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tific Research contract F49620-79-C-0061; it will be submitted to

Physical Review for publication.
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Theory of electron-avalanche breakdown in solids

M. Sparks, D. L. Mills, R. Warren, T. Holstein,

A. A. Maradudin, L. J. Sham, E. Loh, Jr., D. F. King

Pacific-Sierra Research Corporation

Santa Monica, California 90404

Electron-avalanche breakdown in solids is explained by a theory

that is predictive and agrees with experimental results for the magni-

tude of the breakdown field and its temperature dependence, pulse-

duration dependence,,uterial-to-material variation, and wavelength

dependence for A I "- e good agreement between experiment and

theory with no parameters adjusted is obtained by using improved mag-

nitudes and energy dependences of the electron-phonon relaxation fre-

quencies. The contributions of both optical and acoustical phonons

to electron loss and energy-space diffusion must be included. The

breakdown field FB is calculated by solving an eigenvalue equation

obtained from the diffusion transport equation. Simple models and

interpretations of the diffusion equation afford physical insight

into breakdown and render the breakdown conditions predictable. Pre-

liminary results indicate that the diffusion approximation fails for

wavelengths considerably shorter than I pm, where multiphoton absorp-

tion must also be considered.
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I. INTRODUCTION

Damage of dielectric materials by high electric fields, which has

been the subject of numerous experimental and theoretical investiga-

tions, 1'2 has received renewed attention in recent years as a result

2bof laser-damage experiments. Electrical breakdown of dielectrics

by lightning was one of the first known electrical phenomena; labora-

tory experiments on electrical breakdown in glass were initially con-

ducted in 1799.1 Despite many previous attempts 1 17 to develop a

viable model of laser-induced damage to alkali halides, there has yet

to appear a theory capable of simultaneously explaining the magnitude

of the breakdown field as a function of temperature, wavelength, pulse

duration, and variation from material to material.

Predictions of the electron-avalanche theory and a comparison

of theoretical results with data available at the time were given by

Sparks.17  A recent account of theoretical efforts by Soviet analysts

was given by Gorshkov and coworkers, 12 and new data taken at the

Lebedev Institute, along with further discussion of the theory, were

presented by Manenkov.13 Difficulties with the electron-avalanche

theory led Schmid and coworkers14 to explore such alternative mech-

anisms as multiphoton absorption combined with a possible rapid trans-

fer of electron energy directly to the lattice by phonon emission--

following a suggestion of Hellwarth 15 that direct and rapid transfer

of energy to the lattice, followed by its fracture, may account for

the data. Preliminary results of the present investigation were sum-

marized briefly elsewhere.
18

S

I d .,,* , .



-3-

The general features of the present theory, which mitigates the

difficulties of the previous theories, are as follows: There must be

a mechanism to generate a sufficient number of starting electrons to

initiate the avalanche. These few starting electrons drift upward in

energy in the conduction band through interaction with the laser field,

retarded by energy loss to phonons. Each electron undergoes a random

walk of progressively increasing kinetic energy until it attains a

. threshold energy 6I" The electron then drops to the bottom of the

conduction band. If an exciton has been created, its rapid photo-

ionization injects a second electron into the bottom of the conduction

band. The process is repeated until a sufficient electron density

(.1O 18 cm-3 ) has been created to damage the crystal, probably by ex-

cessive Joule heating.

This description of electron-avalanche breakdown is indeed also

common to most previous theories. However, a cardinal reason for the

good agreement of the present theory with experimental results, con-

trasted with the poor agreement of previous similar theories, is the

use of more realistic electron-phonon scattering rates. Umklapp pro-

16,17
cesses, which were neglected in previous treatments, are included

in the electron-phonon relaxation frequencies. In other words, the

phonons with which the electrons interact are not restricted to those

in the first Brillouin zone, as in previous theories. Both acoustical

and optical phonons are included in the interactions with electrons.

Our theory retains the difference between the electron relaxation fre-

quencies (or scattering rates) Yk at which the electron loses its

forward component of momentum and YL at which the electron loses

-- - -- - -- - -
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energy. The resulting magnitude and energy dependences of the electron-

phonon scattering rates are essential differences between our model and

those of previous investigations.

Another unique aspect of the present theory is the inclusion of

the temperature dependence of the lattice constant and phonon fre-

quencies. Without that dependence, the agreement with the measured

temperature dependence of the breakdown irradiance--especially at

10.6 jim--is degraded. With the inclusion of the new electron scatter-

ing rates and the temperature dependence of the parameters, the common

transport-equation approach can explain available data without intro-

ducing new mechanisms. In particular, the predictions of the theory

agree well with the new Lebedev data.
13'1 7

The material-to-material variations of the breakdown electric

field EB in the present theory result from the values of the character-

istic phonon frequency iweph, which is set equal to the Debye energy

kBeD' and the electron-cation scattering cross section Qa , which is

scaled as the square of the ionic radius.

The electrons that are initially present or generated (those that

start the avalanche) will be called the starting electrons. Most

previous theories of electron-avalanche breakdown in solids at laser

frequencies have either implicitly or explicitly assumed that starting
17

electrons are present when the laser is turned on. Sparks showed

that experimental data contradict that assumption. The starting elec-

trons are not initially present; they must be generated--by an external

source or by the laser field itself, for example. In microwave gas-

breakdown experiments, it is well known that the starting electrons

. . . . . . . . . . . .7
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must be generated. A radioactive source near the microwave cavity is

commonly used to provide the starting electrons.

Since both processes--generation and acceleration--are required

for breakdown, either the generation of the starting electrons or the

avalanche process itself can determine the breakdown field. Processes

by which the laser field can generate the starting electrons were dis-

cussed by Sparks. 1 7 Only the avalanche process is considered here.

The estimates of Sparks 17 on electron generation--as well as the good

agreement between experiment and the present theory, in which the

breakdown is dominated by the avalanche process--partially justify not

conducting a detailed investigation of starting-electron generation.

In fact, the importance of generating the starting electrons will re-

main uncertain until verified experimentally.

If the electrical breakdown field EB were dominated by starting

electrons either initially present or generated, rather than by the

avalanche process itself, the experimental value of EB would generally

be greater than that obtained when starting electrons are provided.

If dominated by electrons initially present, EB would vary from shot

to shot, depending on the probability of a starting electron being

present. Such variations are well known in microwave breakdown of

gases, in which EB can vary by well over an order of magnitude.

A major difficulty in obtaining agreement between theory and

experiment is determining whether the experimental values of EB are

intrinsic. It is common practice to select only the greatest mea-

sured values of EB. However, those retained still may not be the

intrinsic values. Despite the inherent difficulty of determining
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when an intrinsic value has been attained, it is likely that the

Lebedev values at 1.06 and 10.6 lim are intrinsic because they agree

so well with the present theory.

In using a differential form of the transport equation, we assume

that the photon energy hw is sufficiently small to be treated by dif-

ferentials rather than differences. At high frequencies (wavelength

X Z 1 pm, very roughly), the differential approximation gives rise to

nonnegligible errors. This and other high-frequency effects will be

19
considered in a subsequent publication.

Sparks 1 7 showed that the process in which an electron absorbs or

emits both a photon and a phonon is sometimes important in electron-

avalanche breakdown. This was called the Holstein process because

Holstein 2 0 showed it to be the dominant mechanism determining the

value of the conductivity in the limit wT >> 1--provided that & w is

sufficiently small to permit photon emission as well as absorption.

The Holstein process is tacitly included here because the energy gain

of the electron is treated in terms of the conductivity (which is con-

trolled by the Holstein process in the limit wT >> 1).

Table I lists processes not included in the present theory be-

cause they are believed to be negligible in careful experiments for

A 1.06 um, along with the expected effect on the value of EB.

The major sections of this paper are as follows:

I. Introduction

II. Average-Electron Model

III. Diffusion Model

IV. Electron Relaxation Frequencies

AIf
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V. Numerical Results

VI. Interpretations and Calculations Using Simple Models

VII. Acknowledgments
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II. AVERAGE-ELECTRON MODEL

In order to understand the diffusion model, which is the basis

of the present investigation, first consider the average-electron

model. Section I discussed the general features of most current models--

the acceleration of a conduction electron by the laser field, the loss

of energy from the electron to the phonons, the generation of a second

conduction electron accompanied by a loss of kinetic energy of the

first electron, and the repetition of the process until the electron

concentration is sufficient to damage the crystal.

In the average-electron model, which affords the simplest mathe-

matical treatment of the general model, the average energy-loss rate

to the lattice is (d6/dt)L and the average energy-gain rate from the

electric field is (d6/dt)E. Breakdown occurs when the gain exceeds

the loss:

(d6/dt)E > (d6/dt)L (2.1)

for all 6 < 6P where 6I is the energy at which the electron generates

a second conduction electron by excitation across the electronic

energy gap.

The rate at which the field E adds energy to the electron is ob-

tained from the wave-vector equation

h(dkz/dt + Ykkz) = eEpk exp (iwt) , (2.2)

where E is along the z axis, k is the z component of the electron

wave vector k9 Yk = I/Tk is the transport (momentum loss) relaxation

',!

t i . ._.
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frequency, and w is the laser frequency. The steady-state solution

is

ke kkz = (l + iw(k) Epk exp (iwt) ( 2.3)

With current = ey where the z component vz of the velocity y is

equal to /ikz/m* and m* is the electron effective mass, the rate at

which the field puts energy into the electron is

(d4 /dt)E - 1 ReJ " E* = Re hek E*/m*)E=2 2 z

where Re denotes the real part and E* is the complex conjugate of E.

Substituting Eq. (2.3) into this equation, using E 2  (where

E is the root-mean-square value of the field), and taking the average

over the electron distribution, we obtain

(d6/dt)E E2  e (2.4)
m*(l + W Tk)

where a is the electrical conductivity. Equation (2.4) is the well-

known conductivity result for a single electron. Physically, the

energy gain in Eq. (2.4) is small when the electron momentum is changed

rapidly by interactions with the phonons. That is, in this dc limit

of large Yk (or, more precisely, small wTk), the phonon collisions

inhibit the acceleration of the electron by changing its momentum to

the opposite direction from that imparted by the electric field.

In the opposite limit of slow momentum change, the energy gain

in Eq. (2.4) is again small. For this case of wTk " 1, the electron

is first accelerated, then deaccelerated when the direction of the

$

- ..i..-



-10-

electric field reverses. The process occurs many times before the

electron undergoes a momentum-changinq collision with a phonon. The

energy gained during one helf-cycle is lost during the following half-

cycle. The maximum energy gain, which is a function of the momentum

relaxation time Tk9 occurs at urrk = 1; then, on the average, the elec-

tron direction is reversed every time the electric field reverses direction.

The rate at which the electron loses energy to the lattice is

(d6/dt)L = fphIL , (2.5)

where wph is the average phonon frequency and the energy-loss relaxa-

tion frequency YL is different from Yk in Eq. (2.4), as discussed

below. Equating Eqs. (2.4) and (2.5) gives the threshold value EVO

above which the electrons gain energy from the field

I3~m\/ 2 212
Vo e 27~ Y±k + W (2.6)

The resulting breakdown criterion that the electric field E must be

greater than EVO at all electron energies--that is,

EB = Evomx , (2.7)

where Evomx is the maximum value of EVO, and EB is the value of E at

breakdown--is a fair zeroth-order approximation, provided the energy-

dependent relaxation frequencies YL and Yk are interpreted correctly.

However, even with the proper interpretation of the relaxation fre-

* quencies, the average-electron result in Eqs. (2.6) and (2.7) is only
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a rough approximation. As discussed below, the inadequacy of the

average-electron result stems both from the difficulty of treating

the energy dependence YL and Yk properly, and from the neglect of

electron diffusion in energy space. The problems are overcome by

using the transport-equation approach discussed in the following

section.

Before leaving the average-electron model, consider the multipli-

cation rate . As a result of the repeated doubling of the number

of conduction electrons, their number Ne increases exponentially as

Ne = N0 exp (0t). The net energy gain, from Eqs. (2.4) and (2.5), is

dp/dt 1E aE 2 (2.8)

3phYL = 3 VO E 2

VO

Assuming that a and E 2 are independent of 6 (that and

independent of F), integrating Eq. (2.8), and using the breakdown

criterion of setting the pulse duration t = t equal to 51/0 as dis-
p

cussed in Sec. V, we obtain

51 E _ E2

_____ Va 2
51p0 2 V for E > E2o
B I E2  ' O

vo (2.9)

20 ,for E < EVO"

The value of 0 goes to zero at E = EVO. For a high electric field

E2 >> E O, Eq. (2.9) gives

7= 17 IE for E >> E2
'71E ,E Evo • (2.10)
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III. DIFFUSION MODEL

The central approach of the present investigation is to solve

the appropriate transport equation by an eigenvalue method. The trans-

port equation, detailed by Holway and Fradin, 16 can be cast as a dif-

fusion equation in energy space:

;n(6, t)/at + 3J/a6 = 0 ,(3.1)

where n(', t) is the number of electrons with energy between 6 and

+ d6, and the energy-space current (the net number of electrons

whose energy increases from a value less than 6 to a value greater

than 6 per unit time) is

J(6, t) = V(6)n(4, t) - D(Z)9n(6, t)/9L . (3.2)

Here V() and D(6) are the effective velocity and diffusion coefficient

in energy space, respectively. Both depend on energy, temperature, and
i

laser frequency. For fields comparable to the breakdown field, ignoring

small field-independent contributions to D, we obtain

V(s) D D(6) = §&E 2  (3.3)

where E is the root-mean-square electric field and a is defined in

Eq. (2.4). The boundary conditions are

n(6I, t) = 0 , (3.4)
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corresponding to no electrons accelerated past the exciton threshold,

and

J(O, t) = 2J(4 I, t) , (3.5)

corresponding to the "flux doubling" feature of exciton creation

followed by photoionization. Converting the transport equation to a

diffusion equation [Eq. (3.1)] is extremely useful because well-known,

intuitively understood diffusion results can be brought to bear on the

electron-avalanche breakdown problem, as illustrated below.

The transport equation resulting in Eqs. (3.1) through (3.5) has

been derived in detail by Holstein20--starting with the Boltzmann

equation, neglecting the spatial dependence of the electron distribu-

tion, and averaging over momentum directions to reduce the momentum

dependence to an energy dependence. In starting with the Boltzmann

differential equation, it is tacitly assumed that the photon energy

tio and the phonon energies &q are sufficiently small that energy

differences can be replaced by differentials. The transport-equation

results in Eqs. (3.1) through (3.5) can also be obtained21 from a

straightforward summation of transition probabilities.

The partial-differential equation (3.1) is converted to an

ordinary-differential eigenvalue equation by using the approximation

n(Z, t) = n() exp (at) (3.6)

Substituting Eq. (3.6) into Eq. (3.1) gives the eigenvalue equation

d(Z)I = On(L) . (3.7)
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The eigenvalue B is the multiplication rate, and the eigenfunction

n(6) is the electron density in energy space. When the laser is first

turned on, the initial electron distribution n(o, 0) is not of the form

assumed in Eq. (3.6). However, the initial dibtribution quickly de-

velops into the eigenfunction distribution n(6) in a time of the order

of the diffusion time constant

Tdif = 2/D . (3.8)

In fact, for the exactly solvable example of V = 0 and D constant, the

approach time to n(6) is a factor of ten shorter than Tdif. Since

Tdif is in the subpicosecond region in cases considered to date, the

form n(6) is attained over essentially the full pulse duration, and

the approximate eigenvalue solution is quite accurate.

The accuracy of the eigenvalue-equation solution has also been

demonstrated explicitly by expanding a representative initial electron

distribution n(6, 0) in the eigenfunctions. Then the projection of

n(6, 0) on the eigenfunction with positive real B (as discussed below)

grows according to Eq. (3.6) for all t > 0, and the projections on

the other eigenvectors decay rapidly. Dual-space eigenfunctions must

be used in the scalar products with which the expansion coefficients

are computed, because the system operator is non-Hermitian.

An eigenvalue B with a positive real part corresponds to an elec-

tron concentration that increases exponentially in time [according to

Eq. (3.6)], as expected for the avalanche process. The eigenvalue

problem defined by the differential equation (3.7), with boundary

conditions in Eqs. (3.4) and (3.5), is non-Hermitian and nonpositive
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definite; thus there is no assurance that either real eigenvalues or

positive eigenvalues exist, though the eigenvalues v must occur in

complex-conjugate pairs. Insight is gained from three simple caste:

with exact solutions to the eigenvalue problem:

1. V() = -V0 = constant and D(6) = D = constant.

2. V() = -V0 = constant, with V0 > 0, and D() = D16.

3. V(6) V0 - V l and D(6) = 2V0 .

These cases are discussed elsewhere. 21  In all three, there is one and

only one eigenvalue with a positive real part (when E is sufficiently

large), and the imaginary part of that eigenvalue is zero. All others

have Re(B) < 0, which corresponds to an exponentially decreasing elec-

tron concentration. In our numerical work, we have always found one

and only one eigenvalue on the positive real axis. We suspect that

this is a general feature of the present problem, but we have no proof.

The boundary conditions in Eqs. (3.4) and (3.5) are unrealistic

in one regard. After creation and subsequent photoionization of the

exciton, both electrons cannot appear together at precisely zero energy,

but are in fact injected into the band energy over an energy interval

with finite width controlled by both the exciton linewidth (for sodium

chloride at room temperature, a few tenths of a volt) and the energy

dependence of the photoionization cross section. In our numerical

work, we have explored the sensitivity of the solution to this boundary

condition by modifying Eq. (3.6) with a source term that distributes a

total of two electrons over a finite energy interval near the bottom

of the conduction band, for each electron that strikes the threshold

_.- . .. . . .__--__,,__. -



for xcitn cratio at The solution is affected only slightly

by that procedure, even when the "injection width" is several tenths

of an electron volt.
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IV. ELECTRON RELAXATION FREQUENCIES

The transport relaxation frequency Yk and the energy-loss param-

eter SiphYL are obtained from the expressions

Yk Z Z (l - k - k')p q±(, k (4.1)

and

/ phyL N ( Q)" l  E E Z (±t q )pq± ( , k') ( - (4 .2 )

where the caret (^) denotes a unit vector, pq± ( ., ') is the proba-

bility that an electron is scattered from k to k' by absorption or

emission (±) of a phonon of wave vector q and frequency wq, 6 is the

Dirac 6 function, and N(6) is the density of states in the conduction

band. The summations over % include summations over phonon branches.

The expression in Eq. (4.2) provides the value of the rate of energy

loss fophYL directly, rather than YL" A value for YL itself can be

obtained by setting the average phonon energy rwph equal to the Debye

energy

ph = kB6 D (4.2a)

where eD is the Debye temperature and kB is the Boltzmann constant.

First consider the contribution of the longitudinal-optical

phonons to Yk" In polar materials such as the alkali halides, the

electrons couple strongly to long-wavelength longitudinal-optical

phonons as a result of the macroscopic electric field they generate.
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Within the framework of a model in which the electron moves in a para-

bolic band with effective mass m*, it is straightforward to derive

the contribution to Yk from Frbhlich scattering, 22 as the scattering

from the longitudinal-optical phonons is called. When the electron

energy 6 is large compared with the longitudinal-optical phonon fre-

quency hwLO the result of evaluating the summations in Eq. (4.1) is17

e w*I2LO 1 1

'YkLO I/ E.- EOE ) (I + 2 nLO) (4.3)

where nLO = [exp (ftLo/kBT) - 1]-1 is the number of thermal longi-

tudinal-optical phonons present in thermal equilibrium at temperature

T, and E0 and E. are the static and high-frequency dielectric constants,

respectively.

The corresponding result for & phYL from Frhlich scattering is

(ph*L 1/2 e2 2 J -
'LO (4.4)

-1/22 E -\ L0

From the -I/2 dependence displayed in Eqs. (4.3) and (4.4), we see

that Fr6hlich scattering is most important near the bottom of the

conduction band. The 6-1/2 behavior displayed in Eqs. (4.3) and (4.4)

is valid only when 6 >> & LO" The full, complex expression is approx-

imated by rounding off the singularity by replacing 4 with 2& LO for

electron energies 6 i 2wLO. This approximation has little influence

on the results.

Next consider the contribution to Yk from nonpolar phonons--that

is, from acoustical and transverse-optical phonons. The probability

( ___"______,-___....______.......____'__. .. .._________________
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that an electron is scattered from k to k' by emission or absorption

of a phonon of wave vector q and frequency wq is given by

Pq±( ' = I Mkk' 2Mq

x (n + 1/2 T 1/2)6(6k , - k ¥  q  
' (4.5)

q k' k q

where M is the effective ionic mass, N is the number of unit cells per

unit volume, A is the Kronecker delta, 6 is the Dirac 6 function, and

Mkk, is the electron-phonon matrix element defined below. For acous-

tical phonons of long wavelength, M is the sum of the masses in the

unit cell; for transverse-optical phonons of long wavelength, M is the

reduced mass of the unit cell; and for zone boundary phonons, M is

a weighted average of the mass on each sublattice. Since the extended

zone scheme is used, q is not restricted to the first Brillouin zone

and the phonon frequency wq is a periodic function of the wave vector,

with the periodicity of the Brillouin zone.

Within the framework of the simplest possible theory--the free-

electron-diffraction theory with the Born approximation--the electron-

phonon matrix element is
2 3

M kk a = iVa ()(- q (4.6)

where K E -k', e is the unit phonon eigenvector, and
- - q

Va(K) = na fdrexp (- i. r)Ua(r1 (47)a4.a
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where na is the atomic density and U (r) is the potential in a unit

cell of the crystal. The validity of Eqs. (4.6) and (4.7) can be ex-

tended beyond the Born-approximation limit by eliminating IVa('I )2

through use of the expression

Oa(K) ( 2 )I Va(K)12 (4.8)

for the cross section per unit solid angle a a (K).

For sodium chloride, examination of the magnitude of the cross

sections for scattering from Na+ and Cl- ions shows that, in the range

of energies of interest here, the cross section for scattering from

the large, polarizable chlorine is far greater than that of the sodium

ion. The corresponding result is true for all alkali halides. Thus,

Oa(K) is well approximated by the cross section for scattering by the

negative ion. In the numerical calculations, the value of a (K) is

taken as the free-ion cross section. In effect, that procedure extends

the validity beyond the Born approximation because the full t-matrix

treatment for scattering by the negative ion is used in the evaluation

of a a (K).

For values of q outside the Brillouin zone, the scattering events

described by Eq. (4.5) are Umklapp processes. A proper description of

Umklapp scattering requires a more detailed calculation of Mkk,. Even

though the full t-matrix for scattering by the halide ion is used to

evaluate aa(K), the calculation in effect treats the electron wave

function using a one-plane-wave approximation. This leads to a non-

physical divergence in pq±(k, k') whenever the wave-vector transfer
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equals a reciprocal lattice vector G because--as 2 approaches G for

the three acoustical branches of the phonon spectrum--w q approaches

zero while Mkk, remains finite. A proper treatment of the electron-

24
phonon matrix element, which is equivalent to at least a two-plane-

wave approximation of the matrix element, shows that the electron-

phonon matrix element vanishes as k' approaches k + G, and that the

cross section varies smoothly near these special values of wave-vector

transfer.

When % lies outside the first Brillouin zone, the phonon fre-

quencies are approximated with suitable weighted averages of zone-

boundary phonon frequencies, and an average is taken over the direc-

tions of the phonon eigenvector eq. That approximation properly in-

cludes the effect of the factor (K 2 eq on the energy variation ofq
the cross section as well as the correct volume of phase space avail-

able to the electron in its final state. The approximated value of

the cross section then has the correct overall energy dependence, with

a reliable semiquantitative estimate of its magnitude at large electron

energies where Umklapp scattering dominates.

The limit of small electron wave vectors is k Z kBZ/ 2 and

<< B/2, where kBZ is the wave vector of an electron at the Brillouin

zone boundary. If we use that limit in evaluating the summations in

Eq. (4.1)--with only the summations over acoustical phonons included,

because the available phase space with q < 2k is small--we obtain

2k

yk(6) 8a3M ck 5  dqq 4 coth , for < BZ (4.9)

0aOZ 9k 0

. .. ...
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where a0 is the lattice constant, ME is the total mass of the unit

cell, c. is the sound velocity, k is the wave vector of the electron,

and Q(6) E 47O a(6) is the total cross section integrated over all

solid angles. In the limit of small k, Eq. (4.9) gives

1 kB T L/2Q(6) (4.10)Yk( ) = 12m 1I2 3 ,

for a parabolic band with effective mass m*.

In the opposite limit k >> kBZ/2, the electron effective mass

is approximated with the free-electron mass m0 and the corresponding

result is

[I-+ n LA (I + 2nTA)
2ir21 2Q(&) (1 2nA) +A 1 (4.11)

Yk( ) = a6M m ( )32 +LA (2(

0 >0 BZL

where wLA and wTA are the frequencies of longitudinal and transverse

phonons at the Brillouin zone boundary, respectively, and the effec-

tive mass M is chosen as M>--the heaviest constituent mass in the unit

cell.

In the numerical calculations, we use a straightforward extrap-

olation between the low-energy-dominated relaxation frequency in Eq.

(4.9) and the high-energy, Umklapp-dominated relaxation frequency in

Eq. (4.11). The high-energy behavior of Yk(6) displayed in Eq. (4.11)

is a crucial feature of our analysis. Both Holway and Fradin 16 and

12,13
the Soviet analysts neglected Umklapp scattering, thereby missing

the dominant contribution to the relaxation frequencies for electron

energies high in the conduction band.
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Holway and Fradin approximated the acoustical phonon scattering

with an expression similar to Eq. (4.9), but replacing the upper limit

on the integral with a constant for the case of ' > BZ/2. Using that

constant, high-energy upper limit is equivalent to including only

normal processes in the expression for yk(S). In that case, the

scattering rate decreases with energy at high energies--in qualitative

contrast to Eq. (4.11)

The Soviet work employed an expression equivalent to Eq. (4.10),

but with Fr6hlich scattering ignored. The resulting form for yk(4)

was extrapolated to energies beyond 6 BZ' thereby underestimating the

strength of the acoustical phonon scattering at high energies.

Finally, consider the contribution to hwphyL from nonpolar scat-

tering. In calculating that contribution, the phonon frequencies that

appear in the Dirac 6 function in Eq. (4.5) are neglected, and approx-

imations similar to those above are used. For scattering from a single

phonon branch, this yields

=naV ( )/ 2 (Kd(K q)2

fphYL - 2M fd(k')a (K)(K • e (4.12)

where v(6) is the velocity of an electron of energy . In the low-

energy limit, where only long-wavelength acoustical phonons contribute,

evaluating the integral in Eq. (4.12) gives

m*

=phyL = 2naV( )Q( ) . (4.13)

For > (BZ/2, m* is replaced with the free-electron mass m0 and M.

is replaced with M> The numerical calculation of the Frdhlich
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contributions to Yk and hwphYL is straightforward. Only the value

of m* near the bottom of the conduction band is needed. The usual

approximation m*.. m0/2 is used, where m0 is the free-electron mass.

To calculate the nonpolar phonon contributions to Yk and yL9 the

cross section Q a() for scattering of an electron by the halide ion

is replaced with its value Qa(LI) at the exciton energy. Then Qa(4I)

is estimated from molecular scattering data. For example, the cross

section for electron scattering from the molecule HCI is dominated by

scattering from the Cl- ion. Thus, we approximate QA(Ui) with the HCl

cross section, which has the value Q(6I) a 0.35 nm2 at 8 eV.

For the other alkali halides, we use the scaling Q(61) = (rh/rNaCl)2

0.35 nm2 , where rh is the ionic radius of the halide ion. The

estimated values of Q(6I ) for sodium chloride and the other alkali

halides are some of the major uncertainties in obtaining quantitative

values for the acoustical phonon contributions to Yk and YL The

phonon frequencies are approximated using wTA = cTkBZ and wLA =

c kBZ, for q : kBZ, where kBZ is the diameter of a spherical Brillouin

zone chosen to have volume equal to the real Brillouin zone.

The temperature dependence of the relaxation frequencies is de-

termined both by the explicit temperature dependence of the Bose-

Einstein phonon-occupation numbers and by the temperature dependence

of the lattice constant and the phonon frequencies. Figures 1 and 2

show the magnitude and energy variations of Yk and YL for sodium

chloride at room temperature. The Frchlich contribution and the

acoustical phonon contribution are shown separately to illustrate their

relative importance. The Frhlich contribution is important only at
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low energies, within one to two volts of the band edge. Ficure 3

shows the full curves of Yk and YL together.

Values of the parameters used in the numerical calculations are

listed in Table II.

Ni
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V. NUMERICAL RESULTS

The electron multiplication rate 8 was calculated--using

Hamming's predictor-corrector method--by a careful numerical inte-

gration of the eigenvalue equation in Eq. (3.7), with boundary con-

ditions defined by Eqs. (3.4) and (3.5). If we consider the behavior

of $ as a function of electric field and temperature, then the break-

down fields predicted by the model will be obtained from the B(E)

curves. The dependence of 8 on the electric field E is shown in Fig.

4 for sodium chloride at 1.06 lim and four temperatures. Similar curves

for 10.6 pm are shown in Fig. 5. The dramatic increase in a with in-

creasing E at low fields, E2 <<E 2 is explained in Sec. VI and can

be seen from the average-electron model, for which 8 goes exactly

to zero, as in Eq. (2.9).

At high fields, E2 >> E2  the multiplication frequency has theV~mx'

general behavior

E for E2 >> E2  (5.1)

as in Eq. (2.10) and as discussed in Sec. VI. The curves in Fias. 4

and 5 do not extend to sufficiently great electric fields to fully

show the E2 dependence, but we have verified that the quite general E
2

dependence is attained at high fields. The temperature variation of

$ displayed in Figs. 4 and 5 can be understood qualitatively, as also

discussed in Sec. VI.

The breakdown field is easily obtained by calculating the multi-

plication frequency 8 as a function of electric field once a criterion
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has been established for selecting the value of B. We use the criterion

ateff = 17, where teff is the effective pulse duration. For Gaussian

pulses, teff is set equal to one-third the total pulse duration be-

cause breakdown occurs principally near the center of the pulse. The

strong variation of 8 with electric field ensures that breakdown occurs

near the pulse center at the breakdown threshold.

In Fig. 6, the calculated temperature dependence of the breakdown

field is shown for sodium chloride at 1.06 and 10.6 Vm. The data re-

ported by the Lebedev group are superimposed. At 1.06 pm, the agree-

ment between measured and calculated values is excellent for variations

in both magnitude and temperature of the breakdown field. At the

lowest temperature, where the data fall well below our calculated

values, the measured breakdown field may not be intrinsic.

At 10.6 Um, the calculated breakdown field is nearly independent of

temperature, in accordance with the data. However, the calculated

value of the breakdown field is smaller than the reported values by

a factor of two. The smaller value of the theoretical threshold is

in sharp, welcome contrast to previous theoretical results, which

have been unable to explain the breakdown at the low experimental

values of EB. More complete information on the magnitude and energy

variations of the acoustic phonon contribution to Yk and yL--particu-

larly their dependence on Q(6i)--may remove that quantitative dis-

crepancy. The value of the breakdown field at 1.06 pm is fairly in-

sensitive to the value of Q(61) because E2 is proportional to the

ratio YL/Yk , as discussed in Sec. VI. In contrast, agreement at

10.6 pm is improved markedly by an increased value of Qa because

EB is proportional to the product yLyk . Although it is feckless
B YL°
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to adjust the values of parameters to force theoretical results to fit

experimental data, selecting the value of a single parameter can never-

theless improve the agreement between theory and experiment, as shown

in Fig. 6, for which an adjusted value of Qa was used, rather than the

unadjusted value of Qa = 0.35 nm2 (which is not accurately known).

The breakdown fields at 1.06 pm for several alkali halides are

summarized in Fig. 7. The present theory provides an excellent account

of the variation of the breakdown field from material to material.

In Fig. 8, the variation of the calculated breakdown field with

pulse duration is compared with the experimental results of the Lebedev

group; 12 ,13 Fradin, Yablonovitch, and Bass; 9 Smith, Bechtel, and

Bloembergen; and Fradin, Bloembergen, and Letellier.25 The theo-

retical values track the trends in the data nicely, though our calcu-

lated breakdown fields are somewhat larger than those measured by the

Bloembergen group.

The theory adequately accounts for the data on magnitude, temper-

ature dependence, pulse-duration dependence, frequency dependence, and

material-to-material variation with no adjusted parameters. There are

minor qualitative discrepancies at 10.6 pm, which have at least four

possible causes. First, even though the description of Yk and tb~phYL

involves no adjustable parameters, the theory is in fact phenomeno-

logical. A more quantitative account of these basic relaxation rates

may improve the agreement between theory and experiment. In particu-

lar, the calculated values are inherently less accurate at 10.6 pm than

at 1.06 pm and other short wavelengths--because small-wave-vector

phonons determine the breakdown at 1.06 pm, whereas phonons with wave

vectors q 2 2kBZ determine the breakdown at 10.6 1m.

-.go
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Section VI shows that low-energy electrons determine the break-

down at 1.06 pm, whereas high-energy electrons govern it at 10.6 Pm.

The maximum phonon wave vector is q = 2k (where k -L1I/2 is the elec-

tron wave vector), as seen in the upper limit of the integral in Eq.

(4.9). For phonon wave vectors q near 2kBZ, the results become more

model-dependent. In the calculation of YL and Yk in Sec. IV, special

treatment is required to remove nonphysical divergences related to

Qa and factors of l/wq, which diverges as wq approaches zero at q = 2kBZ.

A better treatment of the large-wave-vector phonon scattering should

increase the theoretical values of EB at 10.6 pm.

Second, the inaccuracy of the value of Q(6I) discussed above may

account for the small discrepancies. Third, low theoretical 10.6 Jm

values of EB may result from high experimental values due to spherical

aberration,26 as discussed in Sec. VI. Fourth, the breakdown at 10.6 Pm

may be limited by the generation of starting electrons, rather than by

the avalanche process itself.

Other, less likely explanations include Raman scattering and dif-

fusion of the electrons out of the focal volume (which is unlikely be-

cause the focal volumes at 10.6 jm are greater than those at 1.06 pm

and because simple estimates indicate that real-space diffusion is

negligible). Although certain low experimental values of EB agree

well with theory, those that are lower than the greatest reliable

value are currently believed to be extrinsic. Finally, it is never

certain that the measured breakdown field is the intrinsic value.

However, in experiments where the intrinsic limit is not reached,

the experimental values will usually be lower than the theoretical.

.... . .. ....- I2 2 y ,
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Thus, an extrinsic mechanism would not explain the high measured

values of the Lebedev group.
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VI. INTERPRETATIONS AND CALCULATIONS USING SIMPLE MODELS

Physical explanations of the results presented in Sec. V are

informative, important, and invaluable in establishing intuition. The

simplest model--the average-electron model discussed in Sec. II--

affords a useful framework for discussion of the results, but by itself

fails to account for experimental observations. Calculations based

on the transport-equation approach discussed in Secs. III and IV agree

well with experiment, but numerical solutions to differential equations

without verification and interpretation are vacuous.

Constant-V and -D model. This model treats the transport equa-

tion in Sec. III exactly for the case in which V and D are constants,

independent of energy. Proper application of the constant-V and -D

model, for which Appendix A gives the exact solution of the diffusion

equation, allows the calculation of EB from simple closed-form expres-

sions that require no numerical computation. The resulting accuracy of

these highly simplified calculations is well within the range of

accuracy of the model and values of the input parameters. Thus, the

model results afford a simple method of obtaining values of EB, as well

as providing scalings and aiding intuition.

The closed-form results of the constant-V and -D model also illus-

trate the lowering of EB below the average-electron value in Eq. (2.7),

as well as other features of the general theory. Simple limiting forms

of the breakdown field EB and the multiplication rate 8 for the

constant-V and -D model derived in Appendix A are
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EB EdEvo , (6.1)

where

Ed [ + ; g +-£.(1 +/2, for E2 << EvO , (6.2a)

122 2(0.2196 /gL + 0.57)1/2 , for E >> E2 0 (6.2b)

with

g = tw phYLtp/5l~i (6.3)

and

0 (6/h 2L 2 aE2 ) exp (-E2 /E2) , for E2 << E O , (6.4a)
4.phYL IV 2

".t -2 (E 2 _ 0.57Eo) , for E2 >> E 2 (6.4b)

I VO

Here EV0 defined in Eq. (2.6) is the value of E at which the energy-

space velocity is equal to zero.

Calculation of EB using the constant-V and -D model. In order

to apply the constant-V and -D results to real problems--in which y,

and YL are functions of energy, rather than constants--Yk(6) and yL(6)

must be evaluated at appropriate values of 6, and an effective value

LIeff of 61 that is smaller than the real 6, must usually be chosen.

The magnitude of the error in the resulting value of EB depends on how

well these values of Yk' YL' and 6, (or, equivalently, EVO, YL' and LI)

can be chosen. Fortunately, the shapes of the yk(6) and yL(L) curves

are such that choice of the constants EVO, YL' and I are obvious and

Iz
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the accuracy of EB is extremely good, as illustrated by the following

examples.

In the discussion of V and D below, the quantity E 2 - E is a

measure of the height of the barrier in energy space through which the

electrons must diffuse. Thus, the high barrier extending from near-

zero energy to 0.3 I for 1.06 im in Fig. 9 virtually determines

the value of Ehe value of E2() - E 500 (MV/cm)2 atB-bcuetevleoE VO

0.15 is a factor of five greater than -100 (MV/cm)2 at / =

0.45, and the value of EB is sensitive to the barrier height. With

EV0 = 15.3 MV/cm, 6leff *("2 I and YL = 1.6 Y 10-14 sl--all

corresponding to the barrier shown as the dashed line in Fig. 9--

Eqs. (6.1), (6.2a), and (6.3) give g = 460, Ed = 0.33, and

EB = 5.1 MV/cm , const. V and D, 1.06 jim

(6.5)

= 5.6 MV/cm , full diff. eq., 1.06 pm

The approximate value of 5.1 MV/cm nearly matches the value of

5.6 MV/cm obtained from the numerical solution of the diffusion equa-

tion. The corresponding results for 10.6 pm for the narrow and wide

barriers in Fig. 9 are, respectively, g = 1.67 x 105 and 3.72 x 10

Ed = 0.25 and 0.27, and

EB = 0.72 MV/cm and 0.70 MV/cm , const. V and D, 10.6 vim

(6.5a)

= 0.68 MV/cm , full diff. eq., 10.6 pm ,

again showing excellent agreement. The two barriers are two approx-

imations to the actual curves. They are used to show the insensi-

tivity of the results to the choice of the barrier in this case.
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Magnitude of EB. In the low-field limit E2 ., E 0, which is valid

for nanosecond pulses, the breakdown field in Eqs. (6.1) and (6.2a) is

less than EVol a typical value being EB = O.3Evo. Thus, the simple

model illustrates the energy-space diffusion effect of reducing the

value of EB below EVO for nanosecond pulses. That is, Ed in Eq. (6.1)

is less than unity.

In the high-field limit E2 >> EO, which is approached for pico-

second pulses, the breakdown field in Eqs. (6.1) and (6.2b) is greater

than EVO. The high-field limit is valid for sufficiently short pulse

durations, because a decrease in the pulse duration requires an in-

crease in the electric field in order for the electrons to be accel-

erated in the shorter time. Conversely, at shorter pulse durations

such as nanoseconds, the electric field is small, and the inequality

E 2 << E 2 is satisfied.

The model shows that the average-electron value of EB in Eq. (2.7)

affords a very rough approximation to EB. Moreover, the corrections

from the transport-equation approach show EB to be somewhat smaller

than EVO for nanosecond pulses and somewhat greater for picosecond

pulses.

Frequency dependence of EB. Sparks17 pointed out a quite general

shortcoming of previous theories. The factor (I + y2/W2 )  in Eq.

(2.6) is commonly used because it comes from the conductivity in that

equation. If Tk were independent of frequency, as was well accepted

at that time, the resulting theoretical frequency dependence of the

breakdown electric field EB would grossly disagree with experimental

results. The resolution of that difficulty--and the reason for the
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successful explanation of the frequency dependence of EB by the present

theory--is that Tk in the simple average-electron model cannot be

treated as a constant, independent of frequency. The value of Tk( )

is of course independent of the laser frequency. However, as a result

of the energy dependence of Tk and -L $ different effective values of

Tk must be used at different laser frequencies, as illustrated by the

following example.

At 1.06 pm, the inequality Yk " w is valid; whereas at 10.6 um,

the inequality w << Yk is valid. Thus, Eq. (2.6) gives

(3~pm/2)I/2 1/Y)/2
EVO _- w(3,wphm/e ( 1/2 at 1.06 pm , (6.6)

and

2  1/2EVos (3h, phm/e Y at 10.6 pm . (6.7)

Equation (6.6) shows that the 1.06 pm breakdown field is controlled

by the ratio yL/Yk , which is greatest at low electron energies, as

illustrated in Fig. 1. The energy dependence of Evo, which is pro-

1/2portional to (YL/Yk) at 1.06 pm, is plotted in Fig. 9. As men-

tioned above, E2O( ) - E2 is a measure of the height of the barrier

through which the electrons must diffuse. The obstacle to accelerating

the electrons to energy occurs at low energy, where EVO has the

greatest value for the 1.06 pm laser frequency, as shown by Fig. 9.

In contrast, at 10.6 jm, EB is controlled by the product fLyk , which

is greatest at high electron energies I a 61, as shown by Figs. 1 and

9. Thus, the obstacle occurs at high energies i for the 10.6 pm

laser frequency.
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Since low-energy electrons are important for inducing breakdown

at 1.06 pm and high-energy electrons at 10.6 urm, the corresponding

values of Yk should be used in evaluating EVO in Eq. (2.6). The small,

low-energy value of Yk from Fig. 1 should be used at 1.06 Um; but the

large, high-energy value of Yk at 10.6 pm. (The corresponding values

of YL must also be used, of course--but YL does not vary as strongly

with energy as does Yk.) The diffusion equation automatically accounts

for the ccrrect Tk at all frequencies; only when considering the

average-electron model must the appropriate Tk be selected explicitly.

For wavelengths shorter than approximately one micrometer,

WTk >> 1 is sufficiently well satisfied at all 6 for the shape of the

EVO() curves to be independent of w--that is, EVO() -W. Thus, for

X 1 Ium, the diffusion transport theory gives EB -w. However, any

of several effects is expected to cause EB to be lower than the

diffusion-theory value at short wavelengths. These effects include

the breakdown of the validity of replacing differences by differentials,
17

the specific large-quantum processes discussed by Sparks, and multi-

photon absorption.

Dependence of EB on tp, 6I' SphYL' and w. In the low-field limit

E<<EO which is valid for nanosecond pulses, Eqs. (6.1) and (6.2a)

show that EB is weakly dependent on the parameters tp and 6 that appear

in Ed, and is more strongly dependent on the parameters tophYL and w

that appear in EVO. The weak dependence of the breakdown field on the

bandgap (or, to be precise, on 6) and on the laser-pulse duration tp

for nanosecond pulses was at first surprising. However, the previously

used, average-electron criterion for breakdown, EB = EvO, also gave EB

______________-
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independent of UI and t . Furthermore, agreement with experimental

data is good. In the high-field limit E2 >> E2 which is approached

for picosecond pulses, Eqs. (6.1) and (6.2b) show EB to be rather

strongly dependent on all parameters--tp1 6I9 IphYL
' and w.

Focal-volume dependence of EB. In laser breakdown of gases, the

diffusion of the electrons out of the focal volume (not to be confused

with energy-space diffusion) is an important effect that determines the

value of EB. However, simple estimates indicate that the diffusion

of electrons out of the focal volume in solids is negligible in all

experiments reported to date. Another factor--the probability of hav-

ing or generating a starting electron in the focal volume--could con-

ceivably cause EB to depend on the focal volume, as discussed in Sec. I.

Soileau and coworkers26 suggested that spot-size scaling could

possibly reconcile the results of various analysts. They proposed that

the value of EB should be a function of the focal-volume size because

the probability of having a starting electron present decreases with

volume. Verification of the spot-size scaling law--through, for ex-

ample, experiments with starting electrons supplied by a separate source,

or examination of the probabilistic nature of breakdown in small focal

volumes and its deterministic nature in large focal volumes--is needed

because the starting electrons are currently thought to be easily gen-

erated by lattice imperfections such as impurities, dislocations, or

grain boundaries. Breakdown is thought to be controlled by the

avalanche process rather than the generation of seed electrons. How-

ever, these hypotheses have not yet been supported either by experiment

or convincing theory, so verification of the suggested mechanism giving

the spot-size scaling would be useful.

.. ,.
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Aaron, Ireland, and Grey Morgan 27 showed that "entirely spurious

'focal-length' dependence of It., which is not infrequently found in

published literature" can result from irradiance reduction caused by

spherical aberration. Extreme care in measurement is required to avoid

the spurious focal-volume effects.

Shape of the K(E) curves. The central features of the electric-

field dependence of 6 illustrated by Figs. 4 and 5 result from quite

general considerations that are independent of specific models. At

high fields, the diffusion in energy space becomes negligible, and the

electrons stream freely to the multiplication energy I according to

the relation dL/dt . (d/dt)E - E . As discussed in Sec. II, that

streaming gives E 2 at high fields. The E2 dependence of 0 at high

fields is also explicitly illustrated by the constant-V and -D result

in Eq. (6.5).

At low fields, $ decreases rapidly with decreasing E because the

2 2barrier height EVO(6) - E through which the electrons must diffuse

becomes high. Indeed, in the average-electron model of Sec. II, B goes

to zero at E = EV0. For the diffusion model, B goes to zero rapidly

as B -exp (-E2/E2), as shown quite generally in Appendix B. The ex-

plicit result in Eq. (6.4a) illustrates that general high-field re-

sult, with the characteristic electric field Ec equal to EVO.

Temperature dependence of the O(E) curves. In the important range

of electron energies discussed below, the inequality w " yk( ) is

satisfied at 1.06 pm. At high temperatures, Yk(6) - T and 1&phyL ' TO

if the thermal expansion corrections are ignored. The electron gains

2e 2 2
energy from the electric field at the rate 2e yk E /m*W2 according to
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Eq. (2.4); thus, as the temperature increases, the electron is accel-

erated more efficiently by the field because Yk increases. Since the

loss /'LphYL is nominally temperature-independent, S increases with

temperature for fixed electric fields. Consequently, the electric

field required for breakdown decreases as the temperature is raised,

in agreement with the data.

Figure 4 shows the variation of 0 with temperature and wavelength

at 10.6 pm. The variation of a with electric field at fixed tempera-

tures is qualitatively similar to the 1.06 pm behavior, as expected,

but its variation with temperature is more complex. As the temperature

increases from 77 K to room temperature, 0 increases much as it does

at 1.06 Pm. Over most of that range, w > yk(6) is satisfied for the

important range of energies, and the behavior of 0 with temperature

may be understood by the arguments of the previous paragraph. At room

temperature and above, the inequality w < Yk(6) is satisfied; the

electron thus gains energy from the electric field at the rate

2e2E2/3m*yk, according to Eq. (2.4). As the temperature increases,

with Yk nominally proportional to temperature, the electron is accel-

erated less efficiently, and 0 decreases with increasing temperature,

in contrast to its behavior at 1.06 pm. Thus, 0 first increases with

temperature, reaches a maximum, and then falls. Since the criterion

for breakdown outlined below places the breakdown field near the maxi-

mum at room temperature, the breakdown field is fairly independent of

temperature, again in accordance with the data.

Energy-space velocity and diffusion. The energy-space velocity

V, which appears in Eq. (3.2) and is defined for the general case in

a -d
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Eq. (3.3), determines the rate at which the electrons drift to higher

energies for positive V, or to lower energies for negative V, as a

result of the combined effects of E acceleration and y loss. The

energy-space diffusion coefficient D, which appears in Eq. (3.2) and

is defined in Eq. (3.3), determines the rate at which electrons dif-

fuse from energy-space regions of high electron concentrations to

neighboring low-concentration regions.

The average-electron model of Sec. II is equivalent to neglecting

the energy-space diffusion. In extending the average-electron model

to include energy-space diffusion, the quantity E O( ) - E2 -- when

positive--is a measure of the height of the barrier through which elec-

trons must diffuse to reach the multiplication energy I When

EO(6) - E2 is negative, the electrons drift to higher energies even

in the absence of diffusion. Neglecting diffusion yields EVO(- ) - E2  0

as the criterion for breakdown, as indicated in Eq. (2.7).

The value of E 2(6) - E2 at which breakdown occurs is positive

over at least part of the energy range 0 g 6 ! 6i--which indicates

that electron diffusion in energy space effectively increases the elec-

tron energy to 6I" The electric field thus need not be as large as the

value in Eq. (2.7) predicted by the average-electron theory. That dis-

crepancy is one reason previous average-electron theories predicted

values of EB greater than measured values.

Physically, the lowering of EB by diffusion occurs as follows:

The process by which the electron energy is increased to the multipli-

cation value I involves many collisions of the electron with phonons.

Some collisions (yL) cause the electron to lose energy, and some (Yk)

to gain energy from the electric field.

* . --- a im.
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The average effect of the collisions determines the energy-space

velocity. The deviations from the average determine the energy-space

diffusion coefficient. For example, an electron that meets with fewer

than the average number of energy-loss collisions, together with an

optimum distribution of momentum-reversing collisions--gains energy

faster than does an average electron. At dc, the optimum distribution

of momentum-reversing collisions is none at all; electrons undergoing

no collisions are continuously accelerated by the electric field. For

w 0, the optimum distribution is a reversal of the electron momentum

every cycle of the electric field (at the null in E). Electrons so

accelerated faster than average have been called lucky electrons.
3'4'5

The diffusion equation accounts for lucky electrons automatically, of

course.

I.'
.. .i ' L ..._. . . . .. . ' . . . . . .
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Appendix A

CALCULATION OF THE BREAKDOWN FIELD FOR CONSTANT D AND V

Here we solve the eigenvalue equation obtained from the diffusion

equation exactly for the case of constant diffusion coefficient D and

velocity V. The solution for this simple model affords approximate

values of the breakdown field EB and the electron multiplication rate

0 in key limiting cases, and determines their dependence on the var-

iables. The accuracy of these highly simplified calculations is con-

sistent with that of the overall model.

For constant D and V, Eq. (3.2) becomes

J(6, t) = Vn(6, t) - D an(6t)/3Z . (Al)

Substituting into Eq. (3.1), the diffusion equation in energy space

becomes

32 2
an/at = D a2n/aZ - V an/aZ . (A.2)

Setting an/at = On under the approximation of Eq. (3.6) yields the

eigenvalue equation

D d2n/d62 - V dn/d6 - On = 0 . (A.3)

Equation (A.3) is cast into dimensionless form

d2nd/d6d + Ud dnd/d6d - Odnd = 0 (A.4)

by dividing t by Tdif = 2/D and by I and introducing the dimension-

less variables
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n d- = n6 6d = "'I B d = B'dif =(gE d) (A. 5a)

Ed= E/Ev Ud -' Vt /I (1- E 2)/E 2 (A. 5b)

g = (fwph'YLtp/5l6 I) . (A.5c)

Substituting the trial solution n d = exp (cZ d) into Eq. (A.4) and

solving for a yields

a+ l ± r where r U2+ 0 d) (A.6)

The boundary conditions for the case of constant D and V are

nY= 0

(A.7)

-D dn(O)/dZ + VNO) = -20 n6)d

or, in dimensionless form,

nd(l) =0
(A.7a)

-d(O)Idd- Ud d(0) = -2 dnd )/dd

The general solution to Eq. (A.4) that satisfies Eq. (A.7a) is

nd =exp [a+(6d -1]-exp [a - 1)] (A.8)

Substituting Eq. (A.8) into Eq. (A.7a) and rearranging terms yields

the transcendental equation for8

2e cosh r -(Ud/2r) sinh r (A.9)

- - - -- -- - ---- ~--d
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which reduces to

cosh [(/D)/ 241] = 2 , for V = 0 . (A.10)

In the limit I << exp U U, writing cosh r and sinh r as

I [exp (r) ± exp (-r)], with Ud/2r - - 2( d/U2 in Eq. (A.9), we

obtain the limiting cases of

d  -U2 e , for 1 << exp Ud , (A.lla)

-4 -/E 
2

d- e d for E2 << I (A.llb)
E d edoE«

Substituting Ud = (1 - E 2)/E2 and 0d (gE2)-I into Eq. (A.lla) and

formally solving for Ed yields

Ed l+ Rn § + dn [(d ~)E

a-[l +2g + (l +&g)]' 2 , g >> , (A.12)

or E2 << EO. The breakdown field EB can then be obtained using

EB EdEVO-

The value of 0 in this small-field limit is obtained from Eq.

(AlIb) by using the definitions of Bd and Ed in Eq. (A.5), with

EVO = (34wphYL/)/ 2. This gives the result of Eq. (6.4a):

a- (6 h y 2/ 2GE2 ) exp (-E 2 /E2  , for E2 << E2
ph* L I vol EVO
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2 2 2In the other limit of high fields, Ed >> 1 (E >> EvO), Eq. (A.Sb)

gives Ud -1. By substituting Ud = -1 into Eq. (A.9) and expanding

cosh r and sinh r, the zeroth-order approximation r0 = 1.59 to r is

obtained. Rearranging the definition of r in Eq. (A.6) gives

Sd= r2 _1U 2 (A.13a)

or, as a zeroth-order approximation,

d  BdO = 1 - - 2.28 (A.13b)

using

= d2/. E 2 (A.14a)

Thus Eq. (A.13b) yields

00 = 4.57f phYLLE2/ 1EVo (A.14b)

By setting B0 = 51/tp, the breakdown field can be calculated from

Eq. (A.14b):

EBO = I tp)E = (0.2196i/g6) 1 2E . (A.15)

A better approximation is obtained by calculating the next-order

term in B and EB using a double Taylor expansion about U d and r in

Eq. (A.9):

2 exp - (Udo + E = cosh (r0 + 6- (Udn + E) sinh (r + 6)21 UO+ 9 0 2(r 0 + ) sin

(A.16)

........... ......
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Expanding and 6quating first-order terms gives 6 =-0.336( and

8 =(r + 6) 2 2

8dl 2r 06 + E 0 .570E (A.17)

Since ~ 8d U (1 EO.)E 571+0/E 2 - + te

2_ 2
0.4570/hY~E 0. 570EV )/E

and
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Appendix B

AN ANALYTIC EXPRESSION FOR THE MULTIPLICATION RATE

IN THE LIMIT OF A WEAK ELECTRIC FIELD

Here we derive an expression for the electron multiplication rate B

appearing in Eq. (3.6), in the limit that the laser field E is weak.

We begin by substituting Eq. (2.6) into Eq. (3.1) to find

an(6) + J = 0 , (B.)

which, upon integrating over energy from =0 to 6 = I yields the

following general expression for B:

J(6i

B = J(B.2)

J d~n(6)

We used the boundary condition in Eq. (3.5) to obtain this result.

Now in the limit of very small laser fields E, the electron multi-

plication rate B will also be very small--as demonstrated by physical

considerations as well as the numerical calculations presented in Secs.

III through V. For very small values of B, the term Bn(6) in Eq. (B.l)

may be ignored everywhere, and--for all energies save those near the

bottom of the band where electrons are injected--we have

aJ/;= 0 , (B.3)

or LIii:i..~~
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J(L) :V(L')n(4.) -D(6) ;n/Du = J(L',) ,(BA4)

a relation that holds for all values of 6 except those near zero.

Equation (B.4) is an elementary differential equation, and may be

integrated at once, subject to the boundary condition n(6I) = 0. The

result is

n(L) = Jd exp d6" d exp [- dyj " d
If 6")f D(V) D( - "D(1)

(B.5)

Hereafter we use Eq. (B.5) in combination with the low-field forms

V() = - f"phYL (B.6a)

and

D(6) = 2e2E2  tyN(6)3* 2+2 (B.6b)3m* W2 + Yk(2

The central quantity is the integral

q(f) = f dV'V(V')/D(6') , (B.7)

which is a negative definite function of energy, with maximum absolute

value at 6 = 6I" In fact, in very low fields, we have Iq(6i)I >> 1,

and also Ilq'(61 )I >> 1. The second integral in Eq. (B.5) is con-

trolled by the contributions from energies very close to 6P so we

have

- " - - -- - - - -
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~~~~~, ~~x ex [q(§']( d,'ep -(i,

exp [-q(6~) exp [-q(6)]

jV(~ 1 fl(B.8)

For n(6), therefore, we have

n(6) = J(61) i exp [q6) - q(6I1)j q (B.9a)

_exp [q(6)- ( )]B.b

where the factor of unity in Eq. (B.9a) is important only very close

to 6 = 6,a region that contributes little to the denominator in

Eq. (B.2).

If we use the form for Eq. (B.9b) in Eq. (B.2), then we have

exp [q(61)
IM dV1 i (B.10)

0

or, using explicit forms for the various quantities given above,



3m* hoy [2 2 ~()
exp 2 [w + Ykf d' S

0 'phYL"1 I ~j

exp 3m* f~ phL [ 2 Y2,

0 01

(B.11)



-52-

REFERENCES

*

Permanent addresses are as follows: D. L. Mills and A. A.

Maradudin, University of California at Irvine, Irvine, California;

T. Holstein, University of California at Los Angeles, Los Angeles,

California; L. J. Sham, University of California at San Diego,

La Jolla, California; and E. Loh, Jr., Malibu, California.

1. M. Van Marum, Ann. Physik 1, 68 (1799).

2. The following should lead the reader intothe vast literature:

(a) J. J. O'Dwyer, The Theory of Electrical Conduction and Break-

down in Solid Dielectrics (Clarendon, Oxford, 1973); (b) N.

Bloembergen, IEEE J. Quantum Electron. QE-lO, 375 (1974); (c) N.

Klein, Adv. Electron. and Electron. Phys. 26, 309 (1969); (d) D. W.

Fradin, Harvard University Technical Report 643, Contract NOO014-

67-A-0298-0006 (May 1973).

3. F. Seitz, Phys. Rev. 76, 1376 (1949).

4. W. Shockley, Czech. J. Phys. B 11, 81 (1961) and Solid-State

Electron. 2, 35 (1961).

5. M. Bass and H. H. Barrett, IEEE J. Quantum Electron. QE-8, 338 (1971).

6. J. M. Ziman, Electrons and Phonons, edited by N. F. Mott, E. C.

Bullard, and D. H. Wilkinson (Clarendon, Oxford, 1960).

7. K. K. Thornber and R. P. Feynman, Phys. Rev. B 1, 4099 (1970).

8. E. Yablonovitch, Appl. Phys. Lett. 19, 495 (1971).



-53-

9. D. W. Fradin, E. Yablonovitch, and M. Bass, Appl. Opt. 12, 700

(1973); D. W. Fradin, Harvard University Technical Report 643,

Contract N00014-67-A-0298-0006 (May 1973).

10. W. L. Smith, J. H. Bechtel, and N. Bloembergen, Phys. Rev. B 15,

4039 (1977).

11. F. Seitz, Phys. Rev. 73, 549 (1948).

12. B. G. Gorshkov, Y. K. Danileiko, A. F. Epifanov, V. A. Lobachev,

A. A. Manenkov, and A. V. Sidorin, Sov. Phys.-JETP 45, 612 (1977).

13. A. A. Manenkov, in Laser-Induced Damage in Optical Materials,

edited by A. J. Glass and A. H. Guenther (National Bureau of

Standards, Washington, D.C., Special Publication 509, 1977).

14. A. Schmid, P. Kelly, and P. Braeunlich, Phys. Rev. B 16, 4569

(1977).

15. R. Hellwarth, in Laser-Induced Damage in Optical Materials, edited

by A. J. Glass and A. H. Guenther (National Bureau of Standards,

Washington, D.C., Special Publication 341, 1970), p. 67.

16. L. H. Holway and D. W. Fradin, J. Appl. Physics 46, 279 (1975).

17. M. Sparks, "Theory of electron-avalanche breakdown in solids," in

Laser-Induced Damage in Optical Materials, edited by A. J. Glass

and A. H. Guenther (National Bureau of Standards, Washington, D.C.,

Special Publication 435, 1975), p. 331; M. Sparks, in Theoretical

Studies of High-Power Ultraviolet and Infrared Materials (Xonics,

Inc., Fifth Technical Report, Contract DAHE 15-73-C-0127, 30 June

1975), Secs. B and C.

18. M. Sparks, T. Holstein, R. Warren, D. L. Mills, A. A. Maradudin,

L. J. Sham, E. Loh, Jr., F. King, in Laser-Induced Damage in

.. . . .. . .' d : ...



-54-

Optical Materials, edited by A. J. Glass and A. H. Guenther

(National Bureau of Standards, Washington, D.C., Special Publica-

tion 568, 1979), p. 467.

19. M. Sparks, R. Warren, T. Holstein, and D. L. Mills, 1980 (unpublished).

20. T. Holstein, Phys. Rev. 70, 367 (1946); T. Holstein, in Theoretical

Studies of High-Power Ultraviolet and Infrared Materials, Seventh

Technical Report, 30 June 1976, ARPA Contract DAHC-15-73-C-0127.

21. M. Sparks, "Electron-avalanche breakdown in solids--summary of

results," June 1979 (unpublished).

22. H. Frthlich and N. F. Mott, Proc. R. Soc. London A 171, 496 (1939);

H. Fr6hlich, Proc. R. Soc. London A 160, 230 (1937); H. Fr6hlich,

Adv. Phys. 3, 325 (1954).

23. J. M. Ziman, Principles of the Theory of Solids, 2nd ed. (Cambridge

University, London, 1972).

24. J. M. Ziman, Electrons and Phonons (Oxford University, London, 1960).

25. D. W. Fradin, N. Bloembergen, and J. P. Letellier, Appl. Phys. Lett.

22, 635 (1973).

26. M. J. Soileau, M. Bass, and E. W. Stryland, in Laser-Induced Damage

in Optical Materials, edited by A. J. Glass and A. H. Guenther

(National Bureau of Standards, Washington, D.C., Special Publica-

tion 541, 1978), p. 309.

27. J. M. Aaron, C.L.M. Ireland, and C. Grey Morgan, J. Phys. D 7,

1907 (1974).

*4i.



-55-

Table I. Influence on the breakdown threshold EB of including various

effects in the theory.

Including this effect in the theory causes

the theoretical EB to: Increase Decrease

Spherical aberrations X

Self-focusing X

Macroscopic inclusions X

Sample surface effects X

Impurity levels in the bandgap X

Control of EB by starting electrons X

Electron or thermal diffusion out of

the focal volume X

Raman scattering X X

Large quantum nature of hw X

Multiphoton absorption X

Inter-conduction-band transitions X

NOTE: Experimentally measured extrinsic values are lower than the

intrinsic theoretical values.

aFor increasing focal diameter.

bAs photon frequency increases.

do's.



-56-

Table II. Pardmeters used in numerical calculations.

Parameter Definition Value for NaCl of 293 K

hwph Phonon energy (1/31) eV

Exciton threshold 7.8 eV

High-frequency 2.34

dielectric

constant

C0 Static dielectric 5.62

constant

na  Atomic density 2.24 x 10-23 cm
3

2
Qa Halide atomic 0.35 nm

cross section

9.77 x 1O23 g, 6 < 1Bz

MW ~ Lattice mass 215.93 x lO- 2 3 g, > B

4BZ Electron energy at 4.56 eV

Brillouin zone edge

m, ! 2 BZ

m*( Electron effective m(Z/6BZ)' BZ 6 6 BZ

mass
M, 6 '6BZ

~* ~ 0* ~ - - ---
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FIGURE CAPTIONS

Figure 1. Variation of the electron-momentum relaxation rate Yk with

energy (solid curve) for sodium chloride at room tempera-

ture. The individual contributions from Frhlich scatter-

ing (longitudinal-optical) and from scattering by acoustical

phonons are shown as dashed lines.

Figure 2. Variation of the electron-energy loss rate YL with energy

(solid curve) for sodium chloride at room temperature.

The individual contributions from Fr6hlich scattering

(longitudinal-optical) and from scattering by acoustical

phonons are shown as dashed lines.

Figure 3. Variation of both the electron-momentum relaxation rate

Yk and the electron-energy loss rate YL with energy for

sodium chloride at room temperature.

Figure 4. Variation of the electron multiplication rate 0 with elec-

tric field for sodium chloride at several temperatures at

1.06 Um.

Figure 5. Variation of the electron multiplication rate B with electric

field for sodium chloride at several temperatures at

10.6 pm.

13
Figure 6. Comparison of the experimental and theoretical values for

the temperature dependence of EB for sodium chloride at

1.06 pm and 10.6 pm.

Figure 7. Comparison of the experimental13 and theoretical values for

the room-temperature breakdown field for several alkali

halides at 1.06 pm.
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13Figure 8. Comparison of the experimental and theoretical values

for the room-temperature breakdown field for sodium

chloride at 1.06 jim for various pulse durations.

Figure 9. Plot of EVol defined in Eq. (2.6), for sodium chloride

at room temperature. Dotted lines indicate the values of

the breakdown field E calculated from the rectangular

barriers shown by dashed lines.
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