ' 1,/2 '
Yax  (x (XOTERVOET)T)Z (b a0 T < Del
xoe X
“here

x, = row in X matrix with largest variance

¥ = number of draws
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t = atudent t value for desired accuracy with given 1.f.
. Del = absolute tolerable error (% of Yo)
. Rearranging:
. B (11): 2 -1 -1
' (ta/2 At ) max (X (X'X)7T (X'VK)(X'X)TK))
k' = .ET’_- X°€X
.

i The results obtained using the normal. least a3quares
calculations as applied to the data of Table 6-2 follow. In this
case, the initial V matrix was obtained using 30 draws. 3By
applying equation (3) to %his matrix and using the result (Vo) in
squation (11), %' was determined to be approximatsly 20.

Table 5-4 shows other results given various settings of
alpha and %the tolerance level in absolute error.
Table 5-4
Yumber of Draws for Controlling Maximum Variance
Number Tolerance alpha Talculated
dravs for V. level setting 4 draws
30 .05 o) 20
. 30 .0t : .04 30
100 .01 .05 33
* 100 .01 .01 32
Prom +his table it would seem reasonable %c use either 30
. draws (alpha = .04) or approximately 90 draws (alpha = .01)
depending upon the desired accuracy. These two choices seem
+ . .
b e E————————————— ——
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reagonable since in both cases the number of draws used to estimate
V and the calculated number of draws are nearly equivalent. As was
ione 1in section 4.3, 30 4raws will be used. Again, the usér can

use more draws if greater accuracy is iesired.

6.9 Selected Methodology

Given the statisftical information just presented, it is
desired to select a prudent and statistically sound heuristic for
the general problem. Both +the accuracy of the model and i%s
computational efficiency must be considered. Experience has shown
that each three rsservoir nonlinear network requires approximately
0115 seconds of CPU time. Due %o the dynamic nature of the water
resources vprodlem, it 1is necessary that the V matrix ve updated
every period. Accordingly, the selection of the number of draws
(X) +o estimate the V matrix and the number of draws (k') for the
periods %o follow should ideally be the same.

For these reasons, it is felt that a minimum of 30 draws
should bYe wused for estimating the V matrix and for subsequent use
in calculating the variance of the s2stimated parameters. The
estimation of +the parametars will be ~calculated using ordinary
. least squares methods, 2and if the variances of the parameters is

calculated, 1t will be 4done using the full V matrix in the manner
5f aquation 4.
While *he main 1interest 1liaa in 4he estimate of %he

parameters it is instructive %o know what lavels of variabilisy
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exists. By using 30 draws per level for all periods a reasonably
good estimate of the parameters will be achieved with a2 minimum of
computational time.

The relative error of the standard error of the estimated
variance to the true variance is 25%. Given this 25% criteria,
very high confidence about this estimate is realized as indicated
by the 1% absolute tolerance level and the 4% alpha limit from the
t table (see Table 6-4).

In summary, it is felt that 30 draws is a good compromise
between accuracy and computational time. For 30 draws per level
and 15 levels per period the computational time will be roughly 7
seconds per period for the three reservoir problem. The number of
periods to use is highly dependent upon the specific problem being
considered, 1its intended use and the availability of data. This

#ill be addressed morse fully in Chapter 7.




CHAPTER VII

7. Example Applications

d This chapter includes several example applications +to
' jemonstrate the feasibility of the model. Section 7.! includes two
= network formulations with some variations applied to both. Section
7.2 includes a representative application to the Guadalupe River
Basin in Texas by attempting to evaluate 2 proposed new aystem to

meet the demands of *the year 2020.

{ 7.1 Hypothetical Problems

This section 1includes both a three reservoir and a four

reservoir example problem. There are two versions of the three ,
reservoir oproblem, the differences being in the number of arcs and

the selection of the arc parametaers.

Figures 7-1, 7-2 and 7-3 represent the three problems to be
considered. These #ill be referred to herein as examples !, 2 and
3 respectively. Although the node structure of PFigures 7-t and 7-2
are the same, note the iifferences in the number of arcs and in the
irc parameters. The network of Figure 7-2 assigns a benefit to
. having a minimum amount of water in the river reaches. This may bde

necessary iue to hydroelectric concerns or perhaps due to concerns

for aquatic life. Additionally, the benefits for supplying iemand
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are revised in this figure which tend %o place more value on
meeting the current needs than the venefits for demand of Figure
T-1.

Reference has been made throughout this report to Figure
4-1. The network of Figure 7-1 is identical to Figure 4-1 and many
of the experimental results are used throughout this report.

For Figures 7-1 and 7-2, all reservoirs have a capacity of
25 units of water with an allowance for 5 additional units as a
costly high water condition. The discretizations are (.5, .7, .9).
For Figure 7-3, the capacities of the reservoirs are (40, 20, 30,
25) for nodes (1,5,9,13) respectively. For this example the same
discretizations of (.5, .7, .9) are used. In this chapter, @ (the
quadratic matrix) will use the subscript t. This will mean that if
T = 12, QT #ill ©be the assumed quadratic benefit function for
period T, and +the dynamic programming algorithm will generate Qt
for t=11, 10, 9,...,! in this order. Additionally, when Qt is
used, it will imply the existance of the associated linear terms of
the f&ll quadratic, in addition %to the quadratic matrix itself.
Using this notation, QT for Figures 7-1 and 7-2 is taken to be the
negative of the benefit function used as the example in Chapter 5.
QT for the example of Figure 7-3 uses the identity matrix for the
quadratic matrix. QT terms for these problems are summarized in
Table 7-1 which includes +the quadratic terms and the associated
linear terms. For both cases, the QT terms were arbitrarily

selected.
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B2
B3

B4

B10
B11
B12
B13

B14

Table 7-1

Assumed Conditions for QT

Figs 7-1,7-2
~59.22
-46.61
-39.69

.86
.53
.52
.64
.40

.68

Fig 7-3
-15.0
-20.0
-25.0
-30.0

1.0

0.0
0.0
2.0
0.0

0.0

0.0
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In analyzing these problems it is interesting to observe
the effects of two primary factors, (i) the naturs of the inflow
data and (ii), the effect in the long run of the assumed values for
QT' These two issues will be addressed in the next two sections.
7.1.1 Model Response To Inflow Data

To address the first issue QT was arbitrarily selected as
shown in Table 7~1 and the inflow pattern was varied. Three
variations of the inflows were considered as shown in Figure 7-41,
o and <. Figure 7-4a represents inflows which are low in the
present and monotonically increase to higher conditions in the
future. Since the algorithm works packward from the future to the
present it is expected that the current decisions will not insist
that water Dbe stored as a first priority since the model foresees
nore supply in the future.

Figure 7-4b represents the opposite inflow situation to
that just discussed. Here there is more water in the present but
less 1is anticipated in the months to come. It is expected in this
zase that the model will attempt to save some water for future use.

Pinally, Figure T-4¢ depicts the water fluctuating
throughout the time horizon going from wet to dry then wet to dry
again. This may be more representative of the inflow profile over
a2 longer time horizon. For the sxamples, T was selected to %e 12
#ith each period being esquivalent to one month.

These inflow characteristics and the network of Figure 7-!
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will be referred to as example 1-1, 1-2 and 1-3. Similarily,
applying these inflow profiles to examples two and three will yield
three cases gach.

For all of these problems, inflows were assumed to be
distributed normally with standard deviations running from 50% to
304 of the mean for all reservoirs. Actual inflow data for the
profiles of Figure 7-4 are included in Part I of the Appendix.

The negative of the derived benefit functions for Q1 for
each of the example 1 cases are shown in Table 7-2. Tables 7-3 and
7-4 show similar results for examples 2 and 3 respectively.

Some comments regarding the data of Tables 7-2,3,4 follow.
There are two primary things to note wien evaluating these tables.

The first item of interest for these tables deals with the
magnitude of the linear terms of the benefit functioan when compared
to the other negative costs of their respective networks. As an
example, consider Table 7-4 and Figure 7-3. Consider the routing
of flows as the flows into the system at the reservoir nodes are
increased from an initial zero level. The first unit of flow will
be routed Dbased solely on the linear cost contribution, since for
the nonlinear arcs, there is no quadratic contribution to the
marginal cost 2t zero flow. Consequently, for example problem 3-1
#hich foresees a wet future, the initial allocation of water is to
meet current demands. This is seen by comparing the negative
benefit for supplying demand with the negative linear terms in the

venefit function. Taers 6 and 14 will first be supplied water
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until their minimum demands are met (saturation of one of the
demand arcs). User 14 will also supply its secondary demand before
any {low is allocated %o the reservoir for future storage. Users 2
and 6 will compete for water almost immediately with <‘heir
reservoirs.

For the inflow profile of Figure 7-4b, the future is
expected to be dry. In this case, note the extreme change in the
linear terms of the nonlinear arcs which indicate a strong desire
to store the initial allocation of water, (likewise for the inflow
profile of TFigure 7-4c). This pattern also holds for the data of
Table 7-2. Table 7-3 1is unique in that the linear cost terms
agsigned to the nonlinear arcs do not change much at all over the
three inflow profiles. This is a result of placing large negative
costs on the river arcs of PFigure 7-2. For this example, the
current needs dominate the entire process and in the end, all
jemands (both users and storage) reflect near equal priorities.

The second item of interest is the amount of quadratic
effect realized. For 3ll three example problems, as the future
supply of water decreases, the quadratic terms increase.
Similarily, for inflow profile 1, <these +terms are very small
indicating 1a near linear situation. Thus, as the future supply of
water decreases, interactive forces tend to arise which supports
the hypothesis of reservoir interaction.

One final comment on these tables. The data for inflow

profiles ' and 2 cannot be compared directly with profile 3 because
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there is more water overall 1in oprofile three. For profile 3,
period ' has a very large amount of inflow, as do the next few
periods. Thus, the results for this profile are altered dy current
and near term high inflow conditions. This could ve what is
causing the biggest difference in the coefficients.

As an additional display of the model results, Table 7-5
shows one of the negative benefit functions along wi&h the
calculated standard deviations for the estimated coefficients.
These standard deviations were calculated using the methods
described in Chapter 5. These results are very similar for all
example problems and indicate that in fact, 30 draws does yield
very good estimates of the cocefficients. An additional tsst was
performed using this data. Rather than estimate the coefficients
and calculating their variance using the normal equations, the data
was providéd as input to a least squares regression package
(FIXREG). The disadvantage of .sing FIXREG regularily is that it
requires considerably more time due to thenumerous statisties it
generates and to its built in plotting capability. However, it was
used on occasion to assure that meaningful results wers being
generated. An example of some of the results are also shown in
Table 7-5. These t and F levels of significance and the overall
R term zonclusively support the quadratic as a valid function for
the regression. This o9xample is highly representative of the

results Tor all example problems.
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" Table 7-5
L ‘ Statistical Results for Coefficients
Q, Std.Dev T-STAT
B0 -250.9 28.8 3.7
B1 -25.9 .33 58,2
B2 -15.0 .19 84.0
B3 -15.8 .19 33.0
B4 .274 012 23.0
BS .099 .002 49.5
}
B6 103 .002 51.%
37 127 007 18.1
B8 114 .008 14.3
B9 184 .004 46.9
8% = .999+
.
¥ Significance = 5.8E+5
.
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7.1.2 Operational Use of Benefit Functions

Once the venefit functions have been derived vy the dynamic
programming procedure, they should be useful in an operational
context to make decisions on the optimal distribution of available
surface water in any given month. The function can easily be saved
by storing the coefficients of the quadratic form and the linear
coefficients. This use of the benefit functions is illustrated in
this section using the venefit functions derived for periecd 1 for
the example cases.

To wuse the benefit functions the decision maker must
odbserve his reservoir 1levels at the beginning of the month,
calculate or observe the expected inflows and run the single period
optimization one time. The resulting flows will determine the
policy for period 1.

To implement this activity with the computer codes used for
the dynamic programming procedure a few changes need to be made to
the data set. The required changes are very aimple and do two
things. Pirst, they force the logic to skip certain calculations
that pertain to multiperiod and mult-draw problems. Second,
3pecific changes to the input data set allow the user to specify
his desired conditions.

Using the Q1 benefit functions of Tables 7-2, 3 and 4,
several period ' conditions were assumed. These assumed conditions

represent the sum of the observed reservoir levels and the expected

inflows for the period (ie. total water available for period 1).
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With these %otal 1inflows the optimum flows were obtained by the
network algorithm. These flows describe the optimum decision set
for each condition. Some of these are shown in Table 7-6.

Specifically, the data of Table 7-6 represents two examples
to be discussed. The first two columns of Table 7~6 reflect two
inflow level sets for period ! as applied to example problem 1-2.
The third and fourth columns reflect similar inflow level sets for
example 1-3. There are other, perhaps more interesting, examples
which  involve more releases and transfers of water between
reservoirs, but these were selected to demonstrate the network
optimization technique. In all +these cases (except the last
column) all the water available at each reservoir was used to
supply demand at the reservoir or saved in the reservoir. No water
was transferred or released.

This first discussion pertains to example 1-2 of Table 7-6.
Consider the first column with inflows to the three reservoirs of
13/13/173. Referring to Table 7-2 and Figure 7-1, it is clear that
the linear cost coefficients for the benefit function are more
negative than the demand cost coefficiants. For reservoir 1, this
means that the initial allocation of water will go +to the
reservolir. The question is how much water will be stored before
any demands are met? As water is stored in all reservoirs, the
marginal cost oun the nonlinear arcs for storing water increases.
At some point, the marginal cost will be greater than the marginal

cost for supplying demand. For reservoir 1 this occurs at 11.35
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units of water. At this point, the marginal cost for storing water
in reservoir 1 1is increased to ~17. This is the breakpoint for
supplying demand, and the next 1.65 units are allocated to the
demand at reservoir 1. If these 1.65 units were stored rather than
used, the marginal cost would be greater than -17 and hence, the
network flows would not be optimal.

With regards to reservoir 2 and demander 2, all 13
available units are stored. At this level, the marginal cost for
reservoir 2 is -10.24. The marginal cost must increase to -10.0
before flow will be allocated to demand. Finally, for reservoir
3, the dinitial 1allocation of water went to the reservoir since
-15.7 < -15.0. However, very quickly, the marginal cost for this
reservoir drops to -15.0 and the next four units of water go to the
user (node 10). Once wuser 3 received 4 units, it is again
profitable to store water and the remaining water is in fact
stored. Pinal marginal cost for reservoir 3 is -10.19, far better
than supplying an additional 3 units to user 3 at a cost of -6.0
per unit.

For the 22/22/22 column of example 1-2, similar flows will
occur for the first 13 units. However, with an additional 9 units
of water available at each reservoir, user 1 receives all 7 units
requested with the remaining 2.65 units being stored. In this case
the ending marginal cost for reservoir 1 is -13.,22 versus -17.0
from before. User 2 now receives 3ll 3 units demanded at a cost of

~10.0 and an additional .11 units at ~7.0. Given additional flow,
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the gecond increment of demand at user 2 will be satisfied before
any additional storage. At the current levels, the marginal cost
for reservoir 2 is -7.0. Reservoir 3 ending marginal cost is less
than -6.0 and wuser 3 does not receive its second increment of
demand. Note, in all these cases, no flow is released downstream.
This would not occur unless one of two things were to happen.
First, if an upstream reservoir has an over abundance of water such
that some marginal cost downstream (user or storage) was
profitable, or 2, if a reservoir has enough water to cause its
marginal cost to go to zero while meeting all demands. Then i%
would be profitable to release water at a cost of zero rather than
store it at some positive cost (gince 2dditional storsge would
cause the marginal cost to go positive).

Turning now to the data for example 1-3, for inflows of
13/13/13 reservoir 1! marginal cost goes to -17.0 with only 6.31
units of flow with the next 5.69 units going to user ! at a cost of
-17.0. This breakpoint is far lower than for example 1-2 due to
the significantly higher quadratic terms of Table 7-2. Reservoir 2
ending wmarginal cqst is -10.8, atill less than -10.0 for its user.
And for reservoir 3, its snding marginal cost was -3.45 (nearing
zero) .

These seemingly low ending reservoir levels are apparently
due to the high inflows in the first few periods of profile 3.

Por the 18/18/18 inflows of example 1-3, the important

thing to note is that ending marginal cost for reservoir 3 is zero.
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In this case rather than store additional water (since all demands
are met), 5.972 units are releasd at zero cost.

Many variations of these problems were run {not always
having the same inflows for all reservoirs) with different results
for each case.

Some interesting alternatives to these examples might be to
allow transfer of water back upstream at zero or some very low cost
thereby making it profitable to spend a few dollars to get the
water where it is needed the most rather than release it at zero
cost. Another interesting alternative would be to supply a large
amount of water to reservoir ! with zero inflows at reservoirs 2
and 3. If the zero cost arcs of the system were given a large
capacity, enough water could be put into the system to meet all
demands (maximize the current return) and to drive the marginal
cost for all reservoirs to zero (maximize the future return). This
could be done using slack inflow at reservoir | at zero cost and by
putting a high penalty on releasing water to the ocean. In this
case the objective function would achieve its absolute minimum,
thus deriving the solution to the quadratic problem.

As indicated throughout this report, the reservoir contents
at the beginning of the period do not have to correspond to the
discretized reservoir water levels used to derive the benefit
functions. The functional form of the benefit function was derived
from the discretized levels, but this form is a continuous form and

applies for any set of water level combinations that fall within
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the selected range of interest.
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7.1.3 Effect of QT on the Model

The main concern here is the effect that the assumed values
for QT have on the model. Naturally, all other arc cost parameters
are also questionable since selecting them is an art in itself.
However,‘ it is assumed that the user will have a fairly good feel
for these values. What he will not have a good feel for is the
future value of water at the end of the time horizen.

To measure this effect, the network and inflows for example
1-2 were used. Several variations of the period T quadratic
benefit functions and linear terms were examined with nearly
identical results in all cases. The results shown in Table 7-7
represent three of these conditions. This table shows all 12 of
the Qt venefit functions as they were derived over time. For the
tiiree cases shown, case 1 started with the assumed benefit function
of Chapter 5. Case 2 kept the same linear terms, but used the
identity matrix as the quadratic matrix. Case 3 used the same
quadratic matrix zs case ! but changed the linear terms. Observing
the first few periods of results (periods 12,11,etc.), it is quite
clear that they are significantly different. However, it is noted
that after approximately 8 periods of data (04) the coefficients of
the ©bvenefit functions are very close in value. After 12 periods,
all three Q1 benefit functions are nearly identical. Many other
variations were tried with similar results. Consequently, it is

determined that for these problems, a minimum of 3-12 periocds are
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I 3 Table 7-7
i Benefit Function Convaergence
<
‘ Period Coeff. Cage ! Za 2 cage 3
’ 7
BO 0.0 0.0 0.0
. B1 -59.22 -59.22 -50.22
B2 -46.61 -46.61 -40.61
B3 -39.69 -39.59 -30.69
B4 .863% 1.0 1.0
BS .5320 1.0 1.9
B6 .5226 1.0 1.0
B7 .6340 0.0 2.0
B8 .4066 2.0 0.0
B9 .6770 0.0 0.0
Q11
BO -571. =351, -475.,
Bt -25.38 -49.11 -22.68
B2 -25.41 -32.10 -21.37
B3 -24.99 -31.25 =21.K7
B4 .155 .770 147
BS .248 .430 317
B6 313 .490 .437
37 A1 011 .000
B8 .076 .000 .000
89 .287 .263 .081
Q
10 30 -203. ~316. -179.
Bt -19.72 -34.44 -13.93
B2 -19.94 -27.00 -17.53
B3 -22.46 -29.18 -17.53
B4 .048 .420 .046
* BS .154 .270 A8
B6 .266 .350 2™
B7 031 .004 .Q00
of B8 .026 .001 .000
. 39 .208 2N .098
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Table 7-7 (continued)
page 2

9
30 -171. ~275.
B -18.26 -25.56
B2 -17.89 -23.M
B3 «20.15 -24.87
B4 .023 211
BS 116 .190
B6 .201 .253
B7 012 .002
B8 01 .Q01
B9 .184 .287

Q

3 BO -134, -172.
B1 -17.68 -21.15
32 -16.77 -22.52
B3 -18.14 -23.20
B4 .014 101
BS .091 161
B6 .139 .189
B7 .005% .001
B8 .005% . 001
B9 . 165 .280

e
80 -208. -260.
B1 -17.52 -18.58
B2 -15.47 -20.06
B3 -16.36 ~20.63
B4 .013 .041
35 .079 133
B6 113 .157
B7 .003 .001
88 .002 .001
B9 141 .241

-153.
-17.90
-15.71
-17.83

.023
121
214
.000
.Q000
.108

-123%.
~17.67
-14.71
~16.68

017
.083%
.156

.000
112

-197.
-17.25
-14.01
-15.35

007
073
.128
. 001
.000
.104
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B0
B1
32
B3
B4
85
B6
B7

B9

BO
Bt
B2
33
B4
BS
B6
B7

B9

BO
B1
B2
B3
B4
BS
B6
B7

B9

page 3

-207.
-21.0
-14.936
-15.29

114
077
.096
.029
.022
.136

-204.
-24.48
-15.3%4
-15.53

.219
.081

.097
.063
.054
147

-223.
-23.61
-14.65
-14.38

.208
.075
.088
.058
.052
. 140

Table 7-7 (continued)

~237.
-21.19
-17.49
-17.75
L1119
106
.120

.028 -

.02%
.198

-226.
'24- 59
-16.37
-17.06

.220
.098
Lot
.064
.056
.186

-236.
~23.73
-15.58
~15.79

21
.084
.095
.0%7
.053
.163

197,
-29.94
-14.24
-14.75

114
075
.105
.027
.020
.119

-199.
-24.39
-14.84
-15.15

.220
.082
.106
.061
.052
.136

-220.
-23.52
-14,32
-14.67

.210
.076
.096
.055
.049
134
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30
31
B2
B3
B4
BS
B6
37
38
39

30
B1
B2
B3
34
35
86
37
38
39

3O
B1
B2
33
B4
35
B6
B7

39

Table 7-7 (continued)

page U

-176,
-25.38
-16.67
-16.52

.248
101
LA
124
.096
.179

-215.
-28.30
-18.79
-18.03

.322
.140
141
.195
. 146
.232

-249.
-25.92
-15.94
-15.74

274
.098
102
.128
114
.181

-136.
-25.0
17,14
-15.96
.252
105
LA13
.124
.097
.190

~221.
-28.8%
-19.04
-18.28
.322
.142
142
.195
.146
.238

-250.
-25.92
-16.00
-15.82

274
.099
103
127
14
.184

-174.
-25.36
-16.43
-16.34

.252
.103
L1117
122
.092
175

-213.
-29.31
-19.58
-17.85

.33
L1410
.149
.193
144
.235

-247.
-25.92
-15.73
-15.57

.278
.098
104
126
L1
.178
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required to dampen out the affect of the assumed benefit function
for period T
v

7.1.4 Computation Times

This section includes a brief summary of computation times.
Table 7-8 shows the CPU times and I/0 times required for these
problems. All problems were run on the University of Texas CDC
6600 system. The results indicate that the algorithm requires
approximately .0115 seconds of CPU time for each three reservoir
nonlinear network and approximately .028 seconds for each four

reservoir network.

7.1.5 Benefit Contours

Before going on to the application to the Guadalupe River
Basin, it is interesting to observe certain praoperties of the model
as it relates to the hypothetical exampi?s. Specifically, for the
three reservoir problems, it is possible to plot iso-benefit curves
as a function of two reservoirs while holding the third reservoir
at some specified level. This may be important for some systems
that for one reason or another require that a given reservoir be
closely regulated and maintained at or uear a precise level. Any
of the three reservoirs can be specified as fixed for +he
algorithm.

As an example, suppose it is of interest to fix reservoir

three a2t 20 units of water for example 1-2. In so doing it is
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i o, Summary of CPU and I/0 Times (seconds) i
. Problem CPU Time 1/0 Time
1-1 58.83 10.5
1-2 70.6 1.0
1-3 64.9 10.5
2-1 68.3 10.5 i
2-2 54.0 10.7 i
2-3 60.2 10.6 |
3-1 258.9 12.6 |
3-2 267.5 12.6
3-3 246.4 12.5

Network Solution Times

L e

Number of Number of Average Time Per _'3 &
Reservoirs Networks Solved CPU Time Vetwork
‘ 3 5400 62.27% 0115

. 4 9000 257,6 .028 T

. e
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. desired to observe the resulting isc-benefit curves.
A program (CONT1) has been written which takes the desired
benefit function and target total benefits as input data. This :
N ' program then calculates and plots the desired curves of equal
i: :
X
. benefit. Figure 7-5 shows a typical plot for this problem. 1In

this figure it i3 observed that a major part of the ellipses lie
outside the feasible region determined by the reservoir capacities.

There are an infinite number of these ellipses, depending upon the

target tctal benefit. PFor Figure 7-5, the center of the ellipse is
far outside the fsasible region. Recall that for this problem, all :

reservoirs were restricted to a maximum capacity of 25 units with 5

additional units allowed at a penalty. Thus, these curves ars only
meaningful in *the region of 30 units or less for each reservoir.

If the feasible region were unbounded, the center of the ellipse

would represent the maximum future benefit given reservoir 3 (f3)
is held at 20 wunits. If f3 were not fixed, the true optimal

solution for this benefit function could be obtained using the

following:
' a1 .
9*1 0 fori 1,2,3
¢ The results for this problem are f, = 34.5, f, = 29.5 snd f5 = 32

with a maximum benefit of -1140.

PR N A

Now letting f3 = 32, a similar plot of benefit functions is

obtained as shown in Figure 7-6. This plot, as expected, has its

L et

center at (34.5, 29.6) with the jesired benefit of -1140. This

point indicates the maximum of the benefit function. The user
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would not operate here however 3ince he must also consider the
tradeoffs. with <*he current returns. Also, the function is

certainly not valid outside of the feasible region.

: As mentioned before, some of these ellipses fall mostly

. outside the feasible region. It is somewhat more useful to
concentrate on the feasibls region only. Figure 7-7 has its range
limited to a maximum value of 30. For the data of example 1-2,
only parts of the 2llipses are contained in this region, and the
maximum Dbenefit attained is at the upper right hand corner of the
feasible region. In this case, f

=30, £, = 30 and £, = 20. The

2 3
value of the benefit function at this point is -1112. This is as

1

expected sgince this example attempts to force the storage of water
for the future. Given a fixed amount of water in the system, it is
unlikely that these levels would be stored due to the tradeoff of
current requirements and the fact that %o reach levels of 30 in any
of the reservoirs would require that penalty arcs be used. While
this is allowed and could be profitable, it would depend on the
costs assigned %o other network arcs.

Another set of plots taken from a different trial problem

. (and hence a different bdenefit function) had the form of Figure
¢ 7-8. The center of the ellipses are contained in the feasible
region. This type of curve will occur when the model ietermines

that it is not too important to save water for the future, (example

1-1 data).

One interesting thing to note regarding these ellipses is
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the amount of rotation that they have. This rotation is an
indication that some interaction between the plotted regservoirs is

present. If no interaction were present, the main axes of the

ellipses would parallel the x and y axes.
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7.2 Guadalupe River Basin - Stochastic Case

The Guadalupe and 3an Antonio River Basins are situated in
the southern Coastal Bend area of Texas. From their headwaters in
“he BEdwards Plateau region of Central Texas, the twe rivers cross
the Gulf Coastal Plains and combine into a single stream shortly
before entering San Antonic Bay. The average annual rainfall over
the two drainage basins varises from 35 inches near the Gulf Coast
to 25 inches in the area of the headwaters.

The water needs in the basins are presently supplied
largely from groundwater formations underlying the region, with the
principle source of groundwater bveing the Edwards and associated
Limestone Aquifer. This underground reserveir is a water supply
source for 1irrigation and for many municipalities, including the
city of San Antonio. The Edwards Aquifer is also the source of
#ater for the Comal and San Marcos Springs. These springs provide
the major portion of base flow in the Guadalupe River.

Canyon Reserveir is the only existing major storage
reservoir in the Guadalupe River Basin. The reservoir provides
oboth water supply and flood control storage. Six small
hydro-electric dams on the Guadalupe River downstream from New
Braunfels constitute the conly other significant impoundments in the
Guadalupe Basin.

The consumptive water requirements within the 3uadalupe

3asin are currently being adequately supvlied from a combination of
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surface and subsurface sources. However, with the greatly
increased water demands projected for this area, it is evident that
judicious water resources management will be essential in crder to
fully supply future water needs.

The major demand center for these two basins is the 3San
Antonioc metropolitian area. The city and ad joining suburbs have
experienced rapid populaticn growth in the past several decades,
and are projected to have greatly increased populations in the
future. The area’'s water needs in the past have been supplied
axclusively by pumpage from the Edwards Aquifer, however, this
municipal and industrial pumpage added to the irrigation pumpage in
the Balcones Escarpment area to the west of the city is presently
approaching the average annual recharge into the Edwards formation.
Should the 1increased future irrigation, municipal and industrial
water requirements continue to be supplied from groundwater, the
Sdwards Aquifer will undergo drastic reductions in water levels,
4iminishing springflows and severe deterioraticn in water guality.

As an alternative to this depleticn cf the Edwards Aquifer,
the Texas Water Development Board (1975) has proposed the
development of a conjunctive ground and surface water rescurces
system to supply the San Antonio area. The plan calls for limiting
San Antonic pumpage to 215,000 acre-feet annually, and supplying
the remaining water requirements with surface water conveyed
through pipelines from a 3ystem of reservoirs in the San Antonio

and Juadalupe River Basins. This application will evaluate the
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proposed changes to the Guadalupe River Basin.

A number of reservoir and pipeline projects were
considered as possible components in the optimal water supply
system. Of concern here is the addition of *hree reservoirs to go
along with the existing Canyon Reservoir. These three new
reservoirs include Cloptin Crossing, Cuero I and Cuero II. A
schematic of the proposed sytem was shown in Figure 3-16.

The deterministic solution %o the Guadalupe River Basin
application was discussed in Chapter 3 and shown in the Appendix.
The deterministic inflows were taken to be the mean values of the
inflows by month over the 46 year pericd. The demands represented
the projected incremental demands over the 1970 requirements.
Total demands are not wused since +this system was designed to
satiafy the demand growth, with the assumption that the curreant
nethods for supplying demand would continue to be used at their
current levels. In this case it was shown that sufficient water
w@ould be available on the average to meet the projected demands for
the year 2020. Based upon this result, it is expected that the
stochastic solution might also indicate that sufficient water will
be available.

The stochastic problem faces many different situations than
the deterministic problem. The two most important of these are the
fact that inflows can vary considerably from the deterministic case
and that due to the uncertainties involved, the storage of water is

a much more significant factor. Recall that in the deterministic
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cagse, the reservoirs tended to be held at their minimum levels. ‘l
For the stochastic problem, this would generally not be the case.

The raw data for +this problem was supplied by the Texas
Water Development Board (1975) which included the proposed
reservoir design, the reservoir capacities, the benefits for
meeting the specified demands and the monthly inflow data.

The formulated model is shown in Figure 7-9. YNote that
this 1is exactly the same model as each of the 12 periods for the

deterministic case.

As in the deterministic case, the total annual demand will
be gpread sevenly over +the 12 months of the multiperiod problem.
This is reflected in the arc capacities going from the reservoirs
or junction nodes to the demand nodes.

Table A-3 in Part II of the Appendix 1lists the mean

inflows, which were used for the deterministic problem, along with

their calculated standard deviations. Other data for the Guadalupe
River Basin is also shown in Part II of the Appendix. For the
gtochastic example problems in section 7-1, the inflow data was
assumed to be distributed normally. However, a brief survey of the
1ata for this problem reveals that the data is most likely not
normal. A Shapiro-Wwilk (1965) test for normality was conducted
#hich verified this conclusion. The Shapiro- Wilk W statistic was
calculated to ve .872. This value would have %0 be .324 or greater
to accept the normal hypothesis at the .01 level of significance.

Many water resources managers are ccncerned with ‘the
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occurances of floods and their analysts typically consider the
inflow distribution for f{loods to be log-normal or in some cases
log-normal Pearson type III. Although this problem is concerned
with the operation of a system of reservoirs under all inflow
conditions, it was decided to test the data to see if it was
distributed log-normally. This test had to be altered some since
there were several months whose 1inflows were zero which is not
allowed for the log-normal case. Accordingly, the zero inflows
were ignored and a test for normality was put to the logarithms of
the remaining data. Again the results indicated that this data d4id
nct possess the characteristics of a log-normal distributon. The
Shapiro-Wilk W statistic was calculated to be .8629.

After several other considerations were ruled out, it was
decided to simply use the emperical data as is, and supply the
random number sequence %o corresponding inflows. Since the data
was already arranged for all four reservoirs by month and year, the
question of correlating the inflows between reservoirs was taken
care of. In the =earlier axamples the same random number was
applied to all reservecirs. Thus, the inflows for all reserveoirs in
the Dbasin were perfectly correlated. For this problem, if the
random number for the month of July turns out to be 38, the inflows
for all reservoirs will be determined by selecting the
corresponding July inflows in the year 1962 (1925 « 38 - 1). The
random number generator will generate a number between 1-46 from a

uniform distribution. This number will represent the desired row

Tt b

! Pos e




e v

e I e - e

205

in the inflow matrix for each of the reservoirs.

One thing to note with regards ¢o this data is the extreme
fluctuation of inflows. The most severe fluctuation occurs at the
Cuero I reservoir where in the month of July, the range of inflows
varied from zero acre-feet 1in 1963 and 1964 to 548 acre-feet in
193%6. Other typical fluctuations range from a low of zero to 200+
acre-fezet <for some months. This factor alone indicates the severe
instability and unreliability of water supplies {or this area of
Texas.

Based upon the decisions made in Chapter 5, this mcdel was
run for 12 periods using 30 draws per level. The discretized range
of levels was selected to be (.2,.55,.9). Por this four reservoir
model there will be 25 level combinations in the experimental
design matrix. At 30 draws per level, there will be 750 nonlinear
network problems %o golve for each periocd or a total of 3000 for
the 12 periods. The QT agsumed for this problem were as shown in
Table 7-9 (col a). The coefficients for the Q. benefit function
derived using the dynamic programming algorithm are shown in Table
7-9 (col o)

Before discussing +the results of this application a few
peints should Dbe made. First of all, only 46 years of data were
available. Ideally, this 1is not enough data ¢$to attempt to
characterize the distribution of inflows and hence supports the use

of the smperical data. Secondly, the random selection of 30 draws

#as done with replacement. Finally, observing Table A-4 of the




B1
32
33
34
35
B6

37

39
319

81

q

T

Table 7-9

and Q, Por Suadalupe Basin (A1l Years)

-1000.
-1000.

1.0

-196.
-388.
-82.
-36.

.15

BOMR!
.016
.014
019
.01
.014
.007

.010
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Appendix, the projected demands for this problem are extremely low

when compared to the quantities of water available. 4 strict

application of this model could be expected to yield sufficient

#ater to supply all demands.

. Returning to the results for this problem, note the benefit
function for 01 is based on the assumption that t = 1 is May.
Thus, the last month of the time horizon is April. Since it takes

3-11 months for the effects of the initial conditions %o subside,

——— e e

these results are good for only about two months. However, if this
model were run for 24 months, the benefit functions for each of the
last 12 months would be valid representations of the future value
of water.
The results of Table 7-9 indizate that for Canyon and
Cloptin Zrossing, <+he 1initial allocation of water would be to
storage 3ince their linear terms are less than any of the iemand
2cst functions. For the %wo Cuerc reservoirs, the top priority is
to meet demand. Only Canyon and Cloptin Crossing have significant
terms in the gjuadratic function. As more and more water becomes
available these terms will sventually reduce their marginal cost *o
v a level where supplying demand will be profitable. These results
. are oxpected since using all inflow data and 30 draws, the expected
inflows «#ill approach *the mean inflows used in the deterministic
case. The design of these reservoirs was such %hat they would be

expected %o meet all demands over a 10 year low flow condition

given that they were full at the begining of this 10 year pericd. .
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Thus, *he above results using expected inflows are not surprising
at all.

In order %o investigate a particularly dry periocd one may
impose upon the 3ystem a 10 year low flow profile for inflows.
This was done using the years 1947-1956 as the 10 year low flow
period. The resulting benefit function, Q1, for May and again for
August are shown in Table 7-10. For the low flow profiles, all of
the linear ‘erms of the quadratic are higher than they were when
the data for the entire 46 years were used. As bYefore, Canyon and
Cloptin Crossing have the 1lowest linear cost terms with the two
Cuero reservoirs marginal costs becoming nearly equal to the demand
marginal costs. Also, the terms of the quadratic, while slightly
more proncunced, are similar to the all years results. Again, for
both cases, the results appear to indicate that the design is
sufficient to satisfy the 10 year low flow profile. This is not
surprising since the design was selected to meet this criteria.

The main conclusion %o be drawn from this application is
that the reservoirs seem %o be adequately designed (if not overly
designed) to satisfy their intended purpose of safegarding against
shortages in the year 2020. The derived benefit functions could be

used to make operational decisions if this system werse duilt.

7.3 Number and Duration of Time Periods
The gselection of the number and length of time periods is

highly dependent upon the specific problem being considered.

}ovre



Q1 Results for

B1
B2
B3
B4
B5
36
B7
B8
39
310
311
B12
B13

B14

Table 7-10

May and August (Guadalupe Basin)

May

.33%2

017
.017
.012
.028
012
,010
.005%

012

q
1
August

~353.

~550.

.019
.018
013
.030
013
014
.006

.013
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Consequently, this section is intended tc point out some of the
possibilities and concerns that the user should be aware of. The
sample problems in this chapter dealt with some of the specifics
alluded to in this section.

It first must be determined what types of decisions the
user needs to make. I3 he concerned with long term or short term
information? In the 1long term case he may want %o let a %time
period be 3 months or as long 2s a year and consider a time horizon
of 20 years. This might de the case if he were concerned with
using the results of the model for the svaluation of the design of
a proposed new system.

On the other hand, if he i3 more soncerned with the current
operation of a system, he may want to specify his time periocd as a
aonth or perhaps a week and run his model for from 1 to 5 years.
In either case, he may 2also bYe limited by the available data.
Specifically, he will require access to historical runnoff data
which may not be available for a given choice of time duration or
horizon.

These two options (and there are several others) require
different sets of data and assumptions. For instance, in the case
of current operations, he would be much more concerned with the
accuracy of the model parameters such as the benefits for supplying
demand and would require betier knowledge of the inflow statistiss.

Another concern might depend upon the nature of iroughts in

the basin of concern. Some parts of the country are mors semnsitive

TR R
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to short term droughts due to their immediate effect on agriculture

or livestock whereas others may experience droughts which may last

for several yesars.

In any case, he would like to select a time horizon that is
far enough into the future such that the initial estimates of the
quadratic Dbenefit function for period T has little effect upon the
functions derived for the early periocds. For most of the trial
data, and for the sample problems a3 duration of one month was

considered and the time horizon was restricted to one year.
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JHAPTER VIII

8. Summary

A review of the 1literature indicates *that although much
work  has been done in determining optimal water resources
management policies, only in the last 5-10 years have authors begun
to address larger 3ystems to include 3stochastic inflows and
interactive benefits realized for a multireservoir system. This is
important for many reasons. First of all of primary concern in the
development of a realistic water resources model is the inclusion
of the future uncertainties of water supplies. Because of this
uncertainty, current decisions regarding the storage or release of
water have a direct effect on future operatioms. Provisions must
be allowed for continued operations in +the event of future
shortages or oversupply.

To evaluate the system given future uncertainties, it is
felt that through the optimal operation of a multireservoir system,
greater Dbenefits can be realized <than through the individual
optimization of each reservoir. This joint benefit stems from the
ability to transfer water between some reservoirs in the system and
ireates the need for a means of representing and evaluating these

interactive effects. This is handled by generating a nonlinear
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nonseparable quadratic representation for the future value of
water.

One of the principle contributions of this research has
been the formulation and computer implementation of an optimization
algorithm for solving the convex nonlinear, nonseparable
minimization problem for the generalized network. It is believed
that this work represents the first application of nonlinear
generalized network codes modified to handle such problems, without
reverting to a piecewise linear approximation. This modification
builds’ upon the highly efficient linear codes of Jensen and Barnes
(1980) and extends the practical application of network codes %o a
new set of problems. The only restriction for this problem is that
the overall objective function which is a combination of several
linear terms and some quadratic terms be a convex cost function.

Another major contribution of +this research is the
formulation and computer implementaticon of a stochastic dynamic
programming algorithm for solving aultiperiod decision problems
with uncertainty. This algorithm combines the tachniques of
dynamic programming, network flow programming and regression
analysis in a unique way. A principle feature is the
representation of the value of the recursive function as a
nonlinear  function. This functional representation greatly
relisves the dimensionality problems usually asscciated with large
dynamic programming problems. This benefit function is derived by

using the network programs %o optimize the model. These optimal
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results ars then used in a least squares regression model which

fits a full guadratic to the data. This benefit function is then
“ranslated into network parameters and these become imown values
for the 3olution o¢f the network in the next dynamic programming
peried. By following the typical dynamic programming recursion
methods, the benefit functions for each period are ultimately
generated and can then ©be used to evaluate decisions in an
operational context.

Using the above mentioned algorithm, these procedures are
applied to a water distribution problem. Several example
applications using hypothetical systems are evaluated to verify and
demonstrats the approach. An application 1is then made to the
Guadalupe River Basin in Texas. This application involves a
proposed four reservoir system for this basin designed to satisfy
the projected demands of the year 2020. The results showed the
Texas Water Development Board four reservoir design to be more than
adequate to meet the projected demands.

One of the primary advantages of this model formulation for
the water resources application is the ease of providing the
required data. Since +the multiperiod model is simply multipls
copies of the single period model, only data relating to changes
need be provided <for each new periocd. The program automatically
ad justs the network vparameters to account for the newly derived
quadratic form. Thus, the only new data that needs %o be supplied

is the <changing inflow parameters. These are simply read in for
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sach new period as the model progresses through time. Great
flexibility 1is allowed here 3ince the user can model any inflow
profile he <chooses. Periocds of long drought are often of concern
to water resources managers and this can easily be modelsed. Inflow
data can be provided to represent the 10 year low flow condition
for the given basin. Alternative basin designs can be esvaluated
under similar rainfall conditions. Thanging demands due +*%o
szasonal requirements or due to economic pressures can alsoc be
modealed.

Another very important "flexibile" capability allows the
uger to stop the process at any time and to restart from that point
at a later time. This is due to the functional expression for the
venefit function which is stored in quadratic form and can very
2asily become the starting point for a later trial.

The flexibility of this model is not limited to the items
mentioned above. There are a myriad of factors that can easily be
changed to allow the user to model almost any situation desired.

The entire process of using a generalized network model
adapted to solve quadratic forms, regression analysis to derive a

functional expression for the futurs value of water and dynamic

. programming to model the multiperiod decision process reprasents a
unique combination of these techniques as applied to ‘he ‘
aultipericd multireservoir water resources stochastic problem.
Jsing *“he algorithms and methodologies derived in this research it

is felt that this model can have several practical applications in 4
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areas other than water resources.

216




\
P SRR NS Y SN

U g oW e M

APPENDIX

T™isg appendix is 1ivided into <Shree parts as indicated

below:

Part I Data gsets for the sxample problems
Part II Guadalupe River Basin

Part TII Flow charts
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Part 1

Data Seta for the Hypothetical Problems

Tables A-1 and A-2 show the actual inflows used for the
hypothetical problems. Table A-1 shows the inflow data for the
+hree reservoir problem for inflow profilss 3, b and ¢ of Figure
7-4 respectively. Table A-2 shows similar data for the four

regervoir problem.

The network parameters for these examples were shown in
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Table A-1

3 Reservoir Inflow Data
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Table A-2 (continued)
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Part II

Guadalupe River Basin

In Chapter 3 the problem of water distribution for the
Guadglupe River Basin, deterministic case, was discuassed. The
bagic determiistic network for each periocd is shown in Figure A-1.
The inflow data and results are shoewn here.

The single period model of Figure A-1 for this problem
remains the same for all 12 periods. For this particular example,
all arc parameters alsc remaine the same for all periods. This
means, for instance, that the benefit for demand and the amounts
demanded are equal 1in all periods. This will most likely not de
the case in a regalistic situation and can easily be changed.

Table A-3 lists the deterministic inflows (the means) along
#ith their calculated standard deviation (which are not used in the
deterministic case) for each of the four reservoirs. These
deterministic inflows are the fixed external flows for the
reservoirs in the corresponding pericd. For the 12 period model,
<he inflow data from 1925-1970 was averaged by month to yield these
results.

The raw data for this problem was provided by the Texas
Water Developmen*t 3Board. They previously ad justed this data to
reflect the actual expectsd inflows for these reservoirs over this

“ime horizon given %“hat they had been in existence. This same raw
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Table A-3
‘! Guadalupe Basin Inflows By Reservoir
4
’; Canyon Cloptin Crossing
0 - Month Mean Std.Dev Mean Std.Dev
1 18.04 23.17 5.87 9.8%
2 18.87 20.45 6.67 3.86
3 20.48 19.73 7.00 7.67
4 23.02 23.07 3.565 10.01
5 32.09 33.00 11.33 15.53
6 24.87 37.80 7.22 3.564
7 17.26 34.84 3.98 5.09
3 7.98 9.61 2.07 1.57
9 20.28 40.62 4.9% 11.23
10 20.48 26.68 4.43 7.29
b 1 12.74 13.9% 3.70 5.30
12 14.61 14.21 4.50 5.87
Cuero I Cuero II
Month Mean Std.Dev Mean Std.Dev
1 30.48 42.86 5.07 10.06
2 33.15 47.70 5.91% 9.57
3 30.74 26.98 4.4 6.91
4 50.39 63.36 5.43 12.40
! 5  54.02  387.43 12,33 20.15
6 42.67 49.30 12.87 20.39
7 37.9% 101.97 3011 4.28
3 13.76 35.50 2.00 3.66
* 9 24.80 47.49 13.04 53,24
. 10 27.22 48.37 t3.26 45.09
11 28.33 47.52 3.59 7.60
12 23.98 31.77 2.04 3.10
v
\
!
|

r
k]

[
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data will be used later for the stochastic case.

The objective for this problem is twofold. The first is to
determine if enough water will be available on the average to meet
the projected demands for the year 2020. Secondly, what will be
the distribution of water for each of these periods, ie., what is
the decision set?

Accordingly, the capacity of the demand arcs are get to
1/12 of the total annual demand for the year 2020 for each demand
location.

Figures A-2, (a,b,2,d) represent the 12 copies of this
single period model. These !2 periods are linked together and the
last period is linked back to the first. To run this problem it
4as necessary to give each of the reservoirs an initial level of
<ater. To approach this problem from a worst case position, each
of the reservoirs was given an initial level of just 5 units of
water.

Table A-4 shows the capacity of the proposed reservoirs,
their initial conditons, their minimum requirements and the annual
demands placed upon each demand point. The auxillary demands
listed are intended to account for the possibility of reducing the
reliance on te Edwards Aquifer by supplying more water from the
resarvoir system. For this problem, the period 1 data represents
Januvary and périod 12 represents December of the year 2020. Note
that s9since this is a linked problem any month could be used as the

starting peint and run for 12 periods. The results would have been

o
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Fiqure A-2 12 Period Deterministic Solution With Flows
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Figure A-2 Continued
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Figure A-2 Continued
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Tablas 4-4
Guadalupe River Basin Capacitises
(1000 acre fest)

Basin or Initial Minimum Annual Auxillary
Junction Capacity ConditiongReq’'mts Demands Demands

Canyon 386.2 5.0 3.0 2.0 24.0
Cloptin 147.90 5.0 3.2 — ~——
Crcssing

Zuero 1 1416. 5.0 42.0 23.5 360.

Zuero II 1450. 5.0 50. -— ——

Seguin -—- -—- -—- 17.7 240.
Victoria -——- - — 471.3 1200.

Totals 3399.2 98.2 513.5 1324
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the same.

s The results indicate that enough water will be available on )
! the average to meet all demands for all periods. Since there was
i no penalty assessed for releasing water into San Antonio Bay, and
no vreward for building up levels, the reservoirs tended to be held
3t their minimum levels. Given no penalty or reward for doing
otherwise, this 1is what one would expect with known fixed inflows

and Jdemands.

The same input data was used for the stochastic application

%o the Guadalupe River Basin. In Figure 7-3 the stochastic
(nonlinear) single period network mecdel was shown with all arc '
parameters specified. For this problem, use of the mean and

: standard deviation would 1imply that the raw inflow data could be
characterized by some probability distribution. Since this was
determined %o be infeasible, the semperical data was used. The '

smperical data was provided by the Texas Water Development Board.

For the month in question, a random number was drawn which
corresponds to the inflows for a given year. The inflows for the
other three reservoirs were then chosen to be from ‘hat same year,

thus correlating all reservoirs for this basin.
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Part III
Flow Charts
This part of the appendix includes the following:
A. A schematic of the 13 gspecial or new programs which are

required for this problem showing the general relationships between
them. (Figure A-3)

3. A brief description of the 13 programs of the schematic.

c. Flow charts for most of the programs shown in the schematic.
Only the logic required for determining the venefit functions using
the ordinary least squares solution methodclogy is flow charted.
The logic required to calculate weighted least squares coefficients
and many of the other statistics that were determined in this
report 1is not shown on the flow charts. This logic is however,

still in the computer program for future access.
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Part C

Brief Description of Flow Charts
This 1is ‘the main program for this problem. This program
calls the others 3as shown in schematic B. It also reads
some of the reservoir and runoff data, sets up the design
matrix of reservoir levels and makes the adjustments for
the 1linear arcs and Q matrix. Also, all calculations for
the ©benefit function coefficients for both ordinary and
weighted least squares are done here. The statistical
data is mostly computed in this main program.
This subroutine reads the network data. It has been
modified to read the reservoir data as a part of the node
input. ‘The nonlinear arc information is read here as part
of the arc data. This includes a linear cost term for the
full quadratic. The all artifical arc basis is set up
here, and the Q matrix is read.
Revised snly to account for the nonlinear arcs.
RNORM and DRAND are functions used to derive the random
numbers. RNORM i3 used to return a random number from a
normal distribution with zero mean aad a standard
deviation of 1. DRAND is used to return a random number

between zaro and one from a uniform distribution. These

functions are not flow charted in Part C.

|
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TRNFIX

INVERT

PGAINS2

NLMF1
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This subroutine performs all the transformations on the
input data to define the necessary terms for the full
quadratic design matrix.

This subroutine transforms the three input variables into
the full 9 variable quadratic: (the 10th term is the
constant which is added to this list in FIXINV). The
logic herein 1is general and will perform the required
transformations for a full quadratic given any aumber of
variables.

This subroutine performs all required matrix inversiocns.
For the selected methodology it is only called from NETGA.
However, for calculating the WL3 data, it is also called
from FIXINV. This program is not flow charted in Part C.
This 1is the routine that masterminds the solution process
of the network. It is a modification of the subroutine
PGAINS which solves the network with zains problem using
the primal approach.

This subroutine is called by PGAINSZ to determine the
maximum flow change allowed in the nonlinear arcs which
causes its wmarginal cost %0 be zero. This amount is
returned to PGAINS2 and compared with MF which is the
maximum flow change allowed by the linear arcs. The
appropriate arc is deleted from the basis through the use
of the usual network subroutines and an entering arc is

gelected.
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This subroutine 3g9sists in the above process by
determining the cost to be associated with the nonlinear
ares. By knowing the costa that are attributed %o all
arcs, the entering arc can be selected. These costs are
also needed for the PI update.

This subroutine examines the basis after the tree has been
updated to determine if and how many nonlinear arcs are in
the basis. If there are no nonlinear arecs in the basis,
PGAINS2 calls DUAL (an existing subroutine) to update the
PI values in that part of the tree rooted at the terminal
node of the entering arc. However, if there are any
nonlinear arcs in the basis, them all PI values rooted at
the orig:n of the nonlinear arcs, as well as those beyond
the entering arc must be updated. In this case, PGAINS2
calls NLPI which in turn calls DUALT?.

This subroutine is used to specifically find the nonlinear
arcs that are in the basis and %o appropriately flag them
for ugse in the Pl update.

This _subroutine i3 used in lieu of DUAL for the PI update

in the presence of nonlinear arcs.

the above programs with the exception of RNORM/DRAND and

INVERT are flow charted on the pages that follow.
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R




RIS e = e e - e

237

NETGA
EPNEG: = -.0001 EPPOS: = .0001
CALL READG
PB(N): = 0 PI(N): = 0 IMAT: = 0 IUPDATE: = 0

CALL ORIG(N,LISA,LISN,L)

L=20

For KK = 1 to L

K: =

LISA(KK) J: = T(K)

For IT = 1 to IR

Y

J # IRESB(II)

ISUBK (II): = K

<A N N\

H(

K) < 9998.

NN NN N NN

PB(J): = K

PI(J): = 9999.

CALL TERM

L=90

For KK=1to L

K: = LISA (KK)

J: = O(K)

For IT = 1 to IR

~

J # IRESB(II)

TADDK(II): = K

M AN N N

H(K) < 9998.

A

NN NN NN N

PB(J): = =K PI(J): = -9999.

CALL TREINT (N)

IT: = 6

_GALL PGAINS? (ITER,IT)

e s
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READ MSEED,NN,MD, IT,IUP,TVALUE

NIR: = 2*IR + (2**IR) + 1

IV: =0 :=IR-1

/ For I=1toIM

/ ICV: = ICV + 1

NIR - NV

NV: = 2*IR + ICV + 1 IDEG:

ITX: = IT MAXD: = MD

READ NSTART, MEVERY, IPRESENT, IDEC

LAST

IIAST: = IPRESENT + IT -1

Y& IIAST > 12 N

IIAST: = IIAST - 12

Y\ ILAST > 12 N

—~——3 LAST

READ CAP,RL, ICURVE

Y ICURVE = 3 /‘I

/ For I =1 to IR

/ READ ZMU(I), 2SIG(I), PRO(I)

——3 XSAMP

READ DATEMP

CALL SETSEED (MSEED, 1)

ID: = 2 IX: = 2**IR IKOUNT: = 1

LR T s
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SMATRIX
J: = IKOUNT K: = 1 II: = IX/ID
/ For I =1 to IX
/ S(I,J): = RL(K)*CAP(J)
/ y\ I#1I /N
/ K: = K+2 II: = II+IX/ID
/ Y K NN /N
/ K: =1
IKOUNT: = IKOUNT+1 ID: = ID*2
IKOUNT IR N

———>» SMATRIX

IC: = IX+1

For J =1 to IR

S$(I,J): = RL(2)*CAP(J)

ICl: = IC+ 1

Far I = IC2 to NIR

/ For J = 1 to NIR

/ S(I,J): = RL(2)*CAP(J)

K: =1 IC2: = ICI+IR-1

J: =1

For I = ICl to IC2

S(I,J): = RL(K)*CAP(J) J: = J+l

ICl: = IC2+1 IC2: = IC2+4IR K:= K+2

P T e Y

e - -
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3\ K> M /\1

RMD: = MAXD ——> J1l
PERIOD

ISIG: = 0

/ For I = 1 to NIR

/ SMX2(I): =0 22T(I): =0

/ / For J = 1 to NIR

/ / VMAT(I,J): =0

/ FORI =1 to M

2N ICURVE = 3 P

/ IREV: = 23+10*DRAND(1) 2Z:= RNORM(0.,1.,1)

/ ISEED: = 427964514382

/ / For K = lto NIR

/ / / For KK = 1 to IR

/ / / Y ICURVE <3 N

/ / / IROWE: = IRVE+(KK-1)*46

/ / / RV: = DATEMP (IROWE, ILAST)

/ / / —> 302

/ / / 22M0: = ZMU(KK) 22SIG: = ZSIG (KK)

/ / / RV: = 2ZMH2Z*Z2SIG

/ / / N IDEC =1 N

/ / / RV: = 0 Y\ <0 N

/ / / RV: = 0

/ / / RPV(KK): = RV

bosiv et

!
{
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NOONONN NN N NN NN N N NN NN

ISIG: = ISIGH+1

NOONONON NN NN

For J =1 to IR

AMS(J): = RPV(J) + S(K,J)

DIFF: = AMT(J) - AMS(J)

Y\ DIFF = 0 N
?\ DIFF > 0 N

F(ISUBK(J)): = DIFF { F(IADDK(J)) :=~DIFF

C(ISUBK(J)) :=DIFF C{IADDK (J)) :=~DIFF

AMT(J): = AMS(J)

CALL PGAINS2 (ITER,IT)

IDEC # 1 N

STOP

ZT(K) :=ICOST  SUMX2 (K) :=SUMX2 (K) +2T (K) **2

2ZT (K) :=227T (K) +2T (K) 2ZZT(I,K): = ZT(K)

For IV = 1 to NIR

/
/

NN NN NN N N NN N N N NN~

For JV = 1 to NIR

VMAT (IV,JV) :=2T (IV) *2T (JV) +VMAT (IV,JV)

PMD: = FLOAT (MD)

For I = 1 to NIR

2ZT(I): = ZZT(1)/PMD

v
NN NN

For I = 1 to NIR and J = 1 to NIR

VMAT (I,J) :=(WMAT (I,J) ~PMD*22T (I) +2ZZT(J) ) /APMD-1) *PMD)

e wemoE e s e e e R
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For I = 1 to NIR

For J = 1 to NIR

VMAT(I,J): = 0

For I =1 to NV

For J = 1 to NV

/ For K = 1 to NIR

/ |VMAT(I,J) :=WMAT(I,J)+XTV(I,K) *XMX(K,J)

For I = 1 to NIR

For J = 1 to NIR

XW(I,J): =0

For I =1 to NV

For J =1 to NV

/ For K=1 to NV

/ XTV(I,J) :=XTV(I,J)+XTXI (I,K) *VMAT (K,J)

For I = 1 to NIR

For J = 1 to NIR

WAT(I,J): =0

For I =1 to NV

For J =1 to NV

/ For K= 1 to NV

/ VMAT (I,J) :=VMAT (I,J)+XTV (I, K) *XTXI (K,J)

R N N N N N N N N N N N e N e NN

For I = 1 to NV

SONLS (I): = SQRT (WAT(I,I))

PR PR S T . A S T
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/ For I = 1 to NIR
/ / For J = 1 to NIR
/ / VMAT (I,J): =0
/ For I =1 to W
/ / For J = 1 to NIR
/ / For K= 1 to NV
/ / / | WRT(I,J):=VMAT(I,J)+XTXI(I,K)*MX(J,K)
/ For I = 1 to NIR
/ YVEC(I): = 0
/ For I =1 to N\
/ / For J = 1 to NIR
/ / YVEC (I) :=YVEC (I)+VMAT (I,J) *2ZT (J)
W2: = YVEC(I) NX: = NV -1

/ For I =1 to NX
/ Q(1,I): = YVEC(I+1)

IT: = IT - 1

ILAST: = ILAST ~ 1
N — Z

IIAST: = 12

For IK = 1 to IR

HL(NEIB(IK)): = QQ(1,IXK)

Ki=IR+1
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/ For I = 1 to IR
/ Q(I,I): = QQ(1,K)
f / K: =K +1
IP: =IR-1 ‘
IR j
‘ / For I=1 to IP '
]
/ JJ: =I +1
/ / For J = JJ to IR ,
: /1 Q(I,J): = QQ(I,K)/2 |
/ / QJ, 1) : = Q(I,J)
» / / K: =K+ 1
Y IT = 0 4 .
‘& ICURVE = 3 /{ |
————  PERIOD READ ZMJ,ZSIG j
—-——> PERTOD |
— |
‘ |
,
S e g . - AR i g
— e ‘ ‘m
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READG
READ N
M: = 0 SLACK: = N+1 N: = M1
/ For I=1toN
/ B(I): =0
IR: =0

READ

READ I,BF,BS,CS,IRESEV
YX I=0 N

————% ARCS

B(I): = BF IRES (I): = IRESEV

Y IRESEV = 0 Z\J

—~———=» READ

BS >0

LOWER: = 0 UPPER: = BS
QOST: =CS GAIN: =1

FLOW: = 0 NONLIN: =0

QALL ORIGSG(I,J,LOWER,UPPER,COST,GAIN, FLOW, NONLIN)

——® READ

P
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READ I,J,LOWER,UPPER,CQOST,GAIN,NONLIN

Y I=0 /‘1
FILOW = 0
CALL ORIGSG(I,J,LOWER,UPPER,QOST,GAIN,FLOW,NONLIN)
————> ARCS
IOWER: = 0 QOST: = 9999. GAIN: = 1. J: = SLACK NONLIN:=0
/ For I = 1 to N-1
/ BF:=B(I) UPPER:=ABS(BF) FLOW:=UPPER
/ Y\ BF < 0 A
/ | CALL ORIGSG(J,I,...) CALL ORIGSG(I,J,...)
M: =M M: =0
/ For K=1toIM
/ J: = T(K) M: = MHl
/ CALL TERMS (K,J)
READ NONL
/ For K=1to M
s 12\ NLIN(K) = 0 JZ
/ NLIB(NLIN(K)): = K
Y NONL = 0 A
/ For I = 1 to NONL
/ READ Q(I,J) FOR J=1 to NONL
RETURN
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ORIGSG(I,J,LOWER,UPPER,COST ,GAIN, FLOW , NONLIN)

NPLUS1 : N + 1

INTTIAL
N w0 4
/ For II = 1 to NPLUSL
/ PO(II): =1
M: = M+l IPLUSL: = I + 1
/ For II = IPLUS]1 to NPLUS1
/ PO(II): = PO(II) + 1
Y\ PO(I+l) &€ M N

MPOl: = M - PO(I+l) + 1

For L = 1 to MPO1

K:=M-1 O{K+1) :=0(K) T{(K+1):=T(K) CL(K+1):=CL(K)

/
/
/ C(K+1l) :=C(K) F(K+l):=F(K) A(K+l):=A(K)
/

NLIN (K+1) :=NLIN (K) HL(K+1) :=HL(K) H(K+1) :=H(K)

K:=PO(I+l)-1 O():=I T(K):=J CL(K):=Lower F(K):=FLOW
C(K) :=UPPER-LOWER  H(K) :=COST  B(I):=B(I)-LOWER A(K):=GAIN

B(J) :=B(J) +LOWER*GAIN NLIN(K) :=NONLIN HL(K) :=0

X\ NONLIN # 0 N

HL (K): = H(K)

FIXED: = FIXED + QOST*LOWER

RETURN
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FIXINV (IR)
NOB: = NIR NM: = IR+ 1
/ For I =1 to NV
/ ViI): =0
/ For IK = 1 to NIR
/ I: =1
/ / For J = 1 to IR
/ / VJ): = S(IK,J)
/ V(M) : = ZZT(IK)
/ INV: = NV
/ CALL TRNFIX(V,IR,INV)
/ / For K=1to N -1
/ / WMX (IK,K+1) : = V(K)
/ MX(IK,1): = 1
RETURN
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TRNFIX (V, IR, INV) "
i IRPLUS1:=IR + 1 IRMINl: = IR -~ 1 IRX2:= IR*2
; V(INV) : = V(IRPLUSL) K: =1
g ' / For J = IRPLUS] to IRX2
/ V(J): = V(K) **2 K: = K+1
ITOT: = INV - 1 I: = 2*IR+1 KK: = 1
/ For J = 1 to IRMINL
/ KK: = KK+ 1
/ / For K = KK to IR
/ / V(I): = V(3)*V(K) I: = I+l ;
RETURN
|
l
|
o
T
i - e 3
FS
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PGAINS2
INITIAL
ITER: = 0 IST: = 1
N
CALL POUTPUT
QALL SELECIG (IST,KE,DEL, IFIN)
N\ FIN = 0 N
RETURN ITER: = ITER+l
LEAVE ‘
Y KE < 0 /N
JE:=O(-KE)  IE:=T(~KE) JE:=T (KE)  IE:~0(KE)
MFE:=ABS (F (~KE) *A (~KE) MFE:=C (KE) - F (KE)

CALL PATHPG(KE, IE,JE,LISA,LISN

CALL MFLOG (LISA,LISN,IC,KL,ILC,MF)

CALL NLMF (DEL,KE,KLNL,MFNL,LISA,IC)

; 4 MWFE > MF

KL: = KE MF: = MFE

For I =1 to IC

/
. y Y\
/

/s

KINL = LISA(I)

ogc: =1
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Y MINL > MF /N
MF:=MPNL  KL:=KLNL / ForI+1tolC
/ Y\ KINL=LISA (I) N
/ | oc: =1
CALL FLOWG (LISA,LISN,IC,MF)
YX KE >0 N
F(KE): = F(KE) + MF
YX KE < 0 N
F(-KE): = F(~KE) - WF
Y\ NONL > 0 N
CALL NLOOST
———> CHANGE
CHANGE
Y KL # KE é
’\ NONL = 0 N

——>» SELECT

INTW # 0

Y\ oc > ICF

-
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COMMON
[ Y KE = KL j‘]
‘ ]
! Y -KE = KL /‘1
i CALL TRECHGW (KL,KE)
Vv <
Y

NONL = 0 /N

CALL NLARCS

N

IINOL = 0 /N

CALL CYCLE(IE,BET,COST)

CALL NLPI (KE)

PI(IE): = COST/(BET-1)

—————-3 POTENTIAL

BASIS

. N

———-3 POTENTIAL CALL NLARCS

. y IINOL # 0 /N

CALL NLPI (KE)

i SELECT

——=—3 POTENTIAL

B N L T R T

CALL DUAL (IE)

SELECT

" i

SR e

®
T R O

:
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NLMF'] (DEL, KE, KLNL ,MFNL, LISA, IC)

MFNL: = 9999
/ For J = 1 to NONL
/ DELG(J): = 0
ICHG: = 0
/ For L =1 to IC
/ K: = LISA(L)
/ K=0 j
/ Y\ K >0 ﬂ
/ 0\ NLIN(K) = cyﬁ NLIN(-K) = 0 ﬁ
/ IND: = NLIN(K) IND: = NLIN(-K)
/ DELG(IND) := DELG(IND) : =
/ G(T(K))/A(K) -G(0(~=K) ) *A(=K)
/ ICHG: = 1 ICHG: = 1
/ KINL: =k KINL: = K
¥ \ KE >0 ﬁ
¥ \ MIN(KE) = 0 P NLIN(-KE) = 0 N

IND: = NLIN(KE)
DEIG(IND): = 1

ICHG: = 1 KINL: = KE

IND: = NLIN(-KE)
DELG (IND) : = -A(~KE)

ICHG: =1 KINL: =

KE

d

ICHG = 0

3

DIV: = 0

B

—

-
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! ]
/ For I = 1 to NONL f
/ K: = NLIB(I) HK): =0
/ For J = 1 to NONL
/ KK: = NLIB(J) 1
/ H(K): = H(K) + 2*Q(I,J)*F (KK)
/ H(K): = H(K) + HL(K)
RETURN
|
1
i
IINOL: = 0 '
/ For I=1toN ;
|
/ KB: = PB(I) ’
/ Y KB =0 , ZN ; ‘
/ R KB < 0 /N : |
/ Y NLIN(-KB)=07N N\NLIN(KB) =0 Y o
/ IINOL: = IINOL+Y  KNOL(IINOL) :=KB
RETURN ¢
P
i
P
r
E i
3
:
¢
!
-
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NLPT (KE)
/ For I =1 toN
/ ICHK(I): = 0
IINONL: = 0 KJ: = KE
Y\ KI >0 N
II: = T(K)
Y\ KT <0
II: = O(=KJ)
= I
JUNCT: = 0
Y\ KT < 0 A

ICHK(O(-KI)): = 1

ICHR(T(RJ)): = 1

&\ICHK(O(KI)) 0

Y \ICHK(T(-KJ)) 0 N
JUNC: = T(-KJ) JUNC: = O(KJ)
Y \MIN(-KJ) = 0 A N\ NLIN(KJ) = 0 Y
II: = O(~KJ) II: = T(KJ)
/ For JJ = 1 to IINOL
/ Y\ KJ # KNOL(JJ) A
/ KNOL(JJ): = 0 “INONL: = INONL+1
Y \ KT <0 N
N JUNC 0 A Y\ JINC 0 N
————> CYCLE

KIL: = PB(T(-KJ)) KI: = PB(O(KJ))

—_—

w_ . 7
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Y KI = 0
KJ: = KI
~——— JUNCT
KK: = PB(II)
¥ KK = 0 /ﬁ
Y\ KK < 0 ﬁ
I: = T (~KK) PI(II): = PI(O(KK)) +

PI(IT):=A(=KK)*PI(I)-H(-KK)[ H(KK))/A(KK)

-——-—3 DUALL

v\ KE >0 N
II: = O(KE) II: = T(-KE)
PI{II): =0
-————> DUALl
CYCLE
CALL CYCLE (JUNC,BET,COST)
II: = JUNC PI(II): = COST/(BET-1)
DUALL
CALL DUALL
Y \ INONL = IINOL /N
RETURN ‘ LJ: = 1
SEARCH
R KNOL (IJ) # 0 /N
KJ: = KNOL(LJ) L7: = ILJ+1
ForJ=1toN
Z ICHK(J): = Q =) SEBRCH
== Junct
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DUALL (IE)

CALL ROOTG(II,LISA,LISN,IC,CYC)

ICL0

RETURN

\\\\\\\\\\\\\\\\\

For L

=1 to IC

K: = LISA(L)

K>S0

A\

NLIN(~K) = 0

I:

= T(-K) J: = O(=K)

———> FOR

NLIN(K) = 0

For 10 = 1 to IINOL

£\

K # RNOL(LJ)

IINOL: = INONL+1

K20

(K) J: = T(K) I: = T(=K)

A\

K>0

PI(J): = (PI(I)+H(K))/A(K)

£\

K4o

PI(J): = A(-K)*PI(I)-H(~k)

RETURN
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